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Introduction to the series

These books are a labor of love and love of labor. They reflect
a personal philosophy of education and affection for this small
but vital subject area of electroscience, one that has given me
satisfaction. This subdiscipline is also a domain where knowledge
has evolved rapidly, leaving in its wake an unsatisfactory state
in the coherence of content tying mathematical and physical
descriptions to its practice.

Engineering-oriented science education, even though not really
that different from science education itself, is difficult for two
reasons. It aims to provide strong scientific foundations and also A slight aside. Behind this education

is an urge to understand our universe,
the nature in which we exist, and
perhaps through our acts bringing
about small changes around us to
make life and the world a bit better.
When my eldest son came back home
after first semester in college, he
said,  ̏I now get it. Biology is the
emergence of chemistry, chemistry is
the emergence of physics, and physics
of mathematics.˝ This is a modern
take of Galileo Galeilei’s statement in
Sidereus Nuncius,  ̏Nature is written in
that great book which ever lies before
our eyes. · · · . The book is written
in the mathematical language, and
the symbols are triangles, circles and
other geometrical figures without
whose helps it is humanly impossible
to comprehend a single word of it,
and without which one wanders in
vain through a dark labyrinth.˝ The
symbols and this language, especially
via Leibniz’s calculus, have expanded
tremendously. This Cartesian world
view of physical reality, though
powerful, is reductionist and
incomplete in the Gödelian sense.
Mathematics, music, paintings, and
good writing are universal languages
that reach out from the natural world
to our senses. Objectivity is not

to make the student capable of practicing it for society’s benefit.
Adequate knowledge of design and technology to invent and opti-
mize within constraints demands a fundamental understanding of
the natural and physical world we live in. Only then can we create
usefully with these evolving tools and technology. Three hundred
years ago, calculus and Kepler’s and Newton’s laws may have
been adequate. Two hundred years ago, this basic foundation was
expanded to include a broader understanding of thermodynamics;
the Lagrangian approach to classical mechanics; probability; and
the early curiosity about the compositional origins of lightening.
A hundred years ago, the foundational knowledge had expanded
again to include a fair understanding of the periodic table, Hamil-
tonians, electricity, magnetism, and statistical mechanics, and,
yet again, it was incomplete, as the development of new, non-
classical approaches, such as Planck’s introduction of quantum of
action, and relativity, showed. Our understanding still remains very
incomplete today even as evolution is gathering pace via science
and engineering with non-carbon forms of intelligent machines
quite imaginable. Reductive and constructive approaches, as before,
pervade the pursuit of science and engineering. Understanding
singularities, whether in black holes, in phase transitions with their
information mechanics implications, or for solving near-infinite
differential equations with near-infinite variables and constraints
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and the networks they form, is central to science and engineering just the Cartesian physical objectivity
with an in-built bias in the exclusivity
of certain properties but must
also expand to domains of other
experiences for such a coming
together to explain the world. When
science uses objective measures
of information, it is just that, a
measure of that specific information
content. The jump to knowledge—
a phenomenological objective
view—is much more. I would also
add that engineering is very much
a Martin Heidegger’s Being and
Time, where being-in-the-world is
central, and Sartre’s progression
to existentialism with Being and
Nothingness as humanism.

problems—connecting back the two ends of the string.
All this evolving knowledge and its usage would be deficient

were we incapable of adequately using the tools available, which
in their modern forms include software for the implementation
of mathematics and their computational, observational and
experiment-stimulating machinery and their operating software for
designing and optimizing suitable answers to the questions posed.
A physical understanding of the connections between different
interactions, as well as the reasoning that leads one to identify the
most primary of these interactions, is essential to utilizing them
gainfully.

Another conundrum and this is particularly true for three
volumes of this series is that much of this subject area is at the
intersection of science and engineering with both important. A
scientist is both an artist and a craftsman. The former in the sense
of Edgar Degas who says  ̏On voit comme on veut voir; c’est faux;
et cette fausseté constitue l’art,˝ Science in this art sense is a search Translated, Degas is saying  ̏People

see what they want to see; it is false;
and this falseness constitutes art.˝

for truth. Art is subjective. In the art of book writing, the choice of
words and the exposition are our main tools for exploring the truth
or maybe perhaps  ̏what we want to see.˝ The craft, on the other
hand, has much objectivity to it. Objectivity can be tackled through
the tools of mathematics. Both the art and the craft are important.
The books are an attempt at finding that balance so that it appeals
both to the foxes and the hedgehogs.

Engineering education, with these continuing changes in fun-
damental understanding and its practice, raises difficult questions
of content and delivery too under the constraint of a fixed time
period for education. It has also raised serious humanist questions
of affordability, even as engineering education claims to aim at
frugality through less expensive scaled delivery mechanisms.
Engineering, more than science, is beholden to societal needs.
In growing fields, particularly the ones that that have the most
immediate societal relevance, this rapidly brings content and
finances into conflict. As the amount of engineering and science
knowledge required rapidly increases, with the rapidly evolving
technology, training becomes obsolete just as rapidly. In technical
areas, whose educational needs expand suddenly because of their
societal use and consequent professional needs, specialized course
offerings proliferate rapidly. This puts pressure on the teaching
of the foundational knowledge of the disciplines, and the time
available for it. The inclusion of broad skill sets into the core
curriculum is threatened by the need to teach an expanding number
of specialized topics in an ever-shrinking amount of time. The pace
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of and need for change through new offerings or modifications
to courses risk introducing disjointedness and decreasing rigor,
because modifying and harmonizing a curriculum is a difficult and
time-consuming task.

This series of books is an experiment in attempting to answer
today’s needs in my areas of interest while preserving thoroughness
and rigor. It is an attempt at coherent systematic education with
discipline, while maintaining reverence and a healthy disrespect for
received wisdom.

The books aim to be conceptual not mechanical. This series is
aimed ultimately at the electroscience of the nanoscale—the current
interest of the semiconductors and devices stream—but which is
also far more interdisciplinary than the norms suggest. Its objective A hallmark of the present times is

introduction of new words when
older ones lose their apparent luster or
 ̏branding.˝  ̏Multidisciplinary˝
evolved to  ̏interdisciplinary˝
with an expansion of indiscipline.
 ̏Transdisciplinary˝ must be trying
to birth itself. Richard Feynman’s
statement,  ̏In these days of
specialization there are too few people
who have such a deep understanding
of two departments of our knowledge
that they do not make a fools of
themselves in one or the other˝ (from
R. P. Feynman,  ̏The meaning of it
all: Thoughts of a citizen-scientist,˝
Perseus ISBN 0-7382-0166-9 (1989), p.
9), is not inappropriate here.

is to have students understand electronic devices, in the modern
sense of that term, which includes magnetic, optical, mechanical,
and informational devices, as well as the implications of the use of
such devices. It aims, in four semester-scale courses, to introduce
the underlying science, starting with the fundamentals of quantum,
statistical and informational mechanics and connecting these to an
exposition of classical device physics, then dive deeper into the
condensed matter physics of semiconductors, and finally address
advanced themes regarding devices of nanometer scale: so, starting
with the basics and ending with the integration of electronics,
optics, magnetics and mechanics at the nanoscale.

The first book1 of the series explores the quantum, statistical

1 S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming).

and information mechanics foundations for understanding semi-
conductors and the solid state. The second2 discusses microscale

2 S. Tiwari,  ̏Device physics:
Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming).

electronic, optical and optoelectronic devices, for which mostly
classical interpretation and understanding suffice. The third3 builds

3 S. Tiwari,  ̏Semiconductor physics:
Principles, theory and nanoscale,˝
Electroscience 3, Oxford University
Press, ISBN 978-0-198-75986-7 (2020).

advanced foundations utilizing quantum and causal approaches
to explore electrons, phonons and photons and their interaction
in the solid state, particularly in semiconductors, as relevant to
devices and to the properties of matter used in devices. The fourth
book4 is a treatment of the nanoscale-specific physics of electronic,

4 S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).

optical, magnetic and mechanical devices of engineering interest.
The second and the third volumes are for subjects that can be
taught in parallel but are necessary for the fourth. The value of
this approach is that this sequence can be completed by the first
year of graduate school or even the senior year of undergraduate
studies, for a good student, while leaving room for much else that
the student must learn. For those interested in electrosciences, this
still includes electromagnetics, deeper understanding of lasers,
analog, digital and high frequency circuits, and other directions.
The fourth book was the first to come out because of the urgency
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I felt. The third book puts together the foundational learning for the
modern insights of semiconductors.

I have always admired simplicity of exposition with a thorough
discussion that even if simplified, is devoid of propaganda or the
much too common modern practice of using templates where depth
and nuances are lost and doubts and questions are not addressed.
Also consistency is easily lost when modern tools, instead of a
pencil and paper, are employed. The style of these books follows
these beliefs. Notations, figures, the occasional use of color and
other stylistic choices are consistent across the book series.

From early years, I have been a devotee of marginalia—much of
the learning and independent thought have come from doodling
in the margins and the back pages of notebooks. These books are
organized so that the reader will feel encouraged to do so.

A list of very readable, in-depth sources, with my perspectives
serving as a trigger for different contents within the book, is to be
found at the end of each chapter, in the section titled  ̏Concluding
remarks and bibliographic notes.˝ No attempt has been made to
credit original discoverers or authors. These remarks and notes
ascribe them, or they are to be found by following the references
in these notes to their origins.

The exercises are formulated for use in self-study and in the
class-room. A subject cannot really be learned by simply reading.
Problems requiring application of the information learned and
encouraging further thinking and learning are necessary. When
we discover for ourselves, we learn best. The exercises here are
meant to inform and to be instructive. They are also ranked for
difficulty—those that need only a short time but test fundamental
understanding are marked as (S), for simple; those requiring
considerable effort, bordering on being research problems, are rated
(A), for advanced; and those that are intermediate are rated (M), for
moderate.

Teaching slides are available on the companion website recorded
in the front. The solutions manual may also be requested by pro-
viding information at the second link furnished in the front. Slides,
when in the modern template-based style, can seriously hinder
teaching when they become a tool for filtering key information
and explanation while emphasizing summary points. The available
presentation material is a tool to avoiding mistakes in writing out
equations and to carefully and graphically explain the relationships
that science and engineering unfold. They do not substitute for the
book and the instructor needs to be diligent in making sure that
important themes of teaching—probing, questioning, reasoning,
explaining, exploring evidence—come out credibly. I am also happy

The emphasis on probing, questioning,
reasoning, explaining and exploring
cannot be emphasized enough. I
use paradoxes, puzzles, gedanken
experiments and real world analogies
as common tools. A simple capacitor
switched abruptly connected to
an ideal source lets one explore
dissipation and energy conversion
in its broader sense. Displacement
currents are real currents, a capacitor
as an antenna can radiate, that this
radiation proceeding to infinity has
a real characteristic impedance, that
an infinite L and C transmission line
network ends up as a line with real
impedance even if made of reactive
elements, and that dissipation may
arise in the material too, can all be
followed through from the poor
lowly capacitor. How did the energy
appear throughout the capacitor lets
one probe Maxwell’s equations and
electromagnetic propagation even
when this current is asymptotically
vanishing in a slow charging process.
And farther on a tying in of all these
connections between fundamental
laws and physical behavior entwining
Maxwell’s electromagnetism, the
quantum-mechanical origins of
the materials’ properties and the
diverse meanings of entropy from
statistical mechanics. When I tried to
introduce a question drawing on the
basic understanding of capacitors
in a qualifying examination, a
fellow member—a PF9/PF10 with
administration responsibilities—spoke
up that we teach our students to
never connect ideal voltage sources
to capacitors. Science is not religion.
Looking for contradictions helps one
find the invariants—the physical
principles—that stand tall. It is
through such probings and mental
experiments that one learns and
understands. There is nothing more
satisfying in education than this
peeling of onion from a simple
question to deeper and deeper
insights. This is what education is
about. Curiosity should never be
discouraged.
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to hear and discuss the subtleties and the different viewpoints of
principles, approaches and the deeper meanings of a derived result.

Lots of people can grasp things remarkably quickly. But grasping
is not the same as understanding. Understanding is a much deeper
network in the brain. I hope students will find in this sequence
of books the ballast to propel their own interests through the
understanding.

The books could have been shorter and crisper had there
been more time. But, what time there was has given enormous
pleasure—a time out for integrity in the presence of the incessant
pressure of existence, particularly of life in modern academe. For
this escape, my gratitude to this world. For making possible the
following of my wishes to produce these songs as the shadow
of a life in research, teaching and writing, I thank the Hitkarini
Foundation.
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Introduction

Semiconductors, as crystalline, polycrystalline or amorphous
inorganic solids, as ordered or disordered organic solids or even
in glassy and liquid forms, form a large set of materials useful in
active and passive devices. The control of their properties arising
in an interaction of particles—atoms, electrons, photons, their
elementary one- and many-body excitations, transport and the
exchange between different energy forms—has been a fruitful
human endeavor since the birth of the transistor, where they found
their first large-scale use. Integrated electronics, through its social
and commercial informational ubiquity; optoelectronics, through
lasers and photovoltaics; and thermoelectronics and magneto-
electronics, with their use in energy transformation and signal
detection, are but a few of these gainful uses. Nanoscale, within this
milieu, opens up a variety of perturbative and significantly more
substantial and sensitive effects. Some are very useful, and some
can be quite a bother.

Dating back to the 1950s, there exist numerous good textbooks
for the solid state. From these early years, J. M. Ziman’s Electrons
and phonons for the details and Principles of the theory of solids for
a thoughtful broad discussion are particularly of note. Another
one is Rudolf Peierls’ Quantum theory of solids. Among solid-state
texts, these remain particularly alive because much of their content
is appropriate to electronics of semiconductors. They certainly
treat several of the semiconductor-specific scattering and transport
topics rather well. As optics—later rebranded as photonics—became
important, the divergence in texts increased. Later solid-state texts,
with their emphasis on metals, ferroelectricity, ferromagnetism,
superconductivity, et cetera, inevitably gave short shrift to
semiconductors. That there is a quite informal completeness,
consistency and unity to the diversity in the foundations is
something that, except for the early books, few capture. Nanoscale
makes matters even more divergent. I have felt that a book that

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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brings together this unity and focuses on the foundations toward
understanding why semiconductor matter behaves the way it does
would be useful.

From an engineering perspective, and from that of science,
information as the fountain from which much can be understood
and explored, including the quantum-mechanical notions through Not to belabor the point, but the

Copenhagen interpretation—a
duality—and the emphasis on an
observation and therefore, secondarily,
an observer both are causes of why
folks see a hint of spookiness in
quantum mechanics. Philosophically,
I subscribe to the notion of deep
truths—truths where a statement
and its opposite are both true
such as with wave and particle,
or insistence on one’s privacy yet
wanting governments to give one
strong security in this internet and
information-centric age, or carbon as
both a source of nature’s suffering and
a source of joy by and for humans—
as well as observation as the action
that unveils information. This is
consistent with the earlier Bohrian
notions but also does away with the
trust that it expects, and perhaps the
wonder it raises, when first introduced
in an undergraduate classroom.
Bohr had this inclination toward
the complementarity of truth and
clarity. He is known to have used the
following story often. A young person
was sent to another village to listen
to a great rabbi. Upon his return, he
reported,  ̏The rabbi spoke three times.
The first talk was brilliant, clear and
simple. I understood everything. The
second was even better, deep and
subtle. I didn’t understand much, but
the rabbi understood it all. The third
was just superb and unforgettable.
I understood nothing and the rabbi
himself didn’t understand much
either.˝ Keeping an information-
centric perspective helps do away
with quite a bit of the metaphysics that
developed over the decades around
quantum mechanics.

the Bayesian interpretations, is a major change in our learning of
recent times.

The Fermi surface of a metal, which gets much attention in
a solid-state text, is of enormous import, but it is more of an
anachronistic appendage to semiconductor matters. The Fermi
surface in a semiconductor, while important, is not as complicated.
But there are many static and dynamic interactions, transformations
and fluctuation effects that have enormous import and need
emphasis. Included within this group are the topics of noise
and dissipation as consequences of fluctuations, linear response
and causality appearing in Kramers-Kronig-type relationships in
multitudes of places beyond just the dielectric function, collective
effects and interactions such as those of plasmons or polaritons,
strain, semiconductor alloys, the nature of heterostructures and their
periodic structures, of defects and multiparticle Auger interactions
and of nonlinearities in energy coupling, such as those embodied
in Onsager relationships, and even transport from classical to
mesoscopic in off-equilibrium conditions.

Add to this collection of topics the consequences of nanoscale
from surface to bulk, dimensionality change, collective behavior
and, together, their effect on various interactions and transforma-
tions as additional subjects of modern importance. In teaching
these, with the implicit understanding of nanoscale devices as the
ultimate goal, one has to resort to a fair collection of diverse classic
resources and combine them with one’s own thoughts. This makes
the task of getting across to the student the necessary physics
for understanding devices difficult, with styles, nomenclature,
incompleteness and substantive jumps abounding.

In keeping with the spirit of this textbook series, this volume
is devoted to semiconductor-specific solid-state physics aimed
at students of engineering, particularly electronics and materials
science, but also with utility, because of the exposition, for those
from physics and chemistry.

It is organized to certainly include the classical underpinnings
ranging from bandstructure approaches to phonon behavior,
scattering, approximations, et cetera, but it particularly stresses
topics that are modern and aimed toward nanoscale. All are
presented with principles and theory as areas of emphasis,



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

introduction 3

expecting that review papers and other narrower but deeper
treatises will become analyzable, understandable and critiqueable
to those prepared from this approach.

The book reviews the essential basics and the tools of the
trade first, including the quantum methods for ensembles and
their approximations, before moving on to the approaches of
bandstructure calculation as well as their limitations, which help us
describe the behavior of electrons and phonons in a semiconductor.
This serves to then develop the treatment of transport, including
within it semi-classical, quantum and mesoscopic approaches under
scattering and the limit of no scattering under equilibrium and off-
equilibrium conditions. For semiconductors, particularly in newer
applications, spin-orbit coupling manifests itself in several places,
so care is taken to bring the insights from bandstructures to the
interactions for semiconductors at different dimensionality.

This sets the stage for the atypical topics of emphasis of the
text. The first of these is the discussion of electrons and phonon
behavior at surfaces. This is then reformulated for interfaces.
Here, heterostructures—what really happens physically at the
boundaries—also appear as an important subject for analysis and
discussion. Zinc blende, diamond and wurtzite, encompassing
elemental and compound semiconductors, including the nitrides,
are explored together in emphasizing the principles. The text
also discusses the newer and perhaps presently unconventional
semiconductors, such as monolayers, in the final chapter, where
we return to the themes of the initial chapters in light of all the
learning in-between. All this discussion has electrons and phonons
as its center, where defect-catalyzed interactions and their variety of
behavior under compositional changes are also important.

Photons, electron-photon interactions and radiative and non-
radiative phonon-assisted processes are tackled to bring about
the interactions in a broadband of energies, so including Auger
processes.

This sets the stage for discussion of the next order of complexity
in ensemble interactions. We start with a discussion of causality
and response theory, and within it the different places where
fluctuation-dissipation and Kramers-Kronig forms appear. Ensemble
interactions, also in their coupled forms, such as excitons, polaritons
and plasmons, follow next. This discussion of higher order inter-
actions is expanded to the variety of manifestations of dissipative
transport. Particularly important here is noise, which is central
to the use of semiconductor devices at nanoscale. Another of
these next order effects is strain, whose use is now pervasive in
semiconductors. Spin again becomes quite central to this discussion
through bandstructure, as it does for topological reasons.

The spin-topological connections
and their device implications are
tackled separately in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).
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The high permittivity of gate dielectrics often used with
semiconductors appears with soft phonons and is an essential part
of the tool set of semiconductor devices. We look at their behavior
and the local and remote coupling effects arising in them.

Energy couplings and their transfer between various forms—heat
to electric, and stress to electric—their off-equilibrium behavior and
the role of Onsager relationships in these energy transformations is
an essential set of topics in important areas of use of semiconduc-
tors, from thermoelectrics to piezoelectrics. These are discussed in
sufficient detail for the reader to get good insight into the operating
principles and how many of the effects undergo some change—
sometimes small, sometimes large—at nanoscale.

We follow this broad swath of physics discussion by looking
at periodic structures and the nature of the various excitations
of interest in them. So, we discuss superlattices for electrons,
phonons, plasmons and plasmon-polaritons, as well as the role of
dimensionality within them.

