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Preface

his text is based on lecture notes I prepared for a first-year graduate analysis course

that I taught at National Taiwan University from time to time over a span of more
than 30 years. The choice and presentation of the materials have been strongly influenced
by the experience I gained from offering courses such as Functional Analysis, Calculus of
Variations, Applied Mathematics, Potential Theory, and Probability Theory.

Introduction of the Lebesgue measure and the corresponding theory of integration at
the beginning of the twentieth century changed in a fundamental way the general view of
the theory of functions of a real variable; due in essence to the fact that certain properties
of sets and functions in terms of the Lebesgue measure (dubbed metric properties) were
found to be very useful in resolving certain problems that had puzzled analysts for some
time; some of these problems being connected to expansion of functions in trigonomet-
ric series. Also, the metric properties and the then new theory of integration provided
appropriate means for classifying sets and functions for further in-depth studies. It is this
view of the theory of functions of a real variable, framed in the setting of general measure
and integration, that defines the core of the subject matter of real analysis that is adop-
ted in this book. Needless to say, strong emphasis is placed on measures and functions
defined in Euclidean n-space; in particular, function spaces defined in terms of Lebesgue
measure on R" are treated in some detail, including introduction of useful operations
on these spaces, since this part of real analysis plays a fundamental role in many fields of
mathematical discipline and lends a helping hand to the analysis of various problems in
mathematical physics and engineering.

It is assumed that readers are familiar with the basic concepts and operations in lin-
ear algebra and have a fair acquaintance with the real number system. We also assume
that they have had solid training in rigorous analysis as is usually offered in a course
on advanced calculus. But for the reader’s convenience, a concise treatment of analysis
in metric spaces is included in Chapter 1. The first two sections of Chapter 1 consider
a simple example, illustrating the key points of general measure and integration, while
the third section brings out the necessity of constructing a suitable measure in order to
model a simple random phenomenon—coin tossing. The reader is advised to proceed to
Chapter 2 after studying the first three sections of Chapter 1, returning to the remaining
part of the chapter for reference if required. Readers may start immediately at Chapter 2
if they are comfortable with abstract thinking.
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We particularly stress the universality of the method of outer measure in construct-
ing measures in the hope of conveying to readers the salient role played by regularity of
measures in the study of sets and functions.

A chapter on the basic principles of linear analysis is also included, because some of
these principles are applied in later chapters; and also because the concept of orthonor-
mal basis in Hilbert space is an important interpretation of the Fourier expansion
of functions in trigonometric series which provides a consensus on introduction of
Lebesgue measure and integration.

Exercises are interposed within the main body of the text. Many of these are fairly
easy, just meant to help to fix ideas that have been introduced. Statements that follow
quite directly from propositions that are already established are usually left to be verified
as exercises. Some of the exercises are more difficult, in that familiarity and insight into
the methods presented in the text are required, together with some degree of ingenuity
in order to resolve them; for such exercises, hints are usually provided.

The %% Foundation for Education has provided funds for classroom testing of the
text in a core curriculum course on real analysis, offered by the Institute of Mathematics,
Academia Sinica-Taipei, as well as for secretarial assistance during the preparation of the
text. This is gratefully acknowledged.

Taipei, 2015 Fon-Che Liu



Introduction
and Preliminaries

his chapter serves two purposes. The first purpose is to prepare the reader for a more

systematic development in later chapters of the methods of real analysis through
some introductory accounts of a few specific topics. The second purpose is, in view of
the possible situation where some readers might not be conversant with basic concepts
in elementary abstract analysis, to acquaint them with the fundamentals of abstract ana-
lysis. Nevertheless, readers are assumed to have some basic training in rigorous analysis
as usually offered by courses in advanced calculus, and to have some acquaintance with
the rudiments of linear algebra.

Throughout the book, the field of real numbers and that of complex numbers are
denoted, respectively, by R and C, while the set of all positive integers and the set of
all integers are denoted by IN and 7Z respectively.

The standard set-theoretical terminology is assumed; but terminology and notations
regarding mappings will now be briefly recalled. If T is a mapping from a set A into a set
B (expressed by T : A — B), T(a) denotes the element in B which is associated with
a € A under the mapping T; for a subset S of A, the set {T(x) : x € S} is denoted by
TS and is called the image of S under T; thus T{a} = {T(a)}. T(a) is sometimes simply
written as Ta if no confusion is possible, and at times, an element a of a set and the set {a}
consisting of an element are not clearly distinguished as different objects. For example,
Ta and T{a} may not be distinguished and Ta is also called the image of a under T. A
mapping T : A — Bissaid to be one-to-one or injective if Ta = Ta'leadstoa = a, and
is said to be surjective if TA = B; T is bijective if it is both injective and surjective. If
TA = B, T is also referred to as a mapping from A onto B. Mappings are also called maps.
Synonyms for maps are operators and transformations. As usual, a map from a setinto R
or Cis called a function.

Some convenient notations for operations on sets are now introduced. Regarding a
family F = {Ag }aer of sets indexed by an index set I, the union |_J wer Aq is also expressed
by | F; if A and B are sets in a vector space and « a scalar, theset {x + y : x € A,y € B}
is denoted by A + B, and the set {ax : x € A} by ¢A.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.



2 | Introduction and Preliminaries
1.1 Summability of systems of real numbers

Summability of systems of real numbers is a special case in the theory of integration, to
be treated in Chapter 2, but it reveals many essential points of the theory.

For a set S, the family of all nonempty finite subsets of S will be denoted by F(S).
Consider now a system {cy }ycr Of real numbers indexed by an index set I. The system
{ca}oer will be denoted simply by {c,} if the index set I is assumed either explicitly or
implicitly. The system is said to be summable if there is £ € IR, such that for any & > 0
there is A € F(I), with the property that whenever B € F(I) and B D A, then

-1t

a€B

< E&. (1.1)

Exercise 1.1.1 Show that if £ in the preceding definition exists, then it is unique.

If {c,} is summable, the uniquely determined ¢ in the above definition is called the
sum of {c, } and is denoted by D", ; co

Before we go further it is worthwhlle remarking that the convergence of the series
Y o2 ¢ depends on the order 1 <2 <3 <--- and ), _\ ¢ if it exists, does not
depend on how N is ordered. Hence ), _\ ¢, may not exist while ) -, c, exists. We
will come back to this remark in Exercise 1.1.5.

