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Foreword

Sustainable energy transitions involve the shift of resources between compet-
ing industrial sectors and political constituencies. Stakeholders in this process
have varying degrees of political and economic power, and understanding how
political economic factors influence clean energy transitions is crucial to
effective policy formulation and facilitating transitions to sustainable energy
systems. In partnership with the Joint Institute for Strategic Energy Analysis
(JISEA), UNU-WIDER gathered together a substantial group of experts from
around the world—from both developed and developing countries—to launch
a multidisciplinary research project seeking to contribute to our enhanced
understanding of these factors. The project sought to facilitate an energy
transition that will generate very large environmental and economic benefits,
particularly over the long run. The beneficiaries of clean energy transitions are
highly diffuse and include future generations not yet born.
This book is the distilled essence of the cross-cutting academic project.

I express my sincere and professional appreciation to the large group of expert
authors for their dedication to the project, and to my fellow editors in helping
bring together the book for readers to enjoy and absorb along with the findings
and policy implications.

Finn Tarp
Helsinki, January 2017
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1

Introduction and Synthesis

Douglas Arent, Channing Arndt, Mackay Miller,
Finn Tarp, and Owen Zinaman

1.1 MOTIVATION

Climate change is frequently referred to as one of the defining challenges of
the twenty-first century. We concur. In broad terms, the climate challenge is
relatively straightforward. Global average temperatures are rising as a conse-
quence of anthropogenic emissions of greenhouse gases. In the absence of
deliberate and global action to first substantially reduce and then eliminate (or
even turn net negative) greenhouse gas (GHG) emissions, global temperature
rise within this century is very likely to surpass two degrees Celsius (IPCC
2014), which is the (somewhat arbitrary) threshold set by the international
community as a tolerable level of warming.1 Continuation of current levels of
emissions or (worse) continued growth in emissions throughout the twenty-
first century could result in warming far above the two-degree threshold with
very bad implications for the environment of the planet and for human
societies, particularly poor people.
These observations constitute the core arguments for serious efforts to reduce

emissions, called mitigation policy, at the global level. A principal element to
mitigation policy relates to energy use. Specifically, energy use must transition
from technologies that emit substantial volumes of GHGs to technologies
with limited or zero emissions. A ‘clean energy transition’ refers broadly to a
substitution of technologies and associated fuel inputs across the full set of energy
subsectors and consumers of energy, both as intermediates and final goods.
This is the ‘clean energy transition’ referred to in the title of this book.

1 A more ambitious 1.5-degree target has been set forth in recent negotiations arguing
that it is ‘a significantly safer defense line against the worst impacts of a changing climate’
(UNFCCC 2015).



While the broad contours of the climate challenge, of which the mitigation
challenge is a subset, are well understood, the specificities of almost all aspects
of the climate challenge are deeply complex. Enormous efforts have been
dedicated to the science of global change (IPCC 2014, 2013). While much
remains to be learned, climate science provides solid foundations to the core
arguments for serious efforts to reduce emissions. The technical challenge of
inventing low emissions energy technology has been absorbing the attention
of some of the world’s top scientists and engineers for decades and has become
increasingly commercial over the past decade. Further, a new wave of prom-
ising technologies is forming.

But, in the end, a solid foundation for action derived from climate science
combined with an array of promising technologies for reducing emissions are
not likely to be enough to catalyse a clean energy transition. A key phrase in
the very first paragraph of this introductory chapter is ‘deliberate and global
action’. A clean energy transition is highly unlikely to occur on its own.
Policies must be put in place that will foment a clean energy transition, and
these policies must be effective globally (as opposed to just shifting emissions
from one region to another). The challenge, perhaps the largest of them all, is
implementing policies and programmes that actually achieve the necessary
global emissions reductions. Here, political economy considerations take a
leading role. These perspectives motivate our focus on the political economy
of clean energy transitions.

1 .2 A NEW ERA

For the purposes of avoiding the potentially execrable outcomes associated
with climate change referred to in Section 1.1, a long series of global agree-
ments and meetings have taken place under the auspices of the United
Nations. In the jargon that sprouts from such efforts, the first conference of
the parties (CoP1) to the United Nations Framework Convention on Climate
Change (UNFCCC) took place in 1995 in Berlin. Through the twentieth
meeting (CoP20) in 2014 in Lima, relatively little was accomplished in terms
of actually changing the trajectory of the global emissions of GHGs that drive
climate change. CoP21 in Paris in late 2015 represents a potential break-
through that ushers in a new era for climate mitigation.

The successful conclusion of CoP21 reflects three features of the current
landscape that differ significantly from previous major attempts to set the
planet on a more desirable GHG emissions trajectory. The most recent major
attempt, prior to CoP21, occurred at CoP15 in 2009 in Copenhagen. First,
CoP21 represented the culmination of a shift in the negotiation framework.
At CoP15, the negotiations retained more of a ‘top-down’ approach wherein,
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essentially, a global emissions trajectory was determined and negotiators
sought to parse country-level responsibilities for achieving this path.2

In contrast, CoP21 in Paris employed a ‘bottom-up’ offer system, wherein
individual countries propose what they perceive to be achievable and fair
emissions trajectories for their particular circumstances. These offers are
formally called Intended Nationally Determined Contributions (INDCs).
In this new negotiating framework, the resulting projected global emissions
trajectory is the sum of individual country INDCs.
Second, the rapid pace of technological advances in renewable energy tech-

nologies and systems, even if one considers just the past six years, is in the
process of influencing the political economy of clean energy transitions (USDOE
2015). Historically, governments aiming to take deliberate action to correct the
colossal market failure of GHG emissions have suffered from a ‘chicken and egg’
problem. Specifically, many technologies that offered long-run potential to
support a clean energy transition were also small-scale, immature, and relatively
high-cost. As a result, they were largely unattractive to private investors. While
these factors provide a solid economic rationale for government support, the
politics of supporting small-scale, immature, and relatively high-cost technolo-
gies are nonetheless difficult. Difficult politics inevitably constrains the ambition
of policies that are crucial for technology development.
In sum, a circle exists wherein politics drives policy, policy drives technol-

ogy, and the state of technology circles back to influence politics. Today, from
the perspective of advancing clean energy technologies, this circle shows
evidence of becoming virtuous as opposed to vicious. Since 2008, the year
before CoP15 notably failed to produce a move towards effective global
mitigation, the global solar module price index has fallen by a factor of nearly
four, a rate of technical advance vastly more rapid than nearly all predictions
(Feldman et al. 2014). Declines in the cost of wind power—while not as
dramatic—have been rapid by any common standard (Moné et al. 2015).
These advances both spur private investment and generally ease the politics
of supporting clean energy transitions. Investments in energy production have
reflected these shifts. In 2014, for the first time in history, the amount of new
renewable generation capacity surpassed that of new fossil fuel-based systems
on a global basis (Sawin et al. 2015). This trend continued in 2015 with new
renewable capacity outstripping fossil fuels again (Frankfurt School-UNEP
Centre/BNEF 2016).
Third, the developing world confronts climate change issues with a far

deeper and more sophisticated knowledge base than in 2009 (Arndt and
Tarp 2015). In Copenhagen at CoP15, the critical role that developing coun-
tries must play in any effective global mitigation regime had become clear

