


QUANTUM WEIRDNESS





QUANTUM
WEIRDNESS

William J. Mullin
Professor Emeritus, University of Massachusetts at Amherst

3



3

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries

©William J. Mullin 2017

The moral rights of the author have been asserted

First Edition published in 2017

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data

Data available

Library of Congress Control Number: 2016945261

ISBN 978–0–19–879513–1

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials

contained in any third party website referenced in this work.



For Sandra





Preface

Quantum mechanics is the science that is fundamental to understand-
ing all nature. It explains the central workings of atoms, molecules and
of the more complicated systems they form: solids, liquids, gases, plas-
mas, including biological systems. It has allowed us to penetrate the
atom to see that protons and neutrons are made of quarks and glu-
ons. We now know about the multitude of elementary particles, such
as neutrinos and Higgs bosons.
What quantum mechanics tells us is that particles, for example, the

electron or the helium atom, once thought to be small solid entities,
often act more like waves than particles. In an opposite situation, light,
once thought to be entirely explained bywave behavior, is found to have
energy carried by particle like quanta called photons. There is a particle–
wave duality in nature that was not fully realized before about 1920.
Erwin Schrödinger developed his famous wave equation in 1925 and we
have been using it ever since to explain the universe.
Waves do things that seem strange if you are expecting particle like

behavior. If I drop a stone in a pond, a wave spreads out from the source
and is soon all over the pond, while we would expect a particle to be
more like the stone that caused the wave, centered in one place at a
time following a well-defined path. There can be two or more waves on
the pond at the same time, and they can interfere with each other. We
will see that such a superposition means a particle can interfere with
itself and basically be in many places at once. If you can identify a wave’s
wavelength, the distance between crests, then the wave must extend
out some distance; if it is localized into only one crest, you are unable
to identify a wavelength. In quantum mechanics, this is related to the
famous Heisenberg uncertainty principle, in which simultaneous cer-
tainty about a particle’s position and momentum is impossible. Waves
can penetrate into places that are a bit unexpected. Quantum tunneling
results in an electron more or less going right through the equiva-
lent of a solid wall on occasion. On the other hand, particles often act,
well, like particles: one often sees pictures of tracks from detectors in
large accelerators and they seem to travel in well-defined lines there—
very much as one would expect particles to behave. How does the wave
interpretation apply there?
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The predictions of the Schrödinger equation agree remarkably well
with experiment, but the way we seemingly must interpret what it is
telling us often seems very bizarre. The oddness is often described as
“quantumweirdness.” As another example, in one experiment two par-
ticles separate until they are very far apart. Wemake a measurement on
particle 1 at a point A and get a result. Instantly, we are able to pre-
dict with certainty what the result will be on a similar experiment on
particle 2 at point B. In classical mechanics, this is possible only if the
particles possess built-in properties that are correlated before the meas-
urement, and determine their results. But quantum mechanics seems
to say that it was the measurement process that creates the results!
Einstein called this “spooky action at a distance” and thought that a
good theory should not include such nonlocality. But later experiments
confirmed that this remarkable nonlocality seems a necessary compo-
nent of the theory. We have been trying to puzzle out the weirdness
ever since.
Quantum effects in nature can seem weird to us because we grow up

seeing the world in the light of Newtonian mechanics, even if we have
not studied physics at all. Balls follow smooth arcs, more or less like the
particle tracks. We can certainly specify a baseball’s position and speed
simultaneously. Balls bounce off walls rather than tunneling through.
So we become accustomed to this “classical" Newtonian way of view-
ing things; when atoms or electrons behave very differently, that is,
quantummechanically, we find surprises.
A deep understanding of quantum mechanics often requires some

complicated advanced mathematics. One can say the words that inter-
pret the equations, but without themath, one sees only half the picture.
On the other hand, a lot of the basic ideas are accessible with just a min-
imum of algebra. Algebra alone does not give the whole picture, but it
does yield considerably more depth of understanding than just words
without any math. So the reader of this book should know basic alge-
bra (and some trigonometry). An introductory classical (Newtonian)
physics background is useful too, but we provide an appendix of physics
terms to help those who have not had any physics or who have for-
gotten much of it. The algebra background is probably more important
than the physics. There are four sections of the book in which the math
manipulations, while still algebra, are somewhat more difficult than
average. These are Secs. 12.1, 13.3, 14.1, and 15.4. If necessary, skip the
math there, and get the basic idea from the words.