Theorem 1.1.1 If{c&l)}ad and {c&z)}ad are summable, then so is {uc&l) + bc&z)}ael for
fixed real numbers a and b, and

Z(acél) + bcé”) =aY V432,

ael ael ael

Proof We may assume that |a| + |b| > 0, and for convenience put ) =1,

aEI
D werta @) =1. Let € > 0 be given, there are A; and A, in F(I) such that
when B, B, are in F(I) with B; D A;, B, D A,, we have |Za631
W and |Za€Bz P -hL| < ||8W Choose now A = A; U A,, then for B € F(I)

with B D A, we have |Za€B(ac(l) + bc(z)) (aly + bh)| < |a|| X (1) L]+

Ca —lll <

aeB ©

[B]| X" pcp o @ _ L| < % + |a||ilrb| = &.This showsthat{ac(l) + bcg)}lssummable
and Zael(ac(l) + bc(z)) = aly + bl,. |

Theorem 1.1.2 Ifc, > 0Va € I, then {c,} is summable if and only if

{an:AeF(I)} (1.2)

a€A

is bounded.
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Proof That boundedness of (1.2) is necessary for {c,} to be summable is left as an
exercise. Now we show that boundedness of (1.2) is sufficient for {c, } to be sum-
mable. Let £ be the least upper bound of {}___, o : A € F(I)}; forany & > 0 there
is A € F(I) such that

acA
0<l-Ycy<e. (1.3)
a€eA

LetnowB € F(I) and B D A, then

a€B a€B a€A

an—ﬁ‘:E—anfﬁ—an<s. u

We note before moving on that if a subset S of IR is bounded from above, then the least
upper bound of S exists uniquely and is denoted by sup S; similarly, if S is bounded from
below, then the greatest lower bound exists uniquely and is denoted by inf S. If S = {s,, :
o € I}, then inf S and sup S are also expressed, respectively, by infyer sy and sup,,; sa.

Exercise 1.1.2 Show that boundedness of (1.2) is necessary for {c, } to be summable.

Because of Theorem 1.1.2, if {c, } is a system of nonnegative real numbers and is not
wel Ca = +00. Hence, > yer Ca always has a meaning if {c, }
is a system of nonnegative numbers.

summable, then we write > wel

Theorem 1.1.3 (Cauchy criterion) A system {c, } is summable if and only if for any & > 0
thereis A € F(I), such that | )", 5 ca| < € whenever B € F(I) and AN B = {.

Proof Sufficiency: Choose A € F(I) such that | )", co| < 1 for B € F(I), satisfying
AN B =, then obviously if B € F(I) with BN A = {,wehave ), ¢ < 1, where
¢! = ¢y or 0 according to whether ¢, > 0 or < 0. Now, for B € F(I), we have

2= 2 Gt 2 <D gt]

«a€B a€BNA aeB\A acA

ie, {d ,cpc, : B € F(I)}isbounded; hence by Theorem 1.1.2 {c},} is summable.
Similarly {c} is summable, where ¢, = —¢, or 0 according to whether ¢, < 0
or > 0.Now ¢, = ¢, - ¢, hence {c, } is summable by Theorem (1.1).
The necessary part is left for the reader to verify. [

Exercise 1.1.3 Suppose that {c, }4<s is summable and that J is a nonempty subset of I.
Show that (i) {cs }aes is summable, and (i) ),  ca = Zae] Cu + Zad\] Co-

Exercise 1.1.4 Show that {c, } is summable if and only if {| ¢, | } is summable; show also
that {c } is summable if and only if

{ze

a€A

tA€ P(I)}

is bounded.
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Exercise 1.1.5 Show that {c, }ocn is summable if and only if the series Y o ¢4 is
absolutely convergent. Show also that Za eN Ca = Zzl ¢y if {cq }aen is summable.

Exercise 1.1.6 Show that {c, }yc; is summable if and and only if (i) {o € I : ¢, # 0}
is finite or countable; and (ii) if {o € I : ¢, # 0} = {a}, a3, . ..} is infinite; then the
series ) o, Co, converges absolutely.

Exercise 1.1.7 Suppose thatforeachn = 1,2,3,. .., thereis A, € F(I), with the prop-
erty that for each A € F(I), there is a positive integer N such that A C A, for all
n > N. Show that if {c, }4cr is summable, then

e =lim Y ¢

acel =0 yeA,

Give an example to show that it is possible that lim, 0 ¢ exists and is finite,

but {c, } is not summable.

€A,

Example 1.1.1  Suppose that I =], I,, where I,’s are pairwise disjoint. Let

{ca}aer be summable, then )", ca = D on (Zadn ¢ ). By Exercise 1.1.4, we may
assume that ¢, > 0 for all & € . It follows from ), co =sup{) ,c ca : A€

E(D} that Y, c;ce < D ,en(D gy, C)- It remains to be seen that Y, ce >
2 nen (Qwer €o)- Letk € N and & > 0. For each n = 1,.. ., k, there is a finite set

A, C I, such that Zaaﬂ Coy < ZaeAn Co + % Then, if we put By = ULI A, we have
k k .

Zael Co = ZaeBk Ca = Zn:l(ZaeI,, Ca — ]%) = Zn:l(ZaeI,, Ca) —¢&; since € >0

is arbitrary, ), co = Zﬁ:l(zaeln ¢y) for each k € N. Now let k — o0 to

obtain ) |, ;e > >, on (D gep o) Observe from the proof that {} ., cabnen is
summable.

We shall recognize in Example 2.3.3 that summability considered in this section is the
integrability with respect to the counting measure on I.

1.2 Double series

Let I =N x N ={(i,j) :i,j = 1,2,...} and write ¢; for ¢(ij)- When the summability
of the system {c;} is in question, the system {c;} is referred to as a double series
and is denoted by ) _ ;. Hence the double series ) _ ¢; is summable if {c;} = {c(;;)} is
summable, and ) (ij)er Gij 18 called the sum of the double series | cj-

For a double sequence {a,, }, we say that lim,, ,—, oo @mn = £,ifforany & > O thereisa
positive integer N such that |a,,, — £| < & whenever m,n > N.

Theorem 1.2.1 If the double series ) c;j is summable, then

n m o0 00 o0 00
Z Cil‘ = hm ZZCU = ZZCU = ZZC’J

(ij)el mn=>00 =1 i=1 j=li=1 i=1j=1
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Proof We show first that Z(i]].)el cj = limy, 0o Z;I:I > oricj. Let £= Z(i,j)el i
Given ¢ > 0, thereis A € F(I) such that

Z c,-}-—ﬁ

(ij)eB

<é&

whenever B € F(I) and B D A. Let N = max{i Vj: (i,j) € A}, where i Vj is the
larger of i and j. For n,m > N, let B, = {(i,j) € I: 1 <i<m, 1 <j < n}, then
B, € F(I) and B,,, D A, hence

n m
Z Ci]‘—z = Z C,’j—ﬁ < €.
j=li=1 (i) €Byn
. . n m
This means that £ = lim,, ,— oo ijl i1 Cije

Since Z(il}.)el cj = Z(i,j)el ¢ - Z(i,j)el ¢ in the remaining part of the proof, we
may assume that ¢; > 0 forall (i,j) € I. Observe then that

n m
L= sup ) ) ¢
nm>1 j=1i=1
Hence,
n m n oo
£ > lim (ZZC,}) =)
m—00 \ j=1i=1 j=1i=1
for each n and consequently
o0 o0
£ > ZZCU
j=1i=1
On the other hand,

= s 35 < (355) - i (555

nm>1 j=1 i=1 n>1 \j=1 i=1 j=1i=1
o0 o0
=2 ¢
j=1i=1
We have shown that £ = Z}O:Ol Y ¢ similarly,

o0 00
= ZZC,} [ |

i=1j=1
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Example 1.2.1 If{a,},en and {b,},en are summable, then the double series Y a,b,,
is summable and Z(n,m)eNX]N ayb,, = (ZnEN aﬂ)(zmeN b,,). That ) a,b,, is sum-
mable follows from Exercise 1.1.4 and the observation that {Z(n’m)e 4 |a,,bm| A€
F(N x N)} is bounded from above by (D, x |au|) - (3_,.cn |bm|)- Then, by
Theorem 1.2.1, Z(n,m)ENX]N b = YN D omeN Fnbm = (ZnE]N an)(ZmelN b,).
Fork > 2in N, put Ay = {(n,m) € N x N : n + m = k}; then Z(n,m)E]NXN ayb,, =
> e (Z(n,m)eAk ) from Example 1.1.1. The system {Z(n‘m)eAk a,by s is called
the product of {a,} and {b,}; we have shown that the sum of the product is the
product of the sums.

