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Abstract. Given a compact Riemann surface X and a semi-simple affine algebraic group
G defined over C, there are moduli spaces of Higgs bundles and of connections associated
to (X, G). We compute the Brauer group of the smooth locus of these varieties.

To Nigel Hitchin, on the occasion of his seventieth
birthday.

1. Introduction

We dedicate this paper to the study of the Brauer group of the moduli spaces of certain
Higgs bundles and of holomorphic connections on a Riemann surface. Recall that, given a
complex quasiprojective variety Z, its Brauer group Br(Z) consists of the Morita equivalence
classes of Azumaya algebras over Z. This group coincides with the equivalence classes of
principal PGL-bundles over Z, where two principal PGL-bundles P and Q are identified
if there are vector bundles V and W over Z such that the two principal PGL-bundles
P ⊗P(V) and Q ⊗P(W) are isomorphic. The cohomological Brauer group Br′(Z) of the
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variety Z is the torsion part of the étale cohomology group H2(Z, Gm). There is a natural
injective homomorphism Br(Z) −→ Br′(Z) which is in fact an isomorphism by a theorem
of Gabber [dJ], [Ho].

Consider now a compact connected Riemann surface X of genus g ≥ 3. Given a fixed base
point x0 and two integers r ≥ 2 and δ, we letMC denote the moduli space of all logarithmic
connections (E, D) on X, singular over x0, satisfying the following four natural conditions:

I. E is a holomorphic vector bundle on X of rank r with
∧r E = OX(δx0),

II. the logarithmic connection on
∧r E = OX(δx0) induced by D coincides with the

connection on OX(δx0) defined by the de Rham differential,
III. the residue of D at x0 is − δ

r IdEx0
and

IV. there is no holomorphic subbundle F ⊂ E with 1 ≤ rank(F) < r such that D
preserves F.

This moduli space MC has a natural projective bundle once we fix a point of X,

PC −→ MC,

through which in Section 2 we study the Brauer group Br(MC):

Theorem 2.4 The Brauer group Br(MC) is isomorphic toZ/τZ, where τ = g.c.d.(r,δ). The
group Br(MC) is generated by the class of PC.

Fixing the compact connected Riemann surface X and the invariant δ, one can also
compute the analytic Brauer group of the SL(r,C)–character variety R associated to the
pair (X, δ).

Theorem 2.5 The analytic cohomological Brauer group Br′an(R) is isomorphic to a quotient of
the cyclic group Z/τZ, where τ = g.c.d.(r,δ). The group Bran(R) is generated by the class of a
naturally associated projective bundle PR.

Over the compact connected Riemann surface X, one may also consider the moduli space
MH of stable Higgs bundles on X of the form (E, �), where

• E is a holomorphic vector bundle of rank r with
∧r E = OX(δx0) and

• � is a Higgs field on X with trace(�) = 0.

The moduli space MH is a smooth quasiprojective variety which also has a natural projec-
tive bundle

PH −→ MH

once we fix a point of X. In Section 2.3, we study the Brauer group of MH and prove the
following:

Proposition 2.7. The group Br(MH) is isomorphic to the cyclic group Z/τZ, and it is
generated by the class of PH.
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One should note that, as seen in Section 3, the results of Section 2 extend to the context
of principal bundles. We shall conclude this paper by looking at our results in the context of
Langlands duality in Section 4.

2. Brauer Group of Some Moduli Spaces

As in the introduction, we shall consider a compact connected Riemann surface X of genus
g ≥ 3 with a fixed base point x0 ∈ X, and denote by KX its canonical bundle.

2.1. Brauer Group of Moduli Spaces of Connections

A logarithmic connection on X singular over x0 is a pair of the form (E, D), where E is a
holomorphic vector bundle on X and

D : E −→ E ⊗ KX ⊗OX(x0)

is a holomorphic differential operator of order 1 satisfying the Leibniz identity

D(fs) = f · D(s)+ s ⊗ (df ), (2.1)

for all locally defined holomorphic functions f on X and all locally defined holomorphic
sections s of E. Note that the fibre (KX ⊗OX(x0))x0 is canonically identified with C by
sending any c ∈ C to the evaluation at x0 of the locally defined section c dz

z of KX ⊗OX(x0),
where z is any holomorphic function defined around x0 with z(x0) = 0 and (dz)(x0) 	= 0.
Moreover, the evaluation of dz

z at x0 does not depend on the choice of the function z. Using
this identification of (KX ⊗OX(x0))x0 with C, for any logarithmic connection D as above,
we have the linear endomorphism of the fibre Ex0 given by the composition

E D−→ E ⊗ KX ⊗OX(x0) −→ (E ⊗ KX ⊗OX(x0))x0 = Ex0 .

This element of End(Ex0) = Ex0 ⊗ E∗
x0

is called the residue of D (see [De, p. 53]), which we
shall denote by Res(D, x0). Then, from [Oh, pp. 16–17, Theorem 3], and [De], one has

degree(E)+ trace(Res(D, x0)) = 0. (2.2)

For notational convenience, we shall let K := KX ⊗OX(x0).

Definition 2.1 A logarithmic connection (E, D) as above is called semi-stable (respectively,
stable) if, for every holomorphic subbundle 0 	= F � E with D(F) ⊂ F ⊗K, the
following inequality holds:

degree(F)

rank(F)
≤ degree(E)

rank(E)

(

respectively,
degree(F)

rank(F)
<

degree(E)

rank(E)

)

.

As done in Section 1, fix two integers r ≥ 2 and δ and, if g = 3, then assume that r > 2.
The holomorphic line bundle OX(δx0) on X is equipped with the logarithmic connection
given by the de Rham differential d. This logarithmic connection on OX(δx0) will be
denoted by D0. From (2.2) it follows that the residue of D0 is −δ.
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In views of the notation introduced in Section 1, let MC denote the moduli space
of logarithmic connections (E, D) on X, singular over x0, satisfying the following three
conditions:

I. E is a holomorphic vector bundle on X of rank r with
∧r E = OX(δx0),

II. the logarithmic connection on
∧r E = OX(δx0) induced by D coincides with D0

defined above and
III. Res(D, x0) = − δ

r IdEx0
.

Note that, from (2.2), the above condition on Res(D, x0) implies that (E, D) is auto-
matically semi-stable. Moreover, if δ is coprime to r, then (E, D) is, in fact, stable. Since
the residue Res(D, x0) is a constant multiple of IdEx0

, the logarithmic connection on the
projective bundle P(E) induced by D is actually regular at x0.

The above defined moduli space MC is a quasiprojective irreducible normal variety,
defined over C, of dimension 2(r2 − 1)(g − 1). Let

MC ⊂ MC (2.3)

be the Zariski open subset parametrizing the stable logarithmic connections. We note that
MC is contained in the smooth locus of MC (in fact, MC is the smooth locus of the space
MC). We shall denote by Br(MC) the Brauer group of the smooth variety MC which, as
mentioned in Section 1, consists of the Morita equivalence classes of Azumaya algebras over
MC. The reader should refer to [Gr1], [Gr2], [Gr3], [Mi] for the definition as well as some
properties of the Brauer group.

