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Preface

This text is based on lecture notes I prepared for a first-year graduate analysis course
that I taught at National Taiwan University from time to time over a span of more

than 30 years. The choice and presentation of thematerials have been strongly influenced
by the experience I gained from offering courses such as Functional Analysis, Calculus of
Variations, AppliedMathematics, Potential Theory, and Probability Theory.

Introduction of the Lebesgue measure and the corresponding theory of integration at
the beginning of the twentieth century changed in a fundamental way the general view of
the theory of functions of a real variable; due in essence to the fact that certain properties
of sets and functions in terms of the Lebesgue measure (dubbed metric properties) were
found to be very useful in resolving certain problems that had puzzled analysts for some
time; some of these problems being connected to expansion of functions in trigonomet-
ric series. Also, the metric properties and the then new theory of integration provided
appropriate means for classifying sets and functions for further in-depth studies. It is this
view of the theory of functions of a real variable, framed in the setting of general measure
and integration, that defines the core of the subject matter of real analysis that is adop-
ted in this book. Needless to say, strong emphasis is placed on measures and functions
defined in Euclidean n-space; in particular, function spaces defined in terms of Lebesgue
measure on Rn are treated in some detail, including introduction of useful operations
on these spaces, since this part of real analysis plays a fundamental role in many fields of
mathematical discipline and lends a helping hand to the analysis of various problems in
mathematical physics and engineering.

It is assumed that readers are familiar with the basic concepts and operations in lin-
ear algebra and have a fair acquaintance with the real number system. We also assume
that they have had solid training in rigorous analysis as is usually offered in a course
on advanced calculus. But for the reader’s convenience, a concise treatment of analysis
in metric spaces is included in Chapter 1. The first two sections of Chapter 1 consider
a simple example, illustrating the key points of general measure and integration, while
the third section brings out the necessity of constructing a suitable measure in order to
model a simple random phenomenon—coin tossing. The reader is advised to proceed to
Chapter 2 after studying the first three sections of Chapter 1, returning to the remaining
part of the chapter for reference if required. Readers may start immediately at Chapter 2
if they are comfortable with abstract thinking.



viii | Preface

We particularly stress the universality of the method of outer measure in construct-
ing measures in the hope of conveying to readers the salient role played by regularity of
measures in the study of sets and functions.

A chapter on the basic principles of linear analysis is also included, because some of
these principles are applied in later chapters; and also because the concept of orthonor-
mal basis in Hilbert space is an important interpretation of the Fourier expansion
of functions in trigonometric series which provides a consensus on introduction of
Lebesgue measure and integration.

Exercises are interposed within the main body of the text. Many of these are fairly
easy, just meant to help to fix ideas that have been introduced. Statements that follow
quite directly from propositions that are already established are usually left to be verified
as exercises. Some of the exercises are more difficult, in that familiarity and insight into
the methods presented in the text are required, together with some degree of ingenuity
in order to resolve them; for such exercises, hints are usually provided.

The Foundation for Education has provided funds for classroom testing of the
text in a core curriculum course on real analysis, offered by the Institute of Mathematics,
Academia Sinica-Taipei, as well as for secretarial assistance during the preparation of the
text. This is gratefully acknowledged.

Taipei, 2015 Fon-Che Liu



1 Introduction
and Preliminaries

This chapter serves two purposes. The first purpose is to prepare the reader for amore
systematic development in later chapters of the methods of real analysis through

some introductory accounts of a few specific topics. The second purpose is, in view of
the possible situation where some readers might not be conversant with basic concepts
in elementary abstract analysis, to acquaint them with the fundamentals of abstract ana-
lysis. Nevertheless, readers are assumed to have some basic training in rigorous analysis
as usually offered by courses in advanced calculus, and to have some acquaintance with
the rudiments of linear algebra.

Throughout the book, the field of real numbers and that of complex numbers are
denoted, respectively, by R and C, while the set of all positive integers and the set of
all integers are denoted byN andZ respectively.

The standard set-theoretical terminology is assumed; but terminology and notations
regarding mappings will now be briefly recalled. If T is a mapping from a set A into a set
B (expressed by T : A → B), T(a) denotes the element in B which is associated with
a ∈ A under the mapping T; for a subset S of A, the set {T(x) : x ∈ S} is denoted by
TS and is called the image of S under T; thus T{a} = {T(a)}. T(a) is sometimes simply
written asTa if no confusion is possible, and at times, an element a of a set and the set {a}
consisting of an element are not clearly distinguished as different objects. For example,
Ta and T{a} may not be distinguished and Ta is also called the image of a under T. A
mappingT : A → B is said to be one-to-one or injective ifTa = Ta′ leads to a = a′, and
is said to be surjective if TA = B; T is bijective if it is both injective and surjective. If
TA = B,T is also referred to as a mapping fromA onto B. Mappings are also called maps.
Synonyms for maps are operators and transformations. As usual, a map from a set intoR
orC is called a function.

Some convenient notations for operations on sets are now introduced. Regarding a
familyF = {Aα}α∈I of sets indexed by an index set I, the union

⋃
α∈I Aα is also expressed

by
⋃

F ; if A and B are sets in a vector space and α a scalar, the set {x + y : x ∈ A, y ∈ B}
is denoted by A + B, and the set {αx : x ∈ A} by αA.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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1.1 Summability of systems of real numbers

Summability of systems of real numbers is a special case in the theory of integration, to
be treated in Chapter 2, but it reveals many essential points of the theory.

For a set S, the family of all nonempty finite subsets of S will be denoted by F(S).
Consider now a system {cα}α∈I of real numbers indexed by an index set I. The system
{cα}α∈I will be denoted simply by {cα} if the index set I is assumed either explicitly or
implicitly. The system is said to be summable if there is � ∈ R, such that for any ε > 0
there is A ∈ F(I), with the property that whenever B ∈ F(I) and B ⊃ A, then∣∣∣∣∑

α∈B
cα – �

∣∣∣∣ < ε. (1.1)

Exercise 1.1.1 Show that if � in the preceding definition exists, then it is unique.

If {cα} is summable, the uniquely determined � in the above definition is called the
sum of {cα} and is denoted by

∑
α∈I cα .

Before we go further it is worthwhile remarking that the convergence of the series∑∞
n=1 cn depends on the order 1 < 2 < 3 < · · · and

∑
n∈N cn, if it exists, does not

depend on how N is ordered. Hence
∑

n∈N cn may not exist while
∑∞

n=1 cn exists. We
will come back to this remark in Exercise 1.1.5.

Theorem 1.1.1 If {c(1)α }α∈I and {c
(2)
α }α∈I are summable, then so is {ac

(1)
α + bc(2)α }α∈I for

fixed real numbers a and b, and

∑
α∈I

(
ac(1)α + bc(2)α

)
= a

∑
α∈I

c(1)α + b
∑
α∈I

c(2)α .

Proof We may assume that |a| + |b| > 0, and for convenience put
∑

α∈I c
(1)
α = l1,∑

α∈I c
(2)
α = l2. Let ε > 0 be given, there are A1 and A2 in F(I) such that

when B1, B2 are in F(I) with B1 ⊃ A1, B2 ⊃ A2, we have |
∑

α∈B1 c
(1)
α – l1| <

ε
|a|+|b| and |

∑
α∈B2 c

(2)
α – l2| < ε

|a|+|b| . Choose now A = A1 ∪ A2, then for B ∈ F(I)

with B ⊃ A, we have |
∑

α∈B(ac
(1)
α + bc(2)α ) – (al1 + bl2)| ≤ |a||

∑
α∈B c

(1)
α – l1| +

|b||
∑

α∈B c
(2)
α – l2| <

|a|ε
|a|+|b| +

|b|ε
|a|+|b| = ε. This shows that {ac(1)α + bc(2)α } is summable

and
∑

α∈I(ac
(1)
α + bc(2)α ) = al1 + bl2. �

Theorem 1.1.2 If cα ≥ 0 ∀α ∈ I, then {cα} is summable if and only if{∑
α∈A

cα : A ∈ F(I)
}

(1.2)

is bounded.
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Proof That boundedness of (1.2) is necessary for {cα} to be summable is left as an
exercise. Now we show that boundedness of (1.2) is sufficient for {cα} to be sum-
mable. Let � be the least upper bound of {

∑
α∈A cα : A ∈ F(I)}; for any ε > 0 there

is A ∈ F(I) such that

0 ≤ � –
∑
α∈A

cα < ε. (1.3)

Let now B ∈ F(I) and B ⊃ A, then∣∣∣∣∑
α∈B

cα – �

∣∣∣∣ = � –
∑
α∈B

cα ≤ � –
∑
α∈A

cα < ε. �

Wenote beforemoving on that if a subset S ofR is bounded from above, then the least
upper bound of S exists uniquely and is denoted by sup S; similarly, if S is bounded from
below, then the greatest lower bound exists uniquely and is denoted by inf S. If S = {sα :
α ∈ I}, then inf S and sup S are also expressed, respectively, by infα∈I sα and supα∈I sα .

