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Foreword

Thermodynamics has evolved dramatically since the precursor of this book, Dennis
Sherwood’s Introductory Chemical Thermodynamics, was published in 1971. This development
is completely reflected in the new text, which is really an entirely new book. The title has also
very aptly been changed in order to emphasise that one of the most important new areas where
thermodynamics can make a major impact is within the bio world: biochemistry and molecu-
lar biology. This is emphasised by chapters on the bioenergetics of living cells, macromolecular
conformations and interactions, and even an outlook toward where thermodynamics seems to
be headed in the future, such as the self-assembly of large complexes.
The sequence of chapters cleverly escalates from everyday experiences to precise definitions,

to ideal modelling and then real adjustments. Spontaneity, time, order and information fol-
low naturally, and from these the more complicated chemical and electrochemical reactions,
ending up with reactions and structure formation in the living environment – a very long
staircase, but with comfortable small steps.
While the content has been brought fully up-to-date and the focus adjusted to fertile mod-

ern areas, the old friendly writing style has been preserved. In particular in the beginning
where the basic thermodynamic concepts are introduced, we find essentially no equations,
only simple verbal explanations based on common observations so that the reader will build
a clear intuitive understanding of the topic without the all too frequent mathematical barrier.
This approach is especially important for readers in the bio field who often do not have the
same strong background in mathematical thinking andmodelling as those in the hard sciences
and engineering. This is not to say that the book has left out all maths, it just comes later when
the concepts have been understood. This is a unique pedagogical approach among thermo-
dynamics textbooks, which undoubtedly will facilitate the reader’s entry into thermodynamic
thinking.
Every chapter starts with a summary of the concepts presented in that chapter, useful both

before reading the chapter for giving direction and after reading it for wrapping up the new
items into a whole. The exercises at the end of all chapters further emphasise understanding
and relations. They are unconventional by not asking the student to calculate a certain quan-
tity, but to explain an observed behaviour, relating different effects, predict a behaviour and
find an error in an argument. In other words, they encourage thinking, rather than mechanical
calculational skills. The concluding glossary of thermodynamics terms, and the introductory
index of symbols, are very useful for the novice when the many new words and symbols
become confusing.
I strongly recommend this introductory thermodynamics textbook for its inviting

approach, focus on concepts and relationships, comprehensive coverage, and openness
toward the biological sciences.

Bjarne Andresen
Niels Bohr Institute, University of Copenhagen





Oh, you can’t pass heat from the cooler to the hotter
You can try it if you like, but you far better notter

’Cause the cold in the cooler will get cooler as a ruler
That’s the physical law!

From First and Second Law, by Michael Flanders and Donald Swann, performed in
their musical revue At the Drop of Another Hat, 1963





Preface

This book originated as a proposed second edition to Introductory Chemical Thermodynam-
ics, published in 1971, with the specific intention of adding material relating to current-day
applications of thermodynamics to biology, including topics such as bioenergetics, protein-
folding, protein-ligand interactions, and protein aggregation. This has, indeed, been done,
but we also took the opportunity to enrich and enhance the discussion of the fundamen-
tals of thermodynamics, the Three Laws, and chemical applications. Accordingly, this book
is structured as:

• Part 1: Fundamentals: introducing the concepts of work, temperature, heat and en-
ergy, state functions and path functions, and some of the mathematical principles that
will be used throughout the book.

• Part 2: The Three Laws: the core of the book, in which we explore the First Law,
internal energy and enthalpy; the Second Law and entropy; and the Third Law and the
approach to absolute zero.

• Part 3: Free energy, spontaneity, and equilibrium: where we explain the central role
of the Gibbs free energy as regards both the spontaneity of change, and also the nature
of chemical equilibrium.

• Part 4: Chemical applications: covering how the principles discussed so far can be
applied to phenomena such as phase equilibria; reactions in solution; acids, bases,
and buffer solutions; boiling points and melting points; mixing and osmosis; and
electrochemistry.

• Part 5: Biochemical applications: where we describe how biological systems capture
the free energy within molecules such as glucose, or within light, store it temporarily
within molecules such as ATP, and then use that free energy to drive, for example, the
synthesis of complex biomolecules; we also explore how proteins fold, and interact
with ligands, as well as how proteins self-assemble to form larger-scale structures.

Thermodynamics is notoriously difficult to understand, learn, and use, and so we have taken
great care to explain as clearly as possible all the fundamental concepts. As a quantitative
branch of science, thermodynamics necessarily uses mathematics to describe how physic-
ally measureable phenomena, such as the pressure exerted by a gas, or the concentration of
a component within a solution, are related, and how they change as conditions such as the sys-
tem temperature vary. Much of the required mathematics is explained, and developed, within
the text. The only pre-requisites are some knowledge of basic algebra, and of differential and
integral calculus (for example, if y = 3x2, then dy/dx = 6x, and ∫(1/x) dx = ln x).
This book has not been written to support a specific curriculum; rather, it has been

written to provide “everything a student needs to know about chemical and biochemical
thermodynamics” in the context of passing undergraduate examinations, and providing a solid
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platform for more advanced studies. The content of the book is therefore likely to be broader,
and in some respects deeper, than the precise requirements for any specific course. We trust,
however that it includes all the required content for very many courses. As a consequence, the
book will be of value to undergraduate students of chemistry and biochemistry, and related
fields, as well as to students of higher-level programmes who seek a source of reference. Also,
the exercises associated with each chapter have been designed to stimulate thinking, rather
than as practice problems for a specific examination.
Many people have, of course, contributed to our thinking and to the knowledge we are

sharing in this book, and we gratefully acknowledge all our own teachers and mentors. In
particular, we wish to thank Professor Alan Cooper, of the University of Glasgow, and Pro-
fessor Bjarne Andresen, of the Niels Bohr Institute at the University of Copenhagen, for their
most helpful suggestions and insights.We also thankHarriet Konishi, Shereen Karmali,Megan
Betts and Sonke Adlung at OUP, and also Marie Felina Francois, Indumadhi Srinivasan and
everyone in the production team, with whom it has been a pleasure to work—and, of course,
our wives and children, who have been remarkably patient, supportive, and understanding as
we have been (from their totally legitimate standpoint) both distracted and obsessed by the
intricacies of reversible changes, electrode potentials, and entropy.
We trust you will enjoy reading this book and will benefit accordingly. If you notice

any errors, think any particular topic is poorly explained, or if you have any ideas for
making the book clearer or more useful, please do let us know—our email addresses are
dennis@silverbulletmachine.com and p.dalby@ucl.ac.uk. Thank you!

Dennis Sherwood
Exton, Rutland

Paul Dalby
University College, London
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PART 1

Fundamentals





1 Systems and states

Summary

Thermodynamics is the macroscopic study of heat, work and energy.

The domain of the universe selected for study comprises the system, and the rest of the universe

constitutes the surroundings. The system and the surroundings are separated by the system boundary.

At any time, any system has a number of properties, known as state functions, which can be meas-

ured, and serve to define the state of the system at any time. Extensive state functions, such as mass,

depend on the extent of the system; intensive state functions, such as temperature, are independent

of the extent of the system. All extensive state functions per unit mass are intensive state functions.

Thermodynamic equilibrium is a state in which all state functions are constant over time, and for

which all intensive state functions have the same values at all locations within the system.

If measurements are taken on an equilibrium system at different times, and if the value of at least one

state function X has changed from an initial value X1 to a value X2, then the system has undergone a

change in state. The corresponding change �X in the state function X is defined as

�X = X2 – X1 (1.2a)

in which the initial value X1 is subtracted from the final value X2. Mathematically, all state functions are

defined by an exact differential dX.

A consequence of equation (1.2a) is that the change �X in any state function X depends only on the

values X1 and X2 of X in the initial and final states, and is independent of the path followed during the

change in state. The value of �X therefore contains no information of how a particular change in state

took place.

An ideal system – of which an ideal gas is one example – is a system in which, fundamentally,

there are no intermolecular interactions. Any macroscopic properties, such as the thermodynamic state

functions, are linear additions of the state functions of smaller sub-systems, and, ultimately, of the micro-

scopic properties of the molecules themselves. In real systems, molecules do interact, and so ideal

systems are a theoretical abstraction. They are, however, much simpler to describe and analyse, and

so the study of ideal systems provides a very useful model, which can then be used as a basis of the

study of more complex, real, systems.

1.1 Some very familiar concepts . . .

We all know that iced water feels cold, that freshly made tea or coffee feels hot, and that
many of the meals we eat are warm – not as cold as the iced water, not as hot as the tea,
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but somewhere in-between. From a very early age, we learn that the degree of ‘coldness’ or
‘hotness’ we experience is associated with a concept we call ‘temperature’ – things that feel hot
have a high temperature, things that feel cold have a low temperature.
We also know that flames are very hot indeed, far too hot for us to feel directly with our

hands. And when we put a saucepan containing cold water in contact with a hot flame – as
we do when we’re cooking – we know that the water in the saucepan gets steadily warmer: the
proximity of the hot flame to the cold water heats the water up.
Putting something hot next to something cold is not the only way things can get warmer:

another way is by working. Once again, we all know that when we work hard – for example, by
vigorous physical exercise such as running hard, digging a hole, or carrying heavy weights – we
quickly become very warm, just as warm as we would by sitting quietly by a log fire. And after
we’ve worked hard for a while, we become tired, and we feel we’ve lost energy, as if the energy
that was in our body earlier in the day has been used up because of the work we have done.
So we rest, perhaps have something to eat, and after a while, we feel we have more energy, and
can then do some more work.
This is very familiar to all of us – words such as cold, hot, temperature, heat, work and

energy are part of our natural every-day language. They are also the fundamental concepts
underpinning the science of thermodynamics, and to explore that science – as we will do in
this book – we need to enrich our understanding of what words such as ‘temperature’, ‘heat’,
‘work’ and ‘energy’ actually mean, moving beyond subjective feelings such as ‘hotness’ and
‘coldness’ to well-formulated scientific definitions. So, our purpose in the first three chapters is
to do just that, and to offer some deeper insights into these familiar every-day phenomena.

1.2 The macroscopic viewpoint

Thermodynamics is a very practical branch of science. It’s development, during the nineteenth
century, was closely associated with the need to gain a better understanding of steam engines,
addressing questions such as:

• How much work can a steam engine actually do?
• How might we design better engines – engines that can perform more work for the
same amount of coal or wood used as fuel?

• Is there a maximum amount of work a steam engine might do for a given amount of
coal or wood? In which case, what might this optimal design be?

Given the importance of steam engines at that time – engines that provided mechanical power
to factories, motive power to railways, as well as releasing ships from their reliance on the
wind – this is practical stuff indeed.
As a consequence, thermodynamics is concerned with quantities that are readily measur-

able in real circumstances – quantities such as the mass of an engine, the volume of a boiler,
the temperature of the steam in a turbine. These quantities all at a ‘human scale’, they are all
macroscopic. Macroscopic quantities may be contrasted with microscopic quantities, where
in this context, the term ‘microscopic’ does not relate to what you might observe in the op-
tical instrument known as a microscope; rather, it refers to phenomena associated with the



STATE FUNCTIONS 5

atomic and molecular structures of, for example, the engine, the boiler or the steam. We now
know, without any doubt, that atoms and molecules exist, and we now have a deep under-
standing of their behaviour. But when thermodynamics was developed, the concepts of atoms
and molecules were theoretical, and very much under exploration – there was at that time no
direct evidence that these invisible particles actually existed, and there were no measurements
of their properties.
One of the strengths of thermodynamics is that the intellectual framework, and verymany of

its practical applications, are rooted firmly in the macroscopic, directly observable, world. As a
consequence, thermodynamics does not rely on any assumptions or knowledge of microscopic
entities such as atoms and molecules. That said, now that we have some very powerful theor-
ies of atomic and molecular behaviour, it is often both possible, and helpful, to interpret the
macroscopically observed behaviour of real systems, as expressed and understood by thermo-
dynamics, in terms of the aggregate microscopic behaviour of large numbers of atoms and
molecules – that’s the realm of the branch of science known as statistical mechanics, which
forms a bridge between the microscopic world of the atom andmolecule, and the macroscopic
world of the readily observable.
Accordingly, much of this book will deal with the macroscopic, observable world – but on

occasion, especially when the interpretation of macroscopic behaviour is mademore insightful
by reference to what is happening at an atomic or molecular level, we’ll take a microscopic
view too.

1.3 The system, the surroundings, and the system boundary

Our universe is huge and complex, and howevermuchwemaywish to understand the universe
as a whole, we often choose to examine only a small portion of it, and seek to understand that.
The areas of study that different people might select can be very diverse in scope, and of very
different scales: so, for example, a sociologist might seek to understand the social interactions
in a city; an astrophysicist, a star; a biochemist, the structure of a protein. We use the term
system to define the domain of interest in any specific circumstance, so, for the sociologist, the
relevant system will be a chosen city; for the astrophysicist, a particular star; for the biochem-
ist, a specific protein. Everything outside the defined system constitutes the surroundings, and
the system and the surroundings collectively make up the universe. Given the distinction be-
tween the system of interest and the surroundings, we use the term system boundary to refer
to the system’s outer perimeter, defining precisely where the system meets the surroundings:
everything within the system boundary comprises the system, everything beyond it, the sur-
roundings. The system boundarymay be rigid if the system is of fixed size and shape, but this is
not a necessary condition – many systems of interest can change their size or shape, changing
the boundary accordingly.

1.4 State functions

That said, our study of thermodynamics will start with a system that does have a rigid
boundary – a system comprised of a homogeneous gas, within a sealed container, the walls
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of which are assumed to be rigid (for example, steel), rather than flexible (for example, a rub-
ber, inflatable, balloon). The interior surface of the container wall forms the system boundary,
as shown in Figure 1.1, with the container itself being in the surroundings.

System

System boundary

Surroundings

Figure 1.1 A system. This system is a gas within a sealed, rigid, container, with the system boundary being the interior wall
(as shown by the somewhat exaggerated dashed line). The gas within the container may be associated with a number of

properties, such as its massM kg, its volume V m3 and its temperature t ◦C.

At any time, any system will be associated with a number of relevant properties. So, for
example, the system of a homogeneous gas within a container will have a mass M kg (that’s
the mass of just the gas, not including the mass of the container that holds the gas), the gas
will occupy a volume V m3, and the gas will have a temperature t ◦C. Properties of a system
that can be measured at any single point in time – of which mass, volume and temperature
are three examples – are known as state functions. The simultaneous values of all the state
functions relevant to any particular system collectively define the state of the system at the time
of measurement, and a state may be represented by specifying the appropriate state function
values within square brackets as [M, V , t, . . .].

1.5 Extensive and intensive state functions

All state functions may be classified as either extensive or intensive, according to whether or
not a measurement of that state function depends on the size and scale of the system.
So, for example, a system’s volume clearly depends on how big the system is, and if an im-

aginary partition is drawn half-way across a system of volume V , this would result in two
sub-systems, each of volume V/2. Volume is therefore classified as an extensive function, as
is mass M, and to determine the value of any extensive state function, we need to make a
measurement on the system as a whole.
In contrast, an intensive state function does not require a measurement to be taken on the

system as a whole: rather, a meaningful measurement can be taken at any location within
a system. One example of an intensive state function is temperature; another is density =
mass/volume, where we see that the intensive state function, density, is the ratio of two
extensive functions, mass and volume.
In general, extensive state functions are additive, whereas many intensive state functions are

not. To illustrate this, consider two systems: the first a solid of a given material of mass M1

kg, volume V1 m3, density ρ1 = M1/V1 kg/m3 and temperature t ◦C; and the second, a solid
of a different material of mass M2 kg, volume V2 m3, density ρ2 = M2/V2 kg/m3 and at the
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same temperature t ◦C. If the two systems are combined, then, according to the Law of the
Conservation of Mass, the mass of the resulting system isM1 +M2 kg, and we would expect the
volume to be V1 +V2 m3. The density of the combined system, however, is (M1 +M2)/(V1 +V2)
kg/m3, which is not in general equal to the sum ρ1 + ρ2 = M1/V1 +M2/V2; furthermore, given
that both systems were at the same temperature t ◦C, the temperature of the combined system
is also t ◦C, and not the sum of the temperatures 2t ◦C. Extensive functions are therefore
additive, but many intensive functions are not.