For any (E, D) ∈ MC, consider any T ∈ H0(X, End(E)) which is flat with respect to the
connection on End(E) induced by D or, equivalently, such that D ◦ T = (T ⊗ IdK) ◦ D.
Then, for any c ∈ C, the kernel of T − c · IdE ∈ H0(X, End(E)) is preserved by D. Since
kernel(T − c · IdE) is either E or 0, it follows that either T = c · IdE or the endomorphism
T − c · IdE is invertible. Now, taking c to be an eigenvalue of T(x0), it follows that T = c ·
IdE. Consequently, there is a universal projective bundle

P̃ −→ X ×MC (2.4)

of relative dimension (r − 1) which is equipped with a relative holomorphic connection in
the direction of X.

Definition 2.2 Given a point x ∈ X, let

P := P̃|{x}×MC −→ MC (2.5)

be the projective bundle obtained by restricting P̃, and denote its class by

β ∈ Br(MC). (2.6)

In order to study the Brauer group Br(MC), we shall first prove the following.
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Lemma 2.3 Let Y be a simply connected smooth quasiprojective variety defined over the complex
numbers, W an algebraic vector bundle on Y and

q : W −→ Y

a torsor on Y for W. Then the pullback homomorphism

q∗ : Br(Y) −→ Br(W)

is an isomorphism.

Proof Let c ∈ H1(Y , W) be the class of W . Consider the extension of OY by W ,

0 −→ W −→ Ŵ
ξ−→ OY −→ 0, (2.7)

associated to the cohomology class c. We shall denote by 1Y the image of the section of
OY defined by the constant function 1 on Y . Then, the inverse image ξ−1(1Y ) ⊂ Ŵ
under the projection ξ in (2.7) is a torsor on Y for the vector bundle W . This W torsor
is isomorphic to the W torsor W .

Let

η̂ : P(Ŵ) −→ Y and η : P(W) −→ Y

be the projective bundles on Y parametrizing the lines in the fibres of Ŵ and W ,
respectively. Note that P(W) ⊂ P(Ŵ), and

W = ξ−1(1Y ) = P(Ŵ) \ P(W) ,

by sending any element of ξ−1(1Y ) to the line in Ŵ generated by it. Now, from [Fo,
p. 365, Lemma 0.1] and [Fo, p. 367, Theorem 1.1], we conclude that there is an exact
sequence

0 −→ Br(P(Ŵ)) −→ Br(W) −→ H1(P(W), Q/Z) −→ ·· · . (2.8)

Consider the long exact sequence of homotopy groups for the fibre bundle η.
The fibres of P(W) are projective spaces and hence are simply connected. Since Y
is also simply connected, from the homotopy exact sequence for η it follows that
P(W) is simply connected as well. Hence, H1(P(W), Z) = 0, which implies that
H1(P(W), Q/Z) = 0 (universal coefficient theorem for cohomology; see [Ha, p. 195,
Theorem 3.2]). Consequently, using (2.8), we conclude that

Br(P(Ŵ)) = Br(W), (2.9)

with the isomorphism being induced by the inclusion of W in P(Ŵ).
The homomorphism η̂∗ : Br(Y) −→ Br(P(Ŵ) induced by η̂ is an isomorphism

[Ga, p. 193, Theorem 2], and the lemma follows from (2.9). �
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Theorem 2.4 The Brauer group Br(MC) is isomorphic to the cyclic group Z/τZ, where τ =
g.c.d.(r,δ), and it is generated by the element β in (2.6).

Proof Let N denote the moduli space of stable vector bundles V on X of rank r such that∧r V = OX(δx0), which is a smooth quasiprojective irreducible complex variety of
dimension (r2 − 1)(g − 1). Moreover, letU ⊂ MC be the locus of all (E, D) such that
the underlying holomorphic vector bundle E is stable. Considering

p : U −→ N , (2.10)

the forgetful morphism that sends any (E, D) to E, from the openness of the stability
condition (see [Ma, p. 635, Theorem 2.8(B)]) it follows thatU is a Zariski open subset
of MC. Note that p is surjective because from [NS] one has that any V ∈ N admits a
unique logarithmic connection DV singular at x0 such that

(a) the residue of DV at x0 is − δ
r IdVx0

and
(b) the monodromy of DV lies in SU(r).

Moreover, a pair (V , DV ) as above lies inU . In fact, if D′ is a logarithmic connection on
V singular at x0 such that Res(D′, x0) = − δ

r IdVx0
, and the logarithmic connection on∧r V = OX(δx0) induced by D′ coincides with D0, then clearly (V , D′) ∈ U . The

space of all logarithmic connections D′ on V satisfying the conditions (a) and (b)
is an affine space for the vector space H0(X, ad(V)⊗ KX), where ad(V) ⊂ End(V)

is the subbundle of co-rank 1 defined by the sheaf of endomorphisms of trace zero.
Furthermore, H0(X, ad(V)⊗ KX) is the fibre of the cotangent bundle �1

N over the
point V ∈ N . Therefore, the morphism p in (2.10) makes U a torsor over N for the
vector bundle �1

N .
From [BM1, p. 301, Lemma 3.1] and [BM2, Lemma 3.1] the complement MC \

U ⊂ MC is of codimension at least 2 and thus the inclusion map ι : U ↪→ MC
produces an isomorphism of Brauer groups

ι∗ : Br(MC)
∼−→ Br(U) ; (2.11)

this follows from ‘Cohomological purity’ [Mi, p. 241, Theorem VI.5.1] (it also follows
from [Gr2, p. 292–293]). Since p in (2.10) is a torsor on U for a vector bundle, and U
is simply connected [BBGN, p. 266, Proposition 1.2(b)], from Lemma 2.3 it follows
that the map p induces an isomorphism

p∗ : Br(N )
∼−→ Br(U) .

Combining this with (2.11) we get an isomorphism

(ι∗)−1 ◦ p∗ : Br(N )
∼−→ Br(MC) . (2.12)

We know that Br(N ) is cyclic of order τ = g.c.d.(r,δ) [BBGN, p. 267, Theorem
1.8]. Therefore, from (2.12) we conclude that Br(MC) is isomorphic to Z/τZ.
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Finally, in order to find a generator of Br(MC), let P̂ −→ X ×N be the universal
projective bundle and

P
′ := P̂|{x}×N −→ N

be the projective bundle obtained by restricting P̂, where x is the point of X in (2.5).
The Brauer group Br(N ) is generated by the class of P′ [BBGN, p. 267, Theorem
1.8]. The pulled back projective bundle (IdX × p)∗P̂ is identified with the restriction
P̃|X×U , where P̃ is the projective bundle in (2.4). This implies that p∗

P
′ is identified

with the restriction P|U . Since the class of P′ generates Br(N ), from the isomorphism
(ι∗)−1 ◦ p∗ in (2.12) it follows that the class of P generates Br(MC). �

2.2. Analytic Brauer Group of Representation Spaces

Consider now the free group � generated by 2g elements {ai, bi}g
i=1, and let

γ :=
g∏

i=1

[ai, bi] =
g∏

i=1

(aibia−1
i b−1

i ) ∈ � (2.13)

be the product of the commutators. Then, one may consider the space of all homomor-
phisms Hom(�, SL(r,C)) from the group � to SL(r,C). Let

Homδ(�, SL(r,C)) ⊂ Hom(�, SL(r,C))

be all such homomorphisms ρ satisfying the condition that

ρ(γ ) = exp(2π
√−1δ/r) · Ir×r ,

where Ir×r is the r × r identity matrix. The conjugation action of SL(r,C) on itself produces
an action of SL(r,C) on the variety Hom(�, SL(r,C)). Moreover, this action of SL(r,C) on
Hom(�, SL(r,C)) preserves the above subvariety Homδ(�, SL(r,C)). We shall denote by
R the geometric invariant theoretic quotient