2 CoP15 also arguably seeded the approach taken in Paris at CoP21 through the discussions of
nationally appropriate mitigation actions (NAMA).
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simply as a matter of arithmetic. Yet, the complex implications of climate
change impacts, adaptation policies, and mitigation policies had really only
begun to penetrate the major decision-making apparatuses of develop-
ing countries. For instance, the World Bank’s Economics of Adaptation to
Climate Change study, which was meant to serve as a critical input to develop-
ing countries for CoP15 in 2009, was only published in 2010, after the
Copenhagen CoP meeting had ended. In our experience at the time around
CoP15, work on climate change issues, particularly when one spoke to
personnel from the critical central finance and planning units in developing
countries, frequently amounted to delivering primers on climate change and
energy transition policy basics. The process of internalizing the information
and assessing appropriate policy responses had only just begun.

It would be an overstatement to say today that climate change information
has been fully internalized and appropriate policies assessed in developing
countries. Nevertheless, the process of doing so is much more advanced than it
was in 2009. In country after country, the central decision-making units have
engaged. This is critical. The profound economic transformations inherent in
a clean energy transition will need to be fully integrated into economic
decision-making. The contributions from developing countries in this book
are evidence of this increasingly sophisticated and nuanced view of the climate
challenge. The more than 160 INDCs on the UNFCCC website are perhaps the
most salient evidence.

India and China are cases in point. In 2009, it is fair to say that India’s
negotiation strategy aimed to position climate change as a developed country
problem. In contrast, India’s INDC offers serious attempts to reduce the
carbon intensity of its GDP. China has gone further, offering to peak emis-
sions by 2030 with declines thereafter. Taken as a whole, the INDCs presented
at CoP21 represent a decisive break from past emissions trends. Recent analysis
of the INDCs by the International Energy Agency (2015) indicates that nearly
every country will have a strong focus on emissions mitigation, driving clean
energy to more than 50 per cent of world energy by 2040. The scope and
ambition of these offers stem from long and often difficult processes of
internalization and policy option assessment that has taken place within
both developed and developing countries.

These three shifts now combine to place country decision-making and
country policies at centre stage. Like it or not, there is no current prospect
for a unified global policy, such as a global carbon tax or cap-and-trade
scheme, to which all nations agree to adhere. Rather, nearly all countries on
the globe will set about to achieve their contributions in their own ways, and
their means for achieving these ends will vary enormously. For example, the
United States, a leading advocate in international fora for reliance on markets,
looks set to pursue a domestic policy of regulatory edict. China, the paragon of
the developmental state, announced intention for a nationwide cap-and-trade
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system in September 2015. Overall, the range of policies pursued, and hence
the degree of policy experimentation, looks virtually certain to be very large.3

Before proceeding, the technology drivers mentioned in this section merit a
closer examination.

1 .3 TECHNOLOGY DRIVERS

In controversies about technology and society, there is no idea more
provocative than the notion that technical things have political qualities
(Langdon Winner 1980).

The rate of technological advancement in the renewable energy space has been
notably rapid. Established institutions, once isolated from rapid change, are
now presented with a dynamic landscape of pathways for simultaneously
achieving decarbonization goals and sustainable development objectives.
With affordable low-carbon energy readily available or imminent in most
contexts, institutional innovation is arising—out of necessity—across public
policy, finance, business models, markets, planning, and other dimensions to
promote deployment. These innovations—and the technical and political
qualities they possess—are interacting with a range of incumbent actors and
interests, and influencing the political economy of the clean energy transitions.
Thus, a brief assessment of technology drivers is worthwhile.
The growing cost-competitiveness and advanced capabilities of renewable

energy technologies, predominantly wind and solar, is a key pillar of clean
energy innovation and technological advancement. We observe, in many
contexts, the price of a newly constructed wind farm or solar plant is now at
or below the cost of competing fossil fuel alternatives, even without consid-
ering the fuel price variability or environmental or health impacts (Stark
et al. 2015). With their geographically diverse and variable nature, these
resources are reshaping, in particular, how power systems are planned,
operated, governed, and even conceptualized (Miller et al. 2015). Furthermore,
the modularity of solar panels enables a viable alternative to the traditional
provider–customer relationship, quite literally empowering consumers through
technology, regulation, and business model innovation to create their own
energy.
The qualities of clean energy technologies also have implications for energy

security in both developed and developing country contexts. Renewable tech-
nologies offer the prospect of reducing dependence on fuel imports. Energy

3 Backsliding in policies to achieve a clean energy transition is also a clear possibility in
numerous countries.
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trade between countries may or may not decline, however. There are portfolio
effect gains from renewable energy generation over broad areas driven by the
simple observation that it is likely to be windy and/or sunny somewhere
(Keane et al. 2011). In addition, hydropower resources are often concentrated
in a few locations. Both of these factors point to increased regional energy
trade as a potential corollary to increased dependence on renewable energy
sources. As a result, energy security under a renewable energy future may take
on a much more regional hue (see Part VIII).

At the same time, the inherent dispersion of wind and solar resources,
combined with new technologies and business models, present increasingly
attractive pathways to expanding energy access from the bottom up,
potentially leapfrogging the need for some of the cumbersome and
difficult-to-finance infrastructure investments associated with traditional
power systems. As will be discussed in Section 1.4, this dispersed nature of
renewable energy may be particularly relevant for rural zones and smaller
concentrations of demand located a distance from functional grids. Advances
in data systems, communication technologies, and energy storage costs are
accelerating decentralization and heterogeneity of the energy sector (Zinaman
et al. 2015).

While technology is a fundamental driver, it has become increasingly clear
that the availability of technology is not in itself sufficient to accelerate a
clean energy transition; innovative and nationally-customized deployment
strategies—hinging on public policy and regulation, market reforms, private
sector engagement, and strong analytical tools and data—remain important
factors.

More often than not, regulation and governance lag behind technology
innovation, compelling forms of institutional innovation in order to play
catch up. Ongoing innovations in energy systems often require either adapta-
tions of established regulatory constructs to accommodate new technologies
(a form of incremental change) or broad-based reform of the regulatory
constructs themselves (perhaps via more reconstructive or evolutionary
approaches) (see, for example, Zinaman et al. 2015). Across all contexts,
addressing the techno-institutional complex perpetuating carbon-intensive
systems—termed by some as ‘carbon lock-in’ (see, for example, Unruh 2000)—
is a common theme.