1.6 The mole number n

An extensive state function that will feature strongly throughout this book is themole number
n, which specifies the number of moles of material within any given system. By definition,
1 mol of material comprises a fixed number of particles, which may be atoms, molecules or
ions, depending on the nature of the system in question. The “fixed number” is defined by the
Avogadro constant NA = 6.022141 particles mol–1. The mole number n defines how much
material is within any given system, so for example, the total massMi of a system of ni mol of
any pure substance i is given byMi = ni mi, wheremi is the mass of a single particle, this being
an atom, molecule or ion as appropriate.
As we have just seen, the value of any extensive function for any system depends on the ex-

tent of that system, where ‘extent’ is determined by howmuch material is contained within the
system. For a system comprised of a single pure substance i, all extensive functions therefore
depend linearly on the mole number ni. Accordingly, the mass M of any system is related to
the mole number n as

M = nM

in whichM, themolar mass, is the massM of a system comprising precisely 1 mol of material,
where, as before, the ‘material’ refers to the particles from which the system is composed, these
being atoms, molecules or ions as appropriate.
Our example so far has referred only to the mass M; in fact, for any system of n mol, any

extensive state function X is related to its molar equivalent by an equation of the form

X = nX (1.1a)

from which

X =
X
n (1.1b)

Equations (1.1a) and (1.1b) have a particularly important implication. Since any molar state
extensive function X is defined for a specific, fixed, quantity of material, 1 mol, then the
value of any molar extensive function X cannot depend on the extent of the correspond-
ing system – that extent is totally defined as 1 mol. Any molar extensive state function X is
therefore itself an intensive state function. It is therefore always possible to convert any exten-
sive state function X into its intensive counterpart X by dividing X by the appropriate mole
number n.
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1.7 The ‘ideal’ concept

In the previous paragraphs, we used our words carefully: so, for example, we said “in gen-
eral, state functions are directly additive . . . ”, “according to the Law of the Conservation of
Mass . . . ” and “we would expect the volume to be V1 +V2 m3”. These words might appear to
be superfluous: of course adding a mass M1 kg to a mass M2 kg results in a combined mass
of (M1 +M2) kg; of course adding a volume V1 m3 to a volume V2 m3 results in a system of
volume (V1 +V2) m3. Both of these statements are often true, but not always. So, for example,
at room temperature, if 1 m3 of pure ethanol C2H5OH is added to 1 m3 of pure water, the
resulting volume is not 2 m3 – rather, it is about 1.92 m3. And if two masses of 0.75 kg of
uranium-235 are added, the result is not a mass of 1.50 kg – it is a nuclear explosion.
Being able to add the values of extensive state functions is very useful, and so two sub-

stances are said to be ideal if the value of any extensive state function – such as the mass or the
volume – of any mixture of those two substances is the sum of the appropriate values of the
corresponding state functions of each substance in its pure state. This concept also applies to
a pure substance too, for a system comprising any given mass M kg of a pure substance is, in
principle, a mixture of two half-systems, each of massM/2 kg. All extensive state functions of
ideal substances are therefore linear with the quantity of matter, usually measured in terms of
the mole number, the number of moles of material present, as represented by the symbol n.
As will be seen throughout this book, ideal behaviour is much easier to analyse, and to

represent mathematically, than real behaviour. And although ideal behaviour is fundamen-
tally a theoretical abstraction, the behaviour of many real systems approximates to the ideal
closely enough for ideal analysis to have real practical value. Also, the theoretical foundations
of ideal behaviour act as a very sound basis for adding the additional complexities required for
a better understanding of real behaviour. We will identify some further properties of ideal sys-
tems elsewhere (see, for example, page 17); in general, throughout this book, unless explicitly
stated otherwise, all systems will be assumed to be ideal, and associated with linearly additive
extensive state functions.

1.8 Equilibrium

Suppose we observe a system over a time interval, and measure all the system’s state functions
continuously. If all the state functions maintain the same values throughout that time, then
the system is stable and unchanging – it is in equilibrium. Then, as time continues, if the
value of even just one state function changes, the system is said to have undergone a change
in state. Once again, that’s all obvious – but there is a subtlety: we haven’t specified how long
that ‘time interval’ is. If the time interval is long – say, hours, days or years – and the values
of all the state functions maintain the same values, then words such as ‘stable’, ‘unchanging’
and ‘equilibrium’ all make sense. But if the time interval is very short – say, nanoseconds –
then we would expect many systems to be ‘stable’ over this very short timescale, but not over
a somewhat longer timescale, say, a few milliseconds or seconds. This implies that, if the time
interval over which measurements are made is short enough, all systems will be identified as
stable, unchanging, in equilibrium – at which point, these concepts become unhelpful.
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To avoid this problem, this book will make the assumption that the time interval over which
any system is being observed is ‘long’ – that means seconds at the very minimum, and often in
principle hours and days – rather than ‘short’ (picoseconds, nanoseconds, milliseconds).
A special, and limited, case of equilibrium is thermal equilibrium, as happens when two

systems, or different component parts within a single system, are at the same tempera-
ture. Thermodynamic equilibrium is a broader concept, requiring all thermodynamic state
functions to be in equilibrium. It is therefore possible for a given system to be in thermal
equilibrium, but not in thermodynamic equilibrium – as, for example, happens when a gas
expands, so changing its volume, but keeping its temperature constant.
A further feature of an equilibrium state is that, at any time, the values of all intensive state

functions are the same at all locations within the system, whereas in a non-equilibrium system,
it’s likely that at least one intensive state function will have different values at different loca-
tions. As an example, consider a system composed of a block of metal at a higher temperature,
placed in direct physical contact with a block of an equal mass of the same metal at a lower
temperature, as shown in Figure 1.2.

Originally hot Originally cool

System boundary

Figure 1.2 A system which is not in equilibrium. This system comprises a hotter block of metal (on the left) in contact
with a cooler block of the same mass of the same metal (on the right). Over time, although the mass and volume of this

system both remain constant, the temperature at any specific location in the system will change as the originally hotter block
becomes cooler, and the originally cooler block becomes hotter. Furthermore, at any one time, the temperature will be
different at different locations. Ultimately, both blocks will assume the same temperature, and that temperature will be

uniform throughout the system: the system will then be in equilibrium.

An observer of this system would notice that, as time passes, the hotter block becomes
cooler, and the cooler one hotter. Although the mass of the system remains constant, as does
the volume (assuming that any thermal expansion or compression is negligible), the tempera-
ture at any single location within the system changes over time; furthermore, at any one time,
the temperature will be different at different locations within the system. These observations
verify that the system is not in equilibrium. Ultimately, the system arrives at a state in which,
at any location, the temperature no longer changes over time; furthermore, throughout the
system, the temperature has the same value. Thermal, and thermodynamic, equilibrium have
now been achieved.
Equilibrium is an important concept since it underpins measurement: if a system is not

in equilibrium, then the values of at least one state function will be changing over time; fur-
thermore, at any one time, it is also likely that at least one intensive state function will have
different values in different locations within the system. Under these conditions, it is impos-
sible to make statements of the form “the value of [this] state function is [this number]”, and so
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the state of the system, as expressed by the set of values of that system’s state functions, cannot
be defined. The assumption made throughout this book is therefore that, unless specifically
otherwise stated, measurements of any system refer to equilibrium states of that system, and
the corresponding value of any state function, extensive or intensive, is an equilibrium value.
The study of the thermodynamics of equilibrium states, and of changes from one equi-

librium state to another, is, unsurprisingly, known as equilibrium thermodynamics. During
the mid-twentieth century, the concepts of equilibrium thermodynamics were enhanced and
enriched to encompass the behaviour of non-equilibrium states, and for his pioneering con-
tributions to the development non-equilibrium thermodynamics, the Belgian scientist Ilya
Prigogine was awarded the 1977 Nobel Prize in Chemistry. Non-equilibrium thermodynam-
ics is a fascinating branch of science, and still very much an active area of research, with
applications to a diversity of fields such as biochemistry and even economics, but beyond
the scope of this book – for further information, please refer to the titles suggested in the
references.

1.9 Changes in state

1.9.1 Identifying changes in state

Consider now the system illustrated in Figure 1.3, which comprises a homogeneous gas within
a cylinder fitted with a piston, rather like the cylinder and piston in an internal combustion
engine, or a conventional hand-operated pump for inflating the tyres on a bicycle. Let’s assume
that there is no friction between the piston and the cylinder; let’s also assume that the walls of
the cylinder are impermeable and that the piston is very close-fitting, so that nothing can get
into, or leave, the interior of the cylinder, either through the walls or by leaking past the piston.
But unlike the system shown in Figure 1.1, which has a rigid boundary and a fixed volume, the
system in Figure 1.3 has a flexible boundary and can change its volume as the piston moves
inwards or outwards.

System boundary
(a)

Peg 1 Peg 2

Volume
V1

(b)

System boundary

Peg 1 Peg 2

Volume
V2

Figure 1.3 A change in state. This system is a gas enclosed in a cylinder fitted with a moveable, frictionless, piston. In (a),
the piston is held in place by peg 1, and the volume is V1 ; in (b), the piston has moved to the right, and is now held in place

by peg 2. The volume of the system has increased to V2 , and there has been a change in state.
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Suppose that the piston is held in place by peg 1, as shown in Figure 1.3(a), and that the gas
inside the cylinder is in equilibrium. Suppose further that we measure the value of the state
function mass to beM1 and value of the state function volume to be V1.
If peg 1 is then taken away, let us suppose, with reference to Figure 1.3(b), that the piston

moves a small distance to the right, until it stops at peg 2. Instantaneously after peg 1 is taken
away and the piston moves, the gas is turbulent and not in equilibrium, but very soon after
the piston has stopped at peg 2, the gas returns to equilibrium. Given our assumptions that
the walls of the cylinder are impermeable, and that the piston doesn’t allow leaks, the mass of
the gas is still M1; but since the gas has expanded, the volume will now be measured as V2,
which will be larger than the original measurement V1. The value of the state function volume
V has changed, from which we infer that the system has undergone a change in state.

1.9.2 Measuring changes in state

Themeasurement of changes in state is central to thermodynamics, which adopts a convention
as to how the corresponding change in any state function is represented. So, for example, a
change in volume, represented by �V , is defined as

�V = V2 – V1 (1.2a)

in which the initial value V1 is subtracted from the final value V2: importantly, the subtraction
is always that way around

change in state function = value of state function in final state

– value of state function in initial state

This convention implies that all changes in state functions are signed, algebraic, quantities
that convey particular meaning. So, for example, if a gas expands, so that V2 is greater than V1,
then �V = V2 – V1 is a positive number; conversely, if the value of �V as associated with any
particular change is known to be positive, then we may infer that the volume of the system has
expanded. Similarly, if a gas is compressed, so that V2 is less than V1, then �V = V2 – V1 is
a negative number; conversely, if the value of �V as associated with any particular change is
known to be negative, then we may infer that the volume of the system has contracted.
The symbol � is used for macroscopic changes, such as those that are readily measureable.

Sometimes, especially in the development of the theory of thermodynamics, it is useful to con-
sider very small, or even infinitesimally small, changes: accordingly, small changes in state
functions are conventionally represented using the symbol δ, for example δV , and infinitesi-
mally small changes are represented by the symbol d, for example dV . As with the definition
of the macroscopic change �V , as expressed by equation (1.2a), both small changes δV and
infinitesimal changes dV are defined as (value of state function in final state) – (value of state
function in initial state), and are signed algebraic quantities.
Macroscopic changes �X for the change in any state function X from state [1] to state [2]

can also be represented as the summation of small changes as

�X =
state [2]∑
state [1]

δX = X2 – X1 (1.2b)
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or as an integral of infinitesimal changes as

�X =
state [2]∫

state [1]

dX = X2 – X1 (1.2c)

The fact that expression defined by equation (1.2c) can be integrated directly to give a result of
the form X2 – X1 implies that dX is what is known mathematically as an exact differential.

1.9.3 Changes in state can followmany different paths

Suppose that we observe a system in equilibrium, and measure the volume as V1. Sometime
later, we observe the system again, and measure the volume V2, from which we can infer, as we
have seen, that the system has undergone a change in state, the change in volume being �V =
V2 – V1. We can verify that a change in state has indeed taken place, but how did that change
happen? How might we gain some insight as to what took place between the initial state, V1,
and the final state V2? The answer to these questions is that the measurement of the change
in volume �V gives no information whatsoever about the change itself : the observation of
the initial state, V1, and of the final state V2, associated with the calculation of �V = V2 – V1,
tells us only about the overall change in state, but nothing about how that change took place,
nothing about the path taken.
This is illustrated in Figure 1.4, which shows a change in state from an initial volume V1 to

a final volume V2. This could happen as a single step, as indicated by path 1; alternatively, the

Path 2

Path 1

Path 2

Volume
V1

Volume
V2

Volume
V3

Figure 1.4 A change in a state function is independent of the path of the change. For a change in state from V1 to V2 ,
the change in volume �V = V2 – V1 is the same, no matter what path is followed.
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change could have taken place firstly by compressing the gas to an intermediate equilibrium
state with a smaller volume V3, followed by an expansion to the final state with volume V2, as
indicated by path 2. Both paths lead from the same initial state of volume V1 to the same final
state of volume V2; both paths have the same change in volume �V = V1 – V2. The actual
paths taken, however, were different – but measurements of the volume V in the initial and
final states can give no information as to whether path 1 was followed, or path 2. Paths 1 and 2,
as shown in Figure 1.4, are of course just two possibilities – anything might have happened.
The change in volume �V , however, is determined solely by values of the volume V in the
initial and final states, regardless of what has happened as the change in state took place, and
this applies to all state functions: state functions have no ‘memory’ of how the system has
evolved – they simply describe the state of the system as it is at the time of measurement.

1.10 The surroundings have state functions too

Most of our attention, quite understandably, is on the system of interest, and on the state func-
tions that describe that system at any time. It’s worth noting, however, that the surroundings
are characterised by state functions too – and although the measurement of an extensive func-
tion such as volume might be problematic (the surroundings, in principle, extend to the edge
of the universe!), no such problems arise with the measurement of intensive functions, such as
temperature, since their values are independent of size.
The measurement of the state functions of the surroundings is of especial relevance in con-

nection with a particular type of path. We have already seen that a change in state for a system
can take place along any number of paths, and it so happens that one particular type of path is
especially important, a path known as a reversible path. We’ll explore the properties of revers-
ible paths in more detail later (see pages 117 to 126) – but one feature of a reversible path is
relevant here: a reversible path is a path which, when reversed, returns both the system and the
surroundings to their original states, implying that all the state functions, for both the system
and the surroundings, are restored to their original values.

1.11 Pressure

1.11.1 Pressure is an intensive state function

With reference to Figure 1.5(a), the piston of the cylinder containing the gas is held in place by
peg 1. Suppose that the surroundings of the cylinder are a vacuum. What would we observe if
peg 1 is removed?
What would happen is that, as soon as the peg is removed, the piston would move to the

right, and probably quite quickly too (the piston is assumed to be frictionless), until the piston
is stopped by peg 2, as shown in Figure 1.5(b). Why does the piston move?
The fact that the piston, which was originally at rest (and so has a velocity of zero), starts

to move (and so has a non-zero velocity) implies that it accelerates, from which, according to
Newton’s Second Law of Motion, we infer that the piston was subject to a force. This force
must come from the gas within the cylinder, and be a force which is exerted over the internal
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Peg 1

(a) (b)

Peg 2

Vacuum

Peg 1 Peg 2

Vacuum

Figure 1.5 Expansion against a vacuum. The piston is initially held in place by peg 1 as in Figure 1.5(a). When peg 1 is
removed, the piston moves to the right until stopped by peg 2, as in Figure 1.5(b).

surface of piston. If this force is F N, and if the area of the inner surface of the piston is Am2,
then we can define the pressure P exerted by the gas on the piston as

P =
F
A Pa

and the force F is given by

F = PA N

The pressure P is a property of the system, it can be measured at any point in time, and its
value does not depend on the size of the system – all of which imply that pressure P is an in-
tensive state function. The unit of pressure measurement is the Pascal, named after the French
mathematician and physicist, Blaise Pascal, with 1 Pa = 1 N m–2.
In Figure 1.5 (a), when peg 1 is in place securing the piston, the piston does notmove because

the force exerted by the gas on the internal surface of the piston is counterbalanced by the
force exerted by the peg on the external surface of the piston, so holding the piston in position.
When peg 1 is removed, this restraining force is no longer present; furthermore, because the
surroundings are a vacuum, and the piston is assumed to be frictionless, there is no longer any
opposing force at all, and so the piston moves to the right in Figure 1.5(b), until it is stopped
by peg 2.
If, however, the surroundings are not a vacuum, but also gaseous – say the atmosphere –

then the surroundings will exert a pressure Pex on the external surface of the piston. If the
external surface area of the piston is the same as the internal surface area, A m2, then the
external force, acting on the piston from right to left in Figure 1.6, is Pex A N. When peg 1 is
removed, and in the absence of any friction, the net force FL→R acting on the piston, from left
to right in Figure 1.6, is therefore given by

FL→R = PA – PexA = (P – Pex)A

If the internal pressure P and the external pressure Pex are equal, then (P – Pex) = 0, implying
that FL→R = 0. There is no net force on the piston, and so the piston does not move.
If, however, the internal pressure P is greater than the external pressure Pex

P > Pex



PRESSURE 15

Peg 1 Peg 2

Pex

PexP

P

Figure 1.6 Pressure difference. If the pressure P exerted by the gas on the inner surface of the piston is greater than the
pressure Pex exerted by the surroundings on the outer surface of the piston, when peg 1 is removed, the piston will move to

the right.

then the net force FL→R is positive, and so the piston will move from left to right in Figure 1.6;
but if

P < Pex

the net force FL→R is negative, and so the piston will move from right to left in Figure 1.6.
The movement of the piston, and the direction of that movement, therefore depends on the
pressure difference (P – Pex) between the gas inside the piston and the pressure exerted by the
surroundings.