R := Homδ(�, SL(r,C))//SL(r,C),

which parametrizes all the closed orbits of SL(r,C) in Homδ(�, SL(r,C)).
The moduli space MC defined in Section 2.1 is biholomorphic to R. After fixing a

presentation of π1(X \ {x0}, x), we have a map MC −→ R that sends a flat connec-
tion to its monodromy representation, and which is a biholomorphism. Indeed, it is the
inverse of the map that associates a flat bundle on X \ {x0} of rank r to a representation of
π1(X \ {x0}, x). Note that although both MC and R have natural algebraic structures, the
above biholomorphism between them is not an algebraic map.
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A homomorphism ρ : � −→ SL(r,C) is called reducible if ρ(�) is contained in some
proper parabolic subgroup of SL(r,C), equivalently, if ρ(�) preserves some proper non-
zero subspace of Cr under the standard action of SL(r,C). If ρ is not reducible, then it is
called irreducible.

We shall denote by

R ⊂ R

the locus of irreducible homomorphisms in R. It is easy to see that R is contained in the
smooth locus of R (in fact, R coincides with the smooth locus of R). From the defini-
tions of MC and R, it follows immediately that the above biholomorphism MC

∼−→ R
produces a biholomorphism

MC
∼−→ R . (2.14)

LetH ⊂ Homδ(� , SL(r,C)) be the inverse image ofR; in other words,H is the locus of
all elements of Homδ(� , SL(r,C)) that are irreducible homomorphisms. The quotient map

H −→ H//SL(r,C) = R

makes H an algebraic principal PSL(r,C)-bundle over R. We shall denote by

PR := H×PSL(r,C)
CP

r−1 −→ R (2.15)

the fibre bundle associated to the principal PSL(r,C)-bundle H −→ R for the standard
action of PSL(r,C) on CP

r−1.
The analytic Brauer group of R is defined to be the equivalence classes of holomorphic

principal PGL-bundles on R where two principal PGL-bundles P and Q are equivalent if
there are holomorphic vector bundles V and W on R such that the two principal PGL-
bundles P ⊗P(V) and Q ⊗P(W) are isomorphic. Moreover, the analytic cohomological
Brauer group of R is the torsion part of H2(R, O∗

R) (see [Sc]). Let Bran(R) (respectively,
Br′an(R)) denote the analytic Brauer group (respectively, analytic cohomological Brauer
group) of R. Then, from [Sc, p. 878] one has that

Bran(R) ⊂ Br′an(R) .

Theorem 2.5 The analytic cohomological Brauer group Br′an(R) is isomorphic to a quotient of
the cyclic group Z/τZ, where τ = g.c.d.(r,δ). Moreover, the group Bran(R) is generated
by the class of the projective bundle PR in (2.15).

Proof From the biholomorphism in (2.14), the group Br′an(R) coincides with the analytic
Brauer group Br′an(MC) of the stable moduli space MC. Moreover, the forgetful
map Br′(MC) −→ Br′an(MC) is surjective [Sc, p. 879, Proposition 1.3]. Then, since
Br′(MC) = Br(MC), we conclude that Br′an(R) is a quotient of Br′(MC). Therefore,
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from the first part of Theorem 2.4, it follows that Br′an(R) is a quotient of the cyclic
group Z/τZ.

The isomorphism in (2.14) takes the projective bundle PR constructed in (2.15)
holomorphically to the projective bundle P of (2.5). Therefore, from the second part
of Theorem 2.4, it follows that Br′an(R) is generated by the class of PR . �

Note that while the natural homomorphism Bran(R) −→ Br′an(R) is injective [Sc,
p. 878], Theorem 2.5 implies that this homomorphism is surjective and thus the following
corollary is proved.

Corollary 2.6 The analytic Brauer group Bran(R) coincides with Br′an(R).

Regarding the above Corollary 2.6, it should be clarified that the analogue of Gabber’s
theorem, which would say that the Brauer group coincides with the cohomological Brauer
group, is not available in the analytic category.

2.3. Brauer Group of Moduli Spaces of Higgs Bundles

We shall now consider Higgs bundles on a compact Riemann surface. As in Section 2.1,
consider a compact connected Riemann surface X of genus g ≥ 3, and x0 ∈ X a base point.
LetMH denote the moduli space of stable Higgs bundles on X of the form (E, �), where E
is a holomorphic vector bundle of rank r with

∧r E = OX(δx0), and � is a Higgs field on X
with Tr(�) = 0. The moduli space MH is an irreducible smooth complex quasiprojective
variety of dimension 2(r2 − 1)(g − 1).

Consider the moduli space N from (2.10), for which the total space of the algebraic
cotangent bundle T∗N is embedded in in MH as a Zariski open subset. The codimension
of the complement MH \ T∗N is at least two [Hi]. Therefore, by purity of cohomology,
and Lemma 2.3, one has that

Br(N ) = Br(T∗N ) = Br(MH) ;

as before, we use that N is simply connected.
Hence, we have the following:

Proposition 2.7 The Brauer group Br(MH) is the cyclic group of order g.c.d.(r,δ). Further-
more, Br(MH) is generated by the class of the projective bundle on MH obtained by
restricting to {x}×MH the universal projective bundle on X ×MH.

3. Generalizations to Principal Bundles

Let G be a semi-simple simply connected affine algebraic group defined over C. The
topological types of principal G-bundles on X are parametrized by π1(G), which is a finite
abelian group. Let MC(G) denote the moduli space of pairs of the form (EG, D), where
EG is a topologically trivial holomorphic principal G-bundle on X, and D is a holomorphic
connection on EG. Following the notation from the previous sections, let
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MC(G) ⊂ MC(G)

be the smooth locus of MC(G).
The centre of G will be denoted by Z(G). A stable principal G-bundle is called regu-

larly stable if its automorphism group coincides with Z(G). We shall denote by NG the
moduli space of regularly stable principal G-bundles on X that are topologically trivial.
Recall from [BHol] that the Brauer group Br(NG) can be identified with the dual group
Z(G)∨ = Hom(Z(G), C∗), and Br(NG) is generated by the tautological Z(G)-gerbe on
NG defined by the moduli stack of regularly stable topologically trivial principal G-bundles
on X. Note that, given any homomorphism Z(G)∨ −→ Gm, using extension of the struc-
ture group, the above Z(G)-gerbe produces a Gm-gerbe on NG.

Proposition 3.1 The Brauer group Br(MC(G)) is isomorphic to the dual group Z(G)∨ and is
generated by the tautological Z(G)-gerbe on MC(G).

Proof A straightforward generalization of the proof of Theorem 2.4 proves the proposition.
We note that NG is simply connected [BLR, p. 416, Theorem 1.1]; hence, Lemma 2.3
is applicable. �

Similarly, the (analytic) Brauer group computations in Theorem 2.5 and Section 2.3
extend to G.

4. Langlands Duality and Brauer Groups

As previously, suppose that G is simply connected and let LG denote the Langlands dual
group. There is a canonical isomorphism π1(

LG) ∼= Z(G)∨, which can be seen from
the root-theoretic construction of the Langlands dual. We shall denote by MH(G) and
MH(LG) the moduli spaces of Higgs bundles for the groups G and LG, respectively.

