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Preface

Why this book? The number of excellent introductory books on quantum field theory
and on cosmology has grown much in the last years. Teaching a one-semester course on
Gravitation and Cosmology and a one-year course on Quantum Field Theory (QFT)
since 2009, I profited enormously from these textbooks. Working out my own lectures,
I tried however to teach the two courses in a more unified manner than is usually
done. One motivation for doing so was the belief that studying a subject in depth is
only half the premise; the remaining—and not least—struggle is to put the pieces into
a comprehensible picture. This is particularly true for students who aim to work at
the interface between theoretical particle physics, cosmology and astroparticle physics.
Thus I tried to stress the basic principles and methods with which rather dispersed
phenomena in these fields can be analysed. Moreover, this approach saves also time
and makes it thus possible to discuss additional applications within the restricted time
for lectures.

This book reflects this approach and aims to introduce QFT together with its most
important applications to processes in our universe in a coherent framework. As in
many modern textbooks, the more universal path-integral approach is used right from
the beginning. Massless spin one and two fields are introduced on an equal footing,
and gravity is presented as a gauge theory in close analogy with the Yang–Mills case.
Concepts relevant to modern research as helicity methods, effective theories, decoup-
ling, or the stability of the electroweak vacuum are introduced. Various applications
as topological defects, dark matter, baryogenesis, processes in external gravitational
fields, inflation and black holes help students to bridge the gap between undergraduate
courses and the research literature.

How to use this book. I tried to present all derivations in such detail that the
book can be used for self-studies. It should be accessible for students with a solid
knowledge of calculus, classical mechanics, electrodynamics including special relativity
and quantum mechanics. As always, it is indispensable to work through the text and
the exercises to get a grip on the material. Although the book is written with the
intention to be read from cover to cover, time constraints and special interests will
typically push students to omit several topics in a first round. A chart showing the
interdependence of the chapters is shown below.

Additionally to being suitable for self-study, the book may serve as basis for a
course in quantum field theory or an advanced course in astroparticle physics and
cosmology. For a standard two-semester course on QFT, one can use chapters 2–12
plus, depending on preferences and the time budget, material from chapters 13–18.
For an advanced course in astroparticle physics and cosmology, one may select suitable
chapters from the second half of the book. The order of some of the topics in the book
may be reshuffled:
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• Section 4.3 introduces some basic tools needed to perform loop calculations and
applies them to three examples. If one prefers a more systematic approach, this
section could be shifted to the end of section 11.4.

• Section 5.3 discusses symmetries on the quantum level. It could be postponed and
used as introductory section to chapter 17.

• Chapter 8 and 10 on fermions and on gauge theories could be omitted in a first
round, restricting the discussion of renormalisation to the scalar case.

• Chapter 9 on scattering is rather independent of the main text. While the predic-
tion of scattering cross-sections is the main occupation of most theorists working
in particle physics, it will be needed only rarely in the latter parts of the text.
Section 9.1 introduces the optical theorem which will be applied in chapter 14
and 21. Section 9.4 is useful as preparation for chapter 18, and explains why we
consider only fields with spin s ≤ 2.

A minimal path through the QFT oriented chapters is shown graphically in the
first two rows, with round boxes denoting material that could be omitted in a first
round and shifted to latter places. The two lines at the bottom show a similar path
collecting the chapters discussing gravitation and cosmology.

Quantum
mechanics
2.2–2.3

Free scalar
field
3.1–3.3

φ4 theory
4.1–4.2

Noether
5.1–5.2

☛

✡

✟

✠
Dirac
8.1–8.3

☛

✡

✟

✠
Gauge theories
10.1–10.3

☛

✡

✟

✠
φ4 theory
4.3

Renomalisation
I+II 11.1–12.5

Symmetry
breaking
13.1–3

GSW
model
14.1–
14.4

Thermal 15 Phase+TD 16

☛

✡

✟

✠
Noether
5.3

Anomalies
15

QCD
18.1

QCD
18.2–18.3 ✞

✝
☎
✆Scattering 9

☛

✡

✟

✠
Gauge theories
10.2

Spacetime
6

Spin 1+2
7

Gravity
19

FLRW
20

Thermal
relics 21

Baryogenesis
22

QFT curved
23

Inflation 24

BH 25

Lambda
26

Some will miss important topics in this chart. For instance, grand unified theories
or supersymmetry are two aspects of “beyond the standard model physics” (BSM)
which are not only very attractive from a theoretical point of view but have also often
been invoked to explain dark matter or baryogenesis. Having digested the material
presented in this book, students may consult e.g. Dine (2016) as an entrée into the
world of BSM. Moreover, I adapted from the field of astroparticle physics and cosmol-
ogy only few topics directly relevant to the main theme of this book. Thus all more
phenomenological aspects like, for example, neutrino oscillations or cosmic ray physics
are omitted.
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As this book is intended as an introduction, I suggest mainly review articles and
textbooks in the “Further reading” sections at the end of each chapter. References
to the original research literature are almost absent—I have to apologise to all those
whose papers have been only indirectly referenced via these reviews. Moreover, even a
minimal account of the historical development of this field is missing in this book. To
compensate this deficit, I recommend the reader to consult some references specialised
on the history of physics: Schweber (1994) gives a very readable account how QED was
created, while O’Raifeartaigh (1997) reviews the development of the gauge principle.
The story how the hot big bang model became the leading cosmological theory is told
by Kragh (2013) and Peebles et al. (2009).

Website. A list of corrections, updates, solutions to more than 100 exercises as well
as some software is available on the website of the book, www.oup.co.uk/companion/
quantumfields2018. Comments and corrections are welcome and can be submitted
via this website.

Acknowledgements. First of all, I would like to thank the students of my courses
which had to digest various test versions of these lectures. I am grateful to Peder
Galteland, Jonas Glesaaen and William Naylor for working out a first LATEXversion of
the lecture notes for FY3466, and to all the students of the following semesters who
spotted errors and pointed out obscure passages in the draft versions of this book. Jens
Andersen, Eugeny Babichev, Sergey Ostapchenko and Pasquale Serpico read parts of
the book and made valuable comments which helped to improve the text. Last but
not least I would like to thank all my collaborators for sharing their insights with me.

Acknowledgements for the figures.

• Figure 12.3 is courtesy of D. Kazakov (hep-ph/0012288) who adapted it from
Fig. 1 in U. Amaldi, W. de Boer, W. and H. Fürstenau, “Comparison of grand uni-
fied theories with electroweak and strong coupling constants measured at LEP”,
Phys. Lett. B260, 447 (1991). It has been reproduced with permission of Elsevier.

• Figure 14.1 has been adapted from Fig. 5 in G. Degrassi et al., JHEP 08, 098
(2012), published under the Creative Commons Noncommercial License.

• Figure 24.2 has been adapted from Fig. 5.3 in V. Mukhanov, “Physical Founda-
tions of Cosmology” (2005) with permission of Cambridge University Press.

• Figure 24.5 has been reproduced from Fig. 2 in A. Challinor, “Cosmic Microwave
Background Polarization Analysis”, in “Data Analysis in Cosmology”, Lecture
Notes in Physics 665 (2008) with permission of Springer.

Preface to the Paperback Edition

Various minor errors have been corrected in this paperback edition, and at a few
places the text has been clarified. I am grateful to all readers who sent corrections and
would like to thank in particular Rodrigo Alvarez, Howard Haber, Magnus Malmquist,
Christian Thierfelder and Jonas Tjemsland.
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Notation and conventions

We use natural units with ~ = c = 1, but mostly keep Newton’s gravitational constant
GN 6= 1. Then all units can be expressed as powers of a basic unit which we choose as
mass or energy. Instead of GN, we use also κ = 8πGN, the Planck massMPl = 1/

√
GN

or the reduced Planck mass M̃Pl = 1/
√
8πGN. Maxwell’s equations are written in

the Lorentz–Heaviside version of the cgs system. Thus there is a factor 4π in the
Coulomb law, but not in Maxwell’s equations. Sommerfeld’s fine-structure constant is
α = e2/(4π) ≃ 1/137.

We choose as signature of the metric −2, thence the metric tensor in Minkowski space
is ηµν = ηµν = diag(1,−1,−1,−1). If not otherwise specified, Einstein’s summation
convention is implied.

The d’Alembert or wave operator is ✷ ≡ ∂µ∂µ = ∂2

∂t2 −∆, while the four-dimensional

nabla operator has the components ∂µ ≡ ∂
∂xµ =

(
∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z

)
.

A boldface italic letter denotes the components of a three-vector V = {Vx, Vy, Vz} =
{Vi, i = 1, 2, 3} or the three-dimensional part of a contravariant vector with compo-
nents V µ = {V 0, V 1, V 2, V 3} = {V 0,V }; a covariant vector has in Minkowski space
the components Vµ = (V0,−V ). Scalar products of four-vectors are also denoted by
pµq

µ = p · q, of three-vectors by p ·q = piq
i. If there is no danger of confusion, the dot

is omitted. Vectors and tensors in index free notation are denoted by boldface Roman
letters, V = V µ∂µ or g = gµνdx

µ ⊗ dxν .
Greek indices α, β, . . . encompass the range α = {0, 1, 2, . . . d − 1}, Latin indices
i, j, k, . . . the range i = {1, 2, . . . d − 1}, where d denotes the dimension of the space-
time. In chapter 19, Latin indices a, b, c, . . . denote tensor components with respect to
the vielbein field eaµ.

Our convention for the Fourier transformation is asymmetric, putting the factor
1/(2π)n into

f(x) =

∫
d4k

(2π)4
f(k)e−ikx and f(x) =

∫
d3k

(2π)3
f(k)eikx.

If no borders are specified in definite integrals, integration from −∞ to∞ is assumed.

Our nomenclature for disconnected, connected and one-particle irreducible (1PI) n-
point Green functions and their corresponding generating functionals is as follows:

Green function generating functional
(dis-) connected G(x1, . . . , xn) Z[J, . . .]
connected G(x1, . . . , xn) W [J, . . .]
1PI Γ(x1, . . . , xn) Γ[φ, . . .]
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Dirac spinors are normalised as ū(p, s)u(p, s) = 2m.

We use as covariant derivative Dµ = ∂µ + igAaµT
a with coupling g > 0, field strength

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν and generators T a satisfying [T a, T b] = ifabcT c for

all gauge groups. Special cases used in the SM are the groups Uem(1), UY(1), SUL(2)
and SU(3) with g = {q, g′, g, gs} and T a = {1, 1, τa/2, λa/2} in the fundamental
representation. In particular, the electric charge of the positron is q = e > 0.

Employing dimensional regularisation (DR), we change the dimension of loop integrals
from d = 4 to d = 2ω = 4− 2ε.

The results of problems marked by ♣ are used later in the text, those marked by ♥

require more efforts and time than average ones. Solutions to selected problems can
be found on the webpage of this book. Commonly used symbols are

a scale factor in FLRW metric
δ(x) Dirac’s delta function,

∫
dx f(x)δ(x) = f(0)

ε infinitesimal quantity, slow-roll parameter
εµ, εµν polarisation vector and tensor for spin s = 1, 2
εµνρσ Levi-Civita tensor with ǫ0123 = −ǫ0123 = 1
η boost parameter, conformal time, slow-roll parameter
g = det(gµν) determinant of the metric tensor gµν
g∗, g∗,S relativistic degrees of freedom entering ρ, S
H(q, p), H (φ, π) Hamiltonian, Hamiltonian density

H† Hermitian conjugate (h.c.) with M † =M∗T or M †
ij =M∗

ji

H = ȧ/a, H = a′/a Hubble parameter
L(q, q̇), L (φ, ∂µφ) Lagrangian, Lagrangian density
Ωi = ρi/ρcr fraction of critical energy density in component i
pµ;P ;Pij four momentum pµ = (E,p), pressure
ψ̄ adjoint spinor with ψ̄ = ψ†γ0

Rαβρσ = [∂ρΓ
α
βσ − . . . Riemann or curvature tensor

Rαβ = Rραρβ Ricci tensor

R = gµνR
µν curvature scalar R

S[φ], S[φ, ∂µφ] action functional
Tµν (energy–momentum) stress tensor
ϑ(x) Heaviside step function, ϑ(x) = 1 for x > 0, 0 for x < 0.
tr trace of a matrix tr(A) =

∑
iAii, of a tensor tr(T ) = T µ

µ

Tr sum/integration over a complete set of quantum numbers
u, v solutions of Dirac equation, light-cone coordinates t± x
w = P/ρ equation of state (EoS) parameter
Y = nX/s abundance of particle type X relative to entropy density
X = nX/nB abundance of particle type X relative to baryon density
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1

Classical mechanics

To begin, in this chapter we review those concepts of classical mechanics which are
essential for progressing towards quantum theory. First we recall briefly the Lagrangian
and Hamiltonian formulation of classical mechanics and their derivation from an action
principle. We also illustrate the Green function method using as example the driven
harmonic oscillator and recall the action of a relativistic point particle.

1.1 Action principle

Variational principles. Fundamental laws of nature as Newton’s axioms or
Maxwell’s equations were discovered in the form of differential equations. Starting
from Leibniz and Euler, it was realised that one can re-express differential equations
in the form of variational principles. In this approach, the evolution of a physical
system is described by the extremum of an appropriately chosen functional. Various
versions of such variational principles exist, but they have in common that the func-
tionals used have the dimension of “energy × time”; that is, the functionals have the
same dimension as Planck’s constant ~. A quantity with this dimension is called ac-
tion S. An advantage of using the action as main tool to describe dynamical systems
is that this allows us to implement easily both spacetime and internal symmetries.
For instance, choosing as ingredients of the action local functions that transform as
scalars under Lorentz transformations leads automatically to relativistically invari-
ant field equations. Moreover, the action S economically summarises the information
contained typically in a set of various coupled differential equations.