Exercise 1.1.2 Show that boundedness of (1.2) is necessary for {cα} to be summable.

Because of Theorem 1.1.2, if {cα} is a system of nonnegative real numbers and is not
summable, then we write

∑
α∈I cα = +∞. Hence,

∑
α∈I cα always has a meaning if {cα}

is a system of nonnegative numbers.

Theorem 1.1.3 (Cauchy criterion) A system {cα} is summable if and only if for any ε > 0
there is A ∈ F(I), such that |

∑
α∈B cα| < ε whenever B ∈ F(I) and A ∩ B = ∅.

Proof Sufficiency: Choose A ∈ F(I) such that |
∑

α∈B cα| < 1 for B ∈ F(I), satisfying
A ∩ B = ∅, then obviously if B ∈ F(I) with B ∩ A = ∅, we have∑α∈B c+α < 1, where
c+α = cα or 0 according to whether cα ≥ 0 or< 0. Now, for B ∈ F(I), we have∑

α∈B
c+α =

∑
α∈B∩A

c+α +
∑

α∈B\A
c+α <

∑
α∈A

c+α + 1,

i.e., {
∑

α∈B c+α : B ∈ F(I)} is bounded; hence by Theorem 1.1.2 {c+α} is summable.
Similarly {c–α} is summable, where c–α = –cα or 0 according to whether cα ≤ 0

or> 0. Now cα = c+α – c–α , hence {cα} is summable by Theorem (1.1).
The necessary part is left for the reader to verify. �

Exercise 1.1.3 Suppose that {cα}α∈I is summable and that J is a nonempty subset of I.
Show that (i) {cα}α∈J is summable, and (ii)

∑
α∈I cα =

∑
α∈J cα +

∑
α∈I\ J cα .

Exercise 1.1.4 Show that {cα} is summable if and only if {|cα|} is summable; show also
that {cα} is summable if and only if{∣∣∣∣∑

α∈A
cα

∣∣∣∣ : A ∈ F(I)
}

is bounded.



4 | Introduction and Preliminaries

Exercise 1.1.5 Show that {cα}α∈N is summable if and only if the series
∑∞

α=1 cα is
absolutely convergent. Show also that

∑
α∈N cα =

∑∞
α=1 cα if {cα}α∈N is summable.

Exercise 1.1.6 Show that {cα}α∈I is summable if and and only if (i) {α ∈ I : cα = 0}
is finite or countable; and (ii) if {α ∈ I : cα = 0} = {α1,α2, . . .} is infinite; then the
series

∑∞
k=1 cαk converges absolutely.

Exercise 1.1.7 Suppose that for each n = 1, 2, 3, . . . , there isAn ∈ F(I), with the prop-
erty that for each A ∈ F(I), there is a positive integer N such that A ⊂ An for all
n ≥ N. Show that if {cα}α∈I is summable, then∑

α∈I
cα = lim

n→∞
∑

α∈An

cα .

Give an example to show that it is possible that limn→∞
∑

α∈An
cα exists and is finite,

but {cα} is not summable.

Example 1.1.1 Suppose that I =
⋃

n∈N In, where In’s are pairwise disjoint. Let
{cα}α∈I be summable, then

∑
α∈I cα =

∑
n∈N(

∑
α∈In cα). By Exercise 1.1.4, we may

assume that cα ≥ 0 for all α ∈ I. It follows from
∑

α∈I cα = sup{
∑

α∈A cα : A ∈
F(I)} that

∑
α∈I cα ≤ ∑

n∈N(
∑

α∈In cα). It remains to be seen that
∑

α∈I cα ≥∑
n∈N(

∑
α∈In cα). Let k ∈ N and ε > 0. For each n = 1, . . . , k, there is a finite set

An ⊂ In such that
∑

α∈In cα <
∑

α∈An
cα + ε

k . Then, if we put Bk =
⋃k

n=1 An, we have∑
α∈I cα ≥ ∑

α∈Bk cα >
∑k

n=1(
∑

α∈In cα – ε
k ) =

∑k
n=1(

∑
α∈In cα) – ε; since ε > 0

is arbitrary,
∑

α∈I cα ≥ ∑k
n=1(

∑
α∈In cα) for each k ∈ N. Now let k → ∞ to

obtain
∑

α∈I cα ≥ ∑
n∈N(

∑
α∈In cα). Observe from the proof that {

∑
α∈In cα}n∈N is

summable.

We shall recognize in Example 2.3.3 that summability considered in this section is the
integrability with respect to the counting measure on I.

1.2 Double series

Let I = N × N = {(i, j) : i, j = 1, 2, . . .} and write cij for c(i,j). When the summability
of the system {cij} is in question, the system {cij} is referred to as a double series
and is denoted by

∑
cij. Hence the double series

∑
cij is summable if {cij} = {c(i,j)} is

summable, and
∑

(i,j)∈I cij is called the sum of the double series
∑

cij.
For a double sequence {amn}, we say that limm,n→∞ amn = �, if for any ε > 0 there is a

positive integerN such that |amn – �| < ε wheneverm, n ≥ N.

Theorem 1.2.1 If the double series
∑

cij is summable, then

∑
(i,j)∈I

cij = lim
m,n→∞

n∑
j=1

m∑
i=1
cij =

∞∑
j=1

∞∑
i=1
cij =

∞∑
i=1

∞∑
j=1
cij.
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Proof We show first that
∑

(i,j)∈I cij = limn,m→∞
∑n

j=1
∑m

i=1 cij. Let � =
∑

(i,j)∈I cij.
Given ε > 0, there is A ∈ F(I) such that∣∣∣∣ ∑

(i,j)∈B
cij – �

∣∣∣∣ < ε

whenever B ∈ F(I) and B ⊃ A. Let N = max{i ∨ j : (i, j) ∈ A}, where i ∨ j is the
larger of i and j. For n,m ≥ N, let Bmn = {(i, j) ∈ I : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, then
Bmn ∈ F(I) and Bmn ⊃ A, hence∣∣∣∣ n∑

j=1

m∑
i=1
cij – �

∣∣∣∣ = ∣∣∣∣ ∑
(i,j)∈Bmn

cij – �

∣∣∣∣ < ε.

This means that � = limm,n→∞
∑n

j=1
∑m

i=1 cij.
Since

∑
(i,j)∈I cij =

∑
(i,j)∈I c+ij –

∑
(i,j)∈I c–ij , in the remaining part of the proof, we

may assume that cij ≥ 0 for all (i, j) ∈ I. Observe then that

� = sup
n,m≥1

n∑
j=1

m∑
i=1
cij.

Hence,

� ≥ lim
m→∞

(
n∑
j=1

m∑
i=1
cij
)
=

n∑
j=1

∞∑
i=1
cij

for each n and consequently

� ≥
∞∑
j=1

∞∑
i=1
cij.

On the other hand,

� = sup
n,m≥1

n∑
j=1

m∑
i=1
cij ≤ sup

n≥1

(
n∑
j=1

∞∑
i=1
cij
)
= lim

n→∞

(
n∑
j=1

∞∑
i=1
cij
)

=
∞∑
j=1

∞∑
i=1
cij.

