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Preface

In recent decades, the physics community has experienced a revival of interest in
spin effects in solid state systems. This interest is two-fold: On one hand, the solid
state systems, particularly semiconductors and semiconductor nanosystems, allow
one to perform benchtop studies of the quantum and relativistic phenomena. The
spin–orbit interaction effects on electron spin states and the hyperfine interaction
of electron and nuclear spins are among the most prominent examples of such
a class of effects. On the other hand, interest is supported by the prospects of
realizing spin-based electronics where electron or nuclear spins may play the role
of quantum or classical information carriers. This has resulted in the formation of
a novel research field; spin electronics or, in short, spintronics.

The range of spin effects is vast. It extends from the effects of spin orientation
and detection to the processes of spin transfer and manipulation. Moreover,
a variety of spin systems in semiconductors have been studied including the
spins of charge carriers, that is of electrons and holes, spins of nuclei, spins
of impurities, and so on. Needless to mention, each semiconductor system
brings about certain specific aspects of spin phenomena resulting in a multitude
of spectacular and unique facets of spin physics in semiconductors. Many of
these effects are observed experimentally and have firm theoretical grounds.
As a result, spin physics in semiconductors has turned into a mature topic of
research. To date, various aspects of spin effects in semiconductors have been
concisely reviewed in collective books Optical Orientation, edited by F. Meier and
B. P. Zakharchenya (North-Holland, 1984) and Spin Physics in Semiconductors,
edited by M. I. Dyakonov (Springer, 2008), sometimes called “Old Testament”
and “New Testament” of semiconductor spin physics, respectively. Each of the
topics addressed in these references could become the subject of a separate
monograph reflecting the state of the art in the corresponding area of spin physics.

This book aims at a rather detailed presentation of intriguing physics in the
interacting systems of electron and nuclear spins in semiconductors, with par-
ticular emphasis on low-dimensional structures. The two spin systems naturally
appear in practically all widespread semiconductor compounds. For instance, in
most prominent GaAs, AlAs, or InAs materials that serve as building blocks for
many semiconductor nanostructures, all host lattice nuclei have nonzero spins.
The hyperfine interaction of charge carrier and nuclear spins gives rise to the
spin exchange between these two systems. As a result, the understanding of the
intertwined spin systems of electrons and nuclei is crucial for in-depth study and
control of the spin phenomena in semiconductors. This is one of the reasons why
the physics of electron and nuclear spins takes a special place in semiconductor
spintronics. From the point of view of possible applications, the extremely long
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lived (for up to days), nuclear spin polarization attracts a lot of interest in the
community in issues related to the deliberate polarization of nuclei and detection
of spin coherence. Interest in the physics of electron and nuclear spins is also
strongly motivated by the beautiful and complex physics occurring in this many-
body and nonlinear system.

Hopefully, the present book will be useful for postgraduates and researchers
willing to enter the field of electron and nuclear spin dynamics in semiconductors,
and comprehend the general physical picture of the interacting electrons and
nuclei. Here, I have attempted to present the phenomenology and qualitative
analysis together with the more rigorous models. The basics of experiments are
outlined, however, the details on particular experimental methods and setups are
not included because this goes far beyond my expertise. A certain amount of
reference information and details on theoretical approaches included in this book
might make it useful for specialists in the field as well.

It is a great pleasure to thank those who have helped me with writing the
book. I am grateful to the students of Academic University in St. Petersburg
(Russia) who have attended my lectures on spin effects in semiconductors. Their
interest and stimulating questions have helped me to deeper understand things,
which I thought were trivial. I am very grateful to my colleagues both at Ioffe
Institute and all over the world for collaboration and support. I am indebted to my
colleagues T. Amand, I. D. Avdeev, E. Chekhovich, M. V. Durnev, A. Greilich, I. V.
Ignatiev, E. L. Ivchenko, K. V. Kavokin, V. L. Korenev, X. Marie, M. Yu. Petrov,
A. V. Poshakinskiy, D. S. Smirnov, A. Tartakovskii, B. Urbaszek, D. R. Yakovlev,
I. A. Yugova, and V. S. Zapasskii for valuable discussions and critical reading of
the manuscript. I owe my wife, Marina Semina, and my mother, Nina Glazova, a
debt of gratitude for their continuing support and help.

St. Petersburg, Russia
January, 2018
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1

Introduction

Creation, detection, and manipulation of the spin degrees of freedom of electrons
and nuclei; phenomena of spin relaxation, decoherence, and dephasing; and the
processes of spin transfer between different subsystems are among the most
important problems studied in semiconductor spintronics. These effects taking
place in semiconductor nanostructures with localized charge carriers, and the
underlying interactions in spin systems are the focus of this book. The aim of
this short introductory chapter is to provide an outline of the material contained
in the book and explain the logic of its presentation.

Chapter 2 on “Spin Systems in Semiconductor Nanostructures” contains
an introduction to a rich variety of phenomena taking place in the interacting
system of electrons and nuclei in semiconductors. It includes the basics of the
electronic properties of nanostructures and of spin physics, an overview of the
fundamental interactions in the electron and nuclear spin systems, selection rules
at optical transitions in semiconductors, and spin resonance phenomenon as
well as optical orientation and dynamical nuclear polarization effects. The last
section 2.6 contains an analysis of the particular features of spin dynamics arising
in structures with localized electrons, such as quantum dots, which are studied
later in the book. The aim of this chapter is to provide the basic minimum of
information needed to read the remaining chapters. In the following chapters, we
provide references to the basic notions and concepts introduced in Chapter 2 that
might be helpful for readers interested in the contents of just a few particular
chapters.

