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Preface

Topological condensed matter physics is a recent arrival among the disciplines of mod-
ern physics, with a distinctive and substantive nature. Its roots, however, reach far
back, to Dirac’s magnetic monopoles and strings of the early 1930s and Skyrme’s
topologically non-trivial solutions in the nonlinear sigma models of nuclear physics of
the 1960s. In the 1970s, the influx of topology into physics came in parallel in differ-
ent subdisciplines: mathematical physics, high-energy physics, and condensed matter
physics.

Much of the current importance of topological condensed matter physics derives
from exciting developments in the last half-century. These include, in the 1970s, Weg-
ner’s farsighted analysis of lattice gauge theories and the foundation of the study
of what is now known as order beyond the Landau–Ginzburg–Wilson paradigm; the
work of Kosterlitz and Thouless on the eponymous phase; Anderson’s pioneering work
on an alternative type of magnetic state of matter, the resonating valence bond li-
quids; and the seminal studies by Jackiw and Rebbi and by Su, Schrieffer, and Heeger
of solitons and topological zero modes with concomitant charge fractionalization in
one-dimensional systems.

In the 1980s, there was an outburst of developments in which topology took centre
stage in condensed matter physics, many inspired by the experimental discovery of
the integer quantum Hall effect by von Klitzing and of the fractional effect by Tsui,
Störmer, and Gossard. This was the time when the foundational concepts of Berry’s
phase and Thouless’s pumps arose, when Haldane added a topological term to field
theories of spin chains, and when Laughlin’s work on the fractional quantum Hall
effect lifted charge fractionalization to two-spatial dimensions and provided a setting
where anyon statistics could appear. The fractional quantum Hall effect also opened
the door for topological field theories to enter condensed matter physics, along with
protected edge states and the notion of topological order. These concepts and their
relation with quantum Hall physics were at the centre of an earlier Les Houches school,
‘Topological Aspects of Low-Dimensional Systems’, organized in 1998.

The field has since advanced rapidly, grown explosively, and diversified greatly. We
now have a zoo of topological phenomena—the quantum spin Hall effect, topological
insulators, Coulomb spin liquids, and non-Abelian anyonic statistics and their po-
tential application in topological quantum computing, to name but a few—as well
as an increasingly sophisticated set of concepts and methods underpinning their
understanding.

Our aim for this Les Houches Summer School was to present an overview of this
field, along with a sense of its origins and its place on the map of advances in fun-
damental physics. The school comprised a set of basic lectures (Part 1) aimed at a
pedagogical introduction of the fundamental concepts, together with more advanced
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lectures (Part 2) covering individual topics at the forefront of today’s research in
condensed matter physics.

This school was, to its date, the most sought after of the Les Houches Schools in
terms of number of applicants, which we read as evidence of the interest and relevance
of the topic to modern condensed matter physics. Its popularity forced us to reject
such a large number of suitable applicants that we decided to video-record the lectures,
which can now be viewed at the school’s website http://topo-houches.pks.mpg.de.

We thus hope that this book, along with these video recordings, will provide access
to the knowledge shared at the school to audiences from all corners of the globe—an
earnest way to express our intentions, even if geometrically imprecise!

The book starts with two conceptual presentations, by J. Moore and by B.
A. Bernevig (with T. Neupert). The former introduces topological band theory,
topological field theories, and Berry phases. The latter introduces the concepts of
topological superconductivity and of fractional excitations along with their descrip-
tion within the framework of category theory. These are followed by the lecture notes
of J. Chalker, which are oriented towards spin systems, more specifically spin liquids
and frustrated magnetism.

The physics of the quantum Hall effect, which may be viewed as a paradigm of topo-
logical condensed matter physics, was covered in several advanced lectures. A modern
view of the quantum Hall effect is provided by N. Regnault, within the framework of
entanglement spectra and advanced numerical techniques. Historical and experimen-
tal aspects of this field were covered in a short series of seminars by K. von Klitzing,
which, along with other experimental seminars, are available in video form on the
school’s website (http://topo-houches.pks.mpg.de).

The second part of the book is concerned with the advanced and more specialized
lectures. F. Wegner’s presentation provides a broad view on lattice gauge theories,
harking back to the very origins of the field in the duality construction of phase
transitions not associated with a local order parameter.

Generalizations of topological insulators due to interaction effects are the topic of
A. Vishwanath’s contribution. The topological tenfold-way classification of insulators
and superconductors, as well as a stability analysis of one-dimensional edge channels
at the boundary of two-dimensional Abelian topological phases, are presented by C.
Mudry, who also gives an introduction to Abelian bosonization.

One-dimensional lattice systems are covered by F. Pollmann’s lecture notes, where
state-of-the art numerical techniques are introduced, such as matrix product states
and their descendants. To conclude the study of one-dimensional topological systems,
F. von Oppen expands on the topic of topological superconductivity in quantum wires
and quantum chains.

The lecture notes by D. Carpentier are concerned with the transport properties
of the (D − 1)-dimensional surface states that accompany many topological phases
living in D dimensions. A particular aspect of quantum Hall systems, namely quantum
Hall ferromagnetism and its charged topological spin textures, skyrmions, is presented
within the context of a modern approach by B. Douçot.
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C. Castelnovo covers out-of-equilibrium properties in spin systems and kinetically
constrained models. The topical lectures conclude with those by A. Niemi on topology
and the physics of proteins and their folding.

All in all, we felt an acute need for a written account of the state of the field,
much of the introductory material on which is scattered among review articles in the
literature. The lecture notes collated in this volume, along with their oral deliveries,
hopefully present a reasonably complete and concise introduction to the burgeoning
field of topological condensed matter physics.

The school and the realization of this book would not have been possible with-
out generous financial support from the continuous-formation programme ‘École
thématique’ of CNRS and from the Franco-German University (DFH-UFA). Financial
support from the European Spallation Source should also be acknowledged. We would
furthermore like to thank all the participants—lecturers and students—for their stimu-
lating interactions and scientific discussions, the outcome of which is also reflected in
the present lecture notes. These interactions were favoured by the extremely pleasant
environment of the Physics Centre at Les Houches, and we would therefore also like
to acknowledge its administrative staff. Finally, we would like to most warmly thank
Titus Neupert for the portraits of the various speakers, which figure at the beginning
of their respective lecture notes.

As we were finalising these lecture notes for publication, the Nobel Prize 2016 was
awarded to Duncan Haldane, Michael Kosterlitz and David Thouless “for theoretical
discoveries of topological phase transitions and topological phases of matter”, and the
Buckley Prize 2017 of the American Physical Society to Alexei Kitaev and Xiao-gang
Wen “for theories of topological order and its consequences in a broad range of physical
systems”. We hope that this recognition will further motivate students of all ages to
learn about, and start contributing to, this exciting field of physics.

Claudio Chamon,
Mark O. Goerbig,

Roderich Moessner,
Leticia F. Cugliandolo
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1.1 Introduction

These lectures seek to present a coherent picture of some key aspects of topological in-
sulators and the quantum Hall effect. Rather than aiming for completeness or historical
accuracy, the goal is to show that a few important ideas, such as the Berry phase and
the Chern and Chern–Simons differential forms, occur repeatedly and serve as links
between superficially different areas of physics. Non-interacting topological phases,
electrical polarization, and some transport phenomena in metals can all be understood
in a unified framework as consequences of Abelian and non-Abelian Berry phases. The
fractional quantum Hall effect is then discussed as an example of topological order, and
we introduce its description by the (Abelian) Chern–Simons topological field theory.

Some effort has been made to avoid duplicating the material covered in other Les
Houches lectures, both past and present. Readers seeking alternative approaches and
a comprehensive list of references are encouraged to consult the many review articles
on topological insulators [16, 17, 35] and the recent book by Bernevig [4]. For the
fractional quantum Hall effect, our treatment parallels closely the review article of
Wen [40], and the Les Houches notes of Girvin [14] provide an overview of the topic
that includes more physical background than we provide here.

As part of our goal is to explain the topological invariants that underlie various
topological phases, we start in Section 1.2 with some preliminaries: a few examples of
the two kinds of topology (homotopy and cohomology) that appear most frequently
in condensed matter physics and a derivation of the Berry phase formula for adiabatic
transport. No claims of rigour or completeness are made, and the book of Nakahara [30]
is a good place to start learning more; readers focused on physics content should feel
free to skip this section and refer back to it as necessary.

Section 1.3 introduces non-interacting topological phases of electrons (the integer
quantum Hall effect and topological insulators are two important examples) and re-
lated phenomena, focusing on topological aspects. The concept of the Berry phase
links these topological phases to important physical observables such as electrical
polarization and the magnetoelectric effect.

Section 1.4 discusses topological phases in interacting systems, using a field-theory
approach that starts with an example of topological terms in a conventional field the-
ory (the Haldane gap in spin systems) and then moves on to the purely topological
description of the fractional quantum Hall effect via Chern–Simons theory. Many add-
itional steps in describing Chern–Simons field theory properly can be found in the
Les Houches notes of Dunne [7]. While neither the interacting nor the non-interacting
topological phases are discussed in full detail, it is hoped that this way of presenting
them gives some practical understanding of what it means for an electronic state of
matter to be ‘topological’.

1.2 Basic concepts

1.2.1 Mathematical preliminaries

1.2.1.1 An intuitive example of global geometry and topology:
Gauss–Bonnet

You may have heard a topologist described as ‘a mathematician who can’t tell the
difference between a donut and a coffee cup’. As an example of the connections between
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geometry and topology, we start by discussing an integral that will help us classify
two-dimensional (2D) compact manifolds (surfaces without boundaries) embedded
smoothly in three dimensions. The integral we construct is ‘topologically invariant’
in that if one such surface can be smoothly deformed into another, then the two will
have the same value of the integral. The integral can’t tell the difference between the
surface of a coffee cup and that of a donut, but it can tell that the surface of a donut
(a torus) is different from a sphere. Such global integrals of geometrical quantities are
a common origin of topological quantities in physics.

We start with a bit of local geometry. Given our 2D surface in 3D, we can choose
coordinates at any point on the surface so that the (x, y, z = 0) plane is tangent to
the surface, which can locally be specified by a single function z(x, y). We choose
(x = 0, y = 0) to be the given point, so z(0, 0) = 0. The tangency condition is

∂z

∂x

∣∣∣∣
(0,0)

=
∂z

∂y

∣∣∣∣
(0,0)

= 0. (1.1)

Hence we can approximate z locally from its second derivatives:

z(x, y) ≈ 1
2

(x y)

⎛⎜⎜⎝
∂2z

∂x2

∂2z

∂x ∂y

∂2z

∂y ∂x

∂2z

∂y2

⎞⎟⎟⎠
(
x

y

)
. (1.2)

The ‘Hessian matrix’ that appears here is real and symmetric. It can be diagonalized
and has two real eigenvalues λ1, λ2, corresponding to two orthogonal eigendirections
in the (x, y) plane. The geometric interpretation of these eigenvalues is simple: their
magnitude is an inverse radius of curvature, and their sign tells us whether the surface
is curving towards or away from the positive z direction in our coordinate system. To
see why the first is true, suppose that we carried out the same process for a circle of
radius r tangent to the x axis at the origin. Parametrize the circle by an angle θ that
is 0 at the origin and traces the circle counterclockwise, i.e.

x = r sin θ, y = r(1− cos θ). (1.3)

Near the origin, we have

y = r
[
1− cos

(
sin−1 x

r

)]
= r −

(
1− x2

2r2

)
=
x2

2r
, (1.4)

which corresponds to an eigenvalue λ = 1/r of the matrix in (1.2).
Going back to the Hessian, its determinant (the product of its eigenvalues, λ1λ2)

is called the Gaussian curvature and has a remarkable geometric significance. First,
consider a sphere of radius r, which at every point has λ1 = λ2 = 1/r. Then we can
integrate the Gaussian curvature over the sphere’s surface:∫

S2
λ1λ2 dA =

4πr2

r2
= 4π. (1.5)
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Beyond simply being independent of radius, this integral actually gives the same value
for any compact manifold that can be smoothly deformed to a sphere.