The following exercise complements Theorem 1.2.1.

Exercise 1.2.1 Copy the proof of Theorem 1.2.1 to show that if ¢; > 0 for all i and j
in IN, then the conclusion of Theorem 1.2.1 still holds, evenif ) (ijyer Gij = 00 (recall
that for a system {c, } of nonnegative numbers, ) _, co = 00 means that {c, } is not
summable).

Remark Fori,jin N, let

1 ifi=j;
G =1-1 ifj=i+]1;

0  otherwise,

then ) ¢; is not summableand 0 = 335 375 ¢; # 207 25 ¢ = L.

1.3 Coin tossing

A pair of symbols H and T, associated, respectively, with nonnegative numbers p and
q such that p + g = 1 is called a Bernoulli trial and is denoted by B(p, q). A Bernoulli
trial B(p, q) is a mathematical model for the tossing of a coin, of which heads occur with
probability p and tails turn out with probability g; this explains the symbols H and T. In
particular, B(3, 1) models the tossing of a fair coin.

In this section, we consider the first step towards construction of a mathematical
model for a sequence of tossing of a fair coin. For convenience, we replace H and T by
1 and 0 in this order; then an infinite sequence w = (wy, @y, ..., ®y,...) of O’s and 1’s
represents a realization of a sequence of coin tossing. Let

Q={0,1}* := {w = (wi), w = 0or 1foreachk},
where we adopt the usual convention of expressing an infinite sequence (wy, . . ., @y, . . .)

by (wy) with the understanding that @y is the entry at the k-th position of the sequence. In
terminology of probability theory, elements in 2 are called sample points of a sequence
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of coin tossings and €2 is called the sample space of the sequence of tossings. Subsets of
2 will often be referred to as events. Now forn € IN, let

Q, ={0)1}n = {(81;-~-;8n) 18 € {0)1})j= 1;-~-;”};
and for (¢4, ...,&,) € Q,,, call the set
E<81,...,€n)={(1)=(a)k) (S] Q:C{)k=8k, k=1,...,n}

an elementary cylinder; but if n is to be emphasized, it is called an elementary cylinder
of rank n. A finite union of elementary cylinders is called a cylinder in €2. Since intersec-
tion of two elementary cylinders is either empty or an elementary cylinder, every cylinder
in €2 can be expressed as a disjoint union of elementary cylinders; in fact, if Z is a cylinder
in , thereisn € N and H C 2, such that

Z=|J{E(ey,...,&,) : (&1,...,€,) € H},

of which one notes that E(¢y, . . ., £,)’s are mutually disjoint. Of course, a cylinder Z can
be expressed as above in many ways. We denote by Q the family of all cylinders in €2.
Since 2 = E(0) UE(1), 2 € Q; @isalsoin O, because it is the union of an empty family
of elementary cylinders.

Exercise 1.3.1 Show that Q is an algebra of subsets of €2, in the sense that Q satisfies
the following conditions: (i) Q2 € Q; (ii) if Z € Q, then Z° = Q\Z is in O; and (iii)
ifZ,,Z, arein O, then Z, U Z, isin Q.

For an event Z in Q, we define its probability P(Z) as follows. First, for an element-
ary cylinder C = E(ey, ..., ¢,), define P(C) = (%)”; intuitively, this definition of P(C)
means that we consider the modeling of a sequence of independent tossing of a fair coin.
NowifZ € Q is given by

Z= U{E(81)'~~;8n) : (81,...,8,,) € H}r
where H C 2, then define

P(Z) = Z P(E(Ell s -rEn)) =#H - 27”r
(&1,0.08n)EH

where #H is the number of elements in H. We claim that P(Z) is well defined. Actually if
Zis also given by

Z=\{E(er,...,em): (e1,...,6m) € H},
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where H' C €,,, then (assuming m > n) H ={(e1,...,&,) € QL : (€1,...,8,) €
H} and therefore #H' = #H - 2™"; consequently

> P(E(ey,...,&m)) =#H - 27" =#H-2"" . 2"
(&1)-Em)EH’
=#H-2" = Z P(E(81;~--;8n)))

(&1)-s8n)EH

implying that the definition of P(Z) is independent of how Z is expressed as a finite dis-
joint union of elementary cylinders of a given rank. We complete the definition of P by
letting P() = 0. Note that P(2) = 1.

Exercise 1.3.2

(i) Show that P is additive on Q, i.e. P(Z; U Z,) = P(Z,) + P(Z,) if Z,, Z, are
disjoint elements of Q.

(i) Fork € Nande € {0,1}, put E* = {w € Q : w; = &}. Show that

n
k _
P(EE N NEf) =[] PES) =27
j=1
for any finite sequence k; < k < --- < k, inN.

From now onwe write dj(w) = w;,j = 1,2,...,ifw = (w1, ®,, . ..) € Q;and foreach
n define a function S, on 2 by

S,() = édj(w).

Exercise 1.3.3 Show that, for each k=0,1,2,...,n, the set {S, =k} :={w € Q:
S,(w) = k}isin Q and

1

pis, 1= (}) 50

where (Z) = #lk)'

For a given realization w of a sequence of independent coin tossing, S, (®) is the num-

ber of heads that appear in the first n tosses and @ measures the relative frequency of
appearance of heads in the first n tosses. Let

E:{a)eQ: lim Su() =l}i

n— 00 n 2

E is easily seen to be not in Q. Nevertheless, we expect that P can be extended to be
defined on a larger family of sets than Q in such a way that P(A) can be interpreted as



Metric spaces and normed vector spaces | 9

the probability of event A, and such that P(E) is defined with value 1. We expect P(E) =
1, because this is what a fair coin is accounted for intuitively. Discussion of the subject
matter of this section will be continued in Example 1.7.1, Example 2.1.1, Example 3.4.6,
and Example 7.5.2; and eventually we shall answer positively to this expectation in the
paragraph following Corollary 7.5.3.

