


GLOSSARY OF SYMBOLS

A User’s original matrix.

AT Transpose of A.

A(k) Reduced matrix (of order n× n) before step k of Gaussian elimination.

A[k] Matrix (order n× n) associated with kth finite element.

Ai: Row i of the matrix A.

A:j Column j of the matrix A.

B,C, ... Other matrices.

b Right-hand side vector.

c Intermediate solution vector.

ck Depending on the context, either component k of c or column count
(number of entries in column k of matrix).

D Diagonal matrix.

ei i
th column of I.

I Identity matrix.

L Lower triangular matrix, usually formed by triangular factorization of A.

L\U LU factorization of a matrix packed into a single array.

n Order of the matrix A.

O() If f(n)/g(n)→ k as n→∞, where k is a constant, then f(n) = O(g(n)).

P Permutation matrix (usually applied to matrix rows).

Q Orthogonal matrix (usually a permutation matrix). Note that QQT = I.

R Upper triangular matrix in a QR factorization.

r Residual vector r = b−Ax.

rk Row count (number of entries in row k of matrix).

U Upper triangular matrix, usually formed by triangular factorization of A.

u Threshold for numerical pivoting.

vi i
th eigenvector of A.

x Solution vector.

ε Relative precision.

κ(A) Condition number of A.

λi i
th eigenvalue of A.

ρ Largest element in any reduced matrix, that is maxi,j,k |a(k)
ij |.

τ Number of entries in the matrix A.

∈ Belongs to.
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PREFACE

The subject of sparse matrices has its roots in such diverse fields as management
science, power systems analysis, surveying, circuit theory, and structural analysis.
Mathematical models in all of these areas give rise to very large systems of linear
equations that could not be solved were it not for the fact that the matrices
contain relatively few nonzeros. It has become apparent that the equations can
be solved even when the pattern is irregular, and it is primarily the solution of
such problems that we consider.

A great deal has changed since the first edition of this book was published 30
years ago. There has been considerable research progress. Simply updating the
book to account for more recent results is important.

In addition, our world has become much more dependent on mathematical
models for the complex designs we produce. To take just one example, The
Boeing Company used wind tunnels as the primary design tool and mathematical
models as a tool for independent insight in the design of large aircraft at the time
of the first edition. Since that time, the mathematical model has become the
primary design tool, and the wind tunnel is used for validation. In 1994, Boeing
had the first test flight of the 777, its first all-digitally-designed aeroplane. This
major transition raised the stakes on the importance of large-scale simulations.
There has been a similar shift in many other fields.

Furthermore, models have been extended to other areas since 1986. At
that time, it was common in aerodynamics, structural analysis, chemical
processing design, electronics design, power systems design and analysis, weather
forecasting, and linear programming to include a sparse matrix model at the
core. Today, these same models continue to be developed, but are solved for
significantly larger problems. In addition, sparse matrices appear in models for
speech recognition, language processing, computer gaming, signal processing, big
data, bioscience, social networks, and process simulations of all kinds. In many
cases, these models started in off-line design applications, but have moved to
real-time decision support applications. Thus, the rapid and reliable solution of
large sparse systems is more important than ever.

On the other hand, computing has also advanced at a rapid rate. In over
25 years, it is safe to say that computing price performance has improved
approximately 100,000 times based on Moore’s Law. Chris Anderson, editor of
Wired Magazine and author of Free, argues that computing has advanced to the
point where waste is good. All of the work we did to reduce memory and to get
the most out of computing cycles is (sometimes) no longer needed. Computing
is so cheap that it is better not to take expensive people time to save what does
not cost very much.



viii PREFACE

Since the essence of this book is to describe efficient algorithms for solving
sparse matrix problems arising at the heart of most large-scale simulations,
Anderson’s argument may suggest this work is no longer needed. However, in
this case he is wrong, as any scientist working in the field would already know.

Here is why. As the problem size and hence the matrix size grows, ignoring
sparsity would cause the computing times to grow as the cube of the size
of the problem. Thus, a problem that is 10 times as large will require 1000
times the computation. Computation for sparse problems is much more problem
dependent, but we might expect a problem 10 times as large could require 30–50
times the computation. At the time of the first edition of the book in 1986, a
problem with 10 000 variables was regarded as very large. Today, problems with
10 000 000 variables are solved and efficient algorithms for making this possible
are discussed in this book.

The subject is intensely practical and we have written this book with
practicalities ever in mind. Whenever two methods are applicable we have
considered their relative merits, basing our conclusions on practical experience
in cases where a theoretical comparison is not possible. We hope that the reader
with a specific problem may get some real help in solving it. Non-numeric
computing techniques have been included, as well as frequent illustrations, in an
attempt to bridge the usually wide gap between the printed page and the working
computer code. Despite this practical bias, we believe that many aspects of the
subject are of interest in their own right and we have aimed for the book to be
suitable also as a basis for a student course, probably at MSc level. Exercises
have been included to illustrate and strengthen understanding of the material,
as well as to extend it. In this second edition, we have introduced a few research
exercises that will extend the reader’s understanding even further and could be
used as the basis for research.

We have aimed to make modest demands on the mathematical expertise of the
reader, and familiarity with elementary linear algebra is almost certainly needed.
Similarly, only modest computing background is expected, although familiarity
with modern Fortran is helpful.

After the introductory Chapter 1, the computational tools required to handle
sparsity are explained in Chapter 2. We considered making the assumption of
familiarity with the numerical analysis of full matrices, but felt that this might
provide a barrier for an unreasonably large number of potential readers and, in
any case, have found that we could summarize the results required in this area
without lengthening the book unreasonably. This summary constitutes Chapters
3 and 4. The reader with a background in computer science will find Chapter 2
straightforward, while the reader with a background in numerical analysis will
find the material in Chapters 3 and 4 familiar. Note that the rest of the book is
built around the basic material in these chapters.

Sparsity is considered in earnest in the remainder of the book. In Chapter 5,
Gaussian elimination for sparse matrices is introduced, and the utility of standard
software packages to realize the potential saving is emphasized. Chapters 6–9 are
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focused on ordering methods to preserve sparsity. These include transforming a
matrix to block triangular form when possible (Chapter 6), variations of local
pivoting strategies to preserve sparsity (Chapter 7), orderings to achieve band
and variable band form (Chapter 8), and dissection strategies (Chapter 9). The
implementation of the solution of sparse systems using these orderings is the
subject of Chapters 10–14. In these chapters, we consider the cases where the
factorizations and solutions can be developed without concern for numerical
values, as well as the cases where account of numerical values needs to be taken
during factorization. We examine such implementations for modest to very large
problems across a variety of computer architectures. Finally, in Chapter 15, we
consider other exploitations of sparsity.

Since the previous edition, much work in sparse matrix research has involved
the development of algorithms that exploit parallel architectures. We decided
that, rather than have a single chapter on this, we would discuss parallel aspects
relevant to the work in each chapter.

We use bold face in the body of the text when we are defining terms.
For the purposes of illustration, we include fragments of Fortran code

conforming to the ISO Fortran 95 standard, and some exercises ask the reader to
write code fragments in Fortran or another language of his or her choice. Where
a more informal approach is needed, we use syntax loosely based on Algol 60,
with ‘:=’ meaning assignment. We use equal-width font for Fortran and normal
font for informal code, sometimes using both in the same figure.