We have shown that � =
∑∞

j=1
∑∞

i=1cij; similarly,

� =
∞∑
i=1

∞∑
j=1
cij. �
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Example 1.2.1 If {an}n∈N and {bn}n∈N are summable, then the double series
∑

anbm
is summable and

∑
(n,m)∈N×N anbm = (

∑
n∈N an)(

∑
m∈N bm). That

∑
anbm is sum-

mable follows from Exercise 1.1.4 and the observation that {
∑

(n,m)∈A |anbm| : A ∈
F(N × N)} is bounded from above by (

∑
n∈N |an|) · (∑m∈N |bm|). Then, by

Theorem 1.2.1,
∑

(n,m)∈N×N anbm =
∑

n∈N
∑

m∈N anbm = (
∑

n∈N an)(
∑

m∈N bm).
For k ≥ 2 inN, put Ak = {(n,m) ∈ N × N : n + m = k}; then

∑
(n,m)∈N×N anbm =∑

k∈N
k≥2

(
∑

(n,m)∈Ak
anm) fromExample 1.1.1. The system {

∑
(n,m)∈Ak

anbm}k≥2 is called
the product of {an} and {bn}; we have shown that the sum of the product is the
product of the sums.

The following exercise complements Theorem 1.2.1.

Exercise 1.2.1 Copy the proof of Theorem 1.2.1 to show that if cij ≥ 0 for all i and j
inN, then the conclusion of Theorem 1.2.1 still holds, even if

∑
(i,j)∈I cij = ∞ (recall

that for a system {cα} of nonnegative numbers,
∑

α cα = ∞ means that {cα} is not
summable).

Remark For i, j inN, let

cij =

⎧⎪⎨⎪⎩
1 if i = j;
–1 if j = i + 1;
0 otherwise,

then
∑

cij is not summable and 0 =
∑∞

i=1
∑∞

j=1 cij =
∑∞

j=1
∑∞

i=1 cij = 1.

1.3 Coin tossing

A pair of symbols H and T, associated, respectively, with nonnegative numbers p and
q such that p + q = 1 is called a Bernoulli trial and is denoted by B(p, q). A Bernoulli
trial B(p, q) is a mathematical model for the tossing of a coin, of which heads occur with
probability p and tails turn out with probability q; this explains the symbolsH and T. In
particular, B( 12 ,

1
2 ) models the tossing of a fair coin.

In this section, we consider the first step towards construction of a mathematical
model for a sequence of tossing of a fair coin. For convenience, we replace H and T by
1 and 0 in this order; then an infinite sequence ω = (ω1,ω2, . . . ,ωk, . . .) of 0’s and 1’s
represents a realization of a sequence of coin tossing. Let

� = {0, 1}∞ := {ω = (ωk), ωk = 0 or 1 for each k},

wherewe adopt the usual convention of expressing an infinite sequence (ω1, . . . ,ωk, . . .)
by (ωk)with the understanding thatωk is the entry at the k-th position of the sequence. In
terminology of probability theory, elements in� are called sample points of a sequence
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of coin tossings and� is called the sample space of the sequence of tossings. Subsets of
�will often be referred to as events. Now for n ∈ N, let

�n = {0, 1}n := {(ε1, . . . , εn) : εj ∈ {0, 1}, j = 1, . . . , n},

and for (ε1, . . . , εn) ∈ �n, call the set

E(ε1, . . . , εn) = {ω = (ωk) ∈ � : ωk = εk, k = 1, . . . , n}

an elementary cylinder; but if n is to be emphasized, it is called an elementary cylinder
of rank n. A finite union of elementary cylinders is called a cylinder in�. Since intersec-
tion of two elementary cylinders is either empty or an elementary cylinder, every cylinder
in� can be expressed as a disjoint union of elementary cylinders; in fact, if Z is a cylinder
in�, there is n ∈ N andH ⊂ �n such that

Z =
⋃
{E(ε1, . . . , εn) : (ε1, . . . , εn) ∈ H},

of which one notes that E(ε1, . . . , εn)’s are mutually disjoint. Of course, a cylinder Z can
be expressed as above in many ways. We denote by Q the family of all cylinders in �.
Since� = E(0) ∪ E(1),� ∈ Q;∅ is also inQ, because it is the union of an empty family
of elementary cylinders.

Exercise 1.3.1 Show thatQ is an algebra of subsets of �, in the sense thatQ satisfies
the following conditions: (i) � ∈ Q; (ii) if Z ∈ Q, then Zc = �\Z is inQ; and (iii)
if Z1, Z2 are inQ, then Z1 ∪ Z2 is inQ.

For an event Z in Q, we define its probability P(Z) as follows. First, for an element-
ary cylinder C = E(ε1, . . . , εn), define P(C) = ( 12 )

n; intuitively, this definition of P(C)
means that we consider the modeling of a sequence of independent tossing of a fair coin.
Now if Z ∈ Q is given by

Z =
⋃
{E(ε1, . . . , εn) : (ε1, . . . , εn) ∈ H},

whereH ⊂ �n, then define

P(Z) =
∑

(ε1,...,εn)∈H
P(E(ε1, . . . , εn)) = #H · 2–n,

where #H is the number of elements inH. We claim that P(Z) is well defined. Actually if
Z is also given by

Z =
⋃
{E(ε1, . . . , εm) : (ε1, . . . , εm) ∈ H′},
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where H′ ⊂ �m, then (assuming m ≥ n) H′ = {(ε1, . . . , εm) ∈ �m : (ε1, . . . , εn) ∈
H} and therefore #H′ = #H · 2m–n; consequently∑

(ε1,...,εm)∈H′
P(E(ε1, . . . , εm)) = #H′ · 2–m = #H · 2m–n · 2–m

= #H · 2–n = ∑
(ε1,...,εn)∈H

P(E(ε1, . . . , εn)),

implying that the definition of P(Z) is independent of how Z is expressed as a finite dis-
joint union of elementary cylinders of a given rank. We complete the definition of P by
letting P(∅) = 0. Note that P(�) = 1.

Exercise 1.3.2

(i) Show that P is additive on Q, i.e. P(Z1 ∪ Z2) = P(Z1) + P(Z2) if Z1, Z2 are
disjoint elements ofQ.

(ii) For k ∈ N and ε ∈ {0, 1}, put Ekε = {ω ∈ � : ωk = ε}. Show that

P(Ek1ε1 ∩ · · · ∩ Eknεn) =
n∏
j=1

P(Ekjεj) = 2–n

for any finite sequence k1 < k2 < · · · < kn inN.

Fromnowonwewrite dj(ω) = ωj, j = 1, 2, . . . , ifω = (ω1,ω2, . . .) ∈ �; and for each
n define a function Sn on� by

Sn(ω) =
n∑
j=1
dj(ω).

Exercise 1.3.3 Show that, for each k = 0, 1, 2, . . . , n, the set {Sn = k} := {ω ∈ � :
Sn(ω) = k} is inQ and

P({Sn = k}) =
(
n
k

)
1
2n
,

where
(n
k

)
= n!

k!(n–k)! .

For a given realizationω of a sequence of independent coin tossing, Sn(ω) is the num-
ber of heads that appear in the first n tosses and Sn(ω)

n measures the relative frequency of
appearance of heads in the first n tosses. Let

E =
{
ω ∈ � : lim

n→∞
Sn(ω)
n

=
1
2

}
;

E is easily seen to be not in Q. Nevertheless, we expect that P can be extended to be
defined on a larger family of sets than Q in such a way that P(A) can be interpreted as
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the probability of event A, and such that P(E) is defined with value 1. We expect P(E) =
1, because this is what a fair coin is accounted for intuitively. Discussion of the subject
matter of this section will be continued in Example 1.7.1, Example 2.1.1, Example 3.4.6,
and Example 7.5.2; and eventually we shall answer positively to this expectation in the
paragraph following Corollary 7.5.3.

1.4 Metric spaces and normed vector spaces

The usefulness of the concept of continuity has already surfaced in elementary analysis of
functions defined on an interval. This section considers a structure on a set which allows
one to speak of “nearness” for elements in the set, so that a concept of continuity can
be defined for functions defined on the set, parallel to that for functions defined on an
interval of the real line.We shall not treat themost general situation; instead, we consider
the situation where an abstract concept of distance can be defined between elements of
the set, because this situation abounds sufficiently for our purposes later. When the set
considered is a vector space, it is natural to consider the case where the distance defined
and the linear structure of the set mingle well, as in the case of a real line or Euclidean
plane. This leads to the concept of normed vector spaces.