Preface ix

This book is not a text in quantum mechanics. It does not solve the
Schrödinger equation for any situation. While it discusses the nature
of the wave functions in standard cases like the harmonic oscillator,
the particle in a box, and the hydrogen atom, it does not tell how
these are derived. Moreover its sampling of topics is more likely to be
among those that satisfy the criteria of either illustrating the weirdness
of quantummechanics or some fundamental aspect of it.
The bibliography has a mixture of references to elementary treat-

ments and full research books and papers in order to give credit to
authors whose works were useful to me in writing this book and for
readers who are at a more advanced level and want to pursue further
information.
My thanks to Christopher Caron, a high-school-age friend whose

interest in learning about quantum mechanics stimulated the writing
of much of the material in this book. My long-time research collabor-
ator Franck Laloë of École Normale Supérieure in Paris has for years
helped spark my interest in quantum questions, and his advanced trea-
tise Do We Really Understand Quantum Mechanics has been one inspiration for
the present, much more elementary book. I thank Franck and UMass
colleagues Robert Krotkov and Guy Blaylock for critical readings of the
manuscript. However, errors and poor explanations are entirely my
responsibility. Many thanks to copyeditor Elizabeth Farrell for making
the text read more smoothly.

WJM
Amherst, MA
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1
Waves

Just take your time—wave comes. Let the other guys go, catch
another one.

DUKE KAHANAMOKU

1.1 Some history
Quantum mechanics is the basic theory of matter. It was originally
developed in the early part of the twentieth century to explain the prop-
erties of the atom, but it has gonemuch deeper and broader than that. It
ranges from systematically explaining the properties of the elementary
particles (quarks, electrons, protons, etc.) to giving a deep understand-
ing of solids, liquids, and gases. It is the most successful scientific theory
ever developed, allowing us to calculate details to many decimal places
of accuracy.
The only known limitation of quantum mechanics is in joining it

to the theory of gravity, that is, Einstein’s general relativity theory;
we still do not have a quantum theory of gravity. Nevertheless, quan-
tum mechanics has still been remarkably successful in understanding
many features of the cosmos, such as how the elements evolved in stars,
and how black holes can decay. It is possible that a more fundamen-
tal approach, such as “string theory,” will allow a synthesis of quantum
mechanics and gravity. We will see.
In a first course in physics, we learn Newton’s laws, F = ma, etc. These

laws (and those of Maxwell, for radiation) tell us how to understand
themotion of baseballs, satellites, andmany properties of light and radi-
ation. Such “classicalmechanics” explains how large objects behave. But
it does not seem to explain the properties of small objects, like atoms.
Classical mechanics gives us the basic concepts of mass, momentum,
energy, etc., that we need to interpret everyday life. We also carry those
concepts over into quantummechanics, but they are interpreted some-
what differently there.Whenwe do an experiment on an atom,wemust
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necessarily use large objects as our measurement devices (we have to
have knobs we can turn with our hands), and there is a meeting of the
large and the small, that is, of classical mechanics and quantum mech-
anics. But the assumption here is that quantum mechanics is the more
fundamental theory and that it can, in principle, be applied to the large
objects, so that we can derive Newton’s laws from quantummechanics.
Moreover, there are instances where large-scale behavior (as, say, in the
“superflow” of liquid helium at low temperature) defies Newton’s laws,
and only quantum mechanics can explain the experiment. Modern
electronic equipment (based on the transistor) is based on our know-
ledge of solid-state physics from quantummechanics. Nevertheless, we
tend to look at nature from a classical mechanical point of view. When
we throw a baseball, we have an intuitive understanding of where it will
go. If it suddenly changed course by 90◦, we would think that was weird.
If the baseball seemed to be in two places at once, we might believe we
were being tricked by a magician. But, in quantummechanics, having a
particle in two places at once is exactly what we are led by experiment
to believe is true. Such weirdness is what we have to deal with.
As successful as quantum mechanics has been as a calculational