If the variational principle is formulated as an integral principle, then the functional
S will depend on the whole path q(t) described by the system between the considered
initial and final time. In the formulation of quantum theory we will pursue, we will
look for a direct connection from the classical action S[q] of the path [q(t): q′(t′)] to
the transition amplitude 〈q′, t′|q, t〉. Thus the use of the action principle will not only
simplify the discussion of symmetries of a physical system but it also lies at the heart
of the approach to quantum theory we will follow.

1.1.1 Hamilton’s principle and Lagrange’s equations

A functional F [f(x)] is a map from a certain space of functions f(x) into the real or
complex numbers. We will consider mainly functionals from the space of (at least) twice
differentiable functions between fixed points a and b. More specifically, Hamilton’s
principle uses as functional the action S defined by



2 Classical mechanics

S[qi] =

∫ b

a

dt L(qi, q̇i, t), (1.1)

where L is a function of the 2n independent functions qi and q̇i = dqi/dt as well as of
the parameter t. In classical mechanics, we call L the Lagrange function of the system,
qi are its n generalised coordinates, q̇i the corresponding velocities and t is the time.
The extrema of this action give those paths q(t) from a to b which are solutions of the
equations of motion for the system described by L.

How do we find those paths that extremize the action S? First of all, we have to
prescribe which variables are kept constant, which are varied and which constraints the
variations have to obey. Depending on the variation principle we choose, these condi-
tions and the functional form of the action will differ. Hamilton’s principle corresponds
to a smooth variation of the path,

qi(t, ε) = qi(t, 0) + εηi(t),

that keeps the endpoints fixed, ηi(a) = ηi(b) = 0 but is otherwise arbitrary. The scale
factor ε determines the magnitude of the variation for the one-parameter family of
paths εηi(t). The notation S[qi] stresses that we consider the action as a functional
only of the coordinates qi. The velocities q̇i are not varied independently because ε
is time-independent. Since the time t is not varied in Hamilton’s principle, varying
the path qi(t, ε) requires only to calculate the resulting change of the Lagrangian L.
Following this prescription, the action has an extremum if

0 =
∂S[qi(t, ε)]

∂ε

∣∣∣∣
ε=0

=

∫ b

a

dt

(
∂L

∂qi
∂qi

∂ε
+
∂L

∂q̇i
∂q̇i

∂ε

)
=

∫ b

a

dt

(
∂L

∂qi
ηi +

∂L

∂q̇i
η̇i
)
. (1.2)

Here we applied—as always in the following—Einstein’s convention to sum over a
repeated index pair. Thus, for example, the first term in the bracket equals

∂L

∂qi
ηi ≡

n∑

i=1

∂L

∂qi
ηi

for a system described by n generalised coordinates. We can eliminate η̇i in favour of
ηi, integrating the second term by parts, arriving at

∂S[qi(t, ε)]

∂ε

∣∣∣∣
ε=0

=

∫ b

a

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
ηi +

[
∂L

∂q̇i
ηi
]b

a

. (1.3)

The boundary term [. . .]ba vanishes because we required that the functions ηi are zero
at the endpoints a and b. Since these functions are otherwise arbitrary, each individual
term in the first bracket has to vanish for an extremal curve. The n equations resulting
from the condition ∂S[qi(t, ε)]/∂ε = 0 are called the (Euler–) Lagrange equations of
the action S,

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (1.4)
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and give the equations of motion for the system specified by L. In the future, we will
use a more concise notation, calling

δqi ≡ lim
ε→0

qi(t, ε)− qi(t, 0)
ε

=
∂qi(t, ε)

∂ε

∣∣∣∣
ε=0

(1.5)

the variation of qi, and similarly for functions and functionals of qi. Thus we can
rewrite, for example, Eq. (1.2) in a more evident form as

0 = δS[qi] =

∫ b

a

dt δL(qi, q̇i, t) =

∫ b

a

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)
. (1.6)

We close this paragraph with three remarks. First, we note that Hamilton’s principle
is often called the principle of least action. This name is somewhat misleading, since
the extremum of the action can be also a maximum or a saddle-point. Second, observe
that the Lagrangian L is not uniquely fixed. Adding a total time derivative, L→ L′ =
L+ df(q, t)/dt, does not change the resulting Lagrange equations,

S′ = S +

∫ b

a

dt
df

dt
= S + f(q(b), tb)− f(q(a), ta), (1.7)

since the last two terms vanish varying the action with the restriction of fixed endpoints
a and b. Finally, note that we used a Lagrangian that depends only on the coordi-
nates and their first derivatives. Such a Lagrangian leads to second-order equations
of motion and thus to a mechanical system specified by the 2n pieces of information
{qi, q̇i}. Ostrogradsky showed 1850 that a stable ground-state is impossible, if the
Lagrangian contains higher derivatives q̈, q(3), . . ., cf. problem 1.3. Therefore such the-
ories contradict our experience that the vacuum is stable. Constructing Lagrangians
for the fundamental theories describing Nature, we should restrict ourselves thus to
Lagrangians that lead to second-order equations of motion.

Lagrange function. We illustrate now how one can use symmetries to constrain
the possible form of a Lagrangian L. As example, we consider the case of a free non-
relativistic particle with mass m subject to the Galilean principle of relativity. More
precisely, we use that the homogeneity of space and time forbids that L depends on
x and t, while the isotropy of space implies that L depends only on the norm of the
velocity vector v, but not on its direction. Thus the Lagrange function of a free particle
can be only a function of v2, L = L(v2).

Let us consider two inertial frames moving with the infinitesimal velocity ε relative
to each other. (Recall that an inertial frame is defined as a coordinate system where
a force-free particle moves along a straight line.) Then a Galilean transformation con-
nects the velocities measured in the two frames as v′ = v+ε. The Galilean principle of
relativity requires that the laws of motion have the same form in both frames, and thus
the Lagrangians can differ only by a total time derivative. Expanding the difference
δL in ε gives with δv2 = 2v · ε+O(ε2)

δL =
∂L

∂v2
δv2 = 2v · ε ∂L

∂v2
. (1.8)

Since vi = dxi/dt, the term ∂L/∂v2 has to be independent of v such that the difference
δL is a total time derivative. Hence, the Lagrangian of a free particle has the form
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L = av2 + b. The constant b drops out of the equations of motion, and we can set
it therefore to zero. To be consistent with usual notation, we call the proportionality
constant m/2, and the total expression kinetic energy T ,

L = T =
1

2
mv2. (1.9)

For a system of non-interacting particles, the Lagrange function L is additive, L =∑
a

1
2mav

2
a. If there are interactions (assumed for simplicity to depend only on the

coordinates), then we subtract a function V (x1,x2, . . .) called potential energy. One
confirms readily that this choice for L reproduces Newton’s law of motion.

Energy. The Lagrangian of a closed system does not depend on time because of the
homogeneity of time. Its total time derivative is

dL

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i. (1.10)

Using the equations of motion and replacing ∂L/∂qi by (d/dt)∂L/∂q̇i, it follows

dL

dt
= q̇i

d

dt

∂L

∂q̇i
+
∂L

∂q̇i
q̈i =

d

dt

(
q̇i
∂L

∂q̇i

)
. (1.11)

Hence the quantity

E ≡ q̇i ∂L
∂q̇i
− L (1.12)

remains constant during the evolution of a closed system. This holds also more gener-
ally, for example in the presence of static external fields, as long as the Lagrangian is
not time-dependent.

We have still to show that E coincides indeed with the usual definition of energy.
Using as Lagrange function L = T (q, q̇)−V (q), where the kinetic energy T is quadratic
in the velocities, we have

q̇i
∂L

∂q̇i
= q̇i

∂T

∂q̇i
= 2T (1.13)

and thus E = 2T − L = T + V .

Conservation laws. In a general way, we can derive the connection between a
symmetry of the Lagrangian and a corresponding conservation law as follows. Let us
assume that under a change of coordinates qi → qi + δqi, the Lagrangian changes at
most by a total time derivative,

L→ L+ δL = L+
dδF

dt
. (1.14)

In this case, the equations of motion are unchanged and the coordinate change qi →
qi+ δqi is a symmetry of the Lagrangian. The change dδF/dt has to equal δL induced
by the variation δqi,

∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i − dδF

dt
= 0. (1.15)
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Replacing again ∂L/∂qi by (d/dt)∂L/∂q̇i and applying the product rule gives as con-
served quantity

Q =
∂L

∂q̇i
δqi − δF. (1.16)

Thus any continuous symmetry of a Lagrangian system results in a conserved quantity.
In particular, energy conservation follows for a system invariant under time transla-
tions with δqi = q̇iδt. Other conservation laws are discussed in problem 1.7.

1.1.2 Palatini’s principle and Hamilton’s equations

Legendre transformation and the Hamilton function. In the Lagrange formal-
ism, we describe a system specifying its generalised coordinates and velocities using
the Lagrangian, L = L(qi, q̇i, t). An alternative is to use generalised coordinates and
their canonically conjugated momenta pi defined as

pi =
∂L

∂q̇i
. (1.17)

The passage from {qi, q̇i} to {qi, pi} is a special case of a Legendre transformation:1

Starting from the LagrangianL we define a new functionH(qi, pi, t) called Hamiltonian
or Hamilton function via

H(qi, pi, t) =
∂L

∂q̇i
q̇i − L(qi, q̇i, t) = piq̇

i − L(qi, q̇i, t). (1.18)

Here we assume that we can invert the definition (1.17) and are thus able to substitute
velocities q̇i by momenta pi in the Lagrangian L.

The physical meaning of the Hamiltonian H follows immediately comparing its
defining equation with the one for the energy E. Thus the numerical value of the
Hamiltonian equals the energy of a dynamical system; we insist, however, that H is
expressed as function of coordinates and their conjugated momenta. A coordinate qi
that does not appear explicitly in L is called cyclic. The Lagrange equations imply
then ∂L/∂q̇i = const., so that the corresponding canonically conjugated momentum
pi = ∂L/∂q̇i is conserved.

Palatini’s formalism and Hamilton’s equations. Previously, we considered the
action S as a functional only of qi. Then the variation of the velocities q̇i is not
independent and we arrive at n second–order differential equations for the coordinates
qi. An alternative approach is to allow independent variations of the coordinates qi

and of the velocities q̇i. We trade the latter against the momenta pi = ∂L/∂q̇i and
rewrite the action as

S[qi, pi] =

∫ b

a

dt
[
piq̇

i −H(qi, pi, t)
]
. (1.19)

The independent variation of coordinates qi and momenta pi gives

1The concept of a Legendre transformation may be familiar from thermodynamics, where it is used
to change between extensive variables (e.g. the entropy S) and their conjugate intensive variables (e.g.
the temperature T ).
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δS[qi, pi] =

∫ b

a

dt

[
piδq̇

i + q̇iδpi −
∂H

∂qi
δqi − ∂H

∂pi
δpi

]
. (1.20)

The first term can be integrated by parts, and the resulting boundary terms vanishes
by assumption. Collecting then the δqi and δpi terms and requiring that the variation
is zero, we obtain

0 = δS[qi, pi] =

∫ b

a

dt

[
−
(
ṗi +

∂H

∂qi

)
δqi +

(
q̇i − ∂H

∂pi

)
δpi

]
. (1.21)

As the variations δqi and δpi are independent, their coefficients in the round brack-
ets have to vanish separately. Thus we obtain in this formalism directly Hamilton’s
equations,

q̇i =
∂H

∂pi
, and ṗi = −

∂H

∂qi
. (1.22)

Consider now an observable O = O(qi, pi, t). Its time dependence is given by

dO

dt
=
∂O

∂qi
q̇i +

∂O

∂pi
ṗi +

∂O

∂t
=
∂O

∂qi
∂H

∂pi
− ∂O

∂pi

∂H

∂qi
+
∂O

∂t
, (1.23)

where we used Hamilton’s equations. If we define the Poisson brackets {A,B} between
two observables A and B as

{A,B} = ∂A

∂qi
∂B

∂pi
− ∂A

∂pi

∂B

∂qi
, (1.24)

then we can rewrite Eq. (1.23) as

dO

dt
= {O,H}+ ∂O

∂t
. (1.25)

This equations gives us a formal correspondence between classical and quantum
mechanics. The time evolution of an operator O in the Heisenberg picture is given
by the same equation as in classical mechanics, if the Poisson bracket is changed to a
commutator. Since the Poisson bracket is antisymmetric, we find

dH

dt
=
∂H

∂t
. (1.26)

Hence the Hamiltonian H is a conserved quantity, if and only ifH is time-independent.

1.2 Green functions and the response method

We can test the internal properties of a physical system, if we impose an external
force J(t) on it and compare its measured to its calculated response. If the system is
described by linear differential equations, then the superposition principle is valid. We
can reconstruct the solution x(t) for an arbitrary applied external force J(t), if we know
the response to a normalised delta function-like kick J(t) = δ(t− t′). Mathematically,
this corresponds to the knowledge of the Green function G(t − t′) for the differential
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equation D(t)x(t) = J(t) describing the system. Even if the system is described by a
non-linear differential equation, we can often use a linear approximation in case of a
sufficiently small external force J(t). Therefore the Green function method is extremely
useful and we will apply it extensively in discussing quantum field theories.

