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·1·
Why look at causality in the sciences?

A manifesto
Phyllis McKay Illari, Federica Russo, and Jon Williamson

Abstract

This introduction to the volume begins with a manifesto that puts forward two theses:

first, that the sciences are the best place to turn in order to understand causality;

second, that scientifically-informed philosophical investigation can bring something

to the sciences too. Next, the chapter goes through the various parts of the volume,

drawing out relevant background and themes of the chapters in those parts. Finally,

the chapter discusses the progeny of the papers and identifies some next steps for

research into causality in the sciences.

1.1 A manifesto

One might think that the sciences are the last place one should look to gain

insights about causality. This is because, due to influential arguments of Karl

Pearson, Ernst Mach and Bertrand Russell at the turn of the twentieth century,

research scientists have for a long time taken great pains to eradicate causal

talk from their research papers and to talk instead of associations, correla-

tions, risk factors and other ephemeral properties of data. Thus the traditional

home of the study of causality has been within the field of metaphysics in

philosophy – a field that has in its turn been treated sceptically by many

scientists.

Our first thesis is that, on the contrary, the sciences are the best place to

turn in order to understand causality. We maintain this thesis for a variety of

reasons.

First, as explained in Section 1.2.5, causal talk became more respectable
in the sciences at the turn of the twenty-first century, thanks to attempts

to mathematize the notion of cause. It is now becoming clearer that causal

reasoning is of central concern to scientists in many fields, as well as to

philosophers, and it is fruitfully pursued as a project of mutual concern.

Second, although causal talk was unfashionable in the twentieth century,

causality never really went away: scientists’ claims were always intended
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to inform policy, experiment and technology, and such applications require

causation, rather than mere association which tells us nothing about what

happens when we intervene to change the world.

Third, the concept of cause is changing, and the sciences are at the forefront

of these changes. In Aristotle’s time causality was understood as explanation

in general: the search for causes was a search for ‘first principles’, which were

meant to be explanatory. However, now causal explanation is usually thought

of as just one kind of explanation. In the modern era, causality became tied

up with the notion of determinism, the prevailing scientific view of the world

in Newtonian times. But determinism fell out of favour in science due to the

advent of quantummechanics. Moreover, a non-deterministic notion of cause

became increasingly relevant to science (in medicine, for example, claims like

‘smoking causes cancer’, where the cause is not sufficient to ensure the effect,

became quite acceptable), and causality lost its deterministic connotations.

If attempts within science to mathematize the notion of cause should prove

successful (though this is controversial), the current concept of cause may be

replaced by some formal explication, as happened so systematically with the

concept of probability. It is science that is driving change in the concept of

cause.

Fourth, the field of metaphysics generally benefits immeasurably from

interactions with the sciences. Our understanding of time and space, for

example, is derived from the use of these notions in physics, just as our

understanding of what an organism is (and could be) is derived from the

biological study of organisms. It is part of the job of any scientific field to

decide what the constituents of its field are, whether that is four-dimensional

space-time, bacteria, or market transactions. This is the same question that is

faced at a higher degree of abstraction by the metaphysician concerned with

what the constituents of the world are. It is bizarre to try to answer those

questions without looking at how the same questions are dealt with in the

sciences.

Our second thesis is that scientifically-informed philosophical investigation

can bring something valuable to the sciences, too. As can be seen in this

volume, many scientific fields are wrestling with the same methodological

problems concerning causality. Different sciences use different languages and

different paradigmatic examples, which can obscure the fact that they are

facing the very same problems. But philosophers of science are in a natural

position to identify common ground in the methods they encounter across

the sciences. These philosophers are becoming increasingly well-informed

about the sciences and so able to exploit that position in order to iden-

tify best practice. Of course philosophers are also well placed to identify

any conceptual problems that they encounter in the methods developed in

the sciences and to clarify the very concept of cause that these methods

appeal to.
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We think, then, that the most promising way forward in understanding

causality and making methodological progress is as a mutual project between

philosophically-minded scientists and scientifically-informed philosophers.

We hope that this volume is testimony to the fruitfulness of this way of looking

at causality in the sciences.

1.2 The core issues

1.2.1 Health sciences
While biomedical issues have long been a concern of ethicists and phenome-

nologists, only very recently have the health sciences become prominent in

the debates of philosophers of science and philosophers of causality. It is

now clear that the health sciences are an inspiring source for methodological,

epistemological and metaphysical issues concerning causation. The chapters

in this part of the volume testify to the increasing awareness of both philoso-

phers and practising scientists that biomedical research shares with other

domains a number of concerns, from the conditions for inferring causation

from correlational data to the definition, use, and role of mechanisms. What

triggered philosophers to pay more attention to this domain has been the

rise of the so-called evidence-based medicine (EBM) movement. Although the
first works by the epidemiologist Archie Cochrane going in this direction date

from the early 1970s, the term was coined and started to be customarily used
only in the early 1990s. The main result has been the production of the so-
called ‘evidence-hierarchy’, i.e. a list ranking methods for causal inference

from the strongest (notably, meta-analyses of randomized controlled trials) to

the weakest (notably, expert opinion). Evidence, it seems, is the pillar of science
and the tenets of EBM are well-entrenched. But these strongholds have been

under attack for the last 10 years at least. The battle to set the debate straight
is happening in this volume too.

For instance, in Causality, theories, and medicine Paul Thompson argues
against RCTs as the gold standard of causal inference in medicine. Ultimately,

Thompson’s critical target is statistical methods alone as reliable tools for
causal inference. His argument largely hinges upon the crucial differences

between trials in biomedical contexts and in agricultural settings, where

Fisher first developed the methods of randomization. He thus emphasises

the role of theory and of background knowledge in establishing causal claims.

Thompson’s emphasis on the role of ‘non-statistical’ elements in causal infer-

ence is also shared by Alex Broadbent in Inferring causation in epidemiology:
mechanisms, black boxes, and contrasts and by Harold Kincaid in Causal mod-
elling, mechanism, and probability in epidemiology. They turn attention to the
contentious issue of whether causal claims in epidemiology are supported by

mechanisms and, if so, how. Broadbent in particular opposes the ‘mechanistic
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stance’ and the ‘black box stance’ in epidemiology. He thoroughly discusses

pros and cons of taking mechanisms as necessary or sufficient to establish

causal claims. He also investigates assumptions and consequences of taking

mechanistic considerations in causal assessment to be descriptive or norma-

tive. Kincaid, on the other hand, focuses on the use of mechanisms, hoping to

make observational studies in epidemiology ‘more formal’ and consequently

stronger.

In The IARC and mechanistic evidence, Bert Leuridan and Erik Weber focus
on yet another aspect of using mechanisms. Their philosophical consid-

erations about causality and mechanisms are more specifically applied to

the procedures for evaluating carcinogenicity of agents by the International

Agency for Research on Cancer (IARC). They argue for an evidential role of

mechanisms. Mechanisms help in excluding confounding, that is when one

or more variables interfere and confound the ‘real’ causal relations. This may

lead IARC panels to conclude that an agent is carcinogenic when it is not,

and vice versa. A more theoretical contribution is that of Donald Gillies in The
Russo-Williamson thesis and the question of whether smoking causes heart disease.
Gillies specifically addresses the thesis, put forward in Russo and Williamson

2007, that evidence of both difference-making and mechanisms are needed
to establish causal claims. Using examples from the studies on smoking

and heart disease, Gillies refines the thesis, requiring that mechanisms be

‘plausible’ rather than ‘confirmed’ or ‘well established’.

The leitmotif of the chapters of this part seems to be that (pace EBM parti-
sans) there is more to causation in health contexts than simply statistics. This,

as we shall see next, is a thread followed also in the investigations on causality

in psychology. Likewise, chapters in the psychology part share concerns about

the role and import of difference-making and mechanistic information for

disease causation or causal assessment. Another relevant aspect highlighted

by this sample of works in the health sciences is that debates on conceptual

issues such as mechanisms are not pursued in abstract terms but are meant to

positively contribute to the discussions about the ‘use’ of causality, for instance

in IARC procedures.

1.2.2 Psychology
Psychology has a history of paying serious attention to the philosophical

literature and of valuing rigorous philosophical clarification of the basic con-

cepts and distinctions of psychology. Philosophy has not always returned the

compliment. As a result, many philosophers will be unaware of the explosion

of work in psychology on all aspects of causal reasoning. This fascinating work

should be of interest not only to philosophy but also to any area of science that
is wrestling with causality.

Psychologists test empirically how people do reason, not directly how people
should reason. Nevertheless, empirical results are of direct interest to other
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fields. Psychologists test ‘folk intuitions’ on causal reasoning, which is a useful

check on whether philosophers’ intuitions are systematically different from

those of the unphilosophical folk. For the rest of science, primarily concerned

with the normative aspect of causal reasoning, psychology can find out which
weaknesses and fallacies we are susceptible to in our causal reasoning, and in

which circumstances we do better – or worse.

The first three chapters in this part give a taster of this growing psycho-

logical literature. In Causal thinking, David Lagnado brings to bear a body
of empirical work to criticize the usual practice in psychology of separating

the study of causal learning (learning about a causal structure) and causal
reasoning (reasoning on the basis of a known causal structure). Lagnado
argues that studying both aspects together – on the basis of a psychological

process account of causal reasoning – will be superior. In When and how
do people reason about unobserved causes?, Benjamin Rottman, Woo-kyoung
Ahn and Christian Luhmann similarly use a body of empirical work to argue

that people’s reasoning about unobserved causes is more sophisticated than

has been recognized. Reasoning about unobserved causes is a big problem

for inferring causation from correlation – a concern of almost any science.