1.4 Metric spaces and normed vector spaces

The usefulness of the concept of continuity has already surfaced in elementary analysis of
functions defined on an interval. This section considers a structure on a set which allows
one to speak of “nearness” for elements in the set, so that a concept of continuity can
be defined for functions defined on the set, parallel to that for functions defined on an
interval of the real line. We shall not treat the most general situation; instead, we consider
the situation where an abstract concept of distance can be defined between elements of
the set, because this situation abounds sufficiently for our purposes later. When the set
considered is a vector space, it is natural to consider the case where the distance defined
and the linear structure of the set mingle well, as in the case of a real line or Euclidean
plane. This leads to the concept of normed vector spaces.

Let M be a nonempty set and let p : M X M — [0,+00) satisfy (i) p(x,y) =
p(y,x) > 0forallx,y € Mand p(x,y) = 0ifand only if x = y; (ii) p(x,2) < p(x,y) +
p(y,2) forall x, y, and z in M. Such a p is then called a metric on M, and (M, p) is called
ametric space. Usually we say that M is a metric space with metric p, or simply that M is
a metric space when a certain metric p is explicitly or implicitly implied. For a nonempty
subset S of M the restriction of p to S X S is a metric on S which will also be denoted
by p. The metric space (S, p) is called a subspace of (M, p) and p is called the metric
on § inherited from M. Unless stated otherwise, if S is a subset of a metric space M, S is
equipped with the metric inherited from M. For a nonempty subset A of M, the diameter
of A, denoted diam A, is defined by

diam A := sup p(x,y);
xyEA

while diam A = 0if A = (.

A subset A of M is said to be bounded if diam A < 00. In other words, A is bounded
if {p(x, x0) : x € A} is a bounded set in IR for every xy € M.

Elements of a metric space are often called points of the space.

Example 1.4.1 Let M =R" and for x,y € R" let p(x,y) = |x - y|, where || =
(Z?zlxiz)% ifx=(xy,...,x,) € R" To show that p is a metric on IR” we first estab-
lish the well-known Schwarz inequality: |x - y| < |x||y| if x,y € R", where, for x =
(%1, .,x,) andy = (y1,...,y,) in R", x -y := > x;y; is called the inner product
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of x and y. For this purpose we note first that for x € R", |x|* = x - x and that we may
assume that x # 0 and y # 0, hence |x| > Oand |y| > 0.Fort € IR, we have

0<|x+ 1.‘y|2 =(x+ty) - (x+ty) = |x|2 +2t(x - y) + t2|y|2
2
= (lal + ely)” + 260 - y = |l lyl),

from which by taking t = —|x|/|y| we obtain x-y < |x||y|. Then |x-y| < |*||y|
follows, because —(x - y) < |x|| - y| = |x||y| Now for x,y, and zin R”, we have

o(x,2)* = |x—z|2 = |x—y+y—z|2 = |x—y|2+2(x—y) (y-z)+ |y—z|2
2
< o=y +2lx-ylly 2| + |y -2 = (Jx - y] + [y - 2])
= [p(x))’) +10()’1Z)]2;
ie.
p(x,2) < p(x,y) + p(y,2).

Hence R” is a metric space with metric p defined above. This metric is called the
Euclidean metric on IR". Unless stated otherwise, R" is considered as a metric space
with this metric, then IR" is called the n-dimensional Euclidean space.

Similarly, C" is a metric space, with the metric p defined by p(¢, 1) = (27:1 | -
77}~|2)1/2 for¢ = (¢1,...,8,)and n = (ny, ..., n,) in C". C" with this metric is called
the n-dimensional unitary space. This follows, as in the case of the Euclidean metric
for R", from the Schwarz inequality |¢ - n| < |¢||n| for £, n in C", where ¢ - =
Z;':l gnjand [¢| = (Z;‘:l |C,'|2)%.As before, ift € IR, we have

0<|¢+tn|*=(C+tn)- (¢ +tn) =|¢|* +2tRes - n+£|n|*
= ([¢] +tn])* + 2t{Re ¢ - - [¢]||n]},

from which we infer that Re £ - 7 < |¢||n| by choosing t = -|¢||n|™ if n # 0. Then,
|¢ - 1| < |¢]||n| follows from replacing ¢ by e?eife o= ¢ - n|ei8. Note that for
a complex number «, & denotes the conjugate of o, while Re v denotes the real
part of or.

Example 1.4.2 For a closed finite interval [, b] in R, let C[a, b] denote the space of
all real-valued continuous functions defined on [a, b]. For f, g € C[a, b],let p(f,g) =
max,<;<p | f(t) - g(t)]. It is easily verified that C[a, b] is a metric space with metric
p so defined. Unless stated otherwise, C[a, b] is equipped with this metric, which
is often referred to as the uniform metric on C[a, b]. C[a, b] is also used to denote
the space of all complex-valued continuous functions on [a, b] with metric defined
similarly. When C[a, b] denotes the latter space, it shall be explicitly indicated.

Exercise 1.4.1 Show that R" is also a metric space, with metric p defined by p(x,y) =
max; <<, [ — yi| if & = (x1,...,%,) andy = (y1, ..., yu).

A map from NN, the set of all positive integers, to a set M is called a sequence in M
or a sequence of elements of M. Such a sequence will be denoted by {x,}, where x,
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is the image of the positive integer n under the mapping. If {x,} is a sequence in M,
then {x,, } is called a subsequence of {x,} ifn; < ny < --- < n < --- isasubsequence
of {n}. A sequence {x,} in a metric space M is said to converge to x € M if forany & > 0
there is ny € N such that p(x,,x) < & whenever n > ny. Since x is uniquely determ-
ined, x is called the limit of {x,} and is denoted by lim, . x,. That x = lim,_, o %,
is often expressed by x, — x. If lim,_,  x, exists, then we say that {x,} converges in
M and {«,} is referred to as a convergent sequence. A sequence {x,} in M is usually
expressed by {x,} C M by abuse of notation, and therefore {x,} also denotes the range
of the sequence {x, }. A sequence in M is said to be bounded if its range is bounded.

Example 1.4.3 {f,} C C[a, b] converges if and only if f,,(x) converges uniformly for
x € [a,b].

A sequence {x,} C M is called a Cauchy sequence if for any & > 0, there isng € N
such that p(x,, x,,) < & whenever n, m > ny. Clearly, a Cauchy sequence is bounded.

Exercise 1.4.2 Show that if {x,} C M converges, then {x, } is a Cauchy sequence.

Exercise 1.4.3 Let {x,} be a Cauchy sequence. Show that if {x,} has a convergent
subsequence, then {x, } converges.

A metric space M is called complete if every Cauchy sequence in M converges in M.
Exercise 1.4.4 Show that both R" and C[4, b] are complete.

Exercise 1.4.5 Ifinstead of the uniform metric we equip C[a, b] with a new metric o/,
defined by

b
P(F,g) = / LF(6) - g(O]de

forf,gin C[a, b], show that C[ 4, b] is not complete when considered as a metric space
with metric o’

Exercise 1.4.6 Show that any nonempty set M can be considered as a complete metric
space by defining o(x,y) = 0 or 1 depending onx = y or x # . Such a metric p is said
to be discrete.