We illustrate this method with the example of the harmonic oscillator which is
the prototype for a quadratic, and thus exactly solvable, action. In classical physics,
causality implies that the knowledge of the external force J(t′) at times t′ < t is
sufficient to determine the solution x(t) at time t. We define therefore two Green

functions G̃ and GR by

x(t) =

∫ t

−∞
dt′ G̃(t− t′)J(t′) =

∫ ∞

−∞
dt′GR(t− t′)J(t′), (1.27)

where the retarded Green function GR satisfies GR(t − t′) = G̃(t − t′)ϑ(t − t′). The
definition (1.27) is motivated by the trivial relation J(t) =

∫
dt′ δ(t − t′)J(t′): an

arbitrary force J(t) can be seen as a superposition of delta functions δ(t − t′) with
weight J(t′). If the Green function GR(t−t′) determines the response of the system to a
delta function-like force, then we should obtain the solution x(t) integrating GR(t− t′)
with the weight J(t′).

We convert the equation of motion mẍ+mω2 x = J of a forced harmonic oscillator
into the form D(t)x(t) = J(t) by writing

D(t)x(t) ≡ m
(

d2

dt2
+ ω2

)
x(t) = J(t). (1.28)

Inserting (1.27) into (1.28) gives

∫ ∞

−∞
dt′D(t)GR(t− t′)J(t′) = J(t). (1.29)

For an arbitrary external force J(t), this relation can be only valid if

D(t)GR(t− t′) = δ(t− t′). (1.30)

Thus a Green function G(t− t′) is the inverse of its defining differential operator D(t).
As we will see, Eq. (1.30) does not specify uniquely the Green function, and thus we
will omit the index “R” for the moment. Performing a Fourier transformation,

G(t− t′) =
∫

dΩ

2π
G(Ω)e−iΩ(t−t′) and δ(t− t′) =

∫
dΩ

2π
e−iΩ(t−t′), (1.31)

we obtain ∫
dΩ

2π
G(Ω)D(t)e−iΩ(t−t′) =

∫
dΩ

2π
e−iΩ(t−t′). (1.32)

The action of D(t) on the plane waves e−iΩ(t−t′) can be evaluated easily, since the
differentiation has become equivalent with multiplication, d/dt → −iΩ. Comparing
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Im(Ω)

Re(Ω)

C−

−ω − iε
×

ω − iε
×

Fig. 1.1 Poles and contour in the complex Ω plane used for the integration of the retarded

Green function.

then the coefficients of the plane waves on both sides of this equation, we have to
invert only an algebraic equation, arriving at

G(Ω) =
1

m

1

ω2 − Ω2
. (1.33)

For the back-transformation with τ = t− t′,

G(τ) =

∫
dΩ

2πm

e−iΩτ

ω2 − Ω2
, (1.34)

we have to specify how the poles at Ω2 = ω2 are avoided. It is this choice by which
we select the appropriate Green function. In classical physics, we implement causality
(“cause always precedes its effect”) selecting the retarded Green function.

We will use Cauchy’s residue theorem,
∮
dz f(z) = 2πi

∑
resz0 f(z), to calculate the

integral. Its application requires to close the integration contour adding a path which
gives a vanishing contribution to the integral. This is achieved, when the integrand
G(Ω)e−iΩτ vanishes fast enough along the added path. Thus we have to choose for
positive τ the contour C− in the lower plane, e−iΩτ = e−|ℑ(Ω)|τ → 0 for ℑ(Ω)→ −∞,
while we have to close the contour in the upper plane for negative τ . If we want to
obtain the retarded Green function GR(τ) which vanishes for τ < 0, we therefore have
to shift the poles Ω1/2 = ±ω into the lower plane as shown in Fig. 1.1 by adding a
small negative imaginary part, Ω1/2 → Ω1/2 = ±ω − iε, or

GR(τ) = −
1

2πm

∫
dΩ

e−iΩτ

(Ω− ω + iε)(Ω + ω + iε)
. (1.35)

The residue resz0f(z) of a function f with a single pole at z0 is given by

resz0 f(z) = lim
z→z0

(z − z0)f(z). (1.36)

Thus we pick up at Ω1 = −ω − iε the contribution 2πi e+iωτ/(−2ω), while we obtain
2πi e−iωτ/(2ω) from Ω2 = ω − iε. Combining both contributions and adding a minus
sign because the contour is clockwise, we arrive at
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GR(τ) =
i

2mω

[
e−iωτ − eiωτ

]
ϑ(τ) =

1

m

sin(ωτ)

ω
ϑ(τ) (1.37)

as result for the retarded Green function of the forced harmonic oscillator.
We can now obtain a particular solution solving (1.27). For instance, choosing

J(t′) = δ(t− t′), results in
x(t) =

1

m

sin(ωt)

ω
ϑ(t). (1.38)

Thus the oscillator was at rest for t < 0, got a kick at t = 0, and oscillates according
x(t) afterwards. Note the following two points: first, the fact that the kick proceeds the
movement is the result of our choice of the retarded (or causal) Green function. Second,
the particular solution (1.38) for an oscillator initially at rest can be generalised by
adding the solution to the homogeneous equation ẍ+ ω2 x = 0.

1.3 Relativistic particle

In special relativity, we replace the Galilean transformations as symmetry group of
space and time by Lorentz transformations. The latter are all those coordinate trans-
formations xµ → x̃µ = Λµνx

ν that keep the squared distance

s212 ≡ (t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2 (1.39)

between two spacetime events xµ1 and xµ2 invariant. The distance of two infinitesimally
close spacetime events is called the line element ds of the spacetime. In Minkowski
space, it is given by

ds2 = dt2 − dx2 − dy2 − dz2 (1.40)

using a Cartesian inertial frame. We can interpret the line element ds2 as a scalar
product, if we introduce the metric tensor ηµν with elements

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (1.41)

and a scalar product of two four-vectors as

a · b ≡ ηµνaµbν = aµb
µ = aµbµ . (1.42)

In Minkowski space, we call a four-vector any four-tuple V µ that transforms as Ṽ µ =
ΛµνV

ν . By convention, we associate three-vectors with the spatial part of four-vectors
with upper indices, for example we set xµ = {t, x, y, z} or Aµ = {φ,A}. Lowering
then the index by contraction with the metric tensor result in a minus sign of the
spatial components of a four-vector, xµ = ηµνx

µ = {t,−x,−y,−z} or Aµ = {φ,−A}.
Summing over an index pair, one index occurs in an upper and one in a lower position.
Note that in the denominator, an upper index counts as a lower index and vice versa;
cf. for example with Eqs. (1.18) and (1.17). Additionally to four-vectors, we will meet
tensors T µ1···µn of rank n which transform as T̃ µ1···µn = Λµ1

ν1 · · ·Λµn
νnT

ν1···νn .
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t

x

yb

(x − y)2 > 0 time-like

(x − y)2 = 0 light-like

(x − y)2 < 0 space-like

Fig. 1.2 Light-cone at the point P (yµ) generated by light-like vectors. Contained in the

light-cone are the time-like vectors, outside the space-like ones.

Since the metric ηµν is indefinite, the norm of a vector aµ can be

aµa
µ > 0, time-like, (1.43a)

aµa
µ = 0, light-like or null-vector, (1.43b)

aµa
µ < 0, space-like. (1.43c)

The cone of all light-like vectors starting from a point P is called light-cone, cf. Fig. 1.2.
The time-like region inside the light-cone consists of two parts, past and future. Only
events inside the past light-cone can influence the physics at point P , while P can
influence only the interior of its future light-cone. The proper-time τ is the time dis-
played by a clock moving with the observer. With our conventions—negative signature
of the metric and c = 1—the proper-time elapsed between two spacetime events equals
the integrated line element between them,

τ12 =

∫ 2

1

ds =

∫ 2

1

[ηµνdx
µdxν ]1/2 =

∫ 2

1

dt[1− v2]1/2 < t2 − t1. (1.44)

The last part of this equation, where we introduced the three-velocity vi = dxi/dt
of the clock, shows explicitly the relativistic effect of time dilation, as well as the
connection between coordinate time t and the proper-time τ of a moving clock, dτ =
(1 − v2)1/2dt ≡ dt/γ. The line describing the position of an observer is called world-
line. Parameterising the world-line by the parameter σ, x = x(σ), the proper-time is
given by

τ =

∫
dσ

[
ηµν

dxµ

dσ

dxν

dσ

]1/2
. (1.45)

Note that τ is invariant under a reparameterisation σ̃ = f(σ).
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The only invariant differential we have at our disposal to form an action for a free
point-like particle is the line element, or equivalently the proper-time,

S0 = α

∫ b

a

ds = α

∫ b

a

dσ
ds

dσ
(1.46)

with L = αds/dσ = αdτ/dσ. We check now if this choice which implies the Lagrangian

L = α
dτ

dσ
= α

[
ηµν

dxµ

dσ

dxν

dσ

]1/2
(1.47)

for a free particle is sensible. The action has the correct non-relativistic limit,

S0 = α

∫ b

a

ds = α

∫ b

a

dt
√

1− v2 =

∫ b

a

dt

(
−m+

1

2
mv2 +O(v4)

)
, (1.48)

if we set α = −m. The massm corresponds to a potential energy in the non-relativistic
limit and has therefore a negative sign in the Lagrangian. Moreover, a constant drops
out of the equations of motion, and thus the term −m can be omitted in the non-
relativistic limit. The time t enters the relativistic Lagrangian in a Lorentz invariant
way as one of the dynamical variables, xµ = (t,x), while σ assumes now t’s purpose
to parameterise the trajectory, xµ(σ). Since a moving clock goes slower than a clock
at rest, solutions of this Lagrangian maximise the action.

Example 1.1: Relativistic dispersion relation. We extend the non-relativistic definition
of the momentum, pi = ∂L/∂ẋi, to four dimensions setting pα = −∂L/∂ẋα. Note the
minus sign that reflects the minus in the spatial components of a covariant vector,
pα = (E,−p). Then

pα = − ∂L

∂ẋα
= m

dxα/dσ

dτ/dσ
= m

dxα

dτ
≡ muα. (1.49)

In the last step, we defined the four-velocity uα = dxα/dτ . Using dt = γdτ , it follows

uαu
α = 1 and pαp

α = m2. The last relation expresses the relativistic dispersion relation

E2 = m2 + p2.

The Lagrange equations are

d

dσ

∂L

∂(dxα/dσ)
=

∂L

∂xα
. (1.50)

Consider, for example, the x1 component, then

d

dσ

∂L

∂(dx1/dσ)
=

d

dσ

(
m2

L

dx1

dσ

)
= 0. (1.51)

Since L = −mdτ/dσ, Newton’s law follows for the x1 coordinate after multiplication
with dσ/dτ ,

d2x1

dτ2
= 0, (1.52)

and similar for the other coordinates.
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An equivalent but often more convenient form for the Lagrangian of a free particle
is

L = −mηµν ẋµẋν , (1.53)

where we set ẋµ = dxµ/dτ . If there are no interactions (except gravity), we can neglect
the mass m of the particle and one often sets m→ −1.

Next we want to add an interaction term Sem between a particle with charge q and
an electromagnetic field. The simplest possible action is to integrate the potential Aµ
along the world-line xµ(σ) of the particle,

Sem = −q
∫

dxµAµ(x) = −q
∫

dσ
dxµ

dσ
Aµ(x). (1.54)

Using the choice σ = τ , we can view qẋµ as the current jµ induced by the particle
and thus the interaction has the form Lem = −jµAµ. Any candidate for Sem should
be invariant under a gauge transformation of the potential,

Aµ(x)→ Aµ(x) − ∂µΛ(x). (1.55)

This is the case, since the induced change in the action,

δΛSem = q

∫ 2

1

dσ
dxµ

dσ

∂Λ(x)

∂xµ
= q

∫ 2

1

dΛ = q[Λ(2)− Λ(1)], (1.56)

depends only on the endpoints. Thus δΛSem vanishes keeping the endpoints fixed.
Assuming that the Lagrangian is additive,

L = L0 + Lem = −m
[
ηµν

dxµ

dσ

dxν

dσ

]1/2
− qdx

µ

dσ
Aµ(x) (1.57)

the Lagrange equations give now

d

dσ

[
mdxα/dσ

[ηµνdxµ/dσ dxν/dσ]1/2
+ qAα

]
= q

dxλ

dσ

∂Aλ(x)

∂xα
. (1.58)

Performing then the differentiation of A(x(σ)) with respect to σ and moving it to the
RHS, we find

m
d

dσ

[
dxα/dσ

dτ/dσ

]
= q

(
dxλ

dσ

∂Aλ
∂xα

− dxλ

dσ

∂Aα
∂xλ

)
= q

dxλ

dσ
Fαλ, (1.59)

where we introduced the electromagnetic field-strength tensor Fµν = ∂µAν − ∂νAµ.
Choosing σ = τ we obtain the covariant version of the Lorentz equation,

m
d2xα

dτ2
= q Fαλ u

λ. (1.60)

You should work through problem 1.9, if this equation and the covariant formulation
of the Maxwell equations are not familiar to you.
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Summary

The Lagrange and Hamilton function are connected by a Legendre trans-
formation, L(qi, q̇i, t) = piq̇

i − H(qi, pi, t). Lagrange’s and Hamilton’s equa-

tions follow extremizing the action S[qi] =
∫ b
a
dt L(qi, q̇i, t) and S[qi, pi] =∫ b

a dt
[
piq̇

i −H(qi, pi, t)
]
, respectively, keeping the endpoints a and b in coordi-

nate space fixed. Knowing the Green function G(t− t′) of a linear system, we can
find the solution x(t) for an arbitrary external force J(t) by integrating G(t− t′)
with the weight J(t).

Further reading. The series of Landau and Lifshitz on theoretical physics is a time-
less resource for everybody studying and working in this field; its Volume 1 (Landau
and Lifshitz, 1976) presents a succinct treatment of classical mechanics.