1.11.2 Atmospheric pressure

As just noted, the gases in the earth’s atmosphere exert pressure on the earth’s surface – and on
us too, but we usually don’t notice it because the interior of our bodies are at the same pres-
sure. The actual pressure exerted by the atmosphere depends on a number of circumstances,
for example, the local weather and the altitude (which is when we do notice things – in an
aeroplane, or sometimes in the lift in a high building, we experience our ears ‘popping’ as
the pressure inside our bodies equilibrates with the external pressure), so the term standard
atmospheric pressure, sometimes (and rather inaccurately) abbreviated to atmospheric pres-
sure, or expressed as the unit-of-measure one atmosphere, is a reference pressure defined as
101,325 Pa, this being a representative value of the average atmospheric pressure at sea level.
Since 101,325 is rather a clumsy number, a numerically simpler, but nearby, unit-of-measure,
the bar, defined as 105 Pa, is commonly used in thermodynamics, especially in applications
associated with engineering.

1.11.3 Boyle’s Law – an equation-of-state

The study of the atmosphere plays an important part in the early development of thermo-
dynamics, and indeed of modern science, for in the 1660s, a number of scientists were studying
how the pressure of a specific quantity of air changed as its volume changed. Some careful
experiments were carried out in which a specific mass of air was allowed to come to equi-
librium, and measurements made of the air’s pressure, say, P1, and volume, V1. The pressure
was then changed to a new value P2, and the air once again allowed to come to equilibrium,
taking care to ensure that the temperature of the air remained constant throughout. Once the
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air had regained equilibrium (which it did quite quickly), the new volume V2 was recorded.
This procedure was repeated several times, so producing a set of pairs of [P1, V2], [P2, V2], . . . ,
[Pn, Vn], . . . , each pair representing the simultaneous values of the two state functions P and V
at successive, different, equilibrium states of the system, all of which were at the same tempera-
ture. The results were striking: for a given mass of air, the values Pn and Vn were all different,
but the product PnVn for any pair of simultaneous values turned out to be the same number:

PV = a constant, for a fixed mass of air at constant temperature (1.3)

This relationship, now known as Boyle’s Law (after Robert Boyle, one of the scientists in-
volved), shows that, for a system comprising a fixed mass of air at constant temperature, the
simultaneous values of the two state functions, pressure P and volumeV , are not independent,
but are related to one another by a simple equation. This implies that if the value of either of
the state functions P or V is known, the corresponding value of the other can be calculated, so
enabling us to predict the behaviour of the system – and the ability to predict with confidence
is at the very heart of science. Equations that show how different state functions of a single
system are related to one another are known as equations-of-state, of which Boyle’s Law is
our first example.

1.12 The ideal gas

Careful experimentation, using different gases at wide ranges of pressure, demonstrates that
Boyle’s Law is not universally true – for example, at a temperature of 150 ◦C and a pressure of
1 atmosphere, water exists as a gas, and for small variations of pressure, Boyle’s Law will hold.
But as the pressure is increased, and the volume decreases, keeping the temperature constant
at 150 ◦C as required for Boyle’s Law, a point is reached at which the behaviour of the gas devi-
ates significantly from that predicted by Boyle’s Law, and ultimately – even at 150 ◦C – a great
enough pressure (in fact, not so great – rather less than 5 times normal atmospheric pressure)
causes the gas to condense as liquid water, at which point Boyle’s Law has no validity at all.
In reality, Boyle’s Law is an approximation, and an approximation that usually works better
for lower pressures (and greater volumes) than higher pressures (and smaller volumes). Vari-
ous modifications and extensions have been made to Boyle’s Law, resulting in more complex
equations-of-state for gases that have broader applicability: one, relatively simple, example is
the van der Waals equation, which can be written as(

P +
a
V2

)
(V – b) = c (1.4)

where, for a given mass of gas at a constant temperature, a, b and c are constants; some rather
more complex equations-of-state for real gases are given on page 50, and the considerably
more complex equations-of-state for solids and liquids are best found in texts on condensed
matter physics.
To avoid mathematical complexity, it is very helpful to invoke the concept of the ideal (or

perfect) gas. Although an ideal gas does not exist in reality, it does provide a very useful ‘model’
for the development of theory, and so whenever we use the term ‘gas’ in this book, we are
referring to an ideal gas.
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Formally, an ideal gas is one whose molecules

• occupy zero volume
• are spherical
• undergo elastic collisions, and
• have no mutual interactions, however far apart or close together.

Most importantly, for an ideal gas, Boyle’s Law, equation (1.3), is valid unconditionally, and,
as we shall see in this book, this opens the door to the identification of many other important
properties of an ideal gas too – properties that give great insight into the behaviour of real
systems.

1.13 Pressure – a molecular interpretation

To understand more richly why gases exert pressure, we need to consider what is happening
at a microscopic, molecular, level. Imagine that the cylinder containing an ideal gas is made
of glass, and that the gas has a slight colour. With reference to Figure 1.5, when the piston is
held in position towards the left by peg 1, we will see the colour uniformly spread throughout
the available space within the cylinder, showing that the gas fills the entire volume. Now think
what we would see if peg 1 is removed, and the pistonmoves to the right to the position defined
by peg 2, so allowing the gas to occupy a larger volume. After some initial turbulence, we will
see a uniform colour filling the entire, larger, space. From this observation, we can infer that
the individual gas molecules are able to move – and move very quickly – over macroscopic,
easily observable, distances: if they were not able to move, or if they were able to move only
very slowly, the colour would stay ‘bunched up’ within the volume as defined by the original
position of the piston, even after the piston has moved.
The fact that the molecules can move implies that each molecule has a velocity of magnitude

v, and, since each molecule also has mass m, each molecule has a corresponding momen-
tum of magnitude mv. So before peg 1 is removed, in accordance with Newton’s First Law of
Motion, anymolecule will bemoving with its appropriate velocity in a straight line, until some-
thing happens – for example, an elastic collision (by assumption, the molecules of an ideal gas
undergo elastic collisions) with another molecule, as a result of which the two colliding mol-
ecules move off in different directions, according to the law of conservation ofmomentum. But
instead of colliding with another molecule, a given molecule might undergo an elastic collision
with a wall of the cylinder, or the inside surface of the piston. Since the walls of the cylinder
are rigid, and the piston is held in position by peg 1, the molecule will bounce back, once again
according to the law of conservation of momentum.
Figure 1.7 shows the collision of a molecule of mass m with the inner surface of the piston.

The molecule approaches the piston at an angle θ , implying that the component of the velocity
parallel to the surface of the piston is v sin θ (downwards in Figure 1.7), and that the compo-
nent perpendicular to the surface of the piston is v cos θ (from left to right in Figure 1.7). At
the collision, which takes place over a very brief time period δτ , themolecule bounces back, but
the piston, being held in place by peg 1, and vastly more massive than the molecule, does not
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Peg 1 Peg 2

ν

ν

θ

Figure 1.7 Pressure is attributable to molecular collisions. When a molecule of mass m collides with the interior surface
of the piston, it undergoes a change in momentum of –2 mv sin θ . This results in a tiny force on the piston. Pressure is the

macroscopic effect of all these molecular collisions.

move, nor does the container. If the collision is elastic, so that there is no loss of kinetic energy,
then, after the collision, the component of the molecule’s velocity parallel to the surface of the
piston is unchanged, but the component perpendicular to the surface of the piston becomes
–v sin θ , with the – sign indicating that the molecule is now moving, in Figure 1.7, from right
to left. During the collision, themolecule therefore undergoes a change inmomentum given by

Change in momentum = New momentum – Old momentum = –2mv sin θ

Now, Newton’s Second Law of Motion can be stated as “force equals the rate of change in
momentum”, implying that, during the collision, themolecule experiences, very briefly, a force
of magnitude –2 mv sin θ /δτ , in which the – sign indicates that this force is from right to left
in Figure 1.7, so explaining why the molecule bounces back. We now invoke Newton’s Third
Law of Motion, which tells us that “to every action, there is an equal an opposite reaction”.
So, if the piston exerts a force of –2 mv sin θ /δτ on the molecule so causing it to bounce
back, then the molecule exerts an equal and opposite force of +2 mv sin θ /δτ on the piston,
the + sign indicating that this force is from left to right in Figure 1.7. Each molecular collision
therefore exerts a tiny force on the piston – just like the impact of a tennis ball on a tennis
racket. Macroscopically, the huge number of molecular collisions each second results in the
total force exerted not only on the piston, but on all the walls of the cylinder too – hence the
measurable pressure P.

EXERCISES

1. Write down clear, complete, and precise definitions of:
� system
� surroundings
� boundary
� state
� state function
� extensive state function
� intensive state function
� change in state
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� path
� pressure
� equation-of-state.

2. Classify the following state functions as either extensive or intensive:
� mass
� molar volume
� temperature
� volume
� pressure
� surface area
� density
� mole number
� molar concentration (the number of moles of a pure substance, say, sucrose, dissolved in

a given volume, say, 1 m3, of a solute such as pure water).
3. You are observing a system. How would you determine whether the system is, or is not,

in equilibrium?
4. You are observing a system of a given mass of a gas, and make a series of measurements

of the system pressure P for a number of equilibrium states:

State Pressure P, Pa

[1] 1.01325 × 105

[2] 1.00000 × 105

[3] 0.81300 × 105

[4] 2.40000 × 105

[5] 1.25000 × 105

[6] 0.65000 × 105

What is the change �P in the system pressure for the following changes in state:
� From state [1] to state [3]?
� From state [3] to state [1]?
� From state [4] to state [5]?
� From state [4] to state [6]?
� From state [6] to state [5]?
� From state [6], via state [5], to state [4]?
� From state [4], via state [2], then state [5], then state [1], to state [3]?
� From state [3], via state [1], then state [5], then state [2], then state [6], then state [1], then

state [4], to state [3]?
5. What are the key characteristics of an ideal gas?
6. A given mass of an ideal gas, within a given volume, exerts a pressure P. If the average

molecular velocity doubles, what pressure does the gas now exert? Why? What do you
think might cause the average molecular velocity to increase?



2 Work and energy

Summary

Work is a phenomenon observed at the boundary of a system when that system changes state, if and

only if something occurs at that boundary (such as the motion of the boundary) which may be inter-

preted as motion against an external force. An example of work is P,V work of expansion – the work a

system does when it expands against an external force, for example, the force attributable to atmospheric

pressure.

Work takes place only as a system changes state. Work is therefore not a property of the state of

a system, and so is not a state function. Rather, the amount of work performed by a system on the

surroundings, or by the surroundings on the system, is determined by the path taken as the change in

state takes place, and so work is an example of a path function. This implies that, even if the initial and

final states of a system are the same, different amounts of work will be performed according to the path

followed between those two states. Mathematically, this path-dependence implies that work cannot be

represented by an exact differential, but rather by an inexact differential, đw.

A special form of path is a quasistatic path, which takes place

• through a sequence of equilibrium states

• in an infinite number of infinitesimal steps

• infinitely slowly

implying that, throughout the change in state, the state functions of the system undergoing the change

are well-defined. Quasistatic changes can therefore be represented as a curve on a graph, such as a P,V

diagram.

A thermodynamic cycle is a sequence of steps which return a system back to its original state. For a

complete cycle, the change �X in any state function X must be zero, hence∮
dX = 0 (2.6)

In general, however, for a path function, for example, work w∮
đw 
= 0 (2.8)

Energy is the capacity to perform work.

2.1 Work – an initial definition

The simplest, and most obvious, example of work is the lifting of a mass from the ground. If
a mass M kg is on the ground, then gravity is holding it on the surface with a force given by

Modern Thermodynamics for Chemists and Biochemists. Dennis Sherwood and Paul Dalby.
© Oxford University Press 2018. Published 2018 by Oxford University Press.
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Mg N, where g m sec–2 is the acceleration attributable to gravity. To raise the mass, an upwards
force, just greater thanMg, is required to overcome the force of gravity, and if the mass is lifted
vertically through a distance hm, the work done is defined as

Work done = Force overcome x Distance moved in direction of the force = Mgh J

where the unit-of-measure is the Joule, J, such that 1 J = 1 N m = 1 kg m2 sec–2.

2.2 The work done by an expanding gas

2.2.1 An important equation, work = PexdV

We now return to the system of the gas in the cylinder, with the piston held in place by a peg.
The pressure of the gas is P, and let’s assume that the surroundings are the atmosphere, which
exerts a pressure Pex. If the atmospheric pressure Pex on the external surface of the piston equals
the pressure P of the gas on the internal surface of the piston, and if the internal and external
areas A of the piston are equal, then, as we saw on page 14, the forces acting on the piston are
also equal. In this case, if the peg holding the piston is removed, the piston stays still.

P

P

l

Pex

Pex

Peg 1 Peg 2 

Figure 2.1 Work. If the external pressure Pex on the piston is slightly less than the internal pressure P, when peg 1 is
removed, and in the absence of all friction, the piston will move a distance �l to the right, sweeping out a volume

�V = A�l, where A is the area of both the interior and exterior faces of the piston. If the external pressure Pex remains
constant throughout the change, then the work done by the gas against the surroundings is PexA�l = Pex �V .

But suppose that the external pressure Pex of the atmosphere is a little lower than the internal
pressure P of the gas inside the cylinder. When peg 1 is removed, the force exerted by the gas
on the piston is greater than the force exerted by the atmosphere, and so, in the absence of all
friction, the piston will move to the right, until stopped by peg 2, as shown in Figure 2.1. In so
doing, the piston is moving against a force, and through a distance, implying that work is being
done by the gas within the cylinder, against the atmosphere outside. If the distance the piston
moves is, say, �l m, then – once again assuming that there is no friction between the piston
and the cylinder - the work done by the gas against the surroundings can be quantified as

Work done by the system on the surroundings

= Force overcome × Distance moved in direction of the force
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If the external pressure Pex of the atmosphere is constant throughout the change, as is quite
reasonable if the change takes place over a short time, then

Work done by the system on the surroundings = PexA × �l = Pex × A�l

But A�l is the volume �V swept out by the movement of the piston, this being the increase
in the volume V of the gas inside the piston, and so

Work done by the system on the surroundings = Pex �V (2.1)

The use of the symbol �V for the change of volume suggests that the change in state is finite;
exactly the same reasoning can be used for an infinitesimal change, allowing us to express the
infinitesimal work done by the system on the surroundings as Pex dV .
These two expressions Pex �V and Pex dV for the work done by a system of an expanding

gas against the system’s surroundings are important, and will be used many times in this book.
And there are four aspects of this result which merit particular attention.

2.2.2 Work is done only against an external force

The first is that the work done by the gas inside the cylinder is calculated by reference to
the external pressure Pex, a state function of the surroundings, not the internal pressure P, a
state function of the system, the gas in the cylinder. This is often something of a surprise –
but it makes sense in that work is done in overcoming a force, and the force that is being
overcome in this instance is that attributable to the external pressure Pex, as exerted by the
surroundings. Indeed, if the surroundings are a vacuum (or very close to it), then Pex = 0,
and so no work is done. As we shall shortly examine in more detail (see page 29), there is a
very important circumstance in which Pex is only a very little less than the gas pressure P, in
which case Pex ≈ P and so Pex �V ≈ P�V , and, for an infinitesimal change, Pex dV ≈ P dV .
The work done by the system is now expressed in terms only of state functions P and V of
the system itself. This is significant, for if we have information on the appropriate equation-
of-state (see page 31) specifying how the gas’s pressure P, and volume V , are related, we can
then compute the actual value of P�V , or P dV , so enabling us to quantify the amount of
work done.

2.2.3 Work done ‘by’, and work done ‘on’

The second important aspect of equation (2.1) is to note that work always involves two
‘parties’ – ‘someone’ who does the work, and, at the same time, ‘someone’ on whom that work
is done. So if I lift a mass from the floor, I do the work, and work is done on the mass. In the
case of the gas in the cylinder, if the pressure P of the gas is higher than the pressure Pex of the
surroundings, so that the pistonmoves to the right in Figure 2.1, then, as the gas expands, work
is done by the gas on the surroundings; if the pressure P of the gas is less than the pressure Pex

of the surroundings, so that the piston moves from right to left in Figure 2.1 so compressing
the gas, then work is done on the gas by the surroundings.
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2.2.4 Work happens at the system boundary. . .