Let M;, M, be metric spaces with metrics p; and p, respectively. Amap T : M; —
M, is said to be continuous at x € M, if for any & > 0, there is § > 0 such that
p2(T(x), T(y)) < & whenever p;(x,y) < 8.If Tis continuous at every point of M;, then
T is said to be continuous on M; and is called a continuous map from M, into M,. A con-
tinuous map from a metric space M into R or C is called a continuous function on M
and is generically denoted by f. The space of all continuous real(complex)-valued func-
tions on a metric space M is denoted by C(M); C(M) is a real- or complex vector space
depending on whether the functions in question are real- or complex-valued.

A point x of a set A in a metric space is called an interior point of A if thereis & > 0

such thaty € A whenever p(x,y) < ¢; the set of all interior points of A is denoted by A.

o
A set G in ametric space M is said to be openif G = G. The complement of an open set is
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called a closed set. Forx € Mandr > 0,letB,(x) = {y € M : p(y,x) < r}and C,(x) =
{y e M : p(y,x) < r}.Itis easily verified that B,(x) is an open set and C,(x) is a closed
set. B,(x) (C,(x)) is usually referred to as the open (closed) ball centered at x and with
radius r. A point x € M is said to be isolated if B,(x) = {x} forsomer > 0.AsetN C M
is called a neighborhood of x € M if N contains an open set which contains x; similarly, if
N contains an open set which contains a set A, then N is called a neighborhood of A. It is
clear that a sequence {x,} in M converges to x € M if and only if, for any neighborhood
N of x, there is ng € IN such that x, € N whenever n > ny. One notes that if x; is an
isolated point of M, then any map T from M into any metric space is continuous at xj.

Note that open sets depend on the metric p, and when p is to be emphasized, an open
set in a metric space with metric p is more precisely said to be open w.r.t. p.

Exercise 1.4.7 Let M;, M, be metric spacesandlet T : M; — M,.

(i) Show that T is continuous at x € M if and only if, for any sequence {x,} C

M; with lim,_, o %, = %, it holds that lim,_, o, T(x,) = T(x) in M,; also show

that T is continuous at x € M; if and only if, for every sequence {x,} C M,

with lim,_, o0 %, = , it holds that {x,} has a subsequence {x, } such that
limy, oo T(xy,) = T(x).

(ii) Show that T is continuous at x € M; if and only if, for any neighborhood N of

T(x) in M, theset T'N = {y € M, : T(y) € N}isaneighborhood of xin M;.

(iti) Show that T is continuous on M, if and only if for any open set G, C M, T™'G,
is an open subset of M;.

Exercise 1.4.8 Let7 be the family of all open subsets of a metric space M. Show that:

(i) PandMarein 7;
(i) ABeT = ANBeT;
(iii) if{Ai}ier C 7, then |

cfAi € T,where Iis any index set.

Suppose that (M, p1) and (M,, p,) are metric spaces. Let M; X M, := {(x,y) : x €
M,y € M, } be the Cartesian product of M; and M,; define a metric p on M; X M, by

p((x, ), (,¥)) = pr(x, &) + p2(3,)

for (x,y) and («/,y') in M; X M,. It is easily verified that p is actually a metric on
M; x M,. With this metric p, M; X M, is called the product space of M; and M, as
metric space.

Exercise 1.4.9 Let M; X M, be the product space of metric spaces M; and M,.
(i) For A C M; and B C M,, show that A x B is open in M; x M, if and only if
both A and B are open in M; and M, respectively.

(ii) Let G be an open set in M; X M,; show that G; := {x € M; : (x,y) € G for
some y in My} and G, := {y € M, : (x,y) € G for some «x in M, } are open in
M, and M, respectively.
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Let K = R or € and let E be a vector space over K. Elements of IK are called scal-
ars. Suppose that for each x € E, there is a nonnegative number ||x|| associated with it
so that:

(i) |l=|l = 0ifand only if x is the zero element of E;
(ii) [lax|| = |er]llx]| forallar € KK and x € E;
(iii) |l +yll < llxl|l + |ly|l for all %, y in E (triangle inequality).

Then E is called a normed vector space (abbreviated as n.v.s.) withnorm || - ||, and || - ||
is called a norm on E.
IfEisan.v.s., forx, yinE, let

p(xy) = llx-yl,
then p is a metric on E and is called the metric associated with norm || - ||. Unless stated
otherwise, we always consider this metric for a n.v.s.. The n.v.s. E with norm || - || is

denoted by (E, || - ||) if the norm || - || is to be emphasized.

Lemma 1.4.1 Suppose that E is a n.v.s. and x, — x in E, then ||x|| = lim,_, o [|%,]]. In
other words, || - || is a continuous function on E.

Proof The lemma follows from the following sequence of triangle inequalities:

ot ll = lloen = ll < Nlll < floenll + [l — ]I [}

A normed vector space is called a Banach space if it is a complete metric space.

Both R” and C[a, b] are Banach spaces, with norms given respectively by |lx| =
(Xr,«2)7 for x=(x1,...,%,) € R" and ||f]| = max,<i<p | f(t)] for f € C[a,b].
Similarly, the unitary space C" is a Banach space with norm ||z|| = (Z7=1 |z}-|2)% for
z=(zy,...,2,) in C". The norms defined above for R” and C" are called respectively
the Euclidean norm and the unitary norm and are denoted by | - | in both cases, in
accordance with the notations introduced in Example 1.4.1; note that their associated
metrics are the metrics introduced for R" and C" in Example 1.4.1. The norm defined for
Cla, b] is called the uniform norm; its associated metric is the uniform metric defined in
Example 1.4.2.

A class of well-known Banach spaces, the IV spaces, will be introduced in §1.6. This
class of Banach spaces anticipates the important and more general class of L¥ spaces
treated in Section 2.7 and in Chapter 6.

In the remaining part of this section, linear maps from a normed vector space E into
a normed vector space F over the same field R or C are considered. Recall that a map
T from a vector space E into a vector space F over the same field is said to be linear if
T(ax + By) = aT(x) + BT(y), forallx, y in E and all scalars &, 8. Linear maps are more
often called linear transformations or linear operators.
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Exercise 1.4.10 Suppose that T is a linear transformation from E into F. Show that T
is continuous on E if and only if it is continuous at one point.

Theorem 1.4.1 Let T be a linear transformation from E into F, then T is continuous if and
only if there is C > 0 such that

I Txll < Clixll

forallx € E.

Proof If there is C > 0 such that || Tx|| < C||x|| holds for all x € E, then T is obviously
continuous at x = 0 and hence by Exercise 1.4.10 is continuous on E.
Conversely, suppose that T is continuous on E, and is hence continuous at x = 0.
There is then § > 0 such that if ||x|| < §, then || Tx|| < 1.Letnowx € Eand x # 0,
then ” H'ST”x” =4, s0 ”T(ix) H < 1. Thus | Tx|| < 51||x||. If we choose C = ¢, then

1
Nl s
| Tx|| < C||x|| forallx € E. |

From this theorem it follows that if T is a continuous linear transformation from E into
F, then

| Tx||
T := sup < +00
x€E, x#0 ”x”

and is the smallest C for which ||Tx|| < C||x|| for all x € E. ||T|| is called the norm
of T. Of course, || T|| can be defined for any linear transformation T from E into F; then
[ITx|| < |IT||||x]| holds always and T is continuous if and only if | T|| < +00. Hence a
continuous linear transformation is also called a bounded linear transformation.