However, we can easily find a compact manifold with a different value for the inte-
gral. Consider the torus made by revolving the circle in (1.3), with r = 1, around the
axis of symmetry x = t, y = −1, z = 0, with −∞ < t <∞. To compute the Gaussian
curvature at each point, we sketch the calculation of the eigenvalues of the Hes-
sian as follows. One eigenvalue is around the smaller circle, with radius of curvature
r: λ1 = 1/r = 1. Then the second eigenvalue must correspond to the perpendicu-
lar direction, which has a radius of curvature that depends on the angle θ around
the smaller circle (we keep θ = 0 to indicate the point closest to the axis of sym-
metry). The distance from the axis of symmetry is 2− cos θ, so we might have guessed
λ2 = (2− cos θ)−1, but there is an additional factor of cos θ that appears because of
the difference in direction between the surface normal and this curvature. So our guess
is that

λ2 = − cos θ
2− cos θ

. (1.6)

As a check and to understand the sign, note that this predicts a radius of curvature
1 at the origin and other points closest to the symmetry axis, with a negative sign in
the eigenvalue indicating that this curvature is in an opposite sense as that described
by λ1. At the top, the radius of curvature is 3 and in the same sense as that described
by λ1, and on the sides, λ2 vanishes because the direction of curvature is orthogonal
to the tangent vector.

Now we compute the curvature integral. With φ the angle around the symmetry
axis, the curvature integral is∫

T 2
λ1λ2 dA =

∫ 2π

0

dθ

∫ 2π

0

(2− cos θ) dφλ1λ2

=
∫ 2π

0

dθ

∫ 2π

0

dφ (− cos θ) = 0.

(1.7)

Again this zero answer is generic to any surface that can be smoothly deformed to
the torus. The general result (the Gauss–Bonnet formula) of which the above are
examples is ∫

S

λ1λ2 dA = 2πχ = 2π(2− g), (1.8)

where χ is a topological invariant known as the Euler characteristic and g is the
genus, essentially the number of ‘holes’ in the surface.1 For a compact manifold with
boundaries, the Euler characteristic becomes 2− 2g − b, where b is the number of

1 A good question is why we write the Euler characteristic as 2 − 2g rather than 1 − g; one way to
motivate this is by considering polygonal approximations to the surface. The discrete Euler charac-
teristic V − E + F , where V , E, and F count vertices, edges, and faces, respectively, is equal to χ.

For example, the five Platonic solids all have V − E + F = 2.
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boundaries: one can check this by noting that by cutting a torus, one can produce two
discs (by slicing a bagel) or alternatively a cylinder with two boundaries (by slicing a
Bundt cake).

More generally, we will encounter several examples where a topological invariant
is expressed as an integral over a local quantity with a geometric significance. We now
turn to a simpler example in order to allow us to introduce some basic concepts of
algebraic topology.

1.2.1.2 Invariant integrals along paths in two dimensions: exact forms

As our first example of a topological property, let’s ask about making line integrals
along paths (not path integrals in the physics sense, where the path itself is integrated
over2) that are nearly independent of the precise path: they will turn out to depend
in some cases on topological properties (homotopy or cohomology). We will assume
throughout these notes, unless otherwise specified, that all functions are smooth (i.e.
C∞, meaning derivatives of all orders exist).

First, suppose that we deal with paths on some open set U in the two-dimensional
plane R2. (An open set is one for which some neighbourhood of each point in the set
is also in the set.) We consider a smooth path (u(t), v(t)), where 0 ≤ t ≤ 1 and the
endpoints may be different3. Now let f(x, y) = (p(x, y), q(x, y)) be a two-dimensional
vector field that lets us compute line integrals of this path:

W =
∫ 1

0

dt p
du

dt
+ q

dv

dt
dt, (1.9)

where p and q are evaluated at (x(t), y(t)).

Mathematical note In more fancy language, f is a differential form, a ‘1-form’ to
be precise. All that this means is that f is something we can use to form integrals
over paths that are linear and probe the tangent vector of the path. Another way to
state this, with which you may be more familiar, is that the tangent vector to a path,
which we call a ‘vector’, transforms naturally in the opposite way to the gradient of a
function, which we call a ‘covector’. To convince yourself that this is true, think about
how both transform under a linear transformation on the underlying space. We will
say a bit more about such forms in a moment.

Our first goal is to show that the following three statements are equivalent:

(a) W depends only on the endpoints (u(0), v(0)) and (u(1), v(1));
(b) W = 0 for any closed path;
(c) f is the gradient of a function g: (p, q) = (∂xg, ∂yg).

2 There are additional topological properties that emerge (‘quantum topology’) when integrals over
paths and other structures are incorporated; actually the Chern-Simons field theory that we discuss
in Section 1.4 was an important tool in the history of that field.

3 To make these results more precise, we should provide for adding one path to another by requiring
only piecewise-smooth paths and require that u and v be smooth in an open set including t ∈ [0, 1].

For additional rigour, see the first few chapters of Fulton’s book on algebraic topology [13].
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The formal language used for (c) is that f is an exact form: f = dg is the differential
of a 0-form (a smooth function) g.

Note that (c) obviously implies (a) and (b), since then W = g(u(1), v(1))− g(u(0),
v(0)). To show that (b) implies (a), suppose (b) is true and (a) is not. Then there
are two paths γ1, γ2 that have different integrals but the same endpoints. Form a new
path γ so that, as t goes from 0 to 1

2 , γ1 is traced, and then as t goes from 1
2 to 1,

γ2 is traced opposite to its original direction (now you can see why piecewise-smooth
paths are needed if one wants to be rigorous). Then this integral is non-zero, which
contradicts (b).

It remains to show that (a) implies (c). Define g(x, y) as equal to 0 at (0, 0), or
some other reference point in U if U does not include the origin. Everywhere else, set
g equal to the W obtained by integrating over an arbitrary path from (0, 0) to the
final point, which by (a) is path-independent. (If U is not connected, then carry out
this process on each connected component.) We will show that ∂xg = p, and the same
logic then implies ∂yg = q. We need to compute

∂xg = lim
Δx→0

g(x+ Δx, y)− g(x, y)
Δx

. (1.10)

We can obtain g by any path we like, so let’s take an arbitrary path to define g(x, y),
then add a short horizontal segment to that path to define the path for g(x+ Δx, y).
The value of the integral along this extra horizontal segment converges to p(x, y)(Δx),
as needed.

It turns out that the above case is simple because the plane we started with is
‘topologically trivial’. Before proceeding to look at a non-trivial example, let us state
one requirement on f that is satisfied whenever f is exact (f = dg). The fact that par-
tial derivatives commute means that, with f = dg = (p, q), ∂yp = ∂xq. We can come up
with an elegant notation for this property by expanding our knowledge of differential
forms.

Before, we obtained a 1-form f as the differential of a scalar g by defining

f = dg = ∂xg dx+ ∂yg dy. (1.11)

Note that we now include the differential elements dx, dy in the definition of f and
that 1-forms form a real vector space (spanned by dx, dy): we can add them and
multiply them by scalars. To obtain a 2-form as the differential of a 1-form, we repeat
the process: writing f = fi dxi (with x1 = x, x2 = y, f1 = p, f2 = q),

df =
∑
j

∂fi
∂xj

dxj ∧ dxi. (1.12)

where the ∧ product between differential forms satisfies the rule dxi ∧ dxj =
−dxj ∧ dxi, which implies that if any coordinate appears twice, then we get zero: dx ∧
dx = 0. For some intuition about why this anticommutation property is important,
note that in our 2D example,

df = (∂xfy − ∂yfx) dx ∧ dy, (1.13)
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so that the function appearing in df is just the curl of the 2D vector field represented
by f . So our statement about partial derivatives commuting is just the statement that
if f = dg, then df = 0, or that the curl of a gradient is zero. We label any 1-form
satisfying df = 0 a closed form. While every exact form is also closed, we will see that
not every closed form is exact, with profound consequences.

1.2.1.3 Topologically invariant integrals along paths: closed forms

As an example of non-trivial topology, we would now like to come up with an example
where integrals over paths are only path-independent in a limited ‘topological’ sense:
the integral is the same for any two paths that are homotopic, one of the fundamental
concepts of topology (to be defined in a moment). Basically, two paths are homotopic
if one can be smoothly deformed into another. Consider the vector field

f = (p, q) =
(
− y

x2 + y2
,

x

x2 + y2

)
=
−y dx+ x dy

x2 + y2
, (1.14)

where in the second step we have used our 1-form notation. This vector field is well
defined everywhere except the origin. This 1-form looks locally like the differential of
g = tan−1(y/x) (which just measures the angle in polar coordinates), but that function
can only be defined smoothly on some open sets. For example, in a disc around the
origin, the 2π ambiguity of the inverse tangent prevents us from defining g globally.

So, if we have a path that lies entirely in a region where g can be defined, then the
integral of this 1-form over the path will give the change in angle between the starting
point and end point, g(u(1), v(1))− g(u(0), v(0)). What about other types of paths,
for example, paths in R2 \ (0, 0), the 2D plane with the origin omitted, that circle the
origin and return to the starting point? We can still integrate using the 1-form f , even
if it is not the gradient of a scalar function g, and will obtain the value 2πn, where
n is the ‘winding number’, a signed integer that describes how many times the closed
path (u(t), v(t)) circles the origin as t goes from 0 to 1.

Now this winding number does not change as we make a small change in the
closed path, as long as the path remains in R2 \ (0, 0). What mathematical property
of f guarantees this? We have seen that any exact 1-form (the differential of a scalar
function) is also closed. While f is not exact, we can see that it is closed:

df =
(
∂x

x

x2 + y2

)
dx ∧ dy +

(
∂y

−y
x2 + y2

)
dy ∧ dx

=
2− 2
x2 + y2

dx ∧ dy = 0.

(1.15)

In other words, (−y, x)/(x2 + y2) is curl-free (‘irrotational’), while (−y, x) has constant
non-zero curl. Now suppose that we are given two paths γ1 and γ2 that differ by going
in different ways around some small patch dA in which the 1-form remains defined.
The difference in the integral of f over these two paths is then the integral of df over
the enclosed surface by Stokes’s theorem, which is zero if f is a closed form.
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So we conclude that if f is a closed form, then the path integral is path-independent
if we move the path through a region where f is always defined. For an exact form,
the integral is completely path-independent. In the case of R2 \ (0, 0), the 1-form in
(1.14) is locally but not completely path-independent. The set of closed forms and the
set of exact forms are both vector spaces (we can add and multiply by scalars), which
are typically infinite-dimensional, although their quotient as vector spaces is typically
finite-dimensional. (The quotient of a vector space A by a vector space B is the vector
space that identifies any two elements of A that differ only by an element of B.)
A basic object in ‘cohomology’ is the first de Rham cohomology group (a vector space
is by definition a group under addition):

H1(M) =
closed 1-forms on M
exact 1-forms on M

=
Z1(M)
B1(M)

. (1.16)

If you wonder why the prefix ‘co-’ appears in ‘cohomology’, there is a dual theory of
linear combinations of curves, etc., called homology, in which the differential operator
in de Rham cohomology is replaced by the boundary operator. However, while it may
be equally more basic mathematically, homology seems to crop up less frequently in
physics.

In this introductory discussion, we will focus on cohomology with real coefficients.
The first and second Chern numbers defined later and applied to topological phases are
related to elements of the even cohomology groups with integer coefficientsH2k(M,Z).
An even simpler object is the zeroth de Rham cohomology group. To understand this,
realize that a closed 0-form is one whose gradient is zero, i.e. one that is constant on
each connected component of U . There are no (−1)-forms and hence no exact 0-forms.
So the zeroth group is just Rn, where n is the number of connected components.