Let M be a nonempty set and let ρ : M × M → [0, +∞) satisfy (i) ρ(x, y) =
ρ(y, x) ≥ 0 for all x, y ∈ M and ρ(x, y) = 0 if and only if x = y; (ii) ρ(x, z) ≤ ρ(x, y) +
ρ(y, z) for all x, y, and z inM. Such a ρ is then called ametric onM, and (M, ρ) is called
ametric space. Usually we say thatM is a metric space with metric ρ, or simply thatM is
a metric space when a certain metric ρ is explicitly or implicitly implied. For a nonempty
subset S of M the restriction of ρ to S × S is a metric on S which will also be denoted
by ρ. The metric space (S, ρ) is called a subspace of (M, ρ) and ρ is called the metric
on S inherited fromM. Unless stated otherwise, if S is a subset of a metric spaceM, S is
equipped with themetric inherited fromM. For a nonempty subsetA ofM, the diameter
of A, denoted diam A, is defined by

diamA := sup
x,y∈A

ρ(x, y);

while diamA = 0 if A = ∅.
A subset A ofM is said to be bounded if diam A < ∞. In other words, A is bounded

if {ρ(x, x0) : x ∈ A} is a bounded set inR for every x0 ∈ M.
Elements of a metric space are often called points of the space.

Example 1.4.1 Let M = Rn and for x, y ∈ Rn let ρ(x, y) = |x – y|, where |x| =
(
∑n

i=1x
2
i )

1
2 if x = (x1, . . . , xn) ∈ Rn. To show that ρ is a metric onRn we first estab-

lish the well-known Schwarz inequality: |x · y| ≤ |x||y| if x, y ∈ Rn, where, for x =
(x1, . . . , xn) and y = (y1, . . . , yn) inRn, x · y := ∑n

i=1 xiyi is called the inner product
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of x and y. For this purpose we note first that for x ∈ Rn, |x|2 = x · x and that we may
assume that x = 0 and y = 0, hence |x| > 0 and |y| > 0. For t ∈ R, we have

0 ≤ |x + ty|2 = (x + ty) · (x + ty) = |x|2 + 2t(x · y) + t2|y|2

=
(
|x| + t|y|

)2 + 2t
(
x · y – |x||y|),

from which by taking t = –|x|/|y| we obtain x · y ≤ |x||y|. Then |x · y| ≤ |x||y|
follows, because –(x · y) ≤ |x|| – y| = |x||y|. Now for x, y, and z inRn, we have

ρ(x, z)2 = |x – z|2 = |x – y + y – z|2 = |x – y|2 + 2(x – y) · (y – z) + |y – z|2

≤ |x – y|2 + 2|x – y||y – z| + |y – z|2 =
(
|x – y| + |y – z|

)2
=

[
ρ(x, y) + ρ(y, z)

]2,
i.e.

ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Hence Rn is a metric space with metric ρ defined above. This metric is called the
Euclideanmetric onRn. Unless stated otherwise,Rn is considered as a metric space
with this metric, thenRn is called the n-dimensional Euclidean space.

Similarly,Cn is a metric space, with the metric ρ defined by ρ(ζ , η) = (
∑n

j=1 |ζj –
ηj|2)1/2 for ζ = (ζ1, . . . , ζn) and η = (η1, . . . , η2) inCn.Cn with this metric is called
the n-dimensional unitary space. This follows, as in the case of the Euclidean metric
for Rn, from the Schwarz inequality |ζ · η| ≤ |ζ ||η| for ζ , η in Cn, where ζ · η =∑n

j=1 ζjη̄j and |ζ | = (
∑n

j=1 |ζj|
2)

1
2 . As before, if t ∈ R, we have

0 ≤ |ζ + tη|2 = (ζ + tη) · (ζ + tη) = |ζ |2 + 2t Reζ · η + t2|η|2

= (|ζ | + t|η|)2 + 2t{Re ζ · η – |ζ ||η|},

from which we infer that Re ζ · η ≤ |ζ ||η| by choosing t = –|ζ ||η|–1 if η = 0. Then,
|ζ · η| ≤ |ζ ||η| follows from replacing ζ by e–iθ ζ if ζ · η = |ζ · η|eiθ . Note that for
a complex number α, ᾱ denotes the conjugate of α, while Reα denotes the real
part of α.

Example 1.4.2 For a closed finite interval [a, b] in R, let C[a, b] denote the space of
all real-valued continuous functions defined on [a, b]. For f , g ∈ C[a, b], let ρ( f , g) =
maxa≤t≤b | f (t) – g(t)|. It is easily verified that C[a, b] is a metric space with metric
ρ so defined. Unless stated otherwise, C[a, b] is equipped with this metric, which
is often referred to as the uniform metric on C[a, b]. C[a, b] is also used to denote
the space of all complex-valued continuous functions on [a, b] with metric defined
similarly. When C[a, b] denotes the latter space, it shall be explicitly indicated.

Exercise 1.4.1 Show thatRn is also a metric space, with metric ρ defined by ρ(x, y) =
max1≤i≤n |xi – yi| if x = (x1, . . . , xn) and y = (y1, . . . , yn).

A map from N, the set of all positive integers, to a set M is called a sequence in M
or a sequence of elements of M. Such a sequence will be denoted by {xn}, where xn
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is the image of the positive integer n under the mapping. If {xn} is a sequence in M,
then {xnk} is called a subsequence of {xn} if n1 < n2 < · · · < nk < · · · is a subsequence
of {n}. A sequence {xn} in a metric spaceM is said to converge to x ∈ M if for any ε > 0
there is n0 ∈ N such that ρ(xn, x) < ε whenever n ≥ n0. Since x is uniquely determ-
ined, x is called the limit of {xn} and is denoted by limn→∞ xn. That x = limn→∞ xn
is often expressed by xn → x. If limn→∞ xn exists, then we say that {xn} converges in
M and {xn} is referred to as a convergent sequence. A sequence {xn} in M is usually
expressed by {xn} ⊂ M by abuse of notation, and therefore {xn} also denotes the range
of the sequence {xn}. A sequence inM is said to be bounded if its range is bounded.

Example 1.4.3 { fn} ⊂ C[a, b] converges if and only if fn(x) converges uniformly for
x ∈ [a, b].

A sequence {xn} ⊂ M is called a Cauchy sequence if for any ε > 0, there is n0 ∈ N
such that ρ(xn, xm) < ε whenever n,m ≥ n0. Clearly, a Cauchy sequence is bounded.

Exercise 1.4.2 Show that if {xn} ⊂ M converges, then {xn} is a Cauchy sequence.

Exercise 1.4.3 Let {xn} be a Cauchy sequence. Show that if {xn} has a convergent
subsequence, then {xn} converges.

A metric spaceM is called complete if every Cauchy sequence inM converges inM.

Exercise 1.4.4 Show that bothRn and C[a, b] are complete.

Exercise 1.4.5 If instead of the uniform metric we equip C[a, b] with a new metric ρ ′,
defined by

ρ ′(f , g) =
∫ b

a
| f (t) – g(t)|dt

for f , g inC[a, b], show thatC[a, b] is not complete when considered as ametric space
with metric ρ ′.

Exercise 1.4.6 Show that any nonempty setM can be considered as a complete metric
space by defining ρ(x, y) = 0 or 1 depending on x = y or x = y. Such ametric ρ is said
to be discrete.

Let M1, M2 be metric spaces with metrics ρ1 and ρ2 respectively. A map T : M1 →
M2 is said to be continuous at x ∈ M1 if for any ε > 0, there is δ > 0 such that
ρ2(T(x),T( y)) < εwheneverρ1(x, y) < δ. IfT is continuous at every point ofM1, then
T is said to be continuous onM1 and is called a continuousmap fromM1 intoM2. A con-
tinuous map from a metric spaceM intoR orC is called a continuous function onM
and is generically denoted by f . The space of all continuous real(complex)-valued func-
tions on a metric spaceM is denoted by C(M); C(M) is a real- or complex vector space
depending on whether the functions in question are real- or complex-valued.