Exercise 1.4.11 Show that || T|| = SUP, e |x=1 | Tx||.

Exercise 1.4.12 Let L(E, F) be the space of all bounded linear transformations from
E into F. Show that it is a normed vector space with norm ||T|| for T € L(E, F) as
previously defined.

Remark Any linear map T from a Euclidean space R” into a Euclidean space R™ is
continuous. This follows from the representation of T by a matrix (ay),1 <j < m,1 <
k < n,of real entries, in the sense thatify = Tx, theny; = Y /| ayxi,j = 1,...,m, where
x=(x1,...,x,)andy = (y1,...,¥m), by observing that

2 _ m n 2 < m n )
DI =2 e | <\ 2 a | Il
j=1 \k=1 =1 k=1

Theorem 1.4.2 IfF is a Banach space, then L(E, F) is a Banach space.



Metric spaces and normed vector spaces | 15

Proof Let{T,}be a Cauchy sequence in L(E, F). Since
[ Tuxt = Tyl = (T = Tp)xll < I Ty = Tl - [l2¢]l,

{T,«} is a Cauchy sequence in F for each x € E. Since F is complete, lim,,_, o, Tpx
exists. Put T = lim,_, oo Tyx. T is obviously a linear transformation from E into F.

We claim now T € L(E, F). Since {T,} is Cauchy, || T, || < C forsome C > 0, and
for all n. Now, from Lemma 1.4.1,

Il = lim Tyl < (sup 1Tl ) ] < Cla
n

for each x € E. Hence T is a bounded linear transformation.
We show next, lim,, o || T, — T|| = 0. Given & > 0, there is ny such that || T, -
Tl < eifn,m > ng. Letn > ngy, we have

[Ty =Tl = sup [ Tux~ Tx]|

x€E,||x||=1

= sup lim ||T,x - T,x||

x€E,||x||=1 "

< sop (sup 1Ty~ Tl ) sl

x€E,||x||=1 “m>ng

< sup el = e
x€E,||x[|=1

this shows that lim, o || T, - T|| = 0, or lim,,—, o T, = T. Thus the sequence {T,}
has alimit in L(E, F). Therefore L(E, F) is complete. |

L(E, C), or L(E,R), depending on whether E is a complex or a real vector space, is
called the topological dual of E and is denoted by E*; E* is a Banach space. Elements of
E* are called bounded linear functionals on E.

When E = F, L(E, F) is usually abbreviated to L(E). For S, Tin L(E), S o T is in L(E)
and [|[So T|| < ||S|| - IT|, as follows directly from definitions. Usually, we shall denote
S o TbyST;thenforS, T,and Uin L(E), (ST)U = S(TU), and we may therefore denote
TT by T2, (TT)T by T3, ... etc. for T € L(E) free of misinterpretation. Note that
| T*|| < | T||* for T € L(E) and k € N. For convenience, we put T° = 1, the identity
map on E.

Exercise 1.4.13 Let S be a nonempty set and consider the vector space B(S) of all
bounded real(complex)-valued functions on S. Addition and multiplication by scalar
in B(S) are usual for functions. For f € B(S),let || f|| = sup,.¢ | f(s)]-

(i) Show that (B(S), || - ||) is a Banach space.

(ii) Fora € B(S), define A : B(S) — B(S) by (Af)(s) = a(s)f(s), s € S. Show that
A is abounded linear transformation from B(S) into itself and that ||A| = ||a]|.
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Exercise 1.4.14 Consider C[0, 1] and let g € C[0, 1]. Define a linear functional £ on
C[0,1] by

60 = [ s

Show that £ € C[0,1]* and | €] = ;' |g(x)|dx.

Exercise 1.4.15 Let g be a continuous function on [0,1] x [0,1] and for f €
C[0, 1], let the function Tf be defined by Tf(x) = fol g(x,7)f(y)dy. Show that T €

L(C[0,1]) and || T|| = maxye[o,1] fol |g(x,y)|dy.

We now consider a series of elements in a n.v.s. E. A symbol of the form Y -, x; with
each x; in E is called a series. For eachn € IN, Zzzl xy. is called the n-th partial sum of
the series ZZSI xy. If it happens that lim,_, 22:1 Xy exists in E, say x, then the series
> o, % is said to be convergent in E and « is called the sum of the series, Y .-, x%, sym-
bolically expressed by x = Y_° xy, i.e. when Y _,-, x; converges, we attach a meaning to
the symbol ).~ xi. by referring to it as lim, o Y ;_, #, or the sum of the series.

Theorem 1.4.3 Let {x;} be a sequence in a Banach space E such that ) .-, [lxl < 00.
Then -, xi converges in E.

Proof Forn € N,lety, = ZZIl x. Then form > nin N,

m
< X lull—o0

k=n+1

m
D X

k=n+1

”ym —yn” =

as n — 00. This means that {y,} is a Cauchy sequence in E, but the fact that E is
complete implies that {y, } converges in E, i.e. lim, oo Y _,_, ¢ exists in E. [ |

Exercise 1.4.16 Suppose that ) -, x; is a convergent series in a n.v.s. E. Show that

o0 o0
ol < D [kl
k=1 k=1

Exercise 1.4.17 Suppose that Z,fil oy is a convergent series in R.

(i) Ifxisanelementofan.vs.E, showthat ) .-, apx convergesin E.

(ii) If {xt} is 2 bounded sequence in a Banach space E and )y -, o is absolutely
convergent, show that Y -, ;. converges in E.

The following example, which complements Theorem 1.4.3, illustrates a method to
extract a convergent subsequence from a given sequence.

Example 1.4.4 If a series Ziil X, in a n.v.s. E converges whenever Zil |, ]| < o0,
then E is a Banach space. To show this, let {y,} be a Cauchy sequence in E. Since
{yn} is Cauchy, there is an increasing sequence n; < my < --- <m < --- in N
such that [|y,,,, — yull < kiz for each k. Then > °) [y, — ¥m |l < 00 and hence
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Y o1 gy = ym) converges, which is equivalent to {y,, } being a convergent sequence.
We have shown that {y,} has a convergent subsequence; thus {y,} converges by
Exercise 1.4.3 and E is therefore complete.

Remark We conclude this section with a remark on norms on a vector space E. Suppose
that || - |"and || - ||” are different norms on a vector space E, in general, || - |"and || - ||”
will generate different families of open sets; but a moment’s reflection convinces us that
|| - |I"and || - ||”generate the same family of open sets if and only if there is ¢ > 0 such that

1
cllxll” < llxll” < zllxll”

for all x in E (in this case || - ||" and || - || are said to be equivalent). We shall see in

Proposition 1.7.2 that all norms on a finite-dimensional vector space are equivalent.