We can show that H1 = R for the unit circle S1 using the angle form f in (1.14), by
showing that this form (more precisely, its equivalence class up to exact forms) provides
a basis for H1. Given some other form f ′, we use the unit-circle path, parametrized
by an angle θ going from zero to 2π, to define

c =

∫ 2π

0

f ′∫ 2π

0

f

. (1.17)

Now f ′ − cf integrates to zero. We can define a function g via

g(θ) =
∫ θ

0

(f ′ − cf). (1.18)

Now g is well defined and periodic because of how we defined c, and f ′ = cf + dg,
which means that f ′ and cf are in the same equivalence class, because dg is an exact
form. We say that f ′ and f are cohomologous because they differ by an exact form.
So cf , c ∈ R, generates H1, and H1(S1) is isomorphic to R. With a little more work,
one can show that R2 \ (0, 0) also has H1 = R.
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Actually we can connect the results of this subsection to those of the previous one:
a general expression for the Euler characteristic is

χ(M) =
∑
i

(−1)i dimHi(M) =
∑
i

(−1)i dim
Zi(M)
Bi(M)

. (1.19)

The dimension of the ith cohomology group is called the ith Betti number. To be
pedantic, the Betti numbers are defined for homology rather than cohomology, but
we can use a duality relationship. There is a compact way to express the idea of
cohomology and homology that will let us introduce some notation and terminology.
If Ωr is the vector space of r-forms, and Cr is the dual space of r-chains, then the
action of the boundary operator and the differential is as follows:

←− Cr ←−−−−
[∂r+1]

Cr+1 ←−−−−
[∂r+2]

Cr+2 ←−, (1.20)

−−→ Ωr −−−−→
[dr+1]

Ωr+1 −−→
[dr+2]

Ωr+2 −−→. (1.21)

The rth cohomology group is the quotient ker dr+1/im dr, and the rth homology group
is ker ∂r/im ∂r+1.

The duality relationship is provided by Stokes’s theorem. Recall that this theorem
relates the integral of a form over a boundary to the integral of the differential of the
form over the interior. In terms of the linear operator (f, c) that evaluates the form f
on the chain c, we have the compact expression

(f, ∂c) = (df, c). (1.22)

Now we move on to a different type of topology that is perhaps more intuitive and
will be useful for our first physics challenge: how to classify defects in ordered systems.

1.2.1.4 Homotopy

What if we did not want to deal with smooth functions and calculus? An even more
basic type of topology is homotopy theory, which can be defined without reference
to calculus, differential forms, etc. Suppose that we are given a continuous map from
[0, 1] to a manifold M such that 0 and 1 get mapped to the same point; we can think
of this as a closed curve on M . We say that two such curves γ1, γ2 are homotopic if
there is a continuous function (a homotopy) f from [0, 1]× [0, 1] to M that satisfies

f(x, 0) = γ1(x), f(x, 1) = γ2(x). (1.23)

Intuitively, f describes how to smoothly distort γ1 to γ2. Now, homotopy is an
equivalence relation and hence defines equivalence classes: [γ1] is the set of all paths
homotopic to γ1. Furthermore, concatenation of paths (i.e. tracing one after the other)
defines a natural group structure on these equivalence classes: the inverse of any path
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can be obtained by tracing it in the opposite direction.4 We conclude that the equiva-
lence classes of closed paths form a group π1(M), called the fundamental group or
first homotopy group. Higher homotopy groups πn(M) are obtained by considering
mappings from the n-sphere Sn to M in the same way.

The homotopy groups of a manifold are not independent of the cohomology groups:
for example, if π1(M) is trivial, then so is the first de Rham group. The cohomology
groups are always Abelian; in general, the first de Rham group with integer coefficients
is the Abelianization of π1 (which need not be Abelian, although higher homotopy
groups are). If you are interested in further details, the result of Hurewicz gives a
relationship between higher cohomology and homotopy groups. The examples above
of R2 \ (0, 0) and S1 both have π1(M) = Z: there is an integer-valued winding number
that we can use to classify paths, and this winding number can be computed by the
angle form given above. So our 2D examples already contains the two types of topology
that occur most frequently in physics: cohomology and homotopy. We will return to
homotopy in much more detail in a moment, when we explain how it can be used to
classify topological defects such as vortices in broken-symmetry phases.

1.2.1.5 Application of homotopy to topological defects in
symmetry-breaking phases

As a direct physical application of homotopy theory, consider the notion of a ‘vortex’
in an ordered phase such as a superfluid. Such a configuration has a core where there
is no order, but far away from the core the system is always locally in an ordered state.
However, which ordered state the system is in varies smoothly as we move around the
vortex core. For a 2D defect with a point core, such as a vortex of the 2D XY model,
the vortex core is enclosed by a large real-space circle S1, and as we move around this
circle we have a map from S1 to S1, where the first circle is real space and the second
circle reflects that the ‘order-parameter manifold’ of distinct ordered configurations of
the XY model is also a circle.

The mathematical classification of topological defects has been carried out for
a variety of systems. Vortex-like defects (defects that can be circled by a loop) are
related to the group π1(M), where M is the manifold of degenerate values of the order
parameter once its magnitude has been set (for example, S1 for XY and S2 for the
Heisenberg model, where Sd is the unit sphere in d+ 1 dimensions). π1(M) is known
as the first homotopy group and is the group of equivalence classes of mappings from
S1 to M : for example, the mappings from S1 to S1 are characterized by an integer
winding number n ∈ Z, so π1(S1) = Z, while π1(S2) = 0 (the group with one element),
since any loop on the sphere is contractible to a point.

In other words, π1(M) gives the set of equivalence classes up to smooth deform-
ations of closed paths on M . Multiplication of equivalence classes in the group is
defined by concatenation of paths. The second homotopy group π2(M) classifies map-
pings from S2 to M , and describes defects circled by a sphere, such as pointlike defects

4 To be precise, one should define homotopy with reference to a particular point where paths start

and end; for a symmetric space where all points are basically equivalent, this is unnecessary.
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in 3D. For example, π2(S2) is non-zero, and there are stable point defect configurations
of Heisenberg spins (known descriptively as ‘hedgehogs’) but not of XY spins. There
can also be topological configurations that are not ‘defects’ but are not homotopic
to the identity: the most famous example is the skyrmion configuration of a uniaxial
ferromagnet in 2D, where all spins at infinity point in the same direction and the spin
direction moves in the plane in such a way as to cover the sphere once. Shankar’s
monopoles and other defect-free configurations in 3D are related to the group π3.

There is a considerable technology built up for the calculation of homotopy groups
of general order-parameter manifolds M = G/H, whose elements are cosets of the
residual symmetry group H, i.e. any symmetries that survive in the ordered phase,
in the high-temperature symmetry group G. For example, for a uniaxially ordered
Heisenberg ferromagnet, G = SO(2) andH = SO(3), so indeedM = S2 as anticipated
earlier. The advent of complicated ordered states in systems such as liquid crystals
and spinor condensates stimulated the development of the techniques described in the
Review of Modern Physics article by Mermin [25].

1.2.2 Berry phases in quantum mechanics

We now turn to a beautiful geometric property of quantum mechanics that was
understood relatively recently: the geometric or Berry phase. The connection to the
Gauss–Bonnet theorem we mentioned earlier is as follows. Curvature is a property
of Riemannian manifolds, which have a (real) inner product defined on the tangent
space at each point.5 This inner product varies smoothly from point to point, which
allows us to define a number of important concepts, including parallel transport and
curvature.

Frequently in quantum mechanics, we have, instead of a tangent space, a Hilbert
space (including a Hermitian inner product) that varies smoothly from point to point
in parameter space. Hence one can think of the Berry-phase objects we are about
to define as really quite similar to curvature and related properties on Riemannian
manifolds, except that the Berry phase does not come from the intrinsic geometry of
the manifold of parameters but rather is related to how the attached Hilbert space
evolves as parameters change.

An important result from undergraduate quantum mechanics is the ‘adiabatic ap-
proximation’. Suppose that a system is prepared in a non-degenerate eigenstate of a
time-dependent Hamiltonian H. For later reference, we will write H as a function of
some parameters λi that depend on time: H(t) = H(λ1(t), λ2(t), . . .). If the eigenstate
remains non-degenerate, then the adiabatic approximation is the result that if the
Hamiltonian changes slowly in time (how slowly depends primarily on the energy gap
between adjacent eigenstates), then there are no transitions between eigenstates.

This approximation, even when correct, only gives part of the story: it describes
the probability to remain in the eigenstate that evolved from the initial eigenstate, but

5 The combination of a differentiable manifold and its tangent space at each point is the ‘tangent
bundle’, the simplest example of a vector bundle, an attachment of a vector space to each point of a
manifold.
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there is actually non-trivial information in the phase of the final state as well. This
result may seem quite surprising because the overall phase in quantum mechanics is
in general independent of observable quantities. However, the Berry phase from an
adiabatic evolution is observable: for example, one system can be taken around a
closed path in parameter space, while another system initially identical to the first
can be taken around a different path, or the null path; an interference experiment on
the final states will reveal the Berry phase. The first example of this type of geometric
phase in physics was found more than 50 years ago by Pancharatnam in an optical
example, but Berry’s classic paper of 1984 was the first to explain the concept in its
full generality.

Berry’s result for a closed path is relatively simple to state, but some careful
thought is required to understand and derive it. In moving a system adiabatically
around a closed path in parameter space, the final wavefunction is in the same eigen-
state as the initial one (again, under the assumptions of the adiabatic approximation
as stated above), but its phase has changed:

|ψ(tf )〉 = exp
[
− i

�

∮ tf

ti

E(t′) dt′
]
eiγ |ψ(ti)〉. (1.24)

Here E(t′) means the corresponding eigenvalue of the Hamiltonian at that time, and
γ is the Berry phase, expressed as an integral over a path in parameter space with no
time dependence:

γ = i

∫
〈ψ̃(λi)|∇λ|ψ̃(λi)〉 · dλ. (1.25)

Note that there are two different wavefunctions ψ and ψ̃ in the above formulas. ψ(t) has
a time argument and means the wavefunction of the system at that time. The ‘reference
wavefunction’ ψ̃(λi) has a parameter argument and indicates the wavefunction we have
chosen of the Hamiltonian for that value of the parameters, which we assume to be
smoothly varying6 A key assumption of the following derivation is that there is some
smooth choice of the ψ̃(λi) throughout a surface in parameter space with the loop as
boundary.

For an open path, we need to describe the phase of the wavefunction relative to
this reference set, so the expression becomes more complicated (for the closed path,
we could simply compare the initial and final wavefunctions, without needing the
reference set at these points). We will show that, assuming ψ(ti) = ψ̃(λ(ti)) so that

6 A smooth choice of reference wavefunctions is always possible locally but not possible globally, as
in the example of a spin- 1

2
particle moving in a Zeeman magnetic field. Computing the Berry phase

in this example is a nice exercise for the reader, and also physically useful: in making a path integral
for a quantum spin, one needs to include a term that reflects the Berry phase of the path in time
(either real or imaginary), and we will use this in Section 1.4. A pedagogical derivation of this path
integral including the Berry phase is in the book of Auerbach [2].
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the initial wavefunction is equal to the reference state at the corresponding value of
parameters,

〈ψ̃(λi(t))|ψ(t)〉 = exp
[
− i

�

∫ t

0

E(t′) dt′
]
eiγ ≡ eiθ(t), (1.26)

i.e. the Berry phase appears as an extra contribution, beyond the expected contribution
related to the energy, when comparing the actual time-dependent evolved state ψ(t)
with the reference state at the same point in parameter space λi(t). We write θ(t)
for the total phase including both energetic and Berry contributions. We can take the
time derivative using the time-dependent Schrödinger equation

i�
∂ψ

∂t
= H(t)ψ. (1.27)

The first two quantities in (1.26) agree initially from our choice of the phase of ψ(ti).
The time derivative of the leftmost is

〈ψ̃(λi(t))|
−iE(t)

�
|ψ(t)〉+

dλj
dt
〈∂λj

ψ̃(λi(t))|ψ(t)〉, (1.28)

Since eiθ(t) = 〈ψ(λi(t))|ψ(t)〉, this gives

i∂tθ(t) = i

(
d

dt
eiθ(t)

)
(−ie−iθ(t))

=
[
−iE(t)

�
〈ψ̃(λi(t))|+

dλj
dt
〈∂λj

|ψ̃(λi(t))|
]
|ψ(t)〉〈ψ(t)|ψ̃(λi(t))〉,

(1.29)

and this is satisfied if we set (note that for E we do not need to distinguish between
time and λ dependence)

∂tθ(t) = −E(t)
�

− idλj
dt
〈∂λj

ψ̃(λi(t))|ψ̃(λi(t))〉, (1.30)

which is our desired conclusion. We have used the fact that ψ and ψ̃ differ only by a
phase factor, since they describe the same non-degenerate state, to eliminate |ψ〉〈ψ|.

