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Preface

The scientific study of networks, such as computer networks, biological net-
works, and social networks, is an interdisciplinary field that combines ideas
from mathematics, physics, biology, computer science, statistics, the social sci-
ences, and many other areas. The field has benefited enormously from the
wide range of viewpoints brought to it by practitioners from so many different
disciplines, but it has also suffered because human knowledge about networks
is dispersed across the scientific community and researchers in one area often
do not have ready access to discoveries made in another. The goal of this book
is to bring our knowledge of networks together and present it in consistent
language and notation, so that it becomes a coherent whole whose elements
complement one another and in combination teach us more than any single
element can alone.

The book is divided into four parts. Following a short introductory chapter,
Part I describes the basic types of networks studied by present-day science and
the empirical techniques used to determine their structure. Part II introduces
the fundamental tools used in the study of networks, including the mathemat-
ical methods used to represent network structure, measures and statistics for
quantifying network structure, and computer algorithms for calculating those
measures and statistics. Part III describes mathematical models of network
structure that can help us predict the behavior of networked systems and un-
derstand their formation and growth. And Part IV describes applications of
network theory, includingmodels of network resilience, epidemics taking place
on networks, and network search processes.

The technical level of the presentation varies among the parts, Part I re-
quiring virtually no mathematical knowledge for its comprehension, while
Part II requires a grasp of linear algebra and calculus at the undergraduate
level. Parts III and IV are mathematically more advanced and suitable for ad-
vanced undergraduates, postgraduates, and researchers working in the field.
The book could thus be used as the basis of a taught course at various levels. A
less technical course suitable for thosewithmoderatemathematical knowledge
might cover the material of Chapters 1 to 10, while a more technical course for
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advanced students might cover the material of Chapters 6 to 13 and selected
material thereafter. Each chapter from Part II onwards is accompanied by a
selection of exercises that can be used to test the reader’s understanding of the
material.

The study of networks is a rapidly advancing field and this second edition
of the book includes a significant amount of new material, including sections
onmultilayer networks, network statistics, community detection, complex con-
tagion, and network synchronization. The entire book has been thoroughly
updated to reflect recent developments in the field and many new exercises
have been added throughout.

Over its two editions this book has been some years in themaking andmany
people have helped me with it during that time. I must thank my ever-patient
editor Sonke Adlung, with whom I have worked on various book projects for
more than 25 years, and whose constant encouragement and wise advice have
made working with him and Oxford University Press a real pleasure. Thanks
are also due to Melanie Johnstone, Viki Kapur, Charles Lauder, Alison Lees,
Emma Lonie, April Warman, and Ania Wronski for their help with the final
stages of bringing the book to print.

I have benefited greatly during the writing of the book from the conver-
sation, comments, suggestions, and encouragement of many colleagues and
friends. They are, sadly, too numerous to mention exhaustively, but special
thanks must go to Edoardo Airoldi, Robert Axelrod, Steve Borgatti, Elizabeth
Bruch, Duncan Callaway, François Caron, Aaron Clauset, Robert Deegan, Jen-
niferDunne, Betsy Foxman, Linton Freeman,MichelleGirvan,MarkHandcock,
Petter Holme, Jon Kleinberg, Alden Klovdahl, Liza Levina, Lauren Meyers,
Cris Moore, Lou Pecora, Mason Porter, Sidney Redner, Gesine Reinert, Mar-
tin Rosvall, Cosma Shalizi, Steve Strogatz, Duncan Watts, Doug White, Lenka
Zdeborová, and Bob Ziff, as well as to the many students and other readers
whose feedback helped iron out a lot of rough spots, particularly Michelle
Adan, Alejandro Balbin, Ken Brown, George Cantwell, Judson Caskey, Rachel
Chen, Chris Fink, Massimo Franceschet, Milton Friesen, Michael Gastner, Mar-
tin Gould, Timothy Griffin, Ruthi Hortsch, Shi Xiang Lam, Xiaoning Qian,
Harry Richman, Puck Rombach, Tyler Rush, Snehal Shekatkar, Weĳing Tang,
Robb Thomas, Jane Wang, Paul Wellin, Daniel Wilcox, Yongsoo Yang, and
Dong Zhou. I would also especially like to thank Brian Karrer, who read the
entire book in draft form and gave me many pages of thoughtful and thought-
provoking comments, as well as spotting a number of mistakes and typos.
Responsibility for any remaining mistakes in the book of course rests entirely
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with myself, and I welcome corrections from readers.
Finally, my heartfelt thanks go to my wife Carrie for her continual encour-

agement and support during the writing of this book. Without her the book
would still have been written but I would have smiled a lot less.

Mark Newman
Ann Arbor, Michigan
June 12, 2018
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Chapter 1

Introduction
A short introduction to networks
and why we study them

A network is, in its simplest form, a collection of points joined together in
pairs by lines. In the nomenclature of the field a point is referred to as a

node or vertex1 and a line is referred to as an edge. Many systems of interest in
the physical, biological, and social sciences can be thought of as networks and,
as this book aims to show, thinking of them in this way can lead to new and
useful insights.

Edge

Node

A small network composed
of eight nodes and ten
edges.

We begin in this first chapter with a brief introduction to some of the most
commonly studied types of networks and their properties. All the topics in this
chapter are covered in greater depth later in the book.

Examples of networks
Networks of one kind or another crop up in almost every branch of science
and technology. We will encounter a huge array of interesting examples in this
book. Purely for organizational purposes, we will divide them into four broad
categories: technological networks, information networks, social networks, and
biological networks.

A good example of a technological network is the Internet, the computer
data network in which the nodes are computers and the edges are data connec-
tions between them, such as optical fiber cables or telephone lines. Figure 1.1

1Plural: vertices.

Networks, 2nd edition. Mark Newman, Oxford University Press (2018). © Mark Newman.
DOI: 10.1093/oso/9780198805090.001.0001

1



Introduction

Figure 1.1: The network structure of the Internet. The nodes in this representation of the Internet are “class C
subnets”—groups of computers with similar Internet addresses that are usually under the management of a single
organization—and the connections between them represent the routes taken by Internet data packets as they hop
between subnets. The geometric positions of the nodes in the picture have no special meaning; they are chosen simply
to give a pleasing layout and are not related, for instance, to geographic position of the nodes. The structure of the
Internet is discussed in detail in Section 2.1. Figure created by the Opte Project (http://www.opte.org). Reproduced
with permission.

2
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Introduction

shows a picture of the structure of the Internet, a snapshot of the network as
it was in 2003, reconstructed by observing the paths taken across the network
by a large number of Internet data packets. It is a curious fact that although We look at the Internet in

more detail in Section 2.1.the Internet is a man-made and carefully engineered network, we don’t know
exactly what its structure is because it was built by many different groups of
people with only limited knowledge of each other’s actions and little central-
ized control. Our best current data on its structure are therefore derived from
experimental measurements, such as those that produced this figure, rather
than from any centrally held map or repository of knowledge.

There are a number of practical reasons why we might want to study the
network structure of the Internet. The function of the Internet is to transport
data between computers (and other devices) in different parts of the world,
which it doesbydividing thedata into separatepackets and shipping themfrom
node to node across the network until they reach their intended destination.
The network structure of the Internet will affect how efficiently it performs
this function, and if we know that structure we can address many questions
of practical relevance. How should we choose the route by which data are
transported? Is the shortest route, geographically speaking, always necessarily
the fastest? If not, then what is, and how can we find it? How can we avoid
bottlenecks in the traffic flow that might slow things down? What happens
when a node or an edge fails (which they do with some regularity)? How can
we devise schemes to route around such failures? If we have the opportunity
to add new capacity to the network, where should it be added?

Other examples of technological networks include the telephone network,
networks of roads, rail lines, or airline routes, and distribution networks such
as the electricity grid, water lines, oil or gas pipelines, or sewerage pipes. Each
of these networks raises questions of their own: what is their structure, how
does it affect the function of the system, and how can we design or change
the structure to optimize performance? In some cases, such as airline routes,
networks are already highly optimized; in others, such as the road network,
the structure may be largely a historical accident and is in some cases far from
optimal.

Our second class of networks are the information networks, a more abstract Information networks are
discussed at length in
Chapter 3.

class that represents the network structure of bodies of information. The classic
example is theWorldWideWeb. We discussed the Internet above, but theWeb

TheWorldWideWeb is dis-
cussed in more detail in
Section 3.1.

is not the same thing as the Internet, even though the two words are often
used interchangeably in casual speech. The Internet is a physical network of
computers linked by actual cables (or sometimes radio links) running between
them. The Web, on the other hand, is a network of web pages and the links
between them. The nodes of the World Wide Web are the web pages and the

3
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edges are “hyperlinks,” the highlighted snippets of text or push-buttons on
web pages that we click on to navigate from one page to another. A hyperlink
is purely a software construct; you can link from your web page to a page that
lives on a computer on the other side of the world just as easily as you can to a
friend down the hall. There is no physical structure, like an optical fiber, that
needs to be built when youmake a new link. The link is merely an address that
tells the computer where to look next when you click on it. Thus the network
structure of the Web and the Internet are completely distinct.

Abstract though it may be, the World Wide Web, with its billions of pages
and links, has proved enormously useful, not to mention profitable, and the
structure of the network is of substantial interest. Since people tend to add
hyperlinks between pages with related content, the link structure of the Web
reveals something about relationships between content and topics. Arguably,
the structure of the Web could be said to reflect the structure of human know-
ledge. What’s more, people tend to link more often to pages they find useful
than to those they do not, so that the number of links pointing to a page can be
used as a measure of its usefulness. A more sophisticated version of this ideaThe mechanics of web

search are discussed in Sec-
tion 18.1.

lies behind the operation of the popular web search engine Google, as well as
some others.

The Web also illustrates another concept of network theory, the directed
network. Hyperlinks on the Web run in one specific direction, from one web
page to another. You may be able to click a link on page A and get to page B,
but there is no requirement that B has a link back to A again. (It might contain
such a link but it doesn’t have to.) One says that the edges in the World Wide
Web are directed, running from the linking page to the linked.

Another much-studied example of an information network is a citation
network, such as the network of citations between academic journal articles.
Academic articles typically include a bibliography of references to other pre-
viously published articles, and one can think of these references as forming a
network in which the articles are the nodes and there is a directed edge from
article A to article B if A cites B in its bibliography. As with the World Wide
Web, one can argue that such a network reflects, at least partially, the structure
of the body of knowledge contained in the articles, with citations between arti-
cles presumably indicating related content. Indeed there are many similarities
between the Web and citation networks and a number of the techniques devel-
oped for understanding and searching the Web have in recent years started to
be applied to citation networks too, to help scientists and others filter the vast
amount of published research and data to find useful papers.

Our third broad class of networks are the social networks. When one talks
about “social networks” today, most of us think of online services such as

4
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Facebook or Twitter, but in the scientific literature the term is used much more Social networks are dis-
cussed in more depth in
Chapter 4.

broadly to encompass anynetwork inwhich the nodes are people (or sometimes
groups of people, such as firms or teams) and the edges between themare social
connections of some kind, such as friendship, communication, or collaboration.
The field of sociology has perhaps the longest and best developed tradition of
the empirical study of networks as they occur in the real world, andmany of the
mathematical and statistical tools used in the study of networks are borrowed,
directly or indirectly, from sociologists.

Figure 1.2: Friendship network between
members of a club. This social network from a
study conducted in the 1970s shows thepattern
of friendships between themembers of a karate
club at an American university. The data were
collected and published by Zachary [479].

Figure 1.2 shows a famous example of a social network
from the sociology literature, Wayne Zachary’s “karate club”
network. This network represents the pattern of friendships
among the members of a karate club at a North American
university, reconstructed from observations of social inter-
actions between them. Sociologists have performed a huge
number of similar studies over the decades, including studies
of friendship patterns among CEOs of corporations, doctors,
monks, students, and conference participants, and networks
of who works with whom, who does business with whom,
who seeks advice from whom, who socializes with whom,
and who sleeps with whom. Such studies, in which data are
typically collected byhand, are quite arduous, so the networks
they produce are usually small, like the one in Fig. 1.2, which
has just 34 nodes. But in recent years, much larger social net-
works have been assembled using, for instance, online data
from Facebook and similar services. At the time of writing,
Facebook had over two billion users worldwide—more than
a quarter of the population of the world—and information
on the connection patterns between all of them. Many online
social networking companies, including Facebook, have research divisions that
collaborate with the academic community to do research on social networks
using their vast data resources.

Our fourth and final class of networks is biological networks. Networks
occur in range of different settings in biology. Some are physical networks
like neural networks—the connections between neurons in the brain—while
others are more abstract. In Fig. 1.3 we show a picture of a “food web,” an Neural networks are dis-

cussed in Section 5.2 and
food webs in Section 5.3.

ecological network inwhich thenodes are species in an ecosystemand the edges
represent predator–prey relationships between them. That is, a pair of species is
connected by an edge in this network if one species eats the other. The study of
food webs can help us understand and quantify many ecological phenomena,
particularly concerning energy and carbon flows and the interdependencies

5
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Figure 1.3: The food web of Little Rock Lake, Wisconsin. This elegant picture sum-
marizes the known predatory interactions between species in a freshwater lake in the
northern United States. The nodes represent the species and the edges run between
predator–prey species pairs. The vertical position of the nodes represents, roughly
speaking, the trophic level of the corresponding species. The figure was created by
Richard Williams and Neo Martinez [321].

between species. Foodwebs also provide uswith another example of a directed
network, like theWorldWideWeb and citation networks discussed previously.
If speciesAeats species B thenprobablyBdoesnot also eatA, so the relationship
between the two is a directed one.

Another class of biological networks are the biochemical networks. TheseBiochemical networks are
discussed in detail in Sec-
tion 5.1.

include metabolic networks, protein–protein interaction networks, and genetic
regulatory networks. A metabolic network, for instance, is a representation of
the pattern of chemical reactions that fuel the cells in an organism. The reader

An example metabolic
network map appears as
Fig. 5.2 on page 75.

may have seen the wallcharts of metabolic reactions that adorn the offices of
some biochemists, incredibly detailed maps with hundreds of tiny inscriptions
linked by a maze of arrows. The inscriptions—the nodes in this network—are
metabolites, the chemicals involved in metabolism, and the arrows—directed
edges—are reactions that turn one metabolite into another. The representation
of reactions as a network is one of the first steps towards making sense of the
bewildering array of biochemical data generated by current experiments in
biochemistry and molecular genetics.

These are just a few examples of the types of networks that will concern us
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in this book. These andmany others are studied in more detail in the following
chapters.

What can we learn from networks?
Networks capture the pattern of interactions between the parts of a system.
It should come as no surprise (although in some fields it is a relatively recent
realization) that the pattern of interactions can have a big effect on the behavior
of a system. The pattern of connections between computers on the Internet,
for instance, affects the routes that data take over the network and hence the
efficiency with which the network transports those data. The connections in a
friendship network affect how people learn, form opinions, and gather news,
as well as other less obvious phenomena, such as the spread of disease. Unless
we know something about the structure of these networks, we cannot hope to
understand fully how the corresponding systems work.

A network is a simplified representation that reduces a system to an abstract
structure or topology, capturing only the basics of connection patterns and little
else. The systems studied can, and often do, have many other interesting
features not represented by the network—the detailed behaviors of individual
nodes, such as computers or people, for instance, or the precise nature of
the interactions between them. Some of these subtleties can be captured by
embroidering the network with labels on the nodes or edges, such as names or
strengths of interactions, but even so a lot of information is usually lost in the Some common network ex-

tensions and variants are
discussed in Chapter 6.

process of reducing a full system to a network representation. This has some
disadvantages but it has advantages as well.