The text intends to provide the reader with an in-depth discus-
sion of semiconductors, aiming toward the nanoscale through this
range of development of the subject. Readers who have had an
introductory course in quantum and statistical approaches and have

Quantum and statistical mechanics
treatment at the level of S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming), is expected. The reader
will find the integrated treatment of
information mechanics within this
description quite useful because of
the common themes that tie energy,
entropy and information together,
as well as the dominant usage of
semiconductors in the processing of
information.

a general understanding of the operation of electronic and optical
devices will benefit. An understanding of the operation

of simple devices—p/n junctions,
and unipolar and bipolar transistors—
helps with understanding the
relationship between the operational
physics, such as that of high
permittivity insulators, of noise,
of strain or of heterostructures and
the behavior of devices.

At the very least, readers must have internalized the meaning of
equations at the end of the glossary and the principles of quantum
and statistical mechanics and should be willing to pursue the
appendices that sometimes serve as summary introductions of
important ideas being employed in the main chapters.

The content here is quite comprehensive, as it tries to integrate
a variety of ideas across the significant breadth of phenomena
that one needs to understand in semiconductors. It is likely that,
for some, it is more than can be tackled in a single semester,
especially if the students have diverse educational backgrounds and
disciplines. So, choices may need to be made. Mine have been to
maintain balance between taste and the students’ needs. And these
have changed from year to year. This book, and this series, repre-
sent an attempt at a style where learning is also possible on one’s
own. The classroom is particularly useful in bringing about the
connection of ideas, the emphasizing of principles, the creation of
interesting segues where new thoughts can be explored, using the
learning and the give and take that the classroom provides so well,
and the stimulation of the students’ spirit for adventure. The first
two chapters of this text are an attempt at summarily introducing
and reviewing major ideas, some part of the orthodoxy, but others,
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such as Fisher entropy and information, not. This content is the part My favorites for this returning back
again and again in music is Verdi’s La
forza del destino as a simultaneous
multipath arrival, but many of
Schubert’s and Chopin’s piano—
single instrument—pieces bring the
path to the heart and the mind perhaps
even more convincingly. The Giuseppe
Verdi creation is itself a variation on
a play by the Spanish master Angel
Perz de Saavedra. Verdi endowed his
beautiful home—Casa Verdi—in Milan
as a retirement home for musicians
who need such support late in their
life. Music lives there in love and in
peace. Verdi’s is a life whose variations
continue to live a hundred-plus years
later. Variations are the most powerful,
whether in music or in books and
teaching, when they play out forever
in time and space.

of the book that one does have the freedom of referring back to if
one starts with Chapter 3. Good books and teaching are like music,
where the beauty and joy comes from the constant returning back
to powerful ideas with variations, each with a little different way
of looking at the subject—a different rhythm, a different harmony,
a different timbre. Each class is then a different piece of music. The
first two chapters facilitate this for the rest of the text so that the
learning can be fulfilling to both the student and the teacher. This
comment holds just as well for the appendices, where important
notions are summarily emphasized. The rest of the book can then
be managed in a reasonably demanding course where the students
are expected to stay abreast with their reading and thinking.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

1
Hamiltonians and solution techniques

Nature is composed of objects—particles, solids or other
assemblages in various representations—whose behavior—
properties, evolution in time, consequences of stimulation and
others—we attempt to explore, understand, design and predict in
science and engineering. A major success of classical mechanics
from the mid-17th century on was the ability to mathematically Post-Copernicus—the importance

of observation and prediction, and
mathematical tools such as calculus—
is the age of modern science. Prior
to that, Euclidean geometry had
been the dogma since about 300 BC.
Likewise, dating from the same time
period, Aristotle’s views that there
are four elements, that heavier objects
fall faster or that Earth is the center
of universe made up the dogma
that was not to be questioned. The
former was overthrown by Nikolai
Lobatchevski, and the latter needed
the Renaissance. This is almost two
millennia of scientific darkness!

describe the evolution in time of the objective values of properties
of interest. For example, if a system—a bounded object—of known
spatial coordinates and velocity (or momentum), that is, one whose
 ̏state˝ was known, was stimulated under the action of a force, one
could predict the future values in Euclidean space. Take this same
mathematical construction—usually a set of differential equations—
and one could build bigger and smaller objects and predict
their evolution by changing the parameters of this differential
construction.
A space—the state space—could be described with the object

at some location in it for each moment of time. The dynamic
system’s change of state could be described through the equations
of motion using either the Lagrangian or the Hamiltonian function
once an initial state had been described through the complete
specification of the initial dynamic variables together with that of
the action on the system. The complete quantitative description
of a set of simultaneously measurable parameters—position and
velocity (or momentum)—is an essential requirement of this
classical determinism. At the quantum scale, simultaneous precise
measurement of parameters such as position and momentum
is not possible. The state of the system is not characterized by a set of
dynamic variables with specific values. Instead, the state is characterized
by a statefunction. The statefunction is composed of a set of chosen
variables—the canonic variables—and the time dependence of this
statefunction describes the dynamics of the system. This function of

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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time is our wavefunction of the quantum system. It has properties
similar to those of waves but it also describes the state of the
quantum object. The statistical/probabilistic nature of quantum
is within this statefunction. Even for this quantum scale, one can
write the Hamiltonian and the Lagrange functions by employing
operators that correspond to an observable property—position,
energy, momentum and others—and thus describe the evolution
of the state.
What is extremely powerful in this approach of the Hamiltonian

and Lagrangian functions is that these express the behavior of
physical systems irrespective of whether they need to be treated
classically or—in more depth—quantum-mechanically. They
represent the principle of conservation of energy and the principle
of least action as complementary articulations of nature’s precept.
Between the classical and quantum view, where the quantum view
reduces to the classical in the limits, it is the quantum Heisenberg
uncertainty, the quantum de Broglie wave-particle duality, the
energetics of the interaction and the statistics of quantum to
classical that make the enormous change we see in the real world
happen. Atoms are stable—neutral—and an electric or magnetic
field will have no effect were atoms just to be thought of as classical
particles. Place them together in a solid and they form metals,
semiconductors and insulators with a variety of seemingly magical
properties that are quite different from those of the atom. Conduc-
tion and insulation both arise from the properties of the state. An
electron in a propagating state leads to conduction. An electron
in a bounded state leads to insulation. Largely unoccupied and
largely occupied bands of states can both conduct, and conduction
can be modulated! Tunneling can happen at microscopic scale.
Control can be exercised at small energies—of the order of eVs of
visible and infrared light, and therefore at useful bias voltages of
a V in semiconductors—instead of Rydberg energies. And further
modifications to properties become possible by making structures
the size of an electron’s wavelength. Quantum mechanics predicts
this diverse complexity of solids, and specifically of semiconductors,
and thereby makes it possible to use them judiciously.
For reasons of symmetry, explorations in quantum mechanics

prefer the Hamiltonian methodology. If you can write the Hamil-
tonian, you have described the system and its evolution.

That writing the Hamiltonian suffices
is written facetiously, of course. In
theory, what one has to do is to use this
Hamiltonian function in the classical
approach, and the Hamiltonian
operator in the quantum approach,
to now solve the Hamiltonian
equation describing the problem.
In practice, only the simplest cases
can be solved precisely. The rest need
approximations.

A solid is a collection of particles—atoms and electrons as their
simplest form in ordered or disordered arrangement—undergoing
perturbations due to external stimulus because they exist at a
temperature T connected to the rest of the universe as a reservoir
with which it exchanges energy and particles. To understand
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semiconductors, therefore, one needs to be able to describe the
interactive evolution of the system. An atom is the simplest, a
molecule another level up and then there is the larger ensemble of
the semiconductor solid involving an Avogadro-scale number of
these particles. So. how does one describe an assembly of particles
is an important question to start with.
When making predictions of what a collection of particles will

do, classical analysis will resort to either the Lagrangian or the
Hamiltonian formalism. These approaches employ a space— This nomenclature of configuration

and phase space arose in explorations
of approaches for dynamic systems,
where mechanical systems were
the first ones of interest from the
18th century onwards. In phase
space, every possible state of the
system defined by the values that
the parameters take defines a point
and its evolution a trajectory. The
position and the momentum are the
variables of the phase space. One
could also describe this evolution
through position and velocity. Multiple
particles will have a multidimensional
space. The configuration of the system
is writable in generalized coordinates.
The vector space defined by these
coordinates is the configuration space
of the physical system.

the phase space—whose spatial points each represent a specific
arrangement of the individual particles. The space is built of the
two canonic coordinates over the N dimension of the N particles.
The evolution of this point follows from a mathematical operation
on a single function leading to a description of the dynamic
behavior. This function is the Lagrangian or the Hamiltonian. The
Lagrangian employs a general position coordinate {q}= q1, . . . , qN—
not necessarily a set of Cartesian positions, whose choice is
determined by convenience, and bundles it with a generalized
velocity {q̇}= q̇1, . . . , q̇N—again, not necessarily a Cartesian velocity.
The equation of motion of the system then follows from the Euler-
Lagrange equations:

Throughout this text, in order to limit
the unwieldiness of an equation,
we may employ the prime mark to
indicate a derivative with respect to
spatial coordinates, and a dot above
for a derivative with respect to time.
So, q′ ≡ dq/dz when using a prime, and
q̇ ≡ dq/dt when using a dot.

d
dt

∂L

∂ q̇i
− ∂L

∂qi
= 0 ∀ i = 1, . . . ,N. (1.1)

The Lagrange function L = T − V as a difference of the kinetic
(T) and the potential energy (V) due to all sources—internal and
external—captures the entire behavior of the particle set. The
equations state the principle of least or stationary action. In the
configuration space, the evolution between two fixed end points
occurs when the action, which is the integral of the Lagrange func-
tion along the line connecting the two end points, is a minimum.
This is akin to the more easily visualized picture that a function Lagrangians have been employed

fruitfully in genetics, macroeconomics,
machine learning and various other
places where new formulations of
energy that are not kinetic or potential
but where one can see an intuitive
energy interpretation. Lagrangian’s
beauty includes that it teaches us
symmetries, conservation laws and
other properties in addition to the
equation of motion of the dynamical
system.

f (x) is a minimum, a maximum or a saddle point if df/dx = 0. It is
a stationary point: a minimum, a maximum or a saddle point in
higher dimensions.
What we wrote here is the Lagrangian for classical mechanics.

Lagrangians can be written for all the variety of physical phe-
nomena. As shown in Table 1.1, what they have in common is
a square gradient term, of energy, although there may not be an
explicit energy connection. In the following chapter (Chapter 2),
one sees the informational link to the observation of the physical
phenomena—the data that contains the information and therefore
the entropy and energy connection—that this represents.
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System Lagrangian L Comments

Classical mechanics (1/2)m
(
∂q/∂t

)2 − V Kinetic minus potential energy

Compressible fluid (1/2)ρ
[(

∂q/∂t
)2 − v2∇2q

]
ρ: density, v: flow velocity

Diffusion −∇2
r ψ − O ψ : a concentration, O: other terms

Schrödinger’s equation −(h̄2/2m)∇2
r ψ − O ψ : statefunction

Elastic wave equation (1/2)ρ
(
∂2q/∂t2

)− O ρ: density
Helmholtz equation ∇2

r ψ ψ : a field

Lorentz transformation
(
∂iqn

)2 Integral invariance

Table 1.1: Lagrangians of some common physical situations. These are all energies, and their
integral is the  ̏action.˝

The Hamiltonian picture is more symmetrical, represents an
identical description but, being symmetric, provides a more
convenient method for analysis, particularly in quantum mechanics.
The generalized position coordinate set {q} is taken together with
generalized momentum {p}= p1, . . . , pN. Again, these are not
necessarily the Cartesian positions or linear momenta. pi = ∂L /∂ q̇i.
The symmetry of the Hamiltonian evolution appears in the form

ṗi = dpi

dt
= − ∂H

∂qi
, and q̇i = dqi

dt
= ∂H

∂pi
∀ i = 1, . . . ,N. (1.2)

From this  ̏canonical˝ form, one can also read that

dH

dt
= 0, (1.3)

which is the law of conservation of energy.
The equivalence of the two approaches can be noted through

the ability to determine the canonical conjugates pi or q̇i of the
two approaches equivalently. The Hamiltonian may be found from
the Lagrangian using H = ∑

i q̇i(∂L /∂ q̇i)− L . The Hamiltonian
function H = H ({q}; {p}) describes the total energy of the system.
Its quantum-mechanical operator is Ĥ .

1.1 Hamiltonian

Being the total energy of the system, in classical mechanics,
the Hamiltonian H is the sum of the kinetic energy T and the
potential energy V of all the particles of the system; that is, H = T+
V. In quantum mechanics, Ĥ is an operator, corresponding to the More subtle and therefore more

consequential is that one may define
the Hamiltonian more generally and
hence more powerfully than as just the
sum written here.

observation of energy of the system; operating on the wavefunction
describing the system results in the total energy E = T + V. For
every observable, one can write an operator that, upon operating
on the wavefunction describing the system, leads to the observable.
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Operators may be developed from an observable’s functional form See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming)
for remarks on finding operators
corresponding to an observable.

but require some subtlety so that symmetry and antisymmetry
consequences are properly accounted for.
The Schrödinger equation,

− h̄
i
∂

∂t
ψ = Ĥ ψ = Eψ , (1.4)

incorporating both the time-dependent and the time-independent
parts, describes the wavefunction of the system. A system is

stationary if 〈ψ
∣∣∣Ĥ

∣∣∣ψ〉 is invariant in time. Its expected energy and A statistical—probabilistic—
interpretation of stationarity—of
various orders—will appear in our
discussion of noise in Chapter 16. See
Appendix A also if you want to look
ahead.

the probability distribution 〈ψ |ψ〉 are constants of time. For any
expectation value of any observable, say A, the expectation value
(〈A〉) follows:

− h̄
i

d
dt

〈Â〉= 〈[Â, Ĥ ]〉 − h̄
i
〈 ∂

∂t
Â〉
∣∣∣∣
H

. (1.5)

For a particle of mass m in a potential V, the Hamiltonian is

Ĥ = − h̄2

2m
∇2 + V̂, (1.6)

where the first term for kinetic energy follows from the operator for
momentum,

p̂ = h̄
i
∇. (1.7)

because kinetic energy T = p2/2m. Table 1.2 summarizes some of the
Hamiltonian operators of interest in common and simple systems.
Since our interest in this text is in understanding the various

ways that interactions occur in semiconductors, and the manifesta-
tions of these interactions in properties, the important underlying
theme is a reasonable understanding of the semiconductor solid
itself and therefore the predictive edifice for the collection of
electrons and atoms therein. Reasonably accurate solutions of the

System Hamiltonian Ĥ Comments

1D harmonic oscillator − h̄2
2m

d2

dx2
+ 1

2 kx2 k: force constant

Rotation in a plane − h̄2
2I

d2

dφ2
I: moment of inertia

Rotation on a sphere − h̄2
2I �2 �: Legendrian operator

�2 = ∂2

∂θ2
+ cos θ

sin θ
+ ∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

Hydrogenic atom − h̄2
2μ ∇2 − 1

4πε0
Ze2

r Z: atomic number

μ: reduced mass

Collection of charged particles −∑
i

h̄2
2mi

∇2
i +∑

i>j
1

4πε0

zizje2

|ri−rj | zie: charge of ith particle

Electric dipole in a field −p · E p = ze〈r〉: electric dipole moment
Magnetic dipole in a field −m · H m: magnetic moment

Table 1.2: Hamiltonians of some often–encountered situations in semiconductor physics.
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Hamiltonian for this collection and its interactions are necessary.
And all this will require approximations, for obvious reasons of
complexity therein.
We will build this understanding by starting with a discussion

of the formulation and then, following some comments on the
approach, proceed to its usage in model problems that are instruc- What we are doing is building models

based upon our understanding
and interpretation of what is most
important. Their test of success
comprises predictions that come about
to be true. Not all of the possibilities
can be tested. There will be a range
of variations of parameters where
our predictions may be trusted
with a good model. But it is still a
model, an approximation and not
the complete reality. So, these are all
just different levels of sophistication
of  ̏toy models.˝ This is how we
should always look at our analytic or
algorithmic interpretations.

tive. For example, we first look at systems with few electrons and
few atoms such as a molecule, or even an atom with its collection
of electrons, and then let the number N of particles of this ensemble
expand to larger numbers. As we explore, what is important is to
understand the reasoning behind the approximations that we make,
so that we also know the limits of their validity.

1.2 Preliminaries

Calculation of the dynamics of a single particle (an electron,
for us) requires us to write the Hamiltonian with the potential
energy of its interaction and solve the single particle Schrödinger
equation We will use the hat symbol, ,̂ to

identify an operator. Any observable—
a physical measurable quantity—is
associated with a self-adjoint linear
operator. Operators yield the physical
value, which is an eigenvalue of the
set of possibilities for the system.
The wavefunction of the system
provides the probability amplitude
of finding the system in that state.
Pure states have unit norm, so they
can be represented by unit-norm
vectors. The operators are Hermitian,
since operators must yield real
eigenvalues, whose probability is in
the wavefunction through the square
of the amplitude of the orthonormal
eigenfunctions. We will be a little
loose in writing. Sometimes, an
operator hat should be there but may
be missing. Sometimes a wavefunction
maybe written without the ket symbol
|〉 denoting its vector nature, and
sometimes it will. It should be clear
from the context.

Ĥ |ψ〉=
(

− h̄2

2m
∇2 + V̂

)

|ψ〉= E|ψ〉, (1.8)

under the constraints of the boundary. In principle, this is straight-
forward. It may be as simple as the wave solution for V = 0,
or it may be computationally demanding when V(r) takes on
odd complexities. When we make this a few particle system,
with V(r1, r2, . . .) (a potential that is a function of the position of
the individual particles), it immediately becomes unwieldy, the
dominant reason being the two-body nature of Coulomb interaction
in a multi-component many-body problem. Only when particles are
non-interacting, that is, when V(r1, r2, . . .)= V(r1) + V(r2) + · · · , does
this problem reduce to a straightforwardly solvable form with

As an analogy, non-interacting
classical gas molecules have very
well-defined macroscopic properties,
but, microscopically, the motion
of each is affected by the collision
interactions, even the elastic ones.