The ‘Berry connection’ or ‘Berry vector potential’ Aj = i〈ψ(λi)|∂λj
ψ(λi)〉 is real,

which follows from noting that ∂λj
〈ψ̃((λi)|ψ̃(λi)〉 = 0 by constancy of normalization. It

is required for a non-zero Berry phase that H evolve in such a way that the wavefunc-
tion changes by more than just a phase, so that that the evolution of the wavefunction
is more than just a simple phase factor, even though the actual rate of change in H
drops out and only the path taken by H enters the Berry phase.

Now one can ask whether the Berry connection A is independent of how we
chose the reference wavefunctions (in this case, the U(1) degree of freedom in the
wavefunction at each λ). While for an open path the Berry phase is clearly not phase-
independent, it is so for a closed path—for exactly the same reasons as a closed line
integral of A is gauge-independent in electrodynamics: we can integrate the ‘Berry
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flux’ or ‘Berry curvature’ εij∂iAj (which you can check is phase-independent, just like
Fμν in electrodynamics) on the surface bounded by the path. Alternatively, we can
note that a phase change changes A by the gradient of a scalar, so that on a closed
loop there is no change.

Independent of Berry’s work and at roughly the same time, condensed matter
physicists such as Thouless were realizing that Berry phases of wavefunctions on the
Brillouin zone have the same mathematical structure as gauge fields in parameter
space, even though there is no longer a notion of time evolution. The Berry vector
potential A is a way to compare or ‘connect’ the Hilbert spaces at neighbouring
points in parameter space. The gauge-invariant or nearly gauge-invariant quantities
constructed from A and its derivatives control a variety of physical quantities. For the
specific case of wavefunctions on the Brillouin zone, we will see that A is intimately
related to the location of the wavefunctions within the unit cell in real space.

To get some geometric intuition for what the Berry phase means in general, we
explain why the Berry connection A is called a connection, and the flux F is sometimes
called a curvature. A connection is a way to compare vector spaces that are attached
to different points of a manifold, forming a ‘vector bundle’. In our case, there is a one-
dimensional complex vector space attached at each point in parameter space, spanned
by the local eigenstate. The inner product lets us compare vectors at the same point
in parameter space, but the Berry connection appears when we try to compare two
vectors from slightly different points.

An example we used above of a real vector bundle is the ‘tangent bundle’ to a
Riemannian manifold (say, a sphere), made up of tangent vectors at each point, which
have a dot product corresponding to the inner product in quantum mechanics. The
connection in this case, which gives rise to ‘parallel transport’ of tangent vectors, is
related to the same curvature that we previously discussed with the Gauss–Bonnet
theorem. Consider an aeroplane moving around the surface of the Earth and carrying
a gyroscope that is fixed to lie in the tangent plane to the Earth’s surface (i.e. free to
rotate around the normal axis to the tangent plane). If the aeroplane follows a great
circle, then it will appear to be going straight ahead to a passenger on board, and the
gyroscope will not rotate relative to the plane’s axis.

However, if the aeroplane follows a line of latitude other than the equator, or any
other path that is not a ‘geodesic’ (see a differential geometry text for details), it will
feel constantly as though it is turning, and the gyroscope will appear to rotate relative
to the aeroplane’s direction. After going around a closed path in the aeroplane, the
gyroscope may have rotated compared with a stationary gyroscope (the same physics
that underlies Foucault’s pendulum). As an exercise, you can work out that the total
angle of rotation in circling a line of latitude is 2π sin(φ), where φ is the latitude. At
the equator this gives no rotation, while at the north pole it gives a 2π rotation. This
is a geometrical version of the same idea of holonomy (failure of a gyroscope to return
to its initial direction) that underlies the Berry phase.

Note that a vector potential in a gauge theory and the associated Wilson loop are
also examples of the concept of holonomy in a (now complex) vector bundle. The U(1)
Berry phase described above generalizes immediately to a non-Abelian U(N) Berry
phase when there are degenerate states or the energy differences between states are
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irrelevant, which has some important applications in condensed matter physics that
have only recently been discovered. Our primary mathematical objects later in this
chapter will be properties of the wavefunctions on the Brillouin zone, which form a
Hermitian bundle (a smoothly varying Hilbert space) on the d-dimensional torus.

One reason for introducing the idea of cohomology above was to give a sense of the
mathematical structures hiding in the background of the simple calculations we do:
to pick one example, the integral physicists do to calculate the Chern number, which
determines the contribution of a filled 2D band to the quantum Hall effect, would be
viewed by a mathematician as using the first Chern form to classify smooth complex
line bundles on the Brillouin zone, and the group of line bundles under tensor products
is isomorphic to the second cohomology class with integer coefficients. However, our
hope is that the physical examples we discuss will be readily comprehensible even for
readers not terribly excited about algebraic technology.

1.3 Topological phases: Thouless phases arising from Berry phases

The integer quantum Hall effect (IQHE) has the remarkable property that, even at
finite temperature in a disordered material, a transport quantity is quantized to re-
markable precision: the transverse (a.k.a. Hall) conductivity is σxy = ne2/h, where n
is integral to 1 part in 109. This quantization results because the transport is deter-
mined by a topological invariant, as stated most clearly in the work of Thouless and
collaborators. Consequently, we use the term ‘Thouless phases’ for phases where a
response function is determined by a topological invariant.

In the cases we discuss, including the recently discovered ‘topological insulators’
and quantum spin Hall effect (QSHE), this topological invariant results from integra-
tion of an underlying Berry phase. It turns out that the Berry phase can be rather
important even when it is not part of a topological invariant. In crystalline solids, the
electrical polarization, the anomalous Hall effect, and the magnetoelectric polarizabil-
ity all derive from Berry phases of the Bloch electron states, which are introduced in
the following subsection. We will avoid the conventional textbook presentation of the
IQHE in terms of Landau levels of a continuum electron. As we will use Landau levels
when we discuss the fractional quantum Hall effect later, readers who are unfamiliar
with the IQHE may wish to learn the standard treatment (see e.g. [14]) and compare
it with the approach using Bloch electrons below. The connection between the two
can be made precise in the limit of small flux per unit cell, when a flat magnetic Bloch
band becomes equivalent to a Landau level.

1.3.1 Bloch states

One of the cornerstones of the theory of crystalline solids is Bloch’s theorem for elec-
trons in a periodic potential. We will demonstrate this in the following form: given a
potential invariant under a set of lattice vectors R, V (r + R) = V (r), the electronic
eigenstates can be labelled by a ‘crystal momentum’ k and written in the form

ψk(r) = eik·ruk(r), (1.31)
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where the function u has the periodicity of the lattice. Note that the crystal momentum
k is only defined up to addition of reciprocal lattice vectors, i.e. vectors whose dot
product with any of the original lattice vectors is a multiple of 2π.

We give a quick proof of Bloch’s theorem in one spatial dimension, then consider
the Berry phase of the resulting wavefunctions. A standard fact from quantum mech-
anics tells us that, given two Hermitian operators that commute, we can find a basis of
simultaneous wavefunctions. In the problem at hand, we have a non-Hermitian oper-
ator (lattice translations by the lattice spacing a: (Tψ)(x) = ψ(x+ a)) that commutes
with the Hamiltonian. It turns out that only one of the two operators needs to be Her-
mitian for simultaneous eigenstates to exist, and therefore we can find wavefunctions
that are energy eigenstates and satisfy

(Tψ)(x) = λψ(x). (1.32)

Now if the magnitude of λ is not 1, repeated application of this formula will give a
wavefunction that either blows up at spatial positive infinity or negative infinity. We
would like to find wavefunctions that can extend throughout an infinite solid with
bounded probability density, and hence require |λ| = 1. From this, it follows that
λ = eiθ, and we define k = θ/a, where we need to specify an interval of width 2π to
uniquely define θ, say [−π, π). In other words, k is ambiguous by addition of a multiple
of 2π/a, as expected. So we have shown

ψk(x+ a) = eikaψk(x). (1.33)

The last step is to define uk(x) = ψk(x)e−ikx; then (1.33) shows that uk is periodic
with period a, and ψk(x) = eikxuk(x). 7

While the energetics of Bloch wavefunctions underlies many properties of solids,
there is also Berry-phase physics arising from the dependence of uk on k that was
understood only rather recently. Note that, even though this is one-dimensional, there
is a non-trivial ‘closed loop’ in the parameter k that can be defined because of the
periodicity of the ‘Brillouin zone’ k ∈ [−π/a, π/a):

γ =
∮ π/a

−π/a
〈uk|i∂k|uk〉 dk. (1.34)

How are we to interpret this Berry phase physically, and is it even gauge-invariant?
We will derive it from scratch below, but an intuitive clue is provided if we make the
replacement i∂k by x, as would be appropriate if we consider the action on a plane
wave. This suggests, correctly, that the Berry phase may have something to do with
the spatial location of the electrons, but evaluating the position operator in a Bloch
state gives an ill-defined answer; for this real-space approach to work, we would need
to introduce localized ‘Wannier orbitals’ in place of the extended Bloch states.

7 Readers interested in more information and the 3D case can consult any solid state physics text,

e.g. Ashcroft and Mermin [1].
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Another clue to what the phase γ might mean physically is provided by asking if
it is gauge-invariant. Before, gauge-invariance resulted from assuming that the wave-
function could be continuously defined on the interior of the closed path. Here we have
a closed path on a noncontractible manifold; the path in the integral winds around the
Brillouin zone, which has the topology of the circle. What happens to the Berry phase
if we introduce a phase change φ(k) in the wavefunctions, |uk〉 → e−iφ(k)|uk〉, with
φ(π/a) = φ(−π/a) + 2πn, n ∈ Z? Under this transformation, the integral shifts as

γ → γ +
∮ π/a

−π/a
(∂kφ) dk = γ + 2πn. (1.35)

So, redefinition of the wavefunctions shifts the Berry phase. This corresponds to
changing the polarization by a multiple of the ‘polarization quantum’, which in one
dimension is just the electron charge. (In higher dimensions, the polarization quan-
tum is one electron charge per transverse unit-cell area.) Physically, the ambiguity of
polarization corresponds to the following idea: given a system with a certain bulk unit
cell, there is an ambiguity in how that system is terminated and how much surface
charge is at the boundary; adding an integer number of charges to one allowed termin-
ation gives another allowed termination [37]. The Berry phase is not gauge-invariant,
but any fractional part it had in units of a is gauge-invariant. However, the above
calculation suggests that, to obtain a gauge-invariant quantity, we need to consider a
two-dimensional crystal rather than a one-dimensional one. Then integrating the Berry
curvature, rather than the Berry connection, has to give a well-defined gauge-invariant
quantity.