Chapter 3 on “Spin Resonance” is devoted to one of key phenomena in the field
of spin physics; namely, the resonant absorption of an electromagnetic wave under
conditions where the splitting between spin levels in a magnetic field is equal to the
photon energy. This method is particularly relevant for identification of nuclear
spin effects, because the resonance spectra provide “fingerprints” of different
involved spin species and make it possible to distinguish different nuclear isotopes.
As discussed in this chapter, nuclear magnetic resonance also provides access
to local magnetic fields acting on nuclear spins and is caused by the magnetic
interactions between the nuclei or by the quadrupole splittings of nuclear spin
states caused by the environment. We also outline specific manifestations of spin
resonance in the optical response of semiconductors; that is, optically detected

Electron and Nuclear Spin Dynamics in Semiconductor Nanostructures. M. M. Glazov, Oxford University Press
(2018). © M. M. Glazov. DOI: 10.1093/oso/9780198807308.001.0001



2 Introduction

magnetic resonance, Section 3.3. This technique has became an indispensable tool
due to its high sensitivity and relative simplicity of realization in semiconductors.

Chapter 4 on “Hyperfine Interaction of Electron and Nuclear Spins” discusses
the interaction that underlies most of phenomena in the field of electron and
nuclear spin dynamics. This interaction originates from the magnetic interaction
between nuclear and electron spins. In many cases, it is reduced to the Fermi
contact interaction whose strength is proportional to the probability of finding
an electron at the nucleus. A more involved situation is realized for the valence
band holes in III-V or II-VI materials where the hole Bloch functions vanish at the
nuclei, see Section 4.2. The modification of the hyperfine coupling Hamiltonian
in nanosystems is also analyzed. The chapter contains also an overview of
experimental data aimed at determination of the hyperfine interaction parameters
in semiconductors and semiconductor nanostructures.

One of the main manifestations of the hyperfine interaction is the transfer
of spin between the electron and nuclear systems. This effect is studied in
detail in Chapter 5 entitled “Dynamical Nuclear Polarization.” While thermal
orientation of nuclei in a magnetic field is negligible due to their small magnetic
moments, hyperfine coupling can effectively induce the spin flux from electrons
to nuclei, or vice versa, provided that the electron spin system is driven out of
equilibrium; for example, by means of optical orientation. In this chapter, we
present the microscopic approach to the dynamical nuclear polarization effect
based on the kinetic equation method followed by a more phenomenological
but very powerful description of dynamical nuclear polarization in terms of the
nuclear spin temperature concept. In this way, one can account for interactions
between neighbouring nuclei without solving a complex many-body problem.
The hyperfine interaction also induces the feedback of polarized nuclei on the
electron spin system giving rise to a number of nonlinear effects such as bistability
of nuclear spin polarization and the anomalous Hanle effect. These and other
nonlinear effects in the interacting electron and nuclear system are presented in
Sections 5.3–5.5 both from theoretical and experimental viewpoints.

Chapter 6 focuses on details of the optical manipulation of electron spin states.
It also addresses manifestations of the electron and nuclear spin dynamics in
the optical response of semiconductor nanostructures via spin-Faraday and spin-
Kerr effects. Coupling of spins with light provides the most efficient way for
nonmagnetic spin manipulation. The main aim of this chapter is to provide
theoretical grounds for optical spin injection, ultrafast spin control, and readout of
spin states by means of circularly and linearly polarized light pulses. The Faraday
and Kerr effects induced by electron and nuclear spin polarization are analyzed
both by means of a macroscopic, semi-phenomenological approach, and by using
the microscopic quantum mechanical model. Theoretical analysis is supported by
experimental data.

After establishing the main interactions in the electron and nuclear spin systems
and describing the protocols for electron spin initialization, control, and detec-
tion, we turn to the discussion of the electron spin decoherence and relaxation
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phenomena. These processes limit the conservation time of spin states as well
as the response time of the spin system to external perturbations. In particular,
Chapter 7 on “Electron Spin Decoherence By Nuclei” focuses on the hyperfine
interaction induced decoherence of localized electron spins. After formulation of
the central spin model where the spin of charge carrier interacts with the bath of
nuclear spins, we present different methods to calculate the spin dynamics within
this model. A simple but physically transparent semiclassical treatment where
the nuclear spins are considered as largely static classical magnetic moments is
followed by a more advanced quantum mechanical approach where the feedback
of electron spin dynamics on the nuclei is taken into account. The chapter is
concluded by Section 7.4 containing an overview of experimental data and its
comparison with the models.

Although the hyperfine interaction serves as a major source of electron spin
dephasing, it can be strongly suppressed by an external magnetic field. This is
because a substantial difference between the electron and nuclei Zeeman splittings
gives rise to the vanishing probabilities of electron-nuclei flip-flop processes
making hyperfine coupling-induced spin relaxation inefficient. Hence, other inter-
actions provide electron spin relaxation in strong fields. Electron spin relaxation
in sufficiently strong magnetic fields is addressed in Chapter 8 on “Electron
Spin Relaxation Beyond the Hyperfine Interaction.” Spin relaxation mechanisms
related to the joint action of electron-phonon interaction and spin-orbit coupling
are discussed in detail. Experimental manifestations of such processes and com-
parison between the experiment and theory are presented in Section 8.4. We also
discuss in Section 8.5 a very specific situation where the spin-flip is caused by the
magneto-dipole radiative transitions between the Zeeman-split levels.

Chapter 9 on “Electron Spin Precession Mode-Locking and Nuclei-Induced
Frequency Focusing” is devoted to a rich variety of effects in spin dynamics
arising from the conditions of pump-probe experiments. Here, we consider the
situation where electron spin is injected by a periodic train of circularly polarized
pump pulses and precesses between the pulses in an external magnetic field.
Nontrivial effects such as resonant spin amplification and spin coherence mode-
locking take place due to the commensurability of the repetition period of pump
pulses and the charge carrier spin precession period. Theoretical approaches to
describing the electron and nuclear spin coherence in such a case and experimental
manifestations of these unusual regimes of spin dynamics are discussed in detail.

While the standard approach to studying electron and nuclear spin dynamics
experimentally can be briefly summarized as excitation of spin system and
monitoring its evolution (or detecting the time-integrated response), a lot can
be learned from the equilibrium behavior of spins. In thermal equilibrium, both
electron and nuclear spin systems are unpolarized on average, but characterized
by nonzero fluctuations. The intensity and dynamics of these inevitable stochastic
fluctuations of spins contain information on spin relaxation and decoherence
times, spin precession period, and interactions in spin systems. The theory of spin
fluctuations in semiconductor nanosystems as well as experimental advances in the
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field of spin noise spectroscopy are reviewed in Chapter 10. Specific situations
where the spin noise spectroscopy can be particularly useful for spin dynamics
studies are discussed, the analysis of recent progress in the field of nonequilibrium
spin fluctuations is presented as well.