The third important aspect of equation (2.1) is rather less obvious, but a moment’s thought will
verify that work is a phenomenon that can be observed only at the boundary of a system, for
it is at the boundary that the ‘two parties’ just referred to – the system and the surroundings –
interact. This is helpful, for it tells us where to look if we wish to determine whether work is
being done during a change in state, or not: we don’t look within the system, we look at the
system’s boundary.

2.2.5 . . . as the system changes state

Furthermore, work only happens as a system changes state, as is evident from the presence
of the symbol � in equation (2.1). This therefore leads to a more sophisticated definition of
work as

Work is a phenomenon, identified at the boundary of a system, as that

system changes state, if and only if something occurs at that boundary

which may be interpreted as motion against an external force.

This definition highlights the two facts that work takes place at the system boundary, and can
be identified only during a change in state. In addition, this definition allows for work to be
associated with a variety of different contexts. One such context, now very familiar, is when
a gas expands, driving the piston of the cylinder against an external pressure at the system
boundary – which can indeed “be interpreted as motion against an external force”. This is
therefore an instance of work, which, since it concerns changes in the system’s pressure P and
volumeV , is known as P,V work of expansion, or, more simply, P,V work. But there are other
contexts too: the most familiar example is gravitational work done in lifting a mass against
the force of a gravitational field; another relates to the motion of an electric charge against an
electrical potential difference, this being ‘electrical work’; a third is the work required to stretch
a surface, against the force attributable to surface tension (as takes place when a soap bubble
expands), known as ‘surface work’; a fourth is the work required to change the orientation of a
magnetic dipole against the force attributable to a local magnetic field – ‘magnetic work’; and
yet another is the work done to overcome the force of friction, known as ‘frictional work’.

2.3 Path functions

2.3.1 Work is an example of a path function

With reference to Figure 2.2(a), suppose that the piston is originally held in position by peg 1,
that the pressure of the gas in the cylinder is P1, and that the volume is V1. We may therefore
represent the initial state of the gas as [P1, V1]. If the pressure Pex exerted by the surroundings
is a little less than the pressure P1, then, when peg 1 is removed, and in the absence of all
friction, the piston moves to the right, until it is stopped by peg 2, as shown in Figure 2.2(b).
The gas inside the cylinder now has a volume V2, greater than the original volume V1; the
pressure is also likely to have changed too, so let’s represent the new pressure as P2. The system
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Figure 2.2 A change in state from [P1, V1] to [P2, V2].

has therefore undergone a change in state from [P1, V1] to a different state, which we can
represent as [P2, V2].
As this change in state took place, the piston moved to the right, from the position defined

by peg 1 to that defined by peg 2 in Figure 2.2, and so the system did work against the external
pressure Pex of the surroundings, which we can quantify using equation (2.1) as

Work done by the system on the surroundings = Pex �V (2.1)

The important words here are “as this change in state took place”, for this emphasises a fun-
damentally important attribute of work, which we have already noticed: work happens only as
a system changes state. When the piston stops at peg 2, and the system achieves its final state
[P2, V2], any work that might have been done has been finished – it no longer exists. Unlike
variables such as pressure and volume, which are properties of states, work is not a property of
a state, but a phenomenon which can occur only when a system changes state.
Phenomena which occur as a system changes state are known as path functions, of which

work is an example. Path functions are fundamentally different from state functions: as we
have seen, a state function describes a specific property of a system at a point in time, whereas
a path function describes a phenomenon that occurs as a system changes state over time. The
distinction between a state function and a path function is further clarified by imagining what
happens when time ‘freezes’. If time is ‘frozen’, the question “What is the volume V of the gas
in the cylinder?” has a sensible answer: we canmeasure that volume as, say, 0.76 m3, for the gas
has a property called ‘volume’, which we can measure at a specific point in time. In contrast,
the question “What is the work of the gas?” is meaningless: the gas does not possess a property
called ‘work’, and we can’t measure work at a single point in time. Rather, ‘work’ is a description
of a phenomenon which takes place over a period of time, as a system changes from one state
to another. So, the sensible question relating to work is not “What is the work of the gas in
state 2?”, but rather “What amount of work was done as the system changed from state 1 to
state 2?”.

2.3.2 The value of a path function depends on the path taken between
two states

An important feature of all path functions is that their value depends upon the path taken
between any two states. This is different from the behaviour of state functions: as we have
seen, the value of any state function, such as volume V or pressure P, is a property of a state
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itself, and the values of the changes �V and �P of the state functions V and P depend only
on the values V1 and P1 of the initial state in which the system started, and V2 and P2 of the
final state in which the system ended up. The changes�V and�P are therefore determined by
reference only to the initial state and the final state, and so are independent of how the change
in state took place.
Path functions are significantly different: their values are totally dependent on the path, as

we shall now demonstrate by reference to the system illustrated in Figure 2.3, the left-hand
side of which shows our now-familiar gas in a cylinder, fitted with a frictionless piston, held in
place by peg 1.

P1

P1

Pex

Pex Pex

Pex

P2

P2

l(a) (b)

Peg 1 Peg 2
Peg 1

Peg 2

Figure 2.3 Work is a path function. The system is initially in state (a), [P1, V1], and, after removal of peg 1, changes to
state (b), [P2, V2]. When the piston moves frictionlessly to the right, from peg 1 to peg 2, the change �V in the state function
volume depends only on the difference between the final volume V2 and the initial volume V1 . The work done by the gas on
the surroundings, Pex �V , depends on Pex , which can take a wide range of different values, even though the change �V in
volume is the same in each case. The amount of work done by the gas against the surroundings therefore depends on the

way in which the change take place: work is therefore a path function.

Suppose that, in the state illustrated by Figure 2.3(a), the volume of the gas inside the cy-
linder is V1, and the pressure P1. Suppose further that the surroundings are a vacuum, so that
the external pressure Pex is zero, or very close to it. When peg 1 is removed, the piston moves
frictionlessly to the right in Figure 2.3, and stops at peg 2. In this second state, the volume of
the gas inside the cylinder is now V2, greater than the original volume V1. Since the value V2

of the state function volume is different as compared to the value V1, a change in state has
occurred, and we can calculate the change of volume, �V = V2 – V1.
The work done by the gas during this change in state can be computed using equation (2.1):

Work done by gas on the surroundings = Pex �V (2.1)

But, in this case, Pex is zero, so the work done is zero.
Let’s do this experiment again, starting with the piston at peg 1, and the volume of gas V1

and the pressure P1, but with an external pressure Pex at some (constant) non-zero value, rather
lower than the pressure P1 of the gas inside the cylinder. When the peg is removed, the higher
pressure within the cylinder drives the piston frictionlessly against the external pressure Pex

to the right in Figure 2.3, until the piston stops once more at peg 2, with the volume of the
gas once again V2. The change �V = V2 – V1 in the volume of the gas is exactly the same as
before, but this time, because Pex now has some constant, non-zero, value, the work done by
the gas

Work done by gas on the surroundings = Pex �V (2.1)
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also has a non-zero value, depending on precisely what the values of Pex and �V actually are:
if Pex is small, then the amount of work done is correspondingly small; if Pex is large (but still
less than the pressure inside the cylinder), then the amount of work is larger. We therefore see
that the change �V in the state function volume is the same in all cases, and depends solely
on the values of the state function volume in the initial and final states; the amount of work,
however, depends on how the change in state took place, the actual path followed during the
change. This demonstrates that work is indeed a path function, and that the amount of work
done during any change in state depends on the path taken.
We have already seen that small changes in state functions are represented using the symbols

δ or d, as exemplified by δV and dV . In recognition of the different nature of path functions as
compared to state functions, small quantities of a path function are represented by the single
symbol đ – so a small quantity of work is written as đw. The total amount of work done during
a change in state from state [1] to state [2] is represented by {1w2}X, where the notation { . . . }X
indicates that the actual value of total work done during any particular change in state depends,
as we have seen, on the path X taken. If path X takes place in small steps, we can write

{1w2}X =
state [2]∑
state [1]

đw (2.2a)

and if the path can be considered to be taken in infinitesimal steps, then

{1w2}X =
state [2]∫

state [1]

đw (2.2b)

It’s important to note that although equation (2.2b), representing the total work done during
the change from state [1] to state [2], is written as an integral, this does not imply that the
expression can be integrated directly to give a result of the form w2 –w1, for this would require
that w2, representing the ‘work in state 2’, and w1, the ‘work in state 1’, actually exist, and
can be subtracted from one another. As we have seen, there is no property w2, nor w1, so the
summation, equation (2.2a), or the integral, equation (2.2b), needs to be determined for each
particular circumstance, according to the actual path followed. The fact that the expression
(2.2b) cannot be integrated directly implies that đw, an infinitesimal change of a path function,
is what mathematicians call an inexact differential – in contrast to the exact differential dX,
representing an infinitesimal change of the state function X that we met in equation (1.2c).

2.4 An important sign convention

As we have seen (see page 11), changes in state functions, whether large, as symbolised by
�V , small (δV), or infinitesimal (dV), are signed quantities, so that a positive value implies (in
this case) that the volume of the system has increased, and a negative value, that the volume
has decreased. Work too is a signed quantity, and the sign also has significance. Reference to
equation (2.1) will show that if the gas expands, �V is positive. Since the force against which
work is done is always positive, then the product Pex �V is positive. The work done by the
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system on the surroundings is therefore a positive number. In contrast, if work is done by the
surroundings on the system, the gas is compressed and so �V is negative, implying that the
work done on the gas is a negative number. This is an important sign convention, which we
can summarise as

• Work done by a system is represented by a positive number.
• Work done on a system is represented by a negative number.

2.5 Useful work . . .

Peg 1 Peg 2

Pex

PexP

P

Figure 2.4 Two types of work. If P> Pex , then as the piston moves to the right, the system does two types of work: P,V
work of expansion Pex �V against the atmosphere, and also gravitational workMg�h as required to lift the mass.

In Figure 2.4, the system of the now-familiar gas within a cylinder fitted with a frictionless
piston is connected to a mass M. Let us now suppose that peg 1 is removed, and the piston
moves to the right. In so doing, the system of the gas in the cylinder necessarily does P,V work
of expansion against the external pressure Pex, and, in addition, causes the massM to be raised
by a distance �h. The total work done by the system of the gas inside the cylinder is therefore
the sum of the P,V work of expansion Pex �V , plus the workMg�h done in lifting the mass

Total work done by system = Pex �V +Mg�h

If the purpose of the system is to lift the mass, then we see that the total work done by the
system is not all available – some work, Pex �V , has to be done to ‘push the atmosphere out of
the way’ as the piston moves to the right. The useful work, or available work, that a system
can perform is therefore defined as the difference between the total work done by the system,
and any P,V work of expansion against the atmosphere that cannot otherwise be harnessed:

Useful work = Total work – P,V work of expansion that cannot otherwise be used

Many chemical reactions, especially those which involve gases, are necessarily accompanied
by P,V work of expansion against the atmosphere, and so the distinction between total work
and useful work has considerable significance, as will be discussed further on pages 386 to 390.
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2.6 . . . and wasted work

All the examples we have studied so far have related to the expansion of a gas within a friction-
less cylinder. Let’s now examine what happens when friction is present between the rim of the
piston and the internal surface of the cylinder.
Friction is of two types – static friction, and dynamic friction. Static friction is what makes

surfaces ‘sticky’, so that they do not easily slide over one another, and it is thanks to static
friction that we can (usually) lean a ladder against a wall, and climb the ladder without fearing
that it might slip backwards (but, for safety, it’s always advisable for someone to be holding the
ladder to make sure!). Dynamic friction (sometimes known as kinetic friction) arises when two
surfaces are moving against one another, as happens, for example, when a saw moves against
wood, or a drill bites into metal, or – as is relevant here – when the rim of the piston scrapes
along the inside of the cylinder as it moves.
Both types of friction apply to our system of a gas at pressure Pex inside a cylinder fitted with

a piston. If the external pressure Pex equals the internal pressure P, then the forces on each side
of the piston are equal, and the piston does not move. If the external pressure Pex is reduced, in
the absence of friction, the pressure difference P – Pex will cause the piston to move outwards,
but in the presence of static friction, a small pressure difference will not cause the piston to
move, for the force exerted by the static friction acts like a peg, resisting the movement of
the piston. If the external pressure Pex is progressively reduced, the pressure difference P – Pex

increases, until a point is reached such that the force exerted by the pressure difference is large
enough to overcome the static friction, and the piston jerks outwards.
Thereafter, the piston slides against the internal surface of the cylinder, against the force

exerted by dynamic friction, which acts to oppose the motion. And in so doing, the gas inside
the cylinder is doing frictional work against the dynamic friction, as well as P,V work of
expansion against the external pressure, and perhaps gravitational work in lifting a weight
too. Eventually the piston will come to rest, and the total work done by the system can be
expressed as

Total work done by system =P,V work of expansion

+ work done against dynamic friction

+ work done in lifting a weight

Once again, if the purpose of our system is to lift a weight, or to do useful work of any sort
(such as power a machine, or drive an engine), then not only is the P,V work of expansion
not available, but the work done against dynamic friction is wasted too. And wasted in a very
particular way: as we shall see in the next chapter, frictional work is inevitably lost as heat –
which is why saws get hot as they cut through wood, and drills get hot as they bore through
metal. This also explains why so many of the examples used in this book refer to frictionless
systems, so ensuring that this waste is not present.

2.7 Quasistatic paths

Let’s do the experiment illustrated in Figure 2.3 once more, with exactly the same initial state:
the volume of the gas is V1, the pressure P1, and the piston is held in place by a peg. The
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difference in this experiment is that the initial external pressure – let’s represent this as Pex,1 – is
now exactly equal to the internal gas pressure P1. Since the pressures on both sides of the piston
are the same, the force acting on the inside of the piston from the gas within the cylinder is
exactly balanced by the force acting on the outside of the piston by the gas in the surroundings.
If the peg is removed, the piston will stay absolutely still.
Suppose now that the external pressure is reduced by an infinitesimally small amount, dPex,

to a new, slightly lower, external pressure Pex,2 = Pex,1 – dPex. The internal pressure on the
piston, P1 is now infinitesimally greater than the external pressure, and so, in the absence of
all friction, the piston will move against the external pressure Pex,2. The volume of the gas will
therefore change from its initial volume V1 to an infinitesimally larger volume V2 = V1 +
dV1; simultaneously, since in general the pressure of a gas drops as the volume increases, the
pressure will change from its initial value P1 to a new, infinitesimally lower, value P2 = P1 – dP1.
When the new gas pressure P2 equals the external pressure Pex,2, the piston will stop moving,
and the system will return to equilibrium. Overall, the gas has changed from its original state
[P1, V1] to a final state [P2, V2], and the surroundings have changed from pressure Pex,1 to Pex,2.
As the gas inside the cylinder expands, the gas does P,V work of expansion against the

surroundings. Assuming as usual that the piston, and the system as a whole, are perfectly fric-
tionless, then that the only work done by the gas within the system is P,V work of expansion
against the surroundings, given by

Work done by system during change from [P1, V1] to [P2, V2] = Pex,2 dV1

= (Pex,1 – dPex) dV1 = Pex,1 dV1 – dPex dV1

Now, the changes dPex and dV1 are both very small, in which case the product dPex dV1 is very
small indeed, and certainly much smaller than the product Pex,1 dV1. Hence we may write

Work done by system during change from [P1, V1] to [P2, V2] = Pex,1 dV1

But we also know that the initial external pressure Pex,1 was equal to the initial internal pressure
P1, hence

Work done by system during change from [P1, V1] to [P2, V2] = P1dV1

The significance of this equation for the work done by the system is that it is expressed in
terms only of variables relating to the system – P1, the initial pressure of the system, and dV1,
the change of volume of the system. This is in contrast to the equation (2.1), which expressed
the work done by the system in terms of one variable relating to the system, dV , and a second
relating not to the system, but to the surroundings, Pex.
Let’s consider now what happens when the external pressure is reduced by another very

small amount dPex from Pex,2 to Pex,3 = Pex,2 – dPex. The pressure P2 of the gas in the cylinder
is once again infinitesimally higher than the pressure in the surroundings, and so the piston
will once more move frictionlessly and infinitesimally to the right. The system of the gas in the
cylinder changes state from [P2, V2] to [P3, V3], such that V3 = V2 + dV2 and P3 = P2 – dP2. As
before, during this change, the gas in the cylinder does work against the surroundings equal to
Pex,2 dV2, and we can use exactly the same reasoning as before to show that

Work done by system during change from [P2, V2] to [P3, V3] = P2 dV2
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This implies that the total work done by the gas in changing state from [P1, V1] to [P3, V3] via
[P2, V2] is given by

Work done by system during change from [P1,V1] to [P3, V3] = P1 dV1 + P2 dV2

You can see the pattern: if we were to reduce the pressure in the surroundings in a sequence of
infinitesimally small steps, each of dPex, then

Work done by system during change from [P1, V1] to [Pn, Vn] =
n–1∑
1

Pn dVn

Since the volume changes dV are so small as to be infinitesimal, then the total work done by
the gas as it expands from its initial volume V1 to its final volume Vn can be expressed as an
integral:

Work done by system during change from [P1, V1] to [Pn,Vn] =
Vn∫

V1

P dV (2.3)

Equation (2.3) allows us to express the total work done by the system for a finite change
between any two states in terms of state functions of the system alone. The derivation of
equation (2.3), however, rests on three key assumptions about the nature of the change:
specifically, that the change took place along a particular path

• through a sequence of equilibrium states
• in an infinite number of infinitesimal steps
• infinitely slowly.