Ĥ (r1, r2, . . .)=H(r1) + H(r2) + · · · =
∑

i

[

− h̄2

2m0
∇2

i + V̂(ri)

]

, (1.9)

a set of independent single particle equations. The wavefunction
solution then is |ψ〉= ∏

i |ψ i〉, where |ψ i〉 is the eigenfunction
solution of the partitioned Hamiltonian. The energy of the system is
just the sum of eigenenergies of these non-interacting particles. But,
this works only if these particles—electrons here—can be treated as being
non-interacting, a very rare situation. If these particles were interacting,
each would influence the other, and this picture is invalid, since
interactions, even if infinitesimally small, will modify properties.
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The semiconductor solid—the item of interest to us—is a collec-
tion of atoms where the atom itself is a collection of particles as a
nucleus surrounded by electrons, with the entire solid being charge
neutral. With Mi, Ze and Ri as the nuclei’s mass, charge (Z being
the atomic number) and position, respectively, and m0, e and ri as
the corresponding electron parameters, this solid’s Hamiltonian is

Ĥxtal =
∑

i

[

− h̄2

2Mi
∇2

i

]

+ 1
2

∑

i�=j

1
4πε0

(Ze)2

Ri − Rj
+
∑

l

[

− h̄2

2m0
∇2

l

]

+ 1
2

∑

i�=j

1
4πε0

e2

ri − rj
−
∑

i�=j

1
4πε0

Ze2

ri − Rj
. (1.10)

This Hamiltonian is made up of energy terms representing the

Of course, even the notions of Ze, Mi
and m0 have much complexity buried
in them. A remark on this  ̏simple
equation˝ is in order. Paul Dirac, in a
1929 paper in the Proceedings of the
Royal Society, says as an introduction,
 ̏The general theory of quantum
mechanics is now almost complete, the
imperfections that still remain being
in connection with the exact fitting of
the theory with relativity ideas. …The
underlying physical laws necessary
for the mathematical theory of a large
part of physics and the whole of
chemistry are thus completely known,
and the difficulty is only that the exact
application of these laws leads to
equations much too complicated to be
soluble. It therefore becomes desirable
that approximate practical methods
should be developed, which can lead
to an explanation of the main features
of complex atomic systems without
too much computation˝ (P. A. M.
Dirac,  ̏Quantum mechanics of many-
electron systems,˝ Proceedings of the
Royal Society of London, 123, 714–733
(1929)). Papers and pencils have now
been replaced by electronic computers
and algorithms. But, nearly a hundred
years after this foresighted publication,
and nearly forty years after high
temperature superconductivity, we
don’t have an acceptable explanation
for the latter crystal phenomena. There
is much subtlety buried away at the low
energy end and spread out at the high
energy end of the universe.

nuclei’s kinetic energy (the first term), the potential energy from
internuclear Coulomb interactions (the second term), electrons’
kinetic energy (the third term), the potential energy from inter-
electron Coulomb interactions (the fourth term) and the potential
energy contribution of electron-nuclear Coulomb interactions (the
fifth term). There are two summations over the kinetic energy, and
three summations over the electrostatic interaction.
Since electrons are fermions, the total electronic wavefunction

must be antisymmetric whenever the coordinates of two electrons
are exchanged (an exchange interaction). The nucleus may be of
different species, in which case, they are distinguishable. If they are
of the same species, then nuclear spin will also matter. To manage

In a molecule, the nuclear spin
consideration can be important. H
and 3He, for example are fermions,
due to their 1/2 nuclear spin, while D,
4He and H2 are bosons. Many different
properties arise from this difference.
This nuclear spin aspect is the least
of our worries in discussing a crystal,
where the electron and the electron-
dressed nucleus considerations will
dominate.

a solution, we have to make judgments on what is important and
how to judiciously incorporate it in a manageable calculation,
and what is irrelevant, peripheral or a perturbation to be tackled
secondarily.
Just a few of the electrons—the valence electrons of the out-

ermost shells—of the semiconductor solid will be important to
specific properties of interest to us. The inner ones stay confined
with the nucleus, and we may treat them as staying rigidly along
with it. We pull these electrons together with the nucleus into an
ion—an ion core—and modify the nuclear charge. These inner

In combining inner atomic electrons
and the nucleus, we have modified the
meaning of Z. It is now the net charge
number of the core, not the atomic
number.

electrons have now been incorporated into an ion. These ions
are massive compared to the electron. This means that the ion
motion, and its Coulomb interaction with each other, may also be
treated as being small and so can be accounted for as a secondary
perturbation if our principle interest is in the electron motion; thus,
these terms are eliminated, although the ion motion’s perturbation
consequence will be included as a later thought. Our problem has
now been reduced to solving the electrons’ Hamiltonian:
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Ĥ =
∑

i

[

− h̄2

2mi
∇2

l

]

+ 1
2

∑

i�=j

1
4πε0

e2

ri − rj
− 1
2

∑

i�=j

1
4πε0

Z∗e2

ri − Rj
. (1.11)

We have now reduced Equation 1.10—a relatively complete
description of atom assembly—to Equation 1.11, still a very accurate
description where the inter-ion Coulomb interaction and the
electron-nucleus Coulombic interaction have been approximated

The ion motion can, of course, be very
important. The ion motion will cause
electrons to scatter—exchange energy
and momentum with them—and thus
affect transport properties. But we may
bring this into our description as a
perturbation.

into the third term. The Z∗—ionic charge number—has a new
An extension of this jellium and
classical discussion is understanding
the consequences of dopants; for
example, in devices. The classical
treatment of dopants in devices is as a
continuum; that is, a jellium treatment.
A uniform distribution of charge is
assumed to arise in them, which in
the quasineutral material is balanced
by the electron charge cloud. If one
makes the device small and have only
a few of these dopants, then many
of the assumptions underlying the
description break down. There are
not enough of them to appear as a
continuum, and since they do have
individual perturbation effects locally,
the consequences show up in a small
device.

meaning. It is the dressed charge of the nuclei with their surround-
ing core electrons. And the slow motion of the ion vis-à-vis the
electron will let us tackle this term as a perturbation.
The extent of the role of the core of the atom here is as a source

of positive charge. If we could further approximate this charge,
instead of being localized at Rj, as being uniformly spread out—
a continuum—then we have the jellium model. This jellium solid,
if one also ignores all the quantum-mechanical constraints on the
electron, is now just a classical electron particle gas in the solid.
Equation 1.11’s second term—a many-body term—is one that

requires much attention. Electrons interact with other electrons
and have a Coulomb energy associated with that interaction. An
electron is also a fermion. And an electron does not interact with
itself. The first reflects an electromagnetic force effect. The second is
a quantum-mechanical constraint. And the third reflects something
much deeper with possibly many interpretations, although it is
certainly tied to the first also. An electron’s response arises through its
interaction with its surroundings.

That an electron does not interact
with itself can be viewed at many
levels. Electric fields are polar vectors.
Fields must terminate. There must
be a surrounding, and that is how
lowering (or even raising, as in
single electron effects at nanoscale)
of energy happens. An electric
field at this level of interpretation
arises as E = limq→0(−∇rUe/q).
With no charge, there is no energy,
and this equation now has a
singularity. An electron needs the
surrounding for it to be observable
through its Coulomb interaction.
Richard Feynman’s discussion of
the singularity and renormalization
conundrum is especially powerful
as enunciated in his Nobel lecture.
It is a question he worried about,
starting in his undergraduate
years. The lecture can be found at
https://www.nobelprize.org/
nobel_prizes/physics/laureates/
1965/feynman-lecture.html.

The three considerations are tackled by breaking this electron-
electron term further. If we only consider classical electrostatic
interaction energy, that is, the form (1/2)(1/4πε0)

∫
ρ(r)[ρ(r′)/|r −

r′|]dr dr′ in charge distribution, then we have used what is called
a Hartree energy term, and a Hartree equation form will solve for
it. The result has significant errors in it, since the second and
third components have not been accounted for. So, we introduce
corrections to the Hartree form.
Two electrons, when exchanged, being indistinguishable particles,

and fermions, must have different wavefunctions, so the wavefunc-
tions must be antisymmetric. We will see that a Slater determinant
antisymmetrizes the many-body wavefunction. This takes care of
this exchange interaction that has local and nonlocal contributions in
it. The Hartree-Fock equation will apply this correction for us.

https://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
https://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
https://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
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But the antisymmetrization process of the Slater determinant
itself also employs one-electron wavefunctions. This requires us to
have separability of Equation 1.11, that is, that an electron at any
spatial coordinate in space is essentially independent of where the
other electrons are. But, a repulsive electron-electron interaction
prevents other electrons from approaching the electron at that
spatial coordinate. An electron in the jellium classical solid repels the
other electrons electrostatically, thus exposing an equal and opposite positive
background so that electric fields vanish far away. The electrons correlate
themselves in a way that screens the electric field. An electron

Figure 1.1: An electron in an ensemble
of positive charge interacting with
other electrons represented by variably
filled areas, with atomic nuclei as
the background. The lighter area
surrounding the electron represents
the exclusion zone of the Coulomb
repulsive correlation. This is the
correlation hole.

here is surrounded by an equal and opposite charged hole in the
electron density. So, there is an  ̏exclusion˝ zone here. This is a
correlation interaction representing the physical principle that an
electron does not interact with itself and only with all else that
surrounds it. The probability of an electron at this position depends
very much on the location of the other electrons. Sometimes, this is
also referred to as a correlation hole, which should not be confused
with electron’s quasiparticle  ̏hole.˝ This correlation hole is the The Church thesis and its Turing

machine form are examples of an
algorithm for solving a problem by
reducing it to a procedure that one
steps through. Gamma functions—
factorials for integer argument—can be
solved for any n since 
(n+1)= n
(n),
and 
(1) = 1. This recursion approach
is commonplace as a procedure for
proof, although sometimes it is applied
inappropriately heuristically. Gamma
functions, as the integral analytic
function, are


(s) =
∫ ∞

0
exp(−x)xs dx

x
,

where s =σ + it is complex, and have
many quite amazing properties. They
will appear for us during the use of
Fermi integrals. Even more magical is
the Riemann zeta function ζ (s), whose
integral analytical form is

ζ (s) = 1

(s)

∫ ∞

0

1
exp(x) − 1

xs dx
x
.

If σ > 1, this reduces to an infinite
series, ζ (s) = ∑∞

i=1 i−s. Riemann
showed a relationship between the
distribution of prime numbers and the
non-trivial zeros of the zeta function.
So, prime numbers are not randomly
distributed, only pseudo-randomly.
Other transcendent characteristics
of this function include implications
for Casimir forces, the cosmological
constant, and the lack of Bose-Einstein
condensation in two dimensions.

Coulomb repulsion of other electrons from this electron’s vicinity.
It is a correlation charge hole. Figure 1.1 is a pictorial representation
of such a correlation hole. In Sections 1.5 and 1.6, we will summa-
rize the gradual increasing of accuracy in our search for the solution
to this description of the solid. Since Equation 1.11 does not lend
itself to easy decoupling, and this starting Equation 1.10 has 3×
the total number of nuclei and electrons as its coupled degrees of
freedom, we will first employ simple atom assemblies—molecules—
to bring out the main physical features of the arguments that we
will deploy.
This outline of the problem of energetics in the solid shows

us the incremental path that we have to take to find satisfactory
solutions. If a solution to a problem that is close enough to a new
problem is known, we employ perturbation techniques to find the
solution to the new problem. This following section summarizes
a few of the common perturbation techniques that will be utilized
throughout this text, including for this semiconductor crystal
outlined so far.

1.3 Perturbation approaches

In outlining some of the approaches to solving Hamiltoni-
ans, our interest here is in dispensing with how one satisfactorily
arrives at the solution to problems that we will encounter in
this text. We have to set the problem up right; only then can we
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proceed to find the solution. Only under the most circumscribed
of conditions in a many-body system may one find accurate direct
solutions. Usually though, one has to transform a known related
problem that has a known solution to the problem of interest as
a perturbation. The Church and Turing forms provide important
insight into information mechanics, particularly its deterministic
form. The perturbation can be static, that is, time independent and
steady state, or dynamic, where a time-dependent perturbation and
a quantum system response unfold.

The prime number distribution
ties it to the Lambert W function
(W(z) exp[W(z)]= z) and Ramanujan’s
series for ζ (3). Riemann’s
investigations in geometry inspired
Einstein’s relativity. A Riemann
remark, paraphrased, that the
geometry of physical space need not
be a God-given Euclidean space but
should be determined by experiment,
not by hypothesis, stands as one of
the most observant statements from
a remarkable mathematician and a
clergyman’s son who, like Ramanujan,
died too young. To balance these
serious statements, here is a joke
that punches at recursiveness. A
Russian mathematician and a Russian
engineer are visiting a European
research institution. Smoking is still
accepted. On the first day, when the
engineer drops a lighted butt in the
trash can sitting on the floor, the
paper in it catches fire. So he uses
the fire extinguisher to put it out.
An identical sequence is repeated
with the mathematician, who arrives
later after a long night of work.
The next day, upon cleaning, the
janitor leaves the trash cans on their
desks. Events repeat. The engineer
uses the fire extinguisher again. The
mathematician, however, places the
trash can on the floor. He had reduced it
to a known problem.

First, we take up the time-independent steady-state perturbation,
and then we will take up the time-dependent perturbation. Later
on, we will take on the adiabatic time-dependent perturbation,
where a state evolves smoothly and continuously, maintaining its
quantized identity. An example of time-independent perturbation is
when two molecules come close enough, the energy changes. The
properties of cohesion/adhesion and repulsion are also examples
of the nature of this energetics, a quasi-steady state, where a
perturbation causes changes in the energy landscape. Examples of
a time-dependent perturbation are a photon exciting an electron,
or an electron undergoing scattering during transport. An example
of adiabatic perturbation is an electron in a confined quantized
space as the size of the space is slowly changed electrically.

The Hamiltonian equation, even if a
simple equation to write summarily,
can be quite difficult to solve. We
will see this particularly when we
dwell on bandstructure calculations
where enormous-size matrices are
encountered. Sometimes, it is prudent
to solve a problem by writing its
physical basis in its entirety, as in this
equation. Sometimes, it is prudent
to start from a known solution and
find a solution with it perturbed.
The latter is a linear view. The
former is a nonlinear view. Each
has its successes and failures. I have
immense respect for the German
organization of education: enough
resources at every level, and all the
education accessible to everybody.
Early schools are equivalent. One
doesn’t choose a locality to live based
on the local schools. Universities are
essentially free. Technical professions
are respected. Amachinist is a
precision worker—not a  ̏blue collar˝

1.3.1 Time-independent perturbation

Let Ĥ ′ be a perturbation; that is, let Ĥ = Ĥ0 + Ĥ ′ be the
Hamiltonian of a quantum system whose statefunction is known in
the perturbation’s absence. The new statefunction is different. The
new perturbation potential causes transitions between the states of
the unperturbed Hamiltonian. Let |u0i 〉 be the eigenfunctions for the
Hamiltonian Ĥ0 so that Ĥ0|u0i 〉= E0i |u0i 〉. For the perturbation Ĥ ′,
the eigenenergy solutions exist if det|H − EO| = 0. To determine the
changes in energy and the eigenfunctions under perturbation, one
uses the trick of separation of order where various combinations of
terms leading to the same order of effect can be pooled together. Let

Ĥ = Ĥ0 + λĤ ′, (1.12)

so that λ= 0 is the absence of perturbation, and λ= 1 is the com-
plete turning on of perturbation. The eigenenergies and eigenfunc-
tions of the perturbed system have changed and we will determine
these as perturbational changes, by corrections of increasing order,
using this λ. Let the eigenenergies and eigenfunctions for the
Hamiltonian of Equation 1.12 be
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En = |E0n〉 + λ|E1n〉 + λ2|E2n〉 + · · · , and

|un〉 = |u0n〉 + λ|u1n〉 + λ2|u2n〉 + · · · . (1.13)

The problem posed to us is

with all its subtle prejorativeness—
just as the academic is, with the two
following different paths of education,
one for practice, and one for research
and teaching. Both can raise a family
with equal opportunity. This becomes
possible by the system assuring
proper investments across all the
stages of education so that enough
qualified folks appear at the end for
the technical and scientific needs.
University may be free, but the student
must show that he/she belongs,
through effort and examinations.
It is not a surprise that there are
more car manufacturers in Germany
than in the USA. And science in
Germany has revived exactingly well
since the events and tragedy of the
Second World War. This setting up
the problem right and solving it all
together works quite often. But there
are situations where it is a luxury and
the complexity is such that a local
perturbation is desired to get a quick
and good-enough answer.

(Ĥ0 + λĤ ′)
(
|u0n〉 + λ|u1n〉 + λ2|u2n〉 + · · ·

)

=
(

E0n + λE1n + λ2E2n + · · ·
) (

|u0n〉 + λ|u1n〉 + λ2|u2n〉 + · · ·
)
, (1.14)

which can be partitioned in the powers of order λ as

λ0 : Ĥ 0|u0n〉= E0n|u0n〉,
λ1 : Ĥ 0|u1n〉 + Ĥ ′|u0n〉 = E0n|u1n〉 + E1n|u0n〉,
λ2 : Ĥ 0|u2n〉 + Ĥ ′|u1n〉 = E0n|u2n〉 + E1n|u1n〉 + E2n|u0n〉, (1.15)

and so on. With λ= 1, we now have the posed problem but
partitioned into different order corrections. The 0th order equation
defines and describes the unperturbed system. The 1st order
equation, with the lowest-order correction due to perturbation, has
a term due to unperturbed Hamiltonian operating on the 1st order
correction to the eigenfunction, and the perturbation Hamiltonian
operating on the unperturbed eigenfunction. Both of these terms are
of similar order correction. The 2nd order equation has three such In many situations, the different

terms in any order of perturbation are
comparable as a product of a large
and a small entity. If the perturbation
is very small, then one can see it as
an operation of a small energy on the
starting eigenfunction, and of a large
energy operator operating on a small
disturbance in the eigenfunction.

terms pooling the same order of correction. The use of λ has let us
achieve this deconvolving.
To obtain the first order correction, we use orthonormality by

taking the inner product with the bra 〈u0n| in Equation 1.15 of the
λ1 power:

〈u0n|Ĥ0|u1n〉 + 〈u0n|Ĥ ′|u0n〉 = E0n〈u0n|u1n〉 + E1n|〈u0n|u0n〉, (1.16)

where 〈u0n|u0n〉= 1, 〈u0n|u1n〉 is finite and non-zero, and 〈u0n|Ĥ0|u1n〉=
E0n〈u0n|u1n〉, since Ĥ0 is Hermitian. Therefore,

E1n = 〈u0n|Ĥ ′|u0n〉, and

(Ĥ0 − E0n)|u1n〉 = −(Ĥ ′ − E1n)|u0n〉. (1.17)

The 1st order correction in the eigenenergy arose from the pertur-
bation Hamiltonian and the unperturbed eigenstate. The 1st order
correction to the eigenfunction needs a little reworking to write it in
terms of the unperturbed orthonormal basis set of |u0n〉, which is a
complete orthonormal basis set. We may write

|u1n〉=
∑

i�=n

c1i |u0i 〉. (1.18)

It is useful to exclude the i = n term in the expansion. As (Ĥ0 −
E0n)|u0n〉 = 0, the existence of a term based on |u0n〉 in Equation 1.18 is
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dispensable. So, we expand |u1n〉 in the 0th order orthonormal basis
set and, to find the lth term of the correction, we take the inner
product with the bra 〈u0l |:

∑

i�=n

(E0i − E0n)c1i 〈u0l |u0i 〉 = −〈u0l |Ĥ ′|u0n〉 + E1n〈u0l |u0n〉

∴ (E0l − E0n)c1l = −〈u0l |Ĥ ′|u0n〉 for l �= n,

∴ c1i = 〈u0i |Ĥ ′|u0n〉
(E0n − E0i )

with i = l, and

|u1n〉 =
∑

i�=n

〈u0i |Ĥ ′|u0n〉
E0n − E0i

|u0i 〉. (1.19)

Both the eigenenergy correction (Equation 1.17) and the eigenfunc-
tion correction terms (Equation 1.19) are now known for the first
order. The last part of Equation 1.19 is a

quantum-mechanical reflection on our
classical intuition. Any classical state,
under an energy perturbation, that is,
the exercise of a force, changes. Amass
moves. For any function y = f (x)

describing this classical picture, df
is the marginal consequence, and
df/dx the marginal rate. The lowest
order correction for the change
is the marginal efficiency of this
perturbation. Force and acceleration—
the rate change of velocity—are
related, with a marginal efficiency
determined by the inverse mass.
This is an inertial mass. Mass is an
emergent property, which superficially
can be seen in the bundling of
energy. Quantum-mechanically,
how well two eigenstates will couple
due to perturbation is again this
derivative-like ratio of perturbational
coupling energy and separation of
the unperturbed states. And the
statefunction reflects the statistical
consequence of these couplings.

This formal approach is obviously extendable to higher orders
recursively—more and more terms—and the writing of such an
algorithm is quite straightforward. For the λ2 set of terms,

Ĥ0|u2n〉 + Ĥ ′|u1n〉 = E0n|u2n〉 + E1n|u1n〉 + E2n|u0n〉; (1.20)

therefore,

〈u0n|Ĥ0|u2n〉 + 〈u0n|Ĥ ′|u1n〉 = E0n〈u0n|u2n〉 + E1n〈u0n|u1n〉
+ E2n〈u0n|u0n〉. (1.21)

Again, since Ĥ0 is Hermitian, 〈u0n|Ĥ0|u2n〉= E0n〈u0n|u2n〉, we have
E2n = 〈u0n|Ĥ ′|u1n〉 − E1n〈u0n|u1n〉, (1.22)

and because 〈u0n|u1n〉= ∑
i�=n c1i 〈u0n|u0i 〉= 0, the 2nd order energy

correction term is

E2n = 〈u0n|Ĥ ′|u1n〉=
∑

i�=n

c1i 〈u0n|Ĥ ′|u0i 〉

=
∑

i�=n

〈u0i |Ĥ ′|u0n〉〈u0n|Ĥ ′|u0i 〉
(E0n − E0i )

=
∑

i�=n

〈u0i |Ĥ ′|u0n〉2

(E0n − E0i )
. (1.23)

The 1st order energy correction was the expectation of perturbation
on the unperturbed state. The 2nd order energy correction is the
perturbation on the 1st order corrected eigenfunction. One can
proceed from this and now also build the 2nd order corrected
eigenfunction by finding c2i .
A very simple consequence of these perturbational relationships

is worth thinking through. In a semiconductor, one may represent
the states as Bloch states that are propagating states spread out over
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the entire semiconductor, and evanescent states that are localized, as
at surfaces, defects, impurities, et cetera. The following chapters will
expend considerable effort toward this analysis. An E(n,k)≡ En,k

relationship, where n is a quantum number that identifies a band,
and k—another quantum number—which is the wavevector,
describe the energies of the allowed eigenfunctions. Now suppose
we apply a bias voltage Vdc (see Figure 1.2) to this semiconductor;
that is, there is a net spatially invariant potential energy rise in the
system. Do I now have to recalculate the E(n,k)? No. Why not?
Because

Figure 1.2: (a) A semiconductor whose
bandstructure describing electron
states has been determined to be
E(n,k) ≡ En,k with the semiconductor
grounded (thermal equilibrium).
(b) This semiconductor shown
under the static bias voltage Vdc.
Perturbation tells us that this just shifts
the bandstructure—the eigenenergy
solution—by −eVdc.