device, there is a fundamental problem: interpreting just what it means
about the nature of matter. The basic object in quantum mechanics is
the wave function; we know it is to be used in a probabilistic way, but
that still leaves open whether it is a “real” object or a kind of book-
keeping system existing just in our minds. We are led by nature into
describing a kind of instantaneous wave function communication or
correlation at arbitrary distances that would seem to violate Einstein’s
relativity principle that things cannot travel faster than the speed of
light, and yet, well. . . no, it sneakily manages not violate it. The basic
effects are just downright weird when we try to look at them from the
point of view of classical mechanics. What quantum mechanics actu-
ally means has been debated for 90 years, and the debate continues even
more energetically today. Most physicists in the past had not worried
about the philosophical issues of interpretation; they left that to take
place in esoteric journals like Foundations of Physics and took the attitude
of “shut up and compute,” since they could explain their experiments
independently of the profound implications, which were left to the
philosophers and a few physicists.
However, in recent years, experimenters in laser and atomic physics

have come to be able to manipulate individual atoms, and the weird
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behavior has led to the possibility of quantum computing and similar
applications that may mean the weirdness has practical applications!
This has meant that the funny business in quantum mechanics has
escaped from the esoteric journals and now is in the frontline physics
journals, with even more people involved. Weirdness is now relevant,
and even philosophical interpretation has become a hot subject.
In classicalmechanics, a baseball, themoon, an atom, and an electron

are all particles, while light is a wave. And yet, in quantum mechanics,
an electron sometimes behaves like awave and sometimes like a particle.
The terms “particle” and “wave” are said to be complementary; the con-
cept that applies depends on the experiment one is doing. The particle
of light is the photon, which also has this dual behavior. The fact that
an object can morph between wave and particle behavior adds to the
weirdness when we try to view experiments from a classical mechanics
point of view. The amazing thing is that the mathematics of quantum mechanics can
accommodate both behaviors and explain either kind of experiment; it is the interpretation
we try to place on the mathematics that gets us into debates.
The basic law of quantum mechanics is the Schrödinger equation,

which, for a single particle in one dimension, looks like this (don’t be
alarmed!):

ih̄
∂ψ(x, t)

∂ t
=

[
–
h̄2

2m
∇2 + V(x)

]
ψ(x, t). (1.1)

This beast is certainly one of the most fundamental equations of phys-
ics. Solving it is an exercise in advanced calculus, which is not the path
these notes will follow. However, we will center our attention on the
wave function ψ(x, t) and how it is used and interpreted in quantum
mechanics. We will avoid all of the advanced math and just use basic
algebraic manipulations “at worst.” The Schrödinger equation is what is
called a wave equation; it has solutions that describe waves. So, we need
to understand the basic properties of waves. But we also need particle
concepts. So, we will spend some space going over the basic particle and
wave concepts here.

1.2 Classical wave dynamics
We will use a few standard physics ideas, like momentum and energy,
in our discussion. These originally arose in classical Newtonian mech-
anics. We have listed and briefly explained a number of these terms in
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the appendix at the end of the book. Just a qualitative understanding
of these terms is probably all that is required for reading this book.
However, in quantum mechanics, we solve a wave equation, and the
wave function indeed acts like a wave, so we need a bit more detailed
understanding of the physics of waves. That subject is usually treated
in discussions of water, sound, or electromagnetism. Such ideas will be
immediately used to understand matter waves. As a supplement to the
rapid introduction to waves given in this chapter, I suggest the tutorial
and animations given in the website associated with my book on sound:
http://billmullin.com/sound/, which we reference occasionally below.
Common waves travel in an elastic medium, a material that has the