In particular they examine patterns that people infer in data that deviates

from simple correlations and conclude that there is a dynamic interplay

between observed and unobserved causes that any attempt to explain causal

learning must consider. Clare Walsh and Steven Sloman, in Counterfactual
and generative accounts of causal attribution, argue that there is evidence that
people think about both counterfactuals and mechanisms in forming causal

judgements. They go on to examine reasoning about prevention or causing an
absence, noting that there is considerably less consensus on prevention than
on positive causation.

The remaining chapters are more philosophical, and illustrate how inte-

grating psychological and philosophical work can benefit both disciplines. In

The autonomy of psychology in the age of neuroscience, Ken Aizawa and Carl
Gillett examine the issue psychologists or neuroscientists face when they

discover more than one neurological realizer for what was initially treated

as a single psychological phenomenon: do they keep a single psychological

phenomenon, with multiple realizers, or do they decide that after all there

was more than one psychological phenomenon? Aizawa and Gillett argue,

with reference to the discovery of the neural realizers of colour vision, that

the higher-level theory plays an essential role in this choice. It is worth

noting that Baetu’s chapter in Section 1.2.4 examines the same theme with
regard to classical genetics and molecular biology. Otto Lappi and Anna-Mari

Rusanen, in Turing machines and causal mechanisms in cognitive science, argue
that explanation using abstract representations in Turing machines illustrates

limitations of the account of mechanistic explanation put forward in recent

years in the philosophical literature on mechanisms. Finally, in Real causes
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and ideal manipulations: Pearl’s theory of causal inference from the point of view
of psychological research methods, Keith Markus sets out a detailed examination
of Pearl’s account of causal reasoning (see Section 1.2.5), when applied to psy-
chology. Markus discusses ways in which Pearl’s formalism should be inter-

preted and argues that it has certain limitations in the context of psychology.

This part thus develops themes arising in psychology itself and from exam-

ination of psychology – but which are also of vital interest to other sciences.

If it is true that reasoning to a causal structure and reasoning from a causal

structure influence each other, as Lagnado argues, then that is of concern to

the many scientists whose work is related to either or both forms of reasoning.

The issue of scientific taxonomy, or how a field should chop up its domain,

is of wide concern, as is examination of the limitations of highly successful

inference methods such as those based on Pearl. Finally, mechanisms and

their position in causal judgements, and explanations, are clearly of increasing

interest. The use of mechanisms in causal reasoning is now a substantial

debate in psychology, that has come from philosophy, and – on the basis of

much of this volume – is rapidly becoming a debate of interest right across

the sciences.

1.2.3 Social sciences
The social sciences are another area that took time to attract the interest of

philosophers of causality and of philosophically-minded scientists. It has per-

haps been methodological advancements, especially in quantitative research,

that have enabled the social sciences to shake off an inferiority complex with

respect to the hard sciences. Arguably, the social sciences still cannot establish

the same kind of laws as physics, but the use of more rigorous methods

has allowed a much deeper understanding of many social phenomena, and

more accurate predictions and well-informed interventions through social

policy. Moreover, recent debates in philosophy give room for rethinking even

traditional debates in social science.

This is the case, for instance, in the contributions Causal mechanisms in
the social realm by Daniel Little and Getting past Hume in the philosophy of
social science by Ruth Groff. On the one hand, Little endorses causal realism
and asks what ontology is to be developed for the social realm. He argues

for mechanisms, but within a microfoundations approach: in social contexts

‘causal mechanisms are constituted by the purposive actions of agents within

constraints’. Little also makes clear that such an ontology in the social con-

text is overtly anti-Humean, because causation is not in regularities but in

mechanisms. Humeanism is also the critical target of Groff. Notably, she dis-

cusses how the tacit Humean metaphysics can be by-passed in social science

and touches on issues related to methodological individualism and causal

powers. Although Groff does not offer any definite positive arguments, she

nicely builds bridges between the traditional philosophy of science literature,

stances in analytic philosophy, and the methodology of social science. The



Why look at causality in the sciences? 9

kind of anti-Humeanism argued for in these two chapters concerns meta-

physics, namely whether or not all there is about causation is the regular
sequence of effects following causes in time. The line of argument of Little

and Groff may also be extended to epistemological considerations, namely

whether or not in order to know about causal relations all we have to do is
to track regular sequences of effects following causes in time. An attempt to

challenge ‘epistemological Humeanism’ has been carried out by Russo and

Williamson (2009a, b) for the social sciences and for epidemiology. Russo has
argued that causal epistemology hinges upon the notion of variation. Simply

put, model building and model testing is about meaningful joint variations
between variables of interest; conditions of invariance of parameters or regu-

larity of occurrence are instead constraints to ensure that variations are causal

rather than spurious or accidental. Arguments given in Section 1.2.2 seem to
suggest that psychologists also track variations rather than regularities.

In the next group of chapters, two main issues come up: mechanism

and structure. In Causal explanation: recursive decompositions and mechanisms,
Michel Mouchart and Federica Russo tackle the problem of causal explana-

tion in social science research, especially quantitative-oriented research. They

present the structural modelling approach as a means to causally explain a

social phenomenon and advance the view that the core formal tool – i.e. the

recursive decomposition – needs to be interpreted in mechanistic terms. In

Counterfactuals and causal structure by Kevin Hoover, structural modelling
has a slightly different facet. ‘Structural’ does not refer to the structure or

mechanism that the recursive decomposition represents, but to the structural
equations. Hoover’s structural account hinges on Simon’s notion of causal
ordering, and the key aspect is the invariant parametrization of the system.

The two chapters have in common, though, that structural modelling is an

alternative to a manipulationist or interventionist account à la Woodward
(Woodward, 2003). Simply put, manipulationist accounts hold that x is a cause
of y if, and only if, were we to manipulate or intervene on x, some change in
y would accordingly follow (with the usual caveats of holding fixed any other
factor liable to interfere in the relation between x and y). Interestingly enough,
manipulability theories now enter philosophical discussions in a different

way. It seems that the importance of the notion of manipulation is not so

much in providing an explication of the concept of causation, but rather in

explicating other notions, e.g. that of ‘constitutive relevance’ used by Craver

(2007). In The error term and its interpretation in structural models in econo-
metrics, Damien Fennell also considers structural models based on Herbert
Simon’s notion of causal ordering, and in particular examines issues related to

the error term in the equations. The goal of the chapter is mainly expository,

in making those who use these kinds of models in econometrics aware of

conceptual issues that can hinder successful and meaningful results. In the

last chapterA comprehensive causality test based on the singular spectrum analysis,
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Hossein Hassani, Anatoly Zhigljavsky, Kerry Patterson and Abdol S. Soofi

discuss a new statistical method for testing causal relations not in the tradition

of structural modelling, but rather in the tradition of Granger’s approach. In

this approach causality does not lie in the structures ormechanisms identified in
the joint probability distributions, but, to put things very simply, it lies in the

power of a (set of) cause-variables to convey information in order to predict

the effect-variable.

The second group of chapters, and in particular Hoover’s, is closely related

to issues also addressed by Judea Pearl and Nancy Cartwright in Section 1.2.5:
counterfactuals and structural models, structural models and external validity,

going beyond statistics in drawing causal inferences. It is also worth mention-

ing that most chapters again deal, either directly or indirectly, with mecha-

nisms. A possible explanation is that one may require more than probabilities

to give a satisfying conceptual analysis of causation. Perhaps probabilities are

not enough even from a methodological point of view: large parts of these

methodological chapters invoke, albeit in different ways, mechanisms. The

fact that so much emphasis is given to mechanisms may be due to a shift of

focus from probabilities to mechanisms. This does not necessarily mean, of

course, that probabilities do not play any role in the explication of causation.

1.2.4 Natural sciences
The natural sciences, and particularly physics, are the traditional source for

philosophers of science, and for many years natural scientists have taken an

interest in the philosophical literature on their field. This part begins with

chapters representing the established but growing interest of philosophers in

the biological sciences. These engage with topics from mechanism discovery

in molecular biology to mathematical modelling in evolutionary biology. The

increasing diversity of engagement between philosophy and the natural sci-

ences is also represented by work on the far newer climate science. The part

closes with two chapters demonstrating the cutting edge of work on causality

emanating from physics.

In Mechanism schemas and the relationship between biological theories, Tudor
Baetu looks at the relationship between classical genetics and molecular

biology, and argues that there are cases where the accommodation of data

from molecular biology results in better classical explanations. For exam-
ple, Marfan, Loeys-Dietz and Ehlers-Danlos syndromes can be confused as

a single genetic disease, but they are different – and this has implications

for their treatment. Baetu argues that this means that classical genetics and

molecular biology are not merely parallel explanatory projects, but related.

He offers an account of this relation in terms of mechanism schemas.

Note that this chapter is thematically linked to the chapter by Aizawa and

Gillett in Section 1.2.2. The common concern is with when a difference in
lower-level realiser (for Baetu, biochemical molecules; for Aizawa and Gilett,
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neural systems) matters to the higher-level theory (for Baetu, classical genet-

ics; for Aizawa and Gillett, colour vision), when it does not, and why.

Roberta Millstein turns to our concept of chance in Chances and causes in
evolutionary biology: how many chances become one chance. Millstein argues
that at least seven colloquial uses of chance in evolutionary biology can all

be translated into the Unified Chance Concept (UCC) by specifying the types

of causes that are taken into account (i.e. considered), the types of causes that

are ignored or prohibited, and the possible types of outcomes. The UCC is

useful, Millstein argues, because it makes it easier to translate between the

colloquial chance concepts, and also from them to more formal probabilistic

language. In Drift and the causes of evolution, Sahotra Sarkar takes a very
different approach. Drift is an explanation for evolutionary outcomes which

are not due to natural selection, mutation, migration or the other recognized
causes of evolution. There is always deviation from expected outcomes due to

these causes, and this is drift. Sarkar works in the framework of mathematical

modelling of evolutionary processes. He distinguishes between the constitu-

tive and the facultative assumptions of a model. The constitutive assumptions

define the model, and cannot be changed without changing the system, while

the facultative assumptions can vary. So the facultative assumptions give you

the causes which act against the background conditions that are given in the

constitutive assumptions. Sarkar takes whether the initial size of a population

is finite or infinite as a constitutive assumption, and builds a simple mathe-

matical model to show that this models drift, satisfying the usual conditions

for drift. But drift is in no facultative assumption of this model. All that is

required for drift is that the population be of a finite size; this finite size is

part of the conditions under which the evolutionary causes – selection and

mutation – operate. Sarkar concludes that drift is not a cause of evolution.