Scientists in a wide variety of fields have, over the years, developed an ex-
tensive set of mathematical and computational tools for analyzing, modeling,
and understanding networks. Some of these tools start from a simple network
topology—a set of nodes and edges—and after some calculation tell you some-
thing potentially useful about the network: which is the best connected node,
say, or how similar two nodes are to one another. Other tools take the form
of network models that can make mathematical predictions about processes
taking place on networks, such as the way traffic will flow over the Internet or
the way a disease will spread through a community. Because they work with
networks in their abstract form, tools such as these can be applied to almost
any system that has a network representation. Thus, if there is a system you
are interested in, and it can usefully be represented as a network, then there
are hundreds of ready-made tools out there, already fully developed and well
understood, that you can immediately apply to your system. Not all of them
will necessarily give useful results—which measurements or calculations are
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useful for a particular system depends on what the system is and does and
on what specific questions you are trying to answer about it. Still, if you have
a well-posed question about a networked system there will, in many cases,
already be a tool available that will help you address it.

Networks are thus a general means for representing the structure of a sys-
tem that creates a bridge between empirical data and a large toolkit of powerful
analysis techniques. In this book we discuss many examples of specific net-
works in different fields, along with techniques for their analysis drawn from
mathematics, physics, the computer and information sciences, the social sci-
ences, biology, and elsewhere. In doing so, we will bring together a wide
range of ideas and expertise from many disciplines to build a comprehensive
understanding of the science of networks.

Properties of networks
Perhaps themost fundamental questionwe can ask about networks is this: if we
know the shape of a network, what can we learn about the nature and function
of the system it describes? In other words, how are the structural features
of a network related to the practical issues we care about? This question is
essentially the topic of this entire book, and we are not going to answer it in
this chapter alone. Let us, however, look briefly here at a few representative
concepts, to get a feel for the kinds of ideas we will be dealing with.

A first step in analyzing the structure of a network is often tomake a picture
of it. Figures 1.1, 1.2, and 1.3 are typical examples. Each of themwas generated
by a specialized computer program designed for network visualization and
there are many such programs available, both commercially and for free, if
you want to produce pictures like these for yourself. Visualization can be an
extraordinarily useful tool in the analysis of network data, allowing one to
instantly see important structural features that would otherwise be difficult to
pick out of the raw data. The human eye is enormously gifted at discerning
patterns, and visualizations allow us to put this gift to work on our network
problems.

On the other hand, direct visualization of networks is only really useful for
networks up to a fewhundreds or thousands of nodes, and for networks that are
relatively sparse, meaning that the number of edges is quite small. If there are
too many nodes or edges then pictures of the network will be too complicated
for the eye to comprehend and their usefulness becomes limited. Many of the
networks that scientists are interested in today have hundreds of thousands or
evenmillions of nodes, whichmeans that visualization is not of much help and
we need to employ other techniques to understand them. Moreover, while the
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eye is definitely a powerful tool for data analysis, it is not a wholly reliable one,
sometimes failing to pick out important patterns in data or even seeing patterns
where they don’t exist. To address these issues, network theory has developed
a large toolchest of measures and metrics that can help us understand what
networks are telling us, even in cases where useful visualization is impossible
or unreliable.

An example of a useful (and widely used) class of network metrics are
the centrality measures. Centrality quantifies how important nodes are in a
network, and social network analysts in particular have expended considerable
effort studying it. There are, of course, many different possible concepts or See Chapter 7 for fur-

ther discussion of centrality
measures.

definitions of what it means for a node to be central in a network, and there
are correspondingly many centrality measures. Perhaps the simplest of them
is the measure called degree. The degree of a node in a network is the number
of edges attached to it. In a social network of friendships, for instance, such as

2

4
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1
3

The number beside each
node in this small network
indicates the node’s degree.

the network of Fig. 1.2, the degree of an individual is the number of friends he
or she has within the network. For the Internet degree would be the number
of data connections a computer has. In many cases the nodes with the highest
degrees in a network, those with the most connections, also play major roles
in the functioning of the system, and hence degree can be a useful guide for
focusing our attention on the system’s most important elements.

In undirected networks degree is just a single number, but in directed net-
works nodes have twodifferent degrees, in-degree and out-degree, corresponding
to the number of edges pointing inward and outward respectively. For exam-
ple, the in-degree of a web page is the number of other pages that link to it,
while the out-degree is the number of pages to which it links. We have already
mentioned one example of how centrality can be put to use on the Web to
answer an important practical question: by counting the number of links a web
page gets—the in-degree of the page—a search engine can identify pages that
are likely to contain useful information.

A further observation concerning degree is that many networks are found
to contain a small but significant number of “hubs”—nodes of unusually high
degree. Social networks, for instance, often contain a few individuals with Hubs are discussed further

in Section 10.3.an unusually large number of acquaintances. The Web has a small fraction
of websites with a very large number of links. There are a few metabolites
that take part in a very large number of metabolic processes. A major topic of
research in recent years has been the investigation of the effects of hubs on the
performance and behavior of networked systems. Awide range of results, both
empirical and theoretical, indicate that hubs can have a disproportionate effect,
particularly on network resilience and transport phenomena, despite being few
in number.
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Another example of a network concept that arises repeatedly and has real
practical implications is the so-called small-world effect. Given a network, oneThe small-world effect is

discussed further in Sec-
tions 4.6 and 10.2.

can askwhat the shortest distance is, through the network, between a given pair
of nodes. In other words, what is the minimum number of edges one would
have to traverse in order to get from one node to the other? For instance, your
immediate friend would have distance 1 from you in a network of friendships,
while a friend of a friend would have distance 2. It has been found empirically
(and can be proven mathematically in some cases) that the mean distance
between node pairs inmany networks is very short, often nomore than a dozen
steps or so, even for networks with millions of nodes or more. Although first
studied in the context of friendship networks, this small-world effect appears
to be widespread, occurring in essentially all types of networks. In popular
culture it is referred to as the “six degrees of separation,” after a successful stage
play and film of the same name in which the effect is discussed. The (semi-
mythological) claim is that you can get from anyone in the world to anyone else
via a sequence of no more than five intermediate acquaintances—six steps in
all.

The small-world effect has substantial repercussions. For example, news
and gossip spread over social networks—if you hear an interesting rumor from
a friend, you may pass it on to your other friends, and they in turn may pass
it on to theirs, and so forth. Clearly a rumor will spread faster and further if
it only takes six steps to reach anyone in the world than if it takes a hundred,
or a million. And indeed it is a matter of common experience that a suitably
scandalous rumor can reach the ears of an entire community in what seems
like the blink of an eye.

Or consider the Internet. One of the reasons the Internet functions at
all is because any computer on the network is only a few hops across the
network from any other. Typical routes taken by data packets over the Internet
rarely have more than about twenty hops, and certainly the performance of the
networkwould bemuchworse if packets had tomake a thousand hops instead.
In effect, our ability to receive data near instantaneously from anywhere in the
world is a direct consequence of the small-world effect.

A third example of a network phenomenon of practical importance is the
occurrence of clusters or communities in networks. We are most of us familiarCommunity structure in

networks is discussed inde-
tail in Chapter 14.

with the idea that social networks break up into subcommunities. In friendship
networks, for instance, one commonly observes groups of close friends within
the larger, looser network of passing acquaintances. Similar clusters occur in
other types of network as well. The Web contains clusters of web pages that all
link to one another, perhaps because they are about the same topic, or they all
belong to the same company. Metabolic networks contain groups ofmetabolites
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that interact with one another to perform certain biochemical tasks. And if it is
the case that clusters or groups correspond to functional divisions in this way,
then we may be able to learn something by taking a network and decomposing
it into its constituent clusters. The way a network breaks apart can reveal levels
and concepts of organization that are not easy to see by other means.

The detection and analysis of clusters in networks is an active topic at the
frontier of current networks research, holding promise for exciting applications
in the future.

Outline of this book
This book is divided into four parts. In the first part, consisting of Chapters 2
to 5, we introduce the various types of network encountered in the real world,
including technological, social, and biological networks, and the empirical
techniques used to discover their structure. Although it is not the purpose
of this book to describe any one particular network in great detail, the study
of networks is nonetheless firmly founded on empirical observations and a
good understanding of what data are available and how they are obtained is
immensely helpful in understanding the science of networks as it is practiced
today.

The second part of the book, Chapters 6 to 10, introduces the fundamental
theoretical ideas andmethods onwhich our current understanding of networks
is based. Chapter 6 describes the basic mathematics used to capture network
ideas, while Chapter 7 describes the measures and metrics we use to quantify
network structure. Chapter 8 describes the computer methods that are crucial
to practical calculations on today’s large networks, Chapter 9 describesmethods
of network statistics and the role of errors and uncertainty in network studies,
and Chapter 10 describes some of the intriguing patterns and principles that
emerge when we apply all of these ideas to real-world network data.

In the third part of the book, Chapters 11 to 13, we look at mathematical
models of networks, including both traditional models, such as random graphs
and their extensions, and newer models, such as models of growing networks
and community structure. The material in these chapters forms a central part
of the canon of the field and has been the subject of a vast amount of published
scientific research.

Finally, in the fourth and last part of the book, Chapters 14 to 18, we look
at applications of network theory to a range of practical questions, including
community detection, network epidemiology, dynamical systems, and network
search processes. Research is less far advanced on these topics than it is in other
areas of network science and there is much we do not know. The final chapters

11



Introduction

of the book probably raise at least as many questions as they answer, but this,
surely, is a good thing. For those who would like to get involved, there are
plenty of fascinating open problems waiting to be addressed.
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Chapter 2

Technological networks
A discussion of engineered networks like the Internet and
the power grid and methods for determining their
structure

In the next four chapterswe describe and discuss some of themost commonly
studied networks, dividing them into four broad classes—technological net-

works, information networks, social networks, and biological networks. ForThe four classes are not rig-
orously defined and there
is, as we will see, some
overlapbetween them,with
some networks plausibly
belonging to two or more
classes. Nonetheless, the
division into classes is a
useful one, since networks
in the same class are often
treated using similar tech-
niques or ideas.

each class we list some important examples and examine the techniques used
to measure their structure.

It is not our intention in this book to study any one network in great detail.
Plenty of other books do that. Nonetheless, network science is concerned with
understanding and modeling the behavior of real-world systems and obser-
vational data are the starting point for essentially all the developments of the
field, so it will be useful to have a grasp of the types of networks commonly
studied and the data that describe them. In this chapter we look at technolog-
ical networks, the physical infrastructure networks that form the backbone of
modern technological societies. Perhaps the most celebrated such network—
and a relatively recent entry in the field—is the Internet, the global network
of data connections that links computers and other information systems to-
gether. Section 2.1 is devoted to a discussion of the Internet. A number of
other important examples of technological networks, including power grids,
transportation networks, delivery and distribution networks, and telephone
networks, are discussed in subsequent sections.

Networks, 2nd edition. Mark Newman, Oxford University Press (2018). © Mark Newman.
DOI: 10.1093/oso/9780198805090.001.0001
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2.1 The Internet
The Internet is the worldwide network of physical data connections between
computers, phones, tablets, and other devices. The Internet is a packet-switched
data network, meaning that messages sent over it are broken up into packets, The Internet should not be

confused with the World
Wide Web, a virtual net-
work of web pages and hy-
perlinks, which we discuss
separately in Section 3.1.

small chunks of data, that are sent separately over the network and reassembled
into a complete message again at the other end. The format of the packets
follows a standard known as the Internet Protocol (IP) and includes an IP address
in each packet that specifies the packet’s destination, so that it can be routed
correctly across the network.

The simplest network representation of the Internet (there are others, which
wewill discuss shortly) is one inwhich the nodes of the network represent com-
puters and other devices, and the edges represent data connections between
them, such as optical fiber lines or wireless connections. In fact, ordinary com-
puters and other consumer devices mostly occupy the nodes on the “outside”
of the network, the end points (or starting points) of data flows, and do not act
as intermediate points between others. (Indeed, most end-user devices only
have a single connection to theNet, so it would not be possible for them to lie on
a path between any others.) The “interior” nodes of the Internet are primarily
routers, powerful special-purpose machines at the junctions between data lines
that receive data packets and forward them in one direction or another towards
their intended destination (essentially larger versions of the network router you
might have in your home).

The general overall shape of the Internet is shown, in schematic form, in
Fig. 2.1. The network is composed of three levels or circles of nodes. The
innermost circle, the core of the network, is called the backbone and contains the
trunk lines that provide long-distance high-bandwidth data transport across
the globe, along with the high-performance routers and switching centers that
link the trunk lines together. The trunk lines are the highways of the Inter-
net, built with the fastest fiber optic connections available (and improving all
the time). The backbone is owned and operated by a set of network backbone
providers (NBPs), who are primarily national governments and major telecom-
munications companies such as Level 3 Communications, Cogent, NTT, and
others.

The second circle of the Internet is composed of Internet service providers
or ISPs—commercial companies, governments, universities, and others who
contract with NBPs for connection to the backbone and then resell or otherwise
provide that connection to end users, the ultimate consumers of Internet band-
width, who form the third circle—businesses, government offices, academic
institutions, people in their homes, and so forth. As Fig. 2.1 shows, the ISPs
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ISPs

Backbone

End
users

Figure 2.1: A schematic depiction of the structure of the Internet. The nodes and edges
of the Internet fall into a number of different classes: the backbone of high-bandwidth
long-distance connections; the ISPs, who connect to the backbone and who are divided
roughly into regional (larger) and local (smaller) ISPs; and the end users—home users,
companies, and so forth—who connect to the ISPs.

are further subdivided into regional ISPs and local or consumer ISPs, the former
being larger organizations whose primary customers are the local ISPs, who in
turn sell network connections to the end users. This distinction is somewhat
blurred however, because large consumer ISPs, such as AT&T or British Tele-
com, often act as their own regional ISPs (and somemay be backbone providers
as well).

The network structure of the Internet is not dictated by any central authority.
Protocols and guidelines are developed by an informal volunteer organization
called the Internet Engineering Task Force, but one does not have to apply
to any central Internet authority for permission to build a new spur on the
network, or to take one out of service.

One of the remarkable features of the Internet is the scheme used for routing
data across the network, in which the paths that packets take are determined
by automated negotiation among Internet routers under a system called the
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Border Gateway Protocol (BGP). BGP is designed in such a way that if new nodes
or edges are added to the network or old ones disappear, either permanently or
temporarily, routerswill take note and adjust their routing policy appropriately.
There is a certain amount of human oversight involved, tomake sure the system
keeps running smoothly, but no “Internet government” is needed to steer things
from on high; the system organizes itself by the combined actions of many local
and essentially autonomous computer systems.

While this is an excellent feature of the system from the point of view of
robustness and flexibility, it is a problem for those whowant to study the struc-
ture of the Internet. If therewere a central Internet governmentwith a complete
map of the system, then the job of determining the network structure would be
easy—one would just look at the map. But there is no such organization and
no such map. Instead the network’s structure must be determined by exper-
imental measurements. There are two primary methods for doing this. The
first uses “traceroute”; the second uses BGP.

2.1.1 Measuring Internet structure using traceroute

There is currently no simple means by which to probe the network structure of
the Internet directly. We can, however, quite easily discover the particular path
taken by data packets sent from one computer to another on the Internet. The
standard tool for doing this is called traceroute.

Each Internet data packet contains, among other things, a destination ad-
dress, which says where it is going; a source address, which says where it
started from; and a time-to-live (TTL). The TTL is a number that specifies the
maximum number of hops that the packet can make to get to its destination, a
hop being the traversal of one edge in the network. At every hop, the TTL is
decreased by one, and if it reaches zero the packet is discarded, meaning it is
deleted andnot forwarded any further over the network. Amessage is also then
transmitted back to the sender informing them that the packet was discarded
and where it got to. In this way the sender is alerted if data is lost, allowing
them to resend the contents of the packet if necessary. The TTL exists mainly
as a safeguard to prevent packets from losing their way on the Internet and
wandering around forever, but we can make use of it to track packet progress
as well. The idea is as follows.