Throughout the book we present timing data drawn from a variety of
computers to illustrate various points. This diversity of computers is due to
the different papers, environments, and time periods from which our results are
drawn. It does not cause a difficulty of interpretation because it is the relative
performance within a particular area that is compared; absolute numbers are
less meaningful.

We refer to many sparse matrix packages in the book and aim to provide
somewhere (usually at its first occurrence) a short description and a reference.
This will be indexed in bold so that whenever we refer to the package the reader
will be able to find the description and reference easily.

Three appendices cover matrix norms, some pictures of sparse matrices
from various applications, and solutions to selected exercises. These appendices
precede the collected set of references and indices to authors and subjects.

We find it convenient to estimate operation counts and storage requirements
by the term that dominates for large problems. We will use the symbol O for
this. For instance, if a certain computation needs 1

3n
3− 1

6n(n+1) multiplications
we might write this as 1

3n
3 +O(n2) or O(n3).

Efficient use of sparsity is a key to solving large problems in many fields.
We hope that this book will help people doing research in sparse matrices and
supply both insight and answers for those attempting to solve these problems.
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1

INTRODUCTION

The use of graph theory to ‘visualize’ the relationship between sparsity
patterns and Gaussian elimination is introduced. The potential of
significant savings from the exploitation of sparsity is illustrated by one
example. The effect of computer hardware on efficient computation is
discussed. Realization of sparsity means more than faster solutions; it
affects the formulation of mathematical models and the feasibility of
solving them.

1.1 Introduction

A matrix is sparse if many of its coefficients are zero. The interest in sparsity
arises because its exploitation can lead to enormous computational savings and
because many large matrix problems that occur in practice are sparse. How
much of the matrix must be zero for it to be considered sparse depends on
the computation to be performed, the pattern of the nonzeros, and even the
architecture of the computer. Generally, we say that a matrix is sparse if there
is an advantage in exploiting its zeros. This advantage is gained from both not
having to store the zeros and not having to perform computation with them. We
say that a matrix is dense if none of its zeros is treated specially.

This book is primarily concerned with direct methods for solving sparse
systems of linear equations, although other operations with sparse matrices
are also discussed. The significant benefits from sparsity come from solution
time reductions, but more importantly from the fact that previously intractable
problems can now be solved. These matrices may have hundreds of thousands or
even millions of rows and columns.

Often, it is possible to gain insight into sparse matrix techniques by
working with the graph associated with the matrix, and this is considered
in Section 1.2. There is a well-defined relationship between the pattern of
the nonzero coefficients of a square sparse matrix and its associated graph.
Furthermore, results from graph theory sometimes provide answers to questions
associated with algorithms for sparse matrices. We introduce this topic here in
order to be able to use it later in the book.

To illustrate the potential saving from exploiting sparsity, we consider a small
example in Section 1.3. Without going into detail, which is the subject of the
rest of the book, we use this example to motivate the study.

When serial computers with a single level of memory were our only concern,
there was a near-linear relationship between the number of floating-point
operations (additions, subtractions, multiplications, and divisions) on real

Direct Methods for Sparse Matrices, second edition. I. S. Duff, A. M. Erisman, and J. K. Reid.
c© Oxford University Press 2017. Published 2017 by Oxford University Press.
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(or complex) values and the run time of the program. Thus, a program
requiring 600 000 operations was about 20% more expensive than one requiring
500 000 operations unless there were unusual overheads. In such an environment,
exploitation of sparsity meant reducing floating-point computation while keeping
the overheads in proportion. Cache memories have introduced additional
complications. It is necessary to consider the effect of data movement, since
waiting for data to be loaded into cache takes much more time than a floating-
point operation. Vector and parallel architectures, possibly using multicore
chips, present further levels of difficulty for comparisons between algorithms.
A brief discussion of modern architectures is contained in Section 1.4 and of
computational performance in Section 1.5.

In Section 1.6, we discuss the formulation of mathematical models from the
viewpoint of the exploitation of sparsity. If sparsity tools are available, it is useful
to apply these tools in a straightforward manner within an existing formulation.
However, going back to the model may make it possible to reformulate the
problem so that more is achieved. This section is intended only to stimulate
thinking along these lines, since a full discussion is outside the scope of this book.
Finally, in Section 1.7, we explain the need for a collection of sparse matrix test
problems.

1.2 Graph theory

Matrix sparsity and graph theory are subjects that can be closely linked. The
pattern of a square sparse matrix can be represented by a graph, for example,
and then results from graph theory can be used to obtain sparse matrix results.
George and Liu (1981), among others, do this in their book. Graph theory is
also a subject in its own right, and early treatments are given by König (1950)
and Harary (1969). More recent references include Bondy and Murty (2008).

In this book, we use graph theory mainly as a tool to visualize what is
happening in sparse matrix computation. As a result, we use only limited results
from graph theory and make no assumption of knowledge of the subject by
the reader. In this section, we introduce the basic concepts. Other concepts are
introduced as they are used, for example, in Chapter 9.

For practical reasons, we do not necessarily exploit all the zeros. Particularly
in the intermediate calculations, it may be better to store some zeros explicitly.
We therefore use the term entry to refer to those coefficients that are handled
explicitly. All nonzeros are entries and some zero coefficients may also be entries.
In this discussion connecting a sparse matrix and its associated graph, we relate
the graph and the entries.

A directed graph or digraph consists of a set of nodes (also called
vertices) and directed edges between nodes. Any square sparse matrix pattern
has an associated digraph, and any digraph has an associated square sparse
matrix pattern. For a given square sparse matrix A, a node is associated with
each row/column. If aij is an entry, there is an edge from node i to node j in
the directed graph. This is usually written diagrammatically as a line with an
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4
Fig. 1.2.1. An unsymmetric matrix and its digraph.


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1 2 3

4
Fig. 1.2.2. A symmetric matrix and its graph.

arrow, as illustrated in Figure 1.2.1. For example, the line from node 1 to node
2 in the digraph corresponds to the entry a12 of the matrix. The more general
representation of the directed graph includes self-loops on nodes corresponding to
diagonal entries (see, for example, Varga (1962), p. 19). To make the visualization
simpler, we do not include self loops for the common case where the diagonal
coefficients of the matrix are all nonzero or the zeros are to be treated as entries.
Where the distinction between zeros and nonzeros on the diagonal is required,
self loops are needed to represent the nonzeros on the diagonal.

Formally, G(A), the digraph associated with the matrix A is not a picture,
but a set V of nodes and a set E of edges. An edge is an ordered pair of nodes
(vi, vj) and is associated with the matrix entry aij . The associated picture of
these nodes and edges is the usual way to visualize the graph.

For a symmetric matrix, a connection from node i to node j implies that
there must also be a connection from node j to node i; therefore, a single line
may be used and the arrows may be dropped. We obtain an undirected graph
or graph, as illustrated in Figure 1.2.2. We say that a graph is connected if there
is a path from any node to any other node.

An important special case occurs when a connected graph contains no closed
path (cycle). Such a graph is called a tree. In a tree, we can pick any node
as the root, to give a rooted tree, as illustrated in Figure 1.2.3, where the node
labelled 5 is the root. From any node other than the root there is a unique path
to the root. If the node is i and the next node on the path to the root is j, then
i is called the child of j and j is called the parent of i. It is conventional to
draw trees with the root at the top and with all the children of a node at the
same height. A node without a child is called a leaf.