E1n,k = 〈u0n,k|Ĥ ′|u0n,k〉 = −eVdc〈u0n,k|u0n,k〉 = −eVdc (1.24)

since Ĥ0 and −eV̂dc commute, that is, [Ĥ0,−eV̂dc]= 0, so the
same orthonormal basis set may be employed. What about the
eigenfunction? Again,

|u1n,k〉 =
∑

i�=j

〈u0n,ki
|Ĥ ′|u0n,kj

〉
(E0n,kj

− E0n,ki
)

|u0ki
〉 = 0

∵ 〈u0n,ki
|Ĥ ′|u0n,kj

〉 = −eVdc〈u0n,ki
|u0n,kj

〉= 0 ∀ i �= j. (1.25)

Here, we considered only the interactions within the band n, since
the nearest states provide the strongest contribution, but the result
is more general because of orthogonality. The implication is that
the entire energy bandstructure may be shifted by this potential
change and the eigenfunctions do not change. The device analysis Good thing too. Imagine having to

calculate this bandstructure under all
potentials and their distribution in real
space in a device. There is more to this
that we will see in our discussion in
Chapter 4 of the parameter we call the
effective mass, and its effectiveness.

is also in dynamic conditions where the time scale of electrody-
namic response is much slower—adiabatic, which we discuss a
little later—and hence one may again neglect any bandstructure
consequence of the electrically applied stimuli’s consequences. This
underlies all the drawing of the band diagrams, where the conduc-
tion and valence bandedge lines represent the extrema of the bands.
There is one complication in the previous argument that we

sidestepped but should address. The electron’s state, absent
magnetic interaction, with s = 1/2, and therefore the secondary spin
quantum number of ±1/2, is degenerate in energy. The equation
forms in Equations 1.17 and 1.23 actually blow up if one considers
the interaction between these degenerate states. This, of course, is
unphysical. The series does not converge. The perturbation expan-
sion has this problem with states very close in energy. This can be
effectively and efficiently tackled by treating the nearly degenerate
states in the same way as we treated |un〉 in the perturbation
expansion. This means that the 0th order state is being allowed to
be an arbitrary linear combination of the degenerate states.
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Let there be N nearly degenerate states. We choose an orthonor-
mal set of basis state in N; that is,

〈φj|φi〉= δji ∀ i, j ∈ N. (1.26)

So, these |φi〉’s together with their coefficients αi let us expand the
degenerate states into a non-degenerate basis. Now take the 0th
and 1st order terms of the Schrödinger/Hamiltonian equation of
the problem. Orthonormality lets us write

∑

i∈N

〈φj|Ĥ0 + Ĥ ′|φi〉αi = Eαj. (1.27)

The number of degenerate states determines the number of
solutions to this eigenvalue equation set, writable as

⎡

⎢⎢
⎣

H11 · · · H1N
...

...
...

HN1 · · · HNN

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

α1
...

αN

⎤

⎥⎥
⎦ = E

⎡

⎢⎢
⎣

α1
...

αN

⎤

⎥⎥
⎦ , (1.28)

where Hji = 〈φj|Ĥ0 + Ĥ ′|φi〉 is the matrix element for the complete
Hamiltonian. The solution follows from the condition det|Hji −
EO| = 0. αi are now known, and using this orthonormal set to
replace the degenerate set in the Equation 1.14 tackles the problem
in first order perturbation.

1.3.2 Time-dependent perturbation

In semiconductor problems, non-steady-state interactions—a
shining of light, an electron scattering due to a Coulomb impurity,
interface roughness, phonon excitation or even bandedge fluctu-
ations arising from atomic motion due to thermal energy—are
ubiquitous. Perturbation with time dependence allows us to view

In S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
we have tackled these various
perturbation situations: 1st, 2nd,
degenerate and more; for example,
Rabi oscillations and the evolution of
two-level systems when one applies
a static perturbation at an instant in
time. This discussion is very germane
here, and a reading of it is strongly
recommended for insight.

the quantum evolution under these conditions.

Figure 1.3: (a) A two-level quantum
system. (b) This system initially in one
or the other eigenstate is subjected to
a perturbation for a time duration T.
Consequently, it evolves.

We employ a 2-level system (see Figure 1.3), but in a way that is
extendable to the full basis set because the time dependence of the
evolution still conforms to the same picture. The basis eigenfunction
set consists of kets |m〉 and |k〉 with eigenenergies Em and Ek,
respectively. The statefunction solution for the unperturbed state is
|ψ〉= cm|m〉 + ck|k〉, with 〈m|k〉= 0, Ĥ0|m〉= Em|m〉 and Ĥ0〈k〉= Ek|k〉.
With perturbation,

Ĥ = Ĥ0 + Ĥ ′, and

−h̄
i

∂

∂t
|ψ〉 = Ĥ |ψ〉, (1.29)
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describe the evolution of the statefunction. The state function
evolves as

|ψ(t)〉= cm(t)|m〉 + ck(t)|k〉, (1.30)

which is prescribed by our restriction of the two-level orthonor-
mal basis. If Ĥ ′ = 0—an unperturbed stationary state—cl(t)=
cl(0) exp(−iElt/h̄), where l = k,m holds for the stationary state.
If a perturbation is applied, using the condition of orthonormal-

ity one can view the evolution for the coefficients through

− h̄
i

d
dt

[
cm(t)
ck(t)

]

=
[
Hmm H ′

mk
H ′

km Hkk

][
cm(t)
ck(t)

]

, (1.31)

where H ′
mk = H ′

km are real values of the energy observable. The
statefunction |ψ〉 follows from

− h̄
i
∂|ψ〉
∂t

= Ĥ |ψ〉= E|ψ〉, (1.32)

that is,
[

cm(t)
ck(t)

]

= exp
(

−i
Et
h̄

)[
cm(0)
ck(0)

]

, (1.33)

where

E

[
cm(t)
ck(t)

]

=
[
Hmm H ′

mk
H ′

km Hkk

][
cm(0)
ck(0)

]

. (1.34)

Let E = E−,E+ be the perturbed eigenenergies; then, this two-level
system, under this static perturbation turned on at t = 0, has the
eigenfunction solutions

|ψ−(t)〉 = [
c−

m(0)|m〉 + c−
k (0)|k〉] exp

(
−i

E−t
h̄

)

= (cos θ |m〉 + sin θ |k〉) exp
(

−i
E−t

h̄

)
, and

|ψ+(t)〉 = [
c+

m(0)|m〉 + c+
k (0)|k〉] exp

(
−i

E+t
h̄

)

= (− sin θ |m〉 + cos θ |k〉) exp
(

−i
E+t

h̄

)
. (1.35)

Here, the alternative set of equations are written with c−
m(0)= cos θ ,

c−
k (0)= sin θ , c+

m(0)= − sin θ and c+
k (0)= cos θ . This maintains

orthonormality and establishes a starting phase. If θ = 0, then
the system has been prepared in |m〉 before the turning on of the
perturbation. The statefunction solution with perturbation is

|ψ(t)〉 = d−|ψ−(t)〉 + d+|ψ+(t)〉
= d−|ψ−(0)〉 exp

(
−i

E−t
h̄

)
+ d+|ψ+(0)〉 exp

(
−i

E+t
h̄

)
. (1.36)
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Choosing the amplitudes d− = cos θ and d+ = sin θ leads to

|ψ(t)〉 =
[
cos2 θ exp

(
−i

E−t
h̄

)
+ sin2 θ exp

(
+i

E+t
h̄

)]
|m〉

+ sin θ cos θ
[
exp

(
−i

E−t
h̄

)
− exp

(
+i

E+t
h̄

)]
|l〉

= cm(t)|m〉 + cl(t)|l〉. (1.37)

This is an oscillatory, not stationary, solution. If the system were
initialized in |m〉, the probability of the system being found in |k〉 at
time t in the presence of this steady-state perturbation would be

|ck(t)|2 = sin2(2θ) sin2
[

(E+ − E−)t
2h̄

]

= 4
∣∣H ′

mk

∣∣2

(Hkk − Hmm)2 + 4
∣∣H ′

mk

∣∣2
sin2

(
�t
2

)
, (1.38)

with

�=
[(

Hkk − Hmm

h̄

)2
+ 4

∣∣H ′
mk

∣∣2

h̄2

]1/2

(1.39)

as the oscillation frequency—the Rabi frequency (Figure 1.4). The
two-level system would have stayed in the prepared state absent
perturbation. With static perturbation, it now oscillates at the slower
frequency of �= (E+ − E−)/2h̄ determined by the eigenenergies
of the statefunction under perturbation. The perturbation energy
determines the cycling depending on the magnitude of coupling.

Figure 1.4: Rabi oscillation in a 2-level
system under a perturbation.

What if the perturbation was for a short time duration T—
a scattering event—as in Figure 1.3? We make this a harmonic
perturbation. Our stimulus to this 2-level system is

H ′
mk(t) = 0 for t ≤ 0,

H ′
mk(t) = 2H ′

mk sin(ωt), that is,

= iH ′
mk
[
exp(−iωt) − exp(iωt)

]
for t > 0, (1.40)

where we will make this duration finite while looking at the
solution of the evolution. The time dependence follows from
Equation 1.31.
Take the case of a system starting in the eigenfunction state |m〉.

So, where cm(0) = 1 and ck(0)= 0, Equation 1.31 states (note
H ′

km = H ′
mk because the operator is Hermitian)

− h̄
i

d
dt

ck(t)= H ′
kmcm(0) + Hkkck(0)= H ′

mkcm(0) + Hkkck(0), (1.41)

leading to

− h̄
i
ck(t)=

∫ t

0
H ′

mk(τ ) exp (iωkmτ ) dτ , (1.42)
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with the oscillation time dependence of the perturbation explicitly
included through the time variable τ in the integral spanning
t = 0 to t = t. Also, remember the phase terms in the basis set.
The solution is

ck(t) = H ′
mk

h̄

∫ t

0

{
exp [i(ωkm − ω)τ ]− exp [i(ωkm + ω)τ ]

}
dτ

= H ′
mk

h̄

{
exp [i(ωkm − ω)t]− 1

i(ωkm − ω)

−exp [i(ωkm + ω)t]− 1
i(ωkm + ω)

}
. (1.43)

Here, ωkm = (Ek − Em)/h̄. The largest contribution to amplitude evo-
lution in time comes from where the denominator is the smallest.
The perturbation frequency closest to the interlevel frequency has
the largest effect. If ωkm ≈ ω, the first term will dominate. Since
we started with the lower level filled, the amplitude of the higher
level is

ck(t) = 2H ′
mk

h̄
sin [(ωkm − ω)t/2]

(ωkm − ω)
exp

[
i(ωkm − ω)

t
2

]

∴ |ck(t)|2 = 4
∣∣H ′

mk

∣∣2

h̄2
sin2 [(ωkm − ω)t/2]

(ωkm − ω)2
. (1.44)

This is the lowest-order correction for the probability of finding the
system in |k〉 at time t = T, and let us say that we remove the per-
turbation at that point, leaving the system in that stationary state, is

|ck(t)|2 = 4
∣∣H ′

mk

∣∣2

h̄2
sin2 [(ωkm − ω)T/2]

(ωkm − ω)2
for t ≥ T. (1.45) Figure 1.5: A plot of the term

sin2 [(ωkm − ω)(T/2)] /(ωkm − ω)2,
which is proportional to the
probability of finding the 2-level
system in the eigenfunction state
|k〉 following an application of
perturbation for a time duration T.

This response has a form that is the square of a sinc function.
Figure 1.5 shows the normalized response. It has a peak when the
frequencies/energies are precisely matched; that is, ωkm =ω. The
peak of the normalized fraction is of magnitude T2/4. The half
width of the main peak is ∼5.6/T. The transition probability per
unit time |ckm|2/T—a scattering rate—which we denote by S, is

Smk = 4
∣∣H ′

mk(0)
∣∣2

h̄2

sin2
[
(ωkm − ω)T

2

]

(ωkm − ω)2T
. (1.46)

If T is large enough, the sinc function asymptotes to the Dirac delta

Not necessarily because of Matthew’s
principle, this relationship of
Equation 1.47 is often referred to
as Fermi’s golden rule. It appeared in
Fermi’s quantum mechanics lectures.
The compact and to-the-point lecture
notes from his University of Chicago
days—Notes on quantum mechanics
from the University of Chicago
Press is the 1954 version—are very
worthwhile reading. Dirac had gotten
there twenty years earlier. But the first
order and second order perturbations

function, that is, for large-enough T over which the perturbation
appears,

Smk = 2π
h̄

∣∣H ′
mk(0)

∣∣2δ(Ek − Em) (1.47)

for t ≥ T. The entire complexity of transitions under time-dependent
finite time perturbation, under certain constraints, can be reduced
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to a time-normalized transition probability; that is, transition prob-
ability per unit time, which has a very simple form. If one knows
the perturbation Hamilitonian, and two states between which
this interaction’s transition rate is to be ascertained, Equation 1.47
ascertains it. This is the Golden rule.

referred to as Golden rule 1 and
Golden rule 2 in Fermi’s notes struck
a cord, and somewhere along the way
his name got associated. We will call
it just the Golden rule. It is of the first
kind. We extracted it in the lowest
order term of change. Enrico Fermi
was an exceptional scientist, equally
adept at experiment and theory. Fermi
had a good sense of humor. In Rome,
his Physics Institute was in the same
compound as other senior government
offices, where nobody worked on
Sundays. Fermi was known to drive in
wearing a hat and declaring himself a
driver of dignitaries so that he could
continue his experiments. His Nobel
prize for discovering transuranic
elements, which he named Ausonium
(Z = 93) and Hesperium (Z = 94), is
one of those for wrong reasons. The
elements resulting from his slow
neutron bombardment experiments
were fission products, not heavier. But,
like Bethe, who worked with him in
Rome, there was plenty of other work
for which the Nobel was deserved.

There are a number of interesting features embedded here. The
peak is proportional to T2/4, and the full width at half maximum
is ∼5.6/T. The area is proportional to T, and the width to time
duration’s inverse (1/T). The uncertainty principle is reflected
in this spread. The central peak contains about 90 % of the area.
When time is large enough, this function narrows further to
the Dirac delta. It has a peak that corresponds to T2/4, so, for
matched conditions, only short times are needed. But, uncertainty
relationships—embedded in our calculation of this relationship—
must still hold and do. In addition, �E�t ≥ h̄/2 or �ω�T ≈ 1
still applies, as reflected in the central peak’s areal argument. So,
very short times, for example as in semiconductor-specific energy
transition problems, will reduce the probability in state |k〉. But, as a
first order term, this transition probability through the Dirac delta
relationship will still be useful. If matching is poor, it may even

See Appendix B where a number of
computationally useful functions
that one encounters in a variety of
forms are summarized. The Dirac
function can be written in a variety of
ways and is often a very convenient
manipulation tool, as is his bra and ket
notation for vectors.

vanish under certain conditions. If ωkm − ω = 2π/T, the transition
vanishes, since a full cycle of interaction brings back the system to
its original state. For all the problems that we are interested in, the
time scales of interactions are large enough that this relationship
written in Dirac delta form suffices. The equation can also be
extended when there are spreads in frequencies of excitation, or
spreads—as in bandstructure—of states of transition. For these,

S = 1
T

∑

k

|ck(t ≥ T)|2 = 1
T

∫
|ck(t ≥ T)|2G (k) dEk, (1.48)

which reduces to

S = 2π
h̄

∣∣∣H ′
if (0)

∣
∣∣
2
G (Ef )δ(Ef − Ei). (1.49)

From two levels to nearly continuous distribution simply follows
as an extension through density of states. And if it is between two
different distributions of density of states, then joint density of
states will appear.

1.3.3 Scattering by the perturbation

Figure 1.6: Coulomb scattering
causing an electron wave to scatter—
change momentum (magnitude and
direction)—as it travels in a crystal.
Coulomb energy is gained and then
lost as the scattering takes place with a
small net change.

The utility of this Golden rule can be illustrated through
Coulomb scattering, as shown in Figure 1.6. Take the electron as a
plane wave encountering the Coulomb attraction from a positive
charge. This could be in free space, but, for us, this is particularly
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germane due to its correspondence to impurity, which has a charge
in the semiconductor, causing a strong scattering for an electron.
This electron is a nearly free electron traveling around, and the
wavefunction of ψ = (1/

√
�) exp (ik · r) for the spatial component

is an adequate representation. Here, � represents the volume for
normalization of the probability. Due to the charge, the perturbation We will generally use � for volume,

and V for potential, except in rare
situations, to avoid confusion. �0 will
be the volume of a unit cell.

potential is U(r)= (1/4πε)Z∗e2/|r|. Z∗e here is the dressed static
charge of the impurity. The electron’s wavevector changes to k′ as
a result of this scattering. Under this perturbation, we have

H ′
kk′ = 〈k′|Ĥ ′|k〉 = 1

�

∫
U(r) exp

[
i(k − k′) · r

]
d3r

= 1
�

Ukk′ , (1.50)

where this last simple notation tells us that it is the Fourier
component—in reciprocal space—for the continuous electrostatic
potential. Any scattering into a solid angle dθ depends on the
density of states of the available states there. Classically, this is a
continuous distribution, as all positions and momenta are possible.
Quantum-mechanically, it will depend on the availability of states. Later on, in Chapter 10, we will

see anisotropic consequences as a
result of this state argument, since
semiconductors in general are not
isotropic, neither do they necessarily
have a continuous state distribution.

Connecting quantum to classical with isotropicity, we may write
dE = vd(h̄k), so the density of states for scattering is

dG = �

(2π)3
dθ

k2 dk
vd(h̄k)

= k2�
8π3h̄v

dθ . (1.51)

The interaction happens during transit near the impurity, and the
scattering or transition rate, writing it both classically through
scattering cross-section and quantum-mechanically through the
Golden rule, is

Sθ = dσ
�

v = v
�

dσ
dθ

dθ = 2π
h̄

∣∣∣∣
1
�

Ukk′

∣∣∣∣

2 k2�
8π3h̄v

dθ . (1.52)

Therefore, with dσ/dθ from this relationship and using the momen-
tum correspondence of h̄k = m∗v, where m∗ is an effective mass, we
have

dσ
dθ

= m∗2

4π2h̄4
k2

v2
∣∣Ukk′

∣∣2. (1.53)

The Fourier component of the Coulomb perturbation is

∣∣Ukk′
∣
∣2 =

∫
1

4πε

Z∗e2

|r| exp
[
(k − k′) · r

]
d3r

= 1
4πε

Z∗e2

|k − k′|2
= Z∗e2

4k2 sin2(θ/2)
. (1.54)

This last equation now gives a direct correspondence between the
classical and quantum-mechanical pictures of a nearly free electron
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scattering due to a charge in an isotropic condition. We could use Many of the parameters—nearly
constant—that one often utilizes in
the physical world are the result of
fast and slow at work. The friction
coefficient—static and dynamic—
arises in the electromagnetic and
quantum-constrained interactions
in the interface region between two
objects. The couplings under static and
dynamic conditions are different, but
both are to a broadband of vibrational
losses for the atoms of the objects.
An electron undergoes fast scattering
events, many of which are random, as
it moves through the matter. This too
is a broadband event in the frequency
domain, with energy loss to the
environment. Thermal equilibrium or
steady state comes about because of
the accumulation of the fast-and-slow
events.

the Golden rule to determine what this scattering rate will be in
the angle dθ . A classical scattering cross-section can be fitted to it.
And, by correspondence, the quantum scattering will gracefully
transform into a classical scattering relationship.
This discussion of states and their transformation due to

interactions sets up a reasonable starting point for discussing the
nature of the electrons and the atom systems and their analysis.