ability to rebound from a displacement. Suppose we have a number of
masses connected by springs. If you displace the first mass and let go,
the nearest connected spring is stretched, which displaces the second
mass, which stretches the second spring, etc. The potential and kinetic
energies are carried down the chain in the form of a wave. To see an
animation of this, go to this website associated withmy sound textbook:
http://billmullin.com/sound/AnimationPages/FigX-6.html. Similarly, if
you drop a stone in water, the water is displaced downward, which
pulls the neighboring water down, and a wave progresses outward
from where the stone entered. Waves occur in many places: in the
air, as sound waves; on guitar strings that have been plucked; and
in the vacuum of space, as electromagnetic radiation such as, for
example, light waves or x-rays. Here, we will concentrate on the
waves on a stretched string (say, a bungee cord). I shake one end of
the elastic cord and that causes a wave to travel down it. As in a
water wave, the medium (a particular part of the string) moves up
and down, but the wave itself (the elastic energy) travels along the
string. So, we distinguish between medium motion and wave motion.
If the wave motion is horizontal, the medium motion is up and
down, that is, perpendicular to the wave motion; we call this a trans-
verse wave. A useful animation, from the website that shows the
distinction between wave motion and medium motion, is given at
http://billmullin.com/sound/AnimationPages/FigsI-1&2.html.
There are several types of transverse traveling waves; we distin-

guish between impulsive and oscillatory waves. The former is a sin-
gle or a series of bursts. (The corresponding sound wave would
be formed by clapping one’s hands.) It moves along as a localized
bump on the string. An oscillatory wave has regular repeating pulses.
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Figure 1.1 Four wave types. The two on the left are pulse waves, while
the two on the right are oscillatory (imagine the form continues to repeat
beyond the figure). The top oscillatory wave is sinusoidal, but the lower one is
non sinusoidal.

An important case of this is the sinusoidal wave, which has a spe-
cial mathematical shape. Figure 1.1 illustrates an instantaneous pic-
ture of these waves. You have to imagine them moving along, say,
to the right. The animation shows a sinusoidal wave in motion. A
pulse wave in motion and reflecting from a wall can be seen at
http://billmullin.com/sound/AnimationPages/FigsI-16&17.html.
It is possible to put two distinct waves on the same medium, but

they will add to form a composite wave; this adding is known as super-
position. (The second oscillatory wave in Fig. 1.1 is the superposition of
two sinusoidal waves of different wavelengths [discussed later on in
this section]). A very important property of waves is interference. Note
that the transverse displacement of a wave can be positive or nega-
tive (above or below normal). If two waves pass through each other,
where the two positive portions, or two negative portions, of the waves
overlap, they will add, forming a larger displacement; but where a
positive overlaps a negative portion, they will tend to cancel out. The
reinforcement is called constructive interference, and the canceling
is destructive interference. Take a look at the animation examples at
http://billmullin.com/sound/AnimationPages/FigsI-19&20.html.
Waves reflect off boundaries; for example, soundwave reflecting from

canyon walls result in an echo. In a concert hall, sounds “reverber-
ate” by reflection, adding to the quality of the music. On a string (and
elsewhere), the reflected wave can interfere with the original wave,
producing what are called standing waves, which we talk about below.
Sinusoidal waves have a specific terminology; in the sinusoidal wave

pictured in Fig. 1.1, the distance between the peaks (or the distance
between the troughs) is the wavelength, denoted by the Greek letter
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lambda (λ); the time for any point of the medium to undergo a com-
plete cycle (a round trip of some point on the string from themaximum
through a minimum and back up) is called the period (T; measured in
seconds). The frequency f is the number of cycles per second (this used
to be indicated as cps, but now the units are hertz [abbreviated as Hz]).
Since the seconds per cycle is indicated by T, we have the relation

T =
1

f
. (1.2)