A digraph with no closed paths (cycles) is also important in sparse matrix
work (see Section 13.7) and is known as a directed acyclic graph or DAG.

A fundamental operation used in solving equations with matrices involves
adding multiples of one row, say the first, to other rows to make all entries in
the first column below the diagonal equal to zero. This process is illustrated in
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Fig. 1.2.3. A matrix whose graph is a rooted tree.

the next section. Detailed discussion of the algorithm, which is called Gaussian
elimination, is found in Chapters 3 and 4. Notice that when this is applied to the
matrix of Figure 1.2.1, adding a multiple of the first row to the fourth creates a
new entry in position (4,2). This new entry is called a fill-in.

Graph theory helps in visualizing the changing pattern of entries as
elimination takes place. Corresponding to the graph G, the elimination digraph
Gy for node y is obtained by removing node y and adding a new edge (x, z)
whenever (x, y) and (y, z) are edges of G, but (x, z) is not. For example, G1 for
the digraph of Figure 1.2.1 would have the representation shown in Figure 1.2.4,
with the new edge (4, 2) added. Observe that this is precisely the digraph
corresponding to the 3×3 submatrix that results from the elimination of the (4,1)
entry by the row transformation discussed in the last paragraph. In the case of
a symmetric matrix whose graph is a tree, no extra edges are introduced when a
leaf node is eliminated. The corresponding elimination operations introduce no
new entries into the matrix.

2 3

4
Fig. 1.2.4. The digraph G1 for the digraph of Figure 1.2.1.

This relationship between graph reduction and Gaussian elimination was first
discussed by Parter (1961). It is most often used in connection with symmetric
matrices, since a symmetric permutation of a symmetric matrix leaves its graph
unchanged except for the numbering of its nodes. For an unsymmetric matrix, it
is often necessary to interchange rows without interchanging the corresponding
columns. This leads to a different digraph, and the correlation between the
digraph and Gaussian elimination is not so apparent (Rose and Tarjan 1978),
see Exercise 1.6. If symmetric permutations are made, the digraph remains
unchanged apart from the node numbering.

A graph for unsymmetric matrices that remains invariant even when the
permutation is not symmetric is the bipartite graph. In this graph, the nodes
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Fig. 1.2.5. The bipartite graph for the matrix in Figure 1.2.1.

are divided into two sets, one representing the rows and the other the columns,
so that a row node, i say, is joined to a column node, j say, if and only if aij
is an entry in the matrix. In Figure 1.2.5, we show the bipartite graph for the
matrix in Figure 1.2.1.

1.3 Example of a sparse matrix

In the design of safety features in motor cars and aeroplanes, the dynamics of the
human body in a crash environment have been studied with the aim of reducing
injuries. In early studies, the simple stick figure model of a person illustrated in
Figure 1.3.1 was used. Much more sophisticated models with many more variables
are used today. However, this small model is ideal for tracing through the ideas
behind the manipulation of a sparse matrix, and we use it for that purpose.

4

2

12

11

3 13

14

81

5

6

7

10

9

Fig. 1.3.1. Stick figure modelling a person.

The dynamics are modelled by a set of time-dependent differential equations
with which we are not concerned here. The body segments are connected at joints
(the nodes of the graph), as illustrated in Figure 1.3.1. These segments may not
move independently since the position of the end of one segment must match
the position of the end of the connecting segment. This leads to 42 equations
of constraint (three for each numbered joint), which must be added to the
mathematical system to yield a system of algebraic and differential equations
to be solved numerically. At each time step of the numerical solution (typically
there will be thousands of these), a set of 42 linear algebraic equations must be
solved for the reactions at the joints.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × × × ×
6 × × ×
7 × ×
8 × × × ×
9 × × ×

10 × ×
11 × × × × ×
12 × ×
13 × × × × ×
14 × ×

Fig. 1.3.2. The pattern of the matrix associated with the stick person of
Figure 1.3.1.

Since there are 14 numbered joints, with three constraints for each joint,
the matrix representing the algebraic equations may be considered as a 14× 14
block matrix with entries that are 3×3 submatrices. This is the pattern shown in
Figure 1.3.2, where each × represents a dense 3×3 submatrix. The pattern of this
block matrix may be developed from Figure 1.3.1 by associating the given joint
numbers with block numbers. For example, since joint 6 is connected by body
segments to joints 5 and 7, there is a relationship between the corresponding
reactions, and block row 6 has entries in block columns 5, 6, and 7.

Referring to the discussion of the previous section on the relationship between
sparse matrices and graph theory, note that the stick person shown in Figure 1.3.1
corresponds to the graph of the matrix in Figure 1.3.2.

In the remainder of this section, we demonstrate that a careful utilization
of the structure of a matrix as in Figure 1.3.2 leads to a significant saving in
the computational cost of the solution of the algebraic equations. Since these
equations must be solved at each time step, with the numerical values changing
from step to step while the sparsity pattern remains fixed, cost savings can
become significant over the whole problem. In Section 3.12, the relationship
between block and single variable equations is established. Here it is sufficient to
say that an efficient solution of linear equations whose coefficient matrix has the
sparsity pattern of Figure 1.3.2 can readily be adapted to generate an efficient
solution of the block equations. We therefore examine the solution of the 14
simultaneous equations whose sparsity pattern is shown in Figure 1.3.2.

Methods for solving systems of n linear equations

n∑
j=1

aijxj = bi, i = 1, 2, ..., n, (1.3.1)

or, in matrix notation,

Ax = b, (1.3.2)
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are discussed and compared in Chapters 3 and 4. For the purposes of this
example, where n = 14, we simply solve the equations by a sequence of row
operations. Multiples of equation 1 are first added to the other equations to
eliminate their dependence on x1. This leaves a revised system of equations
of which only the first involves x1. If no account is taken of the zeros, these
calculations will require 29 floating-point operations for the elimination of x1

from each of 13 equations, making 29×13 operations in all. Then multiples of the
second equation are added to the later equations to eliminate their dependence
on x2. This requires 27 operations for each of 12 equations, making 27 × 12
operations in total. We continue until we reach the fourteenth equation, when
we find that it depends only on x14 and may be solved directly. The total number
of operations to perform this transformation (including operations on zeros) is

29×13 + 27×12 + 25×11 + · · ·+ 5×1 = 1911. (1.3.3)

The solution of the resulting trivial fourteenth equation requires only one
division. Then the thirteenth equation may be solved for x13, using the computed
x14 (requiring three operations). Similarly x12, x11, · · · , x1 are computed in turn
using the previously found components of x. Thus, the calculation of the solution
from the transformed equations requires

1 + 3 + · · ·+ 27 = 196 (1.3.4)

operations. The process of eliminating variables from each equation in turn
and then solving for the components in reverse order is called Gaussian
elimination. Its variants are discussed further in Chapter 3.

