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Preface

Often people have wondered why there is no introductory text on category theory
aimed at philosophers. The answer is simple: what makes categories interesting and
significant is their specific use for specific purposes. These uses and purposes, however,
vary over many areas, both “pure’, e.g., mathematical, foundational, and logical, and
“applied”, e.g., applied to physics, biology, and the nature and structure of mathemat-
ical models.

Borrowing from the title of Saunders Mac Lane’s seminal work Categories for the
Working Mathematician, this book aims to bring the concepts of category theory to
philosophers working in areas ranging from mathematics to proof theory to com-
puter science to ontology, from physics to biology to cognition, from mathematical
modeling to the structure of scientific theories to the structure of the world.

Moreover, it aims to do this in a way that is accessible to a general audience. Each
chapter is written by either a category-theorist or a philosopher working in one of
the represented areas, and in a way that is accessible and is intended to build on the
concepts already familiar to philosophers working in these areas.

As arough and ready characterization, the “pure” chapters (Chapters 1-11) consider
the use of category theory for mathematical, foundational, and logical purposes. I
say “rough and ready” because, along the way, these chapters also investigate the
application of category theory so considered to geometry, arithmetic, physics, and
mathematical knowledge itself. The “applied” chapters (Chapters 12-18) consider the
use of category theory for representational purposes; that is, they investigate using
category theory as a framework for theories of physics and biology, for mathematical
modeling more generally, and for the structure of scientific theories.

Chapter 1, by Colin McLarty, shows the sense in which categorical set theory, or
the Elementary Theory of the Category of Sets (ETCS), grew to meet the varying
needs of mathematical practice, including the analysis of specific problems in both
physics and logic. His aim is to show that what mathematicians know and find useful
about set theory is better captured by ETCS than by philosophers’ typically preferred
Zermelo Fraenkel (ZF) set theory. In Chapter 2, David Corfield argues that the best
way to understand modern geometry, and its historical roots as found in the writings
of Weyl and Cassirer, is via the notion of a homotopy topos and its internal language,
Homotopy Type Theory (HoTT). Along the way, he demonstrates how this framework
leads to new conceptions of space useful for our understanding of both arithmetic and
mathematical physics. In Chapter 3, Michael Shulman provides an argument for taking
Homotopy Type Theory and Univalent Foundations (HoTT/UF) as a new foundation
for both mathematics and logic. Specifically, he uses homotopy theory, including
Voevodsky’s Univalence Axiom, to give the notion of equality a central role, without
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appealing to the often confused set-theoretic notion of isomorphism. In Chapter 4,
Steve Awodey continues this thread by showing the geometric and logical significance
of the Univalence Axiom, viz., that it can be used to capture the mathematical
practice of identifying isomorphic objects. Thus, in so far as philosophically motivated
structural foundations aim to capture objects “up to isomorphism’, this work also aims
to capture the foundational goals of the category-theoretic mathematical structuralist.
Armed with the considerations of technical adequacy and autonomy, in Chapter 5
Michael Ernst takes up the philosophical debate of whether set theory or category
theory is the best candidate for a mathematical foundation. He further develops an
often-neglected aspect of the debates by considering the naturalness and usability of
categorical foundations and further investigates how this might impact our accounts of
both mathematical thinking and mathematical practice. Likewise driven by an attempt
to understand the nature of mathematical knowledge and its relation to the systematic
architecture of mathematics, in Chapter 6, Jean-Pierre Marquis underscores the
foundational role of category-theoretic canonical maps.

Turning to logical considerations, Chapter 7, by John Bell, provides a history of
the development of categorical logic from a topos-theoretic perspective. It covers
both the semantics and syntax of logically formalized systems, including models of
first-order languages, and ends by using the notion of a classifying topos to present
the generic model of a geometic theory. The following Chapter 8, by Jean-Pierre
Marquis, considers the philosophical motivation of Michael Makkai’s First-Order
Logic with Dependent Sorts (FOLDS) and shows the sense in which this can be used
as a foundational framework for presenting abstract mathematical concepts. Kohei
Kishida, in Chapter 9, uses category theory to develop a model theory for modal logic
by focusing on the familiar Stone duality. Specifically, he aims to bring together Kripke
semantics, topological semantics, quantified modal logic, and Lewis counterpart
theory by taking categorical principles as both mathematically and philosophically
unifying. The presentation of categorical proof theory is the focus of Robin Cockett
and Robert Seely’s chapter. Starting with the cut rule as a basic component, they
develop two logical calculi and show how the standard logical features can be added.
Moreover, they consider both the symbolic power and the intuitive appeal of the
use and significance of graphical representations. Samson Abramsky, in Chapter 11,
uses category theory to analyze and frame the notion of contextuality, from within
both a logical and a quantum mechanical domain, with the aim of dealing with those
phenomena “at the borders of paradox” He shows how sheaf-theoretic notions arise
naturally in this analysis, and how they can be used to develop a general structural
theory for contextuality, with extensive applications to quantum information.

Shifting our focus to applications, and continuing to use both category theory and
categorical diagrams for quantum mechanical purposes, in Chapter 12, Bob Coecke
and Aleks Kissinger begin with a process ontology and frame quantum mechanics as a
category-theoretic theory of systems, processes, and their interactions. They then use
this formalism to argue for a compatibility between quantum and relativity theory,
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thus allowing them to recover a notion of causality that can be used to prove the
no-signaling theorem. Concentrating on theories of spacetime, James Weatherall, in
Chapter 13, provides an overview of recent applications of category theory to both
general considerations of the theoretical structure of spacetime theories and particular
claims of the theoretical equivalence of classical field theories, general relativity, and
Yang-Mills theories. Ending the investigation into the application of category theory
to physics, in Chapter 14, Joachim Lambek argues for the use of a six-dimensional
Lorentz category, wherein spacetime, including basic physical quantities, are repres-
ented by six vectors which form the objects of an additive category in which Lorentz
transformations appear as arrows, thus allowing for a unifying account of the structure
of both known and unknown particles. In contrast to typical accounts of biological
and cognitive processes that simply make use of mathematical models borrowed from
physics, in Chapter 15, Andrée Ehresmann uses category theory to present global
dynamical models for living systems. Specifically, she uses category theory to frame a
Memory Evolution System (MES), defined by a hierarchy of “configuration” categories
with partial “transition” functors between them.

Narrowing our investigation to a more general account of the application of category
theory to the structure of both mathematical models and scientific theories, David
Spivak, in Chapter 16, uses category theory to present an account of mathematical
modeling that highlights the relationship between objects, over talk of objects them-
selves, so that mathematical objects themselves are considered as categorical models.
Moving to a more philosophical consideration of the structure of scientific theories, in
Chapter 17, Hans Halvorson and Dimitris Tsementzis argue that a category-theoretic
account of the structure of scientific theories allows us to transcend the syntax-
semantics debate that has encumbered philosophy of science. Finally, in Chapter 18, I
argue that while the structural realist can use category theory as a tool to answer how
we can conceptually speak of relations without relata or structures without objects,
it cannot be used to underpin any ontic structural realist claim that runs from the
structure of a scientific theory to the structure of the world.

Finally, I end this Preface with a short story that might assist the weary, or even
fearful, reader. Years ago, as a graduate student, I attended a category theory conference
in Montreal and was sitting beside Saunders Mac Lane. During one of the talks,
Saunders looked to me and said: “Are you following all of this?” I replied, rather
embarrassed: “No.” There was a slight pause (for effect, 'm sure), and Saunders then
turned with a grin and said: “Neither am I (another pause) and I invented it!” I share
this if only to remind the reader that it’s ok not to follow all of it!

Elaine Landry
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The Roles of Set Theories
in Mathematics

Colin McLarty

This examination consists in specifying topics within mathematics for which
the appropriate branches of logical foundations [L.f.] do or do not contribute to
effective knowledge.

Correspondingly, the demand, accepted (uncritically) in the early days of Lf.,
for foundations of all mathematics, by logical means to boot, is replaced below by
a question: In which areas, if any, of mathematics do such foundations contribute
to effective knowledge?

(Kreisel, 1987, 19)

Like Kreisel (1987), we here do not argue about logical foundations for all mathematics.
We look at how specific set theories in fact advance mathematics. However, Georg
Kreisel's great concern was effective knowledge in the logician’s sense of finding
explicit numerical solutions or at least explicit numerical bounds on solutions to
arithmetic problems. Here I use “effective” in the colloquial sense of widely successful
in producing a desired or intended result, whether or not it is specifically a numerical
solution to an arithmetic problem.

Let me explain because philosophers sometimes miss this topic. I do not ask here
what kind of foundations are necessary in principle, nor what all ideas of sets have been
used for something at some time, nor what might lead to progress in the future. Those
fine questions are not the topic here. This paper addresses set theories in widespread,
currently productive use. Excursuses 1.2.1 and 1.2.2 on the Continuum Hypothesis and
Grothendieck Universes discuss two interesting gray areas where it matters just how
widespread and productive you want it to be

1.1 Overview

No one can be surprised that the role of set theory in mathematics varies with the
kind of mathematics. Topologists and analysts face set-theoretic issues, notably the
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Continuum Hypothesis, which number theorist do not. Some people will be surprised,
and may even object, on hearing different set theories are typical in different parts of
mathematics. Linnebo and Pettigrew (2011) apparently make a counterclaim:

Many textbooks that introduce elementary areas of mathematics, such as algebra, analysis, and
number theory, include an elementary section surveying the elements of set theory, and this is
explicitly orthodox set theory. (249)

But they do not say what they mean by “orthodox”. It is true that textbook set theory
is rarely intuitionistic, predicative, modal, or non-classical in other ways familiar to
philosophers. And in logic texts it is almost always Zermelo Fraenkel set theory, which
philosophers tend to take as orthodox. But texts outside of logic rarely come close to
Zermelo-Fraenkel.

Section 1.2 gives a few reasons why “orthodox set theory” does not per se mean
Zermelo-Fraenkel set theory. Section 1.3 looks at set theory in two standard first year
graduate textbooks: James Munkres’ Topology (2000) and Serge Lang’s Algebra (2005).!
Italso looks at the recent article by mathematician Tom Leinster (2014). All support the
claim that mathematicians know and use the concepts and axioms of the Elementary
Theory of the Category of Sets (ETCS), often without knowing or caring that they are
the ETCS axioms.