We will give a physical interpretation of γ in the next section as a 1D polarization
by relating changes in γ to electrical currents. (A generalization of this Berry phase is
remarkably useful for the theory of polarization in real, 3D materials.) In the next sec-
tion, we will understand how this 1D example is related to the 2D IQHE. Historically,
the understanding of Berry phases in the latter came first, in a paper by Thouless,
Kohmoto, den Nijs, and Nightingale [39]. They found that when a lattice is put in
a commensurate magnetic field (one with rational flux per unit cell, in units of the
flux quantum so that Bloch’s theorem applies), each occupied band j contributes an
integer

nj =
i

2π

∫
dkx dky

(
〈∂kx

uj |∂ky
uj〉 − 〈∂ky

uj |∂kx
uj〉

)
(1.36)

to the total Hall conductance:

σxy =
e2

h

∑
j

nj . (1.37)

Now we derive this topological quantity (the ‘Chern number’, expressed as an integral
over the Berry flux, which is the curl of the Berry connection Aj = i〈uj |∇kuj〉) for
the case of 1D polarization, then explain its mathematical significance.
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1.3.2 1D polarization and 2D IQHE

We start with the question of 1D polarization mentioned earlier. More precisely, we
attempt to compute the change in polarization by computing the integral of current
through a bulk unit cell under an adiabatic change:

ΔP =
∫ 1

0

dλ
dP

dλ
=
∫ t1

t0

dt
dP

dλ

dλ

dt
=
∫ t1

t0

j(t) dt. (1.38)

In writing this formula, we are assuming implicitly that there will be some definition
of dP in terms of a parameter λ of the bulk Hamiltonian. Our treatment will follow
that of Resta [37], but with a few more mathematical details in the derivation. (We
write q for 1D momentum and kx, ky for 2D momenta in the following.) We will use
Bloch’s theorem in the following form: the periodic single-particle orbitals un(q, r) are
eigenstates of

H(q, λ) =
1

2m
(p+ �q)2 + V (λ)(r). (1.39)

The current operator is

j(q) = ev(q) =
ie

�
[H(q, λ), r] =

e

m
(p+ �q) =

e

�
∂qH(q, λ). (1.40)

The current at any fixed λ in the ground state is zero, but changing λ adiabatically
in time drives a current that generates the change in polarization. To compute this
current, we need to use the first correction to the adiabatic theorem (cf. the quantum
mechanics book of Messiah [26]). Following Thouless, we choose locally a gauge in
which the Berry phase is zero (this can only be done locally and is only meaningful if
we obtain a gauge-invariant answer for the instantaneous current) and write for the
many-body wavefunction

|ψ(t)〉 = exp
[
− i

�

∫ t

E0(t′) dt′
]⎡⎣|ψ0(t)〉+ i�

∑
j �=0

|ψj(t)〉(Ej − E0)−1〈ψj(t)|ψ̇0(t)〉

⎤⎦ .
(1.41)

Here Ei(t) are the local eigenvalues and |ψj(t)〉 a local basis of reference states. The
first term is just the adiabatic expression we derived before, but with the Berry phase
eliminated with a phase rotation to ensure 〈ψ0(t)|ψ̇0(t)〉 = 0.

We want to use the above expression to write the expectation value of the current.
The ground state must differ from the excited state by a single action of the (one-
body) current operator, which promotes one valence electron (i.e. an electron in an
occupied state) to a conduction electron. Using the one-particle states, we get

dP

dλ
= 2�e Im

∑
v,c

∫
dq

2π
〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉

Ec(q)−Ev(q)
. (1.42)
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For example, we wrote

〈ψj(t)|ψ̇0(t)〉 =
∑
v,c

〈uc|∂λuv〉
dλ

dt
. (1.43)

This sum involves both valence and conduction states. For simplicity, we assume
a single valence state in the following. We can rewrite the sum simply in terms of the
valence state using the first-order time-independent perturbation theory expression
for the wavefunction change under a perturbation Hamiltonian H ′ = dq ∂qH:

|∂quj(q)〉 =
∑
j �=j′

|uj′(q)〉
〈uj′(q)|∂qH(q, λ)|uj(q)〉

Ej(q)− Ej′(q)
. (1.44)

Using this and v(q) = �−1∂qH(q, λ), we obtain

dP

dλ
= 2�e Im

∑
c

∫
dq

2π
〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉

Ec(q)− Ev(q)

= 2e Im
∫

dq

2π
〈∂quv(q)|∂λuv(q)〉.

(1.45)

We can convert this to a change in polarization under a finite change in parameter λ:

ΔP = 2e Im
∫ 1

0

dλ

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (1.46)

The last expression is in 2D and involves the same type of integrand (a Berry
flux) as in the 2D TKNN formula (1.36). However, in the polarization case, there does
not need to be any periodicity in the parameter λ. If this parameter is periodic, so
that λ = 0 and λ = 1 describe the same system, then the total current run in a closed
cycle that returns to the original Hamiltonian must be an integer number of charges,
consistent with quantization of the TKNN integer in the IQHE.

If we define polarization via the Berry connection,

P = ie

∫
dq

2π
〈uv(q)|∂quv(q)〉, (1.47)

so that its derivative with respect to λ will give the result above with the Berry flux,
we note that a change of gauge changes P by an integer multiple of the charge e. Only
the fractional part of P is gauge-independent. Note that u and the Bloch Hamiltonian
are not generally periodic with the Brillouin zone, even though the energy levels and
Berry curvature are. This does not affect the calculation of topological invariants, but
it does matter for evaluating the polarization via (1.47). The relationship between
polarization in 1D, which has an integer ambiguity, and the IQHE in 2D, which has
an integer quantization, is the simplest example of the relationship between Chern–
Simons forms in odd dimension and Chern forms in even dimension. We will turn soon
to the mathematical properties of these differential forms, which in the case above (and
others to be discussed) came from the Berry phases of a band structure.
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1.3.3 Interactions and disorder: the flux trick

One might worry whether the TKNN integer defined in (1.36) is specific to non-
interacting electrons in perfect crystals. An elegant way to generalize the definition
physically, while keeping the same mathematical structure, was developed by Niu,
Thouless, and Wu [31]. This definition also makes somewhat clearer, together with
our polarization calculation above, why this invariant should describe σxy. First, note
that from the formula for the Bloch Hamiltonian in the polarization calculation above,
we can reinterpret the crystal momentum q as a parameter describing a flux threaded
through a unit cell of size a: the boundary conditions are periodic up to a phase
eiqa = eieΦ/�c. We will start by reinterpreting the non-interacting case in terms of
such fluxes, then move to the interacting case.

The setup is loosely similar to the Laughlin argument for quantization in the IQHE.
Consider adiabatically pumping a flux Φx though one circle of a toroidal system, in
the direction associated with the periodicity x→ x+ Lx, y → y. The change in this
flux in time generates an electric field pointing in the x̂ direction. Treating this flux
as a parameter of the crystal Hamiltonian, we compute the resulting change in ŷ
polarization, which is related to the y current density:

dPy
dt

= jy =
dPy
dΦx

dΦx
dt

=
dPy
dΦx

(cExLx). (1.48)

We are going to treat the polarization Py as an integral over y flux but keep Φx as a
parameter. Then [32]

Py(Φx) =
ie

2π

∫
dΦy 〈u|∂Φy

u〉 (1.49)

and we see that polarization now has units of charge per length, as expected. In
particular, the polarization quantum in the y direction is now one electronic charge
per Lx. The last step to obtain the quantization is to assume that we are justified in
averaging jy over the flux:

〈jy〉 =
〈
dPy
dΦx

〉
(cExLx) →

ΔPy
ΔΦx

(cExLx), (1.50)

where Δ means the change over a single flux quantum, ΔΦx = hc/e. So the aver-
aged current is determined by how many y-polarization quanta change in the periodic
adiabatic process of increasing the x flux by hc/e:

〈jy〉 =
e

hc

ne

Lx
(cExLx) =

ne2

h
Ex. (1.51)

The integer n follows from noting that computing dPy/dΦx and then integrating dΦx
gives just the expression for the TKNN integer (1.36), now in terms of fluxes.
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1.3.4 TKNN integers, Chern numbers, and homotopy

In this subsection, we will give several different ways to understand the TKNN integer
or Chern number described above. First, a useful trick for many purposes is to define
the Berry flux and first Chern number in a manifestly gauge-invariant way, using
projection operators. For the case of a single non-degenerate band, define Pj = |uj〉〈uj |
at each point of the Brillouin zone. This projection operator is clearly invariant under
U(1) transformations of uj . The Chern number can be obtained as

nj =
i

2π

∫
Tr [dPj ∧ Pj dPj ] , (1.52)

where ∧ is the wedge product and dPj = ∂kx
Pj dkx + ∂ky

Pj dky is a differential form
where the coefficients are operators. (Note that the wedge product in the above formula
acts only on dkx and dky.) It is a straightforward exercise to verify that this reproduces
the TKNN definition (1.36).

Then the generalization to degenerate bands, for example, is naturally studied by
using the gauge- and basis-invariant projection operator Pij = |ui〉〈ui|+ |uj〉〈uj | onto
the subspace spanned by |ui〉 and |uj〉: the index of this operator gives the total Chern
number of bands i and j. In general, when two bands come together, only their total
Chern number is defined. The total Chern number of all bands in a finite-dimensional
band structure (i.e. a finite number of bands) is argued to be zero below. Often one
is interested in the total Chern number of all occupied bands because this describes
the IQHE through the TKNN formula; because of this zero-sum rule, the total Chern
number of all unoccupied bands must be equal and opposite.

In the remainder of this subsection, we use a powerful homotopy argument of
Avron, Seiler, and Simon to show indirectly that there is one Chern number per
band, but with a ‘zero-sum rule’ that all the Chern numbers add up to zero. We will
not calculate the Chern number directly, but rather the homotopy groups of Bloch
Hamiltonians. To get some intuition for the result, we first consider the example of
a non-degenerate two-band band structure, then give the general result, which is an
application of the ‘exact sequence of a fibration’.

The Bloch Hamiltonian for a two-band non-degenerate band structure can be
written in terms of the Pauli matrices and the two-by-two identity as

H(kx, ky) = a0(kx, ky)1 + a1(kx, ky)σx + a2(kx, ky)σy + a3(kx, ky)σz. (1.53)

The non-degeneracy constraint is that a1, a2, and a3 are not all simultaneously zero.
Now we first argue that a0 is only a shift in the energy levels and has no topological
significance, i.e. it can be smoothly taken to zero without a phase transition. Similarly,
we can deform the other a functions to describe a unit vector on Z2: just as the
punctured plane R2 \ (0, 0) can be taken to the circle, we are taking punctured 3-space
to the 2-sphere via

(a1, a2, a3) →
(a1, a2, a3)√
a1

2 + a2
2 + a3

2
(1.54)

at each point in k-space.
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Now we have a map from T 2 to S2. We need to use one somewhat deep fact: under
some assumptions, if π1(M) = 0 for some target space M , then maps from the torus
T 2 →M are contractible to maps from the sphere S2 →M . Intuitively, this is because
the images of the non-contractible circles of the torus, which make it different from
the sphere, can be contracted on M . By this logic, the two-band non-degenerate band
structure in 2D is characterized by a single integer, which can be viewed as the Chern
number of the occupied band.

What is the Chern number, intuitively? For simplicity let’s consider maps from S2

to the non-degenerate two-band Hamiltonians described above. One picture is in terms
of π2(S2). An alternative picture is that a non-zero Chern number is an ‘obstruction’
to globally defining wavefunctions, in the following sense. F , the first Chern form, is
a 2-form. Let’s consider a constant non-zero F , which for the case S2 → S2 can be
viewed as the field of a monopole located at the centre of the target sphere. Locally,
it is possible to find wavefunctions giving a vector potential A with F = dA, but not
globally. (There has to be a ‘Dirac string’ passing through the surface of the sphere
somewhere.) In other words, states with non-zero Chern number have Chern forms
that are non-trivial elements of the second cohomology class: they are closed 2-forms
that are not globally exact.