Problems

1.1 Units. ♣ a.) The four fundamental con-
stants ~ (Planck’s constant), c (velocity of
light), GN (gravitational constant) and k
(Boltzmann constant) can be combined to
obtain the dimension of a length, time,
mass, energy and temperature. Find the re-
lations and calculate the numerical values of
two of them. What is the physical meaning
of these “Planck units”? b.) Find the con-
nection between a cross-section σ expressed
in units of cm2, mbarn and GeV−2.

1.2 dδ = δd. Use the definition (1.5) to show
that variation and differentiation commute,
i.e. that “dδ = δd”.

1.3 Higher derivatives. a.) Find the La-
grange equation for a Lagrangian contain-
ing higher derivatives, L = L(q, q̇, q̈, . . .). b.)
Consider L = L(q, q̇, q̈) choosing as canon-
ical variables Q1 = q, Q2 = q̇, P1 = ∂L

∂q̇
−

d
dt

∂L
∂q̈

and P2 = ∂L
∂q̈

and defining as Hamil-

tonian H(Q1, Q2, P1, P2) =
∑2

i=1 Piq
(i)−L.

Show that the resulting Hamilton equations
give the correct time evolution and that H
corresponds to the energy. Why does H de-
scribe a unstable system?

1.4 Oscillator with friction. Consider a one-
dimensional system described by the La-
grangian L = exp(2αt)L0 and L0 = 1

2
mq̇2−

V (q). a.) Show that the equation of motion
corresponds to an oscillator with friction
term. b). Derive the energy lost per time
dE/dt of the oscillator, with E = 1

2
mq̇2 +

V (q). c.) Show that the result in b.) agrees
with the one obtained from the Lagrange
equations of the first kind, d

dt
∂L
∂q̇
− ∂L

∂q
= Q,

where the generalised force Q perform the
work δA = Qδq.

1.5 Classical driven oscillator. Consider
an harmonic oscillator satisfying q̈(t) −
Ω2q(t) = 0 for 0 < t < T and q̈(t)+ω2q(t) =
0 otherwise, with ω and Ω as real con-
stants. a.) Show that for q(t) = A1 sin(ωt)
for t < 0 and ΩT ≫ 1, the solution q(t) =
A2 sin(ω0t + α) with α = const. satisfies

A2 ≈ 1
2
(1 + ω2/Ω2)1/2 exp(ΩT ). b.) If the

oscillator was in the ground-state at t < 0,
how many quanta are created?

1.6 Functional derivative. ♣ We define the
derivative of a functional F [φ] by

∫
dx η(x)

δF [φ]

δφ(x)
= lim

ε→0

1

ε
{F [φ+ εη]− F [φ]} .

a.) Find the functional derivative of
F [φ] =

∫
dxφ(x) and show thereby that

δφ(x)/δφ(x′) = δ(x− x′). b.) Re-derive the
Lagrange equations.
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1.7 Conservation laws. Discuss the symme-
tries of the Galilean transformations and
the resulting conservation laws, following
the example of time-translation invariance
and energy conservation.

1.8 Step function. Heaviside’s step function
ϑ(τ ) is defined by ϑ(τ ) = 0 for τ < 0 and
ϑ(τ ) = 1 for τ > 0. a.) Use Chauchy’s
residuum theorem to show that the integral
representation

ϑ(τ ) = − 1

2πi
lim
ε→0

∫ ∞

−∞
dω

e−iωτ

ω + iε

is valid. b.) Show that dϑ(τ )/dτ = δ(τ ).

1.9 Electrodynamics. Compare Eq. (1.60) to
the three-dimensional version of the Lorentz
force and derive thereby the elements of the
field-strength tensor Fµν . Find the Lorentz
invariants that can be formed out of Fµν

and express them through E and B. What
is the meaning of the zero component of the
Lorentz force?

1.10 Transformation between inertial
frames. ♣ Consider two inertial frames K
and K′ with parallel axes at t = t′ = 0

that are moving with the relative velocity v
in the x direction. a.) Show that the linear
transformation between the coordinates in
K and K′ can be written as t′ = At+ Bx,
x′ = A(x − vt), y′ = y, and z′ = z. b.)
Show that requiring (1.39) leads to Lorentz
transformations. c.) What is the condition
leading to Galilean transformations?

1.11 Relativity of simultaneity. ♣ Draw a
spacetime diagram (in d = 2) for two in-
ertial frames connected by a boost with
velocity β. What are the angles between the
axes t and t′, x and x′? Draw lines of con-
stant t and t′ and convince yourself that the
time order of two space-like events is not in-
variant.

1.12 Wave equation for a string. Consider a
string of length L, mass density ρ and ten-
sion κ in one spatial dimension. Denoting
its deviation from its equilibrium position
x0 with φ(x, t) ≡ x(t) − x0, write down its
kinetic and potential energy (density) and
the corresponding action. Derive its equa-
tion of motion. [Note: φ(x, t) depends on
t and x, and the Lagrange equation for
L(φ, ∂tφ, ∂xφ) will contain d/dt and d/dx
terms.]
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Quantum mechanics

The main purpose of this chapter is to introduce Feynman’s path integral as an alterna-
tive to the standard operator approach to quantum mechanics. Most of our discussion
of quantum fields will be based on this approach and thus becoming familiar with
this technique using the simpler case of quantum mechanics is of central importance.
Instead of employing the path integral directly, we will use as a basic tool the vacuum
persistence amplitude 〈0,∞|0,−∞〉J . This quantity is the probability amplitude that
a system under the influence of an external force J stays in its ground-state. Since we
can apply an arbitrary force J , the amplitude 〈0,∞|0,−∞〉J contains all information
about the system. Moreover, it serves as a convenient tool to calculate Green functions
which will become our main target studying quantum field theories.

2.1 Reminder of the operator approach

A classical system described by a Hamiltonian H(qi, pi, t) can be quantised promoting
qi and pi to operators1 q̂i and p̂i which satisfy the canonical commutation relations[
q̂i, p̂j

]
= iδij . The latter are the formal expression of Heisenberg’s uncertainty relation.

Apart from ordering ambiguities, the Hamilton operator H(q̂i, p̂i, t) can be directly
read from the Hamiltonian H(qi, pi, t). The basic features of any quantum theory can
be synthesised into a few principles.

General principles. A physical system in a pure state is fully described by a prob-
ability amplitude

ψ(a, t) = 〈a|ψ(t)〉 ∈ C, (2.1)

where {a} is a set of quantum numbers specifying the system and the states |ψ(t)〉
form a complex Hilbert space. The probability p to find the specific values a∗ in a
measurement is given by p(a∗) = |ψ(a∗, t)|2. The possible values a∗ are the eigenvalues
of Hermitian operators Â whose eigenvectors |a〉 form an orthogonal, complete basis.
In Dirac’s bra-ket notation, we can express these statements by

Â|a〉 = a|a〉 , 〈a|a′〉 = δ (a− a′) ,
∫

da |a〉〈a| = 1. (2.2)

In general, operators do not commute. Their commutation relations can be obtained
by the replacement {A,B} → i[Â, B̂] in the definition (1.24) of the Poisson brackets.

1When there is the danger of an ambiguity, operators will be written with a “hat”; otherwise we
drop it.
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The state of a particle moving in one dimension in a potential V (q) can be described
either by the eigenstates of the position operator q̂ or of the momentum operator p̂.
Both eigenstates form a complete, orthonormal basis, and they are connected by a
Fourier transformation which we choose to be asymmetric,

ψ(q) = 〈q|ψ〉 =
∫

dp

2π
eipq ψ(p) =

∫
dp

2π
〈q| p〉 〈p|ψ〉 (2.3a)

ψ(p) = 〈p|ψ〉 =
∫

dq e−ipq ψ(q) =

∫
dq 〈p| q〉 〈q|ψ〉. (2.3b)

Choosing this normalisation has the advantage that the factor 1/(2π) in the Fourier
integral over momenta is the same as in the density of free states, L dp/(2π), which
will enter quantities like decay rates or cross-sections. From Eq. (2.3), it follows that
the asymmetry in the Fourier transformation is reflected in the completeness relation
of the states, ∫

dq |q〉 〈q| = 1 and

∫
dp

2π
|p〉 〈p| = 1. (2.4)

Time evolution. Since the states |ψ(t)〉 form a complex Hilbert space, the super-
position principle is valid: If ψ1 and ψ2 are possible states of the system, then also

ψ(t) = c1ψ1(t) + c2ψ2(t) , ci ∈ C. (2.5)

In quantum mechanics, a stronger version of this principle holds which states that if
ψ1(t) and ψ2(t) describe the possible time evolution of the system, then so does also
the superposed state ψ(t). This implies that the time evolution is described by a linear,
homogeneous differential equation. Choosing it as first order in time, we can write the
evolution equation as

i∂t|ψ(t)〉 = D|ψ(t)〉, (2.6)

where the differential operator D on the RHS has to be still determined.
We call the operator describing the evolution of a state from ψ(t) to ψ(t′) the time-

evolution operator U(t′, t). This operator is unitary, U−1 = U †, in order to conserve
probability and forms a group, U(t3, t1) = U(t3, t2)U(t2, t1) with U(t, t) = 1. For an
infinitesimal time step δt,

|ψ(t+ δt)〉 = U(t+ δt, t) |ψ(t)〉 , (2.7)

we can set with U(t, t) = 1

U(t+ δt, t) = 1− iHδt. (2.8)

Here we introduced the generator of infinitesimal time-translations H . The analogy to
classical mechanics suggests that H is the operator version of the classical Hamilton
function H(q, p). Inserting Eq. (2.8) into (2.7) results in

|ψ(t+ δt)〉 − |ψ(t)〉
δt

= −iH |ψ(t)〉 . (2.9)

Comparing then Eqs. (2.6) and (2.9) reveals that the operator D on the RHS of
Eq. (2.6) coincides with the Hamiltonian H . We call a time-evolution equation of this
type for arbitrary H Schrödinger equation.
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Next we want to determine the connection between H and U . Plugging ψ(t) =
U(t, 0)ψ(0) in the Schrödinger equation gives

[
i
∂U(t, 0)

∂t
−HU(t, 0)

]
ψ(0) = 0. (2.10)

Since this equation is valid for an arbitrary state ψ(0), we can rewrite it as an operator
equation,

i∂t′U(t′, t) = HU(t′, t). (2.11)

Integrating it, we find as formal solution

U(t′, t) = 1− i

∫ t′

t

dt′′H(t′′)U(t′′, t) (2.12)

or, if H is time-independent,

U(t, t′) = exp(−iH(t− t′)). (2.13)

Up to now, we have considered the Schrödinger picture where operators are con-
stant and the time evolution is given by the change in the state vectors |ψ(t)〉. In the
Heisenberg picture, the time evolution is driven completely by the one of the operators.
States and operators in the two pictures are connected by

OS(t) = U(t, t0)OH(t)U
†(t, t0), (2.14a)

|ψS(t)〉 = U(t, t0) |ψH〉 , (2.14b)

if they agree at the time t0.

Propagator. We insert the solution of U for a time-independent H into |ψ(t′)〉 =
U(t′, t)|ψ(t)〉 and multiply from the left with 〈q′|,

ψ(q′, t′) = 〈q′|ψ(t′)〉 = 〈q′| exp[−iH(t′ − t)]|ψ(t)〉. (2.15)

Then we insert 1 =
∫
d3q|q〉〈q|,

ψ(q′, t′) =

∫
d3q 〈q′| exp[−iH(t′ − t)]|q〉〈q|ψ(t)〉 =

∫
d3q K(q′, t′; q, t)ψ(q, t). (2.16)

In the last step we introduced the propagator or Green function K in its coordinate
representation,

K(q′, t′; q, t) = 〈q′| exp[−iH(t′ − t)]|q〉. (2.17)

The Green function K equals the probability amplitude for the propagation between
two spacetime points; K(q′, t′; q, t) is therefore also called more specifically two-point
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Green function. We can express the propagator K by the solutions of the Schrödinger
equation, ψn(q, t) = 〈q|n(t)〉 = 〈q|n〉 exp(−iEnt) as

K(q′, t′; q, t) =
∑

n,n′

〈q′|n〉 〈n| exp(−iH(t′ − t))|n′〉︸ ︷︷ ︸
δn,n′ exp(−iEn(t′−t))

〈n′|q〉

=
∑

n

ψn(q
′)ψ∗

n(q) exp(−iEn(t′ − t)),
(2.18)

where n represents the complete set of quantum numbers specifying the energy
eigenvalues of the system. Note that this result is very general and holds for any
time-independent Hamiltonian.

Let us compute the propagator of a free particle in one dimension, described by
the Hamiltonian H = p2/2m. We write with τ = t′ − t

K(q′, t′; q, t) = 〈q′| e−iHτ |q〉 = 〈q′| e−iτ p̂2/2m

∫
dp

2π
|p〉 〈p| q〉

=

∫
dp

2π
e−iτp2/2m 〈q′| p〉 〈p| q〉 =

∫
dp

2π
e−iτp2/2m+i(q′−q)p ,

(2.19)

where we used 〈q′| p〉 = exp(iq′p) in the last step. The integral is Gaussian if we add an
infinitesimal factor exp(−εp2) to the integrand in order to ensure the convergence of the
integral. Thus the physical value of the energy E = p2/(2m) seen as a complex variable
is approached from the negative imaginary plane, E → E − iε. Taking afterwards the
limit ε→ 0, we obtain

K(q′, t′; q, t) =
( m

2πiτ

)1/2
eim(q′−q)2/2τ . (2.20)

Knowing the propagator, we can calculate the solution ψ(t′) at any time t′ for a given
initial state ψ(t) via Eq. (2.16).