The book is concluded by Chapter 11 on “Strong Coupling of Electron and
Nuclear Spins: Outlook and Prospects” where some prospects in the field of
electron and nuclear spin dynamics are outlined. Particular emphasis is put on
a situation where the hyperfine interaction is so strong that it leads to a qualitative
rearrangement of the energy spectrum resulting in the coherent excitation transfer
between the electron and nucleus. The strong coupling between the spin of the
charge carrier and of the nucleus is realized, for example, in the case of deep
centers in semiconductors or in isotopically purified systems. We also discuss
the effect of nuclear spin polaron (i.e., ordered state) formation at low enough
temperatures of nuclear spins, where the orientation of the carrier spin results in
alignment of the spins of nuclei interacting with the electron or hole.



2

Spin Systems in Semiconductor
Nanostructures

2.1 Brief overview of spin systems in semiconductors

Spin is the intrinsic magnetic moment or intrinsic angular momentum of the particle.
In contrast to the orbital angular momentum and the magnetic moment related to
the orbital motion of charged particles, the presence of spin is not caused by any
classical motion. The electrons, protons, and neutrons are fermions and possess
a spin of 1/2. Strictly speaking, the intrinsic angular momentum associated with
the spin for these particles equals h̄/2, but the reduced Planck constant h̄ is often
omitted, and hereafter we follow this convenient practice.

The protons and neutrons combine and form the nuclei that arrange in the
crystalline lattices of semiconductors. In the prominent semiconductor material of
GaAs, the relevant (stable) nuclei isotopes are 69Ga, 71Ga, and 75As, all of which
have nonzero spins of 3/2. We recall that the superscript at the upper left of the
chemical symbol denotes the mass number; that is, the total number of protons
and neutrons constituting a nucleus. The most relevant isotopes of In are 113In
(stable, about 4% of natural abundance) and 115In (weakly radiative with a lifetime
of >400 trillion years, 95% abundance; i.e., stable from the view point of practical
applications) have spins of 9/2. Hence, in GaAs and InAs semiconductors and
nanostructures all host lattice nuclei that have nonzero spin. This might not be
the case for other important semiconductors, for example, the stable isotopes of
Si: 28Si, 29Si, and 30Si with abundances of about 92, 5, and 3%, respectively, have
spins of 0 (28Si, 30Si) and 1/2 (29Si). Therefore, the majority of nuclei in silicon
have zero spin. Some of the isotopes relevant to the semiconductors under study,
together with their abundance and spins, are listed in Table 2.1.

Hence, in semiconductors we naturally have the spin system of charge carriers,
electrons and holes, and of the host lattice nuclei. One of the specific features of
semiconductors is the strong interaction of the charge carriers with light. The
polarization state of the electromagnetic wave can be associated with the spin
(spin angular momentum) of the photon. Unlike electrons, protons and neutrons,
the photons are bosons with spin equal to 1. The right- and left-circularly

Electron and Nuclear Spin Dynamics in Semiconductor Nanostructures. M. M. Glazov, Oxford University Press
(2018). © M. M. Glazov. DOI: 10.1093/oso/9780198807308.001.0001



6 Spin Systems in Semiconductor Nanostructures

Table 2.1 Nuclear isotopes with nonzero spin in several group-IV, III–VI, and II–VI semicon-
ductors. The asterisk denotes unstable but abundant isotopes. Magnetic moments, gyromagnetic
ratios, and quadrupole moments (for I >1/2 in barns = 10−28 m2) are given.From (Fuller,1976)
and Evaluated Nuclear Structure Data File http://www-nds.iaea.org/.

Isotope Abundance % Spin Magnetic Gyromagnetic Quadrupole
I moment ratio moment

μI/μN γI (MHz/T) Q (barn)

27Al 100 5/2 +3.6415069 +11.103 +0.147

75As 100 3/2 +1.439475 +7.315 +0.314

13C 1.1 1/2 +0.7024118 +10.708

111Cd 12.8 1/2 −0.5948861 −9.069

113Cd(∗) 12.2 1/2 −0.6223009 −9.487

19F 100 1/2 +2.6288 +40.077

69Ga 60.1 3/2 +2.01659 +10.248 +0.171

71Ga 39.9 3/2 +2.562266 +13.021 +0.107

199Hg 16.9 1/2 +0.5058855 +7.712

201Hg 13.2 3/2 −0.5602257 −2.846 +0.387

113In 4.3 9/2 +5.5229 +9.355 +0.799

115In(∗) 95.7 9/2 +5.5408 +9.386 +0.86

95Mo 15.9 5/2 −0.9142 −2.787 −0.022

97Mo 9.6 5/2 −0.9335 −2.846 +0.255

14N 99.6 1 +0.403761 +3.078 +0.0193

15N 0.4 1/2 −0.28319 −4.317

31P 100 1/2 +1.130903 +17.24

33S 0.76 3/2 +0.6438 +3.272 −0.084

121Sb 57.21 5/2 +3.3634 +10.255 −0.36

123Sb 42.79 7/2 +2.5498 +5.553 −0.49

77Se 7.6 1/2 +0.535 +8.156

29Si 4.7 1/2 −0.5553 −8.465

123Te 0.9 1/2 −0.7369478 −11.235

125Te 7 1/2 −0.8885051 −13.545

67Zn 4 5/2 +0.875479 +2.669 +0.150

183W 14.3 1/2 +0.11778 +1.796

https://www-nds.iaea.org
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Figure 2.1 Schematics of the basic spin systems in a semiconductor, which are the focus of this
book, illustrated with the example of GaAs.The large arrow denotes σ+ and σ− polarized photons
carrying angular moment. GaAs crystalline structure is sketched as a lattice of 69Ga, 71Ga, and
75As isotopes, each carries a nonzero spin shown by the small gray arrows. The localized electron
wavefunctions (e.g., bound to neutral donors) are illustrated by shaded circles, dark thick arrows
show electron spins. The dimensions of the bound state wavefunctions and the lattice constant are
not shown to scale.

polarized light corresponds to the photon spin components on the light propaga-
tion direction being+1 and−1, respectively. The spin component of 0 is forbidden
for photons because the electromagnetic field is transversal.