Technology is highly likely to remain one of the key driving factors
influencing climate commitments and energy-related development goals,
both in terms of goal-setting and implementation. What is technically
possible and economically attractive today vis-à-vis decarbonization and
sustainable development is much greater than it was during (for example)
the Kyoto Protocol era. Continued rapid rates of technical advance are
expected. In order to seize the opportunities offered by this technical
advance, equally innovative approaches to regulation and policy are likely
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to be required. This highlights the inherent political economic factors to be
considered, as various pathways are weighed and implementation efforts
are mounted.

1 .4 CHALLENGES IN DEVELOPING VERSUS
DEVELOPED ECONOMIES

The political economy of energy transitions is of interest across both the
developed and developing worlds, and a defining feature of this book is a
review of experiences from a diversity of contexts. As emphasized, the miti-
gation challenge cannot be addressed by developed countries alone. The
volume of current emissions from developing countries combined with their
rapid growth trajectories highlight the importance of developing countries in
any effective global mitigation regime.
Developing countries simultaneously confront enormous development

challenges. Eliminating absolute poverty is also a defining challenge of the
twenty-first century, as set forth in the Sustainable Development Goals.
Developing countries are highly unlikely to shelve their developmental aspir-
ations in favour of mitigation objectives. Thus, the political economy of clean
energy transitions in the developing world present some of the thorniest and
most important challenges.
With respect to the developed world, their historical emissions, relatively

comfortable material circumstances, institutional capabilities, and technical
knowhow lead to the expectation that they will lead the energy transition. This
means reducing absolute emissions in the near term and achieving very deep
cuts by mid-century. This change must be undertaken by energy systems
characterized by weak or even negative energy demand growth as well as
deeply entrenched actors and interests.
In sum, the challenges facing both developing and developed countries are

not to be taken lightly. While developed countries are expected to lead—for
example, with respect to government commitments to research, develop-
ment, demonstration, and deployment activities for new technologies—the
critical role of regulatory frameworks, policies, and institutions have already
been emphasized. These require localized solutions in both developing and
developed country contexts. The dividing line between these two broad
country groups is neither clear nor fast in other respects as well. Citizens
of developed countries expect economic progress through time along with
environmental stewardship, and developing countries certainly have their
share of entrenched interests.
Nevertheless, the broadly defined challenges facing developed and developing

economies do differ in important ways. In particular, driven by population/
labour force growth, technological catch-up, a relatively high marginal product
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of capital and substantial growth aspirations, developing countries’ economies
can be expected to grow more rapidly than developed economies. Accordingly,
the demand for new energy supply is likely to be much greater in the developing
than developed world.

There are multiple edges to this challenge. On the one hand, the INDCs set
forth by developing countries point to a reorientation away from the well-
trodden path of employing massive fossil energy to fuel development. This
charting of a new path, or new paths, is almost surely less straightforward than
following prior recipes. As institutional and human capabilities in developing
countries are characteristically weak relative to developed countries, the need
to chart new paths and confront new challenges provokes legitimate concern.

On the other hand, fossil-based systems have a series of, by now, well-known
shortcomings. First, developing countries frequently encounter difficulties
implementing fossil-fuel-based systems, particularly for electricity generation.
These difficulties arise fromnumerous factors. The bottom line is that unreliable
power supply has long been a hallmark of many developing country cities and
is frequently pointed to as a substantial brake on economic development (see
Foster 2008). While intermittency in output is a characteristic of many renew-
able generators, that variability reduces substantially at a system level; and
meeting or improving upon the reliability levels currently attained in many
developing country contexts is often a fairly low bar of accomplishment. The
relatively modular nature and short investment lead times of wind and solar
power generation systems also favour developing countries where demand
growth tends to be much more variable and much less predictable than in
developed country contexts.

Second, fossil-fuel-based systems are poorly suited to rural areas. This is
particularly true of electricity generation. Around 1.2 billion people (about 17
per cent of the world’s population) lack access to electricity, and the vast
majority of these people live in rural areas of developing countries (IEA 2015).
Rural inhabitants in zones that lack access to electricity are frequently abso-
lutely poor. In short, existing fossil-based power systems serve the least well off
of the world’s population very badly. Various renewable technologies have
been shown to scale effectively in these areas. Biopower systems currently
serve dozens of villages in South Asia (Bhattacharyya 2014), and next gener-
ation bioenergy systems also hold out additional promise for rural zones. With
the rapid advances in solar and battery technology, distributed solar systems
provide a potentially unprecedented opportunity to extend electricity access to
some of the world’s poorest citizens.

Third, localized pollution impacts of fossil-fuel-based systems can be intense.
Poor air quality gives rise to serious health concerns. New Delhi and Beijing
are just the most recent examples of places where low air quality seriously
impacts wellbeing. Clean energy systems have the potential to diminish or
even effectively remove these real costs.
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Fourth, fossil-based systems both fuel and disrupt development. Experience
in countries with fossil fuel endowments indicate that they are not an
unalloyed boon for their economies in general and the welfare of their
citizenry in particular. The vagaries of fossil fuel prices, and concomitant
macroeconomic instability, combined with the tendency for revenues derived
from sale of fossil resources to concentrate in a few hands have not been
helpful for development patterns in many countries leading some authors to
proclaim a ‘resource curse’ (Frankel 2010). For most fossil fuel importers,
variations in fossil fuel prices have large impacts, often with implications for
political stability (e.g., Arndt et al. 2012).
Finally, developing countries may possess inherent advantages in terms of

clean energy endowments. Many developing countries are relatively well
endowed with sun, wind, and unexploited hydropower potential. In a world
dominated by clean energy systems, many developing countries may possess
an inherent comparative advantage in energy-intensive activities.4