In the chapter, In defense of a causal requirement on explanation, Garrett
Pendergraft examines whether equilibrium explanations, which explain an

observed equilibrium state of a dynamical system by providing a range of pos-

sible initial states and possible causal trajectories of the event being explained,

violate Pendergraft’s Causal Factors Requirement: an explanation of an event

must provide information about the causal factors that influenced whether

or not that event occurred. Pendergraft argues that equilibrium explanations

satisfy this, since they do provide information about causal factors. In so far

as drift is an explanation of evolutionary outcomes in terms of chance, the

question of whether or not it is a cause of evolution is a link between Millstein

and Sarkar’s work, and Pendergraft’s.

Paolo Vineis, Aneire Khan and Flavio D’Abramo, in Epistemological issues
raised by research on climate change, examine some of the epistemological
challenges faced by climate change research. This is an area with special

challenges for coming to causal conclusions, since randomized experiments

cannot be done, but only experiments on microenvironments artificially



12 Causality in the Sciences

constructed in the laboratory, where the results don’t always extrapolate to

the real world, and some highly speculative attempts to control real weather,

such as to make rain by seeding clouds. This chapter considers particularly

the example of rising levels of certain diseases that can clearly be traced to

rising salt levels in Bangladesh, and whether we can say that climate change

caused these diseases.

One interesting account of causality that emanates from the traditional

engagement of philosophy with physics is the process theory of causality

(Reichenbach 1956; Salmon 1998; Dowe 2000). Reichenbach’s seminal idea,
taken up and developed by Salmon, held a process to be causal if it is capable

of transmitting a mark. Salmon and Dowe later adopted a version of the

theory according to which a causal process is one that transmits or possesses

a conserved physical quantity such as charge or angular momentum. In Expli-
cating the notion of ‘causation’: the role of extensive quantities, Giovanni Boniolo,
Rosella Faraldo and Antonio Saggion present a development of the process

theory, in which conserved quantities are replaced by extensive quantities. An
extensive quantity is defined as a quantity whose value is given by the volume

integral of some function defined over space-time points. Extensive quantities

include conserved quantities like angular momentum and charge, but also

quantities such as volume and entropy.

For Reichenbach, causal relationships were also characterized probabilisti-
cally. His probabilistic theory was based around the common cause principle,
which says roughly that if two events are probabilistically dependent but

neither causes the other, then there is some set of common causes of the two

events that screens off the dependence (i.e. the two events are probabilistically

independent conditional on the common causes). Miklós Rédei and Balázs

Gyenis, in Causal completeness of probability theories – results and open problems,
investigate the question of when the common cause principle is satisfiable. It

turns out that in some probability spaces it is possible to satisfy the principle

but in others it is not. Their chapter considers both classical and non-classical

probability spaces and presents the state-of-the-art concerning what is known

about this problem.

On the surface these chapters are very different, arising from different

concerns from different scientific fields. But there are some common themes

at work here, and in the rest of the volume. The concern of Vineis, Khan and

D’Abramo over difficulties with randomized experiments also arises in Sec-

tion 1.2.1, on the health sciences, and in Section 1.2.5, on computer science,
probability and statistics. The issue of mechanisms arises here, as elsewhere.

For Baetu, understanding mechanisms and mechanism discovery is vital to

understanding the relation between theories, while for Pendergraft the chal-

lenge is better to understand different approaches to explanation. The overall

project of better understanding explanation is also reflected in the chapter

by Lappi and Rusanen examining mechanistic explanation in Section 1.2.2.
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The work on mechanisms is, on the face of it, very different from the work

on causal processes originating in physics, but there are commonalities in

the role of mechanisms and processes in causal explanation and inference, as

developed in Section 1.2.6.

1.2.5 Computer science, probability and statistics
As discussed earlier, in the face of criticisms fromMach, Pearson and Russell,

in the twentieth century research scientists largely avoided explicit discussion

of the causal claims that were implicit in their papers. But certain develop-

ments at the turn of the millennium have helped to rehabilitate explicit talk

of causality in the sciences, and now ‘causality’ is no longer a dirty word. It is

in the context of these developments that the chapters of this part of the book

should be placed.

The 1980s saw the beginning of a revolution in the use of causal methods
in the sciences, stemming from interest amongst computer scientists and

statisticians in probabilistic and graphical methods for reasoning with causal

relationships. Of course revolutions don’t just pop out of thin air, and there

were several – rather disjoint – lines of thought that led to these important

advances. Notably, philosophers of science attempted to characterize causal

relationships in terms of patterns of probabilistic dependencies and inde-

pendencies, and represent them graphically using ‘causal nets’ (Reichenbach

1956); computer scientists used graphs that chart probabilistic dependencies
and independencies to construct computationally tractable representations of

probability distributions (see, e.g. Chow and Liu 1968); statisticians were also
using graphical models to represent dependence and independence relation-

ships in the analysis of contingency tables (Darroch et al. 1980). In the 1980s
these advances led to Bayesian net methods for causal reasoning (Pearl 1988).
Here causal relationships are represented by a directed acyclic graph and

causality is tied to probability via the causal Markov condition, which says that
each variable in the network is probabilistically independent of its non-effects,

conditional on its direct causes (see, e.g. Williamson 2005). In the 1990s these
methods were reconciled with the use of structural equation models to handle

causal relationships – a formalism, stemming from work in the 1920s, that is
essentially very similar to the Bayesian net approach (Pearl 2000). As can be
seen from the chapters in this part of the book, the Bayesian net approach, and

more generally the approach to causality stemming from recent developments

in computer science, probability and statistics, remains a thriving area of

interesting research questions and lively debate.

In Causality workbench, Isabelle Guyon, Constantin Aliferis, Gregory
Cooper, André Elisseeff, Jean-Philippe Pellet, Peter Spirtes and Alexander

Statnikov focus their attention on methods for the automated learning of

causal models directly from data. Hitherto, the field of machine learning in

computer science has primarily concerned itself with the task of generating
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models that are predictively accurate. Broadly speaking, predictive accuracy

merely requires that the model adequately capture the underlying probability

distribution. Recently, however, there has been some demand for models that

are explicitly causal, in order to predict the effects of interventions. Thus a

supermarket may wish to use shopping data not only to predict which aisles

will need stocking most regularly but also to determine where to move a par-

ticular product in order to increase sales of that product. Causality workbench
presents and discusses an exciting new testbed for computer systems that

attempt to learn causal relations directly from data.

The standard approach to learning causal relationships from data is to find

a Bayesian net with the least number of arrows from all those that fit the

data, and to interpret the arrows in the graph of that net as characterizing the

causal relationships. InWhen are graphical causal models not good models?, Jan
Lemeire, Kris Steenhaut and Abdellah Touhafi argue that this approach may

be unsatisfactory. By appealing to ideas concerning Kolmogorov complexity,
used widely in computer science in the context of data compression, they

argue that the correct causal model may not be a minimal Bayesian net.

Under the standard machine learning approach, the probabilities of a

Bayesian net that has been learnt from data are usually simply the frequencies

induced by the data. But Bayesian nets were originally conceived of as belief
networks: the probabilities in the net were supposed to represent degrees of
belief that would be appropriate for an agent to adopt given the evidence of

the data (Pearl 1988). In Why making Bayesian networks objectively Bayesian
makes sense, Dawn Holmes argues for a return to the Bayesian, degree of
belief interpretation. But rather than advocating the usual subjective Bayesian

approach, according to which degrees of belief are subject to rather loose

constraints and are largely a question of personal choice, Holmes advocates

objective Bayesianism, which holds that degrees of belief are typically subject

to tight constraints that leave little or no room for personal choice (Jaynes

1957; Williamson 2010). The key question is: given certain causal and prob-
abilistic evidence, which Bayesian net best represents appropriate degrees of

belief? This question has been tackled by Williamson (2005) and Schramm
and Fronhöfer (2005), as well as in a distinct line of work culminating in
Holmes’ chapter.

Bayesian nets are normally construed as representing causal relationships

in a qualitative way, via the arrows in the graph of the net. But one might

suspect that causality is a matter of degree, in which case the question arises

as to how one could measure the extent to which one variable causes another.

This question is taken up by the next two chapters. Probabilistic measures of
causal strength, by Branden Fitelson and Christopher Hitchcock, presents a
detailed comparative analysis of a plethora of measures of causal strength

that have been put forward in the literature on causality. Kevin Korb, Erik

Nyberg and Lucas Hope, in their chapter, A new causal power theory, argue that
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a good measure of degree of causal power can be constructed by appealing to

concepts from information theory in computer science – in particular to the

concept of mutual information, a concept that is very natural in this context

and which underpins, for example, the approach of Chow and Liu (1968)
alluded to above.

A quantitative view of causal relationships also forms the backdrop of

Multiple testing of causal hypotheses by Samantha Kleinberg and Bud Mishra.
Their chapter seeks to use methods from computer science and statistics to

determine those causal hypotheses that are significant in the statistical sense.

Rather than framing their approach in the Bayesian net formalism, which

can struggle to cope with the kind of time-series data under consideration in

this chapter, Kleinberg and Mishra develop a framework using other methods

from computer science, in particular temporal logic andmodel checking. They

apply their approach to microarray data, to neural spike trains, and also to data

concerning political speeches and job approval ratings.