It is known that the connected components of MH(LG) correspond to π1(
LG), by

taking the topological class of the underlying principal bundle. Recall that the moduli
spaces MH(G) and MH(LG) satisfy SYZ mirror symmetry, that is, they are dual special
Lagrangian torus fibrations over a common base [DoPa]. Under this duality, the choice
of a connected component of MH(LG) corresponds to fixing a C

∗-gerbe on MH(G).
Namely, given a class in π1(

LG) ∼= Z(G)∨, we obtain from the universal G/Z(G)-bundle
on MH(G) the corresponding C

∗-gerbe. Our computations show that every class in
Br(MH(G)) is accounted for by this correspondence.
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Abstract. Stable generalized complex structures can be constructed out of boundary
Lefschetz fibrations. On 4-manifolds, these are essentially genus one Lefschetz fibrations
over surfaces, except that generic fibres can collapse to circles over a codimension 1 sub-
manifold, which is often the boundary of the surface. We show that a 4-manifold admits
a boundary Lefschetz fibration over the disc degenerating over its boundary if and only
if it is diffeomorphic to S1 × S3#nCP2, #mCP2#nCP2 or #m(S2 × S2). We conclude that
the 4-manifolds S1 × S3#nCP2, #(2m + 1)CP2#nCP2 and #(2m + 1)S2 × S2 admit stable
generalized complex structures whose type change locus has a single component.

1. Introduction

Generalized complex structures, introduced by Hitchin [14] and Gualtieri [11] in 2003, are
geometric structures which generalize simultaneously complex and symplectic structures
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639.032.221 from NWO, the Netherlands Organisation for Scientific Research.
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(Eds): Oxford University Press (2018). © Oxford University Press. DOI: 10.1093/oso/9780198802006.003.0015
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while at the same time providing the mathematical background for string theory. One
feature of generalized complex geometry is that the structure is not homogenous. In fact,
a single connected generalized complex manifold may have complex and symplectic points.
This lack of homogeneity is governed by the type of the structure, an integer-valued upper
semicontinuous function on the given manifold which tells ‘how many complex directions’
the structure has at the given point. In particular, on a 2n-dimensional manifold, points of
type 0 are symplectic points, while points of type n are complex.

Among all type-changing generalized complex structures, one kind seems to deserve
special attention: stable generalized complex structures. These are the structures whose
canonical section of the anticanonical bundle vanishes transversally along a codimension 2
submanifold, D, endowing it with the structure of an elliptic divisor in the language of [8].
Consequently, the type of such a structure is 0 on X \D, while on D it is equal to 2.
Many examples of stable generalized complex structures were produced in dimension 4
[7, 10, 15, 16] and a careful study was carried out in [8]. One of the outcomes of that study
was that it related stable generalized complex structures to symplectic structures on a certain
Lie algebroid.

Theorem ([8, Theorem 3.7]) Let D be a co-orientable elliptic divisor on X. Then there is a
correspondence between gauge equivalence classes of stable generalized complex structures
on X which induce the divisor D, and zero-residue symplectic structures on (X,D).

This result paves the way for the use of symplectic techniques to study stable structures.
One result, due to the last named authors [5], that exemplifies that use is the following
relation between stable generalized complex structures and boundary Lefschetz fibrations
in dimension 4. The latter are essentially genus one Lefschetz fibrations over surfaces whose
generic fibres can collapse to circles over a codimension 1 submanifold, which is often
the boundary of the surface (see Section 2 for details).

Theorem ([5, Theorem 7.1]) Let X4 be a closed connected and orientable 4-manifold and
let � be a compact connected and orientable 2-manifold with boundary Z = ∂�. Let
f : X4 → �2 be a boundary Lefschetz fibration for whichD = f −1(∂�) is a co-orientable
submanifold of X, and with 0 �= [f −1(p)] ∈ H2(X \D;R), where p ∈ � is a regular value
of f . Then X admits a stable generalized complex structure whose degeneracy locus is D.

This result is reminiscent of Gompf ’s original one [9], showing that Lefschetz fibrations
give rise to symplectic structures. It is also is similar in content to a number of other results
relating structures which are close to being symplectic to maps which are close to being
Lefschetz fibrations. These include the relations between near-symplectic structures and
broken Lefschetz fibrations [1], and between folded symplectic structures and real log-
symplectic structures and achiral Lefschetz fibrations [2, 4, 6].

The upshot of these results is that they at the same time furnish (at least theoretically)
a large number of examples of manifolds admitting the desired geometric structure, and
provide us with a better grip on those structures. With this in mind, our aim here is to classify
all 4-manifolds which admit boundary Lefschetz fibrations over the disc degenerating over
its boundary. Our main result is the following (Theorem 3.13).
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Theorem Let f : X4 → D2 be a relatively minimal boundary Lefschetz fibration and
D = f −1(∂D2). Then X is diffeomorphic to one of the following manifolds:

(1) S1 × S3;
(2) #m(S2 × S2), including S4 for m = 0;

(3) #mCP2#nCP2 with m > n ≥ 0.
In all cases, the generic fibre is non-trivial in H2(X \D;R). In case (1),D is co-orientable

while, in cases (2) and (3), D is co-orientable if and only if m is odd.

These last two theorems equip the manifolds S1 × S3#nCP2, #(2m + 1)CP2#nCP2 and
#(2m + 1)S2 × S2 with a stable generalized complex structure whose type change locus
has a single component. Further, they provide a complete list of 4-manifolds whose stable
generalized complex structures are obtained from boundary Lefschetz fibrations over the
disc degenerating over its boundary. Note that the previous theorem does not address cases
where D has multiple components.

We use essentially the same methods that were used by the first author in [3] and
Hayano in [12, 13]. We translate the problem into combinatorics in the mapping class
group of the torus, and then translate combinatorial results back into geometry using handle
decompositions and Kirby calculus. Hayano’s work turns out to be particularly relevant.
In his classification of so-called genus one simplified broken Lefschetz fibrations, he was led
to study monodromy factorizations of Lefschetz fibrations over the disc whose monodromy
around the boundary is a signed power of a Dehn twist. It turns out that the same problem
appears for boundary Lefschetz fibrations.

Organization of the paper

This paper is organised as follows. In Section 2 we introduce boundary fibrations and
boundary Lefschetz fibrations, and summarize their basic properties. In Section 3 we start
by studying boundary Lefschetz fibrations over (D2,∂D2) with few Lefschetz singularities.
We then prove the main theorem using induction, by showing how to reduce the number
of Lefschetz singularities.

2. Boundary Lefschetz Fibrations

In view of our interest in stable generalized complex structures and the results mentioned
in the introduction, the basic object with which we will be dealing in this paper are boundary
(Lefschetz) fibrations. In this section, we review the relevant definitions and basic results
regarding them. We will use the following language. A pair (X,D) consists of a manifold X
and a submanifoldD ⊆ X. A map of pairs f : (X,D) → (�, Z) is a map f : X → � for which
f (D) ⊆ Z. A strong map of pairs is a map of pairs f : (X,D) → (�, Z) for which f −1(Z) = D.

Definition 2.1 (Boundary Lefschetz fibrations) Let f : (X2n,D2n−2) → (�2, Z1) be a
strong map of pairs which is proper and for which D and Z are compact.
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• The map f is a boundary map if the normal Hessian of f along D is definite.
• The map f is a boundary fibration if it is a boundary map and the following two maps

are submersions:
(a) f |X\D : X \D → � \ Z, and
(b) f : D → Z.