1.4 Fast and slow, and the Born-Oppenheimer/adiabatic
approximation

Simultaneous presence of fast and slow interactions is
quite commonplace. A simple example of this is the variety of
circumstances where one introduces a frictional damping. Brownian
motion, conductance, et cetera, are illustrations of fast events—
in these cases, random scattering encounters of a particle or an
electron in a solid—in the presence of a slow external stimulus—
the flow of the liquid and the particles, or of electrons—under an
external cause of potential or kinetic energy change. For semicon-
ductors, an illustration of this complexity is fast-moving electrons
in the midst of the vibration of atoms around their equilibrium
positions. The atomic motion—dressed nuclei, that is, nuclei and
the core electrons vibrating around their equilibrium—is slow, since
the mass is large. An electron transits a few atom distance (∼nm) at
a speed of ∼107 cm/s in ∼10 fs. Atomic vibration—a deformation,
where the frequencies are of the order of a few THz—must lead
to a change in the allowed states of the electron. So, if there is a
scattering interaction between the electron and the perturbation
due to this deformation, there will be the fast scattering event
coupling to a slower deformation. The Golden rule lets us tackle
the fast through the transition/scattering rate. The slow will follow
for us from adiabatic approximation, which has its origins in the
Born-Oppenheimer approximation in quantum mechanics’ earliest Adiabatic, a word of Greek origin,

translates as  ̏not to be passed
through.˝

application to the study of molecules. We will be particularly
interested in this simultaneous presence of fast and slow processes
because of its importance to transport and transitions. And we can
then suitably put the two approaches together to understand fast
and slow.
The adiabatic process, or adiabatic approximation, is an important

analysis tool in quantum conditions. Both of these terms are also
used in classical conditions but with subtle differences in meaning

In electronics, adiabatic circuits, by
suppressing entropy production and
by recovering energy, can consume
vanishingly low energy. But they
are slow, so this quantum-classical
difference can cause plenty of tangle.that need some elaboration. In classical mechanics, the adiabatic
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process is a process in which no heat is exchanged. The system
can be viewed as one that is thermally isolated or in which change
is taking place rapidly enough that transfer of energy as heat is
absent. In the thermodynamic view, this lets one analyze conditions In S. Tiwari,  ̏Quantum, statistical

and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
we looked at the reflection and
transmission of an electron plane
wave whose energy is larger than the
barrier energy. An abrupt barrier—
sudden change—causes reflection
and transmission. A gradually
changing barrier, where � � 2π/k,
with � as a length scale of change of
the barrier’s changing energy, and k as
the wave vector of the incident wave,
has the reflection suppressed. The
incident wave of wavevector k will
adiabatically adjust to a wavevector k′
in the barrier region.

of rapid change—such as compression or expansion in a mechanical
engine—and determine limits such as the Carnot efficiency. Absence
of heat exchange means no entropy change. In the quantum view,
adiabatic approximation implies a change that is sufficiently slow so
that the eigenfunction evolves slowly from one to another, slowly
enough that it is a tight coupling between one state to another state;
that is, it remains reversible throughout the process. The state of the
system remains the eigenstate of the instantaneous Hamiltonian. It
is in this sense of reversibility that it corresponds to the classical
use. However, in classical adiabatic conditions, the process needs
to be rapid to eliminate entropy change; in quantum conditions,
it needs to be quasistatic to allow state-to-state coupling. If the
latter were not, a starting state would couple to a band of states—
the final new state being a superposition in the new system—
destroying reversibility.
So, in quantum mechanics, an adiabatic process is a process

where a system undergoing change—with modification to its energy
levels—continues to remain in a single definite state. It maintains,
for example, its quantum numbers. If a square well has a particle in
the ith level, it remains there as the square well shape is changed
adiabatically. The wavefunction adapts to the slowly changing
parameters that define and mold the system.
The Born-Oppenheimer approximation is an example of

resorting to adiabatic process in molecules and solids. When we
reduced Equation 1.10 to Equation 1.11 to describe the atomic
solid by decoupling the ionic motion—the slow process—from
the electrons’—the fast process—Hamiltonian, we employed the
adiabatic approximation. The deformation-induced scattering

An N-particle system has 3N degrees
of motional freedom; 3 will be
translational, leaving 3N − 3 for
assorted other possibilities. If we
look at just what 2 atoms can do, of
the 6 motional degrees of freedom,
3 are for translational movement of
molecules in real space. This leaves
3. A complete and independent set of
these is vibration along the axis, and
2 more for the rotational freedom in
two orthogonal planes that intersect
along the molecular axis. Water with
3 atoms has a larger collection of such
modes. In a kitchen microwave, the
2.45 GHz frequency ≡ 12 cm of free
space wavelength or a 10 μeV energy
photon is absorbed by the water
molecule in this motional freedom.

can now be added on as a perturbation to the solution. Another
example is the simple system that we will take up next for
analysis—a 2-electron and 2-atom system (Section 1.5)—where
both an electronic and a nuclear part appear. Both have motional
components. For any change from the initial state to a final state,
one must consider both the electron and the nuclear part. The
mass of the electron is significantly smaller than that of the nuclei,
so nuclei can be viewed as moving so slowly that the electron
distribution adjusts to them instantaneously responding to the
changing potential. The consequence—a Born-Oppenheimer
approximation—is that a fixed electronic wavefunction is calculable
for any fixed nuclear locale. This is to say that, in the absence of
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degeneracy, one may split the eigenfunction describing both the
electrons and the nuclei as separable products; that is,

The Born-Oppenheimer approximation
is very useful but, nevertheless,
imperfect. There is inevitably some
mixing between states. An electron
falling behind nuclear motion may be
closer to another state—a mixing has
happened—and therefore transitions
that are not allowed may become
possible, small shifts in energies may
come about, or degeneracies may be
removed.

|ψ〉= |φ({r}, {R})〉|χ({R})〉, (1.55)

where {R}= (R1, . . . ,RN) are all the nuclear displacements, and
{r}= r1, . . . , rN all the electron coordinates, which may be gen-
eralized to include spins if appropriate. This separability estab-
lishes that the electronic motion instantaneously responds to
the atomic and nuclear motion—that is, it is a function of these
coordinates—and is separable from the nuclear response, which can
be written as a function of its own coordinates alone. The electron
charge cloud follows rapidly the slow response of the electron
and nuclear particles of the system. The energy of all possible
arrangements is calculable in principle within the constraints of
the accuracy of the method for the Hamiltonian’s solution—Hartree-
Fock—there. We will discuss Hartree and Hartree-Fock approaches
to solving the Hamiltonian shortly. The equilibrium position is
relatively accurate through the distribution of separations, even if
the derivative around this equilibrium is not.
As an example of separation of the nuclear part, the Born-

Oppenheimer approximation’s use and its analysis, take the
example of electromagnetic absorption by a molecule, which can
also be extended to the crystal and is particularly useful for the
nanoscale. Figure 1.7 shows the underlying process of an interaction
of a molecule absorbing a radiation photon. This is an illustration
of the Franck-Condon shift where fast and slow again makes its
appearance. The Franck-Condon principle states that since the
electron mass is much smaller than the nuclear mass, electronic
transitions can be treated with a stationary nuclear framework. This
is pretty much the Born-Oppenheimer approximation. The Franck-
Condon approach is used for molecules, but it is also pertinent to
the electron in the crystal with atoms attached to each other.

Figure 1.7: Franck-Condon shift, an
example of fast-and-slow change,
shown in configuration coordinate
diagram. (a) A sequence of processes.
An optical transition from A to B—
a resonant absorption—is fast and
accompanied by an ionic distortion
since electrons move rapidly but the
nucleus does not. This metastable
excited state slowly relaxes to
the excited state C with a Franck-
Condon shift of �jh̄ωj. (b) A physical
interpretation at the atomic level. In
the state C, the nuclei of the excited
state are farther away. Eventually,
another optical emission takes place,
leaving the nuclei still far apart. And
eventually they slowly come back to
the starting state A. This picture of
configuration coordinates is useful in
understanding some of the deep levels
in semiconductors— vacancies, atoms
displaced, et cetera—where lattice
distortion accompanies the electron
capture or emission process.

A configuration coordinate diagram shows the energetic changes
as multiple coordinates; for example, the geometric spacing of the
center of motion, and the relative spacings of components, together
with the momenta of a system, also undergo a change. Figure 1.7
shows the energetics as a function of nuclear position for a system
undergoing transition by interaction with a photon: the initial and
final state electronic energy as a function of the displacement Rj

of the jth nuclei. The electron energies E(R) as a function of the
atomic/nuclear displacement within the harmonic approximation
for two different nuclear positions of the jth nuclei are shown here
for both the initial state and the final state. The vibrational part,
due to the nuclear motion, occurs slowly. The electron state change
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occurs rapidly. The electronic and vibrational parts of the response
can be separated. The vibration part, in the linear limit, is a simple
harmonic oscillator, whose center will change as time proceeds, and
this process will involve phonon emission in the solid. The different
excitation states of the electron are the different dotted lines in the
figure in the harmonic well.
These energies can be written as

Ei(R) = Ei(Ri) +
3N∑

j=1

1
2

mh̄ω2
j (Rj − Ri

j)
2
, and

Ef
(R) = Ef

(Rf
) +

3N∑

j=1

1
2

mh̄ω2
j (Rj − R

f
j )
2
. (1.56)

The electronic energies differ in energy linearly with the displace-
ment Rj if the coupling between electronic and nuclear motion
is also linear under small displacement. The nuclear contribution

oscillates around mean displacement position (Ri
j and R

f
j ). The

change in mean position, representative of the electron-nuclei
interaction, can be related through a parameter written here without
proof as

�j = m
(

ωj

2h̄

)
|Ri

j − R
f
j |
2
. (1.57)

�j—the Huang-Rhys factor—is a dimensionless factor tying the
strength of the coupling of the electronic states to the nuclear
motional freedom.
The photon absorption induces an electronic transition from

point A, with the system evolving, without nuclear positional

change, to point B. Nuclear position now changes slowly to R
f
j

(point C) via phonon emission, with the system still staying excited.
The net difference between the final and initial state energies is

Ef
(R) − Ei(R) = Ef

(Rf
) − Ei(Ri)

+
3N∑

j=1
�jh̄ωj +

3N∑

j=1

√
2mh̄ω3

j �j|Rj|. (1.58)

Here, the first summation is the Franck-Condon energy correspond-
ing to the net relaxation of the molecule or crystal, and the last term
is the result of electron and nuclei motion interaction, which is the
electron-phonon coupling.
The absorption of the photon—a fast process—causes a change

in energy without a change in nuclear configuration, which thereon
relaxes through the transfer of energy to the vibrations. We could
separate the terms, since the nuclear part of the wavefunction could
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be written as a product term solely in terms of nuclear position in
the wavefunction of Equation 1.55. We could analytically resolve The heating of a water molecule in the

microwave depends on an electronic
transition that then shakes the water
molecules, which is an effective way to
heat food.

this because of the separability of the fast-and-slow process that
adiabatic approximation could be applied to. This example also
introduces us to the use of configuration diagrams when local
positional changes have an effect on energy. We will encounter
this a few times, particularly so in understanding defects, where
the local crystal environment will have a consequence for electronic
energy interactions, just as it did in this molecular example.

1.5 A 2-electron and 2-atom system

We start our exploration of solids with the simplest
of cases of matter assembly: a 2-electron, 2-atom system—the
hydrogen molecule—to understand the energetics and the different
possibilities of the eigenstates as starting points. There is much
here from which we can draw implications for the solid forms of
interest to us. In this 2-electron, 2-atom example, the Hamiltonian
operator, with the electron’s kinetic and Coulomb potential energies
included, is

Ĥ = − h̄2

2m0
∇2
1 − h̄2

2m0
∇2
2 − 1

4πε0

e2

r1A
− 1
4πε0

e2

r2A

− 1
4πε0

e2

r1B
− 1
4πε0

e2

r2B
+ 1
4πε0

e2

r12
+ 1
4πε0

e2

R
, (1.59)

where A and B denote the sites of the two atoms that are R apart
and 1 and 2 represent the two electrons of mass m0, so that r1A In following through by the writing of

Coulomb energy terms in this form,
energy terms will appear as a Coulomb
integral. An electron in an atomic
orbital |u1〉 has a charge density of
−e〈u1|u1〉 or a charge of −e〈u1|u1〉d3r1
in volume d3r1. A second electron
has a charge −e〈u2|u2〉d3r2. For a
separation r12, the potential energy
of the Coulomb interaction—the total
electrostatic interaction between the
two elemental charges—is the integral
over the entire space of each of these
volume elements. This is the Coulomb
integral. It is a net increase in energy
because charges are of the same sign.

means the separation of electron 1 of charge −e from a residual
core of charge +e (Z = 1 in Equation 1.11) and r12 is the separation
between the two electrons. We wish to find the lowest energies. It
stands to reason that these will be reconstituted from the lowest
energy states of the atoms from which the molecule is formed as
the interaction evolves. Let |uA↑〉, |uA↓〉, |uB↑〉 and |uB↓〉 represent
the 1s orbital wavefunction of the two atoms A and B of this
hydrogen molecule, with spin up ↑ ≡ ms = +1/2 and spin down
↓ ≡ ms = −1/2 possibilities. These are the four possible spin orbitals.
Let the two electrons be represented by 1 and 2, respectively. So,

|uA↑(1)uB↑(2)〉 speaks to electron 1 on atom A, and electron 2 on
atom B, where both electrons have ms = + 1/2. We may exchange
the electrons between the two atoms, in which case wavefunction
|uA↑(2)uB↑(1)〉 is also a possibility. There are many more such This is the Pauli exclusion principle

telling us that no two eigenfunction
solutions for the fermions can be the
same.

possibilities—a total of 4C2 = 6—that represent choosing any 2 out
of 4 available spin orbitals. Two of these—|uA↑uA↓〉 and |uB↑uB↓〉—
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represent the 2 electrons on one atom (A or B). The other is bereft.
So, we have a combination where one is now a negative ion, and
the other a positive ion. We exclude these from our discussion.
They are certainly possible under energetic circumstances, but we
are interested in solutions where both centers are still neutral.

A stationary state is one whose
probability density (〈ψ |ψ〉) is invariant
in time. See the probability discussion
of random processes in Appendix C.

So, we need determinental functions that exclude the degenerate
possibilities, for example, under exchange of the two electrons on
the two centers (|uA↑(1)uB↑(2)〉 and |uA↑(2)uB↑(1)〉), and form a non-
degenerate set for a stationary solution.

See Appendix D for a discussion
of variational principle and its
usage. The reader will also find
Appendix E and Appendix F as a
short encapsulation of the important
notions of thermodynamics and
important distribution functions. Spin
is discussed in Appendix G.

The simplest illustration of the
removal of degeneracy in the
presence of interaction is that of
bonding and antibonding states.
Let two systems share identical
Hamiltonians. Independent, they have
identical energy. Let |l〉 and |r〉 be the
eigenfunctions that have this same
energy E as their solution. Bring the
two closer to cause each to perturb the
other. Equation 1.61 gives the solution
for the energy. Absent perturbation,
soOjis vanishing, the energy E is the
solution for the two non-interacting
systems in the |l〉 and |r〉 state. With
perturbation, the energies change, and
we have the solutions

E+ = E + �, with

|+〉 = 1√
2
(|r〉 − |l〉), and

E− = E − �, with

|−〉 = 1√
2
(|r〉 + |l〉),

where � is the energy change
arising due to the perturbation.
This perturbed system does not have
|l〉 or |r〉 as its eigenfunction or E as
its eigenenergy. The energies have
changed to E+ and E−, and the new
eigenfunctions are linear combinations
of unperturbed eigenfunctions. |l〉 and
|r〉 have hybridized. Degeneracy has
been lifted. the higher energy state is
the antibonding state. It is spatially
antisymmetric. The lower energy state
is the bonding state. It is spatially
symmetric. This is a  ̏molecular˝
description. States were localized. Such
a  ̏molecular˝ model is very useful
in understanding many defects in
semiconductors.

Let {|u0i 〉} be the set of orthonormal basis functions. We build
a linear combination |ψ〉= ∑

i ci|u0i 〉. Let Ojk = 〈u0j |u0k〉. This is
an overlap matrix element. If Hjk = 〈u0k |Ĥ |u0j 〉, then stationarity
requires

∑

i

ci(Hjk − EOji) = 0, (1.60)

by variational principle. For a unique stationary solution to exist for
this set of equations, the secular equation

det|Hjk − EOji| = 0 (1.61)

must be satisfied. For N basis functions, there are N roots that are
the eigenvalues. Each of these eigenvalues is associated with a
combination of ci’s of Equation 1.60—a linear combination. For
us, here these are to be built from |uA↑uB↑〉, |uA↑uB↓〉, |uA↓uB↑〉
and |uA↓uB↓〉. We have now discarded the identification of each
electron, as it is implicit in this choice set, where Ms—the sum of
the secondary spin number along the axis of quantization—changes
from 1, to two with 0, and the last one with −1. This middle set of
Ms = 0 leads to the linear combination through sum and difference,
which are distinguishable, but which will also lead to a degenerate
energy. Our four solutions, unnormalized, but explicitly including
the spin and the electron and atom identity, are

|uA↑uB↑〉 = [uA(1)uB(2) − uA(2)uB(1)]| ↑ (1)〉| ↑ (2)〉,
|uA↓uB↓〉 = [uA(1)uB(2) − uA(2)uB(1)]| ↓ (1)〉| ↓ (2)〉,

|uA↑uB↓〉 + |uA↓uB↑〉 = [uA(1)uB(2) − uA(2)uB(1)]

× [| ↑ (1)〉| ↓ (2)〉 + | ↓ (1)〉| ↑ (2)〉], and

|uA↑uB↓〉 − |uA↓uB↑〉 = [uA(1)uB(2) + uA(2)uB(1)]

× [| ↑ (1)〉| ↓ (2)〉 − | ↓ (1)〉| ↑ (2)〉], (1.62)

showing the separation of spatial and spin coordinates with their
changing symmetries that make these combinations different
from each other. The top three of these have antisymmetric
spatial coordinates and spin coordinates are Ms = 1,−1 and 0.
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The eigenvalue of these three is identical, arising in the spatial
dependences. Spatially antisymmetric functions form the triplet. The
last wavefunction, also an eigenfunction and spatially symmetric,
forms a singlet state.
With these functions known, one may calculate the energies

following normalization, since the Hamiltonian of this problem
only involves spatial dependence. This is shown in Figure 1.8 as a
function of changing R. The singlet spatially symmetric solution has
a lower energy, while the triplet spatially antisymmetric solution
has higher energy. The former is our bonding state, and the latter
the anti-bonding state. This approach is an illustration of the tight
binding approach. We built a tight molecular construction using it.
It is also known as linear combination of atomic orbitals (LCAO),
since it built the hybrids, or the evolved eigenfunctions starting
from the original atomic orbitals as the orthonormal set.

Figure 1.8: The energy, as a function
of interatomic spacing, of a model
hydrogen molecule for the four
wavefunction solutions. The
antisymmetric solution has a higher
energy than the symmetric singlet
solution.

Bringing two atoms together here has led to a lowering of energy
in the bonding state and has resulted in a stable molecule with
one bonded spatially symmetric solution. It has illustrated to us
a methodology that will be a stepping stone to more complicated
constructs. For us, a very instructive one is of N electrons together
with the nuclei.

1.6 N non-interacting electrons in the presence of nuclei

If one has N non-interacting electrons, and they are also
independent of each other, that is, no Pauli-exclusion and fermionic
constraints, the Hamiltonian may be written as Ĥ = ∑N

1 Ĥ(zi),
where the Hamiltonian of the ith electron—a sum of the kinetic Spin often will become important

because both Pauli exclusion and
magnetic energetics relate to the spin’s
important role. See Appendix G for
a discussion of the spin and spin
matrices to represent spin coordinates.

((−h̄2/2m0)∇2
i ) and the potential energy (V) form—is a function of

both the position (ri) and the spin ζ i coordinates; that is, zi = ri, ζ i.
These N Hamiltonians are identical, and their solutions degenerate,
that is,

Ĥ(z)|ui(zi)〉= Ei|ui(zi)〉 ∀ i = 1, . . . ,N, (1.63)

so that the net energy of the N electrons is E = ∑N
i=1 Ei and the

wavefunction is also a product of the one-electron states, that
is, |ψ〉= ∏N

i=1 ui(zi). The problem with this solution is that the
wavefunction |ψ〉 is not antisymmetric, and it does not represent Another way of saying this is that

we have found a solution for N one-
electron one-nucleus systems that are
all very far apart from each other so
that they do not interact and are also
independent of each other.

a collective ensemble of N non-interacting electrons that are not
independent.
The wavefunction |ψ〉 for the ensemble Hamiltonian composed

of these one-electron states must be an antisymmetric function for
the fermion electron, since Pauli exclusion applies. This is the Slater
determinant
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|ψ〉= 1√
N!

∣∣∣∣∣∣∣∣∣∣

|u1(z1)〉 · · · |u1(zN)〉
|u2(z1)〉 · · · |u2(zN)〉

...
...

...
|uN(z1)〉 · · · |uN(zN)〉

∣∣∣∣∣∣∣∣∣∣

, (1.64)

with spin and which is orthonormal. The eigenenergy is E = ∑N
i Ei.

A Slater determinant obeys
antisymmetry by construction.
Determinants change sign when
rows or columns are interchanged.
The Slater determinant also keeps the
electrons indistinguishable.