Machine learning methods for constructing Bayesian nets can be catego-

rized according to whether or not they attempt to discover latent variables,

i.e. variables which are not themselves measured in the data but which are

causes of two or more variables that are measured. Latent variables are impor-

tant to many sciences, not least to psychology which typically uses factor

analysis to discover unmeasured common causes (cf. the chapter of Rottman

et al. discussed in Section 1.2.2). InMeasuring latent causal structure, Riccardo
Silva presents an approach to learning causal relationships that explicitly

represents latent variables as nodes in the graph of the Bayesian net. This

approach is applied to an example concerning democracy and industrializa-

tion and to an example concerning depression.

Judea Pearl, in The structural theory of causation, continues his programme
of providing a mathematical formalism for causality that unifies approaches

to causal reasoning that are extant in the sciences. After explaining the core

features of his new theory – which extends the Bayesian net approach of Pearl

(1988) and the structural equation approach of Pearl (2000) – Pearl discusses
how his new theory can underwrite counterfactual conditionals (conditionals

whose antecedents are false), a topic already encountered in Hoover’s chapter

earlier in the volume. Pearl argues that his account supersedes attempts by

philosophers of science to provide a probabilistic analysis of causality, and

should be preferred to the potential-outcomes (also called potential response)
approach that emerges from work by Neyman and Rubin (Neyman, 1923;
Rubin, 1974).
The potential response approach is also discussed by Sara Geneletti and

Philip Dawid in Defining and identifying the effect of treatment on the treated.
They argue that their decision-theoretic version of the Bayesian net approach

can be viewed as a generalization of the potential response approach. More-

over, they argue that their approach can be used to formulate and measure the
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effect of treatment on the treated, an important measure of causal strength that
applies to cases where those who are treated are to some extent self-selected.

Statistical and machine learning methods examine data involving a sample

of individuals and make general causal claims on the basis of this data.

(As Geneletti and Dawid emphasize, one needs to be very careful not to

overgeneralize at this stage.) Then policy makers need to apply the general

causal claims to a group of individuals who require remedial action in order

to identify the most effective interventions. This two-stage process is the focus

of Nancy Cartwright’s chapter, Predicting ‘it will work for us’: (Way) beyond
statistics. Cartwright argues that statistical methods alone will not guarantee
the success of either stage of the process. The second stage, Cartwright main-

tains, needs to be informed by case-specific causal models, concerning the

group of individuals who will be treated, and this requires local knowledge

about that group that goes well beyond the original dataset. On Cartwright’s

account, general causal claims are claims about tendencies or capacities and

the first stage needs to be backed up by theoretical knowledge of the domain –

knowledge of the mechanisms that are responsible for the regularities in

the data. (This latter view accords with Thompson’s chapter, discussed in

Section 1.2.1.)

1.2.6 Causality and mechanisms
This final part of the volume examines mechanisms and their relationship

to causality. Mechanisms are important to causal explanation, as one way of
explaining a phenomenon is to point out the mechanism responsible for it.

As we see in the parts on Health Sciences, Section 1.2.1, and Social Sciences,
Section 1.2.3, mechanisms are of increasing importance in causal inference.
(See also Russo and Williamson, 2007; Russo and Williamson, 2011; Illari,
2011). As we see in the part on Psychology, Section 1.2.2, mechanisms are
also important in causal reasoning (reasoning from a known causal structure).
It seems that mechanisms are of interest to every aspect of thinking about

causality. The widespread feeling that investigating mechanisms is a fruitful

avenue to explore is illustrated in the sheer number of chapters in this volume

that touch on themethodology, epistemology andmetaphysics of mechanisms

in some way or another.

This is a very clear case where philosophical theorizing about the method-

ology of science is of interest right across scientific disciplines. And while

these chapters are more theoretical than those in other sections, since they are

not examining an issue arising in a single scientific field, they are all aiming

to contribute to scientific work, and are scientifically informed. These chap-

ters illustrate the sheer breadth of interesting work concerning causality and

mechanisms, stretching from the very idea of mechanism, their metaphysics,

and the applicability of particular conceptions of mechanism across scientific

domains.
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In The idea of mechanism Stathis Psillos disentangles two historical ideas
of mechanism. The first is the mechanical conception of mechanism, that

mechanisms are configurations of matter in motion subject to mechanical

laws. Psillos examines Poincaré’s critique that such mechanical mechanisms

are too easy to envisage to be informative, because if there is any possible

configuration of matter in motion that can underpin a set of phenomena, then

there is an infinity of such configurations. The second idea of mechanism is

the quasi-mechanical conception of mechanisms, where a mechanism is any

arrangement of parts into wholes in such a way that the behaviour of the whole

depends on the properties of the parts and their mutual interactions, where

this is what constitutes their unity. Psillos discusses Hegel’s critique that the

unity that such mechanisms possess is external to them, because of the need

to identify a privileged decomposition out of those available, and so the idea that
all explanation is mechanical in this sense is devoid of content. Psillos argues

on the basis of these two critiques that mechanisms are not the building

blocks of nature, so undermining the metaphysics of mechanisms, but that
nevertheless the search for mechanism is epistemologically andmethodologically
useful. This is a valuable critical historical introduction to the idea of mecha-

nism, against which many of the other chapters can be seen as developing a

distinct new notion of mechanism.
The first two chapters engage with the metaphysics of mechanisms. In

Singular and general causal relations: a mechanist perspective, Stuart Glennan
examines the relation between singular and general causal relations – the

difference between Fred’s taking penicillin curing him, and penicillin in
general curing certain forms of infection. Glennan argues that the simplest

reason for preferring singularism from a mechanista’s perspective (the per-
spective of someone promoting mechanisms for at least one of the three

purposes outlined above) is because mechanisms are particulars – partic-

ular things. Glennan then argues for singular determination, which is the

view that any causal interaction is a singular case of causal determination,

where any causal generalisation is true merely in virtue of a pattern of such

singular instances. For Glennan, this is the best metaphysical view of the

fundamental components of mechanisms since it offers a unified singularist
view of these, with the singularist view of mechanisms themselves as partic-
ulars. Phyllis McKay Illari and Jon Williamson, in Mechanisms are real and
local, examine the implications of two widely shared premises concerning
mechanistic explanation: that mechanistic explanation offers a welcome alter-

native to traditional laws-based explanation, and that there are two senses

of mechanistic explanation: epistemic and physical explanation. They argue

that in mechanistic explanation, mechanisms are treated as both real and

local, and argue that reality and locality require an active metaphysics for
the components of mechanisms, illustrated using Cartwright’s capacities

approach.
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The next two chapters both address the idea of a causal link, or causal
continuity. In Mechanistic information and causal continuity, Jim Bogen and
Peter Machamer set out to give a novel account of causal continuity in terms

of mechanistic information. They use examples of Crick’s early conception of

gene expression and a sensory-motor reflex in the leech to argue that mecha-

nistic information can be understood in terms of goals served by mechanisms,
and the reach or strength and independence of influence of initial stages of
the mechanism on the final stages. Information is ineliminable because the

continuity of some mechanisms is a function of their teleological structure,

i.e. the goal of the mechanism, and so without attention to the teleological

structure, the vital continuity is lost. This chapter has potential implications

for the epistemology and methodology of mechanisms, along with their meta-

physics. In The causal-process-model theory of mechanisms, Phil Dowe addresses
the issue of the applicability of causal process theories – such as his own view,

mentioned in Section 1.2.4, that causal processes involve the maintenance of
conserved quantities – to areas of science other than physics. Dowe considers

the need for an account of what it is that scientists look for when they look

for something that underlies correlations as an important motivation for

his account. If processes involve a spatiotemporally continuous link between

cause and effect, then processes cannot involve absences, which would be a

gap in a causal process. But absences are sometimes cited as cause or effect,

such as in: ‘my failure to water the plants caused their death’. An absence of
watering is said to cause a positive outcome. Dowe offers an account of causal

relevance in mechanisms, which can incorporate his theory that causation

involves causal processes understood in terms of conserved quantities, but

which also allows absences in causal explanation.
Meinard Kuhlmann, in Mechanisms in dynamically complex systems, exam-
ines whether the concept of mechanism can be extended to cover systems

that are not just compositionally complex, but exhibit complex dynamics –
what he calls ‘dynamically complex systems’. These dynamics arise from the

interaction of the system’s parts, but are largely irrespective of many proper-

ties of these parts. Kuhlmann uses detailed examples of dynamical systems

in analysis of heart beat, and financial markets, to argue that dynamically

complex systems are not sufficiently covered by the available conceptions of

mechanisms. He explores how the notion of a mechanism has to be modified

to accommodate this case.

Julian Reiss, in Third time’s a charm: causation, science, and Wittgensteinian
pluralism, examines pluralism about causality: the claim that there is no sin-
gle correct account of what cause means, but instead multiple concepts of
cause. Reiss examines three different accounts that all reject any attempt to

define ‘cause’ in terms of necessary and sufficient conditions. Instead they

regard different instances of causal relationships such as ‘pulling’, ‘pushing’,

‘breaking’ or ‘binding’ as sharing family resemblances at best: pushing and
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pulling clearly share something in common, as do breaking and binding, but

there is no single property shared by all instances of such causal terms. This

is a pluralist tradition inspired by Wittgenstein and shared by Anscombe,

Cartwright, and Machamer, Darden and Craver, and is a form of pluralism

about causality that interests many working on mechanisms. Reiss argues for

the third form of pluralism, which he says is a form of inferentialism: the

method of verifying a causal claim – of evidentially supporting it – determines

with what other claims it is inferentially related.