The one subtle thing about this two-band model is that there is a non-trivial
invariant in three spatial dimensions, since π3(S2) = Z (the ‘Hopf invariant’). In other
words, even if the Chern numbers for the three 2D planes in this 3D structure are
zero, there can still be an integer-valued invariant.8 This map is familiar to physicists
from the fact that the Pauli matrices can be used to map a normalized complex 2-
component spinor, i.e. an element of S3, to a real unit vector, i.e. an element of S2:
ni = z†σiz. This ‘Hopf map’ is an example of a map that cannot be deformed to the
trivial (constant) map. The Hopf invariant does not generalize naturally to more than
two bands, but the Chern number does, as we now see.

Now we consider the case of a non-degenerate 2D band structure with multiple
bands, which we study using a method of Avron, Seiler, and Simon [3]. By the same
argument as in the two-band case, we would like to understand π1 and π2 of the target
space Hn×n, non-degenerate n× n Hermitian matrices. As before, we will find that π1

is zero, so maps from T 2 are equivalent to maps from S2, but the latter will be quite
non-trivial. We first diagonalize H at each point in k-space:

H(k) = U(k)D(k)U−1(k). (1.55)

Here U(k) is unitary and D(k) is real diagonal and non-degenerate. We can smoothly
distort D everywhere in the Brillouin zone to a reference matrix with eigenvalues
1, 2, . . . because of the non-degeneracy: if we plot the jth eigenvalue of D as a function
of kx and ky, then this distortion corresponds to smoothing out ripples in this plot to
obtain a constant plane.

8 The nature of this fourth invariant changes when the Chern numbers are non-zero, as shown by

Pontryagin in 1941: it becomes an element of a finite group rather than of the integers.
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The non-trivial topology is contained in U(k). The key is to note that U(k) in
the above is ambiguous: right multiplication by any diagonal unitary matrix, an elem-
ent of DU(N), will give the same H(k). So we need to understand the topology
of M = U(N)/DU(N) = SU(N)/SDU(N), where SDU(N) means diagonal unitary
matrices with determinant 1. We can compute π2 of this quotient by using the exact se-
quence of a fibration and the following facts: π2(SU(N)) = π1(SU(N)) = 0 for N ≥ 2.
These imply that π2(M) ∼= π1(SDU(N)) = Zn−1, i.e. n− 1 copies of the integers. This
follows from viewing SDU(N) as N circles connected only by the requirement that the
determinant be 1. Similarly, we obtain π1(M) = 0. We interpret these n− 1 integers
that arise in homotopy theory as just the Chern numbers of the bands, together with
a constraint that the Chern numbers sum to zero.

1.3.5 Time-reversal invariance in Fermi systems

Now we jump to 2004–2005, when it was noted that imposing time-reversal symmetry
in 2D electronic systems leads to new topological invariants. While non-zero Chern
numbers cannot be realized with time-reversal invariance, the zero-Chern-number class
gets subdivided into two pieces: ‘ordinary’ insulators that do not in general have an
edge state, and a QSHE or ‘topological insulator’ where a bulk topological invariant
forces an edge state. The topological invariant is not an integer here but rather a
two-valued or Z2 invariant.

The idea that triggered this development started from considering two copies of the
quantum Hall effect, one for spin-up electrons and one for spin-down, with opposite
effective magnetic fields for the two spins. This combination, studied early on by
Murakami, Nagaosa, and Zhang [28], for example, is time-reversal-invariant because
acting with the time-reversal operator T changes both the magnetic field direction and
the spin. Note that in a model such as this, Sz is a conserved quantum number even
though SU(2) (spin-rotation invariance) is clearly broken, as up and down spins behave
differently. Heuristically, think of the spin–orbit coupling as arising from intra-atomic
terms like L · S, and consider specifically LzSz. For an electron of fixed spin, this
coupling to the orbital motion described by Lz is just like the coupling in a constant
magnetic field, since the orbital motion Lz generates a magnetic dipole moment. In
the simplest case of a Chern number +1 state of up electrons and a Chern number −1
state of down electrons, the edge will have counterpropagating modes: for example,
up spin moves clockwise along the edge and down spin moves counterclockwise. This
turns out to be not a bad caricature of the quantum spin Hall phase in a more realistic
system: one can tell by symmetry arguments that it will have no quantum Hall effect
(i.e. αc = 0 in Ji = αcεijkEjBk), but it will have a spin Hall effect

J ij = αsεijkEk, (1.56)

where αc and αs are some numerical constants and J ij is a spin current (a current of
angular momentum i in spatial direction j.9 The appearance of the electric field rather

9 There are some challenges that arise in trying to define a spin current in a realistic physical system,

chiefly because spin is not a conserved quantity. Spin currents are certainly real and measurable in
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than the magnetic field in the quantum spin Hall equation results from the goal of
having a potentially dissipationless current equation. If dissipation provides no ‘arrow
of time’, then both sides should transform in the same way under the time-reversal
operation, which fixes the field on the right side to be E rather than B.

As an example of this ‘two copies of the IQHE’ generated by spin–orbit coupling,
consider the model of graphene introduced by Kane and Mele [19]. This is a tight-
binding model for independent electrons on the honeycomb lattice (Fig. 1.1). The
spin-independent part of the Hamiltonian consists of a nearest-neighbour hopping,
which alone would give a semimetallic spectrum with Dirac nodes at certain points in
the 2D Brillouin zone, plus a staggered sublattice potential whose effect is to introduce
a gap:

H0 = t
∑
〈ij〉σ

c†iσcjσ + λv
∑
iσ

ξic
†
iσciσ. (1.57)

Here 〈ij〉 denotes nearest-neighbour pairs of sites, σ is a spin index, ξi alternates sign
between sublattices of the honeycomb, and t and λv are parameters.

The insulator created by increasing λv is an unremarkable band insulator. However,
the symmetries of graphene also permit an ‘intrinsic’ spin–orbit coupling of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2

cjσ2 . (1.58)

ψeiφx +  iφy

ψeiφx

ψeiφy

Lx

Ly

ψ

d2

d1

Fig. 1.1 The honeycomb lattice on which the tight-binding Hamiltonian resides. For the two
sites depicted, the factor νij of equation (1.58) is νij = −1. The phases φx,y describe twisted

boundary conditions that are used in the text to give a pumping definition of the Z2 invariant.

(Reprinted with permission from [9]. Copyright 2007 by the American Physical Society.)

various situations, but the fundamental definition we give of the quantum spin Hall phase will actually
be in terms of charge; ‘two-dimensional topological insulator’ is another term for the same phase.
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Here νij = (2/
√

3)d̂1 × d̂2 = ±1, where i and j are next-nearest neighbours and d̂1

and d̂2 are unit vectors along the two bonds that connect i to j. Including this type of
spin–orbit coupling alone would not be a realistic model. For example, the Hamiltonian
H0 +HSO conserves sz, the distinguished component of electron spin, and reduces for
fixed spin (up or down) to Haldane’s model [15]. Generic spin–orbit coupling in solids
should not conserve any component of electron spin.

This model with Sz conservation is mathematically treatable using the Chern num-
ber above, since it just reduces to two copies of the IQHE. It is therefore not all that
interesting, in addition to not being very physical, because of the requirement of Sz
conservation. In particular, the stability of the phase is dependent on a subtle prop-
erty of spin- 1

2 particles (here we use the terms spin- 1
2 and Fermi interchangeably). The

surprise is that the quantum spin Hall phase survives, with interesting modifications,
once we allow more realistic spin–orbit coupling, as long as time-reversal symmetry
remains unbroken.

The time-reversal operator T acts differently in Fermi and Bose systems, or, more
precisely, in half-integer versus integer spin systems. Kramers showed long ago that
the square of the time-reversal operator is connected to a 2π rotation, which implies
that

T 2 = (−1)2S , (1.59)

where S is the total spin quantum number of a state: half-integer-spin systems pick
up a minus sign under two time-reversal operations.

An immediate consequence of this is the existence of ‘Kramers pairs’: every eigen-
state of a time-reversal-invariant spin- 1

2 system is at least twofold-degenerate. We will
argue this perturbatively, by showing that a time-reversal-invariant perturbation H ′

cannot mix members of a Kramers pair (a state ψ and its time-reversal conjugate
φ = Tψ). To see this, note that

〈Tψ|H ′|ψ〉 = 〈Tψ|H ′|T 2ψ〉 = −〈Tψ|H ′|ψ〉 = 0, (1.60)

where in the first step we have used the antiunitarity of T and the time-reversal
symmetry of H ′ and in the second step the fact that T 2 = −1, while the last step is
just to note that if x = −x, then x = 0.

Combining Kramers pairs with what is known about the edge state, we can say a
bit about why a odd–even or Z2 invariant might be physical here. If there is only a
single Kramers pair of edge states and we consider low-energy elastic scattering, then
a right-moving excitation can only backscatter into its time-reversal conjugate, which
is forbidden by the Kramers result above if the perturbation inducing scattering is
time-reversal-invariant. However, if we have two Kramers pairs of edge modes, then a
right-mover can backscatter to the left-mover that is not its time-reversal conjugate.
This process will, in general, eliminate these two Kramers pairs from the low-energy
theory.

Our general belief based on this argument is that a system with an even number
of Kramers pairs will, under time-reversal-invariant backscattering, localize in pairs
down to zero Kramers pairs, while a system with an odd number of Kramers pairs
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will wind up with a single stable Kramers pair. Additional support for this odd–even
argument will be provided by our next approach. We would like, rather than just trying
to understand whether the edge is stable, to predict from bulk properties whether the
edge will have an even or odd number of Kramers pairs. Since deriving the bulk–edge
correspondence directly is quite difficult, what we will show is that, starting from the
bulk T -invariant system, there are two topological classes. These correspond in the
example above (of separated up and down spins) to paired IQHE states with even or
odd Chern number for one spin. Then the known connection between Chern number
and number of edge states is good evidence for the statements above about Kramers
pairs of edge modes.

A direct Abelian Berry-phase approach for the 2D Z2 invariant is provided in
Appendix 1.A, along with an introduction to Wess–Zumino (WZ) terms in (1 + 1)-
dimensional field theory and a physical interpretation of the invariant in terms of
pumping cycles. The common aspect between these two is that in both cases the
‘physical’ manifold (either the 2-sphere in the WZ case, or the 2-torus in the QSHE
case) is extended in a certain way, with the proviso that the resulting physics must be
independent of the precise nature of the extension. When we later go to 3D, it turns
out that there is a very nice 3D non-Abelian Berry-phase expression for the 3D Z2

invariant; while in practice it is harder to compute than the original expression based
on applying the 2D invariant, it is much more elegant mathematically, so we will focus
on that. Actually, for practical calculations, a very important simplification for the
case of inversion symmetry (in both d = 2 and d = 3) was made by Fu and Kane [12]:
the topological invariant is determined by the product of eigenvalues of the inversion
operator at the 2d time-reversal-symmetric points of the Brillouin zone.

1.3.6 Experimental status of 2D insulating systems

This completes our discussion of 1D and 2D insulating systems. The 2D topological
insulator was observed by a transport measurement in (Hg, Cd)Te quantum wells [21],
following theoretical predictions [5]. A simplified description of this experiment is that
it observed, in zero magnetic field, a two-terminal conductance 2e2/h, consistent with
the expected conductance e2/h for each edge if each edge has a single mode, with no
spin degeneracy. More recent work has observed some of the predicted spin transport
signatures as well, although, as expected, the amount of spin transported for a given
applied voltage is not quantized, unlike the amount of charge.