1.5 Semi-continuities

For real-valued functions, the fact that the real field R is ordered plays an important role
in the analysis of functions. In particular, for real-valued functions defined on a metric
space, lower semi-continuity and upper semi-continuity are useful concepts that owe
their existence to IR being ordered. Semi-continuities are our concern in this section.
For a subset S of IR we shall adopt the convention that inf S = co and sup § = 00 if S is
empty; and that inf S = —00 if § is not bounded from below, while sup S = 00 if S is not
bounded from above.

Forasequencex,,n =1,2,..., of real numbers, let
liminfx, = lim ( inf xk), (1.4)
n—00 n—>00 \ k>n
limsup x, = lim ( sup xk). (1.5)
S n—>00 \ ;o

Notice that infy-, x; is increasing and sup,. , x; is decreasing as n increases, hence
both limits on the right-hand sides of (1.4) and (1.5) exist, although they may not be
finite. Thus lim inf,,_, o x, and lim sup,_,  x, always exist, and are called respectively the
inferior limit and the superior limit of {x, }. Clearly, lim inf,, o, x, < lim sup,,_, o X

Exercise 1.5.1

(i) Show that lim,_, o , exists if and only if lim inf,_, o x, = lim sup,_, o %, and
lim,,_, o %, is the common value lim inf, _,  x, = limsup,_,  , if it exists.

(ii) Show that liminf,_, o (%, + y,) > liminf,_, & %, + lim inf,_, & y, (lim Sup,_, o
(% +yu) < limsup, ,  x,+limsup,  y,), if liminf,_ o x, +liminf,_,
yn (limsup, , . x, +limsup, . y,) is meaningful. Note that o + f is mean-
ingful if at least one of o and B is finite, or if both o and B are either 0o or —00.
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(ili) Show that liminf, o (%, + y,) < liminf,_, o x, + limsup, , _ y, if the right-
hand side is meaningful and that limsup,_, . (%, +y,) > liminf,, o x, +
limsup,_, . y, if the right-hand side is meaningful.

A real-valued function f defined on a metric space M with metric p is said to be
lower semi-continuous (upper semi-continuous) at x € M if, for every sequence {x,}
in M with x = lim,— 00 %, f(x) < liminf,— o0 f(x,) (f(x) > limsup, . . f(x,)) holds.
Lower semi-continuity and upper semi-continuity will often be abbreviated as Ls.c. and
u.s.c. respectively. It is clear that a function f is Ls.c. (u.s.c.) at x if and only if for any given

& > Othereis§ > Osuchthatf(y) > f(x) - ¢ (f(y) < f(x) + &) if p(y,x) < 6.
Exercise 1.5.2

(i) Show thatf is lower semi-continuous (upper semi-continuous) at x if and only if

f(x)=lim[ inf f<y>} (f(@:;i\né[ sup f(y)]);

SN0 yeEM, ,D(x,y)<5 yeM, /)(x,y)<8

(ii) show that f is continuous at x if and only if f is both lower semi-continuous and
upper semi-continuous at x.

Because of the assertions of Exercise 1.5.2, if x is not an isolated point of M, we define
liminf,_, . f(y) and lim supy%xf(y) by

1i;n_>i;1ff (y) = lim [ inf  f( y):|;

INO [ yeM, 0<p(xy)<d

limsupf(y)=§{rg)L sup f(y)}

= €M, 0<p(xy)<3

since infyepr, 0.<p(xy) <5 f(») increases as § decreases and SUP,cpy 0<p(x,y)<5f(y) decreases
as 8 decreases, both liminf,_, , f(y) and lim supy_)xf(y) exist, although they may not be
finite. If lim inf,, f(y) = limsup,_, . f()), the common value is called the limit of f (y)
asy — «x and is denoted by lim,_, . f(y). Usually, lim,_, . f() is simply called the limit
of the function f at x. Note that lim inf,_,  f(y) and lim Sup,_,, f(y) are defined if f is
defined on a neighborhood of x with x excluded. If x is an isolated point of M and f is
defined at &, then liminf,, , f(y) = lim supy_)xf(y) = limy_,,. f(y) = f(x) by definition.

Exercise 1.5.3

(i) Show thatliminf,..f(y) <limsup,_, f(y)andthatf is continuousat x if and
only iflim,_, . f(y) = f(x).

(i) Show that f is Ls.c. (ws.c.) at x if and only if f(x) < liminf,,,f(y) (f(x) >
lim sup, . £(7)).
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If f is lower semi-continuous (upper semi-continuous) at every point of M, then f is
said to be lower semi-continuous (upper semi-continuous) on M.

Exercise 1.5.4 Show that f is lower semi-continuous (upper semi-continuous) on M if
andonlyif{x € M : f(x) > o} ({x € M : f(x) < a}) is open for every o € R.

Exercise 1.5.5 Let f,, o € I, be a family of real-valued continuous functions defined
on M and assume that sup,, ., fo (x) (infye; fo (x)) is finite for each x € M; show that
Sup,r fo (x) (infyer f (x)) is lower (upper) semi-continuous on M.

Exercise 1.5.6 Suppose that f is a real-valued function defined on a metric space and
assume that f is bounded from below on M, i.e. there is ¢ € IR such that f(z) > ¢ for
allz € M. For each k € N is defined a function f; on M by

filw) = nf{f(2) + ko 2)}, xeM.

(i) Show that fi(x) is finite for all x € M and

|fe(x) - f(»)] < kp(x,y)

forall x, y in M.
(ii) Suppose that f is Ls.c. on M. Show that

fG) = Jim fi(2), x € M.

(iii) Show that f is Ls.c. on M if and only if there is an increasing sequence { fi} of
continuous functions on M such that

f(x) = lim fi(x)
forallx € M.

Exercise 1.5.7 A metric space M is called a compact space if every sequence in M
has a subsequence which converges in M. Show that if f is lower semi-continuous
(upper semi-continuous) on a compact metric space M, then f assumes its minimum
(maximum) on M. (Hint: There is a sequence {x,} in M such that lim,, o f(x,) =

infeem f(x))

1.6 The space (P(7Z)

The Banach spaces considered in this section are included in the more general class of LF
spaces, to be introduced in Section 2.7; but it is expedient to give a separate and direct
treatment here without recourse to general theory of measure and integration.

Let Z be the set of all integers and consider the space L of all real-valued functions
defined on Z. With the usual definition of addition of functions and multiplication of a
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function by a scalar, L is a real vector space. For f € L and j € 7Z, if we denote f(j) by f,

then f can be identified with the two-way sequence (f;)jcz of real numbers and L is the
space of all sequences (a;) ez of real numbers. Forf € Land 1 < p < 00, let

(Sl OP) ifp < o0

sup,y, [f()]  if p=o0.

Iy =

Now consider the space £/ (Z), 1 < p < 00, defined by

(Z) ={f € L:|Ifll, < oo}

Presently we shall prove that £# (7Z) is a vector space and || - ||, isanorm on £# (%), but for
this purpose we first show an inequality which is a generalization of the Schwarz inequal-
ity and is called Holder’s inequality. Two extended real numbers p,q > 1 are called
conjugate exponents if I'% + é =1 (é = 0; for further arithmetic conventions regarding
00 and 00, see the first paragraph of Section 2.2), while two nonnegative numbers «
and B will be called a convex pairifa + 8 = 1.