The condition that f is a boundary fibration (in a neighbourhood ofD) is equivalent
to the condition that, for every x ∈ D, there are coordinates (x1, . . . , x2n) centred at
x, and (y1, y2) centred at f (x), such that f takes the form

f (x1, . . . , x2n) = (x2
1 + x2

2, x3), (2.1)

where D corresponds to the locus {x1 = x2 = 0} and Z to the locus {y1 = 0};
• The map f is a boundary Lefschetz fibration if X and � are oriented, f is a boundary

fibration from a neighbourhood of D to a neighbourhood of Z and f |X2n\D : X \
D → � \ Z is a proper Lefschetz fibration, that is, for each critical point x ∈ X \D
and corresponding singular value y ∈ � \ Z, there are complex coordinates centred
at x and y compatible with the orientations for which f acquires the form

f (z1, . . . , zn) = z2
1 + ·· · + z2

n. (2.2)

Example 2.2 (S1 × S3) In this example we provide X = S1 × S3 with the structure
of a boundary fibration over the disc, as described in [5, Example 8.3]. The map
f : S1 × S3 → D2 is a composition of maps, namely

S1 × S3 → S3 → D2,

where the first map is a projection onto the second factor and the last is the projection
from C

2 to C, (z1, z2) �→ z1, restricted to the sphere. In Theorem 3.1 we will see that
this is, in fact, the only example of a boundary fibration over (D2,∂D2).

A few relevant facts about boundary Lefschetz fibrations were established in [5]. Beyond
the local normal form (2.1) for the map f around points in D, there is also a semi-global
form for f in a neighbourhood of D:

Theorem 2.3 ([5, Proposition 5.15]) Let f : (X2n,D2n−2) → (�2, Z1) be a boundary map
which is a boundary fibration on neighbourhoods ofD and Z and for which Z is co-orientable.
Then there are

• neighbourhoods U of D and V of Z and diffeomorphisms between these sets and neigh-
bourhoods of the zero sections of the corresponding normal bundles, �D : U → ND and
�Z : V → R× Z, and

• a bundle metric g on ND ,



OUP CORRECTED PROOF – FINAL, 14/9/2018, SPi

boundary lefschetz fibrations | 403

such that the following diagram commutes, where π : ND → D is the bundle projection:

U
f ��

�D
��

V
�Z��

ND
(‖·‖2

g , f |D◦π)
�� R× Z.

The most obvious consequence of this theorem is that, in the description above, the
image of f lies on one side of Z, namely inR+ × Z. At this stage, this is a local statement but,
if Z is separating (i.e. represents the trivial homology class), this becomes a global statement:
the image of f lies in closure of one component of � \ Z and hence we can equally deal with f
as a map between X and a manifold with boundary, �, whose boundary is Z. In this paper, we
will be concerned with the case when � is the two-dimensional disc and Z is its boundary.

Corollary 2.4 Let f : (X4,D2) → (�2, Z1) be a boundary fibration with connected fibres,
where Z is co-orientable and X is connected and orientable. Then its generic fibres are tori.

Proof From Theorem 2.3 we see that the level set f −1 ◦ �−1
Z (ε, y) with ε > 0 is a

surface which fibres over the level set of f −1 ◦ �−1
Z (0, y), which is a circle; hence,

f −1 ◦ �−1
Z (ε, y) must be a torus or a Klein bottle. If X is orientable, ND \D is also ori-

entable and, due to Theorem 2.3, �Z ◦ f ◦ �−1
D : U ⊂ ND \D → R× Z \ {0}× Z is

a fibration, where U is a neighbourhood of D; hence, the fibres must be orientable. �

Remark 2.5 In the case when X is connected, � is a surface with boundary Z = ∂�, and
f : X → � is surjective, we can lift f to a cover of � so that the fibres of the boundary
Lefschetz fibration become connected. That is, this particular hypothesis is not really a
restriction on the fibration (see [5, Proposition 5.23]). In what follows, we will always
assume this is the case.

Remark 2.6 As shown in [5, Proposition 6.8], a boundary Lefschetz fibration
f : (X4,D2)→ (D2,∂D2) satisfies χ(X) = μ, where μ is the number of Lefschetz
singular fibres.

2.1. Vanishing Cycles and Monodromy

Lefschetz fibrations on 4-manifolds can be described combinatorially in terms of their
monodromy representations and vanishing cycles. We now extend this approach to bound-
ary Lefschetz fibrations. For simplicity, we focus on fibrations over the disc (degenerating
over its boundary) and assume they are injective on their Lefschetz singularities. The latter
condition can always be achieved by a small perturbation, and the generalization to general
base surfaces is similar to the Lefschetz case.

Definition 2.7 (Hurwitz systems) Let f : (X4,D2) → (D2,∂D2) be a boundary Lefschetz
fibration with � Lefschetz singularities, and let y ∈ D2 be a regular value. A Hurwitz
system for f based at y is a collection of embedded arcs η0,η1, . . . ,η� ⊂ D2 such that
(1) η0 connects y to ∂D2 and is transverse to ∂D2,
(2) ηi connects y to a critical value yi,
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(3) the arcs intersect pairwise transversely in y and are otherwise disjoint, and
(4) the order of the arcs is counterclockwise around y.

Given a Hurwitz system, we obtain a collection of simple closed curves in the regular fibre
Fy = f −1(y) as follows. For i > 0, we have the classical construction of Lefschetz vanishing
cycles: as we move from y alongηi towards yi, a curveλi ⊂ Fy shrinks and eventually collapses
into Lefschetz singularity over yi, leading to a nodal singularity in Fyi . For later reference,
we also recall that the monodromy along a counterclockwise loop around yi contained in
a neighbourhood of ηi is given by a right-handed Dehn twist about λi. Along η0 we see a
slightly different degeneration: the boundary of a solid torus degenerates the core circle.
Indeed, using the local model for f near D and the transversality of η0 to ∂D2 we can
find a diffeomorphism f −1(η0) ∼= D2 × S1 and a parametrization of η0 that takes f into
the function D2 × S1 → R× Z given by (x1, x2,θ) �→ (x2

1 + x2
2, z0), where z0 = η0(1).

To summarize, f −1(η0) is a solid torus whose boundary is Fy. Further Fy contains a well-
defined isotopy class of meridional circles, represented in the model by ∂D2 ×{θ} for
arbitrary θ ∈ S1. We will henceforth refer to this isotopy class as the boundary vanishing cycle
associated to η0 and denote it by δ.

To make things even more concrete, we can fix an identification of the reference fibre Fy
with T2 and consider the vanishing cycles in the standard torus. To make a notational
distinction, we denote the images in T2 by (a; b1, . . . , b�).

Definition 2.8 (Cycle systems) A collection of curves (a; b1, . . . , b�) in T2 associated to f
by a choices of a Hurwitz system together with an identification of the reference fibre
with T2 is called a cycle system for f .

It is well known that the Lefschetz part of f can be recovered from the Lefschetz vanishing
cycles. In the next section, we will explain how this statement extends to boundary Lefschetz
fibrations. Just as in the Lefschetz case, the cycle system is not unique but the ambiguities
are easy to understand and provide some flexibility to find particularly nice cycle systems
representing a given boundary Lefschetz fibration. The following is a straightforward gen-
eralization of the analogous statement for Lefschetz fibrations (see also Figure 1).