The significance of the first condition – the sequence of equilibrium states – ensures that
the state functions P and V are well-defined throughout the change, and the second condi-
tion – the infinitesimal steps – allowed us to replace the external pressure Pex by the internal
pressure P. The third condition is a corollary of the first two; in principle, this third assump-
tion can be relaxed to a condition which is that the change takes place sufficiently slowly to
allow the first two conditions to apply. Any path which obeys these three conditions is known
as a quasistatic path, and a change in state which takes place along a quasistatic path is known
as a quasistatic change.
The quasistatic path discussed here has been in the context of an infinitesimal pressure dif-

ference across the system boundary, resulting in the performance of P,V work, either by the
system on the surroundings, or by the surroundings on the system. In fact, the concept of
the quasistatic path applies in other contexts too, of which two are of particular relevance.
The first is the flow of heat: a quasistatic flow of heat is one which takes place infinitely slowly
through an infinite number of steps such that

• the temperature difference driving the flow of heat is infinitely small, and
• the two systems between which the heat is flowing are in equilibrium throughout.

This implies that any heat flow down a finite temperature gradient is necessarily non-
quasistatic – which applies to all real heat flows.
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Similarly, a quasistatic chemical reaction takes place infinitely slowly through a sequence
of states of chemical equilibrium – which is, once again, a theoretical concept rather than a
reality.

2.8 Work and Boyle’s Law

Equation (2.3) for the work done by an expanding gas, and the concept of the quasistatic
change on which equation (2.3) rests, are important, in that it expresses the P,V work of ex-
pansion of a frictionless system in terms of state functions of the system alone. And if we know
the relevant equation-of-state, such as Boyle’s Law, equation (1.3)

PV = c (1.3)

where c is a constant for a given mass of gas at a given temperature, then we can compute what
the work done during any change in state actually is. So, combining equations (2.3) and (1.3),
we have

Work done by system during change from [P1, V1] to [P2, V2]

=
V2∫

V1

P dV =
V2∫

V1

c
V dV = c ln

(
V2

V1

)
(2.4)

This result, equation (2.4), is a special case, valid only if two conditions are simultaneously
fulfilled: firstly, that the change in state from [P1, V1] to [P2, V2] is quasistatic, and, secondly,
that Boyle’s Law is valid throughout. It does, however, illustrate an important general point:
because equation (2.3) is expressed only in terms of variables relating to the system, then, if an
appropriate equation-of-state for that system is known (as it often is), then equation (2.3) may
be used to compute, and therefore predict, how much work a system can do. It’s important,
though, to re-emphasise that equation (2.3) is based on the assumption that the change is
quasistatic, taking place through a very large (mathematically, infinite) number of very small
(infinitesimal) frictionless steps. In reality, such a change is impossible, but theoretically, it
provides a very useful way to compute quantities mathematically.

2.9 P,V diagrams

2.9.1 A graphical representation of a frictionless quasistatic change
in state . . .

As we have now seen, many of the changes in state of a gas in a cylinder are associated with
changes in the system’s pressure P and volume V . A very useful way of representing these
changes is by plotting the simultaneous values of these state functions on a graph, the vertical
axis of which represents the system pressure P, and the horizontal axis, the system volume
V . Reasonably enough, such a representation is known as a P,V diagram. As an example,
Figure 2.5 shows a P,V diagram representing a change in state, in which the gas shown in
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System pressure P

System volume V

[P2, V2]

[P1, V1]

Figure 2.5 A P,V diagram for a frictionless quasistatic change in state. The system undergoes a frictionless quasistatic
change in state from [P1, V1] to [P2, V2], as indicated by the direction of the arrow, under conditions in which Boyle’s Law is
valid. The work done by the system on the surroundings is represented by the shaded area. Note that, in P,V diagrams, it is

conventional to define states as, for example, [P1, V1], even though pressure is the vertical (y) axis, and volume the
horizontal (x) axis.

Figure 2.3 expands quasistatically, and in the absence of all friction, from an initial equilibrium
state [P1, V1], to a final, different, equilibrium state [P2, V2], under conditions of constant
temperature so that Boyle’s Law, PV = c, equation (1.2), holds.
Since the change in state is assumed to be quasistatic, the change takes place through an

infinite succession of intermediate equilibrium states. Each of these has its own, well-defined,
values of pressure and volume, and so each can be represented by a specific point on the P,V
diagram. A quasistatic change, starting at state [P1, V1] and ending in state [P2, V2], can there-
fore be represented on a P,V diagram by a solid line, as shown in Figure 2.5, such that each
point on the line represents the corresponding intermediate equilibrium state, and with the
direction of the change being shown by the arrow.
In the total absence of friction, all the work done by the system is P,V work of expansion

against the surroundings, as given by equation (2.3)

Work done by system during change from [P1, V1] to [P2, V2] =
V2∫

V1

P dV (2.3)

Since Boyle’s Law is assumed to be valid for this particular change, equation (2.3) becomes

Work done by system during change from [P1, V1] to [P2, V2] = c
V2∫

V1

dV
V = c ln

(
V2

V1

)

(2.4)

The work done is represented by the shaded area between the graph of the change in state and
the horizontal axis, as shown in Figure 2.5.
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2.9.2 . . . and of a non-quasistatic change

System pressure P

System volume V

[P1,V1]

[P2,V2]

Figure 2.6 A P, V diagram for a frictionless non-quasistatic change in state. The external pressure Pex on the cylinder
is abruptly reduced to P2 , and the gas in the cylinder expands non-quasistatically at constant pressure P2 to its final

equilibrium state [P2,V2]. During the change in state, the system is not in equilibrium, and so it is not possible to define ‘the’
pressure and ‘the’ volume of the system at any intermediate state. The path of the change in state is therefore represented by a
dashed line, which indicates a plausible path, consistent with the known fact that the work done by the gas during the change

is certainly P2 �V , as shown by the shaded area.

Figure 2.6 shows another change in state from [P1, V1] to [P2, V2], but by a different path: in
this case, the gas expands against a constant external pressure Pex = P2, as would happen, for
example, if Pex in Figure 2.3(a) and 2.3(b) were equal to P2, and peg 1 is removed.
In this case, there is a substantial difference between the initial pressure P1 and the external

pressure P2, so that, when the peg is removed, and in the absence of friction, the piston moves
to the right very quickly. This creates initial turbulence within the system, and although the
system started in an equilibrium state [P1,V1], and ended at another equilibrium state [P2,V2],
during the change, the system is not in equilibrium. The change in state therefore does not
take place through an infinitesimal sequence of equilibrium states, and so is a non-quasistatic
change.
During the change, the pressure within the system will have different values at different

points within the system; likewise, the volume of the system is uncertain since the molecules
are not distributed evenly. As a consequence, it is not possible to specify ‘the’ pressure or ‘the’
volume at any intermediate state, implying that we cannot plot the path between [P1, V1] and
[P2,V2] with any certainty. But we do know, from equation (2.1), that in the absence of friction,
the work done by the gas against the surroundings is given by Pex �V = P2 �V since Pex is
equal to P2. Now P2 �V is the shaded area in Figure 2.6, and so we can represent the frictionless
non-quasistatic change from [P1, V1] to [P2, V2] by the dashed line as shown. The use of a
dashed line, rather than a solid line, indicates that the values of the pressure and volume of the
gas whilst the change is taking place are indeterminate, but the general shape is meaningful.
Certainly, the area under the horizontal dashed line gives the right answer for the work done
by the system, and the piston does move against a constant external pressure Pex = P2, so
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the horizontal dashed line is plausible. But whereas the solid line in Figure 2.5, indicating a
quasistatic path, is ‘the truth’, the dashed line in Figure 2.6, indicating a non-quasistatic path,
is just a representation.

2.10 Changes at constant pressure

Figure 2.6 describes a non-quasistatic expansion of a gas against a constant external pressure
Pex. As a moment’s thought will verify, there are very many real events that take place under
conditions of constant external pressure, especially when that pressure is exerted by the atmos-
phere. So, for example, many chemical reactions take place in vessels open to the atmosphere;
most industrial processes – and many engines – operate in the atmosphere; and the same ap-
plies to many living processes too, whether under the pressure of the atmosphere, or the local
pressure at a given depth in sea. And although the local atmospheric pressure can vary, for ex-
ample, with the weather and the altitude, and the pressure in the oceans varies with depth, over
the time taken for many of these processes to take place – typically fractions of seconds, sec-
onds and minutes – the local pressure is constant. Changes at constant pressure are therefore
very common, and important, and will feature strongly in this book.
But there is a subtlety here, a subtlety best explored by re-examining the interaction between

a system and its surroundings when a gas expands from an initial state [P1, V1] to a final
state [P2, V2]. So, consider Figure 2.7, which represents both the system of interest and the
surroundings, which together constitute the universe.

System

(a) (b)

SurroundingsSystem

Boundary of the universe

Surroundings

Figure 2.7 Can a system expand at constant pressure? As the gas in the system expands, from the state shown in
Figure 2.7(a) to that shown in Figure 2.7(b), the volume of the gas in the system increases, and the pressure of the gas

decreases. Simultaneously, the gas in the surroundings is compressed, and its pressure must correspondingly increase. Does
this imply that it is impossible for a system to expand at constant pressure?

As the gas in the system expands against the surroundings, the volume of the system in-
creases, and the pressure of the system falls. But, as implied by Figure 2.7, an increase in the
volume of the system results in a corresponding decrease in the volume of the surroundings.
The gas in the surroundings is therefore being compressed, and so we would expect the pres-
sure of the gas in the surroundings to increase. That presents a puzzle: how is it possible for the
gas in the cylinder to expand against a constant pressure? Surely, as the gas in the surround-
ings – the atmosphere – becomes compressed, the pressure in the atmosphere must increase,
so it seems to be impossible for the gas in the cylinder to expand against a constant pressure. Is
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the concept of a change at constant pressure just theoretical (like the concept of the quasistatic
change), or are changes at constant pressure real?
If the situation were indeed as illustrated in Figure 2.7, this would all be true: the pressure

of the surroundings would increase as the system expands. Figure 2.7, however, is misleading,
for two reasons: firstly, for ease of drawing, the volumes of the system and the surroundings
have been depicted as about the same; secondly, the heavy line representing the ‘boundary of
the universe’ is shown as a solid line, suggesting that it is rigid.
When we think more deeply about Figure 2.7, we realise that, in reality, the volume Vex

of the surroundings – the rest of the universe – is vastly, vastly, greater than the volume V
of the system: Vex is an unimaginably large number. When the piston moves to the right in
Figure 2.7, the change of the volume of the system is �V , implying that the change of the vol-
ume of the surroundings is –�V (with the – sign indicating a decrease in volume as expected).
The volume of the surroundings after the change is therefore Vex – �V , which, as expected is
less than the original volume Vex. But not by much: because the volume Vex of the surround-
ings is such a huge number, Vex – �V ≈ Vex. In practice, the volume of the surroundings
remains unchanged, despite the expansion of the gas in the system, and so the pressure of the
surroundings stays constant.
Furthermore, if the boundary of the universe is not rigid – and we have no reason to believe

that it is – then the volume of the atmosphere is not constrained, implying that the atmosphere
can increase its volume as much as it ‘likes’, without any change of pressure.
Both explanations are valid, and both have the same conclusion: events that happen within

systems open to the atmosphere, or within the vastness of the ocean, take place at constant
pressure. The puzzle is resolved: changes at constant pressure are not theoretical concepts; on
the contrary, changes at constant pressure are both possible and real.

2.11 Thermodynamic cycles

2.11.1 From here to there – and back again

Let’s now take matters further, and consider what happens when the gas in the cylinder starts
in the equilibrium state [P1, V1], and follows the frictionless non-quasistatic path illustrated in
the P,V diagram shown in Figure 2.6, expanding at constant pressure P2, to the equilibrium
state [P2, V2]. During this change, as is now familiar, work is done by the gas on the surround-
ings, equal to P2 �V . Having established an equilibrium state [P2, V2], suppose now that the
gas in the cylinder undergoes a frictionless quasistatic compression, reducing the volume and
increasing the pressure. If the conditions are such that the temperature of the system is con-
stant and Boyle’s Law is valid, then the system will retrace the quasistatic path illustrated in the
P,V diagram shown in Figure 2.5, and return to state [P1, V1]. During this frictionless quasi-
static change, the work done by the gas is given by equation (2.4), but with the limits of the
integration switched, since the change in state in this case is from [P2, V2] to [P1, V1]:

Work done by system during change from [P2, V2] to [P1, V1] = c
V1∫

V2

dV
V = c ln

(
V1

V2

)

(2.4)
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Since V1 is less than V2, the ratio V1/V2 is less that one, and so we may write

Work done by system during change from [P2, V2] to [P1, V1] = –c ln
(
V2

V1

)
(2.5)

In this expression, V2/V1 is greater than one, implying that ln(V2/V1) is positive. Since the
constant c is also positive, then the product c ln(V2/V1) is positive, and so –c ln(V2/V1) is
necessarily negative. This therefore indicates that, during the change in state from [P2, V2] to
[P1, V1], work is done on the gas by the surroundings (see page 27), as makes sense since this
is a compression.
These changes are all illustrated in Figure 2.8.

System pressure P

System volume V

∆V

[P2, V2]

[P1, V1]

Figure 2.8 A P,V diagram for a thermodynamic cycle. The system is initially in the equilibrium state [P1, V1], and then
follows the frictionless non-quasistatic path (represented by the dashed line), at constant pressure P2 , to the equilibrium state
[P2, V2]. During this change, the system does work P2 �V on the surroundings, as shown by the dark-blue rectangular area.
The system is then compressed along the frictionless quasistatic path (shown by the solid line), returning to the equilibrium
state [P1, V1], so completing the thermodynamic cycle. During this change, the surroundings do work c ln(V2/V1) on the

system, represented by the total area under the curve, comprising both the light-blue and dark-blue areas. For the entire cycle,
there is no change to either the state function P, or the state function V , and so

∮
dP =

∮
dV = 0. But as can be seen from the

diagram, more work is done on the system in the change from [P2, V2] to [P1, V1] than was done by the system in the
change from [P1, V1] to [P2, V2], and so

∮
đw /= 0, as represented by the near-triangular area in the middle of the diagram.

Any process in which a thermodynamic system starts in a particular equilibrium state, then
undergoes one or more changes in state, and finally returns to the original equilibrium state –
of which Figure 2.8 is an example – is known as a thermodynamic cycle. As we shall see
during this book, thermodynamic cycles are of considerable significance: all engines – for ex-
ample, steam engines, internal combustion engines, and jet engines - operate in cycles, and
cycles feature in many important biological processes, such as the tricarboxylic acid cycle
(sometimes known as the Krebs cycle) associated with the metabolism of sugars, and the light-
dependent Calvin cycle (or Calvin–Benson–Bassham cycle, to give credit to Melvin Calvin’s
co-researchers at the University of California, Berkeley), central to plant photosynthesis.
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Of particular relevance here are two insights: the first concerning the behaviour of state
functions throughout a complete thermodynamic cycle; the second, concerning the behaviour
of path functions.

2.11.2 Thermodynamic cycles and state functions

Let’s firstly consider what happens to the state function V throughout the cycle. The system
starts in an equilibrium state of volume V1, and changes to a different equilibrium state of
volume V2. Accordingly, the volume change �V1→2 is given by

�V1→2 = V2 – V1

If the change takes place through a sequence of infinitesimal steps, this can also be written as

�V1→2 = V2 – V1 =
V2∫

V1

dV

Similarly, for the change from [P2, V2] back to [P1, V1], we may write

�V2→1 = V1 – V2 =
V1∫

V2

dV

The total change of volume�V1→2→1, from [P1,V1] to [P2,V2] and back to [P1,V1] is therefore

�V1→2→1 = �V1→2 + �V2→1 = V2 – V1 + V1 – V2 = 0 =
V2∫

V1

dV +
V1∫

V2

dV

The total change of volume for the entire cycle is therefore zero – which is entirely as expected:
volume is a state function, and we know that the value of the change in any state function is
the value of that state function in the final state minus the value in the initial state. Since, for a
cycle, the volume of the final state necessarily equals that of the initial state, then the change of
volume for the entire cycle must be zero.
Let’s, however, look more closely at the integral expression of this:

�V1→2→1 = 0 =
V2∫

V1

dV +
V1∫

V2

dV

Now the sum of those two integrals, the first from V1 to V2, and the second from V2 to V1,
represents an integral over the entire cycle from V1 to V2 and back to V1 again, and can be
represented as a cyclic integral

∮
V2∫

V1

dV +
V1∫

V2

dV =
∮

dV = 0

This shows that, for the state function volume, the cyclic integral, around any thermodynamic
cycle, will be zero. This is an important general result which holds for all state functions: if a
function X is a state function, then, for any thermodynamic cycle
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∮
dX = 0 (2.6)

Conversely, if it can be demonstrated for a function X that
∮
dX = 0, then this proves that the

function X is a state function, and dX is then said to be an exact differential.