A point x of a set A in a metric space is called an interior point of A if there is ε > 0

such that y ∈ A whenever ρ(x, y) < ε; the set of all interior points of A is denoted by
◦
A.

A setG in ametric spaceM is said to be open if
◦
G =G. The complement of an open set is
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called a closed set. For x ∈ M and r > 0, let Br(x) = {y ∈ M : ρ(y, x) < r} andCr(x) =
{y ∈ M : ρ(y, x) ≤ r}. It is easily verified that Br(x) is an open set and Cr(x) is a closed
set. Br(x) (Cr(x)) is usually referred to as the open (closed) ball centered at x and with
radius r. A point x ∈ M is said to be isolated if Br(x) = {x} for some r > 0. A setN ⊂ M
is called aneighborhood of x ∈ M ifN contains an open set which contains x; similarly, if
N contains an open set which contains a setA, thenN is called a neighborhood ofA. It is
clear that a sequence {xn} inM converges to x ∈ M if and only if, for any neighborhood
N of x, there is n0 ∈ N such that xn ∈ N whenever n ≥ n0. One notes that if x0 is an
isolated point ofM, then any map T fromM into any metric space is continuous at x0.

Note that open sets depend on themetric ρ, and when ρ is to be emphasized, an open
set in a metric space with metric ρ is more precisely said to be open w.r.t. ρ.

Exercise 1.4.7 LetM1,M2 be metric spaces and let T : M1 → M2.

(i) Show that T is continuous at x ∈ M1 if and only if, for any sequence {xn} ⊂
M1 with limn→∞ xn = x, it holds that limn→∞ T(xn) = T(x) in M2; also show
that T is continuous at x ∈ M1 if and only if, for every sequence {xn} ⊂ M1
with limn→∞ xn = x, it holds that {xn} has a subsequence {xnk} such that
limk→∞ T(xnk) = T(x).

(ii) Show that T is continuous at x ∈ M1 if and only if, for any neighborhood N of
T(x) inM2, the setT–1N = {y ∈ M1 : T( y) ∈ N} is a neighborhood of x inM1.

(iii) Show thatT is continuous onM1 if and only if for any open setG2 ⊂ M2,T–1G2
is an open subset ofM1.

Exercise 1.4.8 LetT be the family of all open subsets of ametric spaceM. Show that:

(i) ∅ andM are in T ;
(ii) A,B ∈ T ⇒ A ∩ B ∈ T ;
(iii) if {Ai}i∈I ⊂ T , then

⋃
i∈IAi ∈ T , where I is any index set.

Suppose that (M1, ρ1) and (M2, ρ2) are metric spaces. LetM1 × M2 := {(x, y) : x ∈
M1, y ∈ M2} be theCartesian product ofM1 andM2; define a metric ρ onM1 × M2 by

ρ((x, y), (x′, y′)) = ρ1(x, x′) + ρ2(y, y′)

for (x, y) and (x′, y′) in M1 × M2. It is easily verified that ρ is actually a metric on
M1 × M2. With this metric ρ, M1 × M2 is called the product space of M1 and M2 as
metric space.

Exercise 1.4.9 LetM1 × M2 be the product space of metric spacesM1 andM2.

(i) For A ⊂ M1 and B ⊂ M2, show that A × B is open in M1 × M2 if and only if
both A and B are open inM1 andM2 respectively.

(ii) Let G be an open set in M1 × M2; show that G1 := {x ∈ M1 : (x, y) ∈ G for
some y in M2} and G2 := {y ∈ M2 : (x, y) ∈ G for some x in M1} are open in
M1 andM2 respectively.
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Let K = R or C and let E be a vector space over K. Elements of K are called scal-
ars. Suppose that for each x ∈ E, there is a nonnegative number ‖x‖ associated with it
so that:

(i) ‖x‖ = 0 if and only if x is the zero element of E;
(ii) ‖αx‖ = |α|‖x‖ for all α ∈ K and x ∈ E;
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y in E (triangle inequality).

ThenE is called a normed vector space (abbreviated as n.v.s.) with norm ‖ · ‖, and ‖ · ‖
is called a norm on E.

If E is a n.v.s., for x, y in E, let

ρ(x, y) = ‖x – y‖,

then ρ is a metric on E and is called the metric associated with norm ‖ · ‖. Unless stated
otherwise, we always consider this metric for a n.v.s.. The n.v.s. E with norm ‖ · ‖ is
denoted by (E, ‖ · ‖) if the norm ‖ · ‖ is to be emphasized.

Lemma 1.4.1 Suppose that E is a n.v.s. and xn → x in E, then ‖x‖ = limn→∞ ‖xn‖. In
other words, ‖ · ‖ is a continuous function on E.

Proof The lemma follows from the following sequence of triangle inequalities:

‖xn‖ – ‖xn – x‖ ≤ ‖x‖ ≤ ‖xn‖ + ‖xn – x‖. �

A normed vector space is called a Banach space if it is a complete metric space.
Both Rn and C[a, b] are Banach spaces, with norms given respectively by ‖x‖ =

(
∑n

i=1 x
2
i )

1
2 for x = (x1, . . . , xn) ∈ Rn and ‖ f‖ = maxa≤t≤b | f (t)| for f ∈ C[a, b].

Similarly, the unitary space Cn is a Banach space with norm ‖z‖ = (
∑n

j=1 |zj|
2)

1
2 for

z = (z1, . . . , zn) inCn. The norms defined above forRn andCn are called respectively
the Euclidean norm and the unitary norm and are denoted by | · | in both cases, in
accordance with the notations introduced in Example 1.4.1; note that their associated
metrics are themetrics introduced forRn andCn in Example 1.4.1. The norm defined for
C[a, b] is called the uniform norm; its associated metric is the uniformmetric defined in
Example 1.4.2.

A class of well-known Banach spaces, the lp spaces, will be introduced in §1.6. This
class of Banach spaces anticipates the important and more general class of Lp spaces
treated in Section 2.7 and in Chapter 6.

In the remaining part of this section, linear maps from a normed vector space E into
a normed vector space F over the same fieldR or C are considered. Recall that a map
T from a vector space E into a vector space F over the same field is said to be linear if
T(αx + βy) = αT(x) + βT( y), for all x, y in E and all scalars α, β . Linear maps are more
often called linear transformations or linear operators.
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Exercise 1.4.10 Suppose that T is a linear transformation from E into F. Show that T
is continuous on E if and only if it is continuous at one point.

Theorem 1.4.1 Let T be a linear transformation from E into F, then T is continuous if and
only if there is C ≥ 0 such that

‖Tx‖ ≤ C‖x‖

for all x ∈ E.

Proof If there is C ≥ 0 such that ‖Tx‖ ≤ C‖x‖ holds for all x ∈ E, then T is obviously
continuous at x = 0 and hence by Exercise 1.4.10 is continuous on E.

Conversely, suppose that T is continuous on E, and is hence continuous at x = 0.
There is then δ > 0 such that if ‖x‖ ≤ δ, then ‖Tx‖ ≤ 1. Let now x ∈ E and x = 0,
then

∥∥ δ
‖x‖x

∥∥ = δ, so
∥∥T( δ

‖x‖x
)∥∥ ≤ 1. Thus ‖Tx‖ ≤ 1

δ
‖x‖. If we choose C = 1

δ
, then

‖Tx‖ ≤ C‖x‖ for all x ∈ E. �

From this theorem it follows that ifT is a continuous linear transformation fromE into
F, then

‖T‖ := sup
x∈E, x=0

‖Tx‖
‖x‖ < +∞,

and is the smallest C for which ‖Tx‖ ≤ C‖x‖ for all x ∈ E. ‖T‖ is called the norm
of T. Of course, ‖T‖ can be defined for any linear transformation T from E into F; then
‖Tx‖ ≤ ‖T‖‖x‖ holds always and T is continuous if and only if ‖T‖ < +∞. Hence a
continuous linear transformation is also called a bounded linear transformation.

Exercise 1.4.11 Show that ‖T‖ = supx∈E,‖x‖=1 ‖Tx‖.
Exercise 1.4.12 Let L(E, F) be the space of all bounded linear transformations from

E into F. Show that it is a normed vector space with norm ‖T‖ for T ∈ L(E, F) as
previously defined.