Proposition 2.9 Let f : (X4,D2) → (D2,∂D2) be a boundary Lefschetz fibration with �

Lefschetz singularities. Any two cycle systems for f are related by a finite sequence of the
following modifications:

(
a; b1, . . . , b�

)
, ∼ (

a; b2, B2(b1), b3, . . . , b�

)
,

∼ (
a; B−1

1 (b2), b1, b3, . . . , b�

)
,

∼ (
B1(a); b2, . . . , b�, b1

)
,

∼ (
B−1

� (a); b�, b1, . . . , b�−1
)

,

∼ (
h(a); h(b1), . . . , h(b�)

)
.

Here Bi = τbi is a right-handed Dehn twist about bi and h is any diffeomorphism of T2.

Definition 2.10 (Hurwitz equivalence) If two cycle systems are related by the modifica-
tions listed in Theorem 2.9, we say that they are (Hurwitz) equivalent.
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Figure 1 The origin of Hurwitz equivalence: here we illustrate how the equivalences(
a; b1, . . . , b�

) ∼ (a; B−1
1 (b2), b1, b3, . . . , b�

) ∼ (
B−1

� (a); b�, b1, . . . , b�−1
)

arise.

It turns out that the curves in a cycle system are not completely arbitrary. Let S1
r ⊂ D2

be the circle of radius r < 1 such that all the Lefschetz singularities of f map to the interior
of D2

r . Fix a reference point let y ∈ S1
r and let

μ(f ) ∈ M(Fy) = π0Diff+(Fy)

be the counterclockwise monodromy of f around S1
r as measured in the mapping class

group of Fy. Then, for any cycle system for f derived from a Hurwitz system based at y, the
anticlockwise monodromy of f around S1

r measured in Fy is given by the product of Dehn
twists about the Lefschetz vanishing cycles λi ⊂ Fy,

μ(f ) = τλ�
◦ · · · ◦ τλ1 ∈ M(Fy) = π0Diff+(Fy). (2.3)

On the other hand, we can also describe the monodromy using the boundary part of the
fibration. Recall that f −1(S1

r ) is the boundary of a tubular neighbourhood ND of D and
that the fibration structure over S1

r essentially factors through the projection ND → D.
This exhibits f −1(S1

r ) as a circle bundle over D, which is itself a circle bundle over S1.
It follows that the monodromy of f around S1

r must fix the circle fibres of f −1(S1
r ) → D, and

the circle fibre contained in Fy is precisely the boundary vanishing cycle δ of the Hurwitz
system. To conclude, μ(f ) fixes δ as a set, but not necessarily pointwise. Indeed, it can (and
does) happen that μ(f ) reverses the orientation of δ.

Remark 2.11 At this point, it is worthwhile to point out some perks of working on a torus.
First, there is the fact that any diffeomorphism of T2 is determined up to isotopy
by its action on H1(T2). Given any pair of oriented simple closed curves a, b ⊂ T2
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with (algebraic) intersection number 〈a, b〉 = 1—called dual pairs from now on—
we get an identification M(T2) ∼= SL(2,Z). Moreover, the right-handed Dehn
twists A, B ∈ M(T2) about a and b are the generators in a finite presentation with
relations ABA = BAB and (AB)6 = 1. In particular, we have that (AB)3 maps to
−1 ∈ SL(2,Z), which we will also denote by writing −1 = (AB)3 ∈ M(T2). Second,
in a similar fashion, simple closed curves up to ambient isotopies are uniquely
determined by their (integral) homology classes. Note that this involves a choice of ori-
entation, since simple closed curves are a priori unoriented objects. However, it is true
that essential simple closed curves in T2 correspond bijectively with primitive elements
of H1(T2) up to sign. In what follows, we adopt the common bad habit of identifying
simple closed curves with elements of H1(T2) without explicitly mentioning
orientation. In particular, we will freely use the homological expression for a Dehn
twist, i.e. write

τc(d) = d + 〈c, d〉c ∈ H1(T2). (2.4)

We record two facts that are important for our purposes:
(1) If h ∈ M(T2) satisfies h(a) = a for some essential curve a, then h = ±τ k

a for
some k with a negative sign if and only if h is orientation reversing on a.

(2) If oriented curves a, b, c ⊂ T2 satisfy 〈a, b〉 = 〈a, c〉 = 1, then c = τ k
a (b) = b + ka

for some k.

Returning to the discussion of the monodromy μ(f ), we can conclude that the vanishing
cycles have to satisfy the condition

μ(f ) = τλ�
◦ · · · ◦ τλ1 = ±τ k

δ ∈ M(Fy), k ∈ Z.

It is easy to see from the above discussion that a negative sign appears if and only ifD fails to
be co-orientable. Moreover, the integer k is precisely the Euler number of the normal bundle
of D in X. Here we remark that a vector bundle E → M with M compact has a well-defined
integer Euler number if the total space of E is orientable, even if M is not orientable itself.

For practical purposes, it is more convenient to work with cycle systems in the model T2.
Here is the upshot of the above discussion:

Proposition 2.12 Let f : (X4,D2) → (D2,∂D2) be a boundary Lefschetz fibration. If
(a; b1, . . . , b�) is any cycle system for f , then

B� ◦ · · · ◦ B1 = ±Ak ∈ M(T2) (2.5)

for some k ∈ Z, where the sign is positive if and only ifD is co-orientable. The integer k agrees
with the Euler number of the normal bundle of D in X.

This motivates an abstract definition without reference to boundary Lefschetz fibrations.

Definition 2.13 (Abstract cycle systems) An ordered collection of curves (a; b1, . . . , b�)

in T2 is called an abstract cycle system if it satisfies the condition in (2.5). Hurwitz
equivalence is defined exactly as in Theorem 2.10.
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2.2. Handle Decompositions and Kirby Diagrams

Next, we discuss how one can recover boundary Lefschetz fibrations from their cycle
systems. Along the way, we exhibit useful handle decompositions of total spaces of
boundary Lefschetz fibrations.

Proposition 2.14 Any abstract cycle system (a; b1, . . . , b�) is the cycle system of some boundary
Lefschetz fibration over the disc.

Proof We will build a 4-manifold obtained by attaching a handle to T2 × D2. We choose
points θ0, . . . ,θ� ∈ ∂D2 which appear in anticlockwise order and consider a copy
of a in T2 ×{θ0} and of bi in T2 ×{θi} for i > 0. Note that, for all these curves,
there is a natural choice of framing determined by parallel push-offs inside the fibres
of T2 × S1 → S1. We first attach a 2-handle along the copies of bi for i > 0 with
respect to the fibre framing −1 and call the resulting manifold Z. It is well known that
the projection T2 × D2 extends to a Lefschetz fibration on Z over a slightly larger disc,
which we immediately rescale to D2, such that the Lefschetz vanishing cycles along
the straight line from θi to zero is bi. By construction, the boundary fibres over S1

and the anticlockwise monodromy measured in T2 ×{θ0} is B� ◦ · · · ◦ B1 = ±Ak.
In particular, ∂Z is diffeomorphic as an oriented manifold to the circle bundle with
Euler number k over the torus or the Klein bottle. Let N±

−k be the corresponding disc
bundle with Euler number −k. Then ∂N±

−k is diffeomorphic to ∂Z with the orientation
reversed so that we can form a closed manifold X by glueing Z and N±

−k together, and
the orientation of Z extends. Moreover, it was shown in [5] that N±

−k admits a boundary
fibration over the annulus which can be used to extend the Lefschetz fibration on Z to
a boundary Lefschetz fibration on X, again over a larger disc which we rescale to D2,
in such a way that the boundary vanishing cycle along the straight line from θ0 to
zero is a.