2.11.3 Thermodynamic cycles and path functions

Let’s now consider the work done during the cycle. During the frictionless non-quasistatic
change from [P1, V1] to [P2, V2], all the work done by the system is P, V work of expansion
against the surroundings, given by

Work done by system on surroundings in change from state 1 to state 2 = P2 �V

as represented by the dark-blue shaded area in Figure 2.8.
We have also just shown that the work done by the gas on the surroundings during the

quasistatic change from [P2, V2] back to [P1, V1] is given by

Work done by system on surroundings in change from state 2 to state 1 = – c ln
(
V2

V1

)
(2.5)

where the negative sign indicates that work is in fact done on the system by the surroundings
during this compression. This is represented in Figure 2.8 by the total area under the solid
line between [P2, V2] and [P1, V1], as represented by the combination of the dark-blue, and
light-blue, areas.
The total work done by the system on the surroundings for the entire thermodynamic cycle

can be determined by adding these together:

Total work done by gas during the cycle = P2 �V – c ln
(
V2

V1

)

= P2(V2 – V1) – c ln
(
V2

V1

)
(2.7)

The number represented by the value of equation (2.7) is determined by the volumes V1 and
V2, the final pressure P2, and the appropriate Boyle’s Law constant c. If it so happens that
V1 = V2, then this number is zero - but if V1 = V2, then Boyle’s Law tells us that P1 = P2 as
well, implying that no change has taken place. If, however, a change has taken place, V1 and
V2 will be different, and the numerical result of equation (2.7) will depend on the specific cir-
cumstances. But whatever the specific circumstances, it is invariably true is that this number
will not be zero. Indeed, as reference to the particular thermodynamic cycle represented by the
P,V diagram shown in Figure 2.8 makes quite clear, in this case, the result of equation (2.7)
is a negative number, for the work P2 �V done by the system on the surroundings in the ex-
pansion from [P1, V1] to [P2, V2], as represented by the dark blue shaded area in Figure 2.8,
is clearly less than the work c ln(V2/V1) done on the system by the surroundings during the
compression, as represented by the total area between the curved line and the horizontal axis
in Figure 2.8. This diagram therefore vividly illustrates that more work is required to compress
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the gas quasistatically from [P2, V2] back to [P1, V1] than was done by the gas in expand-
ing non-quasistatically from [P1, V1] to [P2, V2] – the net difference being represented by the
nearly triangular figure in the centre of Figure 2.8.
If the amount of work done by the gas on the surroundings during any infinitesimal change

is represented as đw, then the total amount of work done by the gas on the surroundings
during any thermodynamic cycle may be expressed as a cyclic integral, the value of which
must, in general, be some non-zero number:∮

đw 
= 0 (2.8)

There is only one, very special, case in which the value of this cyclic integral is zero, and that
is – with reference to Figure 2.8 – when the path from state [P2,V2] back to state [P1,V1] traces
exactly the same frictionless quasistatic path as the original frictionless quasistatic path from
state [P1, V1] to state [P1, V1], but in the reverse direction. This implies that the two paths, as
shown on the diagram, would be identical, and so the area of the near-triangular area in the
centre would shrink to zero.
Other than this particular case, the inequality of expression (2.8) is in general true: the total

work done by a system through a generalised thermodynamic cycle will be some, non-zero,
number. We can’t predict, in general, what this number might be, for its value depends on the
specific circumstances. Furthermore, the value might be a negative number, as in the particular
case we have examined as illustrated in Figure 2.8; it could, however, also be a positive number,
as indeed happens if the thermodynamic cycle shown on Figure 2.8 were to be carried out in
the other direction, with a quasistatic expansion from [P1, V1] to [P2, V2] happening first, and
then followed by a non-quasistatic compression at constant pressure P2. What’s important
about equation (2.8) is not the specific value in any particular circumstances, but the fact that
the result is, in general, some number other than zero.
We know that work is a path function, and Figure 2.8 demonstrates diagrammatically that

the amount of work done by a system as it changes state does indeed depend on the path taken.
Mathematically, this is represented by equation (2.8), which applies to all path functions, and,
as we noted earlier (see page 26), đw is known as an inexact differential – hence the symbol
đ, to distinguish between an inexact differential đ and an exact differential d. If we are dealing
with any path function, then we can predict that the cyclic integral of that function around
any thermodynamic cycle will be some number other than zero; likewise, if we can verify that
the cyclic integral of any function around any thermodynamic cycle is non-zero, then we may
infer that the function in question is a path function.
Equations (2.6) and (2.8) are therefore the fundamental mathematical definitions of state

functions and path functions respectively.

2.11.4 An important link between path functions and state functions

Finally in this section, we note an important link between path functions and state functions,
as exemplified by the now-familiar equation for the work đw done by a gas at pressure P,
expanding quasistatically by a volume dV :

đw = P dV (2.9)
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This equation links a path function, đw, to the product of two state functions, expressed in the
form an [intensive state function, pressure] × change of an [extensive state function, volume].
As we shall see in due course, this is an example of a generic relationship of the from

đ(path function) = (intensive state function) × d(extensive state function)

2.12 Energy

As we have examined now in some detail, when a gas in a cylinder expands against the pressure
Pex of the surroundings, the gas inside the cylinder does work, quantified as Pex �V , on the
surroundings. If the piston were linked to other appropriate mechanisms, this work could be
harnessed, for example, to lift a weight, or to drive an engine – for all steam, petrol and diesel
engines operate by the expansion of gases in cylinders against external pressure.
Before, however, the system does any work – before the piston actually moves – the gas in

the cylinder must have possessed the potential to do work: it’s as if the gas in the cylinder has
some sort of hidden property, a property which, once released, can do useful things like work.
So let’s give this hidden property, this potential to do work, a name – energy. Given that work
is a manifestation of energy, and that energy is ‘work-in-waiting’, energy and work have the
same unit of measurement, the Joule, J.
Energy is the central concept in this book, and indeed is the central concept in much of

science too. We’ll gain a much richer understanding of energy as the book evolves, but this is a
good place to start – the realisation that if a system is capable of performing work, then, before
that work is performed, the potential to perform that work is a property of the original system.
And if energy is a property of a system, then maybe there is a state function associated with it.
Indeed there is – as we shall see in Chapter 5.

EXERCISES

1. In thermodynamics, what, precisely, is meant by the term ‘work’? What is meant by
‘work done on a system’? And by ‘work done by a system’? What is ‘P,V work’? Identify
at least three examples of work, other than P,V work.

2. What is a ‘path function’? How does a path function differ from a state function?
3. What are the characteristics of a ‘quasistatic’ path?Why are quasistatic paths important?
4. A system comprises a fixed mass of gas is contained within a cylinder, fitted with a fric-

tionless piston, such that the system is in equilibrium with a volume of 0.5 m3, and at
a pressure of 1 bar = 1 × 105 Pa. Calculate the P,V work of expansion done by, or
P,V work of compression done on, the system, under the following circumstances, all of
which take place at constant temperature:
� The volume of the system increases to 0.75 m3 quasistatically.
� The volume of the system increases to 0.75 m3 against a constant external pressure of

0.8 × 105 Pa.
� The volume of the system increases to 0.75 m3 against a vacuum.
� The volume of the system decreases to 0.3 m3 quasistatically.
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� The volume of the system firstly increases to 0.75 m3 against a vacuum, and then decreases
to 0.3 m3 quasistatically.

� The volume of the system firstly increases to 0.75 m3 quasistatically, and then decreases to
0.3 m3 quasistatically.

Calculate the final pressure of the system in each case, and illustrate each of your answers
using a P,V diagram.

5. For the system described in question 4, suppose that the external pressure is initially
1 × 105 Pa. If the external pressure is increased quasistatically to 2 × 105 Pa, what is the
final equilibrium pressure of the system if the temperature of the system is maintained
constant? What is the corresponding final volume? How much work is done on the sys-
tem by the surroundings for the change from the system’s initial state to the system’s final
state? How would you represent this change on a P,V diagram?

6. In a P,V diagram, why must all real changes be represented by a dashed line, rather than
a solid line?

7. For a change from any state [1] to any state [2], the work performed may be expressed
as the integral of the infinitesimal amounts of work đw

Total work done in change from state [1] to state [2] =
state [2]∫

state [1]

đw

How would you explain that, although this integral is valid and meaningful, the
statement

state [2]∫
state [1]

đw = w (state [2]) – w (state [1])

is not only wrong, but meaningless? And if this is indeed wrong and meaningless, how,

if at all, can the integral
state [2]∫
state [1]

đw be evaluated?

8. Rather harder: As in question 5, the external pressure is initially 1× 105 Pa, but now this
in increased instantaneously to 2 × 105 Pa. Suppose that the system’s final equilibrium
state is that same as the final state of question 5. Assuming that the change of state takes
place at constant temperature, is the change in state of the system quasistatic? Howmight
you represent this change in state on a P,V diagram? How might you estimate the work
done on the system by the surroundings? How does this answer compare to the answer
to question 5?

9. What are ‘static’ friction and ‘dynamic’ friction? In questions 4, 5 and 6, one of the
assumptions we made was that the piston was frictionless. Suppose now that the sur-
faces between the piston and the interior of the cylinder are subject to both these types
of friction. The initial state of the system is a volume of 0.5 m3, and a pressure of
1 bar = 1×105 Pa, and the external pressure is also 1 bar = 1×105 Pa. The external pres-
sure now reduces by an infinitesimal amount – which, in the absence of friction, would
cause the piston to move against the (now infinitesimally smaller) external pressure, as
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described on page 29. But what happens in the presence of both static and dynamic fric-
tion? Describe what you would observe as the external pressure is progressively reduced
until the piston has moved such that the final volume of the system is 0.75 m3. What is
the final pressure of the system? Represent the path actually followed, in the presence of
friction, on a P,V diagram. What is the P,V work of expansion done by the system on
the surroundings? How does this quantity of work compare to the quantity of work that
would have been performed in the absence of friction?



3 Temperature and heat

Summary

Temperature is an intensive state function, and a measure of the average energy of the molecules with

the system.

Heat is the transfer of energy between two systems at different temperatures. Like work, heat q is a

path function, and an infinitesimal flow of heat is represented as an inexact differential đq.

The Zeroth Law of Thermodynamics states that

If two systems are each in thermal equilibriumwith a third system, then they

will be in thermal equilibriumwith each other. Each of the three systems

may be associated with an intensive state function, temperature, which, in

this case, will take the same value for each system.

An ideal gas is one that obeys the equation-of-state

PV = nRT (3.3)

An isolated system is surrounded by a boundary which prevents both the flow of matter, and also

the flow of energy in the form of heat and work.

A closed system is surrounded by a boundary which prevents the flow of matter, but allows the

exchange of energy, in the form of both heat and work, between the system and the surroundings.

An open system is surrounded by a boundary which allows the exchange of matter, and also the

exchange of energy, in the form of both heat and work, between the system and the surroundings.

The average molecular energy 〈E〉 of an ideal monatomic gas is proportional to the temperature T as

〈E〉 = 3
2 kBT (3.19)

where kB is Boltzmann’s constant. Although equation (3.19) is valid only for an ideal monatomic gas,

the interpretation of the temperature T as a measure of a system’s average molecular energy is of more

general applicability.

3.1 Temperature

3.1.1 Temperature is an intensive state function

Another state function of any system is its temperature, which determines how hot, or cold,
the system is. Since the temperature of a system does not depend on the system’s size or extent,
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temperature is an intensive state function. And to measure temperature, we need a suitable
scale of measurement, and an appropriate instrument.

3.1.2 Temperature scales

Over the years, several scales of measurement have been devised, of which four in particular
have been widely accepted. The Fahrenheit scale is named after Daniel Fahrenheit, a German
physicist, who, in 1724, took the freezing point of pure water as ‘32’ on his scale, and the boiling
point as ‘212’, dividing the interval between these two points into 180 equally-spaced ‘degrees’,
designated ◦F. Twenty years later, the Swedish astronomer Anders Celsius defined the zero
of the Celsius (alternatively, and now less commonly, Centigrade) scale as the freezing point
of pure water, and the boiling point as 100, with 100 intermediate degrees, ◦C. Temperatures
measured in ◦C are conventionally represented by the symbol t.
A third scale, the thermodynamic scale, is of especial significance to scientists in general,

and this book in particular. The unit of measurement of the thermodynamic scale is the kel-
vin, K, (without the ◦ symbol), named in honour of William Thomson, Lord Kelvin, one of
the greatest scientists of the nineteenth century, and whose name will appear many times
in this book. As we have just seen, the Fahrenheit and Celsius scales both took two refer-
ence points – freezing water and boiling water – and then determined the size of the unit
of measurement by dividing the interval between these two reference points into 180 or 100
equally-spaced degrees. The thermodynamic scale is derived rather differently: the size of the
unit of measurement, one K, is defined to be the same as one ◦C, and so only one reference
point is needed, this being a somewhat less familiar property of water known as the triple
point – the state in which ice, (liquid) water and water vapour are mutually in thermodynamic
equilibrium. The triple point of water is a very special state, for it can exist only at a sin-
gle, specific combination of temperature and pressure – if the pressure is maintained, then at
higher temperatures, the ice is unstable and melts, with liquid water being in thermodynamic
equilibrium with water vapour until the water boils; and at lower temperatures, liquid water
freezes. The thermodynamic scale of temperature uses the triple point of water as its refer-
ence point, defining – for reasons that will be explained later in this book (see page 480)
– the corresponding temperature as 273.16 K, with the freezing point of water being very
close by, 273.15 K. Temperatures measured in kelvin are conventionally represented by the
symbol T, where the use of upper case distinguishes the use of the Kelvin scale from the
use of the Celsius scale, which, as we have seen, is represented by the lower case symbol t.
Zero on the thermodynamic scale, equivalent to –273.15◦C, is known as absolute zero: as we
shall see in Chapter 12, this extremely low temperature can be approached, but never actually
reached.
The fourth scale, known as the ideal gas scale and, like the thermodynamic scale, defines

its unit-of-measure as the kelvin K, equal to 1◦C. Whereas the thermodynamic scale uses the
triple point of water as its reference point, the ideal gas scale takes its reference, and zero, point
to be absolute zero, –273.15◦C.
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3.1.3 Temperature measurement

To measure the temperature of a system of interest, an appropriate instrument – a therm-
ometer – is usually placed in contact with the system, and, a very short time later, we take
a reading from the thermometer’s scale. A moment’s thought shows that the temperature we
actually measure is the temperature of the thermometer, rather than the temperature of the sys-
tem, and we then assume that the thermometer’s temperature is also the temperature of the
system. We never think about, or even recognise, this assumption, so let’s take a moment here
to examine it, and to understand the underlying science.
All temperature measurement is based on a very familiar phenomenon: when a colder sys-

tem is in contact with a hotter one, the colder one becomes hotter, and the hotter one colder,
until both systems achieve the same, stable, temperature, indicating that the two systems are
now in thermal equilibrium. The final, equilibrium, temperature is somewhere between the
two original temperatures, depending on the masses, and materials, of the two systems: if the
materials are the same, and the two masses equal, then the final equilibrium temperature is
half-way between the two original temperatures; if the materials are the same, and one mass is
rather greater than the other, then the final temperature is towards the original temperature of
the greater mass; and if the mass of one of the two systems is negligible compared to the mass
of the other, then the final equilibrium temperature is sensibly equal to the original tempera-
ture of the greater mass. The implication for this as regards the measurement of temperature
is that any instrument used for that measurement – a thermometer – must be very small and
light compared to the system whose temperature is to be measured, so that, when the therm-
ometer is in contact with that system, the final equilibrium temperature of the thermometer is
as closely as possible equal to the original temperature of the system.

0 ºC 100 ºC

Figure 3.1 A representation of a mercury-in-glass thermometer. As the temperature of the mercury changes, the
volume the mercury occupies also changes. Since the volume of the bulb on the left is fixed, this change in volume can be
seen as a change in the length of the column of mercury within the sealed capillary tube. The void space in the capillary tube

is a vacuum, so ensuring that the mercury can expand or contract freely, without being subject to an external
pressure.