First, we send out a packet with the destination address of the network
node we are interested in and a TTL of 1. The packet makes a single hop to the
first router along the way, its TTL is decreased to 0, the packet is discarded by
the router, and a message is returned to us telling us, among other things, the
IP address of the router. We record this address and then repeat the process
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with a TTL of 2. This time the packet makes two hops before dying and the
returned message tells us the IP address of the second router along the path.
The process is repeated with larger and larger TTL until the destination is
reached, and the set of IP addresses received as a result tells us the entire route
taken to get there.1 There are standard software tools that will perform the
complete procedure automatically and print out the list of IP addresses for us.
On many operating systems the tool that does this is called “traceroute.”2

We can use traceroute (or a similar tool) to probe the network structure of
the Internet. The idea is to assemble a large data set of traceroute paths between
many different pairs of points on the Internet. With luck, most of the edges in
the network (though usually not all of them) will appear in at least one of these
paths, and the combination of all of them together should give a reasonably
complete picture of the network. Early studies, for the sake of expediency,
limited themselves to paths starting from just a few source computers, but
more recent ones make use of distributed collections of thousands of sources
to develop a very complete picture of the network.

The paths from any single source to a set of destinations form a branching
structure as shown schematically in Figs. 2.2a, b, and c.3 The source computers
should, ideally, be well distributed over the network. If they are close together
then there may be substantial overlap between the paths to distant nodes,
meaning that they will needlessly duplicate each other’s efforts rather than
returning independent measurements.

Once one has a suitable set of traceroute paths, a simple union of them gives
us our snapshot of the network structure—see Fig. 2.2d. That is, we create a
node in our network for every unique IP address that appears at least once
in any of the paths and an edge between any pair of addresses that fall on
adjacent steps of any path. As hinted above, it is unlikely that this procedure

1We are assuming that each packet takes the same route to the destination. It is possible,
though rare, for different packets to take different routes, in which case the set of IP addresses
returned by the traceroute procedure will not give a correct path through the network. This can
happen, for instance, if congestion patterns along the route vary significantly while the procedure
is being performed, causing the network to reroute packets along less congested paths. Serious
Internet mapping experiments perform repeated traceroute measurements to minimize the errors
introduced by effects such as these.

2On the Windows operating system it is called “tracert.” On some Linux systems it is called
“tracepath.”

3If therewere a unique best path to every node, then the set of pathswould be a “tree,”meaning
it would contain no loops. (See Section 6.8 for a discussion of trees.) Because of the way routing
algorithms work, however, this is not always the case in practice—two routes that originate at the
same point and pass through the same node on the way to their final destination can still take
different routes to get to that node, so that the set of paths can contain loops.
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(a) (b)

(c) (d)

Figure 2.2: Reconstruction of the topology of the Internet from traceroute data. In
(a), (b), and (c) we show in bold the edges that fall along traceroute paths starting from
the three highlighted source nodes. In (d) we form the union of these edges to make
a picture of the overall network topology. Note that a few edges are still missing from
the final picture (the remaining gray edges in (d)) because they happen not to appear in
any of the three individual traceroute data sets.

will find all the edges in the network (see Fig. 2.2d again), and for studies based
on small numbers of sources there can be significant biases in the sampling of
edges [3, 284]. However, better and better data sets are becoming available as
time passes, and it is believed that we now have a reasonably complete picture
of the shape of the Internet.

In fact, complete (or near-complete) representations of the Internet of the
kinddescribed here can be cumbersome toworkwith and are typically not used
directly for network studies. There are billions of distinct IP addresses in use
on the Internet at any one time, with many of those corresponding to end-user
devices that appear or disappear as the devices are turned on or off or connec-
tions to the Internet are made or broken. Most studies of the Internet ignore
end users and restrict themselves to just the routers, in effect concentrating on
the inner zones in Fig. 2.1 and ignoring the outermost one. We will refer to
such maps of the Internet as representations at the router level. The nodes in
the network are routers, and the edges between them are network connections.
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It may appear strange to ignore end-user devices, since the end users are,
after all, the entire reason for the Internet’s existence in the first place. However,
it is the structure of the network at the router level that is responsible for most
aspects of the performance, robustness, and efficiency of the network, that
dictates the patterns of traffic flow on the network, and that forms the focus of
most work on Internet structure and design. To the extent that these are the
issues of scientific interest, therefore, it makes sense to concentrate our efforts
on the router-level structure.

An example of a study of the topology of the Internet at the router level
is that of Faloutsos et al. [168], who looked at the “degree distribution” of the
network and discovered it to follow, approximately, a power law. We discuss
degree distributions and power laws in networks in more detail in Section 10.4.

Even after removing all ormost end users from the network, the structure of
the Internet at the router level may still be too detailed for our purposes. Often
we would like a more coarse-grained representation of the network that gives
us a broader overall picture of network structure. Such representations can
be created by grouping sets of IP addresses together into single nodes. Three
different ways of grouping addresses are in common use, giving rise to three
different coarse-grained representations, at the level of subnets, domains, and
autonomous systems.

A subnet is a group of IP addresses defined as follows. IP addresses consist
of four numbers, each one in the range from 0 to 255 (eight bits in binary) and
typically written in a string separated by periods or dots.4 For example, the IP
address of the main web server at the author’s home institution, the University
of Michigan, is 141.211.243.44. IP addresses are allocated to organizations in
blocks. The University of Michigan, for instance, owns (among others) all the
addresses of the form141.211.243.xxx, where “xxx” can be any number between
0 and 255. Such a block, where the first three numbers in the address are fixed
and the last can be anything, is called a class C subnet. There are also class B
subnets, which have the form 141.211.xxx.yyy, and class A subnets, which have
the form 141.xxx.yyy.zzz.

Since all the addresses in a class C subnet are usually allocated to the
same organization, a reasonable way of coarse-graining the Internet’s network
structure is to group nodes into class C subnets. In most cases this will group

4This description applies to addresses as they appear in IP version 4, which is the most widely
used version of the protocol. A new version, version 6, which uses longer addresses, is slowly
gaining acceptance, but it has a long way to go before it becomes as popular as its predecessor. (IP
versions 1, 2, 3, and 5 were all experimental and were never used widely. Versions 4 and 6 are the
only two that have seen widespread use.)
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together nodes in the same organization, although larger organizations, like
the University of Michigan, may own more than one class C subnet, so there
will still be more than one node in the coarse-grained network corresponding
to such organizations.

Given the topology of the network in terms of individual IP addresses, it is
an easy matter to lump together into a single node all addresses in each class C
subnet and place an edge between any two subnets if any address in one has a
network connection to any address in the other. Figure 1.1 on page 2 shows an
example of the network structure of the Internet at the level of class C subnets.

The second common type of coarse-graining is coarse-graining at the do-
main level. A domain is a group of computers and routers under, usually, the
control of a single organization and identified by a single domain name, normally
the last two or three parts of a computer’s address when the address is written
in human-readable text form (as opposed to the numeric IP addresses consid-
ered above). For example, “umich.edu” is the domain name for the University
of Michigan and “oup.com” is the domain name for Oxford University Press.
The name of the domain to which a computer belongs can be determined from
the computer’s IP address by a “reverse DNS lookup,” a network service set up
to provide precisely this type of information. Thus, given the network topology
in terms of IP addresses, it is a straightforward task to determine the domain
to which each IP address belongs and group nodes in the network according
to their domain. Then an edge is placed between two nodes if any IP address
in one has a direct network connection to any address in the other. The study
by Faloutsos et al. [168] mentioned earlier looked at this type of domain-level
structure of the Internet as well as the router-level structure.

The third common coarse-graining of the network is coarse-graining at the
level of autonomous systems. This type of coarse-graining, however, is not
usually used with traceroute data but with data obtained using an alternative
method based on BGP routing tables, for which it forms the most natural unit
of representation. The BGP method and autonomous systems are discussed in
the next section.

2.1.2 Measuring Internet structure using routing tables

Internet routersmaintain routing tables that allow them todecide inwhichdirec-
tion incoming packets should be sent to best reach their destination. Routing
tables are constructed from information shared between routers using BGP.
They consist of lists of complete paths from the router in question to destina-
tions on the Internet. When a packet arrives at a router, the router examines it
to determine its destination and looks up that destination in the routing table.
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The first step of the path in the appropriate table entry tells the router how the
packet should be sent on its way.

In theory routers need store only the first step on each path in order to route
packets correctly. However, for efficient calculation of routes using BGP it is
highly desirable that routers be aware of the entire path to each destination,
and since the earliest days of the Internet all routers have operated in this way.
We can make use of this fact to measure the structure of the Internet.

Routing tables in routers are represented at the level of autonomous systems.
An autonomous system (or AS) is a collection of routers, computers, or other
devices, usually under single administrative control, withinwhich data routing
is handled independently of the wider Internet (hence the name “autonomous
system”). That is, when a data packet arrives at a router belonging to an
autonomous system, destined for a specific device or user within that same
autonomous system, it is the responsibility of the autonomous system to get
the packet the last few steps to its final destination. Data passing between
autonomous systems, however, is handled by the Internet-widemechanisms of
BGP. Thus it’s necessary for BGP toknowabout routingonlydown to the level of
autonomous systems and hence BGP tables are most conveniently represented
in autonomous system terms. In practice, autonomous systems, of which there
are (at the time of writing) about fifty thousand on the Internet, often coincide
with domains, or nearly so.

Autonomous systems are assigned unique identification numbers. A rout-
ing path consists of a sequence of these AS numbers and since router tables
contain paths to a large number of destinations we can construct a picture of
the Internet at the autonomous system level by examining them. The process
is similar to that for the traceroute method described in the previous section
and depicted in Fig. 2.2. We must first obtain a set of router tables, which is
normally done simply by asking router operators for access to their tables. Each
router table contains a large number of paths starting from a single source (the
router), and the union of the paths frommany routers gives a good, though not
complete, network snapshot in which the nodes are autonomous systems and
the edges are the connections between autonomous systems. As with trace-
route, it is important that the routers used be widely distributed across the
network to avoid too much duplication of results, and the number of routers
should be as large as possible to make the sampling of network edges as com-
plete as possible. For example, the Routeviews Project,5 a large BGP-based
Internet mapping effort based at the University of Oregon, uses (again at the

5See http://www.routeviews.org
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Figure 2.3: The structure of the Internet at the level of autonomous systems. The nodes in this network representation
of the Internet are autonomous systems and the edges show the routes taken by data traveling between them. This
figure is different from Fig. 1.1, which shows the network at the level of class C subnets. The picture was created by Hal
Burch and Bill Cheswick. Patent(s) pending and Copyright Lumeta Corporation 2009. Reproduced with permission.

time of writing) a total of 501 source computers in 340 ASes around the world
to measure the structure of the entire network every two hours.

Figure 2.3 shows a picture of the Internet at the AS level derived from
routing tables. Qualitatively, the picture is similar to Fig. 1.1 for the class C
subnet structure, but there are differences arising because class C subnets are
smaller units than many autonomous systems and so Fig. 1.1 is effectively a
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finer-grained representation than Fig. 2.3.
Using router-, subnet-, domain-, or AS-level structural data for the Internet,

many intriguing features of the network’s topology have been discovered in
recent years [85, 102, 168, 323, 381, 384], some of which are discussed in later
chapters of this book.

One further aspect of the Internet worth mentioning here is the geographic
location of its nodes on the surface of the Earth. In many of the networks that
we will study in this book, nodes do not exist at any particular position in real
space—the nodes of a citation network, for instance, are not located on any par-
ticular continent or in any particular town. The nodes of the Internet, however,
are by and large quite well localized in space. Your computer sits on your desk,
a router sits in the basement of an office building, and so forth. Some nodes
do move around, such as those representing mobile phones, but even these
have a well-defined geographic location at any given moment. Things become
a bit more blurry once the network is coarse-grained. The domain umich.edu

covers large parts of the state of Michigan. The domain aol.com covers most
of North America. These are somewhat special cases, however, being unusu-
ally large domains. The majority of domains have a well-defined location at
least to within a few miles. Furthermore, tools now exist for determining, at
least approximately, the geographic location of a given IP address, domain, or
autonomous system. Examples include NetAcuity, IP2Location, MaxMind, and
many others. Geographic locations are determined primarily by looking them
up in one of several registries that record the official addresses of the registered
owners of IP addresses, domains, or autonomous systems. These addresses
need not in all cases match the actual location of the corresponding computer
hardware. For instance, the domain ibm.com is registered in New York City,
but IBM’s principal operations are in California. Nonetheless, an approximate
picture of the geographic distribution of the Internet can be derived by these
methods, and there has been some interest in the results [477].

Geographic placement of nodes is a feature the Internet shares with severalFor a review of work
on geographic networks
of various kinds see
Barthélemy [46].

other technological networks, aswewill see in the following sections, but rarely
with networks of other kinds.6

6Social networks are perhaps the main exception. In many cases people or groups have rea-
sonably well-defined geographic locations and a number of studies have looked at how geography
and network structure interact [285, 300, 374,439].
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2.2 The telephone network
The Internet is the best studied example of a technological network, at least as
measured by the volume of recent academic work. This is partly because data
on Internet structure are relatively easy to comeby andpartly because of intense
interest among engineers, computer scientists, and the public at large. Other
technological networks, however, are also of interest, including the telephone
network and various distribution and transportation networks, and we look at
some of these in the remainder of this chapter. Networks such as software call
graphs and electronic circuits could also be considered technological networks
and have been studied occasionally [174, 199, 334, 343, 485], but are beyond the
scope of this book.

The telephone network—meaning the network of landlines and wireless
links7 that transmits telephone calls—is one of the oldest electronic communi-
cation networks still in use, but it has been studied relatively little by network
scientists, primarily because of a lack of good data about its structure. The
structure of the phone network is known in principle, but the data are largely
proprietary to the telephone companies that operate the network and, while
not precisely secret, they are not openly shared with the research community
in the same way that Internet data are. We hope that this situation will change,
although the issue may becomemoot in the not too distant future, as telephone
companies are sending an increasing amount of voice traffic over the Internet
rather than over dedicated telephone lines, and it may not be long before the
two networks merge into one.

Some general principles of operation of the telephone network are clear
however. By contrast with the Internet, the traditional telephone network is
not a packet-switched network of the kind described in Section 2.1. Signals
sent over the phone network are not disassembled and sent as sets of discrete
packets theway Internet data are (though there are exceptions—seebelow). The
telephone network is a circuit-switchednetwork, whichmeans that the telephone
company has a number of lines or circuits available to carry telephone calls
between different points and it assigns them to individual callers when those

7For most of its existence, the telephone network has connected together stationary telephones
in fixed locations such as houses and offices using landlines. Starting in the 1980s, fixed telephones
have been replaced by wireless phones (“mobile phones” or “cell phones”), but it is important to
realize that even calls made on wireless phones are still primarily carried over traditional landline
networks. The signal from awireless phonemakes the first step of its journeywirelessly to a nearby
transmission tower, but from there it travels over ordinary phone lines. Thus, while the advent of
wireless phones has had an extraordinary impact on society, it has had rather less impact on the
nature of the telephone network.
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Local exchanges

Long−distance offices

subscribers

Telephone

Figure 2.4: A sketch of the three-tiered structure of a traditional telephone network.
Individual subscriber telephones are connected to local exchanges, which are connected
in turn to long-distance offices. The long-distance offices are connected among them-
selves by trunk lines, and there may be some connections between local exchanges as
well.

callers place phone calls. In the earliest days of telephone systems in the United
States and Europe the “lines” actually were individual wires, one for each call
the company could carry. Increasing the capacity of the network to carry more
calls meant putting inmore wires. Since the early part of the twentieth century,
however, phone companies have employed techniques for multiplexing phone
signals, i.e., sending many calls down the same wire simultaneously. The
exception is the “last mile” of connection to the individual subscriber. The
phone cable entering a house usually only carries one phone call at a time,
although even that has changed in recent years as new technology has made
it possible for households to have more than one telephone number and place
more than one call at a time.