For these reasons, a clean energy transition is not necessarily an impedi-
ment to the growth aspirations of the developing world. And, there are a series
of solid rationales for developed countries to assist developing countries in
realizing a clean energy transition. Not least, a failure on the part of developing
countries to transition to cleaner energy sources implies a failure to stabilize
the global climate, with negative implications for everyone.
Developed countries are also responsible for a disproportionate share of the

stock of greenhouse gases in the atmosphere. This would be highly problem-
atic if the lack of space for even greater stocks of atmospheric GHGs imposed a
tight trade-off between the development aspirations of the citizens of devel-
oping countries over the next few decades and a permanent alteration of the
global climate. The fact that the developed world has effectively claimed
squatters’ rights on the global atmospheric commons becomes a lot less
problematic if new paths to fuelling development are opened as the fossil
fuel pathway is foreclosed.
The practical and ethical arguments for assisting developing countries in

taking these new pathways are strong. At the same time, it is not a question of
simply willing a clean energy system into place whatever the cost. As empha-
sized, the changes inherent in a clean energy transition are profound, involving
the full economic system with implications for competiveness and economic
growth. Improperly done, those costs could easily be very high and would
likely sap the will for undertaking that very transition.
Hence, economic efficiency and reasonable equity are key. Efficient and

relatively low-cost transitions to a stable global climate are widely viewed as

4 Of course, whether developing countries are capable of actually capitalizing on these
advantages (if they indeed exist) is another question. This is an important area for future
research.
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imminently possible.5 The cost estimations in the Fifth Assessment Report of
the IPCC indicate approximately a year or two of global growth by around
mid-century. In other words, global GDP per capita with mitigation would
reach the same level in 2055 as it would have attained in about 2053 without
mitigation. These calculations typically ignore the benefits of mitigation in
terms of climate change impacts avoided as well as health benefits from
reduced pollution. Also, there are real possibilities to enhance the equity of
the energy transition through, for example, more rapid rural electrification
and better urban air quality in developing countries.

1 .5 THIS BOOK

This book takes as a starting point that a new era of reducing emissions at scale
has begun. The proximate challenges of this new era are codified in the
emissions reductions offers (INDCs) from 165 countries available on the
UNFCCC website. To date, the scale of emissions reductions efforts has
been nowhere near adequate to the task. But, this does not mean that nothing
has been tried. Considerable experience has been gained, and many features of
the political economy of clean energy transitions have been revealed. It makes
sense to profit from this experience in order to help meet the challenge of
greatly scaling up emissions reductions efforts.

As countries and regions grapple with the complex task of reducing emis-
sions in accordance with their INDCs while providing better lives for their
citizenry, the demand for sharing of experience and lessons learned looks
set to increase dramatically. This applies both to successes and to failures.
Advancing this process of knowledge-sharing, to the benefit of all, but espe-
cially the most vulnerable of present and future generations, is the raison d’être
of this book.

This book presents 27 cases, reviewing country experience, regional experi-
ence (e.g., the European Union), and international experience/cross-cutting
issues, with a focus on the political economy aspects of the clean energy
transition.

The book’s parts are organized by major political economy subject matter
areas germane to characterizing clean energy transitions. While many of the
individual chapter topics are cross-cutting in nature, we, the editors, believe
this organizing framework to be a useful construct. A short introduction
to each part highlights the issues and the main points drawn from the
constituent chapters.

5 Llavador et al. (2015) disagree. They find that global mitigation objectives can only be met
through reductions in the rate of growth of GDP.
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There are eight major parts.

In Part I, Chapter 1 introduces readers to the layout of the book. Chapter 2
examines the history and politics of energy transitions and draws lessons
for today.

Part II features policies designed to advance clean energy and combat
climate change from a global or general perspective.

Part III features chapters that explore how institutions and governance influ-
ence the processes of energy innovation, deployment, and policy formation.

Part IV features chapters that raise key political questions about the role of
actors, interests, and institutions in the energy sector: who has the power to
change, who sets the terms of transition, and for whom?

Part V features chapters that explore relationships and tensions between
emerging clean energy sectors and incumbent stakeholders.

Part VI features chapters that discuss the drivers, obstacles, and implica-
tions of energy sector reforms which shift the balance of public and private
participation in clean energy transitions.

Part VII features chapters that explore the role of clean energy, as an enabler
of economic growth and development, and social inclusion.

Part VIII features chapters that explore how clean energy transitions chal-
lenge traditional national boundaries and differentially impact regions within
national boundaries.

1 .6 LOOKING FORWARD

A clean energy transition is not easy. This is amply illustrated in the case
studies. Even if the technical path is clear and fully illuminated, a clean energy
transition will involve the shift of resources between competing economic
sectors and political constituencies alongside changes in institutional and
policy frameworks. Stakeholders in this process have varying degrees of
political and economic power. Regardless of the society or the political system,
understanding how political economy factors influence clean energy transi-
tions is crucial to effective policy formulation and facilitating transitions to
sustainable energy systems.
Despite the challenges, this introductory chapter has adopted a purpose-

fully optimistic tone. This seems appropriate. CoP21 does represent a sub-
stantial break from the past. Technological change in clean energy sectors
has been very rapid. Institutional and policy changes are evident in many
countries. And, resource allocations are shifting as evidenced by the large
investments in clean energy systems that are occurring worldwide. In effect,
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the set of INDCs derived from CoP21 pledge an essentially global transition
towards clean energy systems. Put differently, global mitigation efforts have
begun in earnest.

While the first steps have been taken, much more effort is required. Over the
next few years, countries need to follow through on their INDCs. Looking
further ahead, it is well known that the sum of the commitments in the
INDCs does not result in an energy system that is sufficiently environmentally
benign as to be compatible with a stable global climate. Even more ambitious
commitments/transformations will be necessary in future.

While a freewheeling ‘bottom-up’ approach appears to have been well
suited to getting started, it is likely that limitations to the highly dispersed
approach adopted in Paris at CoP21 will become apparent. For example, the
solicitation of INDCs is not an approach that is particularly well suited to
addressing the vexing and inter-related issues of international trade, carbon
trade, and footloose industries/carbon leakage. Thoughts on future stages of
the clean energy transition are discussed in Chapter 29. Chapter 29 also
provides forward perspectives on the research agenda.
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2

The History and Politics of
Energy Transitions

Comparing Contested Views and
Finding Common Ground

Benjamin K. Sovacool

2.1 INTRODUCTION

Transitioning away from our current global energy system is of paramount
importance (Riahi et al. 2012: 1203–306). As Grubler (2012: 8) has compel-
lingly written, ‘the need for the “next” ’ energy transition is widely apparent as
current energy systems are simply unsustainable on all accounts of social,
economic, and environmental criteria’. Miller et al. (2013: 136) add that,
‘The future of energy systems is one of the central policy challenges facing
industrial countries’. Unfortunately, however, neither private markets nor
government agencies seem likely to spur a transition on their own (Fri and
Savitz 2014). Moreover, shifts to newer, cleaner energy systems such as sources
of renewable electricity (Painuly 2001; Sovacool 2009) and electric vehicles
(Sovacool and Hirsh 2009; Nielsen et al. 2015) often require significant
changes not only in technology, but also in political regulations, tariffs, and
pricing regimes, and the behaviour of users and adopters.