Example 2.1: Calculate the integrals A =
∫
dx exp(−x2/2), B =

∫
dx exp(−ax2/2 +

bx), and C =
∫
dx · · · dxn exp(−xTAx/2 + JTx) for a symmetric n× n matrix A.

a.) We square the integral and calculate then A2 introducing polar coordinates, r2 =
x2 + y2,

A2 =

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp(−(x2 + y2)/2) = 2π

∫ ∞

0

dr re−r2/2 = 2π

∫ ∞

0

dt e−t = 2π ,

where we substituted t = r2/2. Thus the result for the basic Gaussian integral is A =√
2π. All other solvable variants of Gaussian integrals can be reduced to this result.

b.) We complete the square in the exponent,

−a
2

(
x2 − 2b

a
x

)
= −a

2

(
x− b

a

)2

+
b2

2a
,

and shift then the integration variable to x′ = x− b/a. The result is
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B =

∫ ∞

−∞
dx exp(−ax2/2 + bx) = eb

2/2a

∫ ∞

−∞
dx′ exp(−ax′2/2) =

√
2π

a
eb

2/2a . (2.21)

c.) We should complete again the square and try x′ = x− A−1J . With

(x− A−1J)TA(x− A−1J) = xTAx− xTAA−1J − JTA−1Ax+ JTA−1AA−1J

= xTAx− 2JTx+ JTA−1J ,

we obtain after shifting the integration vector,

C = exp
(
JTA−1J/2

) ∫
dx′

1 · · ·dx′
n exp

(
−x′TAx′/2

)
. (2.22)

Since the matrix A is symmetric, we can diagonalise A via an orthogonal transformation
D = OAOT . This corresponds to a rotation of the integration variables, y = Ox′. The
Jacobian of this transformation is one, and thus the result is

C = exp(JTA−1J/2)

n∏

i=1

∫
dyi exp(−aiy2i /2) =

√
(2π)n

detA
exp

(
1

2
JTA−1J

)
. (2.23)

In the last step we expressed the product of eigenvalues ai as the determinant of A.

2.2 Path integrals in quantum mechanics

In problem 2.1 you are asked to calculate the classical action of a free particle and of
a harmonic oscillator and to compare them to the corresponding propagators found in
quantum mechanics. Surprisingly, you will find that in both cases the propagator can
be written as K(q′, t′; q, t) = N exp(iS) where S is the classical action along the path
[q(t) : q′(t′)] and N a normalisation constant. This suggests that we can reformulate
quantum mechanics, replacing the standard operator formalism used to evaluate the
propagator (2.17) “somehow” by the classical action.

To get an idea how to proceed, we look at the famous double-slit experiment
sketched in the left panel of Fig. 2.1: According to the superposition principle, the
amplitude A for a particle to move from the source at q1 to the detector at q2 is the
sum of the amplitudes Ai for the two possible paths,

A = K(q2, t2; q1, t1) =
∑

paths

Ai. (2.24)

Clearly, we could add in a gedankenexperiment more and more screens between q1
and q2, increasing at the same time the number of holes. Although in this way we
replace continuous spacetime by a discrete lattice, the differences between these two
descriptions should vanish for sufficiently small spacing τ . Moreover, for τ → 0, we
can expand U(τ) = exp(−iHτ) ≃ 1 − iHτ . Applying then H = p̂2/(2m) + V (q̂)
to eigenfunctions |q〉 of V (q̂) and |p〉 of p̂2, we can replace the operator H by its
eigenvalues. In this way, we hope to express the propagator as a sum over paths,
where the individual amplitudes Ai contain only classical quantities.
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q1
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q2
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3τ

qN−1

Nτ

qN

Fig. 2.1 Left: The double slit experiment. Right: The propagator K(qN , τ ; q0, 0) expressed

as a sum over all N-legged continuous paths.

We apply now this idea to a particle moving in one dimension in a potential V (q).
The transition amplitude A for the evolution from the state |q, 0〉 to the state |q′, t′〉
is

A ≡ K(q′, t′; q, 0) = 〈q′| e−iHt′ |q〉 . (2.25)

This amplitude equals the matrix element of the propagator K for the evolution from
the initial point q(0) to the final point q′(t′). Let us split the time evolution into two
smaller steps, writing e−iHt′ = e−iH(t′−t1)e−iHt1 . Inserting also

∫
dq1 |q1〉 〈q1| = 1, the

amplitude becomes

A =

∫
dq1 〈q′| e−iH(t′−t1) |q1〉 〈q1| e−iHt1 |q〉 =

∫
dq1K(q′, t′; q1, t1)K(q1, t1; q, 0).

(2.26)

This formula expresses simply the group property, U(t′, 0) = U(t′, t1)U(t1, 0), of the
time evolution operator U evaluated in the basis of the continuous variable q. More
physically, we can view this equation as an expression of the quantum mechanical rule
for combining amplitudes. If the same initial and final states can be connected by
various ways, the amplitudes for each of these processes should be added. A particle
propagating from q to q′ must be somewhere at the intermediate time t1. Labelling
this intermediate position as q1, we compute the amplitude for propagation via the
point q1 as the product of the two propagators in Eq. (2.26) and integrate over all
possible intermediate positions q1.

We continue to divide the time interval t′ into a large number N of time intervals
of duration τ = t′/N . Then the propagator becomes

A = 〈q′| e−iHτ e−iHτ · · · e−iHτ
︸ ︷︷ ︸

N times

|q〉 . (2.27)
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We insert again a complete set of states |qi〉 between each exponential, obtaining

A =

∫
dq1 · · ·dqN−1 〈q′| e−iHτ |qN−1〉 〈qN−1| e−iHτ |qN−2〉 · · · 〈q1| e−iHτ |q〉

≡
∫

dq1 · · ·dqN−1KqN ,qN−1
KqN−1,qN−2

· · ·Kq2,q1Kq1,q0 , (2.28)

where we have defined q0 = q and qN = q′. Note that these initial and final positions
are fixed and therefore are not integrated. Figure 2.1 illustrates that we can view
the amplitude A as the integral over the partial amplitudes Apath of the individual
N -legged continuous paths.

We ignore the problem of defining properly the limit N → ∞, keeping N large
but finite. We rewrite the amplitude as sum over the amplitudes for all possible paths,
A =

∑
pathsApath, with

∑

paths

=

∫
dq1 · · · dqN−1, Apath = KqN ,qN−1

KqN−1,qN−2
· · ·Kq2,q1Kq1,q0 .

Let us look at the last expression in detail. We can expand the exponential in each
propagator Kqj+1,qj = 〈qj+1| e−iHτ |qj〉 for a single sub-interval, because τ is small,

Kqj+1,qj = 〈qj+1|
(
1− iHτ − 1

2
H2τ2 + · · ·

)
|qj〉

= 〈qj+1| qj〉 − iτ 〈qj+1|H |qj〉+O(τ2).
(2.29)

In the second term of (2.29), we insert a complete set of momentum eigenstates
between H and |qj〉. This gives

− iτ 〈qj+1|
(
p̂2

2m
+ V (q̂)

)∫
dpj
2π
|pj〉 〈pj | qj〉

= −iτ
∫

dpj
2π

(
p2j
2m

+ V (qj+1)

)
〈qj+1| pj〉 〈pj | qj〉 (2.30)

= −iτ
∫

dpj
2π

(
p2j
2m

+ V (qj+1)

)
eipj(qj+1−qj).

The expression (2.30) is not symmetric in qj and qj+1. The reason for this asymmetry
is that we could have inserted the factor 1 either to the right or to the left of the
Hamiltonian H . In the latter case, we would have obtained pj+1 and V (qj) in (2.30).
Since the difference [V (qj+1) − V (qj)]τ ≃ V ′(qj)(qj+1 − qj)τ ≃ V ′(qj)q̇jτ2 is of order
τ2, the ordering problem should not matter in the continuum limit which we will take
eventually; we set therefore V (qj+1) ≃ V (qj).

The first term of (2.29) gives a delta function, which we can express as

〈qj+1| qj〉 = δ(qj+1 − qj) =
∫

dpj
2π

eipj(qj+1−qj). (2.31)
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Now we can combine the two terms, obtaining as propagator for the step qj → qj+1

Kqj+1,qj =

∫
dpj
2π

eipj(qj+1−qj)
[
1− iτ

(
pj

2

2m
+ V (qj)

)
+O(τ2)

]
. (2.32)

Since we work at O(τ), we can exponentiate the factor in the square bracket,

1− iτ H(pj , qj) +O(τ2) = e−iτH(pj ,qj). (2.33)

Next we rewrite the exponent in the first factor of Eq. (2.32) using q̇j = (qj+1− qj)/τ ,
such that we can factor out the time-interval τ . The amplitude Apath consists of N
such factors. Combining them, we obtain

Apath =

(N−1∏

j=0

∫
dpj
2π

)
exp iτ

N−1∑

j=0

[pj q̇j −H(pj , qj)]. (2.34)

We recognise the argument of the exponential as the discrete approximation of
the action S[q, p] in the Palatini form of a path passing through the points q0 =
q, q1, · · · , qN−1, qN = q′. The propagator K =

∫
dq1 · · · dqN−1Apath becomes then

K =

(N−1∏

j=1

∫
dqj

)(N−1∏

j=0

∫
dpj
2π

)
exp iτ

N−1∑

j=0

[pj q̇j −H(pj , qj)]. (2.35)

For N → ∞, this expression approximates an integral over all functions p(t), q(t)
consistent with the boundary conditions q(0) = q, q(t′) = q′. We adopt the notation
DpDq for the functional or path integral over all functions p(t) and q(t),

K ≡
∫
Dp(t)Dq(t)eiS[q,p] =

∫
Dp(t)Dq(t) exp

(
i

∫ t′

0

dt (pq̇ −H(p, q))

)
. (2.36)

This result expresses the propagator as a path integral in phase space. It allows us to
obtain for any classical system which can be described by a Hamiltonian the corre-
sponding quantum dynamics.

If the Hamiltonian is of the form H = p2/2m + V , as we have assumed2 in our
derivation, we can carry out the quadratic momentum integrals in (2.35). We can
rewrite this expression as

K =

(N−1∏

j=1

∫
dqj

)
exp−iτ

N−1∑

j=0

V (qj)

(N−1∏

j=0

∫
dpj
2π

)
exp iτ

N−1∑

j=0

(
pj q̇j − p2j/2m

)
.

(2.37)
The p integrals are all uncoupled Gaussians. One such integral gives

∫
dp

2π
eiτ(pq̇−p

2/2m) =

√
m

2πiτ
eiτmq̇

2/2, (2.38)

2Since we evaluated exp(−iHτ) for infinitesimal τ , the result (2.36) holds also for a time-dependent
potential V (q, t).
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where we added again an infinitesimal factor exp(−εp2) to the integrand. Thence the
propagator becomes

K =
( m

2πiτ

)N/2(N−1∏

j=1

∫
dqj

)
exp iτ

N−1∑

j=0

(
mq̇2j
2
− V (qj)

)
. (2.39)

The argument of the exponential is again a discrete approximation of the action S[q]
of a path passing through the points q0 = q, q1, · · · , qN−1, qN = q′, but now seen as
functional of only the coordinate q. As earlier, we can write this in a more compact
form as

K = 〈qf , tf |qi, ti〉 =
∫
Dq(t)eiS[q] =

∫
Dq(t) exp

(
i

∫ tf

ti

dt L(q, q̇)

)
, (2.40)

where the integration includes all paths satisfying the boundary condition q(ti) = qi
and q(tf ) = qf . This is the main result of this section, and is known as the path
integral in configuration space. It will serve us as starting point discussing quantum
field theories of bosonic fields.

Knowing the path integral and thus the propagator is sufficient to solve scattering
problems in quantummechanics. In a relativistic theory, the particle number during the
course of a scattering process is however not fixed, since energy can be converted into
matter. In order to prepare us for such more complex problems, in the next section we
will generalise the path integral to a generating functional for n-point Green functions .
In this formalism, the usual propagator giving the probability amplitude that a single
particle moves from qi(ti) to qf (tf ) becomes the special case of a two-point Green
function, while Green functions with n > 2 describe processes involving more points.
For instance, the four-point Green function will be the essential ingredient to calculate
2 → 2 scattering processes in a quantum field theory (QFT). The corresponding
generating functional is the quantity which n.th derivative returns the n-point Green
functions.

2.3 Generating functional for Green functions

Having re-expressed the transition amplitude 〈qf , tf |qi, ti〉 of a quantum mechanical
system as a path integral, we first want to generalise this result to the matrix elements
of an arbitrary potential V (q) between the states |qi, ti〉 and |qf , tf 〉. For all practical
purposes, we can assume that we can expand V (q) as a power series in q; thus it
is sufficient to consider the matrix elements 〈qf , tf |qm|qi, ti〉. In a QFT, the initial
and final states are generally free particles which are described mathematically as
harmonic oscillators. In this case, we are able to reconstruct all excited states |n〉 from
the ground-state,

|n〉 = 1√
n!

(a†)n |0〉 .