Figure 2.1 sketches these three spin systems, which are the most relevant to the
following. The interactions in the spin systems outlined in Section 2.3 allow for
spin transfer between photons, electrons, and nuclei. In many cases, the charge
carriers act as intermediaries between the spins of photons and lattice nuclei:
The electron spins can be efficiently polarized in the process of light absorption
due to the spin-orbit interaction (this is the process known as optical orientation)
and electrons can transfer spin to the lattice nuclei via the hyperfine interaction.
In this chapter, we start with a concise introduction to the electronic properties
of semiconductors and semiconductor nanostructures (Section 2.2), then discuss
interactions in spin systems in Section 2.3, outline the main effects in spin systems
in semiconductors in Sections 2.4 and 2.5, and conclude this chapter with the
motivation for the study of spin dynamics in the interacting system of the lattice
nuclei and localized electron spins (Section 2.6).
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2.2 Basics of semiconductor nanostructure physics

The motion of electrons in bulk crystals resembles electron dynamics in free space.
There are allowed energy bands with a continuous energy spectrum separated by
the forbidden intervals known as band gaps. The formation of forbidden bands is
because the electron potential energy is periodic in space. Due to the translational
symmetry of bulk materials the electron states are characterized by the following
quantum numbers: The continuous variable k being the quasi-wavevector or, in
short, the wavevector of the electron, and discrete parameters n being the band
label and s=±1/2 being the electron spin index. Usually, the spin-orbit coupling
mixes orbital and spin degrees of freedom, therefore, it is convenient to use a
single subscript n that accounts both for the band and spin states. Accordingly,
the wavefunction �k,n(r) of the electron in semiconductor can be presented in
the form of the Bloch function

�k,n(r)= 1√
v

exp(ik · r)Uk,n(r). (2.1)

Here, v is the normalization volume, r = (x,y,z) is the electron position vector,
and Uk,n(r) is the periodic Bloch amplitude: At all translations that match the
crystalline lattice with itself, the function Uk,n(r) remains invariant. Equation (2.1)
is the Bloch theorem that follows from the translational symmetry arguments.
The values of the k are usually selected within the first Brillouin zone of the
k-space, since the addition to k or subtraction from k of a reciprocal lattice vector
can be accounted for by the change of the periodic amplitude in Eq. (2.1). The
functions (2.1) satisfy the Schrödinger equation

H0�k,n = En(k)�k,n, H0 = p̂2

2m0
+V (r)+Hso. (2.2)

Here p̂=−ih̄∇r =−ih̄(∂/∂x,∂/∂y,∂/∂z) is the electron momentum operator, m0
is the free electron mass, V (r) is the periodic single-particle potential and Hso is
the spin-orbit Hamiltonian, whose form is presented later in Eq. (2.11).

Equation (2.1) demonstrates that the electron state in a crystal is, like in
free space, a plane wave, but, unlike in free space, modulated with a function
Uk,n(r) oscillating on the scale of the lattice constant. Just like in free space, the
electron energy En(k) is a continuous function of the wavevector k in the allowed
bands, however, the En(k) dependence can be both qualitatively and quantitatively
different from that of the electron in vacuum. Figure 2.2 illustrates some of
the relevant energy bands in the prototypical system of GaAs: the lowest empty
band, that is, the conduction band, nearest excited conduction bands as well as the
topmost occupied bands, the valence bands. The conduction and valence bands
are separated by the forbidden band gap, Eg, for instance, in GaAs Eg ≈ 1.5 eV.
Of course, the band filling by the charge carriers depends on the temperature and
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Figure 2.2 Sketch of the conduction and valence bands in a GaAs-like semiconductor. The
remote conduction bands are shown by dotted lines. Eg and E ′

g are the band gaps, � and �′
are the spin-orbit splittings of bands, the bands are labelled by the irreducible representations �6,
�7 , and �8 relevant at k= 0, with the superscripts c and v denoting the conduction and valence
bands respectively. Additionally, the bands, are labelled by the spin components, see Section 2.3
for details. The electron representation for labelling the valence band states is used.

presence of impurities; that is, doping. Hence, the classification of bands in terms
of conduction and valence is performed for pure semiconductors in the limit of
zero temperature.

Calculations of electron dispersion is a complex task where various atomistic
methods such as such as density functional theory, pseudopotential method, tight-
binding approximation are used. However, as a rule, one is interested in the
electron states in the vicinity of some point k= K0 in the Brillouin zone where
in the extrema of the conduction band, Ec(k), or the valence band, Ev(k), energy
dispersions are realized. GaAs is the direct band gap semiconductor, where the
nearest in energy extrema of conduction and valence bands are formed at K0 = 0.
This point is also denoted as the �-point, see Figure 2.2, and we focus on this
situation hereafter. The Bloch amplitude Uk,n is decomposed in the series of the
periodic amplitudes at the �-point Uk,n =∑

n′ C
(n)

n′ (k)U0,n′ , where the subscript 0
denotes k= 0. Making use of the k ·p-perturbation theory (see Appendix B) one
can show that the column vector Ĉ(n)(k) formed of the decomposition coefficients
Cn′(k) satisfies the matrix equation
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H(k)Ĉ(n)(k)= En(k)Ĉ(n)(k). (2.3)

Here,H(k) is the effective Hamiltonian. Within the second-order k ·p-perturbation
theory, the matrix elements Hn;n′(k) of the effective Hamiltonian H(k) are linear
and quadratic in the components of the wavevector k. In the simplest possible case
where only one band is taken into consideration and the spin degree of freedom
is disregarded, the effective Hamiltonian takes the form H(k)= h̄2k2/2m, where
m is the effective mass.