In the next subsection, we start with the 3D topological insulator and its remark-
able surface and magnetoelectric properties. We then turn to metallic systems in order
to understand another consequence of Berry phases of Bloch electrons.

1.3.7 3D band structure invariants and topological insulators

We will give a very quick introduction to the band structure invariants that allowed
generalization of the previous discussion of topological insulators to 3D. However, most
of our discussion of the 3D topological insulator will be in terms of emergent properties
that are difficult to perceive directly from the bulk band structure invariant. We start
by asking to what extent the 2D IQHE can be generalized to 3D. A generalization of
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the previous homotopy argument [3] can be used to show that there are three Chern
numbers per band in 3D, associated with the xy, yz, and xz planes of the Brillouin
zone. A more physical way to view this is that a 3D integer quantum Hall system
consists of a single Chern number and a reciprocal lattice vector that describes the
‘stacking’ of integer quantum Hall layers. The edge of this 3D IQHE is quite interesting:
it can form a 2D chiral metal, as the chiral modes from each IQHE combine and point
in the same direction.

Consider the Brillouin zone of a 3D time-reversal-invariant material. Our approach
will be to build on our understanding of the 2D case: concentrating on a single band
pair, there is a Z2 topological invariant defined in the 2D problem with time-reversal
invariance. Taking the Brillouin zone to be a torus, there are two inequivalent xy
planes that are distinguished from others by the way time-reversal acts: the kz = 0
and kz = ±π/a planes are taken to themselves by time reversal (note that ±π/a
are equivalent because of the periodic boundary conditions). These special planes
are essentially copies of the 2D problem, and we can label them by Z2 invariants
z0 = ±1, z±1 = ±1, where +1 denotes ‘even Chern parity’ or ordinary 2D insulator
and −1 denotes ‘odd Chern parity’ or topological 2D insulator. Other xy planes are
not constrained by time reversal and hence do not have to have a Z2 invariant.

The most interesting 3D topological insulator phase (the ‘strong topological insu-
lator’) results when the z0 and z±1 planes are in different 2D classes. This can occur
if, moving in the z direction between these two planes, one has a series of 2D problems
that interpolate between ordinary and topological insulators by breaking time reversal
invariance. We will concentrate on this type of 3D topological insulator here. Another
way to make a 3D topological insulator is to stack 2D topological insulators, but con-
sidering the edge of such a system shows that it will not be very stable: since two ‘odd’
edges combine to make an ‘even’ edge, which is unstable in the presence of T -invariant
backscattering, we call such a stacked system a ‘weak topological insulator’.

Above we found two xy planes with 2D Z2 invariants. By the same logic, we could
identify four other such invariants: x0, x±1, y0, y±1. However, not all six of these
invariants are independent: some geometry (an exercise for the reader) shows that
there are two relations, reducing the number of independent invariants to four:10

x0x±1 = y0y±1 = z0z±1. (1.61)

We can take these four invariants in 3D as (x0, y0, z0, x0x±1), where the first three
describe layered ‘weak’ topological insulators and the last describes the genuinely
3D invariant that distinguishes ‘strong’ topological insulators. (Note that one mater-
ial can hence be both a strong and a weak topological insulator by this definition.)

10 Sketch of geometry: To establish the first of these equalities, consider evaluating the Fu-Kane 2D
formula on the four effective Brillouin zones (EBZs, see Section 1.A.2) described by the four invariants
x0, x+1, y0, y+1. These define a torus, on whose interior the Chern 2-form F is well defined. Arranging
the four invariants so that all have the same orientation, the A terms drop out, and the F integral
vanishes since the torus can be shrunk to a loop. In other words, for some gauge choice, the difference
x0 − x+1 is equal to y0 − y+1.
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Alternatively, the ‘axion electrodynamics’ field theory in the next subsection can be
viewed as suggesting that there should be only one genuinely 3D Z2 invariant.

For example, the strong topological insulator cannot be realized in any model with
Sz conservation, while, as explained earlier, a useful example of the 2D topological
insulator (a.k.a. QSHE) can be obtained from combining IQHE phases of up and
down electrons. The impossibility of making a strong topological insulator with Sz
conservation follows from noting that all planes normal to z have the same Chern
number, since the Chern number is a topological invariant whether or not the plane
is preserved by time- reversal. In particular, the kz = 0 and kz = ±π/a phases have
the same Chern number for up electrons, say, which means that these two planes are
either both 2D ordinary or both 2D topological insulators.

While the above argument is valid and useful for connecting the 3D topological
insulators to the 2D case, it doesn’t give much insight into what sort of gapless surface
states we should expect at the surface of a strong topological insulator. The answer
can be obtained by other means (some properties can be found via the field-theory
approach given in the next section): the spin-resolved Fermi surface encloses an odd
number of Dirac points. In the simplest case of a single Dirac point, believed to be
realized in Bi2Se3, the surface state can be pictured as ‘one-quarter of graphene’.
Graphene, a single layer of carbon atoms that form a honeycomb lattice, has two
Dirac points and two spin states at each k; spin–orbit coupling is quite weak, since
carbon is a relatively light element. The surface state of a 3D topological insulator can
have a single Dirac point and a single spin state at each k. As in the edge of the 2D
topological insulator, time-reversal invariance implies that the spin state at k must be
the T conjugate of the spin state at −k.

1.3.8 Axion electrodynamics, second Chern number,
and magnetoelectric polarizability

The 3D topological insulator turns out to be connected to a basic electromagnetic
property of solids. We know that in an insulating solid, Maxwell’s equations can be
modified because the dielectric constant ε and magnetic permeability μ need not take
their vacuum values. Another effect is that solids can generate the electromagnetic
term

ΔLEM =
θe2

2πh
E ·B =

θe2

16πh
εαβγδFαβFγδ. (1.62)

This term describes a magnetoelectric polarizability: an applied electrical field gen-
erates a magnetic dipole, and vice versa. An essential feature of the above ‘axion
electrodynamics’ theory (cf. Wilczek [42]) is that when the axion field θ(x , t) is con-
stant, it plays no role in electrodynamics; this follows because θ couples to a total
derivative, εαβγδFαβFγδ = 2εαβγδ∂α(AβFγδ) (here we have used that F is closed, i.e.
dF = 0), and so does not modify the equations of motion. However, the presence of the
axion field can have profound consequences at surfaces and interfaces, where gradients
in θ(x) appear.
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A bit of work shows that at a surface where θ changes, there is a surface quantum
Hall layer of magnitude

σxy =
e2(Δθ)

2πh
. (1.63)

(This can be obtained by moving the derivative from one of the A fields to act on
θ, leading to a Chern–Simons term for the electromagnetic field at the surface. The
connection between Chern–Simons terms and the quantum Hall effect will be a major
subject of the last part of this chapter.) The magnetoelectric polarizability described
above can be obtained from these layers: for example, an applied electric field gener-
ates circulating surface currents, which in turn generate a magnetic dipole moment.
In a sense, σxy is what accumulates at surfaces because of the magnetoelectric polariz-
ability, in the same way as charge is what accumulates at surfaces because of ordinary
polarization.

We are jumping ahead a bit in writing θ as an angle: we will see that, like polar-
ization, θ is only well defined as a bulk property modulo 2π (for an alternative picture
showing why θ is periodic that is more appropriate for electroweak symmetry break-
ing, see [42]). The integer multiple of 2π is only specified once we specify a particular
way to make the boundary. How does this connect to the 3D topological insulator?
At first glance, θ = 0 in any time-reversal-invariant system, since θ → −θ under time
reversal. However, as θ is periodic, θ = π also works, since −θ and θ are equivalent
because of the periodicity, and is inequivalent to θ = 0.

Here we will not give a microscopic derivation of how θ includes, for a band
structure of non-interacting electrons, a part that is an integral of the Chern–Simons
form:

θ =
1
2π

∫
BZ

d3k εijk Tr
[
Ai∂jAk − i

2
3
AiAjAk

]
, (1.64)

which can be done by imitating our previous derivation of the polarization for-
mula [10, 34]. In general, unlike for the electrical polarization, there are additional
non-geometrical contributions as well [11, 24]. Instead, we will focus on understanding
the physical and mathematical meaning of the Chern–Simons form that constitutes the
integrand, chiefly by discussing analogies with our previous treatment of polarization
in 1D and the IQHE in 2D. These analogies are summarized in Table 1.1.

Throughout this subsection,

Fij = ∂iAj − ∂jAi − i[Ai,Aj ] (1.65)

is the (generally non-Abelian) Berry curvature tensor (Aλ = i〈u|∂λ|u〉), and the trace
and commutator refer to band indices. We can gain an understanding of the above
Chern–Simons form K = Tr[Ai∂jAk − i23AiAjAk] by starting from the second Chern
form Tr[F ∧ F ]; the relationship between the two is

dK = Tr[F ∧ F ], (1.66)
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Table 1.1 Comparison of Berry-phase theories of polarization and magnetoelectric
polarizability

POLARIZATION MAGNETOELECTRIC

POLARIZABILITY

dmin 1 3

Observable P =
∂〈H〉
∂E

Mij =
∂〈H〉

∂Ei ∂Bj
=
δijθe

2

2πh

Quantum ΔP =
eR
Ω

ΔM =
e2

h
Surface q = (P1 −P2) · n̂ σxy = M1 −M2

Electromagnetic coupling P ·E ME ·B
Chern–Simons form Ai εijk

(
AiFjk + i13AiAjAk

)
Chern form εij∂iAj εijklFijFkl

just as A is related to the first Chern form: d(TrA) = TrF . These relationships hold
locally (this is known as Poincaré’s lemma—that, given a closed form, it is locally an
exact form) but not globally, unless the first or second Chern form generates the trivial
cohomology class. For example, we saw that the existence of a non-zero first Chern
number on the sphere prevented us from finding globally defined wavefunctions that
would give an A with dA = F . We are assuming in even writing the Chern–Simons
formula for θ that the ordinary Chern numbers are zero, so that an A can be defined
in the 3D Brillouin zone. We would run into trouble if we assumed that an A could
be defined in the 4D Brillouin zone if the first or second Chern number were non-
zero. Note that the electromagnetic action above is just the second Chern form of the
(Abelian) electromagnetic field.

The second Chern form is closed and hence generates an element of the de Rham
cohomology we studied earlier. There are higher Chern forms as well: the key is that
symmetric polynomials can be used to construct closed forms, by the antisymmetry
properties of the exterior derivative. In physics, we typically keep the manifold fixed (in
our Brillouin zone examples, it is usually a torus Tn), and are interested in classifying
different fibre bundles on the manifold. In mathematical language, we want to use
a properly normalized cohomology form to compute a homotopy invariant (i.e. with
respect to changing the connection, not the manifold). This is exactly what we did with
the Chern number in the IQHE, which was argued to compute certain integer-valued
homotopy π2 invariants of non-degenerate Hermitian matrices.

More precisely, we saw that the U(1) gauge dependence of polarization was con-
nected to the homotopy group π1(U(1)) = Z, but that this is connected also to the
existence of integer-valued Chern numbers, which we explained in terms of π2. (These
statements are not as inconsistent as they might seem, because our calculation of
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π2 came down to π1 of the diagonal unitary group.) We can understand the second
Chern and Chern–Simons form similarly, using the homotopy invariants π3 (gauge
transformation in d = 3) and π4 (quantized state in d = 4). The Chern–Simons in-
tegral for θ given above, in the non-Abelian case, has a 2πn ambiguity under gauge
transformations, and this ambiguity counts the integer-valued homotopy invariant

π3(SU(N)) = Z, N ≥ 2. (1.67)

In other words, there are ‘large’ (non-null-homotopic) gauge transformations. Note
that the Abelian Chern–Simons integral is completely gauge-invariant, consistent with
π3(U(1)) = 0.