Section 1.4 uses a concept of “mathematical gauge invariance” to show why the
category of sets described in ETCS is a closer fit to the practical needs of most math-
ematicians than is the cumulative hierarchy of sets described in ZFC. For example,
philosophers of science may suspect that nothing in mathematical practice depends
on solving the multiple reduction problem of whether the number 2 is the ZFC set
{{op}} or the set {¢, {¢p}}, or some other set. Few mathematicians have ever heard of
this alleged problem.

Mathematicians do constantly meet a similar problem: take the tangent bundle
T(M) of a manifold M as a geometric example. Spivak (1999, ch. 3) gives three
quite different geometric constructions starting from M. The three give naturally
isomorphic results, any one of which will be used as “the” tangent bundle T'(M)
of M for some purposes. Let me stress: the results are not just different sets when
formalized in ZFC. They rely on different aspects of geometry. So the difference
between them matters in geometry. Geometers daily rely on nontrivial theorems
showing the results are isomorphic, which is why Spivak spends a chapter on the
definitions and the proofs.

For this and many other reasons geometers have developed agile, rigorous tech-
niques for handling spaces that are only defined up to isomorphism. Most fields of

1" Some may object that I only consider two cases. They are influential books, and McLarty (2008a) and
(2012) discuss several more. But really that objection gets things backwards because no matter how many
books I cite not using Zermelo-Fraenkel theory with choice (hereafter ZFC) one could suspect I left out
scores more that do. Rather, philosophers who believe many mathematics texts use ZFC should specify at
least a few and show how those use ZFC any more than Munkres (2000) does.
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mathematics rely on such techniques . These are not the techniques of philosophical
structuralism! They are categorical and functorial techniques. ETCS was created from
these same techniques.

Section 1.5 describes the positive uses of the extra structure of an iterated hierarchy
which is assumed for ZFC sets, and compares it to the yet further structure of
constructibility. Constructibility in this sense was introduced by Godel (1939, 577) as
“a new axiom [which] seems to give a natural completion of the axioms of set theory”
and which implies the Continuum Hypothesis. Today constructibility is assumed in
most uses of set theories adapted to arithmetic. But it is incompatible with most kinds
of large cardinals, so ZFC set theorists treat it as a technical tool and not a property of
all sets, as did Godel himself as he soon rejected the view he had taken in 1938.

1.2 Why ZFC is not Synonymous with “Set Theory”

Zermelo-Fraenkel set theory with choice has indeed been orthodox in set-theoretic
research especially since Cohen (1966) used it for the method of forcing. But other parts
oflogic use other set theories. For example, Kreisel’s work on effective knowledge led to
anarray of set theories at the far extreme from ZFC, and closely related to arithmetic, as
expounded by Hajek and Pudlék (1993, ch. 1) and Simpson (2010, ch. 1). These theories
are provably too weak for some standard mathematics but that is exactly what adapts
them to elucidating effective knowledge in the logical sense, that is in Kreisel's sense.

Outside of research logic most mathematicians succeed in the practice of mathem-
atics without ever seeing the ZFC axioms or the set theories close to arithmetic. Few
mathematicians could state axioms for any set theory, and more than a few insist this is
as it should be. When Alexander Grothendieck began creating the now standard tools
of algebraic geometry he used a large cardinal axiom added to a set theory similar to
ZFC, and he commissioned a 40-page exposition of it by N. Bourbaki (Artin et al.,
1972, 18541.).2 A number of number theorists have deplored, not the new axiom itself
which is modest by set theorists’ standards for large cardinals, but the very idea of
mixing axiomatic set theory with number theory. Excursus 1.2.2 returns to this.

Could it be that most mathematicians use ZFC the way most people drive a car
without knowing how the engine works? That is, are most mathematicians content to
sketch how proofs of their theorems should go, while letting others, trained in logic,
worry about actual proofs? Certainly mathematicians often use results in mathematics
that they have never seen fully proved.

The extent of this varies with the field. When one algebraist said he would never cite
a theorem in a paper unless he knew the proof, my teacher Charles Wells responded,
“We can do that in abstract algebra. Differential geometers have to use more theorems

2 Bourbaki is the pseudonym of a group of mathematicians. Pierre Cartier, who was in the group at the
time, says Pierre Samuel wrote this appendix (conversation February 19, 2015).
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than they have personally checked” But on one hand neither of those algebraists took
proof to mean a proof in ZFC. And more to our point the results a mathematician
will cite in research without learning the proofs are generally not basic facts used
throughout the work. They are more special theorems. Mathematicians normally can
prove the facts they use daily. And I will maintain this includes the facts of set theory
that they actually use. An analyst, algebraist, or topologist sometimes mentions an
independence result in set theory without having worked through its proof. But they
rarely use independence results.

A philosopher of mathematics might take a hard stand, saying most mathematicians
do not and cannot justify their theorems: because justification requires proofs in
ZFC which few mathematicians know. The philosopher could say nonetheless the
theorems are justifiable because philosophers and logicians can recast the proofs
in ZFC. I cannot argue against such epistemology here. But I prefer the hard-won
insight of Russell (1924, reprint 326) that far from foundations justifying mathematics,
foundations themselves must be “believed chiefly because of their consequences” in
mathematics.

Alternatively, could it be like speaking in prose without knowing it is called “prose”?
Perhaps mathematicians generally know the ZFC axioms without knowing they are the
ZFC axioms? That is more in line with Russell's mature thinking. And indeed most
mathematics texts say a lot about sets without calling anything an axiom of set theory.
But the things they say are not distinctive of ZFC. Far from tacitly knowing the ZFC
Axiom of Foundation, or the Axiom Schemes of Separation and Replacement, most
mathematicians are unfamiliar even with the notions of global membership and first-
order axiom scheme. Those notions are basic to stating these axioms which are in turn
basic to ZFC. We will see that mathematicians do know the concepts and axioms of the
Elementary Theory of the Category of Sets, which, after all, Lawvere (1964) took from
the practice of mathematics around him.

1.2.1 The Continuum Hypothesis

Among Cantor’s first decisive achievements was his proof that the real numbers R
are uncountable: they cannot be put into one simply infinite sequence 7o, 11, . ... He
then conjectured that R has the smallest uncountable cardinality: every infinite subset
S € R either is countable or can be put in bijection § = R with the set of all reals. This
is Cantor’s Continuum Hypothesis (CH). It remains a leading topic of set theory and
arguably the leading topic ever since Cantor, because no generally accepted set theory
can either prove it or refute it. It is not just that no one knows a proof or refutation in
any accepted set theory. Masses of research descended from Godel (1939) and Cohen
(1966) prove all generally accepted set theories are consistent with both the truth and
the falsity of CH. Nearly all of this set theoretic work is conducted in terms of ZFC
and extensions of ZFC.

This is obviously relevant to analysis, and while it might be surprising how rarely it
matters, it does come up sometimes. For example, it matters exactly once in Munkres’
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Topology. An exercise, mentions a question about box topologies whose answer is
not known, though it is known that “the answer is affirmative if one assumes the
Continuum Hypothesis” (Munkres 2000, 205). He cites a proof by Mary Ellen Rudin
(1972), which is also inexplicit about its set theory. Rudin cites Bourbaki and also Kelley
(1955), who each give their own set theories (Kelley’s is stronger than ZFC). But she
says nothing about either on€’s set theory. Her topological argument is insensitive to
any difference among ZFC, ETCS, and those others.

The long and short of it for Munkres was that this question on box topologies
could only be settled by making a controversial assumption, the CH. He felt topology
students should know this happens sometimes.

1.2.2 Grothendieck universes

Grothendieck found penetrating new ways to calculate with small (often finite)
structures, by organizing those small structures into very large categories and functors,
e.g., Abelian categories and derived functors. He was not very interested in set theory,
yet thought it was worth getting right, and he saw that his large categories and functors
were far too big for ZFC to prove they exist. He did not only use collections such as
the class of all sets, which is too big to be a set. He used collections of those too-large
collections, and larger-yet collections of those, and more. McLarty (2010) gives details
for logicians.

Grothendieck cared enough to give a rigorous set-theoretic foundation. But he
did not linger on minimizing the foundation in any way. He gave a quick solu-
tion using Grothendieck universes, which are sets so large that ZFC does not prove
they exist.

The impact of this set theory on mainstream mathematics is attenuated by a mix of
factors:

1. While Grothendieck’s cohomology is entirely standard in research number
theory and geometry, it remains a rather advanced specialty.

2. As Grothendieck intended, the large structure tools are not the focus of attention
but merely a framework organizing calculations.

3. As Grothendieck knew, those calculations can be done without the large struc-
tures, at the loss of conceptual unity and general theorems.

4. Texts such as Milne (1980), Freitag and Kiehl (1988), and Tamme (1994) use large
structure theorems informally without discussing foundations.

5. Others, like (Fantechi et al., 2005, 10) and Lurie (2009, 50f.), invoke Grothendieck
universes only to dismiss a technical problem.

6. The large structures can be founded on a conservative extension of ETCS, far
weaker than ZFC, let alone a Grothendieck universe (McLarty, 2011).

In sum, this has not made axiomatic set theory a standard topic in geometry or even
in specifically Grothendieck-inspired geometry.
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1.3 Sets for the Working Mathematician

André Weil, whose research in number theory and geometry put him among the
leading mathematicians of his time even apart from his role as the initiating member
of Bourbaki, launched the meme “X for the working mathematician” with a talk
titled “Foundations of Mathematics for the Working Mathematician”, delivered to the
Association for Symbolic Logic (1949). He aimed to bring mathematical practice closer
to logical principles. However much people complain about Bourbaki’s abstractness,
or neglect of geometry or of advanced logic, it remains that Bourbaki was a leader
in making mathematical writing radically more accessible. And they did this using
set theory. Mathematics textbooks and published research became more uniform
in style, and more rigorous, than before World War II. The spread of explicit set
theory was a great part of this, going hand in hand with the demand for readily
readable textbooks and more uniform terminology in the burgeoning new fields of
mathematics (McLarty, 2008b). This has become the norm in graduate mathematics
teaching worldwide, because experience showed it made the subject easier to learn.

It is valuable to match a modern introduction to differential geometry with classical
readings from Riemann, for example, as Spivak (1999) does. But few people today
could read Riemann without the help of modern texts. Few ever did succeed at reading
Riemann in the nineteenth century, or in the first half of the twentieth century. It is
easier today because of the set-theorization of mathematics associated with Bourbaki
among others. Nostalgia for the good old days of easy, intuitive mathematics is
misplaced.