Following the same approach, but operating only on the entries, requires far
less work. For instance, in the first step, multiples of equation 1 need only be
added to equations 2, 5, and 8, since none of the others contain x1. Furthermore,
after a multiple has been calculated, only 4 multiplications (including one for
the right-hand side) are required to multiply the first equation by it. Therefore 3
divisions, 12 multiplications, and 12 additions are needed to eliminate x1. Note,
however, that when a multiple of equation 1 is added to equation 2, new entries
are created in positions 5 and 8. Figure 1.3.3 shows by bullets all the fill-ins that
are created. The elimination of x2 from each of the five other equations in which
it now appears requires 1 division and 7 multiplications and causes fill-ins to
equations 3, 5, 8, 11, and 13. The number of floating-point operations needed for
the complete elimination is

2× (13× 5) + 3× (11× 4) + 4× (9× 3) + 2× (7× 2) + 2× (5× 1) = 408. (1.3.5)

The corresponding number of operations required to solve the transformed
equations is

7 + 2×11 + 3×9 + 3×7 + 2×5 + 2×3 + 1 = 94. (1.3.6)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 × × × ×
2 × × × • • × ×
3 × × × • • × ×
4 × × • • • •
5 × • • • × × × • •
6 × × × • • •
7 × × • • •
8 × • • • × • • × × • •
9 × × × • •

10 × × • •
11 × × • • • • • • • × × ×
12 × × •
13 × × • • • • • • • × • × ×
14 × ×

Fig. 1.3.3. The pattern of the matrix and its fill-ins. Fill-ins are marked •.

Thus, utilizing the sparsity in the solution process reduces the required
number of operations from 2 107 to 502, a factor of more than four. For a large
matrix, the factor will be far greater. This becomes particularly significant when
the saving is repeated thousands of times. To realize these savings in practice
requires a specially adapted algorithm that operates only on the entries. For a
large matrix, it is also desirable to store only the entries. The development of
data structures and special algorithms for achieving these savings is the major
topic of this book.

Before leaving this example we ask another natural question. Can the
equations be reordered to permit their solution with even fewer operations? One
of the principal ordering strategies that we discuss in Chapter 7, when applied
to the symmetric matrix of Figure 1.3.2, results in the reordered pattern of
Figure 1.3.4. Here, the original numbering is indicated by the numbering on the

4 7 6 10 9 12 14 5 8 1 2 3 11 13
4 × ×
7 × ×
6 × × ×

10 × ×
9 × × ×

12 × ×
14 × ×
5 × × × ×
8 × × × ×
1 × × × ×
2 × × × × ×
3 × × × × ×

11 × × × × ×
13 × × × × ×

Fig. 1.3.4. The pattern of the reordered matrix.

rows and columns. The symmetry of the matrix is preserved because rows and
columns are reordered in the same way.
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If we carry through the transformation on the matrix of Figure 1.3.4, we
observe that no new entries are created. Using cost formulae as before, the
number of operations required is 105. Solving the transformed equations adds
another 48 operations. The results of the three approaches are summarized in
Table 1.3.1. The gain is more dramatic on large practical problems and, in
Table 1.3.2, we show the same data for a problem from the Florida Sparse Matrix
Collection (see Section 1.7).

Table 1.3.1 Numbers of operations for Gaussian
elimination on matrix of Figure 1.3.2.

Treating matrix as dense sparse
unordered ordered

Transformation cost 1 911 408 105
Solution cost 196 94 48

Table 1.3.2 Operations for Gaussian elimination on
onetone1, which has order 36 057 and 341 088 entries.

Treating matrix as dense sparse
unordered ordered

Transformation cost (×109) 31 251 17.6 3.6
Solution cost (×106) 1 300 33.4 5.3

Several comments on this reordering are appropriate. First, it produced an
ordering where no new entries were generated; this is not typical. Secondly, the
ordering is optimal for this problem (in the sense that another ordering could not
produce fewer new entries) which also is not typical, because finding an optimal
ordering is very expensive for a genuine problem. Thirdly, that this ordering
is based on a practical approach and is able to produce a significant saving is
typical. Fourthly, we assumed one ordering was better than another because
it required fewer arithmetic operations. This is not necessarily true. The time
required to solve a problem on a modern computer depends on much more than
the amount of arithmetic to be done. This is discussed in Section 1.4.

In this discussion, the symmetry of the matrix has been ignored (apart from
the use of a symmetric reordering). In Chapter 3, we introduce the Cholesky
method, which exploits the symmetry and approximately halves the work for
the elimination operations on the matrix. Also, we did not consider the effects of
computer rounding in this illustration. These effects are discussed in Chapter 4.

This example gives an indication that exploiting sparsity can produce
dramatic computational savings and that reordering can also be significant in
producing savings. Methods of reordering sparse equations to preserve sparsity
are the major topic of Chapters 7–9. The order of magnitude cost reduction
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reflected in Table 1.3.1 for this example is not unusual, and indeed much
greater gains can be obtained on large problems, as illustrated by Table 1.3.2.

1.4 Modern computer architectures

Until the early 1970s, most computers were strictly serial in nature. That is, one
arithmetic operation at a time ran to completion before the next commenced.
Although some machines allowed operands to be prefetched (fetched before they
are needed) and allowed some overlapping of instructions, the execution time of
a program implementing a numerical algorithm could be well approximated by
the formula

time = (number of operations)/K, (1.4.1)

where K is the theoretical peak performance in floating-point operations per
second. The work in moving data between memory and functional units was
either low or proportional to the computation time for the arithmetic.

Over the years, raw speed has dramatically increased, and has been measured
in Mflops (millions of floating-point operations per second), Gflops (109

floating-point operations per second), Tflops (1012 floating-point operations
per second) and even occasionally Pflops (1015 floating-point operations
per second)1. Furthermore, computer architectures have evolved to multiple
hierarchies of memory and perform parallel operations, sometimes at a massive
scale, making such simple relationships no longer valid.

Arithmetic operations may be segmented into several (usually four or five)
distinct phases and functional units designed so that different operands can be in
different segments of the same operation at the same time. This technique, called
pipelining, is an integral component of vector processing, since it is particularly
useful when performing calculations with vectors. Nearly all current chips are
able in some way to catch the essence of vector processing: they are able to
execute operations on vectors of length n much faster than they can execute
those operations on sets of n scalars. Vector processing was widely in use on
high-performance computers when we wrote the first edition of this book and we
gave it prominence.

Current computer architectures employ a memory hierarchy with several
layers. Fastest is the level-1 cache, commonly denoted by `1, next the `2 cache,
then the `3 cache and then the main memory. Data is moved between these
levels in cache lines, typically 64 bytes, and special hardware is used to map
main memory addresses to addresses in the cache and to move wanted data into
the caches to replace data not needed at the time. In Table 1.4.1, we show figures
for the Intel Sandy Bridge chip that is used in the desktop machine that we use
for most of the runs in this book. Latency is the delay in the movement of data
and is usually measured in terms of the number of clock periods needed. In the

1These are pronounced Megaflops, Gigaflops, Teraflops, and Petaflops, respectively. The
production of an Exaflop computer (1018 floating-point operations per second) is expected in
the early 2020s.
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table, we give rounded numbers. In practice there is often a range, depending
on the status of the data concerned. For example, if it has been referenced in
the recent past, access might be faster. We skip these complications and just
give an indication of the relative speeds and latencies in the table to show the
importance of good cache management in algorithm design.

Table 1.4.1 Cache sizes and speeds for the 8-core
Intel Xeon E5-2687W. Clock speed is 3.1 GHz. Speed
and latency are for transfer to `1 cache and the
figures for `1 cache are for transfer to the CPU.