Thus, the speed at which a transition can take place—its timing, or
temporal dynamics—is a critical element of consideration (Sovacool 2016).
According to the International Energy Agency (2012: 3), for example, if
‘action to reduce CO2 emissions is not taken before 2017, all the allowable
CO2 emissions would be locked-in by energy infrastructure existing at that
time’. In other words, if a transition does not occur quickly, or soon, it may
be too late. Giddens (2009) went so far as to call this the ‘climate paradox’,
the fact that by the time humanity may come to realize fully how much they



need to shift to low-carbon forms of energy, they will have already passed the
point of no return.
The notion of ‘energy transitions’ sits at the heart of this polemical discus-

sion. O’Connor (2010) once defined an energy transition as ‘a particularly
significant set of changes to the patterns of energy use in a society, potentially
affecting resources, carriers, converters, and services’. In other words, to those
subscribing to this definition, an energy transition refers to the time that
elapses between the introduction of a new primary energy source, or prime
mover, and its rise to claiming a substantial share of the overall market.
According to one view, energy transitions take an incredibly long time to
occur. As the geographer Vaclav Smil (2010a: 141–2) writes, ‘all energy
transitions have one thing in common: They are prolonged affairs that take
decades to accomplish, and the greater the scale of prevailing uses and
conversions, the longer the substitutions will take.’ Fast transitions, when
they occur at all, are anomalies, limited to countries with very small popula-
tions or unique contextual circumstances that can hardly be replicated
elsewhere.
Another view argues the opposite. Broadening the discussion beyond

simply national sources of energy supply and substantial shifts of their
composition, it suggests that there have been many transitions—at varying
scales, involving different things including fuels, services, and end-use
devices—that have occurred quite quickly, that is, between a few years and
a decade or so, or within a single generation. At smaller scales, the adoption
of cookstoves, air conditioners, and flex-fuel vehicles (FFVs) are excellent
examples. At the state or national scale, almost complete transitions to oil in
Kuwait, natural gas in the Netherlands, and nuclear power in France took
only a decade, roughly, to occur. Indeed, the second part of this chapter
presents ten case studies of energy transitions that, in aggregate, affected
almost 1 billion people and needed only 1–16 years to unfold. Clearly, this
antithetical view proposes that some energy transitions can occur much
more quickly than commonly believed.
Which side is right? Similar to other controversies in the energy studies

literature (Sovacool et al. 2016), this chapter holds that both are. After pre-
senting evidence in support of both theses, it elucidates a common ground
consisting of four arguments. First, sometimes the ‘speed’ or ‘scale’ at which an
energy transition occurs has less to do with what actually happened and more
to do with what or when one counts. Second, what may seem a sweeping
transition can actually be a bundle of more discrete minor conversions or
substitutions. Third, energy transitions are complex, and irreducible to a single
cause, factor, or blueprint. Fourth, most energy transitions have been, and will
likely continue to be, path dependent rather than revolutionary, cumulative
rather than fully substitutive.
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2.2 ONE SIDE: ENERGY TRANSITIONS ARE LONG,
PROTRACTED AFFAIRS

This view holds that energy transitions—defined by some as the time that
elapses between the introduction of a new fuel or technology (sometimes called
a ‘prime mover’) and its rise to 25 per cent of national market share—takes a
significant amount of time (Smil 2010a). The Global Energy Assessment (GEA)
(2012: 788), a major international, interdisciplinary effort to understand energy
systems, notes that ‘transformations in energy systems’ are ‘long-term change
processes’ on the scale of decades or even centuries. This view holds that, as two
Stanford University scientists write, ‘it appears that there is no quick fix; energy
system transitions are intrinsically slow’ (Myhrvold and Caldeira 2012: 1).
Support for this side comes from (1) the historical record, (2) the validity
of looking at the ‘big picture’, and (3) the literature on ‘lock-in’ and ‘path
dependency’.

2.2.1 History Shows Major Transitions Taking
Decades to Centuries

In the USA, crude oil took half a century from its exploratory stages in the
1860s to capturing 10 per cent of the market in the 1910s, then 30 years more
to reach 25 per cent. Natural gas took 70 years to rise from 1 per cent to 20 per
cent. Coal needed 103 years to account for only 5 per cent of total energy
consumed in the USA and an additional 26 years to reach 25 per cent (Smil
2012). Nuclear electricity took 38 years to reach a 20 per cent share, which
occurred in 1995.

Globally, we see even longer time frames involved with energy transitions.
Coal surpassed the 25 per cent mark in 1871, more than 500 years after the
first commercial coal mines were developed in England. Crude oil surpassed
the same mark in 1953; about nine decades after Edwin Drake drilled the first
commercial well in Titusville, Pennsylvania, in 1859. Hydroelectricity, natural
gas, nuclear power, and ‘other’ sources such as wind turbines and solar panels
still have yet to surpass the 25 per cent threshold—as Figure 2.1 depicts—with
only nuclear reaching the meagre 5 per cent mark.

Assessing prime movers rather than fuels, Smil (2010b) adds that steam
engines were designed in the 1770s, but didn’t take off until the 1800s, and
the gasoline-powered internal combustion engine, first deployed by Benz,
Maybach, and Daimler in the middle of the 1880s, reached widespread
acceptance in the USA only in the 1920s, and even later for Europe and
Japan. As Smil (2012: 3) deduces from these examples:
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Energy transitions have been, and will continue to be, inherently prolonged affairs,
particularly so in large nations whose high levels of per capita energy use and whose
massive and expensive infrastructures make it impossible to greatly accelerate their
progress even if we were to resort to some highly effective interventions.

This is why he calls energy systems ‘a slow-maturing resource’ and jokes that
‘energy sources, they grow up so…slowly’ (Smil 2012: 2–3). As he remarks, ‘it
is impossible to displace [the world’s fossil fuel-based energy] super-system in
a decade or two—or five, for that matter. Replacing it with an equally extensive
and reliable alternative based on renewable energy flows is a task that will
require decades of expensive commitment. It is the work of generations of
engineers’ (Smil 2012: 3).
The notion that energy transitions are inherently lengthy events finds

further support from energy analysts Peter Lund and Roger Fouquet. Lund
(2006) found that market penetration of new energy systems or technologies
can take as long as 70 years. Short ‘take-over times’ of less than 25 years are
limited to a few end-use technologies such as water heaters or refrigerators,
and are not common for major infrastructural systems like those involving
electricity or transport. A second study of Lund’s (2010a: 650) exploring ‘how
fast new energy technologies could be introduced on a large scale’ estimated that
the earliest wind could produce more than 25 per cent of world electricity, and
solar 15 per cent, would be 2050—40 years from the date of his study. As Lund
(2006: 3318) noted, ‘the inertia of energy systems against changes is large,
among others because of the long investment cycles of energy infrastructures
or production plants’ and the ‘rate of adoption of these new [renewable energy]

0

20

40

60

80

100

120

Coal Oil Natural gas Nuclear

Years to achieve 5% Years to achieve 25%

Figure 2.1. Major transitional shifts in global energy supply, 1750–2015.
Source: Author’s illustration based on Smil (2012).
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technologies would not exceed that of oil or nuclear in the past’ (Lund 2010b:
3580). Analogously, Fouquet (2010) studied various transitions between both
energy fuels and energy services from 1500 to 1920, and found that, on average,
each single transition has an innovation phase exceeding 100 years followed by a
diffusion phase approaching 50 years.