Therefore it will be sufficient to study matrix elements between the ground-state |0〉.
With this choice, we are able to extend the integration limit in the path integral (2.40)
to t = ±∞. This will not only simplify its evaluation but also avoid the need to choose
a specific inertial frame. As a result, the generating functional will have an obviously
Lorentz invariant form in a relativistic theory.
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Time-ordered products of operators and the path integral. In a first step,
we try to include the operator qm into the transition amplitude 〈qf , tf |qi, ti〉. We can
reinterpret our result for the path integral as follows,

〈qf , tf |1|qi, ti〉 =
∫
Dq(t) 1 eiS[q]. (2.41)

Thus we can see the LHS as matrix element of the unit operator 1, while the RHS
corresponds to the path-integral average of the classical function f(q, q̇) = 1. Now we
want to generalise this rather trivial statement to two operators Â(ta) and B̂(tb) given
in the Heisenberg picture. In evaluating the unknown function f on the RHS of

∫
Dq(t) A(ta)B(tb) e

iS[q(t)] = 〈qf , tf | f{A(ta)B(tb)} |qi, ti〉, (2.42)

we go back to Eq. (2.28) and insert Â(ta) and B̂(tb) at the correct intermediate times,

=

{∫
dq1 · · · dqN−1 . . . 〈qa+1, ta+1| Â |qa, ta〉 · · · 〈qb+1, tb+1| B̂ |qb, tb〉 . . . for ta > tb,∫
dq1 · · · dqN−1 . . . 〈qb+1, tb+1| B̂ |qb, tb〉 · · · 〈qa+1, ta+1| Â |qa, ta〉 . . . for ta < tb.

(2.43)
Since the time along a classical path increases, the matrix elements of the operators
Â(ta) and B̂(tb) are also ordered with time increasing from the right to the left. If we
define the time-ordered product of two operators as

T {Â(ta)B̂(tb)} = Â(ta)B̂(tb)ϑ(ta − tb) + B̂(tb)Â(ta)ϑ(tb − ta), (2.44)

then the path-integral average of the classical quantities A(ta) and B(tb) corresponds
to the matrix element of the time-ordered product of these two operators,

〈qf , tf |T {Â(ta)B̂(tb)}|qi, ti〉 =
∫
Dq(t) A(ta)B(tb) e

iS[q(t)], (2.45)

and similar for more than two operators.

External sources. Next in our formalism, we want to include the possibility that
we can change the state of our system by applying an external driving force or source
term J(t). In quantum mechanics, we could imagine, for example, a harmonic oscillator
in the ground-state |0〉, making a transition under the influence of an external force
J to the state |n〉 at the time t and back to the ground-state |0〉 at the time t′ > t.
Including such transitions, we can mimic the relativistic process of particle creation
and annihilation as follows. We identify the vacuum (i.e. the state containing zero real
particles) with the ground-state of the quantum mechanical system, and the creation
and annihilation of particles with the (de-) excitation of states that have a higher
energy than the ground-state by an external source J . Schwinger realised that adding
a linear coupling to an external source,

L→ L+ J(t)q(t), (2.46)

also leads to an efficient way to calculate the matrix elements of an arbitrary polyno-
mial of operators q(tn) · · · q(t1). If the source J(t) would be a simple number instead
of a time-dependent function in the augmented path integral
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〈qf , tf |qi, ti〉J ≡
∫
Dq(t)ei

∫ tf
ti

dt(L+Jq), (2.47)

then we could obtain 〈qf , tf |qm|qi, ti〉J simply by differentiating 〈qf , tf |qi, ti〉J m-times
with respect to J . However, the LHS is a functional of J(t) and thus we need to perform
instead functional derivatives with respect to J(t). By analogy with the rules for the
differentiation of functions, e.g. ∂xl/∂xk = δlk, we define a functional derivative as

δ

δJ(x)
1 = 0 and

δJ(x)

δJ(x′)
= δ(x− x′). (2.48)

Thus we replace for a continuous index the Kronecker delta by a delta function. More-
over, we assume that the Leibniz and the chain rule holds for sufficiently nice functions
J(x). As the notation suggest, the variation of a functional defined in Eq. (1.5) is the
special case of a directional functional derivative, cf. problem 1.6

Now we are able to differentiate 〈qf , tf |qi, ti〉J with respect to the source J . Starting
from

δ

δJ(t1)

∫
Dq(t) ei

∫ tf
ti

dtJ(t)q(t) = i

∫
Dq(t) q(t1)ei

∫ tf
ti

dtJ(t)q(t), (2.49)

we obtain

〈qf , tf |T {q̂(t1) · · · q̂(tn)}|qi, ti〉 = (−i)n δn

δJ(t1) · · · δJ(tn)
〈qf , tf |qi, ti〉J

∣∣∣∣
J=0

. (2.50)

Thus the source J(t) is a convenient tool to obtain the functions q(t1) · · · q(tn) in front
of exp(iS). Having performed the functional derivatives, we set the source J(t) to zero,
coming back to the usual path integral. Physically, the expression (2.50) corresponds
to the probability amplitude that a particle moves from qi(ti) to qf (tf ), having the
intermediate positions q(t1), . . . , q(tn).

Vacuum persistence amplitude. As a last step, we want to eliminate the initial
and final states |qi, ti〉J and |qf , tf 〉 in favour of the ground-state or vacuum, |0〉. In this
way, we convert the transition amplitude 〈qf , tf |qi, ti〉J into the probability amplitude
that a system which was in the ground-state |0〉 at ti → −∞ remains in this state
at tf → ∞ despite the action of the source J(t). Inserting a complete set of energy
eigenstates, 1 =

∑
n |n〉〈n|, into the propagator, we obtain

〈q′, t′|q, t〉 =
∑

n

ψn(q
′)ψ∗

n(q) exp(−iEn(t′ − t)) . (2.51)

We can isolate the ground-state n = 0 by adding either to the energies En or to the
time difference τ = (t′− t) a small negative imaginary part. In this case, all terms are
exponentially damped in the limit τ →∞, and the ground-state as the state with the
smallest energy dominates more and more the sum. Alternatively, we can add a term
+iεq2 to the Lagrangian.

Remark 2.1: Wick rotation and Euclidean action. Instead of adding the infinitesimally
small term iεq2 to the Lagrangian, we can do a more drastic change, rotating in the action
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the time axis clockwise by 90◦ in the complex plane. Inserting tE = it into xµx
µ, we see

that this procedure called Wick rotation corresponds to the transition from Minkowski to
Euclidean space,

x2 = t2 − x
2 = (−itE)2 − x

2 = −[t2E + x
2] = −x2

E .

Performing the changes t = −itE and dt = −idtE in the action of a particle moving in an
one-dimensional potential gives

S = −i
∫

dtE

(
−1

2
mq̇2E − V (q)

)
≡ iSE . (2.52)

Note that the Euclidean action SE = T + V is bounded from below. The phase factor

in the path integral transforms as eiS = e−SE , and thus contributions with large SE are

exponentially damped in the Euclidean path integral.

Finally, we have only to connect the results we obtained so far. Adding a coupling
to an external source J(t) and a damping factor +iεq2 to the Lagrangian gives us the
ground-state or vacuum-persistence amplitude

Z[J ] ≡ 〈0,∞|0,−∞〉J =

∫
Dq(t) ei

∫
∞

−∞
dt(L+Jq+iεq2) (2.53)

in the presence of a classical source J . This amplitude is a functional of J which we
denote by Z[J ]. Taking derivatives w.r.t. the external sources J , and setting them
afterwards to zero, we obtain

δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣
J=0

= in
∫
Dq(t) q(t1) · · · q(tn)ei

∫
∞

−∞
dt(L+iεq2). (2.54)

The RHS corresponds to the path integral in Eqs. (2.45), augmented by the factor iεq2.
This factor damps in the limit of large t everything except the ground-state. Thus we
found that Z[J ] is the generating functional for the vacuum expectation value of the
time-ordered product of operators q̂(ti),

(−i)n δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣
J=0

= 〈0,∞|T {q̂(t1) · · · q̂(tn)}|0,−∞〉 = G(t1, . . . , tn). (2.55)

In the last step, we defined also the n-point Green function G(t1, . . . , tn). These func-
tions will be the main building block we will use to perform calculations in quantum
field theory, and the formula corresponding to Eq. (2.55) will be our master formula in
field theory. For the special case n = 2, we will see that the n-point Green function co-
incides up to a phase with the Feynman propagator KF (t

′, t) for the system described
by L: The iεq2 prescription selects from the set of possible propagators (retarded,
advanced, . . . ) the one suggested by Feynman.

2.4 Oscillator as a one-dimensional field theory

Canonical quantisation. A one-dimensional harmonic oscillator can be viewed as
a free quantum field theory in one time and zero space dimensions. In order to exhibit
this equivalence clearer, we rescale the usual Lagrangian
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L(x, ẋ) =
1

2
mẋ2 − 1

2
mω2x2, (2.56)

where m is the mass of the oscillator and ω its frequency as

φ(t) ≡ √mx(t). (2.57)

We call the variable φ(t) a “scalar field”, and the Lagrangian now reads

L(φ, φ̇) =
1

2
φ̇2 − 1

2
ω2φ2. (2.58)

After the rescaling, the kinetic term φ̇2 has the dimensionless coefficient 1/2. This
choice is standard in field theory and therefore such a field is called “canonically
normalised”.

We derive the corresponding Hamiltonian, determining first the conjugate momen-
tum π as π(t) = ∂L/∂φ̇ = φ̇(t). Thus the classical Hamiltonian follows as

H(φ, π) =
1

2
π2 +

1

2
ω2φ2. (2.59)

The transition to quantum mechanics is performed by promoting φ and π to operators
which satisfy the canonical commutation relations [φ, π] = i. The harmonic oscillator
is solved most efficiently introducing creation and annihilation operators, a† and a.
They are defined by

φ =
1√
2ω

(
a† + a

)
and π = i

√
ω

2

(
a† − a

)
, (2.60)

and satisfy
[
a, a†

]
= 1. The Hamiltonian follows as

H =
ω

2

(
aa† + a†a

)
=

(
a†a+

1

2

)
ω. (2.61)

We interpret N ≡ a†a as the number operator, counting the number n of quanta with
energy ω in the state |n〉.

We now work in the Heisenberg picture where operators are time-dependent. The
time evolution of the operator a(t) can be found from the Heisenberg equation,

i
da

dt
= [a,H ] = ωa, (2.62)

from which we deduce that

a(t) = a(0)e−iωt = a0e
−iωt. (2.63)

As a consequence, the field operator φ(t) can be expressed in terms of the creation
and annihilation operators as

φ(t) =
1√
2ω

(
a0e

−iωt + a†0e
iωt
)
. (2.64)

If we look at φ(t) as a classical variable, then a0 and a†0 have to satisfy a0 = a†0 ≡ a∗0
in order to make φ real. Thus they are simply the Fourier coefficients of the single
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eigenmode sin(ωt). This suggests that we can shortcut the quantisation procedure as
follows. We write down the field as sum over its eigenmodes i = 1, . . . , k. Then we
reinterpret the Fourier coefficients as creation and annihilation operators, requiring
[ai, a

†
j] = δij .

Path-integral approach. We solve now the same problem, the rescaled Lagrangian
(2.58), in the path-integral approach. Using this method, we have argued that it is
convenient to include a coupling to an external force J . Let us define therefore the
effective action Seff as the sum of the classical action S, the coupling to the external
force J and a small imaginary part iεφ2 to make the path integral well-defined,

Seff = S +

∫ ∞

−∞
dt
(
Jφ+ iεφ2

)
=

∫ ∞

−∞
dt

[
1

2
φ̇2 − 1

2
ω2φ2 + Jφ+ iεφ2

]
. (2.65)

The function eiSeff is the integrand of the path integral. We start our work by massaging
Seff into a form such that the path integral can be easily performed. The first two terms
in Seff can be viewed as the action of a differential operator D(t) on φ(t), writing

1

2

(
φ̇2 − ω2φ2

)
= −1

2
φ(t)

(
d2

dt2
+ ω2

)
φ(t) =

1

2
φ(t)D(t)φ(t). (2.66)

Here we performed a partial integration and dropped the boundary term. This is
admissible, because boundary terms vanish varying the action.

We can evaluate this operator going to Fourier space,

φ(t) =

∫
dE

2π
e−iEt φ(E) and J(t) =

∫
dE

2π
e−iEt J(E). (2.67)

To keep the action real, we have to write all bilinear quantities as φ(E)φ∗(E′) =
φ(E)φ(−E′), etc. Since only the phases depend on time, the time integration gives a
factor 2πδ(E − E′), expressing energy conservation,

Seff =
1

2

∫
dE

2π

[
φ(E)(E2 − ω2 + iε)φ(−E) + J(E)φ(−E) + J(−E)φ(E)

]
. (2.68)

In the path integral, this expression corresponds to a Gaussian integral of the
type (2.21), where we should “complete the square”. Shifting the integration variable
to

φ̃(E) = φ(E) +
J(E)

E2 − ω2 + iε
,

we obtain

Seff =
1

2

∫
dE

2π

[
φ̃(E)(E2 − ω2 + iε)φ̃(−E)− J(E)

1

E2 − ω2 + iε
J(−E)

]
. (2.69)

Here we see that the “damping rule” for the path integral makes also the integral
over the energy denominator well-defined. The physical interpretation of this way of
shifting the poles—which differs from our treatment of the retarded Green function in
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the classical case—will be postponed to the next chapter, where we will discuss this
issue in detail.

We are now in the position to evaluate the generating functional Z[J ]. The path-
integral measure is invariant under a simple shift of the integration variable, Dφ̃ = Dφ,
and we omit the tilde from now on. Furthermore, the second term in Seff does not
depend on φ and can be factored out,

Z[J ] = exp

(
− i

2

∫
dE

2π
J(E)

1

E2 − ω2 + iε
J(−E)

)

×
∫
Dφ exp

i

2

∫
dE

2π

[
φ(E)(E2 − ω2 + iε)φ(−E)

]
.