Remark Any linear map T from a Euclidean space Rn into a Euclidean space Rm is
continuous. This follows from the representation of T by a matrix (ajk), 1 ≤ j ≤ m, 1 ≤
k ≤ n, of real entries, in the sense that if y = Tx, then yj =

∑n
k=1 ajkxk, j = 1, . . . ,m, where

x = (x1, . . . , xn) and y = (y1, . . . , ym), by observing that

|y|2 =
m∑
j=1

(
n∑
k=1

ajkxk
)2

≤
(

m∑
j=1

n∑
k=1

a2jk

)
|x|2.

Theorem 1.4.2 If F is a Banach space, then L(E, F) is a Banach space.
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Proof Let {Tn} be a Cauchy sequence in L(E, F). Since

‖Tnx – Tmx‖ = ‖(Tn – Tm)x‖ ≤ ‖Tn – Tm‖ · ‖x‖,

{Tnx} is a Cauchy sequence in F for each x ∈ E. Since F is complete, limn→∞ Tnx
exists. Put Tx = limn→∞ Tnx. T is obviously a linear transformation from E into F.

We claim now T ∈ L(E, F). Since {Tn} is Cauchy, ‖Tn‖ ≤ C for someC > 0, and
for all n. Now, from Lemma 1.4.1,

‖Tx‖ = lim
n→∞ ‖Tnx‖ ≤

(
sup
n

‖Tn‖
)
‖x‖ ≤ C‖x‖

for each x ∈ E. Hence T is a bounded linear transformation.
We show next, limn→∞ ‖Tn – T‖ = 0. Given ε > 0, there is n0 such that ‖Tn –

Tm‖ < ε if n,m ≥ n0. Let n ≥ n0, we have

‖Tn – T‖ = sup
x∈E,‖x‖=1

‖Tnx – Tx‖

= sup
x∈E,‖x‖=1

lim
m→∞ ‖Tnx – Tmx‖

≤ sup
x∈E,‖x‖=1

(
sup
m≥n0

‖Tn – Tm‖
)
‖x‖

≤ sup
x∈E,‖x‖=1

ε‖x‖ = ε;

this shows that limn→∞ ‖Tn – T‖ = 0, or limn→∞ Tn = T. Thus the sequence {Tn}
has a limit in L(E, F). Therefore L(E, F) is complete. �
L(E,C), or L(E,R), depending on whether E is a complex or a real vector space, is

called the topological dual of E and is denoted by E∗; E∗ is a Banach space. Elements of
E∗ are called bounded linear functionals on E.

When E = F, L(E, F) is usually abbreviated to L(E). For S, T in L(E), S ◦ T is in L(E)
and ‖S ◦ T‖ ≤ ‖S‖ · ‖T‖, as follows directly from definitions. Usually, we shall denote
S ◦ T by ST; then for S,T, andU inL(E), (ST)U = S(TU), andwemay therefore denote
TT by T2, (TT)T by T3, . . . etc. for T ∈ L(E) free of misinterpretation. Note that
‖Tk‖ ≤ ‖T‖k for T ∈ L(E) and k ∈ N. For convenience, we put T◦ = 1, the identity
map on E.

Exercise 1.4.13 Let S be a nonempty set and consider the vector space B(S) of all
bounded real(complex)-valued functions on S. Addition and multiplication by scalar
in B(S) are usual for functions. For f ∈ B(S), let ‖ f‖ = sups∈S | f (s)|.

(i) Show that (B(S), ‖ · ‖) is a Banach space.
(ii) For a ∈ B(S), define A : B(S) → B(S) by (Af )(s) = a(s)f (s), s ∈ S. Show that

A is a bounded linear transformation from B(S) into itself and that ‖A‖ = ‖a‖.
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Exercise 1.4.14 Consider C[0, 1] and let g ∈ C[0, 1]. Define a linear functional � on
C[0, 1] by

�( f ) =
∫ 1

0
f (x)g(x)dx.

Show that � ∈ C[0, 1]∗ and ‖�‖ =
∫ 1
0 |g(x)|dx.

Exercise 1.4.15 Let g be a continuous function on [0, 1] × [0, 1] and for f ∈
C[0, 1], let the function Tf be defined by Tf (x) =

∫ 1
0 g(x, y)f ( y)dy. Show that T ∈

L(C[0, 1]) and ‖T‖ = maxx∈[0,1]
∫ 1
0 |g(x, y)|dy.

We now consider a series of elements in a n.v.s. E. A symbol of the form
∑∞

k=1 xk with
each xk in E is called a series. For each n ∈ N,

∑n
k=1 xk is called the n-th partial sum of

the series
∑∞

k=1 xk. If it happens that limn→∞
∑n

k=1 xk exists in E, say x, then the series∑∞
k=1 xk is said to be convergent in E and x is called the sum of the series,

∑∞
k=1 xk, sym-

bolically expressed by x =
∑∞

k=1 xk, i.e. when
∑∞

k=1 xk converges, we attach a meaning to
the symbol

∑∞
k=1 xk by referring to it as limn→∞

∑n
k=1 xk, or the sum of the series.

Theorem 1.4.3 Let {xk} be a sequence in a Banach space E such that
∑∞

k=1 ‖xk‖ < ∞.
Then

∑∞
k=1 xk converges in E.

Proof For n ∈ N, let yn =
∑n

k=1 xk. Then form > n inN,

‖ym – yn‖ =
∥∥∥∥ m∑
k=n+1

xk

∥∥∥∥ ≤
m∑

k=n+1
‖xk‖ → 0

as n → ∞. This means that {yn} is a Cauchy sequence in E, but the fact that E is
complete implies that {yn} converges in E, i.e. limn→∞

∑n
k=1 xk exists in E. �

Exercise 1.4.16 Suppose that
∑∞

k=1 xk is a convergent series in a n.v.s. E. Show that∥∥∥∥∞∑
k=1

xk

∥∥∥∥ ≤
∞∑
k=1

‖xk‖.

Exercise 1.4.17 Suppose that
∑∞

k=1 αk is a convergent series inR.

(i) If x is an element of a n.v.s. E, show that
∑∞

k=1 αkx converges in E.
(ii) If {xk} is a bounded sequence in a Banach space E and

∑∞
k=1 αk is absolutely

convergent, show that
∑∞

k=1 αkxk converges in E.

The following example, which complements Theorem 1.4.3, illustrates a method to
extract a convergent subsequence from a given sequence.

Example 1.4.4 If a series
∑∞

n=1 xn in a n.v.s. E converges whenever
∑∞

n=1 ‖xn‖ < ∞,
then E is a Banach space. To show this, let {yn} be a Cauchy sequence in E. Since
{yn} is Cauchy, there is an increasing sequence n1 < n2 < · · · < nk < · · · in N
such that ‖ynk+1 – ynk‖ < 1

k2 for each k. Then
∑∞

k=1 ‖ynk+1 – ynk‖ < ∞ and hence
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k=1(ynk+1 – ynk) converges, which is equivalent to {ynk} being a convergent sequence.

We have shown that {yn} has a convergent subsequence; thus {yn} converges by
Exercise 1.4.3 and E is therefore complete.

Remark Weconclude this sectionwith a remark onnorms on a vector spaceE. Suppose
that ‖ · ‖′ and ‖ · ‖′′ are different norms on a vector space E, in general, ‖ · ‖′ and ‖ · ‖′′
will generate different families of open sets; but a moment’s reflection convinces us that
‖ · ‖′ and ‖ · ‖′′generate the same family of open sets if and only if there is c > 0 such that

c‖x‖′′ ≤ ‖x‖′ ≤ 1
c
‖x‖′′

for all x in E (in this case ‖ · ‖′ and ‖ · ‖′′ are said to be equivalent). We shall see in
Proposition 1.7.2 that all norms on a finite-dimensional vector space are equivalent.

1.5 Semi-continuities

For real-valued functions, the fact that the real fieldR is ordered plays an important role
in the analysis of functions. In particular, for real-valued functions defined on a metric
space, lower semi-continuity and upper semi-continuity are useful concepts that owe
their existence to R being ordered. Semi-continuities are our concern in this section.
For a subset S ofR we shall adopt the convention that inf S = ∞ and sup S = –∞ if S is
empty; and that inf S = –∞ if S is not bounded from below, while sup S = ∞ if S is not
bounded from above.