2.2.2 Analysts Need to Focus on the Big Picture

Furthermore, proponents of this view argue that one must look at the ‘big
picture’, that is, the absolute change in energy systems, rather than discrete
growth within a particular market, and the overall impact on society.

For instance, an energy system can grow rapidly, in an absolute sense, but
still fail to grow in a comparative sense. Hydroelectricity in the USA was a
low-cost source of energy in the 1950s and 1960s, where it grew in capacity
threefold from 1949 to 1964. However, during this time, because other sources
of energy (and demand for electricity) grew faster, hydropower’s overall
national share dropped from 32 per cent to 16 per cent (O’Connor 2010).
Similarly, from 2000 to 2010, global annual investment in solar photovoltaic
(PV) power increased by a factor of 16, investment in wind grew fourfold,
investment in solar heating threefold. This sounds impressive—yet the overall
contribution of solar (heating and PV) and wind to total final energy consump-
tion grew from less than one-tenth of 1 per cent to slightly less than 1 per cent
over the same period (Sovacool 2016), hardly a drop in the bucket.

Furthermore, part of a big picture approach means realizing that energy
transitions do not always produce desirable results. The massive energy
transitions that occurred in Japan from 1918 to 1945, North Korea in the
1990s, and Cuba in the 1990s saw societies grapple with sudden shifts in the
availability of energy. Japan lost upwards of 70 per cent of its oil imports due
to the US trade embargo of 1941, North Korea dropped 90 per cent of their oil
imports from the Soviet Union in 1991, and Cuba saw a decline of energy
imports from the Soviet Union of 71 per cent between 1989 and 1993. In each
case, national planners responded to energy scarcity with military force
(Japan) or by preserving the privileges of the elite at the expense of ordinary
people (North Korea and Cuba) (Friedrichs 2013).

2.2.3 ‘Path Dependency’ and ‘Lock-In’ Make Future
Transitions Difficult

A final thread of this thesis is that desirable energy transitions are so difficult
to achieve because of the momentum, path dependency, or obduracy of the

20 The Political Economy of Clean Energy Transitions



existing system exerts on actors. In the case of national energy systems, such
large sums of labour, capital, and effort are ‘sunk’ into them that they create their
own ‘inertia’ (Knox-Hayes 2012; Steinhilber et al. 2013). On top of that,
institutional legacies protect the status quo, and political regulations, tax
codes, and even banks and educational institutions come to support a particular
energy pathway, alongwith associated coalitions (Goldthau and Sovacool 2012).
The result is that energy transitions, breaking out of these embedded systems,
require a ‘long-term transformation’ that is ‘a messy, conflictual, and highly
disjointed process’ (Meadowcroft 2009). Collectively, these technological and
behavioural forces ‘lock’ us into a carbon-dependent energy system that
highly resists change (Unruh 2000). In the case of prime movers, we see
similar resistance. As Smil (2010a: 140) writes, ‘There is often inertial reliance
on a machine that may be less efficient (steam engine, gasoline-fueled engine)
than a newer machine but whose marketing and servicing are well established
and whose performance quirks and weaknesses are known. The concern is
that rapid adoption of a superior converter may bring unexpected problems
and setbacks.’
In order to counteract this inertia, scholars looking at energy transitions

have argued that truly ‘transformative change’ must be the result of alter-
ations at every level of the system, simultaneously, that is, one must alter
technologies, political and legal regulations, economies of scale and price
signals, and social attitudes and values together, making transition a gruel-
ling process. Or to use parlance from sociotechnical systems theory, it is
rare that innovation niches become regimes and rarer still for those regimes
to influence the broader, global landscape (Geels and Schot 2007; Schot and
Geels 2008). This parallels what feminist scholar, Eve Kosofsky Sedgwick
(1993) termed, the ‘Christmas Effect’ to describe the way that institutions,
technology, and behaviour can coalesce around a common goal. During the
holidays, the institutions of Western society come together and speak ‘with
one voice’ for the Christmas holiday. Christian churches build nativity
scenes and hold a greater number of masses; state and federal governments
establish school and national holidays; and the media ‘rev up the Christmas
frenzy’ and ‘bark out the Christmas countdown’ (Sedgwick 1993). Such
sociotechnical inertia favouring the Christmas holiday exerts profound
and lasting influence over our behaviour, and the argument runs that a
similar alignment of values and incentives occurs with energy. This could be
why, in their forecasts about the future, the US EIA (2013) still predicted
in 2013 that in 2040, three-quarters of energy in the USA would come from
oil, coal, and natural gas. The International Energy Agency (2012: 51) similarly
projected that in 2035, under their ‘Current Policies’ scenario, 80 per cent
of total primary energy supply worldwide would come from ‘traditional’
fossil fuels.
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2.3 THE OTHER SIDE: ENERGY TRANSITIONS
CAN HAPPEN QUICKLY

Contrary to those emphasizing the longevity or difficulty of energy transitions,
an alternate view is that under certain conditions (or, if one chooses to count
different things), energy transformations can occur rather speedily. Argu-
ments in support of rapid transitions hold that (1) we have seen numerous
fast transitions in terms of energy end-use, (2) plentiful examples of national-
scale transitions litter the historical record, and (3) we can sufficiently learn
from these trends so that favourable future energy transitions can be exped-
ited. This section of the chapter explores no less than ten ‘quick’ energy
transitions, five of them focused on end-use devices such as lighting and air
conditioning, and five of them focused on national systems such as oil in
Kuwait and nuclear power in France. Table 2.1 provides an overview of these
cases, which collectively involved almost a billion people.

2.3.1 History Shows Speedy Transitions in
Energy End-Use Devices

At least five transitions in end-use devices, or prime movers, have occurred
with remarkable rapidity: lighting in Sweden, cookstoves in China, liquefied

Table 2.1. Overview of rapid energy transitions

Country Technology/fuel Period of
transition

Number of years
(from 1 to 25 per
cent market share)

Approximate size
(population affected
in millions of people)

Sweden Energy-efficient ballasts 1991–2000 7 2.3
China Improved cookstoves 1983–1998 8 592
Indonesia Liquefied petroleum gas

(LPG) stoves
2007–2010 3 216

Brazil Flex-fuel vehicles
(FFVs)

2004–2009 1 2

USA Air conditioning 1947–1970 16 52.8
Kuwait Crude oil 1946–1955 2 0.28
Netherlands Natural gas 1959–1971 10 11.5
France Nuclear electricity 1974–1982 11 72.8
Denmark Combined heat and

power (CHP)
1976–1981 3 5.1

Canada
(Ontario)*

Coal 2003–2014 11 13

Note: * The Ontario case study is the inverse, showing how quickly a province went from 25 per cent coal
generation to zero.