Bourbaki (1958) created their own set theory similar to ZFC. But their volumes on
various fields of mathematics rarely referred to it and few mathematicians, or even
logicians, ever learned it.

To see how the set-theorization actually happened in widespread practice let us look
at set theory in two currently influential graduate textbooks. Neither of them gives
precise axioms. Rather they discuss more or less basic facts about sets which they go
on to use. We focus on two questions bearing on the distinction of ZFC from ETCS
set theory:?

1. How does the book handle the elements of sets?
2. Does the book define functions as a kind of set?

Munkres (2000) opens with seventy leisurely pages:

3 As a more technical issue: every textbook I looked at freely forms sets of sets without discussing the
Axiom Scheme of Replacement. One explanation would be that these avowedly naive treatments accept
unlimited comprehension though that is actually inconsistent. Or one might notice these apparent uses of
replacement can be reduced to the more innocuous Bounded Separation Axiom Scheme, which in turn can
be stated as a single axiom. There is usually a suitable ambient superset ready at hand. The point here, though,
is that none of these textbooks is sufficiently explicit about logic even to state Replacement or Separation
axiom schemes, or to explain the difference between an axiom and an axiom scheme. Those schemes are
not part of ETCS, though they are available there as add-ons if wanted.
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I begin with a fairly thorough chapter on set theory and logic. It starts at an elementary level
and works up to a level that might be described as “semisophisticated”. It treats those topics (and
only those) that will be needed later in the book. (2000, xi)

In order to “introduce the ideas of set theory”, Munkres says, “Commonly we shall
use capital letters A, B, ... to denote sets, and lowercase letters a, b, . . . to denote the
objects or elements belonging to these sets” (2000, 4). Of course in ZFC everything
is a set, including that the elements of sets are sets. Munkres hardly denies that all
objects are sets. But, just as he says he will do, he commonly writes as if elements are
of a different type than sets, which they indeed are in ETCS.

Munkres comes close to ZFC practice on cartesian products. He says A x B is the
set of all ordered pairs (a,b) with a € A and b € B. He treats it as optional to say
that (a, b) is a set itself. He notes it can be defined as the set {{a}, {a, b}} and he shows
that this set uniquely determines a and b. But he concludes, “it is fair to say that most
mathematicians think of an ordered pair as a primitive concept rather than thinking
of it as a collection of sets” (2000, 13).

Munkres says mathematicians think of a function f : A — Bas arule assigning values
f(a) € Btoarguments a € A, but they also need a more precise definition (2000, 15).
For this he follows the ZFC practice of defining a function f: A — B as a set. Namely,
f is a subset of the product f € A x B with the property that for each a € A there
exists a unique b € B with (a, b) € f.

He comes to “what we might call the mathematical foundations for our study—the
integers and the real number system” (2000, 36). He notes there are two approaches to
this. One is to construct these sets by building them up from the empty set. That is the
standard approach of ZFC, though Munkres does not say so. He does say that approach
“takes a good deal of time and effort and is of greater logical than mathematical
interest” (2000, 36). He will rather “assume a set of axioms for the real numbers and
work from these axioms” without proving from any more basic axioms that any such
set exists.

He never entertains the question of what set is 2. For him 2 is an integer, the sum of
land 1, it is an element of the set R of real numbers. He never affirms or denies that 2
is itself a set. We have just seen he declines to give any set theoretic specification of the
elements of the set R. Nor does he ever specify what sets are the elements of the sets
Q, C of rational and complex numbers, respectively. This has a practical advantage as it
allows Munkres to assume actual subset inclusions from the natural numbers through
the integers, the rational, and the real numbers, up to the complex numbers:

NczZcQcRcC.

Most ZFC definitions make these not actually subset inclusions. We return to this at
the start of Section 1.4.

This is the second edition of a book Munkres first published in 1975, when he had
probably not heard of ETCS. There is no evidence he ever heard of any axiomatic set
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theory but ZFC. On the other hand, in this book he never actually gives the central
concepts or axioms of ZFC. When he does bring up the occasional idea from ZFC he
always says mathematicians do not usually think that way.

Lang (2005) is greatly expanded from the first edition (Lang, 1965). The treatment
of sets did not change significantly. Lang has none of Munkres’s switching between
how he believes mathematicians think and what he believes rigor requires. He simply
gives the principles he uses in the rest of his book. It is possible that by 1965 Lang had
heard of ETCS in conversation with Peter Freyd but also possible he had not. And his
book had to be well underway before Lawvere had shown ETCS to anyone at all. In
any case I do not claim Lang cared about ETCS. His account simply says nothing that
would distinguish between ZFC and ETCS, because nothing in his book depends on
those differences.

The discussion of sets begins: “We assume that the reader is familiar with
sets” (Lang, 2005, xi). Yet Lang proves very simple facts. An appendix proves, for
example, that the product of a non-empty finite set with a countably infinite one is
countably infinite (878). Without ever saying what a function is, indeed without saying
functions are sets at all, Lang says what he needs about them: a function f : A— B may
also be called a mapping, it has a domain A and a codomain B, and it takes a well-
defined value for each element of the domain. His entire explicit discussion of the
term is the following:

If f: A— Bis a mapping of one set into another, we write
x> f(x)
to denote the effect of f on an element x of A.  (Lang, 1993, ix)
Either ZFC or ETCS would spell this out in just a few steps:

1. ZFC formalizes function evaluation by taking elementhood as primitive and
defining an ordered pair as a set by some means such as (x,y) = {{x}, {x, y}}.
Then prove that indeed on this definition (x, y) = (w, z) implies that x = wand
y = z. 'Then define a function f as a suitable set of ordered pairs f € A x B, and
define f(x) = y to mean (x, y) € f.

2. Categorical set theory takes function composition as primitive, posits a set 1
such that every set has exactly one function A — 1, and defines elements x € A
as functions x:1 — A. This implies that 1 has exactly one element, namely the
sole function 1— 1. Then for any function f: A — B and element x of A, define
f(x) € B as the composite fx:1— B.

Either way works formally and mathematicians generally learn set theory without
ever hearing a formal logical treatment of either one. I will mention that in some parts
of geometry a point p of a space M is defined as a function p:1— M from a one point
space, so that a function f: M — N acts on points p:1 — M by composition, giving

f(p):1—N.
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Lang never defines cartesian products A x B in a ZFC way. Rather, he defines A x B
up to isomorphism in his introduction to “categories and functors” (2005, 53-65). He
handles products of sets along with products of groups and other structures by the
standard commutative diagram definition (2005, 55). The product is not just a set but
a set A x B plus two functions p;: A x B— A and p,: A x B— B. And given any set
T and functions f: T — A and g: T — B there is a unique function u making all the
composites in this diagram equal:

|
/ u\ plu :f & pzu = g,

A convenient notation has u = (f, g). In that notation, the special case T' = 1 of the
definition says the elements of Ax B are precisely the pairs (x, y) withx € Aand y € B.

Again let us be clear about the issue: every mathematician must know cartesian
products have this property. It is implicit in all use of products since, say, Descartes,
long before the notion of a function or of a cartesian product could be clearly stated.
In fact, this property determines the product triple A x B, p1, p» uniquely up to
isomorphism, as proved by Lang and by any introduction to category theory. And,
in fact, this is the property of products that Lang uses throughout his book. That is
why he gives it.

So, can these properties that Lang and Munkres and others actually use be stated
precisely in just the terms that Lang and Munkres use? Or must they remain a
rough guide which actually requires ZFC for a precise statement? That is exactly what
Lawvere asked himself in the years leading up to his Lawvere (1964). For this history,
see McLarty (1990).

It is not that Lang, or Munkres, or many other authors chose to use this set theory.
Rather this set theory is based on the very techniques that mathematicians use in
algebra, topology, and so on, every day.

We need not look at ETCS in all formality. That is done in Lawvere (1964) and many
other places. We will just quote the less formal summary given by Leinster (2014, 404):

. Composition of functions is associative and has identities.

. There is a set with exactly one element.

There is a set with no elements.

A function is determined by its effect on elements.

. Given sets X and Y, one can form their cartesian product X x Y.

. Given sets X and Y, one can form the set of functions from X to Y.
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7. Given f: X — Y and y € Y, one can form the inverse image f —1(y).
8. The subsets of a set X correspond to the functions from X to {0, 1}.
9. The natural numbers form a set.

10. Every surjection has a right inverse.

These are Leinster’s informal summary of Lawvere’s ETCS axioms and Leinster
spells them all out in categorical terms, just as we spelled several of them out already.

All these facts are familiar to every mathematician and are used routinely in
textbooks. Munkres is fairly typical in suggesting that ZFC is the way to make them
precise—though typical too in that he never actually names ZFC let alone states its
axioms. And he repeatedly says the “precise” versions are not how mathematicians
think. Lang is more artful in stating all and only the properties of sets that he actually
uses, and never suggesting any others, are needed for rigor. All the properties Lang
describes are easy consequences of these ETCS axioms.

The precise formal relationship between ETCS and ZFC has been known since Osius
(1974). But, for a longer more practical/intuitive proof that ETCS suffices for standard
mathematics, just read ordinary textbooks like those described here. Their proofs fit
easily and naturally into the ETCS formalism.

Anyone who believes the ZFC axioms necessarily believes those of ETCS, but not
conversely. The axioms of ETCS are all theorems of ZFC, when “function” is defined
in the standard way for ZFC. The converse is not true.

The ZFC axioms say much more about sets than ETCS. These further claims are
rarely noted, let alone used, in mathematics textbooks outside of set theory. They are
pervasive in some kinds of advanced set theory. The ZFC axioms say everything is a
set; notably functions are a special kind of set; and every set is built up from the empty
set by transfinitely iterated set formation. We have seen how Munkres hints at these
ZFC devices without going much into them and Lang avoids them. Section 1.5 will
describe some reasons set theorists took them up, but first Section 1.4 describes why
most textbooks don't.