Cache level Size Speed Latency
(bytes) (GBytes/s) clocks

1 8 × 32 KB 367 5
2 8 × 256 KB 86 12
3 20 MB 41 28
M 256 GB 10 189

If a computation involves data that is scattered in memory and few operations
are performed on each datum, it will run far slower than the theoretical peak
because most of the time will be spent in moving cache lines between different
levels of memory. To obtain high performance, it is important to amortize the
cost of moving data to the `1 cache by ensuring that once data are in the `1
cache, many operations are performed on them.

As complex as this may appear, it is simply illustrated with everyday
examples. To illustrate hierarchical memory, think about the way sugar is used
in a home. There is a bowl of sugar on the table which makes small amounts of
sugar readily available. But if larger amounts of sugar are needed, then it takes
a trip to the pantry to get a larger store of sugar. More time is required, but
more sugar is available. To get sugar in even larger amounts, you could drive to
the local market and buy some. The time for retrieval is much higher, but the
available quantity is much greater. The computer model assumes that data must
pass through the various stages, so the sugar from the pantry would be first used
to refill the sugar bowl on the table, and the sugar would still be taken from the
bowl, for example.

Pipelining is readily illustrated by a manufacturing assembly line for
automobiles. Creating a single automobile in this environment would take a
great deal of time for it to pass through all of the stages of production. However,
by filling the assembly line (pipeline) with automobiles, after the first one comes
out, the second one follows in just the time it takes to perform each stage of
production.

For parallel computers, the situation with data access becomes even more
complicated. In shared memory processing, the unit of execution is the thread
and any item in memory is directly addressable from every thread. Conflicts occur
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when two threads wish to access the same item. When there are many threads,
the hardware to maintain shared access becomes very complicated and makes an
accurate determination of the cost of fetching data essentially impossible. Note
that a single silicon chip now normally has many cores and each core supports
one or more threads.

In distributed memory machines, the unit of execution is the process where
each process has its own memory, and access to its own memory is much
faster than to the memory of another process. To complicate things further,
many architectures have a hybrid structure where data is exchanged between
processes by message passing, but each process has several threads accessing
shared memory. We note that the word ‘process’ is also used within this book in
its normal English sense. Which meaning is intended is clear from the context
and should not cause any confusion.

Distributed memory parallelism can be illustrated by the challenge of writing
this book. Each author has his own brain corresponding to a process, and work is
parcelled out so that each can work independently on his own piece. However, to
create the whole, from time to time the work must be brought together through
message passing (email) or brought into a common memory (a personal visit or
a Skype session). Results are achieved most effectively when the independent
work is large, the message passing is small, and the meetings represent a small
percentage of the overall project.

1.5 Computational performance

A key operation in linear algebra is the multiplication of two dense matrices, or
more generally, the operation

C := C + αAB, (1.5.1)

for a scalar α and matrices A, B, and C of orders (say) m×k, k×n, and m×n.
This can be performed very effectively if B and C are stored by columns (the
Fortran way) and there is room in the `1 cache for A and a few columns of B
and C. C is computed column by column. For each column, 2m reals are moved
into the cache, (2k + 1)m floating-point operations are performed, and m real
results are stored to memory and are no longer required in the cache. If k is
reasonably large, say 32, the data movement time will be small compared with
the arithmetic time. There is no need for the cache to hold B or C—indeed
there is no limit on the size of n. The system will bring the columns into cache
as they are needed and may indeed be able to overlap the computation and data
movement. This is known as streaming.

For the highest computational performance, it is necessary to exploit any
parallelism available in the computer. We will make use of it at various levels. For
the first, the computation is arranged to involve fully independent subproblems
for which code can execute independently. We might permute a sparse set of
equations to the form
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A11 A15

A22 A25

A33 A35

A44 A45

A51 A52 A53 A54 A55




x1

x2

x3

x4

x5

 =


b1

b2

b3

b4

b5

 , (1.5.2)

which allows us to begin by working independently on the four subproblems[
Aii Ai5

A5i Ai
55

] [
yi
zi

]
=

[
bi
bi5

]
, i = 1, . . . , 4. (1.5.3)

where
∑5
i=1 Ai

55 = A55 and
∑5
i=1 bi5 = b5 .

Such a block structure can occur though the use of a nested dissection
ordering, as discussed in Chapter 9, or when domain decomposition is used in
the numerical solution of partial differential equations. Parallelism can also be
exploited at the level of the still sparse submatrices, Aij . Finally, we show in
Chapters 11–13 how dense kernels can be used at the heart of a sparse code. For
example, consider the matrix multiplication problem of the previous paragraph.
If the problem is large enough, the data may be redistributed across the processes
so that they share the work and each works on submatrices for which streaming
occurs.

When discussing the merits of various algorithms throughout the remainder
of this book, we will use the formula (1.4.1) where appropriate. K represents the
theoretical peak performance of the computer. Attaining the peak performance
would require maximally efficient use of the memory hierarchy, which is rarely
possible for sparse problems. The data structures in a sparse problem are unlikely
to use the pipelines, buffers, and memory hierarchies without inefficiencies. For
this reason, we compare performance on different computer architectures and
different problems using cases from the Florida Sparse Matrix Collection (see
Section 1.7) and elsewhere. In the case of dense vectors and matrices, the outlook
is more predictable. Here the basic manipulations have been tuned to the various
architectures using the BLAS (Basic Linear Algebra Subprograms). The Level
1 BLAS (Lawson, Hanson, Kincaid, and Krogh 1979) are for vector operations,
the Level 2 BLAS (Dongarra, Du Croz, Hammarling, and Hanson 1988) are
for matrix-vector operations, and the Level 3 BLAS (Dongarra, Du Croz, Duff,
and Hammarling 1990) are for matrix-matrix operations. Optimized versions of
these subroutines are available from vendors. Of particular importance are the
Level 3 BLAS because they involve many arithmetic operations for each value
that is moved through caches to the registers. Although the BLAS are crucial
in the efficient implementation of dense matrix computation, they also play an
important role in sparse matrix computation because it is often possible to group
much of the computation into dense blocks.

1.6 Problem formulation

If the potential gains of sparse matrix computation indicated in this chapter are
to be realized, it is necessary to consider both efficient implementation and basic
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problem formulation. For the dense matrix problem, the order n of the matrix
controls the requirements for both the storage and solution time to solve a linear
system. In fact, quite precise predictions of solution time (O(n3)) and storage
(O(n2)) may be made for a properly formulated algorithm (see Section 3.11).

This type of dependence on n becomes totally invalid for sparse problems.
This point was demonstrated for the example in Section 1.3, but it should be
emphasized that it is true in general. The number of entries in the matrix, τ ,
is a more reliable indicator of work and storage requirements, but even using τ ,
precise predictions similar to those of the dense case are not possible.

For much of the book, we will be concerned with the implementation of the
solution to the set of sparse linear equations

Ax = b, (1.6.1)

where A is an n×n, nonsingular matrix.
However, equation (1.6.1) arises from the formulation of the solution to

a mathematical model. How that model is formulated can result in varying
amounts of sparsity. Equations like (1.6.1) come from linear least squares
problems, circuit simulation problems, control systems problems, and many other
sources. In each case, seemingly innocent ‘simplifications’, which may be very
helpful in the dense case, can destroy sparsity and make the solution of (1.6.1)
either much more costly or infeasible.