The basic form of the telephone network is relatively simple. Most countries
with a mature landline telephone network use a three-tiered design, as shown
in Fig. 2.4. Individual telephone subscribers are connected over local lines to
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local telephone exchanges, which are then connected over shared “trunk” lines
to long-distance offices, sometimes also called toll-switching offices. The long-
distance offices are then connected among themselves by further trunk lines.
The structure is, in many ways, rather similar to that of the Internet (Fig. 2.1),
even though the underlying principles on which the two networks operate are
different.

The three-level structure of the telephone network is designed to exploit the
fact that most phone calls in most countries are local, meaning they connect
subscribers in the same town or region. Phone calls between subscribers con-
nected to the same local exchange can be handled by that exchange alone and
do not need tomake use of any trunk lines at all. Such calls are usually referred
to as local calls, while calls that pass over trunk lines are referred to as trunk or
long-distance calls. Inmany cases theremay also be direct connections between
nearby local exchanges that allow calls to be handled locally even when two
subscribers are not technically attached to the same exchange.

The telephone network has had roughly this same topology for most of
the past hundred years and still has it today, but many of the details about
how the network works have changed. In particular, at the trunk level a lot
of telephone networks are no longer circuit switched. Instead they are now
digital packet-switched networks that work in a manner not dissimilar to the
Internet, with voice calls being digitized, broken into packets, and transmitted
over optical fiber links. Indeed, as mentioned, many calls are now transmitted
digitally over the Internet itself, allowing phone companies to use the already
existing Internet infrastructure rather than building their own. In many cases,
only the “last mile” to the subscriber’s telephone is still carried on an old-
fashioned dedicated circuit, and even that is changingwith the advent of digital
and Internet telephone services and mobile phones. Nonetheless, in terms of
geometry and topology the structure of the phone network is much the same as
it has always been, being dictated in large part by the constraints of geography
and the propensity for people to talk more often to others in their geographic
vicinity than to those further away.

2.3 Power grids
The power grid is the network of high-voltage transmission lines that provide
long-distance transport of electric power within and between countries. The
nodes in a power grid correspond to generating stations and switching substa-
tions, and the edges correspond to the high-voltage lines. (Low-voltage local
power delivery lines are normally not considered part of the grid, at leastwhere
network studies are concerned.) The topology of power grids is not difficult to
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determine. The networks are usually overseen by a single authority and com-
plete maps of grids are readily available. Very comprehensive data on power
grids (as well as other energy-related networks such as oil and gas pipelines)
are available from specialist publishers, either on paper or in electronic form,
if one is willing to pay for them.

There is much of interest to be learned by looking at the structure of power
grids [13, 20, 31, 125, 263, 378, 415, 466]. Like the Internet, power grids have a
spatial element; the individual nodes each have a location somewhere on the
globe, and their distribution in space is interesting from geographic, social, and
economic points of view. Network statistics, both geographic and topological,
mayprovide insight into the global constraints governing the shape andgrowth
of grids. Power grids also display some unusual behaviors, such as cascading
failures, which cangive rise to surprising outcomes such as the observedpower-
law distribution in the sizes of power outages [140,263].

However, while there is a temptation to apply network models of the kind
described in this book to try to explain the behavior of power grids, it is wise
to be cautious. Power grids are complicated systems. The flow of power is
governed not only by geometry and simple physical laws, but also by detailed
control of the phases and voltages across transmission lines, monitored and
adjusted on rapid timescales by sophisticated computer systems and on slower
timescales by human operators. There is evidence to suggest that network
topology has only a relatively weak effect on power failures and other power-
grid phenomena, and that good prediction and modeling of power systems
requires more detailed information than can be gleaned from a network repre-
sentation alone [234,378].

2.4 Transportation networks
Another important class of technological networks are the transportation net-
works, such as airline routes and road and rail networks. The structure of these
networks is not usually hard to determine. Airline networks can be recon-
structed from published airline timetables, road and rail networks from maps.
Geographic information systems (GIS) software can be useful for analyzing the
geographic aspects of the data and there are also a variety of online resources
providing useful information such as locations of airports.

One of the earliest examples of a study of a transportation network is the
1965 study by Pitts [387] of waterborne transport on Russian rivers in the
Middle Ages. There was also amovement among geographers in the 1960s and
1970s to study road and rail networks, particularly focusing on the interplay
between their physical structure and economics. The most prominent name
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in the movement was that of Karel Kansky, and his book on transportation
networks is a good point of entry into that body of literature [254].

More recently, a number of authors have produced studies applying new
network analysis ideas to road, rail, air, and sea transportation networks [20,
34, 95, 198, 202, 224, 243, 290, 293, 324, 425, 426, 474]. In most of these studies the
network nodes represent geographic locations and the edges represent routes.
For instance, in studies of road networks the nodes usually represent road
intersections and the edges roads. The study by Sen et al. [425] of the rail
network of India provides an interesting counterexample. Sen et al. argue,
plausibly, that in the context of rail travel what matters to most people is
whether there is a direct train to their destination or, if there is not, how many
trains they will have to take to get there. People do not care somuch about how
many stops there are along the way, so long as they don’t have to change trains.
Thus, Sen et al. argue, a useful network representation in the case of rail travel is
one in which the nodes represent locations and two nodes are connected by an
edge if a single train runs between them. Then the distance between two nodes
in the network—the number of edges you need to traverse to get fromA to B—is
equal to the number of trains you would have to take. A better representation
still (although Sen et al. did not consider it) would be a “bipartite network,”
a network containing two types of node, one representing the locations and
the other representing train routes. Edges in the network would then join
locations to the routes that run through them. The first, simpler representation
of Sen et al. can be derived from the bipartite one by making a “projection”
onto the locations only. Bipartite networks and their projections are discussed
in Section 6.6.

2.5 Delivery and distribution networks
Falling somewhere between transportation networks and power grids are dis-
tribution networks, about which relatively little has been written within the
field of networks research to date. Distribution networks include things like
oil and gas pipelines, water and sewerage lines, and the routes used by the
post office and package delivery companies. Figure 2.5 shows one example, the
network of European gas pipelines, taken from a study by Carvalho et al. [96],
who constructed the figure from data purchased from industry sources. In
this network the edges are gas pipelines and the nodes are their intersections,
including pumping, switching, and storage facilities and refineries.

If one is willing to interpret “distribution” in a loose sense, then one class
of distribution networks that has been relatively well studied is river networks,
though to be precise river networks are really collection networks rather than
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Figure 2.5: The network of natural gas pipelines in Europe. Thickness of lines indicates the sizes of the pipes.
Reprinted with permission from R. Carvalho, L. Buzna, F. Bono, E. Gutierrez, W. Just, and D. Arrowsmith, Robustness
of trans-European gas networks, Phys. Rev. E 80, 016106 (2009). Copyright 2009 by the American Physical Society.

distribution networks. In a river network the edges are rivers or streams and
the nodes are their intersections. As with road networks, no special techniques
are necessary to gather data on the structure of river networks—the hard work
of surveying the land has already been done for us by cartographers, and all
we need do is copy the results from their maps. See Fig. 2.6 for an example.

The topological and geographic properties of river networks have been
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Figure 2.6: Drainage basin of the Loess Plateau. The net-
work of rivers and streams on the Loess Plateau in the Shanxi
province of China. The tree-like structure of the network is
clearly visible—there are no loops in the network, so water at
any point in the network drains off the plateau via a single
path. Reproduced from Pelletier [386] by permission of the
American Geophysical Union.

studied in some detail [143, 319, 407, 412]. Of particular note is the fact that
river networks, to an excellent approximation, take the form of trees. That is,
they contain no loops (if one disregards the occasional island midstream), a
point that we discuss further in Section 6.8.

Similar in some respects to river networks are networks of blood vessels
in animals, and their equivalents in plants, such as root networks. These too
have been studied at some length. An early example of a mathematical result
in this area is the formula for estimating the total geometric length of all edges
in such a network by observing the number of times they intersect a regular
array of straight lines [345]. This formula, whose derivation is related to the
well-known “Buffon’s needle” experiment for determining the value of π, is
most often applied to root systems, but there is no reason it could not also be
useful in the study of river networks or, with suitable modification, any other
type of geographic network.

Also of note in this area is work on the scaling relationships between the
structure of branching vascular networks in organisms and metabolic pro-
cesses [39, 468, 469], an impressive example of the way in which an under-
standing of network structure can be parlayed into an understanding of the
functioning of the systems the networks represent. We will see many more
examples during the course of this book.
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Chapter 3

Networks of information
A discussion of information networks, with a particular
focus on the World Wide Web and citation networks

This chapter focuses on networks of information, networks consisting of
items of data linked together in some way. Information networks are all,

so far as we know, man-made, with perhaps the best known example being
the World Wide Web, though many others exist and are worthy of study,
particularly citation networks of various kinds.

In addition, there are some networks which could be considered informa-
tion networks but which also have social-network aspects. Examples include
networks of email communications, networks on social-networking websites
such as Facebook or LinkedIn, and networks of weblogs and online journals.
We delay discussion of these and similar examples to the following chapter on
social networks, in Section 4.4, but they could easily have fitted in the present
chapter also. The classification of networks as information networks, social
networks, and so forth is a fuzzy one, and there are plenty of examples that,
like these, straddle the boundaries.

3.1 TheWorldWideWeb
Although by no means the first information network created, the World Wide
Web is probably the example best known to most people and a good place to
start our discussion in this chapter.

Networks, 2nd edition. Mark Newman, Oxford University Press (2018). © Mark Newman.
DOI: 10.1093/oso/9780198805090.001.0001
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As described in Chapter 1, the Web is a network in which the nodes are
web pages, containing text, pictures, or other information, and the edges are
the hyperlinks that allow us to navigate from page to page. The Web should
not be confused with the Internet (Section 2.1), which is the physical network
of data connections between computers; the Web is a network of links between
pages of information.

Figure 3.1: A network of pages on a corporate website. The
nodes in this network represent pages on a website and the
directed edges between them represent hyperlinks.

Since hyperlinks run in one direction only,
the Web is a directed network. We can picture
the network with an arrow on each edge indicat-
ing which way it runs. Some pairs of web pages
may be connected by hyperlinks running in both
directions, which can be represented by two di-
rected edges, one in each direction. Figure 3.1
shows a picture of a small portion of the web
network, representing the connections between
a set of web pages on a single website.

The World Wide Web was invented in the
1980s by scientists at the CERN high-energy
physics laboratory in Geneva as a means of ex-
changing information among themselves and
their co-workers, but it rapidly became clear that
its potential was much greater [244]. At that
time there were several similar information sys-
tems competing for dominance of the rapidly
growing Internet, but the Web won the bat-
tle, largely because its inventors decided to give
away for free the software technologies onwhich
it was based—the Hypertext Markup Language
(HTML) used to specify the appearance of pages and the Hypertext Transport
Protocol (HTTP) used to transmit pages over the Internet. The Web’s extraor-
dinary rise is now a familiar part of history and most of us use its facilities at
least occasionally, and in many cases daily. A crude estimate of the number
of pages on the Web puts that number at around 50 billion at the time of the
writing1 and it is, almost certainly, the largest network that has been studied
quantitatively by network scientists to date.

The structure of the Web can be measured using a crawler, a computer

1This is only the number of reachable static pages. The number of unreachable pages is difficult
to estimate, and dynamic pages (see later) are essentially unlimited in number, although this may
not be a very meaningful statement since these pages don’t exist until someone asks for them.
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Figure 3.2: The operation of a web crawler. A web crawler iteratively downloads pages from the Web, starting from a
given initial page. URLs are copied from the link tags in that initial page into a store. Once all links have been copied
from the initial page, the crawler takes a URL from the store and downloads the corresponding page, then copies links
from that, and so on.

program that automatically surfs the Web looking for pages. In its simplest
form, the crawler performs a so-called breadth-first search on the web network,Breadth-first search is dis-

cussed at length in Sec-
tion 8.5.

as shown schematically in Fig. 3.2. One starts from any initial web page,
downloads the text of that page over the Internet, and finds all the links in
the text. Functionally, a link consists of an identifying “tag”—a short piece
of text marking the link as a link—and a Uniform Resource Locator, or URL, a
standardized computer address that says how and where the linked web page
can be found. By scanning for the tags and then copying the adjacent URLs a
web crawler can rapidly extract URLs for all the links on a web page, storing
them in memory or on a disk drive. When it is done with the current page, it
takes one of the URLs from its store, uses it to locate a new page on the Web,
and downloads the text of that page, and so the process repeats. If at any point
the crawler encounters a URL it has seen before, then that URL is ignored and
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not added to the store again, to avoid unnecessary duplication of effort. Only
URLs that are different from those seen before are added to the store.

By repeating the process of downloading and URL extraction for a suitably
long period of time, one can find a significant portion of the pages on the
entire Web. No web crawler, however, finds all the pages on the Web, for
a number of reasons. First, some websites forbid crawlers to examine their
pages. Websites can place a file called robots.txt in their root directory that
specifies which files, if any, crawlers can look at andmay optionally specify that
some crawlers are allowed to look at files while others are not. Compliance
with the restrictions specified in a robots.txt file is voluntary, but in practice
many crawlers do comply.

Second,manypages on theWebaredynamically generated: they are created
on the fly by special software using, for instance, data from a database. Most
large websites today, including many news, social media, retail, and corporate
websites, as well as the web pages generated by search engines, fall into this
category. Suppose, for instance, that you do a web search for “networks” using
the Google search engine. Google does not keep a page of search results about
networks (or anything else) just sitting on its computers, waiting for someone
to ask for it. On the contrary, when you perform a search, the search engine
rummages through its extensive database of web content (which it has found
previously, using a web crawler) and makes a list of things that it believes
will be useful to you. Then it creates a new web page containing that list
and sends the page to your computer. The page of results you see when you
search for something on Google is a dynamic page, generated automatically,
and specifically for you, just a fraction of a second earlier.

As a result, the number of possible web pages that can be displayed as a
result of a web search is so large as to be effectively infinite—as large as the
number of different queries you could type into the search engine. Whenwe are
crawling theWeb it is not practical for our crawler to visit all of these pages. The
crawler must therefore make some choice about what it will look at and what
it won’t. One choice would be to restrict ourselves to static web pages—ones
that are not generated on the fly. But it’s not always simple to tell which pages
are static, and besides, much useful information resides on the dynamic pages.
In practice, the decisions made by crawlers about which pages to include tend
to be fairly arbitrary, and it is not easy to guess which pages will be included in
a crawl and which will not. But one can say with certainty that many will not
and in this sense the crawl is always incomplete.

However, perhaps the most important reason why web crawls do not reach
all the pages on the Web is that the network structure of the Web does not
allow it. Since the Web is a directed network, not all pages are reachable from
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a given starting point. In particular, it is clear that pages that have no incoming
hyperlinks—pages that no one links to at all—can never be found by a crawler
that follows links. Taking this idea one step further, it is also the case that a
page will never be found if it is only linked to by pages that themselves have
no incoming links. And so forth. In fact, the Web, and directed networks
in general, have a special “component” structure, which we will examine in
detail in Section 6.12.1, and most crawlers only find one part of that structure,
the “giant out-component.” In the case of the World Wide Web the giant out-
component is estimated to occupy only about a half of all web pages and the
other half of the Web is unreachable [84].2

Although we are interested in web crawlers as a tool for probing the struc-
ture of the Web so that we can study its network properties, this is not their
main purpose. The primary use of web crawlers is to construct directories of
web pages for search purposes. Web search engines such as Google indulge
in web crawling on a massive scale to find web pages and construct indexes ofWeb search, which itself

raises some interesting net-
work questions, is dis-
cussed in Section 18.1.

the words and pictures they contain that can later be used to locate pages of
interest to searchers. Because their primary interest is indexing, rather than re-
constructing the network structure of the Web, search engine companies don’t
have any particular reason to take a good statistical sample of the Web and in
network terms their crawls are probably quite biased. Still, many of them have
graciously made their data available to academic researchers interested in web
structure, and the data are good enough to give us a rough picture of what is
going on. We will study a variety of features of the web network in subsequent
chapters.