In different ways these chapters are attempting to give an account of mecha-

nisms suitable to their place in causal explanation, inference and reasoning. It

is their place in explanation that drives Glennan’s emphasis on singularism,

and Illari and Williamson’s related examination of locality, while Machamer

and Bogen, and Dowe’s very different attempts to give an account of the

causal link – if successful – are important to the usefulness of mechanisms

to causal inference. One ambition is also for a single account of mechanism

that is applicable across scientific disciplines. Ultimately, the hope is for a

general account of mechanisms – the first glimmerings of which can be seen

here – which fruitfully addresses all three methodological uses of mechanisms
in all scientific disciplines. This is ambitious, and it remains an open question
whether it will be possible.

1.3 Whence and whither?

Progeny of the chapters.
Some of the chapters in this volume were invited contributions, but most

were submissions to an open call for papers. Within the broad remit of

Causality in the Sciences, all authors chose their own topics and titles,
and all papers were refereed. Many submissions were received from par-

ticipants in two events of the Causality in the Sciences Conference Series
(http://www.kent.ac.uk/reasoning/cits): Causality Study Fortnight held
at the University of Kent in September 2008, andMechanisms and Causality in
the Sciences held at the University of Kent in September 2009.

Next steps.
The individual chapters in this volume indicate a plethora of open questions

for research on causality. Here we highlight just a few topics for future

research that stand out as particularly pressing.

From the volume it is clear that there is a mature field of research centred

on the question of the relationship between causality and probability (see

Section 1.2.5). But the volume also indicates that there is also a newer, rapidly
developing area of research, exploring the relationship between causality and

mechanisms (see in particular Section 1.2.6). However, we received very few

http://www.kent.ac.uk/reasoning/cits
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papers on all three: on causality and probability and mechanisms, and the
question of how probabilistic accounts of causality canmesh with mechanistic

accounts of causality desperately needs answering. This suggests that a first

hot topic for future research will be on causality, probability and mechanisms,

bridging the causality-probability agenda on the one hand, and the causality-

mechanisms agenda on the other hand.

Although successful formalisms exist for handling aspects of causal rea-

soning using probabilities, few are explicitly designed for handling mecha-

nisms (see however the discussions of the possible mechanistic interpreta-

tions of models in social research in Section 1.2.3). Indeed, a detailed formal
understanding of causal reasoning using mechanisms is sorely lacking. So a

second hot topic is likely to concern formalisms for handling mechanisms,

particularly in causal inference and reasoning. Such formalisms may emerge

from the existing formalisms for reasoning using probabilities (e.g. Bayesian

nets or multilevel models), or they may need to be entirely new – tailor-made

methods for handling causal mechanisms.

A number of chapters invoke mechanisms as evidence for causal tasks,

e.g. for the assessment of carcinogenicity. Interestingly, in biomedical and

social contexts alike scientists are suggesting that the ‘mechanistic picture’ is

more complicated than it may look at first sight. They are thusmoving towards

‘ecological views’, namely approaches that aim to include both biological and

socio-economic factors in the samemechanism. This suggests a third hot topic
will be to develop pan-scientific causal methods. In particular, we are in need of
accounts where (i) the concept of mechanism permits the inclusion of factors
of different natures, (ii) factors of different natures can providemultiple points

of epistemic access to the same mechanism, and (iii) formal models can handle
factors of different natures.

Having presented three questions that are likely to feature in future

research, we should make some cautionary remarks about how these ques-

tions might be solved. We suggested in our manifesto (Section 1.1) that theo-
rizing about causality is best pursued as a collaborative project involving both

philosophers of science and scientists from different disciplines and fields.

But such a broad project poses two related challenges.

Causality is at the crux of metaphysical, epistemological andmethodological

issues in the sciences. And different participants in the debate have different

primary concerns. The first challenge in theorising about causality is to avoid

blurring these three kinds of issue, remaining explicit about which kind is

being addressed, and how. For example, the question above of how to inte-

grate ontologically different factors in the same mechanism has metaphysical,

epistemological and methodological facets. Yet giving a methodological answer
to someone concerned about the metaphysics of this question, or vice versa,
will not help them.
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Nevertheless, the metaphysics, the epistemology and the methodology of

causality are not wholly distinct. We should expect answers to any one of

the three kinds of issue to have implications for the other two kinds. The

second challenge is to produce an understanding of causality that success-

fully addresses all three kinds of issue in a unified way, without blurring the
distinctions between metaphysics, epistemology and methodology. To make

progress on this requires making explicit how metaphysics, epistemology and

methodology impact on each other. This is challenging. Note that Cartwright

(2007) is pioneering in this regard, urging that questions of metaphysics,
methods and use cannot be successfully addressed in isolation. Cartwright
makes it clear that she thinks an understanding of causality that does not help
us address how causal claims inform policy will never be adequate.
In an era of concern about the ‘impact’ of research, philosophers have to

make the effort to explain why and how philosophical discussions of causality

have a bearing on policy and other questions of intervention and control. But

scientists also need to make an effort to step back and think of the coherence

of the foundations of their work: a ‘methodological salad’ – an eclectic mix of

methods – will inspire no confidence at all unless unifying foundations can

be found for the ingredient methods.

In sum, while a sound understanding of causality can best be gained though

a mutual project involving the sciences and philosophy, care must be taken

not to make progress on metaphysics at the expense of epistemology and

methodology, or vice versa.
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Causality, theories and medicine

R. Paul Thompson

Abstract

Randomized controlled trials (RCTs) are pervasive in clinical medical research, which

stands in stark contrast to other sciences such as physics, chemistry and biology. Most

clinical researchers that use RCTs regard them as uncovering causal connections.

R. A. Fisher best articulated the rationale for this position in 1935. According to Fisher,
if randomization, blocking and replication demonstrated a connection between an

intervention and an outcome, that connection is causal. In this paper, I argue that

RCTs in clinical medicine do not reveal causal connections. Causal claims in clinical

medicine, as in the rest of science, are justified by reference to a robust theory, not

RCTs. Part of the argument rests on crucial differences between Fisher’s use of RCTs

in agriculture and the current use of RCTs in clinical medicine. Two key differences

are: the different role of randomization and the legitimacy of assuming homogeneity

of the intervention and control entities. A more significant part rests on the integrative

power of robust theories; causal attributions are justified by demonstrating that they

are, or can be, embedded in a large well-confirm framework. RCTs, by contrast, at

best provide isolated input-output connections. A secondary thesis of the paper is that

robust theories also allow causal claims to be well-confirmed.

2.1 Introduction

R.A. Fisher was a brilliant mathematician whose contributions to the mathe-

matical foundations of statistics were deep, elegant and robust. His applica-

tions of statistics to agricultural research and to Mendelian-based population

dynamics were, and remain, transformative. In medicine, the nearly ubiq-

uitous acceptance of the mantra that Randomised Controlled Trials (RCTs)

are the gold standard of evidence is traceable to Fisher – although most

who espouse the mantra seem not to know its Fisherian origins. Embedded

in Fisher’s conceptions of experimental design and statistical inference is a

conception of causality, and of the role and power of randomization. Both

these conceptions I shall argue are untenable, especially in the context of

medicine.

RCTs may have considerable utility in a number of research contexts

since they do provide some support for a scientific theory (a dynamical
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(and mechanistic) system which is asserted to model (mathematically) the

ontology1 and dynamics of phenomena). They, however, are far from a gold

standard. Contrary to Fisher, they do not provide a causal account of the

phenomena under study; nor is randomization essential or, in some contexts,

desirable. In what follows, I shall explore what kind of empirical support

RCTs provide and why in medicine that support is problematic. I shall also

argue that causal attributions are only possible when a robust scientific theory

underwrites the attributions; RCTs fall far short of providing a basis for causal

attributions. Notwithstanding the ubiquitous use of RCTs in clinical medicine,

impressive and robust theoretical underpinnings exist for a substantial array

of medical knowledge and causal attributions; it is on these, and not RCTs,

that explanation and prediction rest.

2.2 Causality and randomized controlled trials

Outcomes from RCTs constitute the basis for many knowledge claims in

medicine and many clinical decisions – especially pharmacological interven-

tions and lifestyle interventions (changes in diet, exercise, and so on). During

the last half-century, RCTs have risen in number and authority; government

regulators, many epidemiologists and the media have come to regard RCTs

as the gold standard of evidence in clinical medicine. This rise in number

and authority began with R. A. Fisher who claimed that RCTs provide the

basis for discovering and justifying causal connections.2 According to Fisher,

randomization, replication and control (for him, themethod of pairwise block-

ing) guarantee that the intervention is the cause of the difference between the
outcome in the experimental group (those receiving an intervention) and that

in the control group.

Fisher developed his views on experimental design while working at

Rothamsted Experimental Station, which he joined as a statistician in 1919.
The Station, by that time, had been engaged in agricultural research for more

than 70 years. By 1935 when his Design of Experiments was published his
adherence to the principles of randomization, replication and blocking were

1 The ontology of a system is the collection of entities postulated to exist (e.g. DNA, proteins,

amino acids, leukocytes, and the like) and their properties and their physical relationships to each

other (e.g. proteins are strings of amino acids). Dynamical relationships are expressed by a set of

equations with these entities as variables.
2 Randomized trials existed prior to Fisher. James Lind, for example, conducted controlled

trials in the eighteenth century – not quite randomized but employing the same reasoning. The

most well known is his controlled trial involving the causes of scurvy – a small sample size but

manifesting the principles of current RCTs (see: Lind, 1753). Nonetheless, Fisher looms large in
the history of RCTs and he contributed significantly to dogma that RCTs provide a strong basis

for asserting causal connections and that they should be the basis for experimental design in

agriculture and other fields.
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firmly entrenched in his method of experimental design. These principles

proved powerful in the context of plant agriculture where replication involved

sectioning a field into plots, blocking was pairing adjacent plots that were

assumed to be identical in all relevant respects (nutrient content and soil

composition for example) and randomization was the designation of one of

each pair as the experimental plot by a random process such as flipping a

coin. Since there were numerous paired plots, the experimental intervention

was replicated many times within a single experiment. If a consistent similar

difference was found between each experimental plot and its paired control,

constant conjunction of intervention and outcome could be assumed. Since

paired plots were assumed to be identical in all relevant respects except for

the intervention, the outcome could be declared as caused by the intervention.
Randomization bolstered the assumption of plot-pair identity by removing any

systematic bias in favour of one plot of a pair – such as, always choosing the

left plot as the experimental plot or favouring lower elevation.