If the period is 0.5 s, the frequency is 2 Hz. The amplitude of the wave
is the maximum distance any point is displaced from the normal string
position. Thus, the distance from the minimum displacement to the
maximum is twice the amplitude.
The distance a sinusoidal wave travels in a period T is the wave-

length λ. Thus, the wave velocity (distance per time) is given by

v =
λ

T
= fλ, (1.3)

a fundamental wave formula. The velocity of the wave v is a property
of the medium (depending on its elasticity, density, etc.) and is unchan-
ging from wave to wave on the same medium. Thus, the shorter the
wavelength of the wave, the higher its frequency, so the product is a
constant.
As examples, consider sound and light: middle C in music has a fre-

quency of 261.6 Hz, a wavelength of 1.32 m, and sound wave velocity
of 345 m/s. Red light has a frequency of about 4.5 × 1014 Hz, and a
wavelength of 6.7 × 10–7 m, with a wave velocity of 3.0 × 108 m/s.
Suppose we have a guitar string stretched tautly between two

posts. Any wave on the string will be reflected from the ends,
and the reflections will interfere with the original wave. The result
is a wave that does not seem to move to the right or left but
just up and down—a standing wave. An animation showing how
two traveling sinusoidal waves form a standing wave is shown at
http://billmullin.com/sound/AnimationPages/FigsII-2.html. Figure 1.2
shows a standing wave and its motion through one period. There are
points at which there is always complete destructive interference; these
are the nodes denoted by N in the figure. Positions at which maximum
constructive interference occurs are the antinodes A in the figure.
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A = antinode
N = node

A A

A A

N

N

N

N

Figure 1.2 A standing wave at times 0, T/4, T/2, 3T/4, and T, where T is the
period of the wave.

λ = 2L

λ = 2L/3 λ = L/2

λ = L

Figure 1.3 Standing waves with wavelengths 2L, 2L/3, L, and L/2, where L is the
distance between the endpoints.

Standing waves can have only the wavelengths that “fit” into the dis-
tance between the walls, that is, have zero displacements at the ends.
The four standing waves with the longest wavelengths are shown in
Fig. 1.3. The wave with the wavelength 2L is called the fundamental
wave. It has the frequency f1 = v/λ = v/2L. The next longest wavelength
is L, and that wave has the frequency f2 = v/L = 2f1. The next one has
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the frequency f3 = 3f1, and this continues. This sequence of frequencies
is called the harmonic series. The frequency f1 is the fundamental, or
first, harmonic, f2 is the second harmonic, etc. Not every frequency can
occur on the string, only those that are multiples of the fundamental
frequency. The spectrum of frequencies is discrete. (You might say it is
quantized.)
When I strum or pluck a note on a guitar string, I rarely get a

resulting wave that is purely only one of these harmonics; rather, I
get a complicated wave that is a superposition of many harmonics.
The sound resulting is pleasant because all the frequencies are in tone
with one another; they are all multiples of the fundamental. Any arbi-
trary complex wave shape can be considered as a superposition of these
selected harmonic standing waves. The nonsinusoidal oscillatory wave
in Fig. 1.1 is made up of first and second harmonics. The sound excited
by the string also has this property: it is composed of sinusoidal waves
of these same frequency components. Figure 1.4 shows some complex
wave forms of musical instruments. Each can be considered as being
made up of a discrete set of harmonic sinusoidal waves; they differ in
the relative amplitudes of the various components. When we analyze
a wave into its harmonic sinusoidal components, we are doing what is
called Fourier analysis. Any traveling repeating (oscillatory) wave can
be constructed from a discrete harmonic sinusoidal series.
We can also do a Fourier analysis of an arbitrary wave shape, even if it

is not repeating. For example, the pulse wave in Fig. 1.1 can be Fourier
analyzed. However, the sinusoidal waves needed will not be a discrete

Brass

Classical guitar

Clarinet

Figure 1.4 Wave forms from selected musical instruments. What is plotted
is pressure amplitude versus time. Our guitar string would produce a simi-
lar complex wave form. Each can be considered a superposition of sinusoidal
harmonic waves.