Within the k ·p approach one usually includes only the nearest bands in the
Hamiltonian H(k), while contributions from the remote bands are accounted for
by the quadratic in the wavevector,∼ k2, and sometimes, higher order terms in the
H(k). The form of the effective Hamiltonian in the bulk material can be established
by means of symmetry analysis: The invariants method allows one to find a
general form of Hn;n′ while the parameters of the Hamiltonian are determined
by comparison with atomistic calculations and experiments. For further details on
the k ·p-method we refer the reader to Appendix B and the books (Bir and Pikus,
1974; Ivchenko and Pikus, 1997; Voon and Willatzen, 2009) where this method is
justified and presented in every detail.

In the presence of external electric and magnetic fields, impurities, lattice
deformations, as well as in nanostructures, such as quantum wells (QWs), quantum
wires (QWRs), and quantum dots (QDs), the electron potential energy is no longer
periodic in space and the Bloch theorem does not apply anymore. For example,
in quantum wells the electron motion is free in the well plane and restricted
along the well normal; in quantum wires the electrons are free to move along
one direction, the wire axis; and in quantum dots the motion of charge carriers
is restricted in all three spatial directions. Generally, the atomistic methods should
be used to calculate the wavefunctions and energies of size-quantized states. These
methods have high accuracy but, as a rule, relatively high complexity, which does
not allow one to trace the physics of the effects easily. Therefore, in many cases
it is instructive to use approximate methods, namely the effective mass method or
effective Hamiltonian method, which is valid if the charge carrier localization in
nanostructures or in the impurity potential takes place on the length scale, which
exceeds by far the lattice constant.

In the effective Hamiltonian method, the electron wavefunction is sought in
each homogeneous part of the system as a linear combination of bulk solutions,
see Eq. (2.1),

�(r)=
∑

n

ϕn(r)U0,n(r). (2.4)

The exponential function exp(ik · r) describing a plane wave in Eq. (2.1) is
replaced by an envelope function ϕn(r) describing the size quantization effect,
similar to the case of a free particle where the plane wave is replaced by the
appropriate wavefunction in the given potential. The envelope functions are
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smooth on the scale of the lattice constant; they obey the Schrödinger equation in
bulk layers with the effective matrix Hamiltonian, Eq. (2.3), where k=−i∇. The
functions ϕn(r) are matched at the heterointerfaces by the appropriate boundary
conditions.

The amount included in the consideration bands depends on the phenomenon
studied, required accuracy, and so on. If just one band is accounted for, as an
example, the conduction band, and the spin is disregarded for a moment, the
effective Hamiltonian takes the particularly simple form,

H(k)= h̄2k2

2m
+Veff , (2.5)

where Veff = Veff(r) is the effective potential energy. This model is referred to as
the effective mass approximation. For the conduction band in GaAs m≈ 0.067m0,
where m0 is the free electron mass. In heterostructures formed of homogeneous
bulk semiconductors, the potential energy Veff(r) takes a constant value within
each homogeneous region, the discontinuities of Veff(r) at the heterointerfaces
equal to the band offsets between the materials. The effective potential can also
include contributions due to external fields. The effective mass differs in different
homogeneous regions as well. In nanostructures formed by a smooth variation of
composition, both Veff and m are smooth functions of coordinates, and the kinetic
energy is usually represented as

− h̄2

2
∇ 1

m(r)
∇.

Similarly, for an electron interacting with the ionized donor in a bulk semicon-
ductor, the potential Veff(r) is usually approximated by the attractive Coulomb
potential, Veff(r)=−e2/(�r), where r = |r| and � is the static dielectric constant.
Equation (2.5) is similar to the Hamiltonian of a free electron interacting with
a potential field Veff . Just as for an electron bound to an attractive potential, in
semiconductors the attractive potential due to the electric field of the ionized donor
or due to the band offsets results in the formation of localized states with a discrete
energy spectrum. The engineering of the potential Veff(r) by means of advanced
growth techniques opens up possibilities to design the wavefunctions of the size-
quantized states in nanostructures and tune their energies on demand. The details
on the size quantization effect in nanostructures can be found, for example, in
(Bastard, 1988; Davies, 1998; Ivchenko and Pikus, 1997; Winkler, 2003; Ivchenko,
2005) where various semiconductor systems are considered.

2.3 Interactions in spin systems

Free electron spin states are described by the spinor wavefunctions denoted as
| ↑〉, | ↓〉. These are eigenfunctions of the spin-z component operator, ŝz, with the
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eigenvalues being ±1/2, respectively. In this basis, the electron spin operator is
conveniently represented by the Pauli matrices:

ŝ= 1
2
σ , σ = (σx,σy,σz), (2.6)

where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.7)

The intrinsic magnetic moment μ̂ of a free electron is related to its spin as μ̂=
−2μBŝ, where μB = |e|h̄/(2m0c) is the Bohr magneton with c being the speed of
light. As a result, for a free electron the Hamiltonian describing its spin interaction
with the external magnetic field B, that is, the Zeeman effect, has a particularly
simple form

HB =−(μ̂ ·B)= g0

2
μB(σ ·B), (2.8)

where g0 = 2 is the free electron g-factor (also known as the Landé factor).
In crystals and nanostructures, the electron Zeeman effect is described by a

similar Hamiltonian

HB = 1
2

∑
α,β

gαβσαBβ , (2.9)

where we introduced the tensor of g-factors gαβ . Here α,β = x,y,z are the
Cartesian coordinates. Equation (2.9) can be recast in the form

HB = h̄
2

(σ ·�B) , (2.10)

where the pseudovector �B with the components

�B,α = μB

h̄

∑
β

gαβBβ ,

has a transparent physical meaning: It is the frequency of the spin precession in
the external field B. The �B is the Larmor frequency of electron spin precession.
The number of independent components of gαβ is determined by the symmetry
of the system. For instance, in cubic semiconductors such as GaAs or InAs,
the tensor gαβ = gδαβ reduces to a scalar, g, and δαβ is the Kronecker δ-symbol.
The difference between the free electron g-factor and the g-factor in many
semiconductors is quite significant; for example, in GaAs for conduction band
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electrons g ≈−0.44, while in InSb g ≈−50. The difference results from the spin-
orbit interaction. The size quantization of electron states in nanosystems results
both in renormalization of the g-factor with respect to the bulk values, and to the
appearance of new independent components of the g-factor tensor (Ivchenko and
Kiselev, 1992; Kalevich and Korenev, 1993; Ivchenko, 2005; Yugova et al., 2007a).