It isn’t entirely necessary that we rely on search engine companies or other
web enterprises for data on the structure of the Web. One can also perform
one’s own web crawls. There are a number of capable web crawler programs
available for free on the Internet, including wget, Nutch, GRUB, and Sphinx.
While most of us don’t have the time or the facilities to crawl billions of web
pages, these programs can be useful for crawling small sets of pages or single
websites, andmuchuseful insight and information can be acquired by doing so.

2Which web pages a crawler finds does depend on where the crawl starts. A crawler can find
a web page with no incoming links, for instance, if (and only if) it starts at that page. In practice,
however, the starting point has remarkably little effect on what a crawler finds, since most of what
is found consists of the giant out-component mentioned above, whose content does not depend on
the starting point.
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3.2 Citation networks
A less well-known but much older information network is the network of cita-
tions between academic papers. Most papers reference one or more previous
works, usually in a bibliography at the end of the paper, and one can construct
a network in which the nodes are papers and there is a directed edge from
paper A to paper B if A cites B in its bibliography. There are many reasons why
one paper might cite another—to point out information that may be useful to
the reader, to give credit for prior work, to highlight influences on the current
work, or to disagree with the content of a paper. In general, however, if one
paper cites another it is usually an indication that the contents of the earlier
paper are relevant in some way to those of the later one, and hence citation
networks are networks of relatedness of subject matter.

Quantitative studies of citation networks go back to the 1960s; perhaps the Price’s study is also the ear-
liest we know of to find a
power-law degree distribu-
tion in a network—see Sec-
tion 10.4 for more discus-
sion of this important phe-
nomenon.

earliest is the 1965 study by Price [393]. Studies of citation networks fall within
the field of information science, and more specifically within bibliometrics, the
branch of information science that dealswith the statistical study of publication
patterns. The most common way to assemble a citation network is to do it by
hand, simply typing the entries in the bibliographies of papers into a database
from which a network can then be assembled. In the 1960s, when Price carried
out his study, such databases were just starting to be created [200] and he made
use of an early version of what would later become the Science Citation Index.
Fifty years later, the Science Citation Index (along with its sister publications,
the Social ScienceCitation Index and theArts andHumanitiesCitation Index) is
nowone of the primary andmostwidely used sources of citation data. In recent
years, it has moved from hand entry of bibliographic data to direct electronic
submission of data by the journals, which makes for faster and more accurate
database updates. Another database, Scopus, provides a competing but largely
similar service. Both are professionally maintained and their coverage of the
literature is reasonably complete and accurate, although the data are also quite
expensive to purchase. Still, if one has the money, creating a citation network
is only a matter of deciding which papers one wishes to include, using one
of the databases to find the citations between those papers, and adding the
appropriate directed edges to the network until it is complete.

More recently, software systems for compiling citation indexes automati-
cally without human oversight have started to appear. Perhaps the best known
of these is Google Scholar, the academic literature arm of the Google search en-
gine. Google Scholar crawls theWeb to findmanuscripts of papers in electronic See Section 3.1 for a discus-

sion of web crawlers.form and then searches through thosemanuscripts to identify citations to other
papers. This is a somewhat hit-or-miss operation because many papers are not
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on theWeb or are not freely available, citations in papers have a wide variety of
different formats andmay include errors, and the same papermay exist inmore
than one place on theWeb and possibly inmore than one version. Nonetheless,
enough progress has been made for Google Scholar to become a useful tool for
the academic community. Other automated citation indexing projects include
Citebase, which indexes physics papers, and CiteseerX, which indexes computer
science.

As with web crawls, the original purpose of citation indexes was not to
measure network structure. Citation indexes are assembled primarily to allow
researchers to discover by whom a paper has been cited, and hence to find
research related to a topic of interest. Nonetheless, data from citation indexes
have been widely used to reconstruct the underlying networks and investigate
their properties, and a number of large-scale studies of citation networks have
appeared in recent years [101,242,294,396–398,404,405].

Citation networks are in many ways similar to the World Wide Web. The
nodes of the network hold information in the form of text and pictures, just asAcademic studies of the

Webwithin the information
sciences sometimes refer to
hyperlinks as “citations,” a
nomenclature that empha-
sizes the close similarities
between web and citation
networks.

web pages do, and the links from one paper to another play a role similar to
hyperlinks between web pages, alerting the reader when information relevant
to the topic of one paper can be found in another. Papers with many citations
are often more influential and widely read than those with few, just as is the
case with web pages, and one can “surf” the citation network by following a
succession of citations from paper to paper just as computer users surf theWeb.

There is, however, at least one important difference between a citation net-
work and theWeb: a citation network is acyclic, while theWeb is not. An acyclicAcyclic networks are dis-

cussed further in Sec-
tion 6.4.1.

network is one in which there are no closed loops of directed edges. On the
WorldWideWeb, it is entirely possible to follow a succession of hyperlinks and
end up back at the page you started at. On a citation network, by contrast, this
is essentially impossible. The reason is that in order to cite a paper, that paper
must already have beenwritten. One cannot cite a paper that does not yet exist.
Thus all the directed edges in a citation network point backward in time, from
newer papers to older ones. If we follow a path of such edges from paper toSee Fig. 6.3 for an illustra-

tion of a small acyclic net-
work.

paper, we will therefore find ourselves going backward in time, but there is no
way to go forward again, so we cannot close the loop and return to where we
started.3

Citation networks have some interesting statistics. For instance, one study

3On rare occasions it occurs that an author will publish two papers simultaneously in the same
volume of a journal and, with the help of the printers, arrange for each paper to cite the other,
creating a cycle of length two in the network. Thus the citation network is not strictly acyclic,
having a small number of short loops scattered about it.
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found that about 47% of all papers have never been cited at all [404]. Of the
remainder, 9% have one citation, 6% have two, and it goes down quickly after
that. Only 21% of all papers have 10 or more citations, and just 1% have 100 or
more. These figures are a consequence of the power-law degree distribution of
the network—see Section 10.4.

The most highly cited paper of all, according to the Science Citation Index,
is a 1951 paper by Lowry et al. [311], which has been cited more than 300 000
times.4 Like most very highly cited papers, it is a methodological paper in
molecular biology.

Citation networks of the type described so far are the simplest but not
the only possible network representation of citation patterns. An alternative
representation is the cocitation network. Two papers are said to be cocited if they
are both cited by the same third paper. Cocitation is often taken as an indicator
that papers deal with related topics and there is good evidence that this is a
reasonable assumption in many cases. A cocitation network is a network in
which the nodes represent papers and the edges represent cocitation of pairs of
papers. By contrast with ordinary citation networks, the edges in a cocitation
network are normally considered undirected, since cocitation is a symmetric
relationship. One can also define a weighted cocitation network in which the
edges have varying strengths: the strength of an edge between two papers is
equal to the number of other papers that cite both.

Another related concept, although one that is less often used, is bibliographic
coupling. Two papers are said to be bibliographically coupled if they cite the
same other papers (rather than being cited by the same papers). Bibliographic
coupling, like cocitation, can be taken as an indicator that papers deal with
related material and one can define a strength or weight of coupling by the
number of common citations between two papers. From the bibliographic
couplingfigures one can thenassemble abibliographic couplingnetwork, either
weighted or not, in which the nodes are papers and the undirected edges
indicate bibliographic coupling.

3.2.1 Patent and legal citations

The discussion of citation networks in the previous section focuses on citations
between academic papers, but there are other types of citation also. Two of
particular interest are citations between patents and between legal opinions.

Patents are temporary grants of ownership for inventions, which give their
holders exclusive rights to control and profit from the protected inventions for a

4And it’s been cited one more time now.
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finite period of time. They are typically issued to inventors—either individuals
or corporations—by national governments after a review process to determine
whether the invention in question is original and has not been previously in-
vented by someone else. In applying for a patent, an inventor must describe
his or her invention in sufficient detail to make adequate review possible and
present the case that the invention is worthy of patent protection. A part of
this case typically involves detailing the relationship between the invention and
other previously patented inventions, and in doing so the inventor will usually
cite one or more previous patents. Citations may highlight dependencies be-
tween technologies, such as one invention relying for its operation on another,
but more often patent citations are “defensive,” meaning that the inventor cites
the patent for a related previous technology and then presents an argument
for why the new technology is sufficiently different from the old one to merit
its own patent. Governments, in the process of examining patent applications,
will routinely consider their similarity to previous inventions, and defensive
citations are one way in which an inventor can fend off in advance possible
objections that might be raised. Typically, there are a number of rounds of
communication back and forth between the government patent examiner and
the inventor before a patent application is finally accepted or rejected. During
this process extra citations are often added to the application, either by the
inventor or by the examiner, to document the further points discussed in their
communications.

If and when a patent is finally granted, it is published, citations and all,
so that the public may know which technologies have patent protection. Pub-
lished patents thus provide a source of citation data thatwe can use to construct
networks similar to the networks of citations between papers. In patent net-
works the nodes are patents, each identified by aunique patent number, and the
directed edges between them are citations of one patent by another. Like aca-
demic citation networks, patent networks are acyclic, or nearly so, with edges
running frommore recent patents to older ones, although short loops can arise
in the network in the not uncommon case that an inventor simultaneously
patents a number of mutually dependent technologies.

The structure of patent networks reflects the organization of human tech-
nology in much the same way that the structure of academic citation networks
reflects the organization of research knowledge. Patent citations have been
less thoroughly studied than academic citations, but the number of studies
has been growing in the past few years with the appearance of high-quality
data sources, including US National Bureau of Economic Research database
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of US patents5 and the Google Patents search engine for worldwide patents.6
There are a number of interesting technological and legal questions, for in-
stance concerning originality of patented inventions, emerging technologies,
and antitrust policy, that can be addressed by examining patent citation net-
works [106,161,216,247].

Another class of citation networks that have begun to attract attention in
recent years are legal citation networks. In countries where law cases can be
decided by judges rather than juries, such as civil cases or appeals in Europe
or the US, a judge will frequently issue an “opinion” after deciding a case, a
narrative essay explaining his or her reasoning and conclusions. It is common
practice in writing such an opinion to cite previous opinions issued in other
cases in order to establish precedent, or occasionally to argue against it. Thus,
like academic papers and patents, legal opinions form a citation network, with
opinions being the nodes and citations being the directed edges, and again the
network is approximately acyclic. The legal profession has long maintained
indexes of citations between opinions for use by lawyers, judges, scholars, and
others, and in recent years these indexes havemade the jump to electronic form
and are now available online. In theUnited States, for instance, two commercial
services, LexisNexis andWestlaw,7 provide detailed data on legal opinions and
their citations. In the past few years a number of studies of the structure of
legal citation networks have been published using data derived from these
services [186,187,295,314].

In principle it would be possible also to construct networks of cocitation or
bibliographic coupling between either patents or legal opinions, but we are not
aware of any studies yet published of such networks.

3.3 Other information networks
There are many other kinds of information networks, although none have
attracted the same level of attention as the Web and citation networks. In the
remainder of this chapter we briefly discuss a few examples of other networks.

5See http://www.nber.org/patents
6See http://patents.google.com
7Westlaw is owned and operated by Thomson Reuters, the same company that owns the

Science Citation Index, while LexisNexis is owned by Elsevier, which also owns Scopus.
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3.3.1 Peer-to-peer networks

Peer-to-peer file-sharing networks (sometimes abbreviated P2P) are a widely used
form of computer network that combines aspects of information networks and
technological networks. Apeer-to-peernetwork is anetwork inwhich thenodes
are computers containing information in the form, usually, of discrete files, and
the edges between them are virtual links established for the purpose of sharing
the contents of those files. The links exist only in software—they indicate only
the intention of one computer to communicate with another should the need
arise.

Peer-to-peer networks are typically used as a vehicle for distributed data-
bases, particularly for the storage and distribution, often illegally, of music and
movies, although there are substantial legal uses as well, such as local sharing
of files on corporate networks or the distribution of software. (The network of
router-to-router communications using the Border Gateway Protocol described
in Section 2.1 is another less obvious example of a legitimate and useful peer-
to-peer network.)

The point of a peer-to-peer network is to facilitate the direct transfer of data
between computers belonging to two end users of the network, two “peers.”
This contrasts with the more common server–client model, such as that used
by the World Wide Web, in which central server computers supply requested
data to a large number of client machines. The peer-to-peer model is favored
particularly for illicit sharing of copyrighted material because the owners of
a centralized server can easily be obliged to deactivate the server by legal or
law-enforcement action, but such actions are much more difficult when no
central server exists. Eliminating central servers and the high-bandwidth con-
nections they require alsomakes peer-to-peer networks economically attractive
in applications such as software distribution.

On most peer-to-peer networks every computer is home to some informa-
tion, but no computer has all the information in the network. If the user of a
computer requires information stored on another computer, that information
can be transmitted simply and directly over the Internet or over a local area
network. This is a peer-to-peer transfer. No special infrastructure is necessary
to accomplish it—standard Internet protocols are perfectly adequate to the task.
Things get interesting, however, when one wants to findwhich other computer
has the desired information. One way to do that is to have a central server con-
taining an index of which information is on which computers. Such a system
was employed by the early file-sharing network Napster, but a central server is,
as we have said, susceptible to legal and other challenges, and such challenges
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were in the end responsible for shutting Napster down.8
To avoid this problem, developers have turned to distributed schemes for

searching and this is where network concepts come into play. In the simplest
incarnation of the idea, computers form links to some number of their peers in
such a way that all the computers together form a connected network. Again,
a link here is purely a software construct—a computer’s network neighbors
in the peer-to-peer sense are merely those others with which it has agreed to
communicate when the need arises.

When auser instructs his or her computer to search the network for a specific
file, the computer sends out amessage to its network neighbors askingwhether
they have that file. If they do, they arrange to transmit it back to the user. If
they do not, they pass the message on to their neighbors, and so forth until the
file is found. As we show in Section 18.2, where we discuss search strategies
on peer-to-peer networks at some length, this algorithm works, but only on
relatively small networks. Since it requires messages to be passed between
many computers for each individual search, the algorithm does not scale well
as the network becomes large, the volume of network traffic generated by
searches eventually swamping the available data bandwidth. Toget around this
problem,modern peer-to-peer networks employ a two-tiered network topology
of nodes and “supernodes,” in which searches are performed only among the
supernodes and ordinary nodes contact them directly to request searches be
performed. More details are given in Section 18.2.

So what is the structure of a peer-to-peer network like? In many cases,
unfortunately, not a lot is known since the software is proprietary and its own-
ers are reluctant to share operational details. There have been a number of
studies published of the early peer-to-peer network Gnutella, which was based
on open-source software, meaning that the computer code for the software
and the specification of the protocols it uses are freely available. By exploit-
ing certain details of those protocols, particularly the ability for computers in
the Gnutella network to “ping” one another (i.e., ask each other to identify
themselves), researchers have been able to discover and analyze the structure
of Gnutella networks [409, 442]. The networks appear to have approximately
power-law degree distributions (see Section 10.4) and it has been suggested
that this property could be exploited to improve search performance [6].

8The Napster name was later bought up by the music industry and is now the name of a
legitimate online music service, although one that does not make use of peer-to-peer technology.
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3.3.2 Recommender networks

Recommender networks represent people’s preferences for things, such as for
certain products sold by a retailer. Online merchants, for instance, may keep
records of which customers bought which products and sometimes ask them
whether they liked the products. Many large supermarket chains record the
purchases made by their regular customers (usually identified by a small card
with a barcode on it that is scannedwhen purchases aremade) and so canwork
out which products each customer buys frequently.We encountered bipartite

networks previously in Sec-
tion 2.4 and will study
them further in Sections 4.5
and 6.6.