In this form, when two electrons are taken in identical wave-
function form, the determinant vanishes, as expected from Pauli Indistinguishability here means that

each electron is associated with each
electron wavefunction.

exclusion, and the electrons are also indistinguishable. If the energy,
and so also the Hamiltonian H(z), are independent of the spin, then
one may separate the spin part from the spatial dependence; that is,

|uiσ (z)〉 = |ui(r〉|vσ (ζ )〉. (1.65)

Electrons of opposite spin may coexist in the same orbital state, so
the ground state of this N non-interacting electron system is one This multiple electron question shows

up as a problem of lowest energy in
bonding in chemistry. Spin up and
spin down are valid in a bonding state
since the resulting eigenfunction is
antisymmetric.

where the entire gamut of lowest one-electron states is filled with
two electrons, each of opposite spin per state.
An important point of note here is that one could follow through

this way and obtain the wavefunction for the system as a whole
using the Slater determinant, because the electrons were non-
interacting and because the total Hamiltonian could be written
as a sum of each electron’s Hamiltonian. And each electron’s
Hamiltonian was a function of its coordinate interacting only with
nuclei. All other energetics, such as electron-electron interaction
energies, for example, were, by fiat, zero. The independence let us
write the total Hamiltonian as a sum of each electron’s, and hence
the wavefunction solutions found from Equation 1.63 served to
build the system’s wavefunction. The hydrogen molecule model
in Section 1.5 is an example of this approach applied to a 2-electron,
2-nuclei problem.

1.7 N interacting electrons in the presence of nuclei

In an N-interacting-electron system, together with the
atoms from which the electrons arose, the wavefunction of the
system is a function of the coordinates of all electrons and of other
particles, such as the cores, with which they meaningfully interact.
Even with the simplification of these N electrons in a continuum
approximation averaging the positively charged ion background,
because of the interaction between all the electrons, the Hamiltonian
is not separable as it was in previous case. We need to approximate
the effect of interaction of an electron with all others by a potential
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that is only a function of the electron coordinate. Only then is Here, this self-consistent field
approximation implies that, for the
specific electron for which one is
computing, the potential in which
it is present can be calculated by
freezing all the other electrons and
taking their averaged distribution by
a centrosymmetric potential source.
Solving the Schrödinger equation
gives an updated state description.
And this becomes a starting point for
improving the accuracy of description
of other electrons, again using the
frozen representation for the rest. One
cycle of this procedure updates all the
electrons’ orbital descriptions, and
the procedure may be repeated. The
procedure has limitations but is quite
useful. As the number of particles
increases, it becomes increasingly more
accurate. It is therefore quite useful
for the determination of many of the
properties that are of interest to us.

it possible to treat the electrons one at a time separately. This is
an example of a self-consistent field approximation—finding a mean
field in which interaction may be tackled for specific particle with
attention to only its coordinates—in numerous places and is useful
for our N-interacting-electron system. Since the self-consistent
approach requires the interaction potential and a knowledge of the
states, with each dependent on the other, one must compute the
solution self-consistently, iterating until one finds a solution that is
satisfactorily accurate.

1.7.1 Hartree approximation

With N electrons and their nuclei as an ensemble, the
Hamiltonian may be written as

Ĥ =
N∑

i=1
Ĥ(zi) + 1

2

∑

i�=j

1
4πε0

e2

|ri − rj| + V̂NN. (1.66)

The first term is as before (a sum of kinetic energy and the
Coulomb interaction with the nuclei/ion), the second is the
electron-electron Coulomb interaction while compensating for
duplication and only including separate electrons, and the last is
the Coulomb interaction between the nuclei V̂NN = ∑N

i=1 V̂(Ri). It is
the second term that mixes up the electron coordinates because of
the electron-electron Coulomb interaction that makes the solution
not decomposable to the form discussed in Section 1.6, where this
interaction was excluded by making the independent electron
approximation. So, this wavefunction solution is a function in the
coordinates (r1, . . . , rN) has now become non-trivial.
Hartree’s insight is that one may tackle each electron separately

by viewing it as moving in the field of the nuclei (or ions, in the
simplification for solids) and in the average field due to the other
electrons. This self-consistent field approximation—the Hartree
approximation—corresponds to finding the solution of

⎡

⎣Ĥ(zi) +

∑

i�=j

∫
1

4πε0

e2

|ri − rj| 〈uj(zj)|ui(zi)〉〈uj((zj)|uj((zj)〉dzj

⎤

⎦ |ui(zi)〉

= Ei|ui(zi)〉 ∀ i = 1, . . . ,N. (1.67)

The problem has again been reduced to N equations, one for each
electron, where each is in a field due to the other N − 1 electrons.
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On the left-hand side of Equation 1.67, we add and subtract an
unphysical self-interaction Coulomb term for i = j, and one obtains the

This self-interaction term is introduced
only for convenience of calculation.
An electron, of course, does not
interact with itself. But, through this
subterfuge, one can write a Hartree
potential as an integration over the
ensemble.

form
[
Ĥ(z) + V̂H(z) − V̂si(z)

]
|ui(z)〉= Ei|ui(z)〉, (1.68)

an equation that is now identical for all the electrons i = 1, 2, . . . ,N,
where

VH(z) =
∫

1
4πε0

e2

|r − r′|n(z′) dz′,

n(z) =
∑

i

oi〈|ui(z)|ui(z)〉, and

Vsi(z) =
∫

1
4πε0

e2

|r − r′| 〈|ui(z′)|ui(z′)〉 dz′. (1.69)

Here, VH is the Hartree potential—a Coulomb energy term arising
in the electron interactions that includes the unphysical i = j
contribution and written in terms of electron density, which is a
summation over the product of probability density of the ith state
and its occupation factor (oi, where oi is 1 if an electron is present,
and 0 if it is absent). The last term of Vsi is a self-interaction term
that is now being subtracted to compensate for what was artificially
introduced in the Hartree potential.
This Hartree potential approach is quite a good starting point for

describing an atom’s electronic picture, or a many-electron picture
of a solid, since the set of equations represented by Equation 1.67
are now solvable with the Hartree potential calculable through
simple averaging in Equation 1.69. VH represents a mean field
effect, but one that includes the unphysical self-interaction term.
In the Hartree approximation, one starts with a trial wavefunc-

tion |ψ〉 composed of independent electrons; that is,

|ψ〉=
N∏

i=1
|ui(zi)〉, (1.70)

ignoring the antisymmetry. The desired solution is the one that has
the minimum for 〈ψ |Ĥ |ψ〉. This requires the variational expectation See Appendix D, where the approach

of using the variational principle to
minimize energy by varying from a
good guess of a starting trial solution
is discussed.

to vanish; that is,

〈δψ |Ĥ |ψ〉 = 0. (1.71)

So, the variational treatment of |ui〉 leads to the solution of Equa-
tions 1.66 and 1.67, our equations of the Hartree formulation. We
have reduced the problem to solving N single particle equations
with unknown n(z′) − 〈ui(z′)|ui(z′)〉. An iterative approach that
brings about self-consistency between the density’s implication
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for potential (Equations 1.69) and the governing Hamiltonian
(Equation 1.68) with the use of equilibrium statistics leading back
to the density will tackle it.
But there are serious shortcomings. The most important is that

these equations have no constraint that reflects Pauli exclusion
(Equation 1.70 is not antisymmetric); that is, exchange.

1.7.2 Hartree-Fock approximation

The Hartree-Fock approximation antisymmetrizes the
wavefunction. It starts with the Slater determinant, with its

In the Hartree approximation, we
started with the trial |ψ〉 as the
product of independent electron
wavefunctions. The Slater determinant
gives us the coupled solution that
adheres to all the quantum-mechanical
constraints. This antisymmetrization
is the Hartree-Fock approximation.
Both Hartree and Hartree-Fock are,
however, still approximate with
Hartree-Fock, an improvement toward
accuracy. Multiple electron assemblies
such as atoms and molecules—systems
with restricted numbers—show this.

orthonormality for spin orbitals of independent electrons as the
initial trial wavefunction. For the Hamiltonian of the Hartree
equation (Equation 1.66) for this N-interacting-electron system, the
energy solution is

E =
∑

i

oi〈ui|Ĥ|ui〉 + 1
2

∑

i,j

oioj

(

〈uiuj

∣∣∣∣∣
1

4πε0

e2

|ri − rj|

∣∣∣∣∣
uiuj 〉

−〈uiuj

∣∣∣∣∣
1

4πε0

e2

|ri − rj|

∣∣∣∣∣
ujui〉

)

+ VNN. (1.72)

Note the antisymmetrization in the second term. Here, we have
used the generalized notation

〈ukul

∣∣∣∣∣
1

4πε0

e2

|r − r′|

∣∣∣∣∣
uiuj〉

=
∫

u∗
k (z)u∗

l (z
′) 1
4πε0

e2

|r − r′|ui(z)uj(z′) dz dz′ (1.73)

for brevity.
Minimization of E for all |ui〉 under the constraint of their

orthonormality may be accomplished using Lagrangian multipliers; A short summary of the method of
Lagrangian multipliers can be found
in Appendix D. This approach to
finding solutions under constraints is
an essential instrument from the tool
set of mathematics that we employ
throughout.

that is, we require

δE −
∑

i,j

λij

∫
δu∗

j (z)ui(z) dz = 0 ∀ δu∗
j . (1.74)

The one-particle equation set that this corresponds to is
⎡

⎣Ĥ(z) +
∑

j

oj〈uj(z′)
∣∣∣∣∣

1
4πε0

e2

|r − r′|

∣∣∣
∣∣
uj(z′)〉

⎤

⎦ |ui(z)〉

−
∑

j

oj〈uj(z′)
∣
∣∣∣∣

1
4πε0

e2

|r − r′|

∣∣∣∣
∣
ui(z)〉|uj(z)〉

=
∑

j

λij|uj(z)〉. (1.75)
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The first of the summation interaction terms on the left is just
the Hartree potential VH that we encountered before. The second
summation term on the left is an exchange term. Since the Slater
determinant undergoes only a phase factor change under uni-
tary transformation, the equations remain the same structurally
under diagonalization of this equation set. So, one may reform
Equation 1.75 to a diagonal form where λij = Eiδij. We now have the
equation set

[
Ĥ(z) + VH(z)

]
|ui(z)〉

+
∫
⎡

⎣− 1
4πε0

e2

|r − r′|
∑

j

oj〈uj(z′)|uj(z)〉
⎤

⎦ |ui(z′)〉 dz′

= Ei|ui(z)〉 ∀ i = 1, . . . ,N. (1.76)

The last term on the left in this equation is a nonlocal exchange
interaction. The equation form can be written more meaningfully—
and simply—as

[
Ĥ(z) + VH(z) + Vx(z)

]
|ui(z)〉 = Ei|ui(z)〉 ∀ i = 1, . . . ,N, (1.77)

where

Vx(z)= 1
ui(z)

∫
⎡

⎣− 1
4πε0

e2

|r − r′|
∑

j

oj〈uj(z′)|uj(z)〉
⎤

⎦ |ui(z′)〉 dz′ (1.78)

In Equation 1.76, the i = j contribution arising in the last term on
the left is precisely Vsi. But this Hartree-Fock approximation has
reformed it into a correction term Vx arising in exchange for i �= j.
It is more accurate, even if less intuitive, and it has pulled in the
nonlocal exchange’s energetic consequence. This Hartree-Fock equa-
tion set can tackle the spin orbital as factorized by Equation 1.65.
It accomplishes this by transforming the integration over z′ to r′,
while VH gets doubled for spin degeneracy and the exchange term
is unchanged since their contribution to Equation 1.75 vanishes.
In the Hartree approximation (Equation 1.68), we had to explicitly
exclude the i = j term in the summation. In the Hartree-Fock
approximation, we do not have to exclude this, since the exchange
term sums cancel with the i = j term. When N is large, with electron
contributions scaling as 1/N, the distinction between Hartree and
Hartree-Fock rapidly vanishes.
But, at small N, so few electron and few atom systems, such as

nanostructures, these approaches and their judicious correction
for i = j—within the self-consistent field approximation—will have
noticeable consequences. Even though the Hartree-Fock approach
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should be expected to be more accurate by accounting for exchange,
there will still be major shortcomings.
The next major shortcoming to consider is that we have not

accounted for correlation. Correlation here is the notion that the

We will encounter the word
 ̏correlation˝ often. Even Pauli
exclusion is a form of correlation.
Two electrons in a non-quantum
mechanical view move independently
of each other. But there is a low
probability of them being in the
same location, due to the Coulomb
interaction. This is a charge correlation.
The change in localization of
electrons, such as in the hydrogen
molecule, through a wavefunction
that is a superposition of different
configurations is a configurational
correlation. Fermions avoiding each
other for the same spin and clustering
together when in opposite spin is
a spin correlation. Any interaction
between an electron and another
electron that is not due to the Coulomb
interaction is a quantum-mechanical
consequence that is a correlation
effect in this view. It appears in
numerous forms, and we will see these
throughout our discussion.

mere presence of an electron causes a redistribution of the other
electrons, due to electron-electron repulsion creating a  ̏Coulomb
hole.˝ This issue of correlations and exchange-correlation holes is
tackled in the next subsection.

1.7.3 Correlations

Discrepancies arise in a number of considerations neglected
up to this point. In an atom or molecule, a principal one is from
the relativistic effect in the core electrons with their large kinetic
energy. Another one is due to correlation energy, which is important
to atoms, molecules and atomic assemblies where many electrons
will exist. Hartree-Fock ignores any local changes in the distribution
of an electron, since it force fits a mean effect arising in the others.
Take the case of a molecule. When an electron is in the vicinity

of another electron, Hartree-Fock accounts for it for the whole
orbital as an average. This neglects any local electron-electron
effect. This neglecting of electron correlations in its configuration
form due to the mean field formalism makes energy calculation

Figure 1.9: Molecular potential energy
in Hartree-Frock approximation,
where correlation is not accounted for.
The minimum is geometrically close,
but the derivatives are not, and the
dissociation limit of R →∞ inaccurate.

inaccurate at long separations and in the curvature at equilibrium.
So, as seen in Figure 1.9, the poor representation of local distortion
results in accurate representation of local equilibrium geometry but
poor calculation of properties such as force constants, vibration
frequencies, et cetera. Note that subsumed in the Hartree-Fock
approximation also is the Born-Oppenheimer adiabatic approxi-
mation. The molecular potential energy is a function of relative
nuclei locale. And any calculation where electrons follow any
nuclear movement instantaneously will have increasing errors in the
calculation of dynamic parameters. In a solid, this same correlation
will cause similar inaccuracies when the number of interacting
electrons is small and local electron-electron interaction important.
We will modify the Hartree-Fock approach by accounting for this

configuration interaction of correlation.
But, we also note that the Hartree-Fock equation is actually quite

accurate and successful in a number of situations of interest to us. It
is, for example, solvable and accurate for a free electron gas with a
uniform compensating background. With one-electron wavefunction
as a plane wave, the exchange interaction is calculable. The 1/r
dependence then leads to a total energy that is proportional to
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n1/3, where n = N/� is the electron density for N electrons in
volume �. The mean separation between the particles varies as
n−1/3 and the plane wave gives an equal probability everywhere, so
any distortion effects naturally disappear with increasing particle
population. We return to this problem shortly because of this
construct’s peculiarity. Hund’s rule of multiplicity—an

observation—is that when an atom
or molecule has open electronic
shells, then, in any given electronic
configuration, the lowest energy
form corresponds to the largest spin
multiplicity. That is, the state with
the largest total spin (

∑
ms
) is the one

with the most stable configuration.
So, with multiple orbitals of equal
energy, electrons prefer to occupy them
singly before pairing. Pairing reduces
total spin. In silicon, which has 3s23p2

as the outer orbital configuration,
the 3p2 may exist as 1D, 3P and 1S—
multiplicity being 2S + 1 indicated
in the superscript of J = L + S, with
L the orbital quantum number—
3P, with ML = 1 and MS = 1—is the
favored ground state. This is Hund’s
rule 1; rule 2 is an observation on the
consequences of electron repulsion, for
which the silicon triplet state has no
choice. Hund’s rule 2 states that, in as
much as it is possible to be consistent
with rule 1, the configuration that
maximizes orbital angular momentum
is favored. Hund’s rule 3 minimizes
spin-orbit coupling and so appears for
larger atoms with d and f electrons.
The first two rules really are because
of the Coulomb energy implication of
the arrangements. Hund’s rule can be
seen classically in orbital motion. Two
pendulums interacting with each other
lock orbital and spinning motion.

The correlation effects have another important consequence: the
existence of holes and mounds. A simple example is from spin
correlation. Since two electrons of the same spin may not be found
at the same point, if one looked at the probability of finding a
second electron of identical spin, it will vanish at the point of no
separation. The wavefunction of the second electron asymptotically
vanishes in the vicinity of the first electron’s locale. This is a Fermi
hole. Likewise, for opposite spins, the second electron’s probability
is enhanced. Pauli exclusion, or exchange, has resulted in this spin
correlation effect. In a configuration of atoms, the Hund rule’s of
maximum multiplicity is indirectly due to this spin correlation’s
consequence.
Since the Hartree-Fock approximation does not include cor-

relation effects, configuration interaction needs to be computed as
a modification. The eigenstates of the system of N interacting
electrons can be built by expansion of the Slater determinant
constructed off an infinite set of orthonormal one-particle spin
orbitals whose starting point is the Hartree-Fock ground state
determinant. Let |uSn〉 represent the basis of the Slater determinant
from the infinite orthonormal single particle spin orbitals. We have
the wavefunction

|ψ〉=
N∑

n=1
cn|uSn〉. (1.79)

If we think of a free electron gas, with the nuclear charges smeared
as a positive background—a jellium as a continuum—balanced by
an opposite and uniform electron density, then the mean effect is a
zero potential. The one-particle Hartree equation (Equation 1.67) is
then just the free electron wave

uk(r)= 1√
�
exp(ik · r), with Ek = h̄2k2

2m0
, (1.80)

where � is the free space volume, and the time dependence is
implicit. A ground state has two electrons of opposite spin in these
one-particle states. A Fermi level with energy EF and wavevector
kF defines the highest state up to which these are filled at absolute
zero temperature. Since the volume of k-space is (4/3)πk3F, with
2π/�1/3 as the separation between the points of k-space that
electrons with opposite spins may occupy,

See Appendix H for a discussion of
allowed k and the distribution of states
in the reciprocal and real space.
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N = 2
(4/3)πk3F
(2π)3/�

= k3F
3π2� ∴ n = N

�
= k3F
3π2 . (1.81)

An electron has an effective space of a length scale re = (3/4πn)−1/3,
where n is the electron density, and its correspondence with the
Fermi wavevector follows as

kF = 1
αre

, with α =
(
4
9π

)1/3
≈ 0.521, (1.82)

which is an indicator of the high level of filling and which is the
reason why a jellium description becomes quite valid. The plane
waves are eigenstates of the Hartree-Fock operator that had led to
the exchange correction term of Vx (Equation 1.78) operating on the
state |ui(z)〉. This can be viewed as a one-body effective exchange
potential operating on the one-particle eigenstate. For the plane
waves, this energy function for a wavevector k is

Vx,k = − 4πe2

�

∑

k′

1
4πε0

ok′
1

|k − k′| . (1.83)

This term gives the exchange energy by summing over all the
other states that are also occupied by electrons. Normalizing by
the number of electrons N and avoiding double counting of the
interaction by dividing by 2 gives the averaged exchange energy
per electron of

Ex = − 3
4π

1
4πε0

e2

αre
≈ − 1

4πε0

0.458
re

(1.84)

for the free electron gas in a plane wave approximation for a metal.
The calculation that this all represents is that the electron

doesn’t interact with itself but with all others, and we have to self-
consistently determine energy under this situation. The electron at
r feels the field from other electrons, but, due to electron-electron
repulsion, its presence in our calculation at r is also repelling
these other electrons. So, it has a created a hole in the electron
distribution around itself. This is a Coulomb hole due to exchange
correlation—an exchange hole. Its presence is also changing
the screening of the electron-electron interactions. Figure 1.1, in
Section 1.2, is not an unreasonable representation. The exchange
hole lowers the net energy. Charge neutrality also means that the
electron and the Coulomb hole compensate each other locally. So,
in this volume region, net charge still vanished, and the system is
neutral. For free metal conducting systems, it has a fair and well-
formed description.