To enable the temperature of a thermometer to be measured easily, the thermometer needs
to make use of a property that changes with temperature. A good example of this is the
(nowadays somewhat old-fashioned!) mercury-in-glass thermometer, depicted in Figure 3.1,
which comprises a reservoir of mercury, attached to a very narrow, sealed, capillary tube, the
void space of which is a vacuum. Over a wide range of every-day temperatures, mercury is
a liquid – a liquid whose volume changes with temperature, such that the higher the tem-
perature, the greater the volume. When the bulb of the thermometer is placed in contact with
the system whose temperature is to be measured, the mercury will contract or expand. Since
the volume of the bulb is fixed, this contraction or expansion takes place within the capillary
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tube. Because the diameter of the capillary tube is very small, any changes in the volume of
the mercury correspond to easily observable changes in the length of the mercury within the
capillary. When the thermometer is placed in a mixture of ice and water, under normal at-
mospheric pressure, the position of the mercury in the capillary can be marked as 0◦C, and
when the bulb is placed into gently boiling water, also under normal atmospheric pressure, the
(now different) position of the mercury can be marked as 100◦C. The interval between these
two marks can then be divided into 100 equal divisions, allowing the temperature of any other
body (within these ranges), as measured on the Celsius scale, to be determined with ease.
All other types of thermometer work on the same principle, but using other properties which

are sensitive to temperature, such as the resistance of an electrical circuit or the colour of a
liquid crystal, and many modern thermometers have a digital readout.

3.2 The ideal gas law

As we saw on page 16, Boyle’s Law

PV = constant (1.3)

describes the relationship between the pressure P and volume V of a fixed mass of an ideal
gas, undergoing changes in state at constant temperature. What, though, happens when the
temperature changes? Around 1700, the French scientist Guillaume Amontons demonstrated
that, at constant volume, the pressure of a givenmass of air increases linearly with temperature;
rather later – in the 1780s – another French scientist, Jacques Charles, also showed that, at
constant pressure, the volume of a given mass of air increases linearly with temperature. These
results are valid at temperatures easily accessible in a laboratory, but – as we saw with Boyle’s
Law – for real gases, these simple relationships break down as the conditions become more
extreme. If, however, we consider the hypothetical ideal gas, then we can assert that these
linear relationships apply at all temperatures, illustrated graphically in Figure 3.2, in which the
horizontal temperature axes are defined using the Celsius scale.

Pressure P

−270 ºC 300 ºC0 ºC

Temperature t

(a) (b)

Volume V

−270 ºC 300 ºC0 ºC

Temperature t

Figure 3.2 The ideal gas law. Graph (a) shows the linear relationship between the pressure P and temperature t of a given
mass of an ideal gas at constant volume, and graph (b) shows the linear relationship between the volume V and temperature
t of a given mass of ideal gas at constant pressure. If the temperature is measured on the Celsius scale, although the two lines

have different slopes, they both intercept the temperature axis at the same point, close to –270 ◦C.
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Experimentally, measurements are usually made at temperatures which are readily attained
in a laboratory, say from a few degrees below 0 ◦C, to temperatures around 100 ◦C, as indicated
by the solid line segments in Figure 3.2. Although the slopes of the volume-temperature and
pressure-temperature graphs are different, when extrapolated, they both intercept the tem-
perature axis at the same point, close to –270 ◦C. One interpretation of this is that, as the
temperature approaches –270 ◦C, the volume of the gas approaches zero, as does its pressure.
Since it is difficult to imagine a gas with a volume, or pressure, less than zero, the temperature
close to –270 ◦C – now recognised as –273.15 ◦C – was designated as absolute zero, the lowest
possible temperature.
Mathematically, we can represent these two linear relationships as

P = c1(t + 273.15) for a given mass of gas at constant volume

and

V = c2(t + 273.15) for a given mass of gas at constant pressure

In these equations, c1 and c2 are appropriate constants, and, in accordance with the extrapola-
tion of experimental data, when t = –273.15 ◦C, both P = 0 and V = 0.
If, however, we define a new variable T such that

T = t + 273.15

then we can write two rather simpler relationships

P = c1T for a given mass of gas at constant volume (3.1)

V = c2T for a given mass of gas at constant pressure (3.2)

so that when T = 0, both P = 0 and V = 0. The variable T defines a new temperature scale, the
ideal gas scale, whose zero is at absolute zero, –273.15 ◦C, and whose unit of measurement is
of the same size as one ◦C. The ideal gas scale is identical to the thermodynamic scale, subject
to the slight (but important) difference in the definition of each scale’s reference point – the
reference point of the ideal gas scale is (the in practice unattainable) absolute zero, whereas the
reference point of the thermodynamic scale is the well-defined, and directly observable, triple
point of water. As we noted earlier (see page 44), given the equivalence between the ideal gas
scale and the thermodynamic scale, both use the same unit of measurement, the kelvin K.
Equations (3.1) and (3.2) can be combined with Boyle’s Law

PV = c3 for a given mass of gas at constant temperature (1.3)

into a single equation, first identified by the French scientist Émile Clapeyron in 1834,

PV = nRT (3.3)

In which n represents the number of moles of gas (and hence the amount, and – given the
appropriate molecular weight – the mass, of gas), and R is a constant, known as the ideal gas
constant, universal gas constant, or gas constant, and whose value is 8.314462 J K–1 mol–1.
Equation (3.3) is known as the ideal gas law, and represents a more complete equation-of-

state for an ideal gas than Boyle’s Law, and the two associated laws, equations (3.1) and (3.2).
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3.3 A very important principle

If we define themolar volume V = V/n, then the ideal gas law becomes

PV = RT (3.4)

Whereas V and n are both extensive state functions, the ratio V/n = V is an intensive state
function, implying that – since R is a constant – the equation-of-state (3.4) is expressed in
terms only of intensive state functions. Furthermore, if any two of the variables P, V or T
are known, then equation (3.4) allows us to compute the third, unknown, variable. This im-
plies that an ideal gas, as described by the equation-of-state (3.4), has two, and only two,
independent state functions.
This is in fact a special case of a very important general principle:

In the absence of gravitation, motion, electric, magnetic and surface

effects, a fixedmass of a pure substance has two, and only two,

independent state functions.

From the standpoint of most of chemical and biochemical thermodynamics, the exclusion of
gravitation and the rest is not a problem – and if any of these effects (such as an electric effect, as
is relevant to electrochemistry) do apply in a particular instance, the principle can be modified
accordingly.
This principle is therefore of very broad applicability, and it is important because it tells us

that the state of a given, constant, mass of any pure substance can be defined by reference to
two, and only two, state functions. If any two state functions are known, all other state func-
tions can be calculated, once we know the appropriate mathematical relationships, of which
the ideal gas law, equation (3.4) is one example. And if we need to calculate the value of any
of the extensive state functions, then we can do this once we know n, the number of moles
present in the system of interest.
We shall refer to this principle many times in this book, for it is the starting point for gaining

an understanding of many thermodynamic systems.

3.4 Dalton’s law of partial pressures

The ideal gas law, as written in the form

PV = nRT (3.3)

applies to n mol of a pure substance. Furthermore, two of the assumptions underpinning the
definition of an ideal gas are that

• the molecules of an ideal gas occupy no volume, and
• there are no intermolecular interactions.

A consequence of the first assumption is that the total volume V of the system is available to
every individual molecule – no space is denied as a result of being ‘full of something else’. The
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second assumption implies that no individual molecule is influenced in any way by any other
molecules that are present – the behaviour of each molecule is independent of all the others.
Suppose, then, that a vessel of interior volume V contains molecules of two different ideal

gases: say, nA mol of an ideal gas A and nB mol of an ideal gas B, giving a total n = nA + nB

mols for the whole system. Each molecule of ideal gas A has access to the entire volume V ,
and, at a given temperature T, moves around that volume at random, occasionally impacting
the walls of the vessel, and exerting pressure, as described on page 17. If we represent the total
pressure exerted by the nA molecules of ideal gas A as pA, then equation (3.3) must apply, and
we may write

pAV = nA RT

Similarly, the molecules of ideal gas B are also exerting a pressure pB such that

pBV = nB RT

The total pressure P exerted on the inside of the vessel is attributable to all molecular impacts,
and so

P = pA + pB

Multiplying by V , we have

PV = pAV + pBV = nA RT + nB RT = (nA + nB)RT

Since the total number n of molecules, of both types, is (nA + nB), we therefore return to the
familiar ideal gas law

PV = nRT (3.3)

where, for a mixture of nA mol of an ideal gas A and nB mol of an ideal gas B,

n = nA + nB

and

P = pA + pB

The two pressures, pA and pB, are each known as the partial pressure of the appropriate com-
ponent. Physically, each represents the pressure that each gas would exert, independently, if
it were to occupy the whole volume V alone, as is consistent with the assumption of the ideal
gas. For a mixture of more than two ideal gases, the total pressure P of the system is the sum
of the individual partial pressures pi for each component

P =
∑
i

pi (3.5)

This result is known as Dalton’s law of partial pressures, and, as we shall see (particularly in
Chapter 14), it plays a central role in understanding gas phase chemical reactions, which are
inherently gaseous mixtures in which the quantities of the various components – and hence
their partial pressures – change as the reaction progresses.
Dalton’s law represents a special case of the linear additivity of state functions – applied, in

this case, to the intensive state functions, the partial pressures of the components A and B. As
we saw on page 8, linear additivity is a characteristic of ideal substances, as is consistent with
the assumption that both A and B are ideal gases, and that the ideal gas law applies.
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3.5 Some other equations-of-state

The ideal gas law, equation (3.3)

PV = nRT (3.3)

is just one example of an equation-of-state. For solids and liquids, the determination of valid
equations-of-state is a challenging problem in condensed matter physics; for real gases, the
ideal gas equation can be modified to relax the ideal assumptions noted on page 17 that
the molecules occupy no volume, and that there are no intermolecular interactions, as, for
example, expressed by the van der Waals equation(

P +
an2

V2

)
(V – nb) = nRT (3.6)

Berthelot’s equation(
P +

an2

TV2

)
(V – nb) = nRT (3.7)

and

Dieterici’s equation

P (V – nb) = nRT exp
(
–

na
RTV

)
(3.8)

In all of these equations, a is a constant related to the strength of intermolecular forces (which
tend to bind neighbouring molecules together), and b represents the actual volume occupied
by 1 mole of molecules (which acts to reduce the volume available for the gas to occupy).
From a pragmatic standpoint, the virial equation-of-state

PV = nRT
(
1 + B

n
V + C

n2

V2 + D
n3

V3 + . . .

)
(3.9)

in which B, C, D . . . are known as the second, third, fourth . . .virial coefficients, is very useful:
the parameters B, C, D . . . are not directly related to physical quantities such as the volume
actually occupied by the molecules – rather, they are determined empirically from experimen-
tal data for any given real gas. The virial equation-of-state therefore makes no fundamental
physical assumptions that may, or may not, apply in any specific circumstances, but is rooted
in experimental reality.

3.6 Heat

3.6.1 What happens when hot things cool down, and cold things warm up?

When a hot block of metal at, say, 80 ◦C is in contact with a colder block of the same metal
at, say, 20 ◦C, we observe that the originally hot block cools down, and the originally colder
block heats up, until both blocks achieve the same temperature somewhere between 80 ◦C and
20 ◦C. That’s a very common-place observation - but what is actually happening?
It’s very tempting to explain this observation in terms of the transfer of some ‘substance

X’ from one system to another. If we imagine that the presence of this ‘substance X’ confers
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‘hotness’, with hotter bodies having more of ‘substance X’ than colder ones, then when the two
blocks of metal are in contact, it seems as if the originally hotter block loses some ‘substance X’,
so becoming cooler, whilst, at the same time, the originally colder block gains some ‘substance
X’, so becoming hotter.
And it’s even more tempting to imagine that the amount of ‘substance X’ lost by the ori-

ginally hotter system is equal to the amount gained by the originally colder system, so that
the total quantity of ‘substance X’ remains the same. This would imply some sort of ‘law of
conservation’, in which the total quantity of ‘substance X’ is constant, but with this total quan-
tity being distributed around different systems in different ways. Let’s, for the moment, call
‘substance X’ heat.
So far, so good, and the ‘law of the conservation of heat’ satisfactorily explains what happens

in many situations in which hotter systems are in contact with colder ones. But there was
another, very familiar, phenomenon where it was a lot harder to understand how a ‘law of the
conservation of heat’ might actually work.

3.6.2 The experiments of Rumford and Joule

That other phenomenon is the way in which a colder system can become hotter, not by contact
with something hotter, but as a result of work. We all experience this personally, as we become
progressively warmer as we work progressively harder; and we’ve all noticed a very similar ef-
fect whenever our work involves friction – for example, when cutting wood with a saw, our
experience is that both the saw and the wood become hot. And we become hot too, as a result
of all that hard work! This is a real puzzle: how is it possible for three originally cold systems –
the saw, the wood and me – all to become hot together, without any of these three systems
being in direct contact with something hotter to start with? And the more work we do, the
hotter everything becomes, as if the work is somehow creating heat from absolutely nothing.
This poses a fundamental problem for a ‘law of the conservation of heat’: by definition, a ‘con-
servation’ law rules out the possibility that heat can be ‘created’, apparently out of nothing –
but this is precisely what appears to be happening with work.
The fact that work can make things hotter has been known since ancient times, but was first

exploredmethodically by one of themore colourful figures in the history of science – Benjamin
Thompson, Count Rumford (no relation to William Thomson, Lord Kelvin, despite the simi-
larity in names and their noble titles!). Born in 1753 in a small village in the then-English
colony of Massachusetts, Rumford came to London in 1781, spent many years in Bavaria, and
died in 1814 in Paris. Whilst involved with the reorganisation of the Bavarian army, he became
interested in the manufacture of cannon. The barrel of a cannon is a cylinder of metal, with
a deep ‘hole’ in it – the ‘hole’ through which the cannon ball will be fired. In Rumford’s day,
the barrel was typically made from solid bronze, and the ‘hole’ was then drilled out. Rumford
noticed that as the drilling took place, the bronze became progressively hotter, without limit:
the more drilling that was done, the hotter the metal became - observations which he pub-
lished in 1798. Rumford realised that the rise in temperature was attributable to the friction
between the drill and the bronze, friction directly associated with the work being done to drive
the drill through the metal.
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Figure 3.3 A schematic representation of Joule’s apparatus. As the masses to the left and right fall, the paddle rotates
within some water. The temperature of the water is observed to rise.

Rumford’s findings were refined by James Joule, a somewhat less exotic figure, but a great
scientist nonetheless. In his laboratories in Manchester, England, Joule carried out a series of
meticulous experiments during the early 1840s to investigate the relationship between work
and heat. His most ingenious apparatus, illustrated in Figure 3.3, was a mechanism in which
two falling masses, each of mass M kg, caused a paddle, immersed in water, to rotate. As the
masses fall a distance h m, they do work equal to 2Mgh J; this work is harnessed to drive the
paddle; and, as the paddle rotates against the water, the internal friction causes the temperature
of the water to rise – just like the result of the friction between Rumford’s drill and the bronze.
Joule’s studies, reported in 1845, determined that 4410 J of work (the unit of work is named
in his honour) consistently raise the temperature of 1 kg of water by 1 ◦C, so quantifying
what became known as themechanical equivalent of heat. In 1850, Joule published a refined
estimate of 4159 J – very close to the currently accepted value of 4186 J.

3.6.3 Amodification of Joule’s experiment

Let’s now make an imaginary modification to Joule’s experiment – instead of using falling
masses to rotate the paddle, let’s connect the shaft of the paddle to the piston of a cylinder,
so that as the piston moves to the right in Figure 3.4, the paddle rotates.
The piston is held in place by the now-familiar peg 1. When this peg is removed, and if the

gas pressure P inside the cylinder is greater than the external pressure Pex, the piston moves
to the right, so causing the paddle to rotate. And in expanding, the gas is doing work, some
of which (as we saw on page 27) is required to ‘push back the atmosphere’, and some used to
rotate the paddle. Now the paddle, and the surrounding water, do not ‘know’ that the paddle
is being rotated by the expansion of a gas rather than by the falling of a mass – as far as the
water is concerned, the paddle is rotating and the water is getting hotter. And if there happens
to be 1 kg of water, then it will take 4186 J of work to raise the temperature by 1 ◦C, regardless
of whether the work is performed by a falling mass, or by the expansion of a gas in a cylinder.
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Figure 3.4 An alternative version of Joule’s experiment. In this experiment, the pressure P inside the cylinder is greater
than the external pressure Pex . If peg 1 is removed, the piston moves to the right, the paddle rotates, and the temperature of

the water rises – just as happens when the rotation of the paddle is caused by the falling of a mass.