The fundamental representation of a recommender network is a “bipartite
network,” a network with two types of node, one representing the products
or other items and the other representing the people, with edges connecting
people to the items they buy or like. One can also add strengths or weights to
the edges to indicate, for instance, how often a person has bought an item or
howmuch he or she likes it, or the strengths could bemade negative to indicate
dislikes.

Recommender networks have been studied for many types of goods and
products, including books, music, films, and others. Interest in recommender
networks arises primarily from their use in collaborative filtering systems, also
sometimes called recommender systems, which are computer algorithms that
attempt to guess new items a person will like by comparing their past prefer-
ences with those of other people. If person A likes many of the same things
as person B, for instance, and if person B likes some further item that A has
never expressed an opinion about, then maybe (the theory goes) A would like
that item too. A wide variety of computer algorithms have been developed for
extracting conclusions of this type from recommender networks [406] and are
used extensively by retailers to suggest possible purchases to their customers,
in the hope of drumming up business. The website of the online retailer Ama-
zon.com, for instance, has a feature that recommends items to customers based
on their previously expressed preferences and purchases. And many super-
markets now print out personalized discount coupons at checkout for products
that a customer has not bought in the past but might be interested to try.

Product recommendations of this kind are big business: the ability to ac-
curately predict what customers will like can mean millions of dollars in extra
sales for a large retailer, or the difference between a loyal customer and onewho
defects to a competitor. In 2006, the entertainment company Netflix offered a
prize of one million US dollars for anyone who could create a recommender
system able to predict viewers’ opinions about movies and TV programs 10%
more accurately than the company’s existing system. Amere 10%maynot seem
like a big improvement, but for a business the size of Netflix, with millions of
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users, it could translate into a substantial increase in profits, easily justifying
the prize money. Moreover, it turned out to be no trivial task to beat the 10%
threshold. It took almost three years before the prize was finally won in 2009
by a large collaborative team of US and European researchers.

Research on recommender networks has focused mainly on the develop-
ment of better collaborative filtering algorithms, but it is reasonable to suppose
that the success of these algorithms should depend to some extent on the struc-
ture of the recommender network itself, and there is therefore good reason
to also study that structure. A few such studies have been published in the
scientific literature [94, 220], but there is clearly room for further work.

3.3.3 Keyword indexes

Another type of information network, also bipartite in form, is the keyword
index. An example is the index at the end of this book, which consists of a list
of words or phrases, each accompanied by the numbers of the pages on which
related information can be found. An index of this kind can be represented as a
bipartite network, with two types of nodes representing words and pages, and
an edge connecting each word to the pages on which it appears. In addition
to their use in books, keyword indexes are routinely constructed as guides to
other information collections, including sets of academic papers and theWorld
Wide Web. The index constructed by a web search engine, as discussed in
Section 3.1, is one example; it consists, at a minimum, of a set of words or
phrases, with each word or phrase accompanied by a list of the web pages on
which it occurs.

Indexes are of practical importance as amethod for searching large bodies of
information. Web search engines, for example, rely heavily on them to quickly
find web pages that correspond to a particular query. However, indexes also
have other, more sophisticated applications. They are used, for example, as a
basis for techniques that attempt to find pages or documents that are similar
to one another. Suppose one has a keyword index to a set of documents,
consisting of a list of words and the documents they appear in. If we find that
two documents contain a lot of the same keywords, it may be an indication that
the two cover similar topics. A variety of computer algorithms for spotting
such connections have been developed, typically making use of ideas very
similar to those used in the recommender systems discussed in Section 3.3.2—
the problem of finding documents with similar keywords is in many ways
analogous to the problem of finding buyers who like similar products.

The identification of similar documents can be useful, for example, in con-
structing a search engine for searching through a body of knowledge. In a
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standard index search, one typically looks up a keyword or set of keywords
and gets a list of documents containing those words. Search engines that can
tell when documents are similar may be able to respondmore usefully because
they can return documents that do not actually contain the keywords entered,
but which are similar to documents that do. In cases where a single concept is
called by more than one name, this may be an effective strategy for finding all
the relevant documents.

In the context of document retrieval, the classic method for determining
document similarity and performing generalized searches of this type is latent
semantic analysis, which is based on the application of the matrix technique
known as singular value decomposition to the bipartite network of keywords
and documents [288]. A number of other competing methods have also been
developed in recent years, using techniques such as non-negative matrix fac-
torization [291, 292], latent Dirichlet allocation [63], and other probabilistic
approaches [236].

Aswith recommender systems, it is reasonable to suppose that the success of
methods for finding similar documents or improving searches using similarity
information depends on the structure of the keyword index network, and hence
that studies of that structure couldgenerate useful insights. There has, however,
been relatively littlework on this problem so farwithin the network community,
so there is plenty of room for future developments.
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Chapter 4

Social networks
A discussion of social networks and the empirical
techniques used to probe their structure

To most people the words “social network,” if they mean anything, refer to
online social media such as Facebook or Twitter. In the scientific study of

networks, however, the phrase has a much broader meaning: a social network
is any network in which the nodes represent people and the edges represent
some form of connection between them, such as friendship. In this chapter we
give a discussion of the origins and focus of the field of social network research
and describe some of the types of networks studied and the techniques used to
determine their structure. Sociologists have developed their own language for
discussing social networks: they refer to the nodes, the people, as actors and
the edges as ties. We will sometimes use these words when discussing social
networks.

4.1 The empirical study of social networks
Interest in social networks goes backmanydecades. Indeed, among researchers
studying networks sociologists have perhaps the longest and best established
tradition of quantitative, empirical work. There are clear antecedents of social
network analysis to be found in the literature as far back as the end of the
nineteenth century, though the true foundation of the field is usually attributed
to psychiatrist Jacob Moreno, a Romanian immigrant to America who in the
1930s became interested in the dynamics of social interactions within groups of

Networks, 2nd edition. Mark Newman, Oxford University Press (2018). © Mark Newman.
DOI: 10.1093/oso/9780198805090.001.0001
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Figure 4.1: Friendships between schoolchildren. This
early hand-drawn image of a social network, taken from
the work of psychiatrist Jacob Moreno, depicts friendship
patterns between the boys (triangles) and girls (circles) in a
class of schoolchildren in the 1930s. Reproduced from [341]
by kind permission of the American Society of Group Psy-
chotherapy and Psychodrama.

people. At a medical conference in New York City in March 1933 he presented
the results of a set of investigations he had performed that may have been the
first true social network studies, and the work attracted enough attention to
merit a column in the New York Times a few days later. The following year
Moreno published a book entitled Who Shall Survive? [341] which, though
not a rigorous work by modern standards, contained the seeds of the field of
sociometry, which later became social network analysis.

Themost startling feature ofMoreno’sworkwas a set of hand-drawnfigures
depicting patterns of interaction among various groups of people. He called
these figures sociograms rather than social networks (a term not coined until
about twenty years later), but in everything but name they are clearly what
we now know as networks. Figure 4.1, for instance, shows a diagram from
Moreno’s book, depicting friendships among a group of schoolchildren. The
triangles and circles represent boys andgirls respectively, and thefigure reveals,
among other things, that there aremany friendships among the boys andmany
among the girls, but only one between a boy and a girl. It is simple conclusions
like this, that are both sociologically interesting and easy to see once onedraws a
picture, that rapidlypersuaded social scientists that therewasmerit inMoreno’s
methods.

One of the most important things to appreciate about social networks is
that there are many different possible definitions of an edge in such a network
and the particular definition one uses will depend on what questions one is
interested in answering. Edges might represent friendship between individu-
als, but they could also represent professional relationships, exchange of goods
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or money, communication patterns, romantic or sexual relationships, or many
other types of connection. If one is interested, for instance, in professional
interactions between the boards of directors of major corporations, then a net-
work of who looks at who else’s Facebook page is probably not of much use.
Moreover, the techniques one uses to probe different types of social interaction
can be quite different, so that very different kinds of studies may be needed
to address different kinds of questions. Direct questioning of experimental
subjects is probably the most common method of determining the structure of
social networks. We discuss it in detail in Section 4.2.

Another important technique, the use of archival records, is illustrated by The use of archival and
third-party records to re-
construct social networks is
discussed in detail in Sec-
tions 4.4 and 4.5.

a different early example of a social network study. In 1939 a group of ethno-
graphers studying the effects of social class and stratification in the American
south collected data on the attendance of social events by 18 women in a small
town in Mississippi over a period of nine months [129]. Rather than relying on
interviews or surveys, however, they assembled their data using guest lists from
the events and reports in the society pages of the newspapers.1 Their study,
often referred to as the “Southern Women Study,” has been widely discussed
and analyzed in the networks literature in the decades since its first publica-
tion. The data can be represented as a network in which the nodes represent
the women and two women are connected if they attended a common event.
An alternative and more complete representation is as an “affiliation network”
or “bipartite network,” in which there are two types of node representing the We encountered bipartite

networks previously in Sec-
tions 2.4 and 3.3.2, and will
study them in more detail
in Sections 4.5 and 6.6.

women and the events, and edges connecting each woman to the events she
attended. A visualization of the affiliation network for the Southern Women
Study is shown in Fig. 4.2.

One reason why this study has become so well known, in addition to its
antiquity, is that thewomenwere found by the researchers to split into two sub-
groups, tightly knit clusters of acquaintances with only rather loose between-
cluster interaction. A classic problem in social network analysis is to devise a
method or algorithm that can discover and extract such clustering from raw
network data, and quite a number of researchers havemade use of the Southern
Women data as a test case for algorithm development.

Such is the power of social network analysis that its techniques have, since
the time of Moreno and Davis et al., been applied to an extraordinary variety of
different communities, issues, and problems [79]: friendship and acquaintance
patterns in local communities and in the population at large [54,55,261,333,447,
452] and amonguniversity students [446,479] and schoolchildren [169,338,400];

1They did also conduct some interviews, and made use of direct reports of attendance by
observers. See Freeman [190] for a detailed discussion.
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Figure 4.2: Theaffiliationnetworkof the“SouthernWomenStudy.” Thisnetwork (like
all affiliationnetworks) has two types of node, the open circles at the bottomrepresenting
the 18 women who were the subjects of the study and the shaded circles at the top
representing the social events they attended. The edges connect each woman to the
events she attended. Data courtesy of L. Freeman and originally from Davis et al. [129].

contacts between business people and other professionals [117, 197]; boards of
directors of companies [130,131,318]; collaborations of scientists [218,219,349],
movie actors [20, 466], and musicians [206]; sexual contact networks [271, 305,
392, 411, 417] and dating patterns [52, 238]; covert and criminal networks such
as networks of drug users [421] or terrorists [282]; historical networks [51,377];
online communities such as Usenet [313, 431, 449] and Facebook [278, 298, 446,
452]; and social networks of animals [180,315,418,419].

We will see examples of these and other networks throughout this book
and we will give details as needed as we go along. The rest of the present
chapter is devoted to a discussion of the different empirical methods used to
measure social networks. The techniques described above, direct questioning
of subjects and the use of archival records, are two of the most important, but
there are several others that find regular use. This chapter does not aim to give a
complete review of the subject—for that we refer the reader to specialized texts
such as those of Wasserman and Faust [462] and Scott [424]—but the material
here provides a good grounding for our further studies in the remainder of the
book.
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4.2 Interviews and questionnaires
The most common general method for gathering data on social networks is
simply to ask people questions. If you are interested in friendship networks,
you ask people who their friends are. If you are interested in business rela-
tionships you ask people who they do business with, and so forth. The asking
may take the form of direct interviews with participants or the completion of
questionnaires, either on paper or electronically. Indeed many modern stud-
ies, particularly telephone surveys, employ a combination of both interviews
and questionnaires, wherein a professional interviewer reads questions from a
questionnaire to a participant. By using a questionnaire, the designers of the
study can guarantee that questions are asked, to a good approximation, in a
consistent order and with consistent wording. By employing an interviewer
to do the asking the study gains flexibility and reliability—interviewees of-
ten take studies more seriously when answering questions put to them by a
human being—and interviewers may be given some latitude to probe intervie-
wees when they are unclear, unresponsive, or confused. These are important
considerations, since misunderstanding and inconsistent responses to survey
questions are substantial sources of error [320]. By making questions as uni-
form as possible and giving respondents personal help in understanding them,
these errors can be reduced. A good introduction to social survey design and
implementation is given by Rea and Parker [403].

To measure social networks, surveys typically employ a name generator,
a question or series of questions that invite respondents to name others with
whom they have contact of a specific kind. For example, in their classic study of
friendship networks among schoolchildren, Rapoport andHorvath [400] asked
children to complete a questionnaire that included items worded as follows:

My best friend at Junior High School is:
My second-best friend at Junior High School is:
My third-best friend at Junior High School is:

...
My eighth-best friend at Junior High School is:

The blanks “ ” in the questionnaire were filled in with the appropriate
school name.2 The list stopped at the eighth-best friend and many participants
did not complete all eight.

Ideally all students within a school would be surveyed, although Rapoport

2A junior high school in the United States is a school for children aged approximately 12 to 14
years.
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and Horvath reported that in their case a few were absent on the day the
survey was conducted. Note that the survey specifically asks children to name
only friends within the school. The resulting network will therefore record
friendship ties within the school but none to individuals elsewhere. This is a
common issue: it is highly likely that any group of individuals surveyed will
have at least some ties outside the group and one must decide what to do with
these ties. Sometimes they are recorded. Sometimes, as here, they are not.
Such details can be important since statistics derived from survey results will
often depend on the decisions made.

There are a number of points to note about the data produced by name
generators. First, the network ties, friendships in the case above, are determined
by one respondent nominating another. This is a fundamentally asymmetric
process. Individual A identifies individual B as their friend. In many cases
B will also identify A as their friend, but there is no guarantee that this will
happen and it is not uncommon for nomination to go in only one direction. WeWe encountered directed

networks previously in
Chapter 1, in our discus-
sion of the World Wide
Web, and they are dis-
cussed in more detail in
Section 6.4.

normally think of friendship as a two-way relationship, but surveys suggest
that this not always the case. As a result, data derived from name generators
are often best represented as directed networks, networks in which edges run
in a particular direction from one node to another. If two individuals nominate
each other then we have two directed edges, one pointing in either direction.

Recall that the degree of
a node is the number of
connections it has—see Sec-
tion 6.10 for a detailed dis-
cussion.

Each node in the network then has two degrees, an out-degree—the number
of friends identified by the corresponding individual—and an in-degree—the
number of others who identified the individual as a friend.

This brings us to another point about name generators. It is common, as
in the example above, for the experimenter to place a limit on the number of
names a respondent can give. In the study of Rapoport and Horvath this limit
was eight. Studies that impose such a limit are called fixed choice studies. The
alternative is a free choice study, which imposes no limit.

Limits are often imposed purely for practical purposes, to reduce the work
of the experimenter. However, they may also help respondents understand
what is required of them. In surveys of schoolchildren, for instance, there are
some children who, when asked to name their friends, will patiently name
all the other children in the entire school, even if there are hundreds of them.
Such responses are not particularly helpful—almost certainly the children in
question are employing a different definition of friendship from that employed
by most of their peers and by the investigators.

However, limiting the number of responses is for most purposes undesir-
able. In particular, it clearly limits the out-degree of the nodes in the network,
imposing an artificial and possibly unrealistic cut-off. As discussed in Chap-
ter 1, an interesting property of many networks is the existence of hubs, rare
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nodes of unusually high degree, which, despite being few in number, can some-
times have a dominant effect on the behavior of the network. By employing a
name generator that artificially cuts off the degree, any information about the
existence of such hubs is lost.

It is worth noting, however, that even in a fixed choice study there is nor-
mally no limit on the in-degree of nodes in the network; there is no limit to
the number of times an individual can be nominated by others. And indeed in
many networks it is found that a small number of individuals are nominated an
unusually large number of times. Rapoport andHorvath [400] observed this in
their friendship networks: while most children in a school are nominated as a
friend of only a few others, a small number of popular children are nominated
very many times. Rapoport and Horvath were some of the first scientists in
any field to study quantitatively the degree distributions of networks, reporting
and commenting extensively on the in-degrees in their friendship networks.