(2.70)

Setting the external force to zero, J = 0, the first factor becomes one and the gener-
ating functional Z[0] becomes equal to the path integral in the second line. For J = 0,
however, the oscillator remains in the ground-state and thus Z[0] = 〈0,∞|0,−∞〉 = 1.
Therefore

Z[J ] = exp

(
− i

2

∫
dE

2π
J(E)

1

E2 − ω2 + iε
J(−E)

)
. (2.71)

Inserting the Fourier transformed quantities, we arrive at

Z[J ] = exp

(
− i

2

∫
dt′ dt J(t′)KF (t

′ − t)J(t)
)
, (2.72)

where we introduced also the Feynman propagator

KF (t− t′) =
∫

dE

2π
e−iE(t−t′) 1

E2 − ω2 + iε
. (2.73)

This Green function differs from the retarded propagator GR defined in Eq. (1.35) by
the position of its poles.

The generating functional Z[J ] given by (2.72) is in the form most suitable for
deriving arbitrary n-point Green functions using our master formula (2.55). Thus
finding Z[J ] for a general quadratic action requires only to determine the inverse of
the differential operatorD(t), accounting for the right boundary conditions induced by
the iεφ2 term. This inverse is the Feynman propagator or two-point function KF (t

′−t)
which we can determine directly solving

D(t)KF (t
′ − t) = δ(t′ − t). (2.74)

Going to Fourier space, we find immediately

KF (E) =
1

E2 − ω2 + iε
. (2.75)

Hence we can short-cut the calculation of Z[J ] by determining the Feynman propagator
and using then directly Eqs. (2.71) or (2.72).
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These results allow us also to calculate arbitrary matrix elements between oscillator
states. For instance, we obtain the expectation value 〈0|φ2 |0〉 from

〈0|T {φ(t′)φ(t)} |0〉 = (−i)2 δ2Z[J ]

δJ(t′)δJ(t)

∣∣∣∣
J=0

= iKF (t
′ − t) = 1

2ω
eiω|t−t

′|. (2.76)

Here, we used in the last step the explicit expression for KF which you should check
in problem 2.6. Taking the limit t′ ց t and replacing φ2 → mx2, we reproduce the
standard result 〈0|x2 |0〉 = 1/(2mω). Matrix elements between excited states |n〉 =
(n!)−1/2(a†)n |0〉 are obtained by expressing the creation operator a† using π(t) = φ̇(t)
as

a† =

√
ω

2

(
1− i

ω

d

dt

)
φ(t). (2.77)

2.5 The need for quantum fields

We have already argued that any relativistic quantum theory has to be a many-
particle theory. Such a theory has to include infinitely many degrees of freedom—as
field theories like electrodynamics do. Before we move on to introduce the simplest
quantum field theory in the next chapter, we present an argument that relativity and
the single particle picture are incompatible.

In classical mechanics, the principle of relativity implies that all trajectories of mas-
sive particles are time-like, while massless particles move along light-like trajectories.
This implements causality, that is, the requirement that no signal can be transmit-
ted faster than light. How should we translate this principle into a quantum theory?
Causality would be clearly satisfied, if the relativistic propagatorK(x′, t′;x, t) vanishes
for space-like distances. Another, less restrictive translation of the principle of relativ-
ity would be to ask that measurements performed at space-like separated points do not
influence each other. This is achieved if all observables O(x) commute for space-like
distances,

[Ô(x, t), Ô(x′, t′)] = 0 for (t− t′)2 < (x− x′)2 . (2.78)

In quantum mechanics, the Heisenberg operators x̂(t) and p̂(t) depend, however, only
on time. Therefore we cannot implement the condition (2.78) in such a framework.

The only rescue for causality in relativistic quantum mechanics is therefore the
vanishing of the propagatorK(t′,x′; t,x) outside the light-cone. We evaluate the prop-
agator as in the non-relativistic case,

K(x′, t′;x, t) = 〈x′| e−iH(t′−t) |x〉 =
∫

d3p

(2π)3
〈x′| e−iEp(t

′−t) |p〉 〈p|x〉 (2.79)

adapting, however, the relativistic dispersion relation, Ep =
√
m2 + p2. Next we use

that the momentum operator p̂ generates space translations, exp(−ip̂x)|0〉 = |x〉, to
obtain

K(x′, t′;x, t) = K(x′ − x) =
∫

d3p

(2π)3
|〈0|p〉|2 e−ip(x′−x). (2.80)

Here we introduced also the four-vector pµ = (Ep,p), rewriting the plane wave thereby
in a Lorentz-invariant way. In order that the complete propagator is invariant, we
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have to choose as integration measure ∝ d3p/Ep, cf. problem 2.8, and we set therefore
|〈0|p〉|2 = 1/(2Ep). Knowing its explicit expression, it is a straight-forward exercise
to show that the propagator does not vanish outside the light-cone, but goes only
exponentially to zero, K(x′, 0;x, 0) ∝ exp(−m|x′ − x|). Thus we failed to implement
both versions of causality into relativistic quantum mechanics. Instead, we will develop
quantum field theory with the aim to implement causality via the condition (2.78).

Before starting this endeavour, we can draw still some important conclusion from
Eq. (2.80). For space-like distances, (x − x′)2 < 0, a Lorentz boost can change the
time order of two spacetime events, cf. problem 1.11. Consistency requires thus to
include both time-orderings: if a particle is created at t and absorbed at t′ > t, then it
can be created necessarily also at t′ and absorbed at t > t′. We extend therefore the
propagator as

K(x′ − x) =
∫

d3p

(2π)32Ep

[
ϑ(t′ − t)e−ip(x′−x) + ϑ(t− t′)eip(x′−x)

]
, (2.81)

where we chose the opposite sign for the plane wave in the second factor. In this
way, the phase of the plane waves observed in both frames agree, −Epτϑ(τ) < 0 and
+Epτϑ(−τ) < 0, and similarly for the momenta. If we imagine that the propagat-
ing particle carries a conserved charge, then we can associate the positive frequencies
to the propagation of a particle (with charge q) and the negative frequencies to the
propagation of an antiparticle (with charge −q). Then the resulting current is frame-
independent, if the antiparticle has the same mass but the opposite additive charges.
This prediction of relativistic quantum field theory is experimentally confirmed with
extreme accuracy. For instance, the limits on the mass and charge difference of elec-
trons and positrons are smaller than 8 × 10−9 and 4 × 10−8, respectively. The best
experimental limit is currently the relative mass difference of the K0 and K̄0 mesons,
which is bounded by 10−18 (Olive et al., 2014).

Finally, we should mention an alternative way to implement causality. Instead of
defining quantum fields φ̂(xµ) on classical spacetime, we could promote time t to an
operator, parameterising the world-line x̂µ(τ) of a particle, for example, by its proper-
time τ . Considering then the surface x̂µ(τ, σ) generated by a set of world-lines is the
starting point of string theory.

Summary

Using Feynman’s path-integral approach, we can express a transition amplitude
as a sum over all paths weighted by a phase which is determined by the classical
action, 〈qf , tf |qi, ti〉 =

∫
Dq(t) exp(iS[q]). Adding a linear coupling to an exter-

nal source J and a damping term to the Lagrangian, we obtain the ground-state
persistence amplitude 〈0,∞|0,−∞〉J . This quantity serves as the generating func-
tional Z[J ] for n-point Green functions G(t1, . . . , tn) which are the time-ordered
vacuum expectation values of the operators q̂(t1), . . . , q̂(tn).



32 Quantum mechanics

Further reading. For additional examples for the use of the path integral and Green
functions in quantum mechanics see, for example, MacKenzie (2000) or Das (2006).
Schweber (2005) sketches the historical development that lead to Schwinger’s Green
functions, including his quantum action principle.

Problems

2.1 Classical action. Calculate the clas-
sical action S[q] for a free particle and
an harmonic oscillator. Compare the re-
sults with the expression for the propagator
K = 〈x′, t′|x, t〉 = N exp(iφ) of the corre-
sponding quantum mechanical system and
express both φ and N through the action S.

2.2 Propagator as Green function. Show
that the Green function or propagator
K(x′, t′; x, t) = 〈x′| exp[−iH(t′ − t)]|x〉 of
the Schrödinger equation is the inverse of
the differential operator (i∂t −H).

2.3 Classical limit. Sketch (without detailed
calculation) why in the path integral the al-
lowed paths dominate in the classical limit.

2.4 Commutation relations. Show that the
commutation relations for the field, [φ, π] =

i, imply [a, a†] = 1. What happens, if we
change the normalisation (2.57)?

2.5 Mode functions. Consider the gener-
alisation of (2.64) to φ(t) = ua0e

−iωt +

u∗a†0e
iωt, where the functions u(t) are called

mode functions. a.) Show that the usual
commutation relations are valid, if ℑ(uu̇) =
1. b.) Show that the standard choice u =

1/
√
2ω minimises the energy of the ground-

state.

2.6 Feynman propagator. Find the explicit
expression for the Feynman propagator
used in (2.76) from a.) its definition as
time-ordered product of fields φ, and b.)
evaluating (2.73) using Cauchy’s theorem.

2.7 Matrix elements from Z[J ]. Evaluate
the matrix element 〈0| φ2 |1〉 of an harmonic
oscillator from Z[J ].

2.8 Lorentz invariant integration measure.
♣ Show that d3k/(2ωk) is a Lorentz invari-
ant integration measure by a) calculating
the Jacobian of a Lorentz transformation,
b) showing that

∫
d4k δ(k2 −m2)ϑ(k0)f(k0,k) =

=

∫
d3k

2ωk
f(ωk,k)

(2.82)

holds for any function f .

2.9 Propagator at large |x|. Show that
the propagator K(x, 0; 0, 0) defined in
Eq. (2.81) decays exponentially outside the
light-cone for m > 0. Find the propagator
for m = 0.

2.10 Statistical mechanics. Derive the con-
nection between the partition function Z =
tr e−βH of statistical mechanics and the
path integral of quantum mechanics in
Euclidean time tE = −it. (Hint: compare
to remark 2.1.)

2.11 Scattering at short-range potential. ♣
Consider in d = 1 the scattering of modes
with large wavelengths λ on a short-range
potential, V (x) = 0 for |x| > a and λ ≫ a.
i) Show that the potential V can be ap-
proximated by V (x) = c0δ(x) + c1δ

′(x) +
O(V a2/λ2). ii) Find the transmission and
reflection coefficients setting V (x) = c0δ(x).
Argue that T ≃ ip/c0 holds for any short-
range potential in the limit p ≪ 1/a. iii)
Show that no consistent solution exists set-
ting c0 = 0.
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Free scalar field

In this chapter we extend the path-integral approach from quantum mechanics to
the simplest field theory, containing a single real scalar field φ(x). Such a field may
either represent an elementary particle like the Higgs boson, a bound-state like a
scalar meson, or a scalar parameter describing a specific property of a more complex
theory. Proceeding similar to our approach in quantum mechanics, we will introduce
the generating functional Z[J ] = 〈0 + |0−〉J of n-point Green functions as our main
tool to calculate the time-ordered vacuum expectation value of a product of fields
φ(x1) · · ·φ(xn). Calculating the vacuum energy of the scalar field, we will encounter
for the first time the fact that many calculations in quantum field theories return a
formally infinite result. In order to extract sensible predictions, we therefore have to
introduce the concepts of regularisation and renormalisation.

3.1 Lagrange formalism and path integrals for fields

A field is a map which associates to each spacetime point x a k-tuple of values φa(x),
a = 1, . . . , k. We require that the fields φa(x) transform under a definite representation
of the Poincaré group which is the group combining Lorentz transformations and
translations1. For massive particles, these representations are labelled by the mass m
and the spin s of one-particle states. Thus this condition guarantees that observers
in all inertial frames agree what, for example, a spin 1/2 particle with mass m is.
Additionally, particles can be characterised by their transformation properties under
internal symmetry groups. These internal symmetries may lead to conserved quantum
numbers like the electric charge q, by which we can distinguish further various particles
types.

Except for a real scalar field φ, a field has several components. Thus we have to
generalise Hamilton’s principle to a collection of fields φa(x), where the index a includes
all internal as well as Lorentz indices. Moreover, the Lagrangian for a field φa(x) will
contain not only time but also space derivatives. To ensure Lorentz invariance, we
consider a scalar Lagrange density L (x) that depends as a local function on the fields
φa(x) and their derivatives ∂µφa(x). By analogy to L(q, q̇), we restrict ourselves to
first derivatives. We include no explicit time-dependence, since “everything” should be
explained by the fields and their interactions. The Lagrangian L(φa, ∂µφa) is obtained
by integrating the density L over a given space volume V . The action S is thus the
four-dimensional integral

1The basic properties of these two groups are collected in the appendices B.3 and B.4.
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S[φa] =

∫ tb

ta

dt L(φa, ∂µφa) =

∫

Ω

d4xL (φa, ∂µφa) (3.1)

with Ω = V × [ta : tb]. A variation δφa(x) of the fields leads to a variation of the
action,

δS =

∫

Ω

d4x

[
∂L

∂φa
δφa +

∂L

∂(∂µφa)
δ(∂µφa)

]
, (3.2)

where we have to sum over field components (a = 1, . . . , k) and the Lorentz index
µ = 0, . . . , 3. The correspondence q(t)→ φ(xµ) implies that the scale factor ε param-
eterising the variations φa(x

µ, ε) depends not on xµ. We can therefore eliminate again
the variation of the field gradients ∂µφa by a partial integration using Gauss’ theorem,

δS =

∫

Ω

d4x

[
∂L

∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa = 0. (3.3)

The surface term vanishes, since we require that the variation is zero on the boundary
∂Ω. Thus the Lagrange equations for the fields φa are

∂L

∂φa
− ∂µ

(
∂L

∂(∂µφa)

)
= 0. (3.4)

If the Lagrange density L is changed by a four-dimensional divergence, δL = ∂µK
µ,

and surface terms can be dropped, the same equations of motion result. Note also that
it is often more efficient to perform directly the variation δφa in the action S[φa] than
to use the Lagrange equations.