It is the authors’ belief that most very complicated physical systems have
a mathematical model with a sparse representation. Thus, anyone concerned
with the solution of such models must pay careful attention to the way the
model is formulated. We will illustrate, though certainly not exhaustively, some
examples from diverse applications in Chapter 15. The real benefits of sparsity
have depended upon the formulation of the model as well as the choice of solution
algorithm.

1.7 Sparse matrix test collections

Comparisons between sparse matrix strategies and computer programs are
difficult because of the enormous dependence on implementation details and
because the various ordering methods (introduced in Section 5.3 and discussed
in detail in Chapters 7–9 are heuristic. This means that comparisons between
them will be problem dependent. These concerns led to the development of a set
of test matrices by Duff and Reid (1979) extended by Duff, Grimes, and Lewis
(1989). A nice interface for accessing both the problems and associated statistics
has been designed at NIST (MatrixMarket 2000) and the original Harwell-Boeing
format was extended to the Rutherford-Boeing format by Duff, Grimes, and
Lewis (1997). The GRID-TLSE project in Toulouse offers a web-friendly interface
to direct sparse solvers and sparse matrix test problems (Amestoy, Duff, Giraud,
L’Excellent, and Puglisi 2004).

Currently, the most extensive collection of sparse matrices is the University of
Florida Sparse Matrix Collection (Davis and Hu 2011). Not only are the matrices
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available in several formats, but there is a substantial discussion of each with
several pictures, not just of the matrix. Additionally, there is software to enable
the extraction of matrices with various characteristics including the application
domain.

A major objective of the test collections has been to represent important
features of practical problems. Sparse matrix characteristics (such as matrix size,
number of entries, and matrix pattern including closeness to symmetry) can differ
among matrices arising from, for example, structural analysis, circuit design, or
linear programming. The test problems from these different application areas
vary widely in their characteristics and often have very distinctive patterns.
Pictures of some of these patterns are included in Appendix B. While their
patterns are often not regular, they are certainly not random.

Throughout this book, we will use matrices to illustrate our discussion,
to demonstrate the performance of our algorithms, and to show the effect of
varying parameters. The default is that these will be matrices from the Florida
Collection. Those not from this collection will be flagged by a footnote and
the accompanying text will indicate their origin. Where we show the numbers
of entries in a table, we count explicit zeros because the analysis performed
may be required later for another matrix having the same pattern where some
of these entries are now nonzero. We count the entries in both the upper and
lower triangular parts of a symmetric matrix, although some algorithms require
only one of the triangles. These test matrices will be symmetric, unsymmetric,
or even rectangular determined by the algorithm or code being considered. As
some approaches exploit patterns that are nearly symmetric, we will sometimes
display the symmetry index, as defined by Erisman, Grimes, Lewis, Poole Jr.,
and Simon (1987), which is the proportion of off-diagonal entries for which there
is a corresponding entry in the transpose, so that a symmetric matrix has a
symmetry index of 1.0.

Another group of matrices that we use arises from solving partial differential
equations on a square q × q grid, pictured for q = 5 in Figure 1.7.1. The
simplest finite-element problem has square bilinear elements. Here, there is
a one-to-one correspondence between nodes in the grid and variables in the
system of equations. The picture of the grid is also a picture of the graph.
The resulting symmetric matrix A has order n = (q + 1)2, and each row has
entries in nine columns corresponding to a node and its eight nearest neighbours.
Such a pattern can also arise from a 9-point finite-difference discretization
on the same grid. Another test case arises from the 5-point finite-difference
discretization, in which case each row has off-diagonal entries in columns
corresponding to nodes connected directly to the corresponding node by a grid
line. Further regular problems arise from the discretization of three-dimensional
problems using 7-point, 11-point, or 27-point approximations. These matrices
are important because they typify matrices that occur when solving partial
differential equations and because very large test problems can be generated
easily.
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Fig. 1.7.1. A 5×5 discretization.

Another way of generating large sets of matrices is to use random number
generators to create both the pattern and the nonzero values. Early testing of
sparse matrix algorithms was done in this way. While small random test cases
are useful for testing sparse matrix codes, we do not recommend their use for
performance testing because of their lack of correlation to real problems.

When using an existing sparse matrix code for particular applications, the
user will be confronted with a variety of choices as will be discussed in the
rest of the book. Since many of the algorithms discussed here are based on
heuristics, we recommend that users experiment with these choices for their own
applications. The test problems provide an invaluable source for this purpose.
Other readers may be more interested in extending research: which algorithms
work best depending on size of matrix, application area, computer architecture,
and many other factors? The test problems are useful for this purpose as well.

The Florida Collection will also be used in several of the Research Exercises
that we have included in many of the chapters.

Exercises

1.1 For the machine described in Section 1.4, calculate the maximum performance of a
code that moves data in 10 KB blocks and reuses it three times when in the `1 cache.

1 3

2

4 5 7

86

Fig. E1.1. A graph with 8 nodes.

1.2 For the graph shown in Figure E1.1, write down the corresponding sparse matrix
pattern.

1.3 For the graph in Figure E1.1, re-label the nodes starting on the left working
from top to bottom (1,2,4,3,6,5,8,7) and write down the corresponding matrix pattern.
Compare this pattern with the one from Exercise 1.2, and comment on the differences
and similarities.
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1.4 Using the matrix of Exercise 1.2, find the pattern of the matrix that results from
the elimination of the subdiagonal entries in columns one and two by adding multiples
of rows one and two to appropriate later rows.

1

42

3

Fig. E1.2. A graph with 4 nodes.

1.5 Can you find a reordering for the sparse matrix corresponding to the graph shown
in Figure E1.2 for which no new entries are created when solving equations with this
as coefficient matrix?

1.6 For the matrix in Figure 1.2.1, reorder it by swapping rows 1 and 4. Draw its
associated digraph, and compare it with the digraph in Figure 1.2.1. Comment on the
difference and the similarities.

1.7 From Exercises 1.3 and 1.6, how does the relationship between the digraph of an

unsymmetric matrix differ from the relationship between the symmetric matrix and its

graph?
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SPARSE MATRICES: STORAGE SCHEMES AND SIMPLE
OPERATIONS

We consider how best to store sparse vectors, to add a multiple of one
to another, and to form inner products. We also discuss the effective use
of a full array even when the vector is sparse. We compare the different
ways that sparse matrices can be held and discuss the use of linked lists.
Sorting may be needed before or during a sparse matrix computation, so
we discuss two sorting methods that we have found particularly useful:
the counting sort and the heap sort. We consider grouping variables into
supervariables, and we discuss matrix-vector and matrix-matrix products.

2.1 Introduction

The aim of the chapter is to examine data structures suitable for holding sparse
matrices and vectors. We can only do this in conjunction with a consideration of
the operations we wish to perform on these matrices and vectors, so we include
a discussion of the simple kinds of operations that we need.

An important distinction is between static structures that remain fixed and
dynamic structures that are adjusted to accommodate fill-ins as they occur.
Naturally, the overheads of adjusting a dynamic structure can be significant.
Furthermore, the amount of space needed for a static structure will be known in
advance, but this is not the case for a dynamic structure. Both types are widely
used in the implementation of sparse Gaussian elimination. We discuss the use
of them in detail in Chapters 10–14.

Usually what is required is a very compact representation that permits easy
manipulation. There is no one best data structure; most practical computer codes
use different storage patterns at different stages.