Not all surveys employing name generators produce directed networks.
Sometimes we are interested in ties that are intrinsically symmetric between
the two parties involved, in which case the edges in the network are properly
represented as undirected. An example is networks of sexual contact, which
are widely studied to help us understand the spread of sexually transmitted
diseases [271,305,392,417]. In such networks a tie between individuals A and B
means that A and B had sex. While participants in studies sometimes do not
remember who they had sex with or may be unwilling to talk about it, it is at If individuals’ responses

differ too often, it is a sign
that one’s data are unre-
liable. Thus one may be
able to estimate the level
of measurement error in
the data by comparing re-
sponses.

least in principle a straightforward yes-or-no question whether two people had
sex, and the answer should not depend on which of the two you ask. In such
networks therefore, ties are normally represented as undirected.

Surveys can and often do ask respondents not just to name those with
whom they have ties but to describe the nature of those ties as well. For
instance, questions may ask respondents to name people they both like and
dislike, or to name those with whom they have certain types of contact, such as
socializing together, working together, or asking for advice. For example, in a
study of the social network of a group of medical doctors, Coleman et al. [117]
asked respondents the following questions:

Who among your colleagues do you turn to most often for advice?
With whom do you most often discuss your cases in the course of an

ordinary week?
Who are the friends among your colleagues whom you see most often

socially?

The names of a maximum of three doctors could be given in response to each
question. A survey such as this, which asks about several types of interactions,
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effectively generates data on several different networks at once—the network of
advice, the discussion network, and so forth—but all built upon the same set of
nodes. Networks such as this are sometimes called “multilayer” or “multiplex”
networks.Multilayer networks are

discussed further in Sec-
tion 6.7.

Surveys may also pose questions aimed at measuring the strength of ties,
asking, for instance, how often people interact or for how long, and they may
ask individuals to give a basic description of themselves: their age, income,
education, and so forth. Some of the most interesting results of social network
studies concern the extent to which people’s choice of whom they associateThe common tendency of

people to associate with
others who are similar to
themselves in some way
is called “homophily” or
“assortative mixing,” and
wediscuss it indetail in Sec-
tions 7.7 and 10.7.

with reflects their own background and that of their associates. For instance,
youmight choose to socialize primarily with others of a similar age to yourself,
but turn for advice to those who are older than you.

The main disadvantages of network studies based on direct questioning
of participants are that they are first laborious and second inaccurate. The
administering of interviews or questionnaires and the collation of the responses
is a demanding job that has been only somewhat eased by the use of computers
and online survey tools. As a result, most studies have been limited to a few tens
or at most hundreds of respondents—the 34-node social network of Fig. 1.2 is
a typical example. It is a rare study that contains more than a thousand actors,
and studies such as the National Longitudinal Study of Adolescent Health,3
which compiled responses from over 90 000 participants, are very unusual and
extraordinarily costly. Only a substantial public interest such as, in that case,
the control of disease, can justify the expense of performing them.

Data based on direct questioning may also be affected by biases of various
kinds. Answers given by respondents are always to some extent subjective.
If you ask people who their friends are, for instance, different people will
interpret “friend” in different ways and thus give different kinds of answers,
despite the best efforts of investigators to pose questions and record the answers
in a uniform fashion. This problem is not unique to network studies. Virtually
all social surveys suffer from such problems and a large body of expertise
concerning techniques for dealing with them has been developed [320, 403].Experimental error in net-

work measurements is dis-
cussed in detail in Chap-
ter 9.

Nonetheless, one should bear in mind when dealing with any social network
derived from interviews or questionnaires the possibility of experimental bias
in the data.

3See http://www.cpc.unc.edu/projects/addhealth
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4.2.1 Ego-centered networks

Studies inwhich all or nearly all of the individuals in a community are surveyed,
as described in the previous section, are called sociometric studies, a term coined
by Jacob Moreno himself (see the discussion at the beginning of this chapter).
Sociometric studies are the gold standard for determining network structure
but, as discussed at the end of the preceding section, they are also very labor
intensive and for large populations may be infeasible.

At the other end of the spectrum from sociometric studies lie studies of
personal networks or ego-centered networks.4 An ego-centered network is the
network surrounding one particular individual, meaning that individual plus
his or her immediate contacts. The individual in question is referred to as the
ego and the contacts as alters.

Alters

Ego

An ego-centered network
consistingof anegoandfive
alters.

Ego-centered networks are usually studied by direct questioning of par-
ticipants, with interviews, questionnaires, or a combination of both being the
instruments of choice (see Section 4.2). Typically, one constructs not just a single
ego-centered network but several, centered on different egos drawn from the
target population. In a telephone survey, for instance, one might call random
telephone numbers in the target area and survey those who answer, asking
them to identify others with whom they have a certain type of contact. Partici-
pants might also be asked to describe some characteristics both of themselves
and of their alters, and perhaps to answer some other simple questions, such
as which alters also have contact with one another.

Obviously, surveys of this type, and studies of ego-centered networks in
general, cannot reveal the structure of an entire network. One receives snap-
shots of small local regions of the network, but in general those regions will
not join together to form a complete social network. Sometimes, however, we
are primarily interested in local network properties, and ego-centered network
studies can give us good data about these. For example, if we wish to know
about the degrees of nodes in a network—the numbers of ties people have—
then a study in which a random sample of people are each asked to list their
contacts may give us everything we need. (Studies probing node degrees are
discussed more below.) If we also gather data on contacts between alters, we
can estimate clustering coefficients (see Section 7.3). If we have data on char-
acteristics of egos and alters we can measure assortative mixing (Sections 7.7
and 10.7).

An example of a study gathering ego-centered network data is the General

4Also called egocentric networks, although this term, which has its origins in social science and
psychology, has taken on a different lay meaning which prompts us to avoid its use here.
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Social Survey (GSS), a large-scale survey conducted every year in the United
States starting in 1972 and every two years since 1994 [88]. The GSS is not
primarily a social network study. The purpose of the study is to gather data
about life in the United States, how it is changing, and how it differs from
or relates to life in other societies. The GSS questionnaire contains a large
numberofparts, ranging fromgeneral questionsprobing thedemographics and
attitudes of the participants to specific questions about recent events, political
topics, or quality of life. Among these many items, however, there are in each
iteration of the survey a few questions about social networks. The precise
number and wording of these questions changes from one year to another, but
here are some examples from the survey of 1998, which was fairly typical:

From time to time, most people discuss important matters with other
people. Looking back over the last six months, who are the people
with whom you discussed matters important to you? Do you feel
equally close to all these people?

Thinking nowof close friends—not your husbandorwife or partner or
family members, but people you feel fairly close to—how many close
friends would you say you have? How many of these close friends
are people you work with now? How many of these close friends are
your neighbors now?

By their nature these questions are of a “free choice” type, the number of friends
or acquaintances the respondent can name being unlimited, although (and this
is a criticism that has been leveled at the survey) they are also quite vague in
their definition of friends and acquaintances, so people may give answers of
widely varying kinds.

Another example of an ego-centered network study is the study by Bernard
et al. [54, 55, 261, 326] of the degree of individuals in acquaintance networks
(i.e., the number of people that people know). It is quite difficult to estimate
how many people a person knows because most people cannot recall at will
all those with whom they are acquainted and there is besides a lot of variation
in people’s subjective definition of “knowing.” Bernard and co-workers cameSome care must be taken

to match the selection of
names to the community
surveyed, since the fre-
quency of occurrence of
names shows considerable
geographic and cultural
variation.

upwith an elegant experimental technique for circumventing these difficulties.
They asked study participants to read through a list of several hundred family
names drawn at random from a telephone directory, and to count up how
many people they knew with names appearing on the list. Each person with
a listed name was counted separately, so that two acquaintances called Smith
would count as two people. They were instructed to use the following precise
definition of acquaintance:
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You know the person and they know you by sight or by name; you
can contact them in person by telephone or bymail; and you have had
contact with the person in the past two years.

(Of course, many other definitions are possible. By varying the definition, one
couldprobedifferent social networks.) Bernard and co-workers thenmultiplied
the counts reported by participants by a scaling factor to estimate the total
number of acquaintances of each participant. For instance, if the random
names used in the study accounted for 1% of the population, then one would
multiply by 100 to estimate the total number of acquaintances.

Bernard and co-workers repeated their study with populations drawn from
several different US cities and the results varied somewhat from city to city,
but overall they found that the typical number of acquaintances, in the sense
defined above, of the average person in the United States is about 2000. In the
city of Jacksonville, Florida, for instance, they found a figure of 1700, while in
Orange County, California they found a figure of 2025. Many people find these
numbers surprisingly high upon first encountering them, perhaps precisely
because we are poor at recalling all of the many people we know. But repeated
studies have confirmed figures of the same order of magnitude, at least in the
United States. In some other countries the figures are different. Bernard and
co-workers repeated their study in Mexico City, for instance, and found that
the average person there knows about 570 others.

4.3 Direct observation
An obviousmethod for constructing social networks is direct observation. Sim-
ply bywatching interactions between individuals one can, over a period of time,
form a picture of the networks of unseen ties that exist between those individ-
uals. Most of us, for instance, will be at least somewhat aware of friendships
or enmities that exist between our friends or co-workers. In direct observa-
tion studies, researchers attempt to develop similar insights about whatever
population they are interested in.

Direct observation tends to be a labor-intensive method of study, so its
use is usually restricted to small groups, and primarily ones with extensive
face-to-face interactions in public settings. In Chapter 1 we saw one example,
the “karate club” network of Zachary [479] (see Fig. 1.2 on page 5). Another
is the study by Freeman et al. [193, 194] of the social interactions of a group
of windsurfers, in which experimenters watched windsurfers on a beach in
OrangeCounty, California and recorded the length inminutes of everypairwise
interaction among them. A large number of direct-observation network data
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sets were compiled by Bernard and co-workers during the 1970s and 1980s
as part of a lengthy study of the accuracy of individuals’ perception of their
own social situation [56, 58, 59, 259]. These included data sets on interactions
among students, faculty, and staff in a university department, on members of
a university fraternity,5 on users of a teletype service for the deaf, and several
other examples.

One arena in which direct observation is essentially the only viable exper-
imental technique is studies of the social networks of animals, since clearly
animals cannot be surveyed using interviews or questionnaires. Not all animal
species form interesting social networks, but informative studies have been
performed of, among others, monkeys [180,418,419], kangaroos [214], and dol-
phins [121, 315]. A common approach is to record instances of animal pairs
engaging in recognizable social behaviors such as mutual grooming, courting,
or close association, and then to declare ties to exist between the pairs that
engage in these behaviors most often. Networks in which the ties represent ag-
gressive behaviors have also been reported, such as networks of baboons [328],
bison [310], deer [27], wolves [249, 455], and ants [116]. In cases where aggres-
sive behaviors normally result in one animal’s establishing dominance over
another the resulting networks can be regarded as directed and are sometimes
called dominance hierarchies [136, 137, 150].

4.4 Data from archival or third-party records
An increasingly important, voluminous, and often highly reliable source of
social network data is archival records. Such records are, at least sometimes,
relatively free from the vagaries of human memory and can be impressive
in their scale, allowing us to construct networks of a size that would be un-
reachable by other methods. Archival records can also allow us to reconstruct
networks that no longer exist, such as networks from the historical past.

A well-known, small-scale example of a study based on archival records
is the work of Padgett and Ansell on the ruling families of Florence in the
fifteenth century [377]. In this study the investigators looked at contemporane-
ous historical records to determine which among the Florentine families had
trade relations, marriage ties, or other forms of social contact with one another.
Figure 4.3 shows one of the resulting networks, a network of intermarriages
between 15 of the families. It is notable that theMedici family occupies a central

5In American universities a “fraternity” is a combined social organization and boarding house
for male students.
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position in this network, having marriage ties with members of no fewer than
six other families, and Padgett and Ansell conjectured that it was by shrewd
manipulation of social ties such as these that the Medici rose to a position of
dominance in Florentine society.

Acciaiuoli

Medici

Albizzi Ginori

Guadagni

Barbadori

Castellani

Bischeri
Peruzzi

Strozzi

Lamberteschi

Tornabuoni
Ridolfi

Salviati

Pazzi

Figure 4.3: Intermarriage network of the ruling families
of Florence in the fifteen century. In this network the
nodes represent families and the edges represent ties of
marriage between them. After Padgett and Ansell [377].

In recent years, researchers have used archival
records to construct a wide variety of different net-
works, some of them very large. A number of
authors, for example, have looked at email net-
works [156, 277, 450]. Drawing on email logs—
automatic records kept by email servers of mes-
sages sent and received—it is possible to construct
networks in which the nodes are people (or more
correctly email addresses) and the directed edges
between them are email messages. Exchange of
email in such a network can be taken as a proxy
for acquaintance between individuals, or wemay be
interested in patterns of email exchange for some
other reason, such as understanding how informa-
tion spreads through a community. Similar net-
works can also be constructed from patterns of
text messaging or instant messaging using mobile
phones [374,439].

A network similar in some ways the email net-
work is the telephone call graph, in which the nodes
represent telephone numbers and directed edges
between them represent telephone calls from one
number to another. Call graphs can be constructed
from call logs kept by telephone companies, and a
number of studies have been performed in recent
years, including some at the largest scales, with a million or more phone num-
bers [1,10,64,233,375,401]. Studies of mobile phones have attracted particular Telephone call graphs are

quite distinct from the
physical network of tele-
phone cables discussed in
Section 2.2 and the two
should not be confused. In-
deed, a call graph is to the
physical telephone network
roughly as an email net-
work is to the Internet.

attention because mobile phone data can reveal not only who calls whom but
also potentially the geographic location of the phone users, providing a rare
opportunity to construct networkswith both detailed contact patterns and high
spatial resolution [285, 374, 439]. Mobile phone data have also played a role in
studies of face-to-face social interaction: if two phones are recorded as being in
the same location at the same time one can perhaps conclude that their owners
had face-to-face contact, and a number of studies have been conducted using
assumptions of this kind [91,154,155,439].

Email networks and telephone call graphs have another feature of partic-
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ular interest: they are time-resolved—the date and time of each interaction is
in principle known, allowing us to reconstruct after the fact the timing and
duration of contacts between individuals if we have access to the appropriate
data. Most of the sources of network data considered in this book are not time-
resolved, but many networks do nonetheless change over time. Time-varyingIn sociology, studies of

time-varying networks are
sometimes called longitudi-
nal studies, and you may
occasionally encounter this
term in the literature.

networks have been the focus of increasing research attention in recent years.
We discuss them further in Section 6.7.

Recent years have also seen the rapid emergence of online social network-
ing services, such as Facebook and LinkedIn, which, as a natural part of their
operation, build records of connections between their participants and hence
provide a rich source of archival network data. Some, such as Twitter, have
made their data (or a part of it) publicly available, allowing researchers to study
the corresponding networks [141, 208, 212]. Others are not publicly available
but the companies involved have in some cases published analyses of their own
networks, with some, such as Facebook, operating substantial internal research
departments or inviting academic researchers to collaborate [28, 74, 278, 452].
Some online communities are not explicitly oriented towards networks or net-
working but can be studied using network techniques nonetheless. A number
of researchers have looked, for instance, at networks of interactions between
users of online dating sites [238,297].

Weblogs, online diaries and journals, and other kinds of personal websites
are another source of online social network data, although their popularity has
waned somewhat in recent years. On these sites an individual or sometimes a
group of people post their thoughts on topics of interest, often accompanied by
links to other sites, and the sites and links form a directed network that lies, in
terms of semantic content, somewhere between a social network and theWorld
Wide Web: the links are often informational—the linker wishes to bring to his
or her readers’ attention the contents of the linked site—but there is a strong
social element as well, since people often link to sites operated by their friends
or acquaintances. The structure of the networks of links can be extracted using
crawlers similar to those used to search the Web—see Section 3.1. Studies
of weblogs and journals have been performed, for example, by Adamic and
Glance [4] and MacKinnon and Warren [317].