The path integral in configuration space becomes now a functional integral over
the k fields φa,

K =

∫
Dφ1 · · · Dφk eiS[φa] =

∫
Dφ1 · · ·Dφk ei

∫
Ω
d4xL (φa,∂µφa) . (3.5)

A major problem we have to address later is that the k fields φa are often not inde-
pendent. For instance, in electrodynamics all potentials Aµ connected by a gauge
transformation describe the same physics. This redundancy makes the path inte-
gral (3.5) ill-defined. We therefore start with the simplest case of a single, real scalar
field φ where such problems are absent. Moreover, we restrict ourselves in this chapter
to a free field without interactions.

3.2 Generating functional for a scalar field

Lagrangian. The (free) Schrödinger equation i∂tψ = H0ψ can be obtained substi-
tuting ω → i∂t and k → −i∇x into the non-relativistic energy–momentum relation
ω = k2/(2m). With the same replacements, the relativistic ω2 = m2+k2 becomes the
Klein–Gordon equation

(✷+m2)φ = 0 with ✷ = ηµν∂
µ∂ν = ∂µ∂

µ. (3.6)

The relativistic energy–momentum relation implies that the solutions to the free
Klein–Gordon equation consist of plane waves with positive and negative energies
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±
√
k2 +m2. For the stability of a quantum system it is, however, essential that its

energy eigenvalues are bounded from below. Otherwise, we could generate, for exam-
ple, in a scattering process φ + φ → nφ, an arbitrarily high number of φ particles
with sufficiently low energy, and no stable form of matter could exist. Interpreting
the Klein–Gordon equation as a relativistic wave equation for a single particle cannot
therefore be fully satisfactory, since the energy of its solutions is not bounded from
below.

How do we guess the correct Lagrange density L ? Plane waves can be seen as a
collection of coupled harmonic oscillators at each spacetime point. The correspondence
q̇ → ∂µφ means that the kinetic field energy is quadratic in the field derivatives.
Relativistic invariance implies that the Lagrange density is a scalar, leaving as the
only two possible terms containing derivatives

ηµν(∂
µφ)(∂νφ) and φ✷φ.

Using the action principle to derive the equation of motion, we can however drop
boundary terms performing partial integrations. Thus these two terms are equivalent,
up to a minus sign. The Klein–Gordon equation ✷φ = −m2φ suggests that the mass
term is also quadratic in the field φ. Therefore we try as Lagrange density

L =
1

2
ηµν (∂

µφ) (∂νφ)− 1

2
m2φ2 ≡ 1

2
ηµν∂

µφ∂νφ− 1

2
m2φ2. (3.7)

From now on, we will drop the parenthesis around ∂µφ and it should be understood
from the context that the derivative ∂µ acts only on the first field φ. Even shorter
alternative notations are (∂µφ)

2 and the concise (∂φ)2. Swapping the indices in the
Lagrangian (3.7), we obtain for the second part of the Lagrange equation

∂

∂(∂αφ)
(ηµν∂µφ∂νφ) = ηµν

(
δαµ∂νφ+ δαν ∂µφ

)
= ηαν∂νφ+ ηµα∂µφ = 2∂αφ. (3.8)

Hence the Lagrange equation becomes

∂L

∂φ
− ∂α

(
∂L

∂(∂αφ)

)
= −m2φ− ∂α∂αφ = 0, (3.9)

and the Lagrange density (3.7) leads indeed to the Klein–Gordon equation. We can
understand the relative sign in the Lagrangian splitting the relativistic kinetic energy
into the “proper” kinetic energy (∂tφ)

2/2 and the gradient energy density (∇φ)2/2,

L =
1

2
φ̇2 − 1

2
(∇φ)2 − 1

2
m2φ2. (3.10)

The last two terms correspond to a potential energy and therefore carry the opposite
sign of the first one.

Instead of guessing, we can derive the correct Lagrangian L as follows: we multiply
the free field equation for φ by a variation δφ that vanishes on ∂Ω. Then we integrate
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over Ω, perform a partial integration of the kinetic term, use ∂µδ = δ∂µ, the Leibniz
rule and ask that the variation vanishes,

A

∫

Ω

d4x δφ (✷+m2)φ = A

∫

Ω

d4x
[
−δ(∂µφ)∂µφ+ δφφm2

]
= (3.11a)

= A

∫

Ω

d4x δ

[
−1

2
(∂µφ)

2 +
1

2
φ2m2

]
= 0. (3.11b)

The term in the square brackets agrees with our guess (3.7), taking into account that
the source-free field equation fixes the Lagrangian only up to the overall factor A.
In analogy with a quantum mechanical oscillator, we want the coefficients of the two
terms to be ±1/2 and thus we set |A| = 1.

We can determine the correct overall sign of L by calculating the energy density ρ
of the scalar field and requiring that it is bounded from below and stable against small
perturbations. We identify the energy density ρ of the scalar field with its Hamiltonian
density H , and use the connection between the Lagrangian and the Hamiltonian
known from classical mechanics. The transition from a system with a finite number of
degrees of freedom to one with an infinite number of degrees of freedom proceeds as
follows,

pi =
∂L

∂q̇i
⇒ πa =

∂L

∂φ̇a
, (3.12a)

H = piq̇
i − L ⇒ H =

∑

a

πaφ̇a −L . (3.12b)

The canonically conjugated momentum π of a real scalar field is

π =
∂L

∂φ̇
= φ̇. (3.13)

Thus the Hamilton density is

H = πφ̇−L = π2 −L =
1

2
φ̇2 +

1

2
(∇φ)2 +

1

2
m2φ2 ≥ 0 (3.14)

and thus obviously positive definite. Moreover, generating fluctuations δφ costs energy
and thus the system is stable against small perturbations. Hence the transition from a
single-particle interpretation of the Klein–Gordon equation to a field theory has been
sufficient to cure the problem of the negative energy solutions.

Note that we could subtract a constant ρ0 from the Lagrangian which would drop
out of the equation of motion. From Eq. (3.14) we see that such a constant corresponds
to a uniform energy density of empty space. Such a term would act as an additional
source of the gravitational field, but would be otherwise unobservable. Next we gen-
eralise the Lagrangian by subtracting a polynomial in the fields, V (φ), subject to the
stability constraint discussed above. Hence the potential V should be bounded from
below, and we can expand it around its minimum at φ ≡ v,

dV

dφ

∣∣∣∣
φ=v

= 0,
d2V

dφ2

∣∣∣∣
φ=v

≡ m2 > 0. (3.15)
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The term V ′′(v) acts as mass term for the field φ. We will see soon that terms φn with
n ≥ 3 generate interactions between n particles, as expected from the analogy of a
quantum field to coupled quantum mechanical oscillators. The field φ has the non-zero
value φ = v everywhere, if the minimum v of V (φ) is not at zero, v 6= 0. If the value
of V (φ) at the minimum v is not zero, V (v) 6= 0, then the non-zero potential implies
a non-zero uniform energy density ρ = V (v).

Generating functional. Now we move on to the quantum theory of a scalar field,
which we define by the path-integral over exp iS[φ]. Since the Hamiltonian (3.14) is
quadratic in the momentum, we can start directly from the path integral in configura-
tion space. Then the Green functions which encode all information about this theory
can be obtained from the generating functional

Z[J ] = 〈0 + |0−〉J = N
∫
Dφ exp i

∫
d4x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 + Jφ

)
, (3.16)

where we appended to the action a linear coupling between the field and an external
source. To ensure the convergence of the integral, we included an infinitesimal small
imaginary part into the squared mass of the particle, m2 → m2 − iε. Moreover, we
added a normalisation factor N which we will have to determine. We start performing
an integration by part of the first term, where we exploit the fact that the boundary
term vanishes,

Z[J ] = N
∫
Dφ exp i

∫
d4x

(
−1

2
φ(✷+m2)φ+ Jφ

)
. (3.17)

The first two terms, φAφ = −φ(✷+m2)φ, are quadratic and symmetric in the field φ,

−1

2

∫
d4x φ(x)(✷x +m2)φ(x) =

1

2

∫
d4xd4x′ φ(x)A(x, x′)δ(x − x′)φ(x′). (3.18)

Note that the operator A is local, A(x) ∝ A(x, x′)δ(x − x′). Since special relativity
forbids action at a distance, non-local terms like φ(x′)A(x, x′)φ(x) should not appear
in a relativistic Lagrangian.

The expression on the RHS of Eq. (3.18) is the continuous version of the matrix
equation φiAijφj . If we discretise continuous spacetime xµ into a lattice, we can use
Eq. (2.23) to perform the path integral,

Z[J ] = N
(
(2πi)N

det[A]

)1/2

exp

(
−1

2
i JA−1J

)
≡ NZ[0] exp(iW [J ]). (3.19)

The pre-factor of the exponential function does not depend on J and is thus given
by NZ[0] = 〈0 + |0−〉. The vacuum should be stable and normalised to one in the
absence of sources, 〈0 + |0−〉 = 1. Therefore the proper normalisation of Z[J ] implies
that N−1 = Z[0]. Thus we can omit the normalisation factor, if we normalise the
path-integral measure Dφ such that the Gaussian integral over a free field is one. In
the last step of Eq. (3.19), we defined a new functional iW [J ] ≡ ln(Z[J ]) that depends
only quadratically on the source J ; therefore it should be easier to handle than Z[J ].
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Going for N → ∞ back to continuous spacetime, the matrix multiplications become
integrations,

Z[J ] = exp(iW [J ]) = exp

(
− i

2

∫
d4xd4x′J(x)A−1(x, x′)J(x′)

)
(3.20)

and

W [J ] = −1

2

∫
d4xd4x′J(x)A−1(x, x′)J(x′). (3.21)

Propagator. In order to evaluate the functional W [J ] we have to find the inverse
∆(x, x′) ≡ A−1(x, x′) of the differential operator A, defined by

−(✷+m2)∆(x, x′) = δ(x− x′). (3.22)

Because of translation invariance, the Green function ∆(x, x′) can depend only on the
difference x−x′. Therefore it is advantageous to perform a Fourier transformation and
to go to momentum space,

−
∫

d4k

(2π)4
(✷+m2)∆(k)e−ik(x−x′) =

∫
d4k

(2π)4
e−ik(x−x′), (3.23)

or

∆F (k) =
1

k2 −m2 + iε
, (3.24)

where the pole at k2 = m2 is avoided by the iε. Thus the m2 → m2 − iε prescription
introduced to ensure the convergence of the path integral tells us also how to handle
the poles of the Green function. The index F specifies that the propagator ∆F is
the Green function obtained with the m2 − iε prescription proposed by Feynman.
(Some authors use instead DF for the propagator of massive bosons and ∆F for the
propagator of massless bosons.)

Note that the four momentum components kµ are independent. Therefore ∆F (k)
describes the propagation of a virtual particle that has—in contrast to a real or external
particle—not to be on “mass-shell”: in general

k0 6= ±ωk ≡ ±
√
k2 +m2.

We can evaluate the k0 integral in the coordinate representation of ∆F (x− x′) explic-
itly,

∆F (x− x′) =
∫

d4k

(2π)4
e−ik(x−x′)

k20 − k2 −m2 + iε
(3.25a)

=

∫
d3k

(2π)3

∫
dk0
2π

e−ik0(t−t′)eik(x−x′)

(k0 − ωk + iε)(k0 + ωk − iε)
, (3.25b)

using Cauchy’s theorem.2 The integrand has two simple poles at +ωk−iε and −ωk+iε,
cf. Fig. 3.1. For negative τ = t− t′, we can close the integration contour C+ on the

2Since ε is infinitesimal and ωk > 0, we can set 2iωkε+ ε2 → iε.
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Im(k0)

Re(k0)

C+

C−

−ω + iε×

ω − iε
×

Fig. 3.1 Poles and contours in the complex k0 plane used for the integration of the Feynman

propagator.

upper half-plane, including the pole at −ωk,
∫

dk0
e−ik0τ

(k0 − ωk + iε)(k0 + ωk − iε)
= 2πi res−ωk

= 2πi
eiωkτ

−2ωk
for τ < 0. (3.26)

For positive τ , we have to choose the contour C− in the lower plane, picking up
2πi e−iωkτ/(2ωk) and an additional minus sign since the contour is clockwise. Com-
bining both results, we obtain

i∆F (x) =

∫
d3k

(2π)32ωk

[
e−iωktϑ(t) + eiωktϑ(−t)

]
eikx, (3.27)

or after shifting the integration variable k → −k in the second term

i∆F (x) =

∫
d3k

(2π)32ωk

[
e−i(ωkt−kx)ϑ(t) + ei(ωkt−kx)ϑ(−t)

]
. (3.28)

Comparing this expression to our guess (2.81) at the end of the last chapter, we
see that our intuitive arguments about the structure of a Lorentz-invariant propagator
in a quantum theory were correct. We stress once again the salient features of the
Feynman propagator: first, the propagator contains positive and negative frequencies,
as expected from the existence of solutions to the Klein–Gordon equation with positive
and negative energies. Second, positive frequencies propagate forward in time, while
negative frequencies propagate backward. This implies the existence of antiparticles.
Third, the relativistic normalisation of (on-shell) plane waves includes a factor 1/

√
2ωk,

or
〈k|k′〉 = 2ωk(2π)

3δ(k − k′), (3.29)

while the non-relativistic normalisation uses 〈k|k′〉 = δ(k − k′).