Thus we have found a boundary Lefschetz fibration together with a Hurwitz system
which produces the desired cycle system. �

Remark 2.15 (Construction of the Kirby diagram) Observe that the glueing of N±
−k also

has an interpretation in terms of handles. It is well known that N±
−k has a handle

decomposition with one 0-handle, two 1-handles, and a single 2-handle. Turning this
decomposition upside down gives a relative handle decomposition on −∂N±

−k
∼= ∂Z

with a single 2-handle, two 3-handles, and a 4-handle. Moreover, the 2-handle can be
chosen such that its core disc is a fibre. In particular, since the glueing of N±

−k to Z
preserves the circle fibration, we can arrange that the 2-handle of N±

−k is attached along
the copy of a in the fibre of ∂Z over θ0. However, in contrast to the Lefschetz handles,
this time the framing is actually the fibre framing.

To summarize, the closed 4-manifold X is obtained from T2 × D2 by attaching,
in order, a 2-handle along the boundary vanishing cycle with the fibre framing, and
then 2-handles along the Lefschetz vanishing cycles bi ⊂ T2 ×{θi} with fibre fram-
ing −1. The two 3-handles as well as the 4-handle attach uniquely, as explained in
[9, Section 4.4].
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∪ two 3-handles
    one 4-handle

∪ two 3-handles
    one 4-handle

(a)

0

0

0

−1
−1 −1

(b)

Figure 2 Kirby diagrams corresponding to the abstract cycle systems (a; a) (Panel (a)) and
(a; b + 2a, b) (Panel (b)). The numbers indicate the blackboard framing of the corresponding
2-handles.

As an illustration of this procedure, Figure 2 shows the Kirby diagrams correspond-
ing to the abstract cycle systems (a; a) and (a; b + 2a, b), where {a, b} is a dual pair of
curves.

Next we show that the topology of the total space of a boundary Lefschetz fibration can
be recovered from the cycle system.

Proposition 2.16 If two boundary Lefschetz fibrations over (D2,∂D2) have equivalent cycle
systems, then their total spaces are diffeomorphic.

Proof Elaborating on the proof of Theorem 2.14, one can show that, if a Hurwitz system and
identification of the reference fibre with T2 for a given boundary Lefschetz fibration
produces the cycle system (a; b1, . . . , b�), then its total space is diffeomorphic to the
manifold constructed by attaching handles to T2 × D2, as explained above. Similarly,
one can then argue that the manifolds constructed from equivalent cycle systems are
diffeomorphic. The details are somewhat tedious but straightforward and we leave
them to the inclined reader. �

As a consequence, in order to classify closed 4-manifolds admitting boundary Lefschetz
fibrations over (D2,∂D2), it is enough to identify all 4-manifolds obtained from abstract
cycle systems as in the proof of Theorem 2.14. Moreover, as we argued in Theorem 2.15,
this problem is naturally accessible to the methods of Kirby calculus via the handle decom-
positions. For the relevant background about Kirby calculus, we refer to [9] (Chapter 8, in
particular).

3. Boundary Lefschetz Fibrations over (D2,∂D2)

As a warm-up for our main theorem, it is worth considering the following more basic
question: Which oriented 4-manifolds are boundary fibrations over (D2,∂D2)? The answer
is simple:

Lemma 3.1 Let X be a compact, orientable manifold and let f : (X4,D2) → (D2,∂D2) be a
boundary fibration. Then X is diffeomorphic to S1 × S3, and D is co-orientable.
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Proof Note that a boundary fibration is a boundary Lefschetz fibration without Lefschetz
singularities. As such, its cycle systems consist of a single curve a ⊂ T2 corresponding
to the boundary vanishing cycle. Thus, a is essential and we can therefore assume
that a = {1}× S1. According to the discussion in Subsection 2.2, X is obtained from
glueing T2 × D2 together with a suitable disc bundle over a torus or Klein bottle, such
that the boundary of a disc fibre is identified with a. Obviously, the only possibility is
N+

0 = D2 × T2, the trivial disc bundle over the torus, and the glueing can be arranged
such that ∂D2 ×{(1, 1)} ⊂ N+

0 is identified with a ×{1} ⊂ T2 × D2. Since this is
achieved by the diffeomorphism of T3 which flips the first two factors, we see that

X ∼= S1 × S1 × D2 ∪ϕ D2 × S1 × S1

∼= S1 × S1 × D2 ∪id S1 × D2 × S1

∼= S1 × (
S1 × D2 ∪id D2 × S1) ∼= S1 × S3,

where the last diffeomorphism comes from the standard decomposition of S3 consid-
ered as sitting in C

2 and split into two solid tori by S1 × S1 ⊂ C
2. �

Now we move on to study honest boundary Lefschetz fibrations over the disc and
eventually prove our classification theorem, Theorem 3.13. The proof of the theorem
itself is done by induction on the number of singular fibres. So, in order to achieve our aim,
we need to study the base cases, i.e. boundary Lefschetz fibrations with only a few singular
fibres, and explain how to systematically reduce the number of singular fibres to bring us
back to the base cases. It turns out that there is a step that appears frequently, namely, the
blow-down of certain (−1)-spheres, which is interesting on its own as it gives the notion of a
relatively minimal boundary Lefschetz fibration. In the rest of this section, we will first study
blow-downs and relatively minimal fibrations. We then move on to study the cases with one
and two singular fibres and finally prove Theorem 3.13.

3.1. The Blow-Down Process and Relative Minimality

Given a usual Lefschetz fibration f : X4 → �2, we can perform the blow-up in a regular
point x ∈ X with respect to a local complex structure compatible with the orientation of X.
The result is a manifold X̃ together with a blow-down map σ : X̃ → X and it turns out that
the composition f̃ = f ◦ σ : X̃ → � is a Lefschetz fibration with one more critical point
than f in the fibre over y = f (x). Moreover, the exceptional divisor sits inside the (singular)
fibre f̃ −1(y) as a sphere with self-intersection −1. Conversely, given any (−1)-sphere in a
singular fibre of a Lefschetz fibration, this process can be reversed: the (−1)-sphere can be
blown down, producing a Lefschetz fibration with one critical point less. For that reason,
it is enough to study relatively minimal Lefschetz fibrations: fibrations whose fibres do not
contain any (−1)-spheres. Equivalently, a Lefschetz fibration is relatively minimal if no
vanishing cycle bounds a disc in the reference fibre; and, on the level of cycle systems, the
blow-up and blow-down procedures simply amount to adding or removing null-homotopic
vanishing cycles.