For a sequence xn, n = 1, 2, . . . , of real numbers, let

lim inf
n→∞ xn = lim

n→∞

(
inf
k≥n

xk
)
, (1.4)

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n

xk
)
. (1.5)

Notice that infk≥n xk is increasing and supk≥n xk is decreasing as n increases, hence
both limits on the right-hand sides of (1.4) and (1.5) exist, although they may not be
finite. Thus lim infn→∞ xn and lim supn→∞ xn always exist, and are called respectively the
inferior limit and the superior limit of {xn}. Clearly, lim infn→∞ xn ≤ lim supn→∞ xn.

Exercise 1.5.1

(i) Show that limn→∞ xn exists if and only if lim infn→∞ xn = lim supn→∞ xn, and
limn→∞ xn is the common value lim infn→∞ xn = lim supn→∞ xn if it exists.

(ii) Show that lim infn→∞(xn + yn) ≥ lim infn→∞ xn + lim infn→∞ yn (lim supn→∞
(xn + yn) ≤ lim supn→∞ xn + lim supn→∞ yn), if lim infn→∞ xn + lim infn→∞
yn (lim supn→∞ xn + lim supn→∞ yn) is meaningful. Note that α + β is mean-
ingful if at least one of α and β is finite, or if both α and β are either∞ or –∞.
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(iii) Show that lim infn→∞(xn + yn) ≤ lim infn→∞ xn + lim supn→∞ yn if the right-
hand side is meaningful and that lim supn→∞(xn + yn) ≥ lim infn→∞ xn +
lim supn→∞ yn if the right-hand side is meaningful.

A real-valued function f defined on a metric space M with metric ρ is said to be
lower semi-continuous (upper semi-continuous) at x ∈ M if, for every sequence {xn}
inM with x = limn→∞ xn, f (x) ≤ lim infn→∞ f (xn) (f (x) ≥ lim supn→∞ f (xn)) holds.
Lower semi-continuity and upper semi-continuity will often be abbreviated as l.s.c. and
u.s.c. respectively. It is clear that a function f is l.s.c. (u.s.c.) at x if and only if for any given
ε > 0 there is δ > 0 such that f ( y) > f (x) – ε (f ( y) < f (x) + ε) if ρ(y, x) < δ.

Exercise 1.5.2

(i) Show that f is lower semi-continuous (upper semi-continuous) at x if and only if

f (x) = lim
δ↘0

[
inf

y∈M, ρ(x,y)<δ
f ( y)

](
f (x) = lim

δ↘0

[
sup

y∈M, ρ(x,y)<δ

f ( y)
])

;

(ii) show that f is continuous at x if and only if f is both lower semi-continuous and
upper semi-continuous at x.

Because of the assertions of Exercise 1.5.2, if x is not an isolated point ofM, we define
lim infy→x f ( y) and lim supy→x f ( y) by

lim inf
y→x

f ( y) = lim
δ↘0

[
inf

y∈M, 0<ρ(x,y)<δ
f ( y)

]
;

lim sup
y→x

f ( y) = lim
δ↘0

[
sup

y∈M, 0<ρ(x,y)<δ

f ( y)

]
,

since infy∈M, 0<ρ(x,y)<δ f ( y) increases as δ decreases and supy∈M, 0<ρ(x,y)<δ f ( y) decreases
as δ decreases, both lim infy→x f ( y) and lim supy→x f ( y) exist, although they may not be
finite. If lim infy→x f ( y) = lim supy→x f ( y), the common value is called the limit of f ( y)
as y → x and is denoted by limy→x f ( y). Usually, limy→x f ( y) is simply called the limit
of the function f at x. Note that lim infy→x f ( y) and lim supy→x f ( y) are defined if f is
defined on a neighborhood of x with x excluded. If x is an isolated point of M and f is
defined at x, then lim infy→x f ( y) = lim supy→x f ( y) = limy→x f ( y) = f (x) by definition.

Exercise 1.5.3

(i) Show that lim infy→x f ( y) ≤ lim supy→x f ( y) and that f is continuous at x if and
only if limy→x f ( y) = f (x).

(ii) Show that f is l.s.c. (u.s.c.) at x if and only if f (x) ≤ lim infy→x f ( y) (f (x) ≥
lim supy→x f ( y)).
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If f is lower semi-continuous (upper semi-continuous) at every point ofM, then f is
said to be lower semi-continuous (upper semi-continuous) onM.

Exercise 1.5.4 Show that f is lower semi-continuous (upper semi-continuous) onM if
and only if {x ∈ M : f (x) > α} ({x ∈ M : f (x) < α}) is open for every α ∈ R.

Exercise 1.5.5 Let fα , α ∈ I, be a family of real-valued continuous functions defined
onM and assume that supα∈I fα(x) (infα∈I fα(x)) is finite for each x ∈ M; show that
supα∈I fα(x) (infα∈I f (x)) is lower (upper) semi-continuous onM.

Exercise 1.5.6 Suppose that f is a real-valued function defined on a metric space and
assume that f is bounded from below onM, i.e. there is c ∈ R such that f (z) ≥ c for
all z ∈ M. For each k ∈ N is defined a function fk onM by

fk(x) = inf
z∈M{ f (z) + kρ(x, z)}, x ∈ M.

(i) Show that fk(x) is finite for all x ∈ M and

| fk(x) – fk( y)| ≤ kρ(x, y)

for all x, y inM.
(ii) Suppose that f is l.s.c. onM. Show that

f (x) = lim
k→∞

fk(x), x ∈ M.

(iii) Show that f is l.s.c. on M if and only if there is an increasing sequence { fk} of
continuous functions onM such that

f (x) = lim
k→∞

fk(x)

for all x ∈ M.

Exercise 1.5.7 A metric space M is called a compact space if every sequence in M
has a subsequence which converges in M. Show that if f is lower semi–continuous
(upper semi-continuous) on a compact metric spaceM, then f assumes its minimum
(maximum) on M. (Hint: There is a sequence {xn} in M such that limn→∞ f (xn) =
infx∈M f (x))

1.6 The space �p(Z)

The Banach spaces considered in this section are included in themore general class of Lp
spaces, to be introduced in Section 2.7; but it is expedient to give a separate and direct
treatment here without recourse to general theory of measure and integration.

Let Z be the set of all integers and consider the space L of all real-valued functions
defined on Z. With the usual definition of addition of functions and multiplication of a
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function by a scalar, L is a real vector space. For f ∈ L and j ∈ Z, if we denote f (j) by fj,
then f can be identified with the two-way sequence ( fj)j∈Z of real numbers and L is the
space of all sequences (aj)j∈Z of real numbers. For f ∈ L and 1 ≤ p ≤ ∞, let

‖ f‖p =

⎧⎪⎨⎪⎩
(∑

j∈Z | f (j)|p
) 1

p
if p < ∞;

supj∈Z | f (j)| if p = ∞.

Now consider the space �p(Z), 1 ≤ p ≤ ∞, defined by

�p(Z) = { f ∈ L : ‖ f‖p < ∞}.

Presentlywe shall prove that �p(Z) is a vector space and‖ · ‖p is a normon �p(Z), but for
this purpose we first show an inequality which is a generalization of the Schwarz inequal-
ity and is called Hölder’s inequality. Two extended real numbers p, q ≥ 1 are called
conjugate exponents if 1

p +
1
q = 1 ( 1

∞ = 0; for further arithmetic conventions regarding
∞ and –∞, see the first paragraph of Section 2.2), while two nonnegative numbers α

and β will be called a convex pair if α + β = 1.