The heating of the water is attributable to the work done by the expansion of the gas, but, as
we saw on page 40, the work performed by the expansion of the gas is itself attributable to the
energy of the gas in the cylinder before the peg was removed. In this experiment, the energy
originally in the gas has been transformed firstly into work, and then into heat – indeed, if
much of the mechanics of the apparatus were contained within a ‘black box’, we would not ob-
serve the intermediate stages, and we would infer that the energy of the gas is directly causing
the temperature of the water to rise. This therefore implies that energy is not only the capacity
to perform work: it’s also the capacity to transfer heat.

3.6.4 The conservation of energy

Joule’s experiment confirmed the ‘mechanical equivalent of heat’, the fact that it is possible to
transform a given amount of work into a corresponding amount of heat. But our extension of
Joule’s experiment illustrates that the ‘mechanical equivalent of heat’ is, more fundamentally,
an ‘energetic equivalent of heat’: since energy is the capacity to perform work as well as the
capacity to transfer heat, then energy, work and heat are all, fundamentally, the same.
This insight resolves the paradox of the ‘law of the conservation of heat’: it isn’t heat that

is being conserved – it’s energy. So, when a hotter system is placed in contact with the colder
system, energy is transferred from the hotter system to the colder system, so that the hotter
system cools down, and the colder system warms up, until both systems achieve the same
temperature. The process of energy transfer from the hotter system to the colder one is what
we call heat, and whilst this process is taking place, the energy lost by the hotter system equals
that gained by the colder system, and so energy is conserved.
In Count Rumford’s experiments on drilling bronze cannon, the heat produced during the

process of drilling isn’t ‘created from nothing’ – it’s the transfer of energy resulting from the
work needed to operate the drill. So, once again, energy is conserved.
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We’ll take a more extensive look at the relationships between energy, work and heat, and
also at the corresponding conservation law, in the next chapter: for the moment, we’ll look at
some further aspects of heat and temperature.

3.6.5 Units of measurement for heat

Since energy, as well as being ‘work-in-waiting’, is also ‘heat-in-waiting’, then the unit of meas-
urement for heat is most sensibly the same as the unit of measurement used for both energy
and work, namely the Joule, J. Historically, however, heat was being studied for a long time be-
fore it was realised that heat is in fact a manifestation of energy. These studies required a unit
of measurement, and so the ‘calorie’ was defined as ‘the amount of heat required to raise the
temperature of 1 gram of pure water by 1 ◦C (specifically, from 14.5 ◦C to 15.5 ◦C) at a pres-
sure of 1 atmosphere’. An associated unit, the ‘Calorie’ (with an upper case C) or ‘kilocalorie’,
has a similar definition, but as applied to 1 kilogram of pure water. When Joule’s experiment
established that 4159 J = 1 Calorie, the use of the calorie, and Calorie, as units of measurement
for heat became redundant, for any measurement in calories (or Calories) can be converted
into a measurement in J using the conversion factor 1 Calorie = 4159 J. As it happened, how-
ever, the calorie, and Calorie, remained in use for many years as the units of measurement for
heat, long after Joule’s experiment, and continue to be used to this day in connection with, for
example, the specification of the energy content of many foods, as shown on the labels on food
packaging. Scientifically, however, the SI unit for work, energy and heat is the Joule, J.

3.6.6 Thermal contact

If heat can flow from one system to another, then those systems are said to be in thermal
contact. Thermal contact can be the result of physical proximity, as when something hot is in
direct contact with something cold, in which case we speak of the conduction of heat (for heat
flow within, or between, solids), or the convection of heat (for heat flow within, or between,
fluids). Heat flow can also take place across distances – for example, the heat flow from the sun
to the earth – in which case we speak of radiation.

3.6.7 Heat isn’t a substance, it’s a description of a process

Very importantly, we now appreciate that heat isn’t some form of substance; rather, it’s the
name we give to the process in which energy is transferred either

• between two systems in thermal contact, one hotter and one colder, so that the hotter
system becomes cooler, and the colder system hotter, or

• as the result of work being done on a system, causing that system to become hotter.

Taking the case of the transfer of energy from a hotter system to a colder system, we also
know that hotter systems are associated with higher temperatures, and colder systems with
lower temperatures. A temperature difference between two systems is known as a temperature
gradient, so another way of defining heat is the process of energy flow down a temperature
gradient.
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3.6.8 The ‘Zeroth’ Law of Thermodynamics

The definition of heat as the process of energy flow down a temperature gradient has two,
rather hidden, implications. The first is that if there is no temperature gradient between two
systems – that is, if the two systems have the same temperature – then there is no transfer of
energy, and no flow of heat, this being the situation which we have already defined (see page 9)
as thermal equilibrium. Looked at the other way around, if two systems are in thermal contact
and there is no flow heat, then we can infer that they are at the same temperature. This leads
to what is sometimes called the ‘Zeroth’ Law of Thermodynamics:

If two systems are each in thermal equilibriumwith a third system, then

they will be in thermal equilibriumwith each other. Each of the three

systemsmay be associated with an intensive state function, temperature,

which, in this case, will take the same value for each system.

This statement highlights an empirical observation – thermal equilibrium, and the corres-
ponding absence of heat flow – and introduces an associated thermodynamic state function,
in this case, temperature. We all experience situations in which we detect heat flows be-
tween systems, and we also experience systems which are not associated with the flow of
heat: these are every-day empirical observations. The Zeroth Law then tells us that if each
system can be associated with an intensive state function, temperature, then if the temper-
atures of two systems are the same, there will be no heat flow, but if the temperatures of
the two systems are different, then heat flow between them. Conversely, if we detect no heat
flow between two systems in thermal contact, then they are at the same temperature; if we
do detect a flow of heat, then they are at different temperatures. As we shall see for the First
and Second Laws of Thermodynamics (see pages 94 and 268, respectively), these too can be
expressed in terms of an empirical observation, and the introduction of an associated state
function.

3.6.9 Heat flow is unidirectional

The second implication of the fact that a temperature gradient between two systems in ther-
mal contact causes a flow of energy so that the originally hotter system becomes colder, and the
originally colder system becomes hotter, is that this statement implicitly contains a statement
of directionality – the energy flow is down the temperature gradient, from the higher tempera-
ture system to the lower, not up it. This ‘unidirectionality’ has very considerable significance,
as we shall see in Chapter 8.

3.6.10 Heat is a path function

We now appreciate that a system does not ‘have’ heat; rather, heat is the name we give to the
process in which heat is transferred between two systems, in thermal contact and originally
at different temperatures, until such time as the temperature across both systems becomes
uniform, and the flow of heat stops. Heat is therefore not a property of a state, but rather a
phenomenon that can be measured only as a system changes state – just as we saw on pages
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24 in relation to work. Heat, like work, is therefore a path function, and the amount of heat
transferred during any change of state will depend on the path taken. Accordingly, a small
quantity of heat is represented as đq and, like đw, đq is signed, according to whether the system
gains or loses heat during the corresponding change of state:

• Heat gained by a system is represented by a positive number.
• Heat lost from a system is represented by a negative number.

For any finite change of state from state [1] to state [2], the total amount of heat {1q2}X gained
by, or lost from, the system can be determined by summation or integration as

{1q2}X =
state [2]∑
state [1]

đq =
state [2]∫

state [1]

đq (3.10)

where the notation { . . . }X indicates that the specific value of {1q2}X for a particular change in
state depends on the path X taken.
Also, since heat is a path function, this implies that, for any thermodynamic cycle∮

đq 
= 0 (3.11)

As with work, the net amount of heat gained by, or lost from, a system during a thermo-
dynamic cycle can be evaluated only by reference to the specific path followed, some elements
of which will be associated with the gain of heat, some with the loss. Overall, however, for
a complete thermodynamic cycle, the result will be either a positive (net heat gained) or a
negative (net heat lost) number; it will not be zero.
One further thought in relation to heat as a path function: as we saw earlier (see page 39),

the path function work, đw, is linked to the two state functions pressure P and volume V by
the equation

đw = P dV

which we expressed in a more generic form

đ(path function) = (intensive state function) × d(extensive state function)

We now know that heat, đq, is a path function, and very much associated with the intensive
state function temperature T. So that triggers a hunch that

đq = T d(an extensive state function)

What that extensive state function might be is not so obvious, and, as we shall see in Chapter 9,
one of the great triumphs of thermodynamics was the discovery of what that state function
actually is.

3.7 Somemore definitions

Now we have a deeper understanding of heat, there are a few more technical terms that we
need to define, which we do here.
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3.7.1 Isolated, closed and open systems

We have already seen that a system is that part of the universe selected for study, and that
any system is separated from the surroundings by the system boundary. Within this broad
definition of ‘system’, it is useful to distinguish three categories:

• An isolated system is one whose boundary prevents the exchange of both matter and
energy with the surroundings.

• A closed system is one whose boundary prevents the exchange of matter with the
surroundings, but allows the transfer of energy, for example, as work or heat.

• An open system is one whose boundary allows the transfer of both matter and energy
with the surroundings.

Living things are open systems in that all living things exchangematter with their surroundings
(for example, by eating and breathing), as well as energy (photosynthesis in green plants, for
example, uses light energy to transform carbon dioxide and water into glucose and oxygen).
The now-familiar system of a gas in a cylinder with a moveable piston is an example of a

closed system – the walls of the cylinder and the seal around the piston stop any of the in-
ternal gas from leaking out, as well as stopping any matter in the surroundings from getting
in, so preventing the exchange of matter, whilst the moveable piston allows the system to per-
form work on the surroundings (if the piston moves outwards), and also the surroundings to
perform work on the system (if the piston moves inwards). Furthermore, if the walls of the
cylinder are made of a material which can conduct heat – for example, metal – then heat too
can be exchanged with the surroundings.
An example of an isolated system is a gas within a sealed container, the walls of which are

fixed, and made of a material that provides perfect thermal insulation. The fact that the con-
tainer is sealed stops any matter from getting in or out; the rigid walls can’t move, and so no
work can be done either by the system or on it; and the thermal insulation prevents any ex-
change of heat. In practice, however, there are no truly perfect thermal insulators, so any real
system (with one exception, to be noted very shortly) is only an approximation to a theoret-
ical isolated system: the exception is the universe as a whole, for we are free to position the
boundary as far into deep space as we like . . .

3.7.2 Isothermal and adiabatic changes in state

Systems can change their state in many different ways, but two types of change of state are
particularly important:

• An isothermal change of state is one in which the temperature of the system is main-
tained constant throughout the change, and an isotherm is a plot on a diagram, such
as a P,V diagram, that defines an isothermal path.

• An adiabatic change of state is one in which there is no exchange of heat between the
system and the surroundings, and an adiabat is a plot on a diagram, such as a P,V
diagram, that defines an adiabatic path.

An isothermal change usually requires the flow of heat into, or out of, the system, and so can
take place within an open or a closed system, but not within an isolated one; changes within
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an isolated system are necessarily adiabatic. A closed system can undergo an adiabatic change
if its boundaries allow work to be done by, or on, the system, but block the transfer of heat;
an open system can in principle undergo an adiabatic change under specific circumstances in
which heat is not exchanged with the surroundings, even though heat exchange is in principle
possible – but this is very rare.

3.7.3 Isobaric and isochoric changes in state

The terms isothermal and adiabatic are used frequently; here are two other terms which,
though used rather less frequently, are also worth noting:

• An isobaric change of state is one in which the pressure of the system is maintained
constant throughout the change, and an isobar is a plot on a diagram, such as a P,V
diagram, that defines an isobaric path. On a P,V diagram, an isobar is necessarily
horizontal.

• An isochoric change of state is one in which the volume of the system is maintained
constant throughout the change, and an isochore is a plot on a diagram, such as a P,V
diagram, that defines an isochoric path. On a P,V diagram, an isochore is necessarily
vertical.

3.8 How to get work from heat

3.8.1 The steam engine

Around the time that Count Rumford was in Bavaria studying howwork is converted into heat
during the drilling of bronze cannon, some 2,000 km away to the north-west, the brilliant Scot-
tish engineer James Watt, working firstly in Scotland and then in England, was doing the very
opposite – perfecting his machine that converted heat into work, a machine known as a steam
engine. Steam engines played a very important role in the development of thermodynamics,
for they are devices that transform the heat produced from burning a fuel such as wood or
coal, and later oil, into useful work that can be harnessed to drive a locomotive or industrial
machinery, as achieved by exploiting the P,V work done by the expansion of a gas, steam. The
invention, and development, of a reliable steam engine was of enormous significance: up to
that time, the only sources of work were animals and human beings (which need to be fed,
and get tired), windmills (which rely on the wind), water-mills (which require a steady flow
of water, and need to be sited accordingly), and – to a very much more limited extent - falling
weights (as used to power clocks). Steam engines are much more reliable, and can be sited
anywhere – all they need is a supply of fuel to burn, and water to boil.
Watt’s steam engines were sophisticated machines, and – as with all great inventions – built

on a succession of earlier endeavours, such as the engines designed and constructed by Thomas
Newcomen (who, with John Cawley, was awarded a patent in 1705), Thomas Savery (around
1698), Denis Papin (1688), the Marquis of Worcester (1663), and Giovanni Branca (1629) –
indeed the earliest documented record of heat producing work, of the very first steam engine,
is the ‘aeolipile’, described by Heron (sometimes known as Hero) of Alexandria some 2,000
years ago, as illustrated schematically in Figure 3.5.
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Figure 3.5 Heron’s aeolipile. Steam form boiling water passes into a hollow sphere, which can rotate about a horizontal
axis. The steam can escape only through two narrow L-shaped pipes, each ending in a narrow outlet: in this diagram, the
lower outlet is projecting perpendicularly out of the paper towards the reader, and the upper outlet is projecting out of the

paper away from the reader. As the pressurised steam escapes through the outlets, the sphere rotates in the opposite
direction. The rotation of the sphere, driven by the P,V work done by the expanding steam, could, in principle, be harnessed

to lift a weight.

3.8.2 How to harness the P,V work of an expanding gas

One feature of Heron’s aeolipile is that the steam emitted from the outlets expands freely
against the atmosphere. In Watt’s steam engine, in contrast, the steam is kept enclosed within
a cylinder, and expands against a moveable piston. In this section, we will build on our dis-
cussion in Chapter 2 to explore in more detail how a heated, expanding, gas can be used to
perform useful work.
As we saw in Chapter 2, in principle, the conversion of heat into work, using a gas expanding

against a piston, is very simple. If the piston in Figure 3.6 is initially held fixed, the volume V
of the system is held constant. On heating the gas – say, air – its temperature T increases,
and, assuming that the ideal gas law PV = nRT is reasonably valid, since the volume V is
constant, the pressure P will increase accordingly. When the pressure P has reached a given
level above atmospheric pressure, peg 1 can be removed, so that the piston moves against the
atmosphere. The expansion of the air therefore does P,V work as we discussed on page 27,
‘pushing the atmosphere out of the way’, and doing other ‘useful work’ too – if the piston is
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Figure 3.6 Producing work from heat. When the air inside the piston is heated, its pressure P increases. On removing peg
1, the piston then expands against the external atmospheric pressure Pex until it stops at peg 2. As the piston moves to the
right, the mass is raised. The device inside the dashed line acts as a machine that converts the heat from the flame into the

work required to lift the mass.

suitably connected mechanically to another device, then the motion of the piston during this
‘power stroke’ can be used to lift a weight, or rotate, say, a mill-wheel. Overall, this device
converts heat into work.
There is, however, a very practical problem: the work that this device performs takes place

only as the piston moves to the right, and stops when the piston has reached the position
defined by peg 2. This could happen quite quickly, and so any work that is performed will be
finished within a very short time. It may be that this time is long enough to raise the weight to
the required position, but this might just be a fortunate co-incidence – what we seek is a device
that can perform work as long as we wish it to, rather than one that can only perform work in
a short burst.
One way of increasing the time over which work is performed is to use a longer cylinder, so

that the distance between peg 1 and peg 2 is significantly greater. But in practice, how long can
a cylinder be? And even if it were possible to use a longer cylinder, another problem will soon
arise. As the piston moves against the atmosphere, the volume within the cylinder increases,
and so the pressure of the air inside the cylinder drops. Eventually, the pressure of the air in-
side the cylinder will fall to that of the atmosphere, and so the piston will stop, even if it hasn’t
yet reached peg 2. This problem, too, can be avoided, in two different ways. The first is to heat
the air to a very high pressure, before releasing peg 1, so that the piston will move through
a longer distance before the internal and external pressures equilibrate. And the second is to
keep the temperature of the air inside the cylinder high, so that the pressure drop attributable
to the volume increase is compensated by the higher temperature - which is all about manipu-
lating PV = nRT so that the internal pressure P remains higher than the external atmospheric
pressure Pex even as the volume V increases. Both these ‘solutions’ require a lot of heat