This kind of agricultural research presents an ideal state of affairs for

applying Fisher’s method of experimental design. The values of the relevant

variables in a modest-sized field, as is most frequently used in research,

are reasonably homogeneous (soil Ph, organic-to-inorganic material ratio,

clay content, and so on). Moreover, dividing the field into small plots and

pairing adjacent plots reduces what little heterogeneity might be found in

non-adjacent parts of the entire field. Genetic diversity and trait diversity

can be managed in agricultural plants to ensure minimal heterogeneity. The

adjacent plots remain adjacent throughout the trial and external factors (such

as rainfall, hours of sunlight) will be virtually identical for both plots. In short,

homogeneity of relevant factors exists naturally or can be easily produced.

In clinical medicine, things are very different. First, a population of indi-

viduals is an extremely heterogeneous collection: a wide variety of genotypes,

different environmental histories, different physiological dynamics, different

interpersonal contacts, and the like. Second, unlike two adjacent plots of land,

pairs of individuals or paired groups of individuals do not remain together

during a trial; hence, each individual is exposed to different environmental

factors. Consider, for example, the simple difference of diet and timing of

meals, which may or may not be relevant and often we do not really know

their relevance. In the world of RCTs, the Fisherian principles of experimental

design are supposed to tame this heterogeneity. The paired groups of indi-

viduals are, ideally, random samples from a population; randomization, in

principle, results in groups with identical heterogeneity; for each individual

in one group, there will be an individual in the other group with the same

characteristics. Hence, it is assumed that although any two individuals chosen

randomly can be expected to differ in relevant respects, when a large number

of individuals are assigned randomly to two different groups, the groups,

taken as collectives, will be homogeneous.
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Most texts on statistical methods define ‘random sample’ as: ‘A sample of

n individuals from the population [the whole set or collection of items about
which we want information] chosen in such a way that all possible sets of n
individuals are equally likely to occur’ (Wetherill, 1967). As an assumption
underpinning aspects of experimental design and statistical analysis, this

definition is essential and potent. In the messy world of RCTs, its potency

evaporates. First, even the most careful actual random sampling cannot be

known to satisfy the requirement of the definition. Second, for financial,

ethical and/or trial management reasons, most ‘random’ sampling in clinical

experiments are not from ‘the whole set or collection of items about which we

want information’ (the population) but an already much reduced collection –

those, for example, willing and available to participate, those located near the

research centre, those who have a relevant disorder, those who do not have

signs or symptoms that suggest the experiment might put them at risk, and

the list goes on.

Third, even if two groups satisfied the statistical definition of random

samples, internal heterogeneity undercuts the assumption that the groups are

identical in relevant respects. Most traits of individuals are quantitative traits

(traits that differ in the amount or degree) such as blood pressure and lung

capacity. These traits are usually the product of many genes and, importantly,

are somewhat environmentally sensitive (for example, the effect of exercise

on lung capacity and muscle strength).3

Suppose only 10 traits are relevant in a particular RCT, the traits vary little
(say, six possible values for each) and the experimental and control groups

each contain 10,000 individuals and the sampling was random (i.e. the sam-
pling was such that from the population all possible sets of 10,000 individuals
were equally likely to occur). Even this does not warrant the conclusion that

the groups are identical in relevant respects. The possible combinations of 10
traits each with six possible values entails, assuming independence, equals 610

(60,466,176). Hence, no two individuals in a population of 60 million are the
same.

If the number of relevant factors is 11, the possible combinations equal
362,797,056. The US Census Bureau estimated the population of the United
States as of August 8, 2009 to be 307,118,070. Consequently, two groups of
10,000 randomly sampled from the entire population of the United States
will not be identical in relevant respects. There are almost always more

3 Traits determined by multiple genes and subject to environmental influences are known as

multifactorial traits. Separating the genetic determinants from the environmental ones is chal-

lenging. Also, even with stable environmental factors, understanding the genetic transmission of

polygenic traits (those caused by more than one gene) is complex. These traits do not manifest

simple Mendelian transmission. Although the transmission is Mendelian, it is a complex process

which is the subject of the field of quantitative genetics. Within that field, numerous statistical

tools have been developed to deal with this complexity (see: Hartl and Clark, 1989).
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than 11 relevant variables (factors) and many more than six possible values
for those variables and the population being sampled is always dramatically

less than 300,000,000 (often fewer than 50,000). In addition, although the
values between individuals can be assumed independent, those in a particular

individual are rarely independent of each other – such that altering one will

alter one or more of the others – and the specific dynamics are frequently

idiosyncratic, which further increases the heterogeneity.

To complicate the situation further, the dynamics involved in multivariable

interacting systems, such as those involved in the human endocrine, immune

and other such systems are usually chaotic; the trajectory of the system is

highly sensitive on initial conditions. Since those initial conditions frequently

will be different for different individuals, the trajectory of the systems will

vary widely. In short, the homogeneity found in agricultural RCTs is entirely

illusory and elusive in clinical medicine; in clinical medicine heterogeneity is

ubiquitous.4 This is why some clinical researchers have endorsed the utility

of n of 1 trials (i.e. where a single patient is the entire trial).5

Fisher’s motivation for insisting on randomization was rooted in a require-

ment for the application ofmathematical statistics and the definition of causal-

ity he adopted. Randomization is required in order to apply the statistical

tools of analysis that underpinned his methods and his causal claims. Given

the near impossibility of random sampling in clinical trials, Fisher’s methods

are not applicable;6 agricultural trials do not rest on random sampling, they

involve the toss of a coin (or some other random binary process) to determine

which plot of a pair is the experimental plot. There are, of course, other

experimental design methodologies that can be applied in clinical medicine

but to successfully avoid the aforementioned challenges their validity must

be independent of random sampling. Many other critiques of randomised

controlled trials have been offered (see: Cartwright, 2007a; Urbach, 1993;
Worrall, 2002 and 2007).7 For the most part they focus on challenging whether
randomization is necessary. I agree with those critiques but here have argued

that, whether necessary or not, it is unachievable.

The definition of causality that appears to underlie Fisher’s methods is

elementary. A cause is that which makes a difference. If two states of affairs at

t1 are identical except for one element E and the states differ at t2, E can

4 Of course, there are some cases where the required homogeneity exists. In such cases, the

relevant variables are few – usually one or two – and the values are constrained. For example,

placing a 10% solution of iodine on the skin will result in discolouration of the contacted area.
5 See, for example, Guyatt, GH, Keller, JL et al. (1990) and Avins, AL, Bent, S, et al. (2005).
6 Fisher, with support from the Rockefeller Foundation, did some work in medicine on blood.

He contributed significantly to the understanding of the Rh factor in blood groups.
7 Many defences have been offered as well (see, for example, Papineau, 1994 and Sup-

pes, 1982). Those defences strike me as inadequate against the criticisms of Cartwright, Urbach
and Worrall and do not undermine the criticism I have articulated.
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be declared the cause of the difference. In Fisher’s agricultural trials, the

homogeneity of the states being compared (plots adjacent to each other)

virtually ensured identity. By having numerous paired plots (paired states)

and randomly selecting which plot from each pair would receive the inter-

vention (E ), the validity of the claim that the two plots being compared in
each case are identical is certain or near certain. Since, the only difference

between compared plots is E , it can with certainty be declared ‘the cause’ of
any difference that arises. The upshot of all this is that Fisher’s experimental

methods do not provide any basis for discovering or justifying causal claim

made on the basis of RCTs in clinical medicine.

2.3 Scientific theories

The conclusion of Section 2.2 is that RCTs in clinical medicine provide no, or
at best the weakest possible, support for causal claims.8 I’ll return later to the

question, ‘For what, if anything, do they provide evidence?’ Before doing that,

in this section I turn to a positive thesis with respect to clinical medicine –

namely, what can and does underwrite causal claims.

Physics and chemistry have a rich toolkit of methods which have teased

from nature a large and deep body of knowledge. Noteworthy is the fact that

RCTs are not among their methods. There is no shortage of recourse to prob-

ability and statistics; indeed they employ the entire domain of mathematical

knowledge and techniques (e.g. the infinitesimal calculus, topology, and linear

and nonlinear algebra). Physics and chemistry employ probability and statis-

tics in contexts where the phenomena are considered truly random or where,

even though a system is held to be deterministic, the current understanding

of the system admits of uncertainty. In the latter case, the ultimate quest

8 It might be thought that, in clinical medicine, RCTs are just testing hypotheses without any

clear causal structure. That, in fact, is a role that RCTs could play under the auspices of a causal

theory, as I indicate below. That, however, is not how medical epidemiologists view them. With

few exceptions, books on clinical epidemiology are quite explicit about the causal goals. Consider,

for example, Haynes et al.’s book, Clinical Epidemiology, in which they claim, ‘Our key point is this:
RCTs provide the best evidence for causation, so don’t give up on doing an RCT to settle a causal

issue just because it may be difficult or contentious to do so.’ (p. 360). Elwood, in his Critical
Appraisal of Epidemiological Studies and Clinical Trials, devotes an entire chapter to causality. In
the section ‘A direct test of causation’, he claims, ‘If a causal relationship exists, the frequency

of the defined outcome will be higher in the group exposed to the causal factor. A study design

which uses this approach is the randomized trial; that is, the assignment of the treatment for each

subject is made by a random or chance procedure.’ (p. 7). Further, Rothman and Greenland in
Modern Epidemiology also have an entire chapter on causality – one of the most nuanced accounts
I have found in epidemiological writings. Uncovering causal relationships is clearly on the minds

of epidemiologists who engage in RCTs.
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is to diminish the uncertainty; the need to use probability and statistics is

unsatisfying, though necessary.