Vx of Equation 1.78 is a one-body exchange potential on the one-
body eigenstate |ui(z)〉. One may view it as an electrostatic potential
that arose due to the occupation density
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oHF(z, z′)=
∑

j

oj

u∗
j (z

′)uj(z)ui(z′)
ui(z)

. (1.85)

Integrated over z′, this must be unity, since it represents the
existence of this occupied state for which the calculation is being
performed. In any N-electron system, this electron at r is interacting
with N − 1 other electrons. The Hartree potential VH of Equa-
tion 1.69 contains N electrons and one exchange hole. Equation 1.85
says that if oj = 1 ∀ j, then the hole is localized on the electron—
a delta function (δ(z − z′)). But, our previous paragraph argues
that this cannot be the case. So, there exists a broadening. It is this
broadening that is of the order of λF = 2π/kF = 2παre for the free
electron gas. The exchange hole in  ̏free˝ electron metals—alkali
being the closest approximation—spreads out a bit beyond the
nearest neighbor.
The spreading just beyond makes sense and should be general.

Two electrons of same spin cannot be in the same position. The
configuration interaction correction to Hartree-Fock used the Slater
determinant, which takes this exclusion to heart.
This exchange-correlation hole can now be easily interpreted and

understood. The electron density is the probability of finding the
electron per unit volume. It is the number of occupied states, and
if we normalized it to the states, it is the fraction. With ri as the
electron positions,

n(r)= 〈ψ
N∑

i=1
δ(r − ri)|ψ〉, (1.86)

where |ψ〉 is the N-particle wavefunction. Let n(r, r′) be a pair
correlation of the squared probability of finding two electrons, one
at r and another at r′, that is,

n(r, r′)= 〈ψ
∑

i�=j

δ(r − ri)δ(r′ − rj)|ψ〉. (1.87)

The term includes any contributions of correlations between
electrons. The system Coulomb energy is

VCoul = 〈ψ |1
2

∑

i�=j

1
4πε0

e2

|ri − rj| |ψ〉 = e2

2
1

4πε0

∫

�

n(r, r′)
|ri − rj| dr dr′. (1.88)

The Hartree and Hartree-Fock approach didn’t account for
correlation. This means that

n(r, r′)= n(r)n(r′) (1.89)

for the Hartree and Hartree-Fock treatments.
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When configuration interaction—correlation—is included,
one may rewrite the pair correlation function in a first order
expansion as

n(r, r′)= n(r)n(r′)
[
1+ α(r, r′)

]
, (1.90)

where α(r, r′) is a correlation parameter that contains correlation’s
consequences. Since an electron at r interacts with N − 1 other
electrons in the r′-space,

∫
n(r, r′)dr′ = N − 1. Therefore, because of

Equation 1.90,
∫

α(r, r′)n(r′) dr′ = − 1. (1.91)

This is the mathematical expression for stating that the electron at r
has an exchange-correlation hole enveloping it. It arises both due to
exchange and due to correlation, and it gives us an intuitive way of
looking at exchange and correlation.
To distinguish exchange’s and correlation’s consequences in

the creation of the hole, consider spin and we can look at what
happens with aligned and anti-aligned spins. These are both
conditions where Equation 1.91 is still valid. If a system had N
electrons composed of N↑ (spin up) and N↓ (spin down) electrons,
the electron at r with up spin will interact with N↑ − 1 of up-spin
electrons and N↓ of down-spin electrons. Therefore, the integral of
Equation 1.91 split up is

∫
α↑↑(r, r′)n↑(r′) dr′ = −1, as before, and

∫
α↑↓(r, r′)n↑(r′) dr′ = 0. (1.92)

An exchange hole exists (with this integral of −1) for the up-spin
electron at r, even with the correlation effect present. And, for inter-
action with electrons of opposite spin—no correlation—the local
screening hole will have to be compensated for by the charge on
the surface of the system so that the second part of Equation 1.92 is
satisfied. At nanoscale, this effect will be of significance.
This discussion suffices for now to indicate that predictive

description of large-N systems, such as solids, will require care. The
energy state, the transitions under perturbations, will relate to the
Hamiltonian description and its solution under the constraints of
the circumstances. Bandstructure—energy states of the electrons—
calculation will require related care. We will return to this calcu-
lation to summarize the different approaches—their salient points
and applicability and limitations—in Chapter 4. Here, we continue
with our discussion of approximation methods and now look at
screening by the mobile charge.
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1.8 Screening

How do we tackle spatial variation in electronic charge? It
exists, since perturbations exist. The simplest type of perturbation
may be a space charge, where electrons will locally rearrange
themselves to minimize the energy of interaction by attempting
to screen the perturbation. A positive space charge will attract,
and a negative space charge will repel. The simple charge-induced
perturbation may be static, but it could also be dynamic if it
arises in an oscillatory phenomenon interacting with the screening
electrons. If the electron states are filled up to some states up in
energy—the Fermi energy of ∼ EF with a Fermi wavevector of kF—
then it is the electrons around the Fermi energy that are most likely
to respond, since both filled and empty states are available around
it. We have now created not only a dynamic condition—depending
on the frequency scale—but also one where the consequences
will be felt nonlocally, as the electrons at Fermi energy provide
an oscillatory response. All these interactions will be mediated
by permittivity, and which kind—static, intermediate or high
frequency—will depend on the conditions of perturbation. A few
remarks on the screening are therefore in order to understand how
the particles moving around in the crystal respond.

The permittivity reflects the medium’s
ability to withstand the applied
electric field as represented by
displacement, or equivalently,
polarization. In vacuum, this is
quite clear. ε = ε0, which does not
depend on the frequency of the
applied electromagnetic stimulus. In
an atom, isolated in vacuum, when
determining the orbitals, et cetera,
without stimulus, it is again this ε = ε0.
Apply an electric field, and the atom
responds by polarizing—slightly or
significantly—and the response is
concentrated in the outer orbitals,
with electrons in the core orbitals
shielded by the valence. Now, the
permittivity needs some care and
thought. In a semiconductor, the
electrons or their anti-quasiparticle
hole, sample the environment of
the crystal. The binding energy, that
is, the ionization energy of donors
and acceptors (shallow hydrogenic)
now must be the permittivity of the
crystal. And it is the static permittivity,
since this particle’s binding exists
in an unstimulated environment.
Place the donor under very confined
conditions in the semiconductor,
and the permittivity must account
for the change of the environment.
In an unconfined crystal, the
permittivity will change as a function
of frequency, since the medium’s
response is changing. If the nearly
free electron and an electromagnetic
stimulus are interacting in the crystal
environment, then this interaction
will need to account for the frequency
dependences and the time extent
of the interaction, where phonons
may also be important. We tackle
this later. If an electromagnetic signal
causes an electron transition from
within the core, then, due to where it
is from and the rapidity with which
the change takes place up in the atom’s
higher orbitals—still localized—
the permittivity is still free space
permittivity. But, an excited electron
localized at an atom relaxing into
a delocalized state in the crystal
environment will now need a more
complicated permittivity analysis.
So, use permittivity with care. The
solution is generalizable. In electrical
engineering texts, it appears as a
question of how electrons screen a
potential disturbance, that is, a field,
such as when the jellium of

1.8.1 Debye-Hückel and Thomas-Fermi screening

The static screening problem—largely an electronic many-
body problem with electrons interacting with fields arising from
other charges—goes back to Debye and Hückel, who explored it
for the case of electrons interacting with other electrons. Figure 1.1
was an example showing an electron with the exclusion zone due to
correlation around it arising from Coulomb repulsion. This picture
can be seen—within the jellium approximation—as an illustration of
Debye-Hückel screening.
The Poisson equation, with an electron located at r0, a charge

distribution due to electrons of −en(r, r0), and a uniform positive
neutralizing background of concentration en (the ionic jellium), is

∇2V(r) = −1
ε

[
−e2δ(r − r0) − e2n(r − r0) + e2n

]
, (1.93)

where V is the electrostatic potential. To include the correlation
effect, we write the pair correlation function g(r|r0)= n(r|r0)/n0.
This function gives the probability of finding an electron at r, given
that there is another electron at r0. This pair distribution function
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vanishes at r = r0, that is, the probability of an electron vanishes, positive charge is uncovered. Edges of
transition region are an example. So
is the case where suddenly one has a
sudden change in doping.

Appendix E and F have a short
primer on thermodynamics and the
statistical implications reflected in the
distributions functions. A Boltzmann
distribution will be a reasonable
approximation where classical
conditions are a good description.
Electron description in non-degenerate
semiconductor conditions is one
example, even if electrons are quantum
particles, and this quantum aspect is
very necessary in describing the nature
of their states in the semiconductor.
Boltzmann distribution works pretty
well here, since a deep potential also
increases the probability of finding a
particle there. The exponential arrives
from the phase space.

and it asymptotes to 1 at infinity. We now rewrite this equation as

∇2V(r)= − e2

ε

{
δ(r − r0) + n

[
g(r|r0) − 1

]}
. (1.94)

We need to find the pair correlation function that solves this many-
body simplified problem. This is possible at many different levels
of accuracy. The equation as written holds true whether we need to
include quantum constraints or not for physical charged particles.
The quantum character of electrons introduces just additional
non-triviality.

Debye (Petrus Josephys Wilhemlmus
Debije) is being given top billing.
Electrical engineering’s semiconductor
device literature, with atoms as an
afterthought except in reliability or
processing discussions, largely ignores
Hückel. Hückel, of course, finds a
pride of place in chemistry. So does
Debye, whom we first encounter
through the Debye model for the
low-frequency phonon contribution
to specific heat, but which is only one
of many significant contributions.
He was Sommerfeld’s student before
Sommerfeld’s Munich period. As
with many of the European scientists
who came of age in the pre-war years,
there exists considerable tension and
ambivalence in matters of life where
science and society intersect. Debye
became the head of the Kaiser-Wilhelm
Institute in Berlin when Einstein left
for the USA in the 1930s, and Debye
himself moved to the USA just before
the Second World War. He was the
head of the Deutsche Physikalische
Gesellschaft (the German physical
society) from 1937 to 1939 and was
among those who helped Lise Meitner
escape, but one can also find letters
that pay obeisance to powers that be,
which in this case was Adolf Hitler,
and an untenable situation brought
on by his daughter’s decision to
stay back in Germany. Even Fermi
was a member of the Fascist party.

First, consider non-quantum classical conditions. The Boltz-
mann distribution applies. At very small r referenced to r0, this
approximation will fail, but, at far enough distances where one may
linearize the correlation function (a Poisson-Boltzmann function) of

g(r)= gPB(r) = exp
[
−V(r)

kBT

]
, (1.95)

the solution will be quite accurate. Here, the position of pertur-
bation at r0 is implicitly understood. With the linearization, the
Poisson equation reduces to

∇2V(r) = − e2

ε
δ(r) + ne2

εkBT
V(r), (1.96)

whose solution is

V(r)= e2

4πεr
exp

(
− r

λDH

)
, (1.97)

a form similar to that of the Yukawa potential encountered with
massive bosons and is the static and spherically symmetric solution
of the Klein-Gordon equation.

λDH =
(

εkBT
ne2

)1/2
=λD (1.98)

is the Debye-Hückel or just plain Debye screening length. This
approximation is a linear screening approximation from that
Boltzmann expression.
Now assume that the linearization is acceptable, but pair

correlation as employed is not. We should still be able to use the
thermal equilibrium condition, which brings about the equilibration
of electrochemical potential. Electrostatic potential and chemical
potential compensate each other. So, now, we have a screening
length that is

λscr =
[
ε (∂EF/∂n) |T

e2

]1/2
. (1.99)
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If the conditions are degenerate, and a Fermi gas description is To paraphrase the great English
mathematician, George Hardy,
from his essay  ̏Amathematician’s
apology,˝ pure mathematics is the
most beautiful mathematics, since it
has no usefulness. And it is because
of this very uselessness that the
pursuit of pure mathematics cannot be
misused to cause harm.

more appropriate, then we obtain the Thomas-Fermi screening
length of

λTF =
(
2εEF

3ne2

)1/2
, (1.100)

for three-dimensional conditions, since, in degenerate conditions,
EF ∝ n2/3.
Figure 1.10 shows the magnitude of the screening length scale

in Si as a function of the carrier concentration. At small carrier
concentrations, the electrons are tens of nm or even more distant
from the potential disturbance. At 1017 cm−3 carrier concentration,
this screening length is of the order of 10 nm, and it is in the
Debye-Hückel limit. As the semiconductor becomes degenerate (the
effective density of states Nc ≈ 2.8×1019 cm−3 at room temperature),
gradually, with degeneracy, the screening length scale bends over
to the Thomas-Fermi limit. At the highest concentrations possible
in Si, this screening length scale is a fair fraction of a nm, so spread
over several atom spacings.

Figure 1.10: Electron screening length
in Si at 300 K as a function of carrier
concentration. The screening length
scale can span over 100s of nm in the
Debye-Hückel limit to sub-nm in the
Thomas-Fermi limit.

1.8.2 Static versus dynamic screening, and a note on permittivity

Interactions can be slow and fast. How screening will
happen will depend very much on the pace of this interaction. A
spatially fixed charge with electrons around it screening the pertur-
bation is a static perturbation. The permittivity mediates it, and the
electrons screen, present in these surroundings, through the static
dielectric response. The Debye and Thomas-Fermi screening are very
applicable to such static circumstances, and it is the static dielectric constant
that is applicable. There are, however, circumstances where this will
need modification. An electron in a confined condition, that is, with
surrounding potential barriers that keep it in narrow atomic-scale
regions, also feels the barrier and its behavior is not that of the
electron in a crystalline surrounding of long-range periodicity. Its
probability densities have changed, as have the state description
and the energy and the wavevectors. The permittivity will change
and needs to account for the change of the surroundings at such
small dimensions, just as the eigenfuction description changes,
leading to changes in energies and even the applicability of the
mass assigned to the state of the electron.
Interactions can also be fast. Consider the absorption of phonons

representing the quantization of crystal vibrations. A phonon energy
of 50 meV is a 10 THz oscillating quantum. Since the time lengths of
interactions at any energy change of �E also has time interaction
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of h̄/�E, that optical phonon interaction time is 100 fs. These The reader might wish to ponder
why this term is called permittivity,
or, for that matter, the origin of the
word  ̏displacement,˝ in these field
relationships. Permittivity, tied to
the nature of the polar character of
electrical fields, is a negpermittivity.
A higher permittivity, arising with
higher polarization, reduces electric
field.

are dynamic conditions, and the permittivity, which reflects the
medium’s permission to allow electrical changes to take place, will
also have a frequency dependence. It is clear from this argument
that screening’s mediation in the interaction will be influenced
by permittivity, which depends on the polarization response of
the medium and the extent of the medium interacting, and all
these changes occurring simultaneously will need to be reconciled.
Polarization arises in many sources, electrons are moving around
and respond to the fields, and an oscillating field causes the charge
cloud to respond too by oscillating under forced conditions. These
are plasmons affecting the permittivity locally. Under certain
conditions, there will also exist long-range consequences spatially.
Vibrating atoms—ion and charge with their different inertia—also
respond, and this leads to an ionic response. So, the general nature
of the permittivity is to drop with increasing frequency. There
are, however, regions in between where resonances in the forcing
function’s frequency and the polarizing response may cause large-
scale changes of increase or decrease either side of the resonance. In
these situations, we will have to modify substantially the nature of
screening—as in the Debye or Thomas-Fermi static interpretation—
and incorporate the permittivity’s behavior at high frequency, even
as there is a background asymptotic behavior that is incorporated in
the static response.
There is one other aspect of permittivity and electrons that needs

emphasis in a Hamiltonian and perturbation discussion related
to the conditions in time and environment that the mathematical
description must account for. It is related to the time scale of
rapidity of the interaction. An example is the absorption of light in
a semiconductor with an electron moving from the valence band—a
bonding-based quasi-continuum—to the conduction band—an
antibonding quasi-continuum. The electron occupies states of these
quasi-continuums that are defined by the electron’s environment
of being in the midst of this bonded collective of atoms. This
forces its E(k) dispersion, but the electron that transitions has
changed states defined by the crystal because of the interaction
with the photon, by absorbing the energy and the vanishingly
small momentum. The crystal here is only a phase space locale
for the states. The photon-electron interaction happens with the
electron’s free space mass, while the states reflect the effective
mass that reflects the E(k) dispersion. This argument also holds
for the photon processes where phonons—the quantized atomic
vibrations—are also involved as in indirect bandgap materials.
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A different—and yet analogous—circumstance is when an
electron confined very locally in an impurity that is not shallow—
a deep level—has an electron move from one energy state to
another energy state, while still remaining confined. An example
is a Au2+ �→ Au3+ + e− transition. The electron was in a local
state, not spread out over the crystal. It was confined to the atom.
The electron mass relevant in the description here is the free space
mass, and the permittivity is free space permittivity. On the other
hand, if the impurity is a shallow hydrogenic state, that is, a few
meV separated from other conducting states, with properties very
similar to that of the host crystal atoms that gave rise to those
conducting states, then the electron really feels its presence in
the crystal. It is not that localized, and an effective mass of the
crystal, and a permittivity of the crystal, will be a more apt set of
parameters. Now, one can imagine potential impurities and defects,
where the behavior may very well be in between—neither entirely
localized nor entirely delocalized—and one may have to use either
an interpolation or a more rigorous description.
This dynamic behavior of permittivity and of electrons, in a

large-gap material, is more easily deconvolved. If permittivity
changes are arising due to plasmonic response—the response of
the charge cloud—then the plasmons can be incorporated into the
electron-phonon scattering through an effective treatment of the
dynamic screening. In large-gap materials, there is just one of the
bands contributing to the conducting carriers that one needs to
worry about. This treatment will also have to change when one
confines carriers to a plane or to a quantum wire, because carriers
are not free to move in all the directions for screening. Graphene is
a zero bandgap material. Now this dynamic screening for electron-
phonon scattering will become considerably more complicated.

1.9 Summary

This chapter was an introduction to several of the common
principles, techniques and approximations that will be employed
throughout the text, with an emphasis on their implications, context
and physical meaning so that we may employ them with due care
and restraint. In this approach, our quantum view, its emergence
into the classical view under many of the natural world’s sizes—in
dimensions as well as the number of participating entities and their
interactions—and others such as the statistical and informational
views, all have an important role. This last theme—of information—
will be deployed in Chapter 2, where we also bring in thoughts
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from statistical mechanics, which itself is spread throughout the
text, toward understanding two of the most important pervasive
themes in any study of natural phenomena: those of entropy and
energy. The present chapter particularly stressed the quantum
underpinnings toward understanding statics and dynamics at the
quantum scale, with emphasis on many particles coming together in
an ensemble, be it an atom, a molecule or an atomic assembly, and
the methods for solving the Hamiltonians; that is, the energetics.

Understanding the energetics of multiparticle systems is essen-
tial to developing an understanding of the properties during
interactions that define the internal properties and response of a
semiconductor. Much skepticism, care and understanding—not just

Understanding is an internalization—
deeper than knowing, being aware of or
other, similar terms. Approximation
and model usage requires
understanding and skepticism. In
this, it is no different than in the
populated world around us, where
much marketing, manipulation and
myth building abounds. Take history.
The New Testament is so different
from the Old Testament. In India, a
different narration around Rama, a
revered godly king, brings out violence
and McCarthyism. Passage of time
or distant lands is not necessary for
creating mythologies. Take a statistic
from the Second World War of the 20th
century.