Lemma1.6.1 If o and B is a convex pair, then for any 0 < {,n < oo the following
inequality holds:
0’ < ag + Bn. (16)

Proof We may assume that0 < o, 8 < land ¢, n > 0.
Since (1 + x)% < ax + 1, for x > 0, we have

Y <ay+pB, y=> 1L (1.7)

Now either {nt > 1 or ¢l > 1; if ¢n' > 1, take y = ¢! in (1.7), while
if ¢7'n > 1, take y=¢"'n in (1.7) with @ and B interchanged, then proceed
to (1.6). [ ]

Lemma 1.6.2 (Holder’s inequality) Ifx = (xy,...,x,) andy = (y1, .. .,y,) arein R",
then for conjugate exponents p and q we have

n

Yolxy| < lxllpliyllg

=1

Remark Since an element x of R" can be identified with an element f of L by (1) =
x1,...,f(n) = x,,and f(j) = 0 for otherj, |||, is defined.

Proof of Lemma 1.6.2 Itis clear that if one of p and q is 00, the lemma is trivial, hence
we suppose that 1 < p,q < 00. Since ||x|, = 0 if and only if x = 0, we may assume
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p q
that [|x||, > Oand |ly|l, > 0.For1 <j < n, choose { = ( ! ) andn = (M) in
q

llll,

Lemma 1.6.1. with o = 117 and B = é, then

|l ! |xi|1; . }|J’;_‘|z,
lllpliylly = 2 llxlly g llyllg
and consequently
n 1 1
2Lyl < llxllpllylig| =+ = ) = lxllpllyllg- n
j=1 r q

Exercise 1.6.1 Suppose that o > 0and B > 0is a convex pair. Show that

tn’ =at +Bn, £ =0,1>0
ifand onlyif ¢ = 7.

We are now in a position to prove that £#(Z) is a vector space and || - ||, is a norm on
€¢(Z). That || f||, = 0ifand only if f = 0 and that Af € £7(Z) and [|Af|l, = |A|lI ]I, for
A € Randf € ¢(7Z) are obvious. It only remains to show that || f + gll, < [|fIl, + lIgll,
for f, g in £ (7). For this purpose, we may assume that 1 < p < oo and ||f +gll, > 0.
Under this assumption, there is A € F(Z) such that 3 ., | f(j) + g(j)|F > 0. For such
A, we have

0 < XIf(G) + &M = XIFG) +gDE (LFD] + g(DI)s
jeA jeA

from which, by using Hélder’s inequality (see Lemma 1.6.2.), we have

0 < 211G +g(I

jeA

S (,ZAl £G) + g(j)l(p_l)q)é {(}_6A|f<j)|p)}i ¥ (}_glg(j)l");}

< (S0 +50F ) 111, + ),
JEA

and thus, on dividing the last sequence of inequalities by (Z}.GA |£(G) +g(j)|p)$, we
obtain

1

(gf(j) +g<f>|P)" < 1£, + Nl 19
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Now observe that (1.8) holds for any A € F(Z). Taking the supremum on the left-hand
side of (1.8) over A € F(Z), we see that || f + gll, < [Ifll, + llgll,- Therefore, ¢/ (7Z) is a
vector space and || - ||, is a norm on £P(Z.). We shall always refer to £/ (7Z) as a normed
vector space with this norm.

Exercise 1.6.2 Letk; < :-- < k, be afinite sequence in Z of length n; define amap T
from £# (7) to the n-dimensional Euclidean R" by

T(f) = (f(kl)l cee rf(kn)): f € EP(Z)

Show that T is continuous from ¢?(Z) onto IR" and that the image under T of any
open set in £7(7Z) is an open set in R".

i -1
Exercise 1.6.3 Suppose 1 < p < 00; show that |a; + - - - + a,|f < nP Z;Ll |a;|? for
ai,...,a,inR.

Exercise 1.6.4 Let fi,f2,...,fs ... be a Cauchy sequence in ¢/(Z); show that
lim,,—, o0 f4(j) exists and is finite for everyj € Z.

Exercise 1.6.5 Show that £°°(7Z) is a Banach space.
Theorem 1.6.1 €#(Z) is a Banach space for 1 < p < 00.

Proof The case p = 00 is relatively easy and is left as an exercise (see Exercise 1.6.5).
Consider now the case 1 < p < 00. Let f1,f,,...,fu, . .. be a Cauchy sequence in
£P(Z), then lim,_, » f,(j) exists and is finite for each j € Z (see Exercise 1.6.4), say
() = lim,— o f,(j). We show first that f € ¢P(Z). Since fy,f3, - - -, fu, - - - is a Cauchy
sequence, it is necessarily bounded. Let || f, ||, < Mforalln. Thereisny € N such that

”fn _fm”p <1, n,m = no.
Now fixm > ng andlet A € F(7Z), then
DG = lim > |LG = lim 3| fiG) = fn() +fu (DI
jeA jeA jeA
< limsup 3 {] () = fu (D] + | fu DI}

n—>00 jEA

from which, by Exercise 1.6.3, we have
SIFF < tmsop 2 { D146 LG + DIAOF
JEA n—>00 JEA jeA

<o { lim sup |, ~full2 + ||fm||§}

n—0o0

< 27°Y1+ MF}.
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Thus,

Z|f(])|p = sup Y |fG)F <21+ M) < oo,

A€F(Z) jEA

which shows f € ¢/(Z). We now claim lim,, o f, =f in £7(Z). Actually, given
& > 0,thereis N € IN such that

I fu = full, < & mym=N.

Now, forn > Nand A € F(Z),

Zlf(]) _fn(j)|p = mlgnw Z'fm(]) _fn(j)lp
jEA jEA

< limi _f|IF < gP
=< liminf||fp, - full, = &,
which implies

If =fullp = sup > 1fG) -fGIF < &,

A€F(Z) jeA

or

If =fullp <& n=N.
In other words, lim,,, o f, = f in € (Z). This shows that £7(7Z) is complete and hence
is a Banach space. u
Exercise 1.6.6 Letf, gbein ¢'(Z).

(i) Show that {f(n —m)g(m)}(,mezxz is summable and
> fln-m)g(m) =3 3 f(n—m)g(m).

(n,m)eZ X7 neZ meZ
(ii) Define fxg(n) =Y, ,f(n-m)g(m), n € Z. Show that f xg € £'(7Z),
frg=gxfand | f*gli < IIflllgll-

Exercise 1.6.7 Suppose that f € P(Z) and g € I'(Z). Show that f * g can be defined
similarly as in Exercise 1.6.6 (ii); then show that f * g = g * f, and

If *glly < Ifllpllglls-

Remark For any nonempty set S and 1 < p < 00, the Banach space £*(S) can be
defined in the same way that £/ (%) is defined. The first such space is the space £>(IN)
introduced by D. Hilbert in his study of the Fredholm theory of integral equations.