2.2 Sparse vector storage

For simplicity, we begin by considering the storage of sparse vectors of order n.
Some of our remarks generalize at once to sparse matrices whose columns (or
rows) may be regarded as sets of sparse vectors. Furthermore, vector operations
play an important role in Gaussian elimination (see Chapters 3 and 4).

A sparse vector may be held in a full-length vector of storage (length n).
When the vector is very sparse, this is rather wasteful of storage, but is often
used because of the simplicity and speed with which it may then be manipulated.
For instance, the i-th component of a vector may be found directly.

To economize in storage we may pack the vector by holding the entries as real,
integer pairs (xi, i), one for each entry. In Fortran, we normally use a real array

Direct Methods for Sparse Matrices, second edition. I. S. Duff, A. M. Erisman, and J. K. Reid.
c© Oxford University Press 2017. Published 2017 by Oxford University Press.
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(for example, value in Figure 2.2.1) and a separate integer array (for example,
index in Figure 2.2.1), each of length at least the number of entries. This is
called the packed form. We call the operation of transforming from full-length
to packed form a gather and the reverse a scatter.

product = 0.0

do k = 1,tau

product = product + value(k)*w(index(k))

end do

Fig. 2.2.1. Code for the inner product between packed vector (value, index)
with tau entries and full-length vector w.

To compare the storage requirements for the two methods, we first look at
two examples. For a vector of length 10 000 with value 3.7 in location 90, and
–4.2 in location 5 008, the vector would be represented by:

value = (3.7, -4.2)

index = (90, 5008)

Only four storage locations are required for this vector compared with 10 000
representing it as a full vector, a dramatic saving.

Now consider the case of the vector (3.2, 4.1, –5.3, 0). This requires
four storage locations, but the corresponding vector in packed form would be
represented by

value = (3.2, 4.1, -5.3)

index = (1, 2, 3)

In this case, the packed form requires more storage (six units) than the full-length
vector (four units).

In general, it is easy to see that the packed form requires less storage when the
vector is at least 50% sparse. When the numerical values in the vector are held
in double-precision arrays, or if the values are single-precision complex numbers,
then the break-even point will drop to 25%, and will drop even further in the
extended-precision real or double-precision complex case. Thus, the packed form
generally requires far less storage in practical computations, where the vectors,
at least at the beginning of the computation, are far less dense than 25%.

Applying an elementary operation, say adding a multiple of component i to
component j, is not convenient on this packed form because we need to search
for xi and xj . A sequence of such operations may be performed efficiently if just
one full-length vector of storage is used. For each packed vector, we perform the
following steps:

(i) Place the nonzero entries in a full-length vector known to be set to zero.

(ii) For each operation:

(a) Revise the full-length vector by applying the operations to it, and

(b) if this changes a zero to a nonzero, alter the integer part of the packed
form to correspond.
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(iii) By scanning the integers of the packed form, place the modified entries
back in the packed form while resetting the full-length vector to zero.

Notice that the work performed depends only on the number of entries and
not on n. It is very important in manipulating sparse data structures to avoid
complete scans of full-length vectors.1 However, the above scheme does require
the presence of a full-length real array and does not distinguish between default
zeros and entries that have the value zero. One remedy is to use a full-length
integer vector that is zero except for those components that correspond to entries.
These hold the position of the entry in the sparse representation. This makes it
almost as cheap to access entries and is equally cheap at identifying whether an
entry is present. We illustrate the use of a full-length integer vector in Section 2.4.

2.3 Inner product of two packed vectors

Taking an inner product of a packed vector with a full-length vector is very
simply and economically achieved by scanning the packed vector, as shown in the
Fortran code of Figure 2.2.1. A fast inner product between two packed vectors
may be obtained by first expanding one of them into a full-length vector. An
alternative, if they both have their components in order, is to scan the two in
phase as shown in the Fortran code of Figure 2.3.1.

product = 0.0; kx = 1; ky = 1

do while (kx<=taux .and. ky<=tauy)

if (index_y(ky)==index_x(kx)) then

product = product + value_x(kx)*value_y(ky)

kx = kx+1; ky = ky+1

else if (ky>kx) then

kx = kx+1

else

ky = ky+1

end if

end do

Fig. 2.3.1. Code for the inner product between two packed ordered vectors
(value x, index x) and (value y, index y) with taux and tauy entries.

2.4 Adding packed vectors

Another very important operation is that of adding a multiple of one vector to
another, say

x := x + αy (2.4.1)

If x and y are held as packed vectors with their components unordered, a
satisfactory technique is again to use a full-length integer vector p known initially

1If this is done n times while factorizing a sparse matrix of order n, O(n2) operations would
be performed, which is likely to dominate the operation count.
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to be zero. We then modify the packed form of x using p as a working vector
but restoring it to zero as follows:

(i) For each entry yk, place its position in the packed vector in pk. For example,
if the vector y had three entries, y10, y15, y1 say, then entries 10, 15, and
1 in p would be set to 1, 2, and 3, respectively.

(ii) Scan x. For each entry xi check pi. If it is nonzero, use it to find the value
of yi, modify xi, and reset pi to zero.

(iii) Scan y. For each entry yi check pi. If it is nonzero, add a new component
with value αyi to the packed form of x (we have a fill-in). Reset pi to zero.

Fortran code for these operations is shown in Figure 2.4.1. If their components

! Flag the entries.

do k = 1,tauy

p(index_y(k)) = k

end do

! Modify the values that change, flagging each one.

do k = 1,taux

i = index_x(k)

if (p(i)>0) then

value_x(k) = value_x(k) + alpha*value_y(p(i))

p(i) = 0

end if

end do

! Add the fill-ins at the end.

do k = 1,tauy

i = index_y(k)

if(p(i)>0) then

taux = taux + 1

value_x(taux) = alpha*value_y(k)

index_x(taux) = i

p(i) = 0

end if

end do

Fig. 2.4.1. Code for the operation x := x + αy.

are in order, an in-phase scan of the two packed vectors, analogous to that shown
in Figure 2.3.1, may be made. Note that fill-ins need not occur at the end of the
packed form, so we can be sure that the order is preserved only if a fresh packed
form is constructed (so that the operation is of the form z := x+αy). We set the
writing of such code as Exercise 2.1. Perhaps surprisingly, it is more complicated
than the unordered code. In fact, there appears to be little advantage in using
ordered packed vectors except to avoid needing the full-length vector p, but
even this may be avoided at the expense of slightly more complicated code (see
Exercise 2.2).



22 SPARSE MATRICES: STORAGE SCHEMES AND SIMPLE OPERATIONS

An alternative approach is as follows:

(i) For each entry xk, place its position in the packed vector in pk.

(ii) Scan y. For each entry yi, check pi. If it is nonzero, use it to find the
position of xi and modify it, xi := xi +αyi; otherwise, add i to the packed
form of x and set xi := αyi.

(iii) Scan the revised packed form of x. For each i, set pi := 0.

While it is slightly more expensive than the first approach, since x is likely to
have more entries than y, it offers one basic advantage. It permits the sequence
of operations

x := x +
∑
j

αjy
(j) (2.4.2)

to be performed with only one execution of steps (i) and (iii). Step (ii) is simply
repeated with y(1),y(2), ..., while the indices for x remain in p. Step (ii) may be
simplified if it is known in advance that the sparsity pattern of x contains that
of y.

We will see later (Chapter 10) that there are times during the solution of
sparse equations when each of these approaches is preferable.