4.5 Affiliation networks
An important special case of network data from archival records is the affiliation
network. An affiliation network is a network in which actors are connected via
their membership in groups of some kind. We saw one example at the start of
this chapter, the Southern Women Study of Davis et al. [129], in which women
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were connected via their common attendance at social events: the groups in
that case were the attendees of the events. As we saw, the most complete
representation of an affiliation network is a network with two types of nodes
representing the actors and the groups, with edges connecting actors to the
groups to which they belong—see Fig. 4.2 on page 50. In such a representation, We study bipartite net-

works in more detail in Sec-
tion 6.6.

called a “bipartite network” or “two-mode network,” there are no edges con-
necting actors directly to other actors or groups to other groups, only actors to
groups.

Many examples of affiliation networks can be found in the literature. A
famous case is the study by Galaskiewicz [197] of the CEOs of companies in
Chicago in the 1970s and their social interactionvia clubs that theyattended: the
CEOs are the actors and the clubs are the groups. Also in the business domain,
a number of studies have been conducted of the networks formed by the boards
of directors of companies [130,131,318], where the actors are company directors
and the groups are the boards on which they sit. In addition to looking at the
connections between directors in such networks, which arise as a result of their
sitting on boards together, attention has also been focused on the connections
between boards (and hence between companies) that arise as a result of their
sharing a common director, a so-called board “interlock.”

More recently, some extremely large affiliation networks have been studied
in the mathematics and physics literature. Perhaps the best known example
is the network of collaboration of film actors, in which the “actors” in the
network sense are actors in the dramatic sense also, and the groups to which
they belong are the casts of films. This network is the basis, among other
things, for a well-known parlor game, sometimes called the “Six Degrees of
Kevin Bacon,” in which one attempts to connect pairs of actors via chains of
intermediate costars, in a manner reminiscent of the small-world experiments
of StanleyMilgramwhichwe discuss in Section 4.6. The film actor network has,
with the advent of the Internet, become very thoroughly documented and has
attracted the attention of network analysts in recent years [20,40,466], although
it is not clear whether there are any conclusions of real scientific interest to be
drawn from its study.

Another example of a large affiliation network, one that holdsmore promise
of providing useful results, is the coauthorship network of academics. In this
network the actors are academic authors and the groups are the sets of authors
of learnedpapers. Like thefilmactor network, this network iswell documented,
for instance via online bibliographic databases of published papers. Whether
one is interested in papers published in journals or in more informal forums
such as online preprint servers, excellent records now exist in most academic
fields of authors and the papers they write, and a number of studies of the
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corresponding affiliation networks have been published [43, 133, 196, 218, 219,
241,347–349,460].

4.6 The small-world experiment
A memorable and illuminating contribution to the social networks literature
was made by the psychologist Stanley Milgram in the 1960s with his now-
famous “small-world” experiments [333,447]. Milgramwas interested in quan-
tifying the typical distance between actors in social networks. As discussed in
Chapter 1, one can define the distance between two nodes in a network as the
number of edges that must be traversed to go from one node to the other. There
are mathematical arguments that suggest that this distance should be small for
most pairs of nodes in most networks (see Section 11.7), a fact that was already
well known in Milgram’s time.6 Milgram wanted to test this conjecture under
real-world conditions and to do this he concocted the following experiment.

Milgram sent a set of packages, 96 in all, to volunteer participants in the USMilgram conducted several
sets of small-world experi-
ments. The one described
here is the first and most
famous, but there were
others—see Refs. [275,447].

town of Omaha, Nebraska, whowere recruited via a newspaper advertisement.
The packages contained an official-looking booklet, or “passport,” emblazoned
in gold letters with the name of Milgram’s home institution, Harvard Univer-
sity, plus a set of written instructions. The instructions asked the participants to
get the passport to a specified target individual, a friend ofMilgram’swho lived
in Boston, Massachusetts, over a thousand miles away. The only information
supplied about the target was his name (and hence indirectly the fact that he
was male), his address, and his occupation as a stockbroker. But the passport
holders were not allowed simply to send their passport to the given address.
Instead they were asked to send it to someone they knew on a first-name basis,
more specifically to the person in this category who they felt would stand the
best chance of getting the passport to the intended target. Thus they might
decide to send it to someone they knew who lived in Massachusetts, or maybe
someone who worked in the financial industry. The choice was up to them.
Whoever they did send the passport to was then to repeat the process, sending
it to one of their acquaintances, and so forth, so that after a succession of steps
the passport would, with luck, find its way into the hands of its intended recip-
ient. Since every step of the process corresponded to the passport’s changing
hands between a pair of first-name acquaintances, the entire journey consti-

6Milgram was particularly influenced in his work by a mathematical paper by Pool and
Kochen [389] that dealt with the small-world phenomenon and had circulated in preprint form in
the social science community for some years when Milgram started thinking about the problem,
although the paper was not officially published until some years later.
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tuted a path along the edges of the social network formed by the set of all such
acquaintanceships, and the length of the journey provided an upper bound on
the distance through this network between the starting and ending individuals
in the chain.

Of the 96 passports sent out, 18 found their way to the stockbroker target
in Boston. (While this may at first sound like a low figure, it is actually quite
high—recent attempts to repeatMilgram’swork have resulted in response rates
orders of magnitude lower [142].) Milgram asked participants to record in the
passport each step of the path taken, so he knew how long each path was, and
he found that the mean length of completed paths from Omaha to the target in
Boston was just 5.9 steps. This result is the origin of the idea of the “six degrees The phrase “six degrees

of separation” did not ap-
pear in Milgram’s writ-
ing. It is more recent and
comes from the title of a
successful Broadway play
by John Guare [221], later
made into a film, in which
the lead character discusses
Milgram’s work.

of separation,” the popular belief that there are only about six steps between
any two people in the world.

For a number of reasons this result is probably not very accurate. The initial
recipients in the study were not chosen at random—they were volunteers who
answered an advertisement—so they may not have been typical members of
the population. At the very least, all of them were in a single town in a single
country, which calls into question the extent to which the results of the study
apply to the population of theworld as awhole, or even to the population of the
United States. Furthermore, Milgram used only a single target in Boston, and
there is no guarantee this target was typical of the population either. Also we
don’t know that chains took the shortest possible route to the target. Probably
they did not, at least in some cases, so the lengths of the chains provide only
an upper bound on the actual distance between nodes. Moreover, most of the
chainswere never completed. Many passportswere discarded or lost and never
made their way to the target. It is reasonable to suppose that the chances of
getting lost were greater for passports that took longer paths, and hence that
the paths that were completed were a biased sample, having typical lengths
shorter than the average.

For all of these reasonsMilgram’s results should be takenwith a large pinch
of salt. Even so, the fundamental conclusion that node pairs in social networks
tend on average to be connected by short paths is now widely accepted. It has
been confirmed directly in many cases, including for some very large social
networks such as the entire network of Facebook friendships [452], and has
moreover been shown to extend to many other (non-social) kinds of networks
aswell. Enough experiments have observed this “small-world effect” in enough
networks that, whatever misgivings we may have about Milgram’s particular
technique, the general result is not seriously called into question.

Milgram’s experiments also, as a bonus, revealed some other interesting
features of acquaintance networks. For instance, Milgram found that most of
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the passports that did find their way to the stockbroker target did so via just
three of the target’s friends. That is, a large fraction of the target’s connec-
tions to the outside world seemed to be through only a few of his acquain-
tances, a phenomenon sometimes referred to as “funneling.” Milgram called
such well-connected acquaintances “sociometric superstars,” and their exis-
tence has occasionally been noted in other networks also, such as collaboration
networks [347], although not in some others [142].

A further interesting corollary of Milgram’s experiment, never mentioned
by Milgram himself, was highlighted many years later by Kleinberg [266, 267]:
the fact that a moderate number of passports did find their way to the intended
target person shows not only that short paths exist in the acquaintance network,
but also that people are good at finding those paths. Upon reflection this is
quite a surprising result. As Kleinberg has shown, it is possible and indeed
common for a network to possess short paths between nodes but for them to
be hard to find unless one has complete information about the structure of the
entire network, which the participants in Milgram’s studies did not. Kleinberg
has conjectured that the network of acquaintances needs to have a special type
of structure for the participants to find the paths they did with only limited
knowledge of the network. We discuss his ideas in detail in Section 18.3.

Recently the small-world experiment has been repeated byDodds et al. [142]
using the modern medium of email. In this version of the experiment partici-
pants forwarded email messages to their acquaintances in an effort to get them
to a specified target person about whom they were told a few basic facts. The
experiment improved on Milgram’s in terms of sheer volume, and also by hav-
ing much more numerous and diverse target individuals and starting points
for messages: 24 000 chains were started, most (though not all) with unique
starting individuals, and with 18 different participating targets in 13 different
countries. On the other hand, the experiment experienced enormously lower
rates of participation than Milgram’s, perhaps because the public is by now
quite jaded in its attitude towards unsolicited mail. Of the 24 000 chains, only
384, or 1.5%, reached their intended targets, compared with 19% in Milgram’s
case. Still, the basic results were similar to those ofMilgram. Completed chains
had an average length of just over four steps. Because of their better data and
more careful statistical analysis, Dodds et al. were also able to compensate
for biases due to unfinished chains and estimated that the true average path
length for the experiment was somewhere between five and seven steps—very
similar to Milgram’s result. However, Dodds et al. observed no equivalent of
the “sociometric superstars” of Milgram’s experiment, raising the question of
whether their appearance in Milgram’s case was a fluke of the particular target
individual he chose rather than a generic property of social networks.
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An interesting variant on the small-world experiment has been proposed by
Killworth and Bernard [57,260], whowere interested in how people “navigate”
through social networks, and specifically how participants in the small-world
experiments decided whom to forward messages to in the effort to reach the
specified target. They conductedwhat they called “reverse small-world” exper-
iments7 in which they asked participants to imagine that they were taking part
in a small-world experiment. A (fictitious) messagewas to be communicated to The mechanisms of net-

work search and mes-
sage passing are discussed
in greater detail in Sec-
tion 18.3.

a target individual and participants were asked what they would like to know
about the target in order to decide whom to forward themessage to. The actual
passing of the message never took place; the experimenters merely recorded
what questions participants asked about the target. They found that three char-
acteristicswere sought overwhelminglymore often than any others, namely the
name of the target, their geographic location, and their occupation—the same
three pieces of information that Milgram provided in his original experiment.
Someother characteristics cameupwithmoderate frequency, particularlywhen
the experiment was conducted in non-Western cultures or among minorities:
in some cultures, for instance, parentage or religionwere considered important
identifying characteristics of the target.

While the reverse small-world experiments do not directly tell us about the
structure of social networks, they do give us information about how people
perceive and deal with social networks.

4.7 Snowball sampling, contact tracing, and random walks
Finally in this chapter on social networks we take a look at a class of network-
based techniques for sampling hidden populations.

Studies of some populations, such as drug users or illegal immigrants,
present special problems to the investigator because the members of these
populations do not usually want to be found and are often wary of giving
interviews. Techniques have been developed, however, for sampling these
populations by making use of the social networks that connect their members
together. The most widely used such technique is snowball sampling [162, 188,
445].

Note that, unlike the other experimental techniques discussed in this chap-
ter, snowball sampling is not intended as a technique for probing the structure
of social networks. Rather, it is a technique for studying hidden populations

7Also sometimes called INDEX experiments, which is an abbreviation for “informant-defined
experiment.”
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that relies on social networks for its operation. It is important to keep this dis-
tinction clear. To judge by the literature, some professional network scientists
do not, a mistake that can result in erroneous conclusions and bad science.

Standard techniques such as telephone surveys often do notworkwellwhen
sampling hidden populations. An investigator calling a random telephone
number and asking if anyone on the other end of the line uses drugs is unlikely
to receive a useful answer. The target population in such cases is small, so the
chances of finding one of its members by random search are slim, and when
you do find one theywill very likely be unwilling to discuss the highly personal
and possibly illicit topic of the survey with an investigator they have never met
before and have no reason to trust.

So investigators probe the population instead by getting some of its mem-
bers to provide contact details for others. The typical survey starts off rather
like a standard ego-centered network study (see Section 4.2.1). You find one
initial member of the population of interest and interview them about them-
selves. Then, upon gaining their confidence, you invite them also to name
other members of the target population with whom they are acquainted. Then
you go and find those acquaintances and interview them in turn, asking them
also to name further contacts, and so forth through a succession of “waves” of
sampling. Pretty soon the process “snowballs” and you have a large sample of
your target population to work with.

Clearly this is a better way of finding a hidden population than random sur-
veys, since each named individual is likely to be a member of the population,
and you also have the advantage of an introduction to them from one of their
acquaintances, which may make it more likely that they will talk to you. How-
ever, there are some serious problems with the method as well. In particular,
snowball sampling gives highly biased samples. In the limit of a large number
of waves, snowball sampling samples actors non-uniformly with probability
proportional to their “eigenvector centrality” (see Section 7.1.2). In principle,
knowing this, one could compensate for the non-uniformity by appropriately
weighting the results, but in practice the limit of large number ofwaves is rarely
reached, and in any case the eigenvector centrality cannot be calculatedwithout
knowledge of the complete contact network, which by definitionwe don’t have,
making correct weighting impossible. In short, snowball sampling gives biased
samples of populations and there is little we can do about it. Nonetheless, the
technique is sufficiently useful for finding populations that are otherwise hard
to pin down that it has been widely used, biases and all, in studies over the
past few decades.

Sometimes, in the case of small target populations, a fewwaves of snowball
sampling may find essentially all members of a local population, in which case
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the method can be regarded as returning data about the structure of the social
network. If the contacts of each interviewed participant are recorded in the
study, it should be possible to reconstruct the contact network when the study
is complete. This has occasionally been done, although as noted above, the
object is more often to exploit the social network to find the population than to
study the network itself.

A technique closely related to snowball sampling is contact tracing, which
is essentially a form of snowball sampling applied to disease incidence. Some
diseases, such as tuberculosis and HIV, are considered in many countries to
be sufficiently serious that, when someone is discovered to be carrying them,
an effort must be made to track down all those who might also have been
infected. Thus, when a patient tests positive for HIV, for instance, he or she will
be questioned about recent sexual contacts, and possibly about other types of
potentially disease-causing contacts, such as needle sharing if the patient is an
injection drug user. Then health authorities will make an effort to track down
the people so identified and test them for HIV also. The process is repeated
with any who test positive, tracing their contacts as well, and so forth, until
all leads have been exhausted. While the primary purpose of contact tracing
is to curtail disease outbreaks and safeguard the health of the population,
the process also produces data about the network through which a disease
is spreading and such data have sometimes been used in scientific studies,
particularly of sexually transmitted diseases, for which data may otherwise be
hard to come by. Data from contact tracing studies display biases similar in
type and magnitude to those seen in snowball sampling and should be treated
with the same caution. Indeed, they may contain extra biases as well, since
contacts are rarely pursued when an individual tests negative for the disease
in question, so the sample is necessarily dominated by carriers of the disease,
who are themselves usually a biased sample of the population at large.

There is another variant of snowball sampling that deals to some extentwith
the problems of bias in the sample. This is random-walk sampling [270, 445]. In
thismethod one again starts with a singlemember of the target community and
interviews them to determine their contacts. Then, however, instead of tracking
down all of those contacts, one chooses one of them at random and interviews
only that one at the next step. If the person in question cannot be found or
declines to be interviewed, one chooses another contact, and the process is
repeated. Initially it appears that this will be a more laborious process than
standard snowball sampling, since one spends a lot of time determining the
names of individuals one never interviews, but this is not the case. In either
method one has to determine the contacts of each person interviewed, so the
total amount ofwork for a sample of a given size is the same. It is, however, very
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