1.4 Gauge Invariant Set Theory

Weatherall (2015) argues that the word “gauge” is ubiquitous in modern physics, and
ambiguous. Without offering a thorough survey he describes two meanings, and we
can use one of those:

On the first strand, a “gauge theory” is a theory that exhibits excess structure. . . in such a way
that (perhaps) one could remove some structure from the theory without affecting its descriptive
or representational power. (Weatherall, 2015, 1-12)

As an example he gives electromagnetic theory using an electromagnetic potential
A,. Distinct potentials A4, A), produce exactly the same observable consequences if
their difference is the derivative of some scalar x:
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In other words, given even ideal observations of the total behavior of some electromag-
netic system, we have a choice of infinitely many different potentials A, to describe
that system.

So the specific potential is somehow more than we need. And in fact the potential
is eliminated from versions of electromagnetic theory using electromagnetic force
Fgp instead. Any two different forces F,p # F/, do produce, in principle, observably
different consequences.

While mathematics has no good analogue of observable consequences, it certainly
deals with descriptive or representational power. We will argue that the global mem-
bership relation of ZFC is a gauge on sets as it does not contribute to the descriptions
and representations of structures in most of mathematics. This is not meant as any
very close analogue to the situation in electromagnetic theory! But then, neither is the
situation electromagnetic theory exactly the same as in General Relativity (Weatherall,
2015, passim).

We must distinguish between global and local membership. Throughout mathemat-
ics it is crucial to know which elements x € A of a set A are members of which subsets
S C A. We say this relation is local to elements and subsets of the ambient set A. For
example, arithmeticians need to know which natural numbers n € N are in the subset
of primes Pr C N. On the other hand, nearly no one ever asks whether the imaginary
unit i € C is also a member of the unit sphere $% c R3, because they do not lie inside
of any one natural ambient.

In ZFC the elements of sets are sets and it always makes sense to ask of sets X and Y
whether X € Y. This is a global membership relation since it does not rest on any sense
of an ambient set but is meaningful for every two sets.

Asaprominent example, it makes sense in ZFC to ask whether each rational number
q € Qs also a real number g € R, and the answer is “yes” or “no’, depending on how
we define real numbers. It is no if we use Dedekind cuts on the rational numbers, or
equivalence classes of Cauchy sequences of rational numbers. It is yes if we use the
definitions by Quine (1969, 136ft).

In ETCS membership is local, and it makes no sense to ask whether each rational
number g € Qis also a real number g € R until both Q and R are taken as embedded
in some common ambient set—and the most common ambient in textbook practice is
R itself. In other words, ETCS takes it as true by stipulation that all rational numbers
are real. It makes no sense in ETCS to ask for any answer except a stipulation. And most
math texts that address the issue at all, including the two we looked at in Section 1.3, do
solve it by stipulation. They say that every natural number is also a rational number,
and every rational number is also a real number, without ever saying how this is to
be achieved by a ZFC set-theoretic definition of those numbers. See McLarty (1993,
2008a) for more examples of textbook treatments of related issues and comparison
with ETCS.



12 COLIN McCLARTY

The global membership relation in ZFC is a gauge in the sense that it is rarely used
in the “descriptive or representational” practices of mathematics, to recall the words
of Weatherall (2015, 1-12) quoted earlier. Like the gauges in physical gauge theories it
has important uses but the uses are of a technical kind which we will get to in the next
section. Normal practice in most parts of mathematics describes and represents sets
just up to isomorphism.*

Philosophers sometimes suppose definition up to isomorphism is a recent, abstract
idea, which would not be found in classical mathematics. But this is backwards.
Newton and Leibniz did understand the real numbers in terms of their algebraic and
analytical relations to one another—which today are called isomorphism invariant—
they did not understand real numbers as sets built up by transfinite accumulation from
the empty set! They understood the arithmetic of whole numbers as dealing with the
laws of addition and multiplication—which we today say define the integers only up
to isomorphism—they never imagined one could explain what 2 is by using the set
{{?}} or the set {@, {#}}.

The novelty that arose in the nineteenth century, grew in the twentieth, and is
growing faster today, was the scope, agility, and fecundity of structural methods.

For example, the idea of a tangent space to a manifold was reasonably clear, and
extremely useful in expert hands, in the nineteenth century. But it became more useful
and more widely accessible as the twentieth century gave clearer articulation to several
distinct geometric constructions of it expressing different geometric aspects. One
approach constructs it using coordinate systems placed on patches of the manifold.
Another uses (equivalence classes of) curves through points of the manifold. Another
uses (equivalence classes of) real-valued functions defined on neighborhoods of
points of the manifold. Each of the different realizations relates most directly to
some problems. All these constructions yield “the same structure” in some sense,
which mathematicians at first described vaguely by saying all the realizations are
“naturally isomorphic” That idea became more or less clear, to the more modern-
minded mathematicians, through the early twentieth century. It was first addressed
explicitly, and first made into a rigorous means of proving theorems, by Eilenberg and
Mac Lane (1945) in the first general paper on categories and functors.

4 Readers who compare Weatherall (2015) will note he associates gauges with a paucity of isomorph-
isms (so that some observationally identical models are not isomorphic), while we associate them with
abundance of isomorphisms (so that gauges are not preserved by isomorphisms). That is because he takes
‘isomorphism’ in the way common throughout most of mathematics, where an isomorphism preserves the
structures at hand. But isomorphisms in ZFC set theory do not preserve the membership structure. In ZFC
or in ETCS, and indeed in Cantor’s work long before either of those theories existed, an isomorphism of
sets f: A — B is a function with an inverse, f —1.B — A, or in other words a one-to-one onto function.
Such a function need not preserve the membership structure of ZFC sets (and almost never does, in fact).
Given an isomorphism f: A — Band z € x € A we can hardly conclude that f(z) € f(x). We cannot
even conclude that z € A, so we cannot conclude that f(z) is defined at all. And if, in some particular case,
f(z) is defined, there is no reason for it to be an element of f(x). This situation in ZFC is like the situation
Weatherall (2015, 12) considers, where gauge transformations are taken as isomorphisms.
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Philosophers often underestimate the practical need for rigorous proof in mathem-
atics. There may be some quick, elementary proof of Fermat’s Last Theorem that would
avoid long difficult considerations—but honestly most people looking for proofs of
Fermat’s Last Theorem through the centuries since Fermat have looked for just that
kind of proof. Most people working on Fermat’s Last Theorem today continue to
seek such a proof. Most have never learned the apparatus used by Wiles (1995). But
up to now everyone who has found new and simpler proofs has used essentially
that apparatus. All the yet-known proofs remain long and rather difficult, notably
Kisin (2009).

Proofs like this require that each step be as clear and concise as possible while
keeping extreme rigor. Otherwise, one could hardly credit the conclusion of such long
reasoning. For many other examples, see McLarty (2008a, c).

Today mathematicians use extensive, efficient functorial means to deal with struc-
tures defined only up to isomorphism. And naturally, as we have seen in Lang and
Munkres, they tend to treat sets also by isomorphism-invariant means. Why handle
sets by one set of conceptual tools, and groups, rings, differential manifolds, and
other algebaic or geometric structures by another, when the same tools will work
for both? Those are the tools used in ETCS, and not in ZFC. But of course each
part of mathematics also has its own special character which can call for specially
adapted devices.

1.5 The Use of a Gauge

By and large mathematicians will agree with Munkres (2000, 36) that it is uninteresting
to analyze a natural number n € N or a real number » € R as itself a set. But
advanced investigations in set theory require much more detailed analysis of sets
than most of mathematics does. Zermelo’s approach to this was to give each set
itself much more structure than Cantor had.> This attitude was canonized when the
Axiom of Foundation and the Axiom Scheme of Replacement were added to Zermelo’s
early axiomatization to give today’s Zermelo-Fraenkel Axioms. These axioms imply
that every set is built up from the empty set by (possibly transfinitely) iterated set
formation.

In other words every ZFC set has a well-founded downward-growing membership
tree structure where the top node indicates the set, and each node has as many nodes
below it as elements. For example, the set N = {0,1,2,3,...} can be represented by
the set of finite von Neumann ordinals:

{0, {0}, (9,104}, {0, {9}, (0, {01}, ... }.

5 Zermelo declared his preference for Frege on this question, over Cantor, in his comments on Cantor’s
collected works. See especially Cantor (1932, 351, 353, 441f.) and Lawvere (1994).
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So it has this tree:
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Each bottom node stands for the empty set @), each node with nothing below it but a
single bottom node stands for the singleton set {J}, and so on. Each branch is finite
but they get longer and longer without bound as they go to the right.

Now be clear, both ETCS and ZFC can describe tree structures like this.
The difference is that ZFC says each set S has such a tree intrinsically given by the
membership relation on its elements, and their elements, and so on. Because
the elements of S are ZFC sets, so are their elements, and so on. So ZFC sets come
intrinsically arranged in an cumulative hierarchy also called the iterative hierarchy
where each set is located at the lowest stage higher than any of its elements.

This tree structure is extremely useful in set theory. The Mostowski embedding
theorem, found in any advanced ZFC textbook, tells exactly which trees correspond
to ZFC sets. And categorical set theory also uses it for logical investigations (Osius,
1974, 88). A tree interpretation lets ETCS interpret ZFC with no loss of information at
all, by interpreting a ZFC set as a suitable tree as discussed in McLarty (2004). So there
is a translation routine taking any theorem or proof in ZFC to an equivalent theorem
or proof in ETCS.6

In short, what ZFC takes as a set S, ETCS takes as a set S plus a suitable (extensional,
well-founded) tree with the elements of S as the first level of nodes below the top.
The tree structure in ETCS captures the iterative hierarchy structure in ZFC. From the
viewpoint of ETCS the iterative hierarchy is a gauge, very useful in set theory research.

Then there is a yet further structure, called constructibility, forming the constructible
hierarchy, with similarly pervasive research uses. A constructible set is not only
accumulated level by level from earlier constructible sets, but each set is formed with
an explicitly stated definition of which earlier sets are to be collected into it.” This
gives an extremely tight handle on each set and it is useful at every level of research set
theory. The set theories closest to arithmetic generally assume every set is constructible
to gain enough control on the sets, as explained by Simpson (2010, 282).

6 The ETCS version may need to specify further assumptions corresponding to the fact that ZFC assumes
stronger axioms than ETCS. The corresponding stronger assumptions are always available in ETCS, if only
by translating the ZFC version, though in most natural cases there is also a natural correspondent in ETCS.