For a boundary Lefschetz fibration f : (X4,D2) → (�2, Z1), there is another way a
(−1)-sphere can occur in relation to the fibration. These spheres arise if there is a simple
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path connecting a Lefschetz singular value of f to a component of Z with the property that
the Lefschetz vanishing cycle in one end of the path agrees with the boundary vanishing
cycle. In this case, we can form the corresponding Lefschetz thimble from the Lefschetz
singularity which then closes up at the other end of the path to give rise to a (−1)-sphere, E,
which intersects the divisor D at one point, as observed in [7]. Note that, in the case where
(�, Z) = (D2,∂D2), this is equivalent to a cycle system (a; b1, . . . , b�) such that some bi
agrees with a. From this description, it is clear that we can blow E down to obtain a new
manifold, X′. What is not immediately clear is that X′ admits the structure of a boundary
Lefschetz fibration.

Proposition 3.2 Let f : (X4,D2) → (D2,∂D2) be a boundary Lefschetz fibration which has
a cycle system (a; b1, . . . , b�) such that bi = a for some i. Then there exists a boundary
Lefschetz fibration f ′ : (X′,D′) → (D2,∂D2) with the cycle system

(a; A(b1), . . . , A(bi−1), bi+1, . . . , b�).

Moreover, we have X ∼= X′#CP2, and D′ has the same co-orientability as D.

Proof This is our first exercise in Kirby calculus. Using Hurwitz moves, we have the
equivalence of cycle systems:

(
a; b1, . . . , bi−1, a, bi+1, . . . , b�

) ∼= (
a; a, A(b1), . . . , A(bi−1), bi+1, . . . , b�

)
,

so we may assume without loss of generality that b1 = a. Further, we can take a to
be the first cycle of a dual pair {a, b}, that is, we may assume that a = S1 ×{1} ⊂ T2.
We now compare the Kirby diagrams obtained from the cycle systems (a; a, b2, . . . , b�)

and (a; b2, . . . , b�).
As we mentioned in Theorem 2.15, to draw a Kirby diagram for a boundary Lef-

schetz fibration corresponding to a cycle system, we start with the Kirby diagram of
D2 × T2 and add cells corresponding to the boundary vanishing cycle followed by
the Lefschetz vanishing cycles ordered anticlockwise. Therefore, the Kirby diagram
for (a; a, b2, . . . , b�) is the Kirby diagram for (a; a) with a number of 2-handles on top
of it representing the cycles b2, . . . , b�. The Kirby move we use next does not interact
with these last (l − 1) 2-handles; therefore, we will not represent them in the diagram.
With this in mind, the relevant part of the Kirby diagram of (a; a, b2, . . . , b�) is the
Kirby diagram of (a; a) as drawn in Figure 2(a). Sliding the −1-framed 2-handle corre-
sponding to the first Lefschetz singularity over the 0-framed 2-handle corresponding
to the boundary vanishing cycle produces a −1-framed unknot which is unlinked from
the rest (see Figure 3). The remaining Kirby diagram is precisely that corresponding
to the cycle system (a; b2, . . . , b�). Since an isolated −1-framed unknot represents a
connected sum with CP2, the result follows. �

The previous proof is prototypical for much of what follows from now on. In light of
Theorem 3.2, we make the following definition.

Definition 3.3 (Relative minimality) Let f : (X4,D2) → (D2,∂D2) be a boundary Lef-
schetz fibration. Then f is called relatively minimal if it does not have any cycle system
(a; b1, . . . , b�) in which some Lefschetz vanishing cycle bi is either null-homotopic or
isotopic to a.
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∪ two 3-handles
    one 4-handle

∪ two 3-handles
    one 4-handle

(a)

0

00

0

−1

−1

(b)

Figure 3 Figure showing the relevant part of the Kirby diagram of the cycle system (a; a, b2, . . . , b�),
in Panel (a), and the result of sliding the −1-framed 2-handle over the 0-framed one, in Panel (b).

3.2. Boundary Lefschetz Fibrations over (D2,∂D2) with Few
Lefschetz Singularities

The next step is to determine which manifolds admit boundary Lefschetz fibrations with
only one or two Lefschetz singularities.

Lemma 3.4 Let f : (X4,D2) → (D2,∂D2) be a boundary Lefschetz fibration with one Lef-
schetz singularity. Then f is not relatively minimal, we have X ∼= (S1 × S3)#CP2, and D
is co-orientable.

Proof This is [5, Example 8.4] but, in light of our discussion about blow-ups in terms
of cycle systems, we can determine it directly. Indeed, any cycle system of f has the
form (a; b1) such that B1 = ±Ak. Clearly, this is only possible when b1 is either null-
homotopic or parallel to a. In either case, f is not relatively minimal and can be blown
down to a boundary fibration, which, by Theorem 3.1, is diffeomorphic to S1 × S3. �

Lemma 3.5 Let f : (X4,D2) → (D2,∂D2) be a relatively minimal boundary Lefschetz
fibration with two Lefschetz singularities. Then X ∼= S4, and D is not co-orientable.

Proof All cycle systems of f have the form (a; b1, b2) with b1 and b2 essential and not parallel
to a. At this level of difficulty, one can still perform direct computations. This was
done by Hayano in [12]. The outcome is that, for suitable orientations, we must have
that b1 = A2(b2) = b2 + 2a, and 〈a, b1〉 = 〈a, b2〉 = 1. Using the relations AB2A =
B2AB2, and (AB2)

3 = −1, in M(T2) we find that

μ(f ) = B2B1 = B2A2B2A−2 = B2A(AB2A)AA−4 = B2A(B2AB2)AA−4 = −A−4.

The corresponding Kirby diagram for X is given in Figure 2(b). This particular type of
Kirby diagram will appear repeatedly in this paper, so we deal with it in a separate claim.

Just as we mentioned in the proof of Theorem 3.2, when drawing the Kirby diagram
for a boundary Lefschetz fibration, we must draw, from bottom to top, a 0-framed
2-handle corresponding to the boundary vanishing cycle and then −1-framed
2-handles for each Lefschetz singularity ordered counterclockwise. We will often want
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to make simplifications to the diagram which involve only the bottom two or three
2-handles.

Lemma 3.6 Let a, b ⊂ T2 be a dual pair of curves. Then the Kirby diagram associated to
a cycle system of the form (a; Ak(b), b, . . . ) = (a; b + ka, b, . . . ) is equivalent to that in
Figure 4. �

Proof The proof is a simple exercise: slide the 2-handle corresponding to b + ka k times
over the 0-framed 2-handle representing a, and once over the 2-handle corresponding
to b. None of these manoeuvres interacts with the other handles. �

Proof of Lemma 3.5 continued. Using Theorem 3.6, we see that the boundary Lefschetz
fibration is equivalent to the one depicted in Figure 4 with k = 2. If we slide the
outer 2-handle over the ‘a-handle’ twice, we get the diagram depicted in Figure 5.
There, a few things happen: the outer 0-framed 2-handle can be pushed out of the
1-handle and cancels a 3-handle. The ‘a-handle’ cancels one of the 1-handles, and
the ‘b-handle’ cancels the other, so we are left with a 0-framed unknot which cancels the
remaining 3-handle. After all this cancellation, we are left only with the 0-handle and
the 4-handle; hence, X is S4. �

0
∪ two 3-handles
    one 4-handle

k − 2

0

− 1

Figure 4 A Kirby diagram for cycle systems (a; b + ka, b, . . . ) after handle slides. Only the first
three 2-handles are shown; the other handles appear above the diagram in their standard form.
In particular, they are unlinked from the (k − 2)-framed unknot.

0

0

−1 0

∪ two 3-handles
    one 4-handle

Figure 5 Kirby diagram for X after two handle slides. Now everything cancels.