Major Innocent
event deaths

Stalin
Russian

6–7× 106famine

Hitler
Death

2.8× 106camps

Tôjô
East

2.4–4.0× 106Indies

Churchill
Bengal

2.5–5.5× 106famine

Truman
Atom

0.13–0.22× 106bomb

Stalin cannot be criticized in Russia,
neither can Churchill in the West.
The Soviet state’s industrial and
poor folks’ transformation, as well
as the war’s transformational fight,
is Stalin’s contribution. Churchill’s is
his steadfastness in the war. Stalin’s
was the brutal killing of innocents in
his home country. Churchill’s was a
tribal and racist view of freedom—
WoodrowWilson-like—as a white
European prerogative. Even de Gaulle
of France marched right back into
Indochina, culminating in the Vietnam
War. Narratives should always be
looked at with caution. Stalin and
Churchill stood up for their lands,
and for that both should be lauded,
but not worshipped. Indians still
remember that, for the false promise
of freedom, nearly 75, 000 young
men fell even in the First World War
and have been forgotten, several
during Churchill’s Gallipoli folly.
No site marks the forced fighters—
the unknown soldiers—of the third
world, even as a famous Western
journalist declares himself and his kin
the greatest generation. It turns out the

grasping the ideas—is important for prudent use, treatment and
reaching a result that holds validity over a range of conditions. As
an introductory chapter integrating partly the material that students
will need to learn and the outlines of the underlying physical
principles and techniques that will be employed throughout this
text, we started with a discussion of Hamiltonians and Lagrangians
as functional tools for unraveling the energetics. We sketched
the broader nature of the Hamiltonian description of electrons
and atoms in an assembly such as a metal, a semiconductor or a
molecule, and then reduced it to the problem of understanding the
electrons’ interactions. Before embarking on the approximate solu-
tion techniques of this problem, we segued into the different per-
turbation approaches that are sprinkled throughout the text, since
problems in general, and certainly the many-body problems, cannot
usually be exactly solved. But the solutions can be approached via
perturbation techniques. We illustrated the first order perturbation
approach and applied it to both a time-dependent and a space-
dependent perturbation. The former was useful in showing the
Golden rule and the limits of its applicability. The latter was useful
in illustrating scattering’s quantum-mechanical origin and its
classical fitting. Another important approximation technique was
the use of the adiabatic or Born-Oppenheimer approximation,
and, through it, the approach to situations where fast and slow
phenomena interact. The adiabatic approximation is very important
to calculating phonon-based; that is, atomic movement-based
interactions with those of electrons. The former are slow, and the
latter are fast. Energies may exist in multiple modalities—atomic
bonding and vibrational and electronic kinetics, for example—and
we outlined how a configuration coordinate diagram lets us see the
slow and fast together in this energy transformation.
At this point, we returned back to solving the multiple electron

problem to bring out the nature of many-body interactions. The
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Hartree approximation is one where only Coulomb interaction is
tackled and the electron as a point particle is a secondary thought
in what is essentially a classical calculation. That the electron is a
quantum particle—a fermion—and therefore requires a different
wavefunction under exchange was brought in through the use
of the Slater determinant and the evolution to a Hartree-Fock
approximation. Exchange interaction is the result of Coulomb inter-
actions between the electrons under the quantum constraints from
spin. The Coulomb interaction becomes spin dependent under the
constraint that the wavefunction of any pair of electrons must be
antisymmetric with respect to any interchange of spatial coordinates
and spins. When spins are parallel, the coordinate part must be
antisymmetric. So, parallel spin pairing reduces the probability of
two electrons of being spatially close, compared to the probability
when possessing antiparallel spin. Parallel spin electrons, when
more separated in space, have less repulsion and this lowers the

man was also a sexual predator. This
is the difference between  ̏getting it˝
and  ̏understanding it,˝ where using
the learning to solving a general—and
not special—problem matters. Use of
approximations and models requires
tremendous care.

energy of electrostatic interaction. Spin and orbit also interact,
and this we will look at carefully in our discussion of valence
bandstructure as well as defect-mediated point perturbations. In
situations where the spin-orbit energetics is important, the velocity,
as well as the structure of the wavefunction solution in a crystal
assembly, which leads to the description of the motion of electrons
on the atomic scale, affects the interaction and the electron g factor. The g factor should be distinguished

from the gyromagnetic ratio, which is
the ratio of the magnetic moment
to the angular momentum. g is
dimensionless. The electron has
charge and spin, but it is not quite
appropriate to view it as an object with
literal rotation about an axis. The g
factor is the dimensionless number
that modifies the gyromagnetic ratio as
determined by the classical definition.

We ignore nuclear spins, since nuclear magnetic moment is small
(∼2000× smaller) than that of an electron, and its consequences
are through perturbations in semiconductors where spin-dependent
transport and other phenomena are important.
The final and very important, particularly so for nanoscale,

interaction is that of correlation. An electron does not interact
with itself. It only interacts with others. So, accounting for an
electron in a Hamiltonian in the middle of other electrons is

Spin-dependent transport is an
important subject area for devices
and is discussed in depth in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

complex. If we take the electron away, it is a different problem.
If we place the electron in, then it is also a different problem,
since now the other electrons are responding to the presence of
this electron. Mean field, as in the first case, is not representative
completely, since the presence of the electron matters in the
arrangements of others. Neither is the latter, since what the true
energy picture needs is the arrangement of electrons where this
electron takes into account exchange and correlation. Two spin-up
electrons cannot be present simultaneously in identical space, but
electrons with opposite spins can. The spin-up second electron has
vanishing presence, while the spin-down electron’s presence has
been accentuated. The first has a hole, while the second formed a
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mound. This configuration also needs to be accounted for, and we
outlined how one may do this approximately.
Another important analytic theme related to how these electrons

are behaving in the solid is how they self-consistently respond to
the created conditions. Electrons screen because of the Coulomb
interaction, but under all the rest of the constraints that we just
discussed. If the perturbation is static, and the electron population
small—non-degenerate—then the Debye-Hückel, or Debye, for
short, length scale suffices in how the potential perturbation
is screened. If it is large and degeneracy prevails, we observed
Thomas-Fermi screening. These will all be mediated by static
permittivity. And if it is a rapid perturbation, we must also bring
dynamic permittivity: the high-frequency aspects of the electronic
or ionic or other polarization responses. And, into this, one must
also take into account the nature of the behavior of the electron.
Is it feeling this polarization environment or not? So, both the
permittivity and the mass must reflect the realities of the dynamic
perturbation.

1.10 Concluding remarks and bibliographic notes

This chapter was an introduction to several of the common
techniques, principles and approximations that will be employed
throughout the text, with an emphasis on their implications, context
and physical meaning, so that we may employ them with due care
and restraint. Solid state has a longer history and wider context
than the subject of semiconductors, and the objective here was to
introduce a few of the main techniques and the scope of the nature
of the techniques that are particularly important for semiconductors.
Solid state has been the subject of numerous texts. A number

of books have been standard bearers; historically, first and before
all, are the conceptual and analytic discussions by Ziman. The
first1 is a very readable discussion at the senior undergraduate

1 J. M. Ziman,  ̏Electrons and
phonons,˝ Oxford (1960)

level, with an emphasis on scattering and transport as well as a
semiconductor bent. The second2, although it has much in common

2 J. M. Ziman,  ̏Principles of the
theory of solids,˝ Cambridge, ISBN
0-521-29733-8 (1964)

with the first book, has a more diverse treatment toward solid
state, with magnetism, ferroelectricity and superconductivity as the
ending points. This book is now in its second edition, having been
revised in the early 1970s. Both of these books are worth reading so
many decades after their writing. Another text, from the same time
period—well, a little earlier—is the text by Peierls3, which too has 3 R. E. Peierls,  ̏Quantum theory of

solids,˝ Oxford, ISBN 19-850781-X
(1955)

a treatment of phenomena from electrical and thermal conductivity,
working from the behavior of electrons and phonons and ending in
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broader solid-state topics as they were understood during that time
period. A more advanced treatment from this period is the book by
Pines4. This is a mathematically detailed text. One additional book

4 D. Pines,  ̏Elementary excitations in
solids,˝ Perseus, ISBN 0-7382-0115-4
(1999)

very worthy of note, similar to Pines in its advanced treatment, is
by Kittel5. Both Pines’ and Kittel’s first editions appeared in 1963. 5 C. Kittel,  ̏Quantum theory

of solids,˝ John Wiley, ISBN
0-471-62412-8 (1987)

I reference these books since they have stood the test of time and
are worth reading to get a perspective, from quite different ways
of looking, by many of the luminaries of the early days of the
marriage of quantum and the solid state.
A set of solid-state texts that have established themselves as

standard texts in the undergraduate and early graduate curricula
around the world, from this side of the Atlantic, are those of
Kittel6, whose first edition appeared in 1963, and Ashcroft and

6 C. Kittel,  ̏Introduction to solid
state physics ,˝ Wiley, ISBN 13 978-
0471415268 (2004)

Mermin7, whose first edition appeared in 1976. They are different
7 N. Ashcroft and D. Mermin,  ̏Solid
state physics,˝ Saunders, ISBN 13
978-0030839931 (2003)in style from each other, but both have a very carefully and clearly

written exposition.
Quantum mechanics is a subject with an even vaster collection

of texts. Two that have become standards are one at the introduc-
tory level, by Griffiths8, and one that is a little more advanced

8 D. J. Griffiths,  ̏Introduction to
quantum mechanics,˝ Pearson, ISBN
0-13-191175-9 (2005)

(intermediate), by Sakurai9, both of which have gone through 9 J. J. Sakurai,  ̏Modern quantum
mechanics,˝ Addison-Wesley, ISBN
0-201-53929-2 (1967)

several incarnations. These texts are quite lucid in their exposition
of the perturbation theory, the Golden rule, and the Golden rule’s
limitations. A mathematically sophisticated treatment is in the
series of books by Landau and Lifshitz, which all physics students
have since they encompass much of the formalism of physics
through the 1960s. The volume devoted to quantum mechanics10 is

10 L. D. Landau and E. M. Lifshitz,
 ̏Quantum mechanics,˝ Butterworth-
Heinemann, ISBN 13 978-0750635394
(2003)

a translation by J. B. Sykes and J. S. Bell. Any book that Bell spent
time translating has to stand head and shoulders above the rest.
Elsewhere, Bell also likes the text by Gottfried11, whose first edition 11 K. S. Gottfried,  ̏Quantum

mechanics,˝ ISBN 0-387- 95576-3,
Springer (2003)

is from 1966 and whose copy at CERN Bell found very well worn,
and worth discussing in a work entitled Speakables and unspeakables
in quantum mechanics, a subject that Bell had much to contribute to
through his Bell inequalities that are so illuminating.
A book from the early times with an excellent discussion of

the finer points embedded within the formulation of quantum
mechanics and its application to the description of solids is the
book by Slater12. Another book mixing solid-state and quantum 12 J. C. Slater,  ̏Quantum theory of

atomic structure,˝ 1, McGraw-Hill
(1960)

matters and which is a favorite of mine for its lucidity, a stronger
bending toward semiconductors, and restrained and yet thorough
discussions is the one by Harrison13. 13 W. Harrison,  ̏Sold state theory,˝

Dover, ISBN 0-486-63948-7 (1979)There are a few additional books that are quite representative
of the physical intuition necessary in this transition from our
observational classical thinking to the reality of the quantum-
mechanical.
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Dyakanov14 discusses the different spin-based issues that appear 14 M. I. Dyakanov,  ̏Spin physics
in semiconductors,˝ Springer, ISBN
978-3-540-78819-5 (2008)

in semiconductors. Spin has consequences through the Pauli
principle and through exchange interactions. In semiconductors, the
major manifestations include the spin-orbit interaction and the role
it plays in optical transitions.
Hartree, Hartree-Fock and correlations have occupied consid-

erable space in the discussion of this chapter, since these really
represent the major collection of ways that we treat a multi-electron
assembly, and, as the ensembles get smaller, from nanoscale to a
molecule, the consequences as the quantum nature manifests itself
in different pronounced ways. A good book for this discussion
is the one by Delerue and Lannoo15. It discusses the general 15 C. Delerue and M. Lannoo,

 ̏Nanostructures,˝ Springer, ISBN
3-540-20694-9 (2004)

modeling techniques, their usage in quantum-confined systems
and the variety of properties that result. Its early exposition is
quite close to the several points we have emphasized, but it goes
quite a bit beyond. Another good text for understanding the
Hartree-correlation spectrum of subjects is the text by Kohanoff16. 16 J. J. Kohanoff,  ̏Electronic structure

calculations for solids and molecules,˝
ISBN 13 978-0521815918, Cambridge
(2006)

It develops the subject all the way through to density functional
theory and Car-Parrinello techniques that we did not dwell on.
Density functional theory will appear in a minor form in the
discussion of bandstructures (Chapter 4).

1.11 Exercises

1. The Maxwell’s equations can be transformed into a simpler group
under source-free free space conditions; that is, with J = 0, ρ = 0,
D = ε0E , B =μ0H and 1/c2 =μ0ε0. For this simplified free space
source-free form,

General form �→ Source free and free space form,

∇ · D =ρ �→ ∇ · E = 0,

∇ · B = 0 �→ ∇ · B = 0,

∇ × E = − ∂B
∂t

�→ ∇ × E = − ∂B
∂t
, and

∇ × H = J + ∂D
∂t

�→ ∇ × B = 1
c2

∂E
∂t
.

The Lagrangian function for the free space problem is

L = 1
2
ε0E2 − 1

2
μ0H2 = 1

2
ε0E2 − 1

2μ0
B2.

Show that, in the presence of external sources ρ and J, and a
generalized medium, the Lagrangian function has the form
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L = 1
2
εE2 − 1

2
μH2 + αρφ + βJ · A.

Find α and β so that Euler-Lagrange equations reproduce the
Maxwell’s equations in the presence of sources. [M]

See Appendix D for a broader
discussion of the Lagrangians and
variational methods.

2. Consider a Hamiltonian operator Ĥ that has discrete eigenval-
ues. It is also Hermitian, so

〈ψ |Ĥ |φ〉= 〈φ|Ĥ |ψ〉∗

by definition. Show that
• the eigenvalues for this Hamiltonian are real, and that

• the eigenfunctions of Ĥ that correspond to different eigenval-
ues must be orthogonal to each other. [S]

Figure 1.11: Multiple transmissions
and reflections at a potential barrier,
leading to net transmission and
reflection.

3. This problem is to emphasize the power of the Golden rule,
and a view of scattering that we mentioned but did not discuss
in much detail—one that is particularly apropos of nanoscale
devices with a finite and low number of scattering events, and
also in mesoscopic transport. We will look at transmission and
reflection at a barrier, the working example of which is shown in
Figure 1.11, by two methods. We consider just a one-dimensional
structure where waves transmit or reflect back, here due to an
incident wave, exp(ikiz). One can look at the net effect of the
transmitted wave tB exp(ikiz) and the reflected wave rB exp(ikiz)
as arising from multiple transmissions and reflections as the
wave rattles back and forth between the two non-adiabatic
discontinuities—the net effect being a convergent series, as shown
in the figure. Show that the transmission coefficient TB and the
reflection coefficient RB arising from the barrier can be written as

TB = |tB|2 = T 2

1+ R2 − 2R cos(2k2d)
,

RB = |rB|2 = 2R − 2R cos(2k2d)

1+ R2 − 2R cos(2k2d)
,

which add to unity and where T and R are the transmission and
reflection coefficients for individual step. Now use the Golden
rule to calculate RB and compare with this result, remarking on The barrier is a perturbation!

the conditions under which the two are in accord. [S]

4. For a system of particles of mass m in state ψ , the particle flux
(number per unit time per unit perpendicular-to-motion area) is
given by

S = h̄
2im

(
ψ∗∇ψ − ψ∇ψ∗) .
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• Show the validity of this expression, starting from the momen-
tum operator, and

This is how current (both quantum-
mechanical tunneling and normal)
can be calculated across a potential
barrier. This problem shows that the
correspondence principle holds here
(quantum-mechanical expressions
reducing to classical ones in the
asymptotic limit).

• show that, in the classical limit—a beam of free particles at
velocity v—the one-dimensional expression gives

S = v × particle density. [S]

5. Following Appendix E, show that, for bosons with
Ek = h̄2k2/2m—the classical limit from quantum with h̄ → 1—
that the chemical potential μ is always negative. [S]

6. Again, following Appendix E, find the asymptotic behavior of
the chemical potential as a function of temperature (μ(T)) and
show that the distribution function reduces to the Boltzmann
distribution as T → ∞. [S]

7. If the energy of all configurations is the same, show that the
entropy as arrived at in Appendix E is equal to the logarithm of
the number of configurations. [S]

8. Again, following Appendix E, show that a boson gas with n
particles in state |k〉 will have an entropy of

S = − kB
∑

k

[nk ln nk − (1+ nk) ln(1+ nk)] ,

and that, for fermion gas, it will be

S = − kB
∑

k

[nk ln nk − (1− nk) ln(1− nk)] . [S]

9. The notions of Appendix E can also be applied to photons as
bosons. Does a collection of photons—as a gas—have entropy?
In thermodynamic equilibrium, as in blackbody radiation, what is
the chemical potential of a photon? [M]

10. Let us make some order of magnitude energy estimates based
on quasi-classical-quantum fitting to see the adiabatic approx-
imation’s use. We explore the situation of the applicability of
electrons not undergoing transitions between stationary states.
Take a molecular system. Such a system will have three different
types of motion: electronic, nuclear vibration and rotation.
If a is an interatomic distance, it is a length scale for electron
movement, so Ee ≈ h̄2/2ma2 is an electronic energy scale. Estimate
this for a = 0.1 nm. The nuclear motion, vibrational, has an
energy estimate of Evib = h̄ωq. Amass M, moving a distance a
at a frequency ωq, has an energy of ∼ Mω2

qa2. Such a motion—
of distance a—would remove the atom from the molecule. It is
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bond-breaking energy, since chemical bonding is the binding of
atoms as molecules through shared electrons. So, it is of the same
order as Ee, that is, Ee ≈ Mω2

qa2. Hence, Evib = h̄ωq ≈ √
m/MEe.

Rotation, being related to angular momentum, is quantized by
the action h̄. So, if I is the inertia, and L the angular momentum,
then the rotational energy is Er = L2/I ≈ h̄2/Ma2 = (m/M)Ee. The
energies are related as Er ≈ κ2Ev ≈ κ4Ee. Take the example of
an N2 molecule and estimate these energies, that is, the binding
energy of electron in the atom, the vibrational excitation energy
and the rotational energy separation. [S]

11. This problem is an exploration of the Slater determinant in search
of its hidden secrets. We have seen that an n-electron Schrödinger
equation became separable in position ri if the potential energies
could also be separated in the spatial coordinates, so, with

V(r1, . . . , rn)=
n∑

i=1
V(ri),

the eigenfunction of Equation 1.8 becomes

|ψ(r1, . . . , rn)〉=
n∏

i=1
|ui(ri)〉, and E =

n∑

i=1
Ei,

where |ui〉 satisfies the one-independent-electron Schrödinger
equation

[

− h̄2

2m0
∇ri + V(ri)

]

|ui〉= Ei|ui〉.

The Slater determinant incorporates the antisymmetry dictated
by Pauli exclusion. This Hamiltonian does not operate on the spin
coordinate σ of the electron. So, when we write

|ui(ri,σ i)〉 = |uiσ (τ i)〉= ui(ri)ξ i(σ i),

this Pauli-conditioned form also satisfies the Hamiltonian. This
form, where we now have

|ψσ (τ )〉=
N∏

i=1
|uiσ (τ i)〉,

is this solution, using the same argument of product in the
independent electron approximation. These can be written as
determinants of all possible configurations

|�〉= A

∣∣∣∣∣∣∣∣∣∣

|u1σ (τ 1)〉 · · · |u1σ (τN)〉
|u2σ (τ 1)〉 · · · |u2σ (τN)〉

...
...

...
|uNσ (τ 1)〉 · · · |uNσ (τN)〉

∣∣∣∣∣∣∣∣∣∣

.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 1: hamiltonians and solution techniques 55

Show that, with |ui〉 orthogonal, a normalized |ψ〉 requires that
A= 1/

√
N!. [M]

12. To understand the implication of spin and Pauli exclusion,
another exercise of interest is reworking our interpretation of
the singlet and triplet construction for the hydrogen molecule.
Let A and B be the atoms, and 1 and 2 the coordinates of the
electrons. Using |uA〉 and |uB〉 as the basis orbital functions for
trial functions,

|ψ s〉 = |uA(1)〉|uB(2)〉 + |uB(1)〉|uA(2)〉, and

|ψa〉 = |uA(1)〉|uB(2)〉 − |uB(1)〉|uA(2)〉,
where the former is symmetric, and the latter, asymmetric. Now
consider new wavefunctions incorporating spin, |uα〉 and |uβ〉,
and show that these may be written in the form

|ψ〉= [uA(1)uB(2) ± uB(1)uA(2)] ξ(1, 2),

with ξ(1, 2) as the spin functions of the two electrons. If ŝz is an
operator for the z component of the spin of the electron, then

ŝz|uα〉= 1
2
|uα〉, and ŝz|uβ〉= − 1

2
|uβ〉;

lets us then construct the two-electron spin function |ξ(1, 2)〉.
Show that this |ξ 〉 is the eigenfunction of the square of the total
spin (|S|2) with the eigenvalues of 0 or 2. These lead to the Heitler-
London functions |ψ s〉 and |ψa〉 corresponding to the singlet and
the triplet states. [M]

13. Consider an assembly of atoms, subscripted as A and B, so of only
two types. The internuclear repulsion is

∑
A<B ZAZBe2/|RB − RA|.

When solving for the eigenenergy E of the electron, we include
this repulsion energy even if it has internuclear spatial param-
eters. It sets the potential energy in the Schrödinger equation
for nuclear motion. Take a center-of-mass form Schrödinger
formulation for a diatomic molecule at rest. The reduced mass
is μ= MAMB/(MA + MB), and the equation is

[

− h̄2

2μ
∇2

r + V(R)

]

|ψ〉= E|ψ〉,

where R = |RB − RA|, and V is the potential ( ̏mechanical˝)
from the interatomic forces. Let V = (1/2)ks(R − R0)

2, where
R0 is the equilibrium value of internuclear distance, and
ks is a force constant. Find the eigenfunctions |ψn〉 and the
eigenenergies E. [M]