7" Actually, on conventional accounts, each constructible set S is formed infinitely many times, each time
with a different explicitly stated definition. But the definitions are well ordered so each constructible S has
a unique first definition forming it.
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However, nearly the whole theory of large cardinals disappears if all sets are
constructible. Measurable cardinals cannot exist if all sets are constructible, and so
of course no larger cardinals can either. So ZFC set theorists treat constructibility as a
valuable feature of some sets, not all sets. But note this is not a distinction at the level
of set isomorphism. The ZFC axioms themselves trivially prove every set is isomorphic
to some constructible set: choice proves every set is isomorphic to some ordinal. All
ordinals are constructible by definition.

In short, ZFC and ETCS both treat membership trees and constructibility as gauges.
Both traits are extremely useful at times (as are potentials in electromagnetism).
Neither trait is preserved by set isomorphisms. Neither trait is much mentioned in
math outside of research set theory. These gauges are indispensable to the kind of
questions handled in set theory texts such as Kunen (1983) or Kanamori (1994).
These texts find it natural to use ZFC, which has the first gauge (membership trees)
built in, and which does not imply that every set admits the second gauge at all.
But far the greatest part of mathematics in algebra, geometry, or analysis is gauge
invariant—or, as logicians prefer to say, isomorphism invariant—both theoretically
and in daily practice.
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2

Reviving the Philosophy
of Geometry

David Corfield

2.1 Introduction

Leafing through Robert Torretti’s book Philosophy of Geometry from Riemann to
Poincaré (1978), it is natural to wonder why, at least in the Anglophone community,
we have little activity meriting this name today. Broadly speaking, we can say that
any philosophical interest in geometry shown here is directed at the appearance of
geometric constructions in physics, without any thought being given to the conceptual
development of the subject within mathematics itself. This is in part a result of a
conception we owe to the Vienna Circle and their Berlin colleagues that one should
sharply distinguish between mathematical geometry and physical geometry. Inspired
by Einstein’s relativity theory, this account, due to Schlick and Reichenbach, takes
mathematical geometry to be the study of the logical consequences of certain Hil-
bertian axiomatizations. For its application in physics, in addition to a mathematical
geometric theory, one needs laws of physics and then ‘coordinating principles’ which
relate these laws to empirical observations. From this viewpoint, the mathematics itself
fades from view as a more or less convenient choice of language in which to express
a physical theory. No interest is taken in which axiomatic theories deserve the epithet
‘geometric’

However, in the 1920s this view of geometry did not go unchallenged as Hermann
Weyl, similarly inspired by relativity theory, was led to very different conclusions.
His attempted unification of electromagnetism with relativity theory of 1918 was the
product of a coherent geometric, physical, and philosophical vision, inspired by his
knowledge of the works of Fichte and Husserl. While this unification was not directly
successful, it gave rise to modern gauge field theory. Weyl, of course, also went on
to make a considerable contribution to quantum theory. And while Einstein gave
initial support to Moritz Schlick’s account of his theory, he later became an advocate
of the idea that mathematics provides important conceptual frameworks in which to
do physics:
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Experience can of course guide us in our choice of serviceable mathematical concepts; it cannot
possibly be the source from which they are derived; experience of course remains the sole
criterion of the serviceability of a mathematical construction for physics, but the truly creative
principle resides in mathematics. (Einstein, 1934, 167)

We may imagine then that an important chapter in any sequel to Torretti’s
book would describe both Reichenbach’s and Weyl’s views on geometry. This is
done in Thomas Ryckman’s excellent The Reign of Relativity (2005), where the
author also discusses further overlooked German-language philosophical writings
on geometry from the 1920s, this time by Ernst Cassirer. Cassirer’s extraordinary
ability to assimilate the findings of a wide range of disciplines sees him discuss
the work of important mathematicians such as Felix Klein, Steiner, Dedekind,
and Hilbert.

Ryckman ends his book with a call for philosophical inquiry into what sense a
‘geometrized physics’ can have, to emulate the work of these thinkers from the interwar
period. And he is not alone in thinking that this was a golden age. There is now
an impressive concentration on this era. Today, in Ryckman and similar-minded
thinkers, such as Michael Friedman and Alan Richardson (see the contributions of
all three in Domski and Dixon (2010)), we find fascinating discussions about these
themes. However, these discussions by themselves are unlikely to give rise today to
the kind of primary work that they are studying from the past. It is one thing to
make a careful, detailed study of the interweaving of philosophy, mathematics, and
physics of a period, quite another to begin to take the steps necessary for a revival of
such activity.

Michael Friedman (2001) points out two connected, yet somewhat distinct, activ-
ities dealing with mathematical physics which might be called ‘philosophical’ One
termed ‘meta-scientific is much as Weyl does, reconceiving the idea of space and
thereby generating foundational advances. Meta-science is typically done by philo-
sophically informed scientists, such as Riemann, Helmholtz, Poincaré, and Einstein.
By contrast, the other activity is much as Cassirer and the Vienna Circle did, reflecting
on the broader questions of the place of mathematics and science in our body of
knowledge in light of important events in the histories of those practices. While
there spontaneously arises work of the first kind in any era, work of the second kind
requires a philosophical orientation which may be lost. One very obvious difference
is that today we have so few philosophers emulating Cassirer by keeping abreast of
the mathematics of the recent past. This simply must change if we are to generate the
forms of discussion to parallel those of the 1920s. For too long, philosophy has thought
to constrain its interest in any current mathematical research largely to set theory,
when it has long been evident that it offers little or nothing as far as many core areas
of mathematics are concerned, and especially the mathematics needed for physics.
Casting the differential cohomology of modern quantum gauge theory in set-theoretic
clothing would do no favours to anyone. So, with some notable exceptions, such as
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Marquis (2008) and McLarty (2008), we let the bulk of mainstream mathematical
research pass us by.

However, there are reasons to be hopeful. I shall argue in this chapter that our best
hope in reviving a 1920s-style philosophy of geometry lies in following what has been
happening at the cutting edge of mathematical geometry over the past few decades,
and that while this may appear a daunting prospect, we do now have ready to hand
a means to catch up rapidly. These means are provided by what is known as cohesive
homotopy type theory.

Univalent foundations, or plain homotopy type theory (cf. Awodey’s and Shulman’s
chapters), provide the syntax for theories which can be interpreted within (co,1)-
toposes, a generalization of the ordinary notion of toposes. The basic shapes of
mathematics are now taken to be the so-called ‘homotopy n-types. However, these
are not sufficient to do what needs to be done in modern geometry, and espe-
cially in the geometry necessary for modern physics, since we need to add further
structures to express continuity, smoothness, and so on. As we add extra properties
and structures to (0o,1)-toposes, characterized by qualifiers—local, co-connected,
cohesive, differentially cohesive—increasing amounts of mathematical structure are
made possible internally. The work of Urs Schreiber (2013) has shown that co-
hesive (c0,1)-toposes provide an excellent environment to approach Hilbert’s sixth
problem on axiomatizing physics, allowing the formulation of relativity theory and
all quantum gauge theories, including the higher-dimensional ones occurring in
string theory.

Cohesiveness in this sense arose from earlier formulations of the notion in the case
of ordinary toposes by William Lawvere (2007), motivated in turn by philosophical
reflection on geometry and physics. Schreibers claim, however, is that for these
concepts to take on their full power they must be extended to the context of higher-
topos theory, that is the theory of (00, 1)-toposes, where differential cohomology finds
its natural setting. Now, rather than the mathematics necessary for physics being
viewed, as it often is at present from a set-theoretic foundation, as elaborate and
unprincipled, we can see the simplicity of the necessary constructions through the
universal constructions of higher-category theory.

In a single article it will only be possible to outline the kind of work necessary to
fill in the spaces we have left ourselves. There is important interpretative work to do
already in making sense of plain homotopy type theory, so here I can only indicate
further work to be done. At the same time, in that mathematics finds itself once again
undergoing enormous transformations in its basic self-understanding, it is important
as philosophers to take this opportunity to remind ourselves that we should provide an
account of mathematical enquiry where such changes are to be expected. It is striking
that Hegel should be found informing both those wishing to characterize the dynamic
growth of mathematics and those striving to refashion the very concepts of modern
geometry itself.
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2.2 Current Geometry

If any reassurance is needed that geometry is alive and well today, one need only look
at the variety of branches of mathematics bearing that name which are actively being
explored:

algebraic, differential, metric, symplectic, contact, parabolic, convex, Diophantine, tropical,
conformal, Riemannian, Kahler, Arakelov, analytic, rigid analytic, global analytic, . . .

Continuing our search, we find noncommutative versions of some of these items,
also ‘derived’ versions, and so on. Indeed, there has never been so much ‘geometric’
research being carried out as there is today, from constructions that Gauss or Riemann
might have recognized to ones which would seem quite foreign. So the question arises
of whether this list provides just a motley of topics which happen to bear the same
name, or whether there is something substantial that is common to all of them, or at
least many of them.

Evidence for the latter option comes from people still making unqualified use of
‘geometry’ and its cognates to mean something. Some such uses are informal, as in the
following example:

The fundamental aims of geometric representation theory are to uncover the deeper geomet-

ric and categorical structures underlying the familiar objects of representation theory and

harmonic analysis, and to apply the resulting insights to the resolution of classical problems.
(MRSI, 2014)

Other uses are technical, such as where Jacob Lurie (2009) uses the term ‘geometry’ to
name a certain kind of mathematical entity, here a small (0o, 1)-category with certain
additional data. The question then arises as to what features of these structures make
Lurie single them out as geometries. At first glance this seems a rather technical matter.
Let us return to it once we have some motivation from the past.

Something that would have seemed novel to Gauss and Riemann, and which might
give rise to doubts concerning the unity of geometry, is the thorough injection of spa-
tial ideas brought into algebraic geometry by Alexandre Grothendieck in the 1960s. By
the late 1800s it was already known of the collection of complex polynomials, C[z], that
the space on which these functions are defined could be recaptured from the algebraic
structure of the collection itself. C[z] forms a ring, and it is possible to construct an
associated space from points corresponding to its maximal ideals. These are the ideals
generated by (z—a), for each a € C. Picking up on the complex function field/algebraic
number field analogy of Dedekind and Weber, as developed by Weil in his Rosetta
Stone account (see Corfield, 2003, ch. 4), it was then shown that even apparently
nonfunctional rings, such as the ring of integers and others encountered in arithmetic,
might be treated likewise. Grothendieck’s scheme theory (see McLarty, 2008) provided
such a space, in the case of the integers denoted Spec(Z), again constructed out of
prime ideals. Now an integer is considered as a function defined at each prime, a point
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in Spec(Z), as the function n(p) = n (mod p). Where this differs from the complex
function case is that while the values of ‘integer-as-function’ still land in a field, here
the field varies according to the point where the function is evaluated, I, as p varies.
This suggests a space whose points are not identical.