Engineering – an applied endeavour similar to clinical medicine – draws

heavily on physics and chemistry. Indeed, much of the confidence we have in

the claims, predictions and explanations in engineering rest on the confidence

we have in the theories, models and knowledge in physics and chemistry.

One fundamental logical feature of engineering reasoning – and reasoning in

physics and chemistry – is the use and justification of counterfactual claims

(typically expressed as conditional – if, then – claims in which the antecedent –

the if part – has not occurred or is not known to be true). For example, the

claim, ‘If my computer keyboard were in motion relative to me, then it would

be shorter in the dimension of travel than it was when stationary relative to

me,’ is a counterfactual claim since the keyboard is in fact currently stationary

relative to me. No physicist, however, would doubt the truth of the claim

because its truth rests on Einstein’s special theory of relativity; hence, to doubt

the truth of the claim is to doubt the validity of that theory.

The reason theories support counterfactuals is that they unify and integrate

a large body of knowledge into a connected web.9 The logical structure of this

web is such that explanation and, importantly, prediction rest on a wealth of

interrelated knowledge claims. Predictions made on the basis of a theory are

possible because the integrated wealth of knowledge claims comprising the

theory can be used to justify confidence in the predictions. Prediction is an

instance of a counterfactual claim.

Although I hold a view of the structure of theories that understands them as

a certain sort of mathematical model – a view I will set out below – the logical

empiricist conception of theories as interconnected statements (formalized in

first-order predicate logic) is a heuristically useful entry point for uncovering

the underlying logic of explanation and prediction. Some statements in a

theory are extremely general and cannot be deduced from other statements in

the collection; these are the axioms of the theory. In a fully developed theory,

all the other statements in the collection can be deduced from the axioms.

It is that deductive connectivity that integrates the wealth of knowledge

claims; it also justifies confidence in predictions and explanations because

they are deductive consequences of the theory.10 Some claims deduced from

the axioms are still very general. The further down the deductive hierarchy one

moves, the less general the claims; at the lowest level of generality are claims

about specific causes of specific effects (see Figure 2.1 for a stylized schematic
diagram).

9 Quine and Ullian also employ the metaphor of a web in a way analogous to mine (see Quine

& Ullian 1970). Kuhn’s holistic view of theories also treats them as a web (see Kuhn, 1962).
10 Deduction is the ideal in deterministic systems and theories describing them but frequently

the connections are probabilistic such that the truth of a claim is highly probable based on a

collection of other claims in the theory, but not a deductive certainty.
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Fig. 2.1 Simple schematic of the deductive web of a theory.

Views differ on how the axioms are generated (discovered). Simplistic

empiricism assumes that the first step is the generation of the empirical

laws from empirical observation – perhaps by induction, perhaps hypothetico-

deductively. Among these empirical laws patterns occur that suggest that a

number of empirical laws can be usefully subsumed under a more general

claim. Among these more general claims patterns occur that suggest subsets

of these more general claims can be subsumed under even more general laws.

The process continues until the axioms emerge as the most general claims.

Simplistic rationalism assumes the axioms are generated by rational thinking

and are subsequently justified by deducing the consequences of accepting

the axioms, consequences which are then empirically tested. The history of

science suggests that a mixture of these methods is usually involved.

Returning to the claim, ‘If my computer keyboard were in motion relative

to me, then it would be shorter in the dimension of travel than it was when

stationary relative to me’, this claim, as noted, is counterfactual. It, however,

can be accepted with confidence because it is deducible from the axioms of the

special theory of relativity. The degree of confidence, of course, is proportional

to the confidence one has in that theory.

The logical empiricist view of theories just sketched assumes that the lan-

guage of science is first-order predicate logic with identity (symbolic or math-

ematical logic). The view of theories that I, along with many others,11 have

promoted allows any appropriate mathematical domain to be the language of

a theory (e.g. set theory, probability, topology, string theory, and so on). Follow-

ing Galileo (1623), and three centuries before him Bradwardine (1330),12 this

11 See: Suppe (1967, 1972, 1989), Suppes (1957, 1961, 1962, 1967, 1968), Lloyd (1984, 1986,
1988), Thompson (1983, 1986, 1987, 1989, 2007) and van Fraassen (1967, 1969, 1970, 1972).

12 See: Weisheipl (1967).
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view sees mathematics broadly as the language of science. Consequently, it is

not a sentential (linguistic) view of the language of science. Theories are not

deductively connected statements formalized in symbolic logic but mathemat-

ical formulations of dynamical systems. This is still a deductive framework;

the deductive structure and techniques of the domain of mathematics used

are fully available. Unlike the logical empiricist’s view, however, this view

understands theories to specify an ontology and the dynamics of a physical

system,13 which is achieved by identifying variables and their range of magni-

tudes, and specifying, mathematically, the relations among the variables and

how the variables change over time (e.g. using transition functions such as

xt+1 = f (xt ): f (xt ) might be r xt where r is the rate of population growth (births
minus deaths) and x is population size). The thesis of this paper does not rest
on which view of theories one accepts. Counterfactual claims are deductive

consequences of the theory on both views and confidence in them rests on

that deducibility.

2.4 Theories, RCTs and causality

A central role of scientific enquiry and scientific knowledge is to answer ‘why’
questions, and the perceived importance of uncovering causal connections is
motivated by the view that knowledge of cause and effect relationships allows

‘why’ questions to be answered.14 Consider the question, ‘why, at the onset of

the luteal phase in themenstrual cycle, does the level of plasma gonadotropins

decrease’. The answer found in Harrison’s Principles of Internal Medicine (a
leading medical resource) is, ‘A secondary rise in estrogen causes a further
gonadotropine suppression’ (Braunwald, 2001 p. 2157, emphasis added). Of
course, the entire answer to the why question is much more complicated and

the additional elements will require the citing additional causes.

In this section, I explore what I argue is a more fundamental element

in answering why questions, namely the role of theories. As indicated in

13 See note 2.
14 Silvain Bromberger, over 40 years ago, renewed philosophical attention on the importance

and role of why questions (Bromberger, 1966). Significant criticisms of Bromberger’s specific
account have been proffered. I find van Fraassen’s early criticism compelling (van Fraassen 1980,
pp. 126–130) but do not believe that it diminishes the centrality of why questions; it simply
identifies the difficulties with a particular account of the connection between explanation and

why questions and the canonical form prescribed by Bromberger. Almost all philosophers of

science, and van Fraassen is among this majority, accept that a why question is a request for an

explanation and such requests are central to the scientific enterprise. That is all the arguments of

this paper require. Of course, van Fraassen and others have put forward a compelling case for the

importance of context in determining which theory and/or parts of a theory are relevant to the

sought after explanation. I take this as undeniable; a fact that complicates explanation but does

not undermine the central arguments of this paper.
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previous section, what underwrites confidence in counterfactual claims (and,

hence, predictions) is that they can be deduced from relevant parts of a theory.

Confidence in the theory comes from the interconnected, and inseparable,

nature of the regularities it codifies and the countless predictions deduced

using it which have continually been found to be in accordance with the

behaviour of the empirical world as we experience it. No isolated claim of a

regularity has that robustness and predictions made on the basis of an isolated

claim of regularity lack the support and credibility of predictions deduced

from regularities embedded in an interconnected web of a vast number and

array of regularities. What is true of prediction is equally true of explanation.

Although there is no tight symmetry between explanation and prediction,

they are two faces of the same logical coin. A robust explanation of an event

requires deducing it from a theory, just as a robust prediction requires such a

deduction.

To be clear, I am not denying that isolated regularities provide accounts of

events; they do. A social worker who asks, ‘Why does 8 year old Susan have
bruises on her head and shoulder?’ may be attempting to determine whether

child abuse has occurred. The explanation that Susan fell off a swing the pre-

vious day addresses the concern; third-party witnesses make it a compelling

explanation. Of course, the social worker has to know that falling off a swing

normally results in bruises. For the social worker, this need be no more than

an observed regularity – a belief based on the constant conjunction, temporal

contiguity and order of the two events. Explanation is pragmatic; the purpose
of posing a ‘why question’ determines the relevance of the answer. My claim,

as will become clear, is that the purpose of scientific research and theorising is
to provide an account of observed phenomena, not just a description of them.

From the point of view of scientific explanation, the observation that trauma

to the skin normally results in a discolouration of the skin in the area of the

trauma is simply describing an observation, not explaining it. The goal of

scientific15 research and theorising is to uncover the mechanism that explains

the observed phenomenon; in this case, a part of physiological theory.

This goes to the heart of a problem with RCTs. To the extent that they

uncover any regularities, they uncover isolated ones unless they can be shown

to be among those embedded in, and hence deducible from, a theory. But if

such a deduction can be made, it is not the RCT that establishes or justifies

acceptance of the regularity; it is the theory. This is not to say that RCTs have

no methodological or logical role in scientific enquiry. Fisher’s use of them

in agriculture is often cast as establishing and justifying causal assertions.

15 I, of course, am using ‘scientific’ in a narrower sense that some others might. I think my

use accords with standard usage in philosophy of science. Nonetheless, little hangs on this. If

forced to broaden the scope of the phrase ‘scientific explanation’, I would use ‘robust scientific

explanation’ in its place.
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But that is the wrong way to view things. RCTs divorced from a theory pro-

vide, at best, knowledge of isolated regularities (for Fisher a cause and effect

relationship) and, as already argued, isolated regularities lack the robustness

required in providing compelling predictions or explanations. What RCTs,

used as Fisher used them, can do is provide a method for testing predictions

made using a theory – in effect, they are a way of empirically testing a theory.