Source: Author’s compilation.

22 The Political Economy of Clean Energy Transitions



petroleum gas (LPG) stoves in Indonesia, ethanol vehicles in Brazil, and air
conditioning in the USA.
Sweden was able to phase in an almost complete shift to energy-efficient

lighting in commercial buildings in about nine years (Lund 2007). Swedish
Energy Authorities arranged for the procurement of high-frequency electronic
ballasts for lights in office buildings, commercial enterprises, schools, and
hospitals, devices which saved 30–70 per cent compared to ordinary ballasts,
in 1991. They used a multipronged approach of standardization and quality
assurance, direct procurement, stakeholder involvement, and demonstrations
to disseminate those ballasts. They began by collaborating with experts to
develop a list of lighting quality factors for commercial buildings, and then
asked for competitive tenders from manufacturers that met these standards.
Then, the government directly purchased almost 30,000 units in a pilot phase,
and worked with real estate management companies (for new buildings) and
owners of public, commercial, and industrial buildings (for retrofits) to ensure
that they were installed (Ottossen and Stillesjo 1996). After the pilot phase,
they promoted distribution through government subsidies, sponsored dem-
onstrations of the technology among the commercial sector, and involved
consumer groups in discounted bulk purchases. Due to these concerted
efforts, self-supporting volume effects were reached as early as 1996, catalysing
very rapid market penetration, which jumped from about 10 per cent that year
to almost 70 per cent by 2000. In essence, this meant that between 1991 and
2000, 2.3 million Swedish workers experienced changes in their office lighting.
The Chinese Ministry of Agriculture managed an even more impressive

National Improved Stove Programme (NISP), managed by the Bureau of
Environmental Protection and Energy (BEPE), from 1983 to 1998 (Smith
et al. 1993; Brown and Sovacool 2011a: 292–301). The BEPE adopted a ‘self-
building, self-managing, self-using’ policy focused on having rural people
themselves invent, distribute, and care for energy-efficient cookstoves, and it
set up pilot programmes in hundreds of rural provinces. From the start of the
programme until 1998, the NISP was responsible for the installation of 185
million improved cookstoves and facilitated the penetration of improved stoves
from less than 1 per cent of the Chinesemarket in 1982 tomore than 80 per cent
by 1998—reaching half a billion people, as Table 2.2 shows. The cookstoves
being installed in China in 1994, during the height of the programme, were
equivalent to 90 per cent of all improved stoves installed globally. As a conse-
quence, Chinese energy use per capita declined in rural areas at an annual rate of
5.6 per cent from 1983 to 1990.
Indonesia also ran a large household programme focusing on the con-

version from kerosene stoves to LPG stoves to improve air quality. Under
leadership from their vice president, Jusuf Kalla, the Indonesian ‘LPG Mega-
project’ offered households the right to receive a free ‘initial package’ consist-
ing of a 3 kilogram LPG cylinder, a first free gas-fill, one burner stove, a hose,
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and a regulator. The government, in tandem, lowered kerosene subsidies
(increasing its price) and constructed new refrigerated LPG terminals to act
as national distribution hubs. Amazingly, in just three years from 2007 to
2009, the number of LPG stoves nationwide jumped from a mere 3 million to
43.3 million, meaning they served almost two-thirds of Indonesia’s 65 million
households (or about 216 million people). Six entire provinces, including that
of Jakarta, the capital, were declared ‘closed and dry’—meaning that the
programme reached all of its targets, and that all kerosene subsidies were
withdrawn (Budya and Arofat 2011).

Brazil has perhaps the fastest energy transition on record, though (to be
fair) it depends on what one counts. Brazil created its Proálcool programme in
November 1975 to increase ethanol production and substitute ethanol for
petroleum in conventional vehicles, and in 1981, six years later, 90 per cent of
all new vehicles sold in Brazil could run on ethanol—an impressive feat.
However, a more recent transition, connected in part to the Proálcool
programme, is even more noteworthy. The Brazilian government started
incentivizing FFVs in 2003 through reduced tax rates and fuel taxes. These
Brazilian FFVs were capable of running on any blend of ethanol from zero to
100 per cent, giving drivers the option of switching between various blends of
gasoline and ethanol depending on price and convenience. The first year FFVs
entered the market in 2004, they accounted for 17 per cent of new car sales but
they rapidly jumped to 90 per cent in 2009—meaning 2 million FFVs were
purchased in total over the first five years of the programme (Brown and
Sovacool 2011b).

Air conditioning in the USA is a final example. In 1947, mass-produced,
low-cost window air conditioners became possible, enabling many people to

Table 2.2. Households adopting improved stoves under the Chinese National
Improved Stove Programme (NISP) and affiliated provincial programmes

NISP households
(million)

Households under
provincial programmes
(million)

Total households/
year (million)

Total people/
year (million)

1983 2.6 4.0 6.6 21.1
1984 11.0 9.7 20.7 66.2
1985 8.4 9.5 17.9 57.3
1986 9.9 8.5 18.4 58.9
1987 8.9 9.1 18.0 57.6
1988 10.0 7.5 17.5 56.0
1989 4.5 5.0 9.5 30.4
1990 3.6 7.8 11.4 36.5
1991–1998 7.8 57.2 65.0 208.0
Total 66.7 118.3 185.0 592.0

Source: Author’s compilation based on Brown and Sovacool (2011a).
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enjoy air conditioning without the need to buy a new home or completely
renovate their heating system (National Academy of Engineering 2013). That
year, only 43,000 units were sold, but by 1953, the number had jumped to
1 million, as air conditioners became endorsed by builders eager to mass
produce affordable, yet desirable, modern homes and electric utilities that
wanted to increase electricity consumption throughout the growing suburbs
(Rosen 2011). Consequently, more than 12 per cent of people (occupying
6.5 million housing units) reported to the US Census in 1960 that they owned
an air conditioner, rising to 25 per cent in 1963, and 35.8 per cent in 1970,
representing 24.2 million homes and more than 50 million people (US Census
Bureau 1960, 1970). Since then, the presence of air conditioning in single-
family homes jumped from 49 per cent in 1973 to 87 per cent in 2009 (US EIA
2011). In hot and humid places such as southern Florida, its use grew from
5 per cent in 1950 to 95 per cent in 1990. American motorists also use 7–10
billion gallons of gas annually to air condition their cars. In aggregate, the USA
on an annual basis now consumes more electricity for air conditioning than
the entire continent of Africa consumes for all electricity uses (Cox 2012).
Or, in other terms, the USA currently utilizes more energy (about 185 billion
kWh) for air-conditioning than all other countries’ air conditioning usage
combined (Sivak 2013).