This attempt to geometrize arithmetic is not an empty game. It feeds through to
mathematical practice as can readily be discovered thanks to the growth of online
informal discussion.

I like to picture Spec Q as something like a 2-manifold which has had all its points deleted. The
extra complication is that what we think of as the points are actually very small circles. So it’s
really a three manifold with all of the loops inside it deleted.

For example, let’s look first at function fields. Spec C[z] is just the complex line C. As we start
inverting elements of Spec C[z], as we must do to make Spec C(z), the effect on the spectrum is
to remove bigger and bigger finite sets of points. The limit is where we remove all the points and
we're just left with some kind of mesh.

If we had started with a Riemann surface of genus g, then wed be left with a mesh of genus g, a
surface sewn out of the cloth from which fly screens for windows are made. If we want to recover
the original surface from the surface mesh, we just put it out back in the shed for a while and
let the mesh fill up with dirt. This is just the familiar fact that a (smooth compact, say) Riemann
surface can be recovered from the field of meromorphic functions on it.

If we replace C by a finite field F, then everything is the same but what we thought of
as the point is now a very small circle, and so our original surface reveals itself to be a 3-
manifold fibered over a very small circle when we zoom in. And when we delete points, we're
really deleting not just single-valued sections of this fibration but also multivalued sections. So
Spec F[z] is some kind of 3-manifold fibered over the circle with all the loops over the base circle
deleted.

For the passage from Z to Q, I don’t have anything better to say than that it’s sort of the same
but there’s no base circle. We're just removing lots of loops from a 3-manifold. Maybe some
should be seen as bigger than others, corresponding to the fact that there are prime numbers of
different magnitudes. (Borger, 2009)

Here we see Borger passing across each of the three columns of Weil's Rosetta Stone.

Now, not only do we find a geometrized arithmetic, but these ideas and construc-
tions are the structural cousins of those appearing in cutting-edge physics, as we see
in this comment by David Ben-Zvi:

the geometric analog of a number field or function field in finite characteristic should not be
a Riemann surface, but roughly a surface bundle over the circle. This explains the “categorific-
ation” (need for a function-sheaf dictionary, which is the weak part of the analogy) that takes
place in passing from classical to geometric Langlands—if you study the corresponding QFT
on such three-manifolds, you get structures much closer to those of the classical Langlands
correspondence. (Ben-Zvi, 2014)

So we have both widespread current interest in classically geometric areas of
mathematics and geometric approaches to other areas, including arithmetic, and ways
of thinking about the subject matter expressed, at least informally, in a very visual
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language. Geometry as a whole is something larger that that which has application in
mathematical physics, and applied mathematics more generally. Similar structures are
now found to lie at the heart of number theory. But how to go about saying something
satisfactorily general about geometry?

One might throw up one’s hands at the task of bringing this wealth of subject matter
under the umbrella of a straightforward description. To the extent that people try to
do this it is largely left to the doyens of mathematics. For example, Sir Michael Atiyah
writes

Broadly speaking, I want to suggest that geometry is that part of mathematics in which visual
thought is dominant whereas algebra is that part in which sequential thought is dominant.
(Atiyah, 2003, 29)

Such a distinction is reminiscent of Kant, for whom space and time were considered
to be forms of sensibility, and yet Atiyah continues:

This dichotomy is perhaps better conveyed by the words “insight” versus “rigour” and both play
an essential role in real mathematical problems. (Atiyah, 2003, 29)

A more careful treatment is required here, since there seems nothing to object to in
the idea of ‘rigorous geometry’ or ‘algebraic insight. We need to turn back the clock to
when philosophical research directed itself towards then current geometry.

2.3 Regaining the Philosophy of Geometry

What led to the demise of the philosophy of geometry in the English-speaking world?
I think this can be attributed largely to the success of logical empiricism. Many of those
dispersed from Germany and Austria in the 1930s were accepted into the universities
of the USA, welcomed by existing empiricists such as Ernst Nagel. In a long paper
published in 1939, Nagel uses the history of projective geometry to explain the new
understanding of then modern axiomatic mathematics:

It is a fair if somewhat crude summary of the history of geometry since 1800 to say that it has led
from the view that geometry is the apodeictic science of space to the conception that geometry,
in so far as it is part of natural science, is a system of “conventions” or “definitions” for ordering
and measuring bodies.  (Nagel, 1939, 143)
The distinction between a pure and an applied mathematics and logic has become essential for
any adequate understanding of the procedures and conclusions of the natural sciences.

(Nagel, 1939, 217)

So axiom systems are proposals for stipulations. As pure mathematics they are
to be studied for their logical properties. Some of them may be found to be well
adapted to allow the expression of scientific laws, which may then be used in applied
sciences. This is made possible by coordinating principles which tie the scientific
laws to empirical measurements. For example, Riemannian geometry allows for the
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expression of Einstein’s field equations, which can be coordinated to observation by
stipulating that light follows null geodesics.

While now the ideational content of mathematics is left to one side, other tasks fall
to the philosopher of mathematics:

the concepts of structure, isomorphism, and invariance, which have been fashioned out of the
materials to which the principle of duality is relevant, dominate research in mathematics, logic,
and the sciences of nature.  (Nagel, 1939, 217)

Had philosophers at least heeded this, more attention might have been paid to category
theory, the language par excellence of structure, isomorphism, and invariance, which
emerged shortly after Nagel’s paper (Corfield, 2015). As it was, a uniform treatment of
mathematics as the logical consequences of definitions, or of the set-theoretic axioms,
came to prevail.

In the process, as Heis (2011) argues, two lines of thought from earlier in the century
were being ruled out, each responding to other nineteenth-century developments in
geometry:

1. What could be saved of Kantian philosophy given the appearance of non-
Euclidean geometry, and then Riemannian geometry? What are the conditions
for spatial experience?

2. How should we understand the ever-changing field of geometry given the intro-
duction of ideal elements, imaginary points, and so on?

Let us take each of these in turn.

2.3.1 Weyl: the essence of space

With an ever-expanding variety of geometries emerging through the nineteenth
century, it became implausible to maintain with Kant that our knowledge of Euclidean
geometry is a priori. Helmholtz had argued that because empirical measurement
requires that objects undergo only ‘rigid motions, we can work out which geometries
are presupposed by our physics. He concluded that only those spaces which possessed
the property of constant curvature were permissible. With the contribution of the
technical expertise of Sophus Lie, this line of research resulted in the Helmholtz-Lie
theorem, characterizing Euclidean, elliptic, and hyperbolic geometries.

Research such as this was certainly discussed by philosophers. Indeed, Russell, and
later Schlick and Reichenbach, responded to Helmholtz’s work, but perhaps the most
profound response came from Hermann Weyl. After the success of Einstein’s general
theory of relativity, Helmholtz’s results were evidently far too limited. Weyl, inspired by
Husserl and perhaps more profoundly by Fichte (see Scholz, 2005), sought to discern
what he termed “the essence of space”. In a letter to Husserl, he wrote

Recently, I have occupied myself with grasping the essence of space [das Wesen des Raumes]
upon the ultimate grounds susceptible to mathematical analysis. The problem accordingly
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concerns a similar group theoretical investigation, as carried out by Helmholtz in his
time  (Ryckman, 2005, 113)

Weyl conceived of spaces in which it was only possible to compare the lengths of two
rods if they were situated at the same point.

Only the spatio-temporally coinciding and the immediate spatial-temporal neighborhood have
a directly clear meaning exhibited in intuition.
(Weyl, ‘Geometrie und Physik, quoted in Ryckman (2005, 148))

Along the lines of Helmholtz and Lie, this led him to prove a group theoretic result:
the only groups satisfying certain desiderata (involving the “widest conceivable range
of possible congruence transfers” and a demand for a single affine connection) are
the special orthogonal groups of any signature with similarities, G >~ SO(p,q) x R*
(Scholz, 2011, 230).

There is an interesting story to be told here of how Einstein and other physicists
found implausible the possibility allowed by this geometry that rods of identical
lengths, as measured at one point, if transported along different paths to a distant point
might have different resulting lengths. One usually tells the story of how the beauty of
the mathematics got the better of Weyl, and how physicists eventually uncovered what
was good about the idea whilst modifying his original idea to allow a U(1) gauge group.
This story needs to be told in a much more nuanced way (see Giovanelli, 2013), and in
any case is complicated by the survival of Weyl’s original idea in forms of conformal
gauge theory.

In any case, Weyl himself later became sceptical of this kind of mathematical
speculation about the geometry required for physics that had so consumed him in
his earlier years. With the demise of other philosophical attempts to study our a priori
geometric intuition, for example, Carnap’s doctoral thesis on how our intuitive concept
of space was required to be n-dimensional topological space, such attempts largely
came to an end. We will take a look at more recent ‘meta-scientific’ kinds of work, but
first let us turn to Friedman’s other form of philosophical research.

2.3.2 Cassirer: beyond intuition

In an unusual paper, published the year before his death, Ernst Cassirer (1944) argued
for an important connection to be seen between Felix Klein’s Erlanger programme
and our everyday perception. Where Klein had given a presentation of many forms of
geometry as the study of invariants of space under the action of groups of symmetry,
Cassirer saw the seeds for this idea in our abilities to perceive the invariant size, colour,
and shape of objects under varying viewing conditions. Now evidently these abilities
are rooted in our distant evolutionary past, and yet the full-blown mathematical idea
had only crystallized in modern mathematical thinking around 1870.

Klein’s ideas on geometry marked an important stage in the course of a revolu-
tionary century for geometric thought. Not only had the range of geometries been
extended from the single Euclidean geometry to hyperbolic and elliptical forms, but
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there had been many kinds of extension of the notion of space by the introduction
of elements that seemed to lead us away from the intuitively familiar. For example,
the nondegenerate conic sections had been unified as curves of degree 2 in complex
projective space, brought about by the addition of ‘points at infinity’ and complex
coordinates. Now all circles were seen to pass through two imaginary points at infinity,
and so ‘intersect’ there.