The spin-orbit interaction or spin-orbit coupling provides the coupling between
the spin states of the electron and its orbital motion. The spin-orbit interaction is a
relativistic effect but, for the semiconductors under study, it is sufficient to account
for the relativistic effects in the lowest order. The spin-orbit coupling is thus
described by the Hamiltonian (Bir and Pikus, 1974; Landau and Lifshitz, 1977)

Hso =− ih̄2

4m2
0c2

(σ · [∇V (r)×∇]) , (2.11)

Here, V (r) is the periodic potential in the crystal, Eq. (2.2), and the operator Hso
acts in the basis of Bloch functions, �k,n(r), arranged in the form of spinors,

�̂k,n(r)=�k,n,+1/2(r)| ↑〉+�k,n,−1/2(r)| ↓〉 =
(

�k,n,+1/2(r)

�k,n,−1/2(r)

)
.

The interaction in the form of Eq. (2.11) has a profound effect on the electron
states in semiconductors and acts in many cases as a driving force for electron
spin dynamics. Here we recall the most important manifestations of the spin-orbit
coupling.

In semiconductors like GaAs, the conduction band in the vicinity of the � point
is formed mainly of s-like atomic states (with the orbital momentum being 0),
while the valence band is mainly formed of the p-like atomic states (with the
orbital momentum being 1). Formally, the orbital part of the Bloch amplitude of
the conduction band at k= 0, S(r), is invariant under all operations in the point
symmetry group Td relevant to the zinc-blende lattice crystals. It corresponds
to the irreducible representation A1; see Appendix A for details. Accounting for
the spin the pair of Bloch amplitudes U0,n,+1/2 = S(r)| ↑〉, U0,n,−1/2 = S(r)| ↓〉
transforms according to the irreducible spinor representation �6 of the Td point
group. There are three orbital Bloch amplitudes, X (r), Y(r), Z(r), of the valence
band at the �-point, which form the basis of the irreducible representation F2 of
the Td point symmetry group. These three functions transform at all symmetry
operations just like the components of the polar vector, such as the position vector
r, or the electric field E. Accounting for the spin, we have six functions, for
example, X (r)| ↑〉, Y(r)| ↓〉, which form a basis of the representation F2 ⊗�6.
This representation is reducible, it can be decomposed in the sum of irreducible
spinor representations �8 ⊕�7. The dimensions of these representations are 4 and
2, respectively. Hence, accounting for the spin-orbit interaction, one expects the
splitting of the valence band top into the quadruplet (�8 representation) and the
doublet (�7 representation), see Figure 2.2. The splitting between the �8 and �7
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states is called the spin-orbit splitting of the valence band and denoted as �. It
amounts to about 340 meV in GaAs, 390 meV in InAs, 750 meV in GaSb, and
reaches almost 1 eV in InSb (Vurgaftman et al., 2001; Adachi, 2005, 2009).

In fact, this fine structure of the valence band states is similar to the fine
structure of the 2p-level of the hydrogen atom. Indeed, the periodic potential
V (r) in Eq. (2.11), is invariant under all transformations of the crystal point
group, the derivatives ∂V/∂x, ∂V/∂y, ∂V/∂z transform as components of a vector
r = (x,y,z). Hence, the selection rules for the matrix elements of the operator
Hso are exactly the same as in the atomic case and, correspondingly, the matrix
elements of the Hso operator in the basis of the valence band Bloch amplitudes
X (r)| ↑〉,X (r)| ↓〉, . . . differ from those in the atom by a common factor only. By
analogy with the hydrogen atom, the valence band basic functions at the � point
are usually labelled by the total angular momentum J and its component Jz. The
angular momentum J is the sum of the valence band electron spin (1/2) and orbital
(1) momenta. It runs through the values from −3/2 to +3/2 for the �8 states:

|�8,+3/2〉 = −X + iY√
2

| ↑〉, (2.12a)

|�8,+1/2〉 =
√

2
3
Z| ↑〉− X + iY√

6
| ↓〉, (2.12b)

|�8,−1/2〉 =
√

2
3
Z| ↓〉+ X − iY√

6
| ↑〉, (2.12c)

|�8,−3/2〉 = X − iY√
2

| ↓〉, (2.12d)

and takes the values ±1/2 for the �7 states:

|�7,+1/2〉 = − 1√
3

[Z| ↑〉+ (X + iY)| ↓〉] , (2.13a)

|�7,−1/2〉 = 1√
3

[Z| ↓〉− (X + iY)| ↑〉] . (2.13b)

Here, we omitted the argument of the orbital functions, r, and used the canonical
basis for the angular momentum basic functions, see; for example, (Edmonds,
1974; Varshalovich et al., 1988).

It is noteworthy that at k 
= 0 the �8 quadruplet splits into two branches, usually
denoted as the heavy-hole band (with a larger absolute value of effective mass) and
the light-hole band (with a smaller magnitude of effective mass), see Figure 2.2.
As illustrated in Figure 2.2, for k directed along one of the cubic axes 〈100〉,
these bands correspond to the states with the projections of the total angular
momentum onto the k being ±3/2 and ±1/2, respectively. Note that the situation
is somewhat more complex for the arbitrary orientation of k, moreover, in some
semiconductors the signs of the heavy- and light-hole effective masses can be
different. The details of the valence band fine structure can be found, for example,
in (Bir and Pikus, 1974; Ivchenko and Pikus, 1997; Yu and Cardona, 2010).
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Furthermore, the spin-orbit interaction affects the electron and hole dispersion
in semiconductor and low-dimensional structures where the free motion is pos-
sible at least along one spatial direction. Indeed, in noncentrosymmetric systems,
such as in zinc-blende lattice semiconductors and in many nanostructures, the
energies of two spin states with a given wavevector k, En±1/2(k), are not equal.
The spin-dependent contribution in the conduction band effective Hamiltonian
of a semiconductor with the Td point symmetry is cubic in the wavevector
(Dresselhaus, 1955)