2.3.2 Fast Transitions in National Energy Supply Have Occurred

Proponents of this alternative view can also point to five other transitions that
have occurred at the national level: to crude oil in Kuwait, natural gas in the
Netherlands, nuclear electricity in France, combined heat and power (CHP) in
Denmark, and coal retirements in Ontario, Canada.
Two concurrent modifications, in electricity and transport, catalysed an

almost complete shift in Kuwait’s national energy profile in about nine years.
Oil use catapulted from constituting a negligible amount of total national
energy supply in 1946 to 25 per cent in 1947, and more than 90 per cent in
1950 (Kuwait Ministry of Planning 1988). In 1938, when Kuwait was still a
small, impoverished British protectorate, geologists discovered the Burgan
oil field, which proved to be the world’s second largest accumulation of oil
following Saudi Arabia’s Ghawar oil field. Commercial exploitation began in
earnest (after a suspension of operations due to the Second World War) in
1946, increasing from 5.9 million barrels that year to 16.2 million barrels
in 1947, and 398.5 million barrels in 1955, in tandem with the development of
other oil fields (Al-Marafie 1989). Within five years, 1945–49, the Kuwaiti oil
industry was transformed from one dependent on five gallon barrels being
distributed manually to customers, carried on camels, donkeys, or wooden
push carts to one characterized by huge volumes and scale economies that
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were dependent on motorized trucks and tankers, pipelines, and filling sta-
tions. Simultaneously, Kuwait began using oil for electricity generation. The
Kuwait Oil Company obtained and commissioned its first 500 kW generator
in 1951 and in 1952, built a 2.25 MW steam power station at Al-Shewaikh,
essentially tripling national electricity capacity in three years. Demand for
such electricity grew considerably, doubling again by 1960, and then increas-
ing (in per capita terms) from 1473 kWh to 9255 kWh in 1985 (Al-Marafie
1988). Thereafter, a rapid expansion of distillation units, refineries, petrol
stations, and the establishment of the Kuwait National Petroleum Company
in 1960, the same year Kuwait helped form the Organization of Petroleum
Exporting Countries, saw oil’s rise continue so that in 1965, Kuwait became
the world’s fourth largest producer of oil (behind the USA, the Soviet Union,
and Venezuela, and ahead of Saudi Arabia). As even energy transition sceptic
Smil (2010b: 55) concedes, ‘In energy terms Kuwait thus moved from a
pre-modern society dependent on imports of wood, charcoal, and kerosene
to an oil superpower in a single generation’.

The Netherlands—thanks in large part to the discovery of a giant
Groningen natural gas field in 1959—started a rapid transition away from
oil and coal to natural gas (Smil 2010b). That year, coal supplied about 55 per
cent of Dutch primary energy supply followed by crude oil at 43 per cent and
natural gas at less than 2 per cent. In December 1965, however, one year after
gas deliveries began from Groningen, natural gas supplied 5 per cent of the
Netherland’s primary energy, rising quickly to 50 per cent by 1971, an ascent
visually depicted in Figure 2.2. To facilitate the transition, the government
decided in December 1965 to abandon all coal mining in the Limburg
province within a decade, doing away with some 75,000 mining-related jobs
impacting more than 200,000 people. What made the transition successful was
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Figure 2.2. Coal, natural gas, and oil supply in the Netherlands, 1950–2010.
Source: Author’s illustration based on Smil (2010a).
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that the government strategically implemented countermeasures such as sub-
sidies for new industries, the relocation of government industries from the
capital to regions of the country hardest hit by the mine closures, retraining
programmes for miners, and offering shares in Groningen to Staatsmijnen
(the state mining company). After its peak output in the mid-1970s, extraction
of gas at Groningen was purposely scaled back to maximize the lifetime of the
field, though natural gas continued to play a prominent role in the nation’s
energy mix. In 2010, for instance, natural gas still provided 45 per cent of total
primary energy supply, larger than any other source (EC 2010).
The French transition to nuclear power was also swift. Following the oil

crisis in 1974, Prime Minister Pierre Messmer announced a large nuclear
power programme intended to generate all of France’s electricity from
nuclear reactors to displace the Republic’s heavy dependence on imported
oil. As the maxim went at the time, ‘No coal, no oil, no gas, no choice!’ The
‘Messmer Plan’ proposed the construction of 80 nuclear power plants by
1985 and 170 plants by 2000. Work commenced on three plants—Tricastin,
Gravelines, and Dampierre—immediately following the announcement of the
plan and France ended up constructing 56 reactors in the period 1974–89. As a
result, nuclear power grew from 4 per cent of national electricity supply in 1970
to 10 per cent in 1978 and almost 40 per cent by 1982 (Araujo 2013). As Grubler
(2010: 5186) has noted, ‘the reasons for this success lay in a unique institutional
setting allowing centralized decision-making, regulatory stability, dedicated
efforts for standardized reactor designs and a powerful nationalized utility,
EDF, whose substantial in-house engineering resources enabled it to act as
principal and agent of reactor construction simultaneously’.
Though Denmark is perhaps more famous for a transition to wind energy,

a far more accelerated transition occurred in the 1970s and 1980s. This
transition, also partially in the electricity sector, was away from oil-fired
electricity to other fossil fuels and CHP plants. From 1955 to 1974, almost all
heating in Denmark was provided by fuel oil, which meant the oil crisis had
particularly painful impacts on the country’s economy (Sovacool 2013). The
Danish Energy Policy of 1976 therefore articulated the short-term goal of
reducing oil dependence, and it stated the importance of building a ‘diver-
sified supply system’ and meeting two-thirds of total heat consumption with
‘collective heat supply’ by 2002. Moreover, it sought to reduce oil depend-
ence to 20 per cent, an ambitious goal that involved the conversion of
800,000 individual oil boilers from natural gas and coal. In a mere five
years, 1976–81, Danish electricity production changed from 90 per cent
oil-based to 95 per cent natural gas- and coal-based. Stipulations in favour
of CHP were further strengthened by the 1979 Heat Supply Act, whose
purpose was to ‘promote the best national economic use of energy for heated
buildings and supplying them with hot water and to reduce the country’s
dependence on mineral oil’ (Sovacool 2013: 833). As a result, CHP production
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