2.5 Use of full-sized arrays

In the last three sections, we have considered the temporary use of a full-
length vector of integer storage to aid computations with packed sparse vectors.
Provided sufficient storage is available, a simpler possibility is to use full-length
real vectors all the time. Whether this involves more computer time will depend
on the degree of sparsity, the operations to be performed and the details of the
hardware. Recent tests, see Table 10.7.1, suggest that indirect addressing is only
about 30% slower.

A further possibility is to use a full-length vector of storage spanning between
the first and final entry. This allows execution that is almost as fast and may
result in a very worthwhile saving in storage (and computation) compared with
holding the whole vector in full-length storage.

A sparse matrix, too, may be held in full-length storage, either as a
two-dimensional array or as an array of one-dimensional arrays. Similar
considerations apply as for vectors. For a typical large sparse problem, where n is
in the tens of thousands or even hundreds of thousands, most of the computation
is done with vectors that are far less than 25% dense and these sparse storage
schemes offer very significant advantages. Nevertheless, at some stages of the
computation, we may encounter relatively dense subproblems for which these
trade-offs are important.

2.6 Coordinate scheme for storing sparse matrices

Perhaps the most convenient way to specify a sparse matrix is as its set of entries
in the form of an unordered set of triples (aij , i, j). In Fortran, these may be held
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type entry

integer :: row_index, col_index

real :: value

end type

Fig. 2.6.1. Derived type for the coordinate scheme.

as an array of derived type such as that in Figure 2.6.1 or as one real array and
two integer arrays, all of length the number of entries. The matrix

A =


1. 2. 0. 0. 5.
0. 0. −3. 4. 0.
0. −2. 0. 0. −5.
−1 0. 0. −4. 0.

0. 3. 0. 0. 6.

 , (2.6.1)

for example, might have the representation in Table 2.6.1. This matrix is 44%
dense (11 entries in a 5 × 5 matrix). It is interesting that if reals and integers
require the same amount of storage, less total storage is required by the full-sized
matrix (25 words) than by the packed form (33 words). The position is reversed
for double-length reals to the ratio 25:22 and an even bigger change (to 25:16.5)
takes place with extended reals. The situation for complex-valued matrices is
analogous to that of double-length reals.

Table 2.6.1 The matrix (2.6.1) stored in the coordinate scheme.

Subscripts 1 2 3 4 5 6 7 8 9 10 11
row index 4 5 1 1 5 2 4 3 3 2 1
col index 1 2 2 1 5 3 4 5 2 4 5
value −1. 3. 2. 1. 6. −3. −4. −5. −2. 4. 5.

The major difficulty with this data structure lies in the inconvenience of
accessing it by rows or columns. It is perfectly suitable if we wish to multiply by
a vector in full-length storage mode to give a result also in full-length storage
mode. However, the direct solution of a set of linear equations, for example, may
involve a sequence of operations on the columns of the coefficient matrix. There
are two principal storage schemes that provide ready access to this information:
the collection of sparse vectors and the linked list. These we now describe.

2.7 Sparse matrix as a collection of sparse vectors

Our first alternative to the coordinate scheme is to hold a collection of packed
sparse vectors of the kind described in Section 2.2, one for each column (or row).
The components of each vector may be ordered or not. Since our conclusion in
Section 2.4 was that there is little advantage in ordering them, we take them to
be unordered.

The collection may be held as an array of a derived type with allocatable
components, for example, type sparse vector in Figure 2.7.1 or Figure 2.7.2.
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type vector_entry

integer :: index

real :: value

end type

type sparse_vector

type(vector_entry), allocatable :: entry(:)

end type

Fig. 2.7.1. Derived type for sparse vectors, using a derived type for the entries.

type sparse_vector

integer, allocatable :: index(:)

real, allocatable :: value(:)

end type

Fig. 2.7.2. Derived type for sparse vectors, using integers and reals.

The disadvantage is that the sizes of the columns vary during the execution.
Each change of size will involve allocating a new array, copying the data, and
deallocating the old array. It is therefore usual to pack the data into an integer
and a real array or into an array of derived type.

For each member of the collection, we store the position of its start (in either
array) and the number of entries. Thus, for example, the matrix (2.6.1) may be
stored as shown in Table 2.7.1.

Table 2.7.1 The matrix (2.6.1) stored as a collection of sparse
column vectors.

Subscripts 1 2 3 4 5 6 7 8 9 10 11
len col 2 3 1 2 3
col start 1 3 6 7 9 12
row index 4 1 5 1 3 2 4 2 3 1 5
value −1. 1. 3. 2. −2. −3. −4. 4. −5. 5. 6.

In this representation, the columns are stored in order (column 1, followed by
column 2, followed by column 3, etc.). If we hold the start of an imagined extra
column (column 6 in Table 2.7.1), it is not necessary to store both col start

and len col, since col start can be calculated from len col or len col can be
calculated from col start. If it is only necessary to access the matrix forwards or
backwards, as is the case when a triangular factor is being held (see Section 10.5),
then holding just len col is satisfactory and has the advantage that the integers
are smaller and so may fit into a shorter computer word. Where the columns
may need to be accessed in arbitrary sequence, we may dispense with len col

and hold just col start; holding just len col would lead to a costly extra
computation for finding entries in a particular column.

A basic difficulty with this structure is associated with inserting new entries.
This arises when a multiple of one column is added to another, since the
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new column may be longer, as discussed in Section 2.4. It is usual to waste
(temporarily) the space presently occupied by the column and add a fresh copy
at the end of the structure. Once the columns have become disordered because
of this, both len col and col start are needed (in this case, the location of
an extra imagined column is not needed). After a sequence of such operations,
we may have insufficient room at the end of the structure for the new column,
although there is plenty of room inside the structure. Here, we should ‘compress’
it by moving all the columns forward to become adjacent once more. It is clear
that this data structure demands some ‘elbow room’ if an unreasonable number
of compresses are not to be made.

2.8 Sherman’s compressed index scheme

Some economy of integer storage is possible with the compressed index scheme of
Sherman (1975), which we now describe. If we look at the matrix of Figure 2.8.1,
our usual storage scheme would hold the off-diagonal entries as a collection of

× × 0 × ×
× 0 × ×
× × ×
× ×
×

Fig. 2.8.1. A matrix pattern.

packed vectors (Section 2.7) as shown in Table 2.8.1. The compressed index
scheme makes use of the fact that the tail of one row often has the same
pattern as the head of the next row (particularly so for the factors after fill-
in has occurred) and so the same indices can be reused. In order to do this, the
length of each row (that is the number of off-diagonal entries) must be kept and
we show the resulting data structure in Table 2.8.2. A similar gain is obtained
automatically when using multifrontal schemes. Referring to Figure 14.2.1, we see
that NCOL*NPIV - NPIV*(NPIV-1)/2 entries will require only NPIV+NCOL indices.

Table 2.8.1 Matrix pattern of Figure 2.8.1
stored as a collection of sparse row vectors.

Subscript 1 2 3 4 5 6 7 8
lenrow 3 2 2 1
irowst 1 4 6 8 9
jcn 2 4 5 4 5 4 5 5

We indicate some of the gains obtained on practical problems in Table 2.8.3
where, if compressed storage were not used, the number of indices would be
equal to the number of entries in the factors. Indeed, on the matrix from 5-point
discretizaton on a square, see Section 1.7, the storage for the reals increases as