HD = γc

[
σxkx

(
k2

y − k2
z

)
+ σyky

(
k2

z − k2
x

)
+ σzkz

(
k2

x − k2
y

)]
, (2.14)

with γc being the coefficient, γc ≈ 20 eVÅ3 for GaAs. The contribution of
Eq. (2.14) to the effective Hamiltonian is termed the Dresselhaus term. Here, we use
the set of cubic axes, x ‖ [100], y ‖ [010], z ‖ [001]. Such a form of spin splitting
of the conduction band is readily understood from the symmetry arguments:
The set of the Pauli matrices forms the basis of the F1 representation of the
Td point symmetry group, the combinations kx(k2

y − k2
z), ky(k2

z − k2
x), kz(k2

x − k2
y)

also transform according to the same irreducible representation. For the valence
band states, both k-linear and k-cubic terms are allowed (Pikus et al., 1988;
Ivchenko and Pikus, 1997). In wurtzite semiconductors and in nanostructures
the symmetry is, as a rule, lower and allows for the coupling between the spin and
the linear combinations of the wavevector components (Rashba and Sheka, 1959;
Ohkawa and Uemura, 1974; Vas’ko, 1980; Bychkov and Rashba, 1984; Dyakonov
and Kachorovskii, 1986). In any case, the spin-orbit contributions to the effective
electron Hamiltonian can be written in a form similar to Eq. (2.10) (Winkler,
2003; Ivchenko, 2005; Dyakonov, 2017):

Hso = h̄
2

(σ ·�k) . (2.15)

Here, the pseudovector, �k, is an odd function of the electron wavevector, �k =
−�−k. This is the result of the time reversal, t →−t, symmetry: in nonmagnetic
systems at the t →−t transformation both spin and wavevector change their signs
ensuring the invariant form of the interaction. The spin-dependent combina-
tions involving even powers of the wavevector components are thus forbidden.
Equation (2.15) demonstrates that the electron moving in a noncentrosymmetric
structure experiences an effective magnetic field, whose strength and direction
depend on the electron wavevector. Hence, the electron orbital motion becomes
coupled with the electron spin dynamics.

So far, we have discussed the single particle states and the single particle energy
dispersion. Importantly, the interaction between electrons is spin-dependent as
well. This is because of the Pauli principle, which imposes the antisymmetry of
the total wavefunction of fermions with respect to the particle permutations. Even
if the spin-orbit interaction is absent and, correspondingly, the spin part of the
two-electron wavefunction can be separated from the orbital part, the symmetry
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of the orbital part of the wavefunction is enforced by the symmetry of its spin part.
According to the momentum summation rules, the total spin S of the electron
pair can be either 0 or 1. The spin part of the function with S = 0, that is, spin
singlet, reads

1√
2

(| ↑〉1| ↓〉2 − | ↑〉1| ↓〉2) , (2.16)

and it is antisymmetric with respect to the particle permutations (the subscripts 1
and 2 enumerate the electrons). Hence, the orbital function of the spin singlet is
symmetric with respect to the electron permutations. By contrast, the spin parts
of the S = 1 triplet have the form

| ↑〉1| ↑〉2,
1√
2

(| ↑〉1| ↓〉2 + | ↑〉1| ↓〉2) , | ↓〉1| ↓〉2, (2.17)

being symmetric with respect to the permutations, making the corresponding
orbital wavefunction antisymmetric. Difference of the orbital wavefunctions
results in the difference of the Coulomb interaction energies. Hence, the states
with S = 0 and S = 1 are split due to the Coulomb interaction. In many cases it is
convenient to avoid the antisymmetrization procedure and introduce the effective
exchange interaction in the form of interaction between the spins as

Hexch =−Jŝ1 · ŝ2, (2.18)

where ŝi is the spin operator of ith electron, i = 1,2, and J is the exchange
interaction constant. One can readily check that the eigenstates of the Hexch
operator are indeed the singlet and the triplet states, see Eqs (2.16) and (2.17),
with the energies 3J/4 and −J/4, respectively. In the presence of the spin-orbit
interaction, the scalar product of the spin operators in Eq. (2.18) is replaced by
the combination (Kavokin, 2004; Bădescu et al., 2005; Gangadharaiah et al., 2008;
Glazov and Kulakovskii, 2009)

−
∑
αβ

Jαβ ŝ1,α ŝ2,β ,

where the components of the exchange constant tensor Jαβ are determined by
the symmetry of the system, orbital wavefunctions of the electrons and the
spin-orbit coupling. It is worth stressing that the exchange interaction is just
a consequence of the permutation symmetry requirements and the Coulomb
interaction. The exchange interaction is of major importance in diluted magnetic
semiconductors, for example GaAs:Mn, where the paramagnetic ions with
unpaired electron spins, such as manganese, are incorporated. It is also very
important for excitons, Coulomb-correlated electron-hole pairs: The exchange
interaction between an electron and a hole determines to a large extent the exciton
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fine structure and serves as a driving force for the spin dynamics of excitons (Bir
and Pikus, 1974; Ivchenko, 2005). It is noteworthy that, for electronic excitations
in semiconductors, it is by far more important compared with the magnetic
interaction between the charge carriers.