Such forays beyond the intuitive led those wishing to retain what they took to be
valuable in Kant to take a different tack. As Heis (2011) convincingly shows, the neo-
Kantian Cassirer had to come to terms with just such developments. This is evident in
his later work:

It is hence obvious that mathematical theories have developed in spite of the limits within
which a certain psychological theory of the concept tried to confine them. Mathematical theory
ascended higher and higher in order to look farther and farther. Again and again it ventured
the Icarian flight which carried it into the realm of mere “abstraction” beyond whatever may be
given and represented in intuition. (Cassirer, 1944, 24)

But then without any firm rootedness in intuition, what provides us with guidance
that our “Icarian flights” are heading in the best direction? This problematic runs
through Cassirer’s career, and is answered by the unity of the history of the discipline.

Though a properly Neo-Kantian philosophy of mathematics will appreciate that mathematics
itself has undergone fundamental conceptual changes throughout its history, such a philosophy
will also have to substantiate the claim that the various stages in the historical development of
mathematics constitute one history . . . we can say that they [mathematicians] were studying the
same objects only because we can say that they are parts of the same history. (Heis, 2011, 768)

It is worth quoting Cassirer at length on this point:

it is not enough that the new elements should prove equally justified with the old, in the sense
that the two can enter into a connection that is free from contradiction—it is not enough that the
new should take their place beside the old and assert themselves in juxtaposition. This merely
formal combinability would not in itself provide a guarantee for a true inner conjunction, for a
homogeneous logical structure of mathematics. Such a structure is secured only if we show that
the new elements are not simply adjoined to the old ones as elements of a different kind and
origin, but the new are a systematically necessary unfolding of the old. And this requires that
we demonstrate a primary logical kinship between the two. Then the new elements will bring
nothing to the old, other than what was implicit in their original meaning. If this is so, we may
expect that the new elements, instead of fundamentally changing this meaning and replacing it,
will first bring it to its full development and clarification. (Cassirer, 1957, 392)

If one can hear an overtone of Hegelian thought here, this is not surprising. In
the introduction to this third volume of The Philosophy of Symbolic Forms Cassirer
explained the debt to Hegel as shown by the subtitle of the book— The Phenomenology
of Knowledge:
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The truth is the whole—yet this whole cannot be presented all at once but must be unfolded
progressively by thought in its own autonomous movement and rhythm. It is this unfolding
which constitutes the being and essence of science. The element of thought, in which science
is and lives, is consequently fulfilled and made intelligible only through the movement of its
becoming. (Cassirer, 1957, xiv)

This line of thought sits very happily with the idea that important developments in
a discipline allow its history to be written in such a way that it makes best sense of
what was only obscurely seen in the past or of what became the means to overcome
perceived obstacles or limitations, in other words, a history of rational unfolding out of
an older stage. AsITargue in Corfield (2012), we find this position very well expressed by
the moral philosopher Alasdair Maclntyre. A similar idea is expressed by Friedman’s
‘retrospective’ rationality (2001).

In the Anglophone revival (Friedman, Ryckman, Richardson, Heis, and Everett) of
interest in Cassirer of recent years, there has been particular focus on the place of the
‘constitutive’ and the ‘regulative’ in his account of the progress of science. This amounts
to rival interpretations of the relative importance for Cassirer of the prospective
overcoming of limitations within a discipline and the retrospective rationalization
of its course, eventually as seen from an ideal future point. However these debates
turn out, it is intriguing then to see what we might call a further strand added in the
1944 paper, that in mathematics we may devise concepts which owe their origin to
unnoticed cognitive structures. In the case of the Erlanger Program

the mathematical concepts are only the full actualisation of an achievement that, in a rudiment-
ary form, appears also in perception. Perception too involves a certain invariance and depends
upon it for its inner constitution. (Cassirer, 1944, 17)

Taken together, we can see in the work of Weyl and Cassirer just how far we are
here in attitude towards mathematical geometry from what was bequeathed to us by
the logical empiricists. Heis quotes Hans Reichenbach:

It has become customary to reduce a controversy about the logical status of mathematics to
a controversy about the logical status of the axioms. Nowadays one can hardly speak of a
controversy any longer. The problem of the axioms of mathematics was solved by the discovery
that they are definitions, that is, arbitrary stipulations which are neither true nor false, and
that only the logical properties of a system—its consistency, independence, uniqueness, and
completeness—can be subjects of critical investigation. (Heis, 2011, 790)

He very aptly writes: “One could hardly find a point of view further from Cassirer’s
own” (Heis, 2011, 790). Indeed so, but now to be true to Cassirer’s spirit we should try
to work out our own position on the rationality of mathematical enquiry in the process
of coming to frame what has been happening in the mathematics of the recent past.
That this has typically not been felt to be a requirement of philosophy makes this no
easy task, but we should try to make a start anyway.
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2.4 Capturing Modern Geometry

Even to summarize one particular line of development here will not be easy. Along
with Grothendieck’s invention of scheme theory, mentioned in Section 2.2, we would
also need to talk about topos theory. This could take the form of a story of natural
unfolding. Indeed, we could report the originator’s own words.

one can say that the notion of a topos arose naturally from the perspective of sheaves in topology,
and constitutes a substantial broadening of the notion of a topological space, encompassing
many concepts that were once not seen as part of topological intuition . . . As the term “topos”
itself is specifically intended to suggest, it seems reasonable and legitimate to the authors of this
seminar to consider the aim of topology to be the study of topoi (not only topological spaces).

(Grothendieck and Verdier, 1972, 302)

However, for the purposes of this chapter, we need to race forward to much more
recent work. Jacob Lurie motivates his ‘Structured Spaces’ paper (2009) by means of
an account of the passage to less restricted forms of Bézout’s theorem. This is a result
that goes back to the eighteenth century, involving just the kind of achievement of
unity through addition of ideal elements that interested Cassirer. While it was known
to Newton that the number of real solutions to the intersection of a pair of plane curves
was bounded by the product of their degrees, by the nineteenth century we find a
form of the result that states that two complex projective plane curves of respective
degrees m and n which share no common component have m - points of intersection,
counted with multiplicity. Any two non identical conics meet four times, including at
those imaginary points at infinity in the case of two circles that were mentioned in the
previous section.

Lurie takes this result up, looking to understand it in terms of cohomology and the
cup product of fundamental classes of the curves, which corresponds to the class of
their intersection. Since this method does not work for non-transverse intersections,
using GrothendiecK’s constructions we then turn to ‘nonreduced’ schemes. Further,
according to Lurie, we should look at a Euler characteristic involving the dimension
of the local ring of the scheme-theoretic intersection plus various corrections.

Now an interesting thing happens when we attempt to retain the fundamental result
[C]U[C'] = [CN ('] in the very general setting where there may even be coinciding
components. Here we need derived algebraic geometry.

To obtain the theory we are looking for, we need a notion of generalized ring which remembers
not only whether or not x is equal to 0, but how many different ways x is equal to 0. One way to
obtain such a formalism is by categorifying the notion of a commutative ring. That is, in place of
ordinary commutative rings, we consider categories equipped with addition and multiplication
operations (which are encoded by functors, rather than ordinary functions). (Lurie, 2009, 3)

Lurie is drawing attention here to the passage from the proposition ‘x is equal to 0’ to
the set of ways in which it is equal. To do so is to take the first step up an infinitely
tall ladder of weakenings of identity. In Corfield (2003, ch. 10) I give an account of
categorification, the replacement of set by category by 2-category. In the dozen or so
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years since my book, the emphasis has swung round to the groupoid version of this
ladder, where sets become groupoids become 2-groupoids, etc. Lurie, in particular, was
instrumental in this change in showing that most constructions of ordinary category
theory have their analogues in the (00, 1) setting, where instead of hom-sets between
objects, we have co-groupoids.

Now, since when dealing with a pair of coinciding lines, we need to make identific-
ations in the form of isomorphisms, we find the following:

These isomorphisms are (in general) distinct from one another, so that the categorical ring C
“knows” how many times x and y have been identified. (Lurie, 2009, 4)

Of course, we never stop with a single step up this ladder, and eventually we seek
further generalized forms of ring, such as Ex,-ring spectra and simplicial commutative
rings. The key lesson here is that to retain a simple formulation, we must change our
framework, for one thing here to allow homotopic weakening. In Cassirerian terms,
this is forced upon us by the natural unfolding of the discipline. And it is not just
algebraic geometry that demands this richer notion of space, so does physics. The
moduli spaces of today’s gauge field theories are often stacks, such as the moduli
stack of flat connections for some gauge group. Higher gauge theory requires similar
homotopic weakening to higher stacks (Schreiber, 2013).

Naturally, Lurie is not a lone voice in calling for this change of outlook. Bertrand
Toén likewise gives an account of derived algebraic geometry:

Derived algebraic geometry is an extension of algebraic geometry whose main purpose is to
propose a setting to treat geometrically special situations (typically bad intersections, quotients
by bad actions, . . .), as opposed to generic situations (transversal intersections, quotients by free
and proper actions, ...). (Toén, 2014, 1)

He explains the need for homotopical perturbation’ in Kuhnian terms,

the expression homotopical mathematics reflects a shift of paradigm in which the relation of
equality relation is weakened to that of homotopy. (Toén, 2014, 3)

At the same time he points the reader to the Homotopy Type Theory and Univalent
Foundation (HoTT/UF) programme as the new foundational language for this homo-
topical mathematics.

Now, despite this shift to what appears to be the more complex derived setting,
familiar features are retained:

Just as an ordinary scheme is defined to be “something which looks locally like SpecA where A
is a commutative ring”, a derived scheme can be described as “something which looks locally
like SpecA where A is a simplicial commutative ring”.  (Lurie, 2009, 5)

So, an apparently complicated space is being stuck together from pieces. This theme is
taken up by Carchedi in a recent paper:

we will make precise what is means to glue structured co-topoi along local homeomorphisms
(i.e. étale maps) starting from a collection of local models. This parallels the way one builds



30 DAVID CORFIELD

manifolds out of Euclidean spaces, or schemes out of affine schemes. Since we are allowing our
“spaces” to be co-topoi however, in these two instances we get much richer theories than just
the theory of smooth manifolds, or the theory of schemes, but rather get a theory of higher
generalized orbifolds and a theory of higher Deligne-Mumford stacks respectively. This same
framework extends to the setting of derived and spectral geometry as well.