Lemma 1.6.1 If α and β is a convex pair, then for any 0 ≤ ζ , η < ∞ the following
inequality holds:

ζ αηβ ≤ αζ + βη. (1.6)

Proof Wemay assume that 0 < α,β < 1 and ζ , η > 0.
Since (1 + x)α ≤ αx + 1, for x ≥ 0, we have

yα ≤ αy + β , y ≥ 1. (1.7)

Now either ζη–1 ≥ 1 or ζ –1η ≥ 1; if ζη–1 ≥ 1, take y = ζη–1 in (1.7), while
if ζ –1η ≥ 1, take y = ζ –1η in (1.7) with α and β interchanged, then proceed
to (1.6). �

Lemma 1.6.2 (Hölder’s inequality) If x = (x1, . . . , xn) and y = (y1, . . . , yn) are inRn,
then for conjugate exponents p and q we have

n∑
j=1
|xjyj| ≤ ‖x‖p‖y‖q.

Remark Since an element x ofRn can be identified with an element f of L by f (1) =
x1, . . . , f (n) = xn, and f (j) = 0 for other j, ‖x‖p is defined.

Proof of Lemma 1.6.2 It is clear that if one of p and q is∞, the lemma is trivial, hence
we suppose that 1 < p, q < ∞. Since ‖x‖p = 0 if and only if x = 0, we may assume
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that ‖x‖p > 0 and ‖y‖p > 0. For 1 ≤ j ≤ n, choose ζ =
(

|xj|
‖x‖p

)p
and η =

(
|yj|
‖y‖q

)q
in

Lemma 1.6.1. with α = 1
p and β = 1

q , then

|xjyj|
‖x‖p‖y‖q ≤ 1

p
|xj|p

‖x‖pp +
1
q
|yj|q

‖y‖qq ,

and consequently

n∑
j=1
|xjyj| ≤ ‖x‖p‖y‖q

(
1
p
+
1
q

)
= ‖x‖p‖y‖q. �

Exercise 1.6.1 Suppose that α > 0 and β > 0 is a convex pair. Show that

ζ αηβ = αζ + βη, ζ ≥ 0, η ≥ 0

if and only if ζ = η.

We are now in a position to prove that �p(Z) is a vector space and ‖ · ‖p is a norm on
�p(Z). That ‖ f‖p = 0 if and only if f = 0 and that λf ∈ �p(Z) and ‖λf‖p = |λ|‖ f‖p for
λ ∈ R and f ∈ �p(Z) are obvious. It only remains to show that ‖ f + g‖p ≤ ‖ f‖p + ‖g‖p
for f , g in �p(Z). For this purpose, we may assume that 1 < p < ∞ and ‖ f + g‖p > 0.
Under this assumption, there is A ∈ F(Z) such that

∑
j∈A | f (j) + g(j)|p > 0. For such

A, we have

0 <
∑
j∈A

| f (j) + g(j)|p ≤ ∑
j∈A

| f (j) + g(j)|p–1
(
| f (j)| + |g(j)|

)
,

from which, by using Hölder’s inequality (see Lemma 1.6.2.), we have

0 <
∑
j∈A

| f (j) + g(j)|p

≤
(∑
j∈A

| f (j) + g(j)|(p–1)q
) 1

q
{(∑

j∈A
| f (j)|p

) 1
p

+
(∑
j∈A

|g(j)|p
) 1

p
}

≤
(∑
j∈A

| f (j) + g(j)|p
) 1

q (‖ f‖p + ‖q‖p
)
,

and thus, on dividing the last sequence of inequalities by
(∑

j∈A | f (j) + g(j)|p
) 1

q , we
obtain (∑

j∈A
| f (j) + g(j)|p

) 1
p

≤ ‖ f‖p + ‖g‖p. (1.8)
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Now observe that (1.8) holds for any A ∈ F(Z). Taking the supremum on the left-hand
side of (1.8) over A ∈ F(Z), we see that ‖ f + g‖p ≤ ‖ f‖p + ‖g‖p. Therefore, �p(Z) is a
vector space and ‖ · ‖p is a norm on �p(Z). We shall always refer to �p(Z) as a normed
vector space with this norm.

Exercise 1.6.2 Let k1 < · · · < kn be a finite sequence inZ of length n; define a map T
from �p(Z) to the n-dimensional EuclideanRn by

T(f ) =
(
f (k1), . . . , f (kn)

)
, f ∈ �p(Z).

Show that T is continuous from �p(Z) onto Rn and that the image under T of any
open set in �p(Z) is an open set inRn.

Exercise 1.6.3 Suppose 1 ≤ p < ∞; show that |a1 + · · · + an|p ≤ np–1
∑n

j=1 |aj|
p for

a1, . . . , an inR.

Exercise 1.6.4 Let f1, f2, . . . , fn, . . . be a Cauchy sequence in �p(Z); show that
limn→∞ fn(j) exists and is finite for every j ∈ Z.

Exercise 1.6.5 Show that �∞(Z) is a Banach space.

Theorem 1.6.1 �p(Z) is a Banach space for 1 ≤ p ≤ ∞.

Proof The case p = ∞ is relatively easy and is left as an exercise (see Exercise 1.6.5).
Consider now the case 1 ≤ p < ∞. Let f1, f2, . . . , fn, . . . be a Cauchy sequence in
�p(Z), then limn→∞ fn(j) exists and is finite for each j ∈ Z (see Exercise 1.6.4), say
f (j) = limn→∞ fn(j). We show first that f ∈ �p(Z). Since f1, f2, . . . , fn, . . . is a Cauchy
sequence, it is necessarily bounded. Let‖ fn‖p ≤ M for all n. There is n0 ∈ N such that

‖ fn – fm‖p < 1, n,m ≥ n0.

Now fixm ≥ n0 and let A ∈ F(Z), then∑
j∈A

| f (j)|p = lim
n→∞

∑
j∈A

| fn(j)|p = lim
n→∞

∑
j∈A

| fn(j) – fm(j) + fm(j)|p

≤ lim sup
n→∞

∑
j∈A

{
| fn(j) – fm(j)| + | fm(j)|

}p,
from which, by Exercise 1.6.3, we have

∑
j∈A

| f (j)|p ≤ lim sup
n→∞

2p–1
{∑
j∈A

| fn(j) – fm(j)|p +
∑
j∈A

| fm(j)|p
}

≤ 2p–1
{
lim sup
n→∞

‖ fn – fm‖pp + ‖ fm‖pp
}

≤ 2p–1{1 +Mp}.
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Thus, ∑
j∈Z

| f (j)|p = sup
A∈F(Z)

∑
j∈A

| f (j)|p ≤ 2p–1(1 +Mp) < ∞,

which shows f ∈ �p(Z). We now claim limn→∞ fn = f in �p(Z). Actually, given
ε > 0, there isN ∈ N such that

‖ fn – fm‖p < ε, n,m ≥ N.

Now, for n ≥ N and A ∈ F(Z),∑
j∈A

| f (j) – fn(j)|p = lim
m→∞

∑
j∈A

| fm(j) – fn(j)|p

≤ lim inf
m→∞ ‖ fm – fn‖pp ≤ εp,

which implies

‖ f – fn‖pp = sup
A∈F(Z)

∑
j∈A

| f (j) – fn(j)|p ≤ εp,

or

‖ f – fn‖p ≤ ε, n ≥ N.

In other words, limn→∞ fn = f in �p(Z). This shows that �p(Z) is complete and hence
is a Banach space. �

Exercise 1.6.6 Let f , g be in �1(Z).

(i) Show that { f (n – m)g(m)}(n,m)∈Z×Z is summable and∑
(n,m)∈Z×Z

f (n – m)g(m) =
∑
n∈Z

∑
m∈Z

f (n – m)g(m).

(ii) Define f ∗ g(n) =
∑

m∈Z f (n – m)g(m), n ∈ Z. Show that f ∗ g ∈ �1(Z),
f ∗ g = g ∗ f , and ‖ f ∗ g‖1 ≤ ‖ f‖1‖g‖1.

Exercise 1.6.7 Suppose that f ∈ lp(Z) and g ∈ l1(Z). Show that f ∗ g can be defined
similarly as in Exercise 1.6.6 (ii); then show that f ∗ g = g ∗ f , and

‖ f ∗ g‖p ≤ ‖ f‖p‖g‖1.

Remark For any nonempty set S and 1 ≤ p ≤ ∞, the Banach space �p(S) can be
defined in the same way that �p(Z) is defined. The first such space is the space �2(N)
introduced by D. Hilbert in his study of the Fredholm theory of integral equations.