Magnetic interactions play a role where the spins of the lattice nuclei are
involved. For a brief introduction to the physics of nuclei we refer the reader to the
concise lecture course by Landau and Smorodinsky (2014). The basic interactions
involving nuclear spins in solids are presented in (Meier and Zakharchenya, 1984;
Abragam, 2002; Dyakonov, 2017). Consider a nucleus with the spin I . The
nucleus can be treated as a point-like magnetic moment μ since the size of the
nucleus is in the range of (1 . . .10)× 10−5 Å, so it is far smaller than the lattice
constant in semiconductors, as well as, naturally, the de Broglie wavelength of
the electron. The magnetic moment operator μ̂ is related to the nuclear spin
operator Î as

μ̂= h̄γI Î = μI

I
Î, (2.19)

where γI is the gyromagnetic ratio of the nucleus and μI is the nuclear magnetic
moment. The interaction of nuclear spin with the magnetic field B is described by
the Hamiltonian

HB,N =−(μ̂ ·B). (2.20)

Analogous to Eq. (2.9), one also introduces the nuclear g-factor, gn, as gn =
h̄γI/μN , where μN = |e|h̄/(2mpc) is the nuclear magneton and mp is the proton
mass, recasting Eq. (2.20) in the form:

HB,N =−gnμN (Î ·B), gn = μI

IμN
. (2.21)

Note the difference in signs in Eqs (2.9) and (2.21): Formally, it comes from
the fact the the nucleus is positively charged, such a sign convention is used
in (Abragam and Bleaney, 1970; Kalevich et al., 2017) and is quite convenient.
Typically, the nuclear g-factors are in the order of unity, hence, in the same
magnetic field the Zeeman splittings of nuclear spin sublevels are about three
orders of magnitude smaller than those of the electron; see Table 2.1 where the
magnetic moments and gyromagnetic ratios for some relevant isotopes are listed.

The nuclear magnetic moment μ produces the magnetic field that acts on the
electron spins and on the spins of the neighboring nuclei. The hyperfine interaction
Hamiltonian of the conduction band electron and nuclear spin in III–V and II–VI
semiconductors can be written in the form

Hhf = Av0(Î · ŝ)|ϕc(R)|2, (2.22)
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where v0 is the primitive cell volume and ϕc(R) is the conduction band envelope
function, Eq. (2.4), at the nucleus. Note that primitive cell of GaAs-type semicon-
ductor contains two atoms. Sometimes the term unit cell is used in the literature.
Here and in what follows we use primitive cell term to avoid confusion. The
constant A depends on the material and nucleus type; it is, as a rule, in the order
of 100 μeV. For the conduction band electrons in GaAs-type semiconductors, the
hyperfine interaction results from the contact Fermi interaction of the electron
and nuclear spins because the orbital Bloch amplitude S(r) is nonzero at the
host lattice nuclei. For the valence band holes, the orbital Bloch amplitudes X (r),
Y(r) and Z(r) vanish at the nucleus and the hyperfine interaction of hole, and
nuclear spins is provided by the dipole–dipole interaction. It is about an order
of magnitude weaker compared with the electrons. The hyperfine interaction
results in the transfer of spin between the electron and nuclear spin systems in
semiconductors. Equation (2.22) demonstrates that the polarized nuclei exert the
effective magnetic field, known as the Overhauser field, onto the electron spin. The
polarized electrons also create an effective magnetic field acting on the nuclear
spins known as the Knight field. The theory of the hyperfine interaction of the
charge carrier spins with the host lattice nuclei is presented in Chapter 4.

The interaction between the lattice nuclei spins is simply the dipole–dipole
interaction of the localized magnetic moments. The Hamiltonian of interaction
between the nuclear spins I and I ′ has the form

Hdd = μIμI ′

II ′

(
Î · Î ′
r3 − 3

(Î · r) · (Î ′ · r)

r5

)
, (2.23)

where r is the vector connecting the nuclei. A typical magnetic field (also known
as the local magnetic field, BL) created at a given nucleus by the other host lattice
nuclei is in the order of BL ∼ 0.1 mT. In contrast to electrons in semiconductors,
an overlap of nuclei is negligible and the exchange interaction between the nuclei
is irrelevant. Physically, the dipole–dipole interaction between the nuclear spins
results in the redistribution of the spin polarization among the ensemble of nuclei,
that is, in the nuclear spin diffusion and in the thermalization of the nuclear spin
system. It follows from Eq. (2.23) that the dipole–dipole interaction does not
conserve the total spin of the nuclei and, as a result, may serve as a source of
nuclear spin relaxation.

Moreover, a nucleus with spin I higher than 1/2 has a nonzero electric
quadrupole moment. Qualitatively, its presence is caused by the non-spherical
charge distribution in the nucleus, hence, the quadrupole moment serves as a
measure of nuclei being prolate or oblate. As a result, the nuclear spin interacts
with the electric field gradients:

HQ =
∑
αβ

∂2V
∂rα∂rβ

|e|Q
6I(2I − 1)

[
3
2
(Îα Îβ + Îβ Îα)− I(I + 1)

]
. (2.24)
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Figure 2.3 Chart of the important interactions in spin systems.

Here, V is the potential of the electric field, and Q is the constant, namely the
quadrupole moment, which depends on the isotope, see Table 2.1. The form
of the quadrupole interaction Hamiltonian, Eq. (2.24), can be easily understood
from the symmetry arguments: The products of the pseudovector components
Îα Îβ + Îβ Îα transform exactly in the same way as the components of the rank-two
tensor ∂2V/∂rα∂rβ . It is noteworthy that for a spin 1/2, the symmetrized products
Îα Îβ + Îβ Îα either vanish or reduce to the unit 2× 2 matrix, and the interaction
in Eq. (2.24) vanishes. The quadrupole interaction defines the eigenstates of
the nuclear spin system in an absence or in weak magnetic fields. It is especially
important in strained systems, such as quantum dots or other heterostructures
with lattice constant mismatch, where the elastic deformations induce the field
gradients (Sundfors, 1969a; Bulutay, 2012). In solid solutions such as GaxAl1−xAs
some of the Ga nuclei are substituted with the Al ones, as a result, the arsenic nuclei
experience the electric field gradients due to the asymmetric environment (Meier
and Zakharchenya, 1984). Figure 2.3 illustrates the main interactions in the spin
systems in semiconductors and impact of electromagnetic radiation with different
frequencies on the electron and nuclear spins.

2.4 Optical orientation of electron spins
and the Hanle effect

Nonmagnetic injection, detection, and manipulation of electron and nuclear spins
are among the most essential tasks of semiconductor spintronics. The possibilities
to control the electron spins by static or alternating electric field, including the
electric field of the light wave, are enabled by the spin-orbit interaction. The optical