(Carchedi, 2013, 43)

The obvious point to be made is that all of this is just simply unthinkable without
category theory. No category theory, no modern geometry of this kind. On the other
hand, it may strike the reader as rather daunting that we may need to get a good handle
on what Lurie, Toén, and Carchedi are doing with (0o, 1)-toposes. However, we are in
luck since just the right kind of foundational language is at hand to help. As Toén noted,
in recent years there has emerged homotopy type theory (see Shulman’s and Awodey’s
chapters, this volume), which is expected to play the role of the internal language
of (00, 1)-toposes. Now, this language can be extended to describe large tracts of the
constructions of geometry. Schreiber found the ingredients for such an extension in
the writings of Lawvere, but needed to transplant them from the original topos setting
to the setting of (0o, 1)-toposes. Schreiber and Shulman (2014) worked out how this
can be done synthetically by adding ‘modalities’ to homotopy type theory.

I say it is fortunate for us that this is so, but we should not underestimate the work
that is still required. If we recall Friedman’s scheme of meta-scientific work leading
up to a revolution followed by philosophical interpretative work to make sense of
it, we might say that the cycle was largely broken through the twentieth century.
Even the lessons of the seventy-year-old category theory are still very far from having
been absorbed within philosophy. There have been many contributions made over
the decades, but not the kind of sustained work that would make it matter of course
for someone entering on a career in philosophy of mathematics to know the basics
of category theory. At the very least adjunctions and monads are needed to make
any headway.

There will not be space to go into much detail here, but let us begin at the ordinary
1-category level with Lawvere’s notion of cohesion (Lawvere, 2007) expressed as a chain
of adjunctions between a category of spaces and the category of sets. If we take the
former to be topological spaces, then one basic mapping takes such a space and gives
its underlying set of points. All the cohesive ‘glue’ has been removed. Now there are
two ways to generate a space from a set: one is to form the space with the discrete
topology, where no point sticks to another; the other is to form the space with the
codiscrete topology, where the points are all glued together into a single blob so that
no part is separable, in the sense that there are only constant maps from a codiscrete
space to the discrete space with two points. Finally, we need a second map from spaces
to sets, one which ‘reinforces’ the glue by reducing each connected part to an element
of a set, the connected components functor, TTo:

(o = Disc 4 U = coDisc) : Top — Set
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These four functors form an adjoint chain, where any of the three compositions of two
adjacent functors (U o coDisc, U o Disc, 7w o Disc) from the category of sets to itself is
the identity, whereas, in the other direction, composing adjacent functors to produce
endofunctors on Top (coDisc o U, Disc o U, Disc o 1) yields two idempotent monads
and one idempotent comonad.

Adjoint modalities where the monad is the right adjoint, [0 < ), can be thought
of as two different opposite ‘pure moments), such as codiscreteness and discreteness in
this case, or in another example by Lawvere (2000), oddness and evenness of integers.
There is an equivalence between types which are pure according to one of the moments
and those pure according to the other, but these pure collections inject into the whole
differently, as with odd and even integers into all integers, and discrete and codiscrete
spaces into all spaces.

On the other hand, in adjoint modalities where the monad is on the left, O - 0,
there is a single moment, but the full collection of types projects onto those pure
according to this moment in two different ways. Here, cohesive spaces project in two
opposite ways to discrete spaces, either by the complete removal of the cohesion or by
the identication of any cohering points. Another simple example has the real numbers
project to the integers (entities which are purely integral) in two ways, via the floor
and ceiling functions.

What Schreiber does is to find analogous modalities generated by an adjoint
quadruple between an (0o, 1)-topos, H, and the base (00, 1)-topos of co-groupoids,
ooGrpd:

(IT 4 Disc 4 T A coDisc) : H — ocoGrpd.

The three induced ‘adjoint modalities’ are called shape modality - flat modality -
sharp modality and denoted [ - b - . In a sense, this H can be seen as spaces
modelled on a ‘thickened’ point.

Now a very similar pattern repeats itself in the form of a further string of four
adjunctions, this time between H and another (oo, 1)-topos, corresponding to extend-
ing the thickened point infinitesimally. The three resulting adjoint modalities now
comprise two comonads and one monad.

The existence of these two related sets of three adjoint modalities is extraordinarily
powerful, allowing the expression of a rich internal higher geometry, including Galois
theory, Lie theory, differential cohomology, and Chern-Weil theory, and allows for the
synthetic development of higher gauge theory (Schreiber, 2013). There remains plenty
more interpretative work to be done in making these ideas more accessible, but for
our purposes here let us just retain the monad of the second adjoint modality triple,
denoted I or sometimes [, g 1tis the important one for us to continue the story from
Lurie and Carchedi.

So now, despite the apparently intimidating complexity of modern geometry, it is
possible to maintain, as Schreiber does, that there remains a simplicity.



32 DAVID CORFIELD

It would seem to me that the old intuition, seemingly falling out of use as the theory becomes
more sophisticated, re-emerges strengthened within higher topos theory. .. Notably all those
“generalized schemes”, “étale infinity-groupoids” and so forth are nothing but the implement-
ation of the old intuition of “big spaces glued from small model spaces” implemented in
homotopy theory. .. I think it’s a general pattern, in the wake of homotopy type theory we find
that much of what looks super-sophisticated in modern mathematics is pretty close to the naive

idea, but implemented internally in an co-topos.  (Schreiber, 2014b)

With homotopy type theory and the six modalities briefly mentioned earlier, and in
particular the infinitesimal shape modality, it is possible to describe synthetically what
itis to be a formally étale morphism’ Now choosing types, {U;}, as ‘model spaces), then
a general geometric space is a type X equipped with a map of the form

L[ U — X,

J
such that this map is a l-epimorphism and formally étale.! We have arrived thus at a
synthetic formulation of one of the very basic ideas of geometry.

Of course, there are many such basic ideas for us to consider. In this section, I
have sketched some ideas of an extraordinarily ambitious body of scientific and meta-
scientific work. It may appear that by proposing that we understand cutting-edge
geometry, I risk being caught up with the changeable fashions of research, but let us not
forget that these projects are rooted in the ideas of Grothendieck from many decades
ago, and that later developments were foreseen to some considerable extent by him
(see, e.g., Grothendieck, 1983). Current ideas thus emerge out of a vast body of work.
Indeed, Toén motivates a section where he constructs “a brief, and thus incomplete,
history of the mathematical ideas that have led to the modern developments of derived
algebraic geometry” as follows:

As we will see the subject has been influenced by ideas from various origins, such as intersection
theory in algebraic geometry, deformation theory, abstract homotopy theory, moduli and stacks
theory, stable homotopy theory, and so on. Derived algebraic geometry incorporates all these
origins, and therefore possesses different facets and can be comprehended from different angles.
We think that knowledge of some of the key ideas that we describe below can help to understand
the subject from a philosophical as well as from technical point of view. (Toén, 2014, 6)

If some details will inevitably change, that (oo, 1)-categories lie at the heart of modern
geometry will very likely not.

1 In the case of schemes, one needs to modify slightly to pro-étale morphisms, in some sense a reflection
of the less homogeneous nature of the spaces.
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2.5 Conclusion

I have sketched a broad canvas in this chapter. This is to some degree forced upon us
by the state we are in where philosophy has drifted from its task. Had the course of
philosophy after the famous Davos meeting (Friedman, 2000) favoured Cassirer, we
might have had a generation of philosophers keen to search for the emergence of new
self-understandings in mathematics. Surely in that case category theory, and its higher
forms, would have been absorbed much more fully into philosophical consciousness.
With the emergence of homotopy type theory, which is already generating consid-
erable philosophical interest, we may see this happen at last. What I have described
in this chapter should suggest that there is a great deal of further work to be done
in coming to understand extensions of homotopy type theory, certainly the cohesive
variety so far as geometry goes. It should also be noted that with a linear logic variant
of homotopy type theory it is possible to express synthetically many aspects of the
quantization of higher gauge theory (Schreiber, 2014a).

We have seen Weyl-like meta-scientific work in the formulation of cohesive homo-
topy type theory, requiring a range of modalities to be added to the basic type theory.
Unlike Weyl with Fichte, Schreiber follows Lawvere (1970, 1991) in finding inspiration
in Hegel. One can even tell a ‘Hegelian’ story starting from the opposition between
¥ and 1, rising through a process of ‘Aufthebung’ to the six modalities (Schreiber,
2014a, sect. 2.4), and even beyond to a further set of three modalities which may be
interpreted as capturing the supergeometry needed for dealing with fermions.

Contrast this with a different kind of use of Hegel by Cassirer and also Lakatos, a
philosopher more familiar to the Anglophone community. With the new framework
for geometry in place, we should be able to tell the Cassirerian story of the unfolding
of the past in mathematics and physics, as mathematicians such as Toén are inclined
to do by themselves. Mathematics is to be understood by the fact that it constitutes
a single tradition of intellectual enquiry. Ideas found at particular stages possess the
seeds of later formulations, which retrospectively allow us to understand them better.

We can use this opportunity to gain a grip on some real mathematical content,
offering the opportunity for a more interesting dialogue between philosophy of
physics and philosophy of mathematics. For one thing, the duality between geometry
and algebra that we saw between rings and affine schemes, and which lies behind
the relation between the Heisenberg and Schrédinger pictures, continues to higher
geometry and higher algebra, where it manifests itself in different formulations of
higher gauge theory. Fundamentally, this duality relates to the operation of taking
opposities of (00, 1)-categories (Corfield, 2015).

Finally, as with Cassirer’s observation about the seeds of the Erlanger Programme
lying within our perception, it is sometimes revealed during and after moments of
synthesis in mathematics that there is a reliance on aspects of cognition, perception,
and language, which had possibly gone unnoticed. I think at the very least a form of
dependent type theory is present in our cognition as manifested in ordinary language



34 DAVID CORFIELD

(Ranta, 1995). Likewise, the idea of big spaces glued from small model spaces seems
very basic. It is surely no accident that mathematicians speak of an ‘atlas’ to define a
manifold, since an ordinary atlas provides a collection of maps which overlap. It seems
likely we employ something like this in the cognitive maps by which we navigate our
domain. Perhaps one of the invariants of geometry has been found here.
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