The quantized state in d = 4 was originally discussed in the context of time-
reversal-symmetric systems. The set Q has one integer-valued π4 invariant for each
band pair, with a zero-sum rule. These invariants survive even once T is broken, but
realizing the non-zero value requires that two bands touch somewhere in the 4D Bril-
louin zone. In this sense, the ‘4D quantum Hall effect’ is a property of how pairs of
bands interact with each other, rather than of individual bands. Even if this 4D QHE
is not directly measurable, it is mathematically connected to the 3D magnetoelectric
polarizability in the same way as 1D polarization and the 2D IQHE are connected.

The above Chern–Simons formula for θ works, in general, only for a non-interacting
electron system. This is not true for the first Chern formula for the IQHE, or the
polarization formula, so what is different here? The key is to remember that the 3D
Chern formula behaves very differently in the Abelian and non-Abelian cases; for
example, in the Abelian case, θ is no longer periodic as the integral is fully gauge-
invariant. Taking the ground state many-body wavefunction and inserting it into the
Chern–Simons formula is not guaranteed to give the same result as using the multiple
one-particle wavefunctions.

However, we can give a many-body understanding of θ that clarifies the geometric
reason for its periodicity even in a many-particle system. Consider evaluating dP/dB
by applying the 3D polarization formula

Pi = e

∫
BZ

d3k

(2π)3
TrAi . (1.68)

to a rectangular-prism unit cell. The minimum magnetic field normal to one of the
faces that can be applied to the cell without destroying the periodicity is one flux
quantum per unit cell, or a field strength h/(eΩ), where Ω is the area of that face.
The ambiguity of polarization (1.68) in this direction is one charge per transverse unit
cell area, i.e. e/Ω. Then the ambiguity in dP/dB is

Δ
Px
Bx

=
e/Ω

h/(eΩ)
=
e2

h
= 2π

e2

2πh
. (1.69)

So the periodicity of 2π in θ is really a consequence of the geometry of polarization,
and is independent of the single-electron assumption that leads to the microscopic
Chern–Simons formula.
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1.3.9 Anomalous Hall effect and Karplus–Luttinger anomalous velocity

Our previous examples of Berry phases in solids have concentrated on insulators,
but one of the most direct probes of the Berry phase of Bloch electrons is found
in metals that break time-reversal symmetry. The breaking of T allows a non-zero
transverse conductivity σxy to exist along with the metallic diagonal conductivity σxx.
This ‘anomalous Hall effect’ (AHE) can originate from several different microscopic
processes. The most interesting from a geometric point of view is the intrinsic AHE
that results from Berry phases of a time-reversal-breaking band structure when the
Fermi level is in the middle of a band. We will not attempt to discuss this interesting
physics here but refer the reader to a comprehensive review by Nagaosa et al. [29]
and note that there are an increasing number of other examples of Berry-phase effects
in metals. There are similar effects related to the orbital moment of Bloch electrons,
which is similar in some ways but not purely geometric since it arises from both
the wavefunctions and the Hamiltonian, unlike the Berry phase, which is purely a
wavefunction property.

1.4 Introduction to topological order

Now we consider strongly interacting topological phases, defined as those that cannot
be understood in terms of free particles. In contrast, the IQHE and topological insu-
lators can be understood in terms of free particles, although these phases are stable
in the sense that they survive over a finite region of interaction strength until a phase
transition occurs. Our main tool will be quantum field theory, which is a powerful
language to describe the long-wavelength physics of interacting systems. After giving
some microscopic motivation from the fractional quantum Hall effect (FQHE), we give
a first example of field theory applied to spin chains as an example of how an analysis
of topological terms in a simple field theory led to a clear experimental prediction (the
‘Haldane gap’) regarding antiferromagnetic integer-spin Heisenberg chains.

We then return to the quantum Hall effect and develop Abelian Chern–Simons
theory, an example of a truly topological field theory. Although it is written in terms
of one or more U(1) gauge fields, similar to ordinary electromagnetism, its behav-
iour is strikingly different from that of the conventional field theories with which the
reader may already be familiar. In lieu of a microscopic derivation, which has been
carried out but is somewhat tedious, we show that it unifies properties such as ground-
state degeneracy, braiding statistics, and edge excitations. We will follow increasingly
standard parlance and use the term ‘topological order’ specifically for phases of matter
described by a non-trivial topological field theory, hence having ground-state degen-
eracy, fractional statistics, etc. Thus the IQHE, which is certainly a topological phase
of matter and well described by the Abelian Chern–Simons theory given below with
k = 1, does not have topological order in the sense introduced by Wen.

1.4.1 FQHE background

We give quickly some standard background on the FQHE in order to motivate the
Chern–Simons field theory introduced below. The goal of that field theory is to give a
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compact universal description of the key features of the topological order in quantum
Hall states, similar in spirit to the Ginzburg–Landau field theory of symmetry-breaking
phases. Most of this material is standard and can be found in a number of edited
volumes and textbooks on the quantum Hall effects [6, 18, 33].

Our discussion centres on the Laughlin wavefunction for 2D electrons (zj =xj + iyj
describes the jth electron, j = 1, . . . , N)

Ψm =

⎡⎣∏
i<j

(zi − zj)m
⎤⎦ exp

(
−
∑
i

|zi|2/4�2
)
. (1.70)

The magnetic length is � =
√

�c/eB and the wavefunction is not normalized. This
wavefunction clearly can be expanded over the single-electron lowest-Landau-level
wavefunctions in the rotational gauge,

ψm = zme−|z|
2/42 . (1.71)

where m = 0, 1, . . . labels angular momentum. For m = 1, the Laughlin state is just a
Slater determinant for the filled lowest Landau level, but for higher m, it is believed
not to be a sum of any finite number of Slater determinants in the N →∞ limit.

This wavefunction can be justified using the pseudopotential approach introduced
by Haldane: it is the maximum-density zero-energy state of a repulsive interaction
that vanishes for relative angular momentum greater than or equal to m. We checked
that its density is ν = 1/m by looking at the degree of the polynomial factor, which is
directly related to 〈r2〉, and argued that it contains ‘quasihole’ excitations of charge
−q/m, where q is the charge of the electrons. The wavefunction for a quasihole at z0 is

Ψquasihole =

[∏
i

(zi − z0)
]

Ψm. (1.72)

The fractional charge can be understood by noting that m copies of the extra factor
here would lead to a wavefunction with an electron at z0, but without treating z0 as
an electron coordinate; in other words, a wavefunction with a ‘hole’ added at z0. It
has edge states that at first glance are loosely similar to those in the filled Landau
level.

1.4.2 Topological terms in field theories: the Haldane gap
and Wess–Zumino–Witten models

As a warm-up for fully topological field theories, we give an example of how topo-
logical terms can have profound consequences in ‘ordinary’ field theories (i.e. theories
without gauge fields). By a topological term, we mean loosely one whose value in
any specific configuration (a path in the path integral) is a topological invariant, so
that the set of all paths can be divided into topological sectors by the value of the
topological term. A famous example of this phenomenon found by Haldane led to the
first understanding of the gapped spin-1 Heisenberg antiferromagnet in one spatial



Introduction to topological order 37

dimension, which has recently been interpreted as a symmetry-protected topological
phase of interacting particles because it can be smoothly connected to a trivial phase
by breaking spatial symmetries such as inversion. We will focus on topological terms
that appear in nonlinear σ-models, which, despite their unwieldy name, are a very ba-
sic type of field theory for systems in or near an ordered phase breaking a continuous
symmetry.

We first present Haldane’s example (following closely the treatment of
Auerbach [2]), and then discuss a different kind of topological term that appears
in Wess–Zumino–Witten models, again in one spatial dimension; details of the latter
are provided in Appendix 1.A. The nonlinear σ-model (NLSM) is an example of an
effective theory, a simplified description of the low-energy degrees of freedom of a com-
plicated system. Ginzburg–Landau theory is another such effective theory, and one use
of the NLSM is as a further simplification of Ginzburg–Landau theory where we have
thrown away the ‘hard’ or ‘massive’ fluctuations of the magnitude of the order par-
ameter, keeping only the ‘soft’ or ‘massless’ fluctuations within the order-parameter
manifold.

For definiteness, we consider a d-dimensional XY model, which would be described
in Ginzburg–Landau theory by a 2-component real or 1-component complex order
parameter. The mean-field physics in the ordered phase as a function of the order
parameter is as follows: the order-parameter manifold of symmetry-related ground
states is a circle, and we can expect that fluctuations along this circle are ‘soft’ in
the sense of requiring little energy (since this is a flat direction of the energy), while
those perpendicular to the circle are more costly. This order-parameter manifold is
the same as that considered in the discussion of topological defects in Section 1.2,
where defects were classified using maps from surfaces enclosing the defect in real
space to the order-parameter manifold. At low temperature, we might expect that a
reasonable description of the system is therefore obtained just from fluctuations of
the order parameter’s direction, leading to a functional integral for the coarse-grained
classical partition function:

ZNLSM =
∫
Dθ(x) exp

[
−βc

∫
(∇θ)2

2
ddx

]
. (1.73)

Here c is a coupling constant with units of energy if d = 2; one could estimate c
simply from the coupling strength in a lattice XY model. The NLSM it is called
nonlinear because the circle is defined by a hard constraint on the n̂ field, which in more
complicated target manifolds such as the sphere leads to interaction (i.e. nonlinear)
terms in the fields obtained in a perturbative expansion; it is called a σ-model because
of its first appearance in particle physics.

For a quantum-mechanical model at zero temperature, we might expect on
general grounds that imaginary time will become an extra dimension in any Euclid-
ean path-integral representation of the partition function, in the same way as the
Dirac–Feynman path integral for quantum mechanics involves integration of the La-
grangian over time (a (0 + 1)-dimensional theory). Now we will obtain a NLSM for
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a quantum-mechanical problem in one spatial dimension. Heuristically, we might ex-
pect an NLSM to be a reasonable description for a quantum model that is ‘close to’
having symmetry-breaking order.

Our approach is to derive a connection between the low-energy, long-wavelength
degrees of freedom of the spin path integral of the Heisenberg antiferromagnet. This
process is known as Haldane’s mapping in the context of spin systems: we will use
it to show that there is a topological term present for half-integer spin but not for
integer spin, which is believed to explain the different behaviour seen numerically and
experimentally in these two cases.

First we look for a more general way of writing the Berry -phase term for a spin
that results from setting up a coherent-state path integral for spin. In order to make
a path integral, we should set up an integral over ‘classical’ trajectories—what is the
classical trajectory of a spin? One answer is to use the overcomplete basis of coherent
states for the spin-S Hilbert space [2], which are labelled by a unit vector Ω̂. As S
increases, the spin wavefunction becomes more and more concentrated around Ω̂:

ω[Ω̂] = −
∫ β

0

dτφ̇ cos θ. (1.74)

For a closed path on the sphere, this corresponds to the signed spherical area enclosed
by the path. An overall ambiguity of ±4π in this area does not affect the physics, since
the area ω appears in the path-integral action with a coefficient −iS. For a many-spin
system, the full action is

S[Ω̂] = −iS
∑
i

ω[Ω̂i] +
∫ β

0

dτ
S2J

2

∑
ij

Ω̂i · Ω̂j . (1.75)

For now, we return to a single spin to set up an improved way of writing the Berry-
phase term.

Let the vector potential A(Ω̂) be assumed to have the property that its line integral
over a closed orbit on the sphere should give the area enclosed by the orbit:

ω =
∫ β

0

dτ A(Ω̂) · ˙̂Ω. (1.76)

Then Stokes’s theorem fixes curl A to be the magnetic field of a magnetic monopole
(a vector with uniform outward component):

∇×A · Ω̂ = εαβγ
∂Aβ

∂Ω̂α
Ω̂γ = 1. (1.77)

Two explicit examples to check that this can be done are

Aa = −cos θ
sin θ

φ̂, Ab =
1− cos θ

sin θ
φ̂. (1.78)