In this way, they confirm or call into question some feature of the theory,

such as one or more of its axioms, the validity of a particular deduction from

it or some interpretation of its ontology or dynamics, and the like. This is

an important role but one that can only be played in the context of a theory.
Moreover, this role is not an explanatory one.16 Furthermore, in the absence of

a theory, determining whether and in what way an RCT should be conducted

is doomed to failure.17

An example from immunology illustrates the distinction I am drawing

between an isolated result from an RCT (or several RCTs that produce similar

results) and a robust explanation of the result that embeds it in a theory. In

the eighteenth century, protection from smallpox was discovered to occur in

some individuals after inoculation with the dried material from a smallpox

pustule. Regrettably, about three in 100 people developed a severe case of
smallpox and died. Edward Jenner, in 1796, discovered that inoculation with
material from cowpox pustules (the bovine form of smallpox) also conferred

protection without causing severe cases. He called this inoculation process

vaccination (from vacca –Latin for cow: also the origin of vaccinia for the
virus that causes cowpox); Pasteur (honouring Jenner) extended this term to

cover all inoculations which provide protection from infectious agents. Jenner

had no knowledge of the infectious agent; he only knew that protection from

smallpox followed vaccination with cowpox, with only a small number of

individuals developing serious disease. The vaccine was modified during the

following century and a half (e.g. attenuated versions of the smallpox virus

were developed).

Jenner’s experiment to demonstrate the efficacy of inoculation with cowpox

falls significantly short of the ‘proof’ required today and would completely

fail an ethics test. Jenner inoculated an eight-year old boy, James Phipps,

with cowpox material. He waited six weeks and inoculated him with fluid

extracted from an active smallpox pustule. Phipps did not contract smallpox.

On the basis of this ‘experiment’, he published his success in 1798. As one

16 Nancy Cartwright, with somewhat different arguments and purposes, has made a sim-

ilar point in her compelling and insightful recent book, Hunting Causes and Using Them
(Cartwright, 2007), as also have numerous philosophers over the last 50 or so years (see also
Cartwright, 2008).

17 This is a point elegantly made by Hempel (1966, pp. 10–18). His example and argument
are entirely independent of his logical empiricist philosophy; it applies equally to other views of

theories and their role in science.
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would expect, smallpox vaccines approved in the latter half of the twentieth

century were subjected to RCTs. Clearly, an RCT would have provided a higher

level of confidence in the efficacy of Jenner’s vaccine. It would not, however,

have added anything to Jenner’s description of the connection of the events.

RCTs on more recent smallpox vaccines provide evidence that vaccination is

followed by protection against smallpox – knowledge that is, without question,

valuable in clinical medicine18 – but an explanation of why there is a connec-

tion is not provided by an RCT.

What does provide an explanation is immunological theory; it provides an

account of how the vaccine results in immunity to the variola major virus (the
virus causing smallpox); and theories in virology and physiology provide an

account of how the virus causes the clinical manifestations of smallpox. A

comprehensive account of the explanation is complex andmore technical than

appropriate for this paper but the skeleton can be easily provided. The virus in

Jenner’s vaccine has the same antigenic determinants (epitopes) as the variola

virus but is not a viable pathogen in humans. Lymphocytes (a kind of white

blood cell) are produced in the bone marrow. A common lymphoid progenitor

gives rise to lymphocytes. There are two major kinds: B lymphocytes (which

mature in the bone marrow – hence B) and T lymphocytes (which mature

in the thymous – hence T). These are more commonly known as B cells and

T cells. Lymphocytes recognise specific sites that are present on antigens –

foreign material. A large variety of site-specific T lymphocytes are produced,

each recognizing a different epitope. The presence of the vaccine virus is

detected by a specific lymphocyte whose receptor matches the virus’ epitope;

that detection results in the production of a large number of lymphocytes that

are site-specific for the virus. Through a complicated biochemical process, the

production of armed effector T cells with that site-specific receptor is initiated.

These effector T cells inactivate the virus by binding to the epitope. As part

of the process, memory T cells and B cells are produced; these provide the

observed long-term protection. The same process can be initiated by inocula-

tion with attenuated variola (smallpox) virus.

What makes this a robust explanation of the observed phenomena is the

rich body of generalizations on which it draws and the rich ontology involved

(hematopoietic stem cells, neutrophils, B cells, T cells, antibodies, basophils,

and so on). The deductive network of generalizations at a variety of levels of

generality integrates this single-case connection of events (vaccine and protec-

tion) in a large framework. A framework that also explains why lymphocytes

do not bind to the bodies own tissues, and why the major histocompatability

complex (MHC) of genes is important to the production of armed effector

18 Smallpox vaccination has resulted in one of the great successes of clinical medicine. The

last reported case of smallpox was in Somalia in December 1977. On 9December 1997, the World
Health Organization declared that smallpox had been eradicated.
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T cells, and why B cells bearing surface CD5 express a distinctive repertoire,
and why HIV produces an autoimmune response, and so on and so on. The

connection of vaccine and protection is imbedded in this complex dynamical

system; a system by means of which we can provide a rich multilayered

explanation of the observed connection of events.

Importantly, immunological theory explains the heterogeneity of individu-

als and explains the heterogeneity of responses to interventions. The explana-

tions will appeal, for example, to genetic differences, such as differences in the

MHC group of genes, to compromises to the system, such as low leukocyte

counts, to deficiencies in critical precursor elements, such as cytokines, and

so on. This explanatory power of heterogeneity is a feature of all theories in

medicine.

By contrast, RCTs, independent of this theoretical framework, focus on

an isolated connection of events. Even a meta-analysis, which examines and

analyses numerous RCTs, focuses on an isolated connection of events. Ameta-

analysis may provide even stronger evidence that there is a connection but

it stills fails to explain why there is a connection. And, the heterogeneity of

individuals and their responses to interventions bedevils RCTs divorced from

a theory.

Returning now to Fisher to further support my thesis, as noted, for the

most part, Fisher’s method of experimental design was focused on agricultural

research. He did, however, with support from the Rockefeller Foundation, do

some work in medicine on blood groups during the period 1935–1943. This
work contributed significantly to the early understanding of the Rh factor. It,

however, drew heavily on population genetics and evolution, both are robust

theories.19 What Fisher demonstrated in 1943 (see Fisher 1943 and 1944),
using the theory of population genetics, was the role that three linked loci

with specific allelic combinations could play in the explanation of the puz-

zling experimental results with the Rh factor. He also predicted, again on the

basis of population genetical theory, the existence of antibodies not known to

exist at that point. Within the next five years his prediction and explanation

received independent empirical support – further confirming the theories.

Consequently, Fisher’s work in clinical medicine, far from demonstrating the

value of RCTs in that domain, elegantly demonstrated the value of a robust

theory in providing explanations and making predictions.

Fisher’s work on population genetics and evolution and his use of them in

medical explanation and prediction makes clear that probability and statistics

play an important role in science, outside of RCTs. The domain of mathemat-

ics employed as the language of his genetical theory of natural selection is

probability and statistics. Using probability and statistics in this way – i.e. as

19 Fisher contributed significantly to their development (Fisher, 1930).
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the language of theory – is common in physics, chemistry and biology; its use

in RCTs is not.20

What is being questioned here is the appropriateness of the use of prob-

ability and statistics in RCTs in medicine. In agriculture, many of the pre-

suppositions on which a legitimate use of probability and statistics are based

are met; this is the case in medicine. In medicine, randomization is almost

always gerrymandered (sampling is not from the entire relevant population,

some individuals assigned to a sample are removed after the fact, samples are

adjusted to eliminate relevant differences observed after sampling or known

to be likely from past experience – difference in age profile or imbalanced

gender, for example – and so on). In addition, the assumption of homogeneity

that is reasonably robust in Fisher’s agricultural work is absent in medicine,21

which in part accounts for ‘side effects’ which are often more prevalent that

the target effect, the heterogeneity of outcomes22 and the constant publication

of contradictory findings about the same intervention. The heterogeneity in

the population and in outcomes undermines any chance of justifying causal

claims. In Fisher’s agricultural trials, justifying a causal claim on the basis

of the trial is plausible. The problem in this case, as I have argued, is that

the causal claim is isolated and, hence, cannot provide a basis for explana-

tion; for that a theory is required. Unlike Fisher’s agricultural trials, medical

trials do not come remotely close to even justifying the assertion of a causal

claim.

In agriculture, randomization is restricted to choosing one of a matched

pair of plots – not as in medicine to sampling from a population; paired

plots can with a high level of confidence be assumed homogeneous for all

relevant factors – contrary to the situation in medicine; and the multiple

match-plots which are part of each trial provide replication within the trial –

in medicine, replication requires new trials which will be few in number and

almost certainly dissimilar to the original trial in important ways.

20 To avoid any confusion, let me be clear that, as the forgoing use by Fisher makes abundantly

clear, the importance or power of probability and statistics in science is not in question. Fisher’s

use of that domain in population genetics, evolution and medicine parallels its use in physics

(e.g. statistical mechanics (a deterministic sphere) and quantum mechanics (an indeterministic

sphere)), chemistry (e.g.) and biology (e.g. population genetics). Patrick Suppes used it in a

compelling way to develop a probabilistic theory of causality (Suppes, 1970). It worth noting in
passing that Suppes is quite clear about the role and importance of theory in his account, ‘The

analysis of causes and their identificationmust always be relative to a conceptual framework [what

I take a currently accepted theory to be], and there is no successful argument apparently that can

show that a particular conceptual framework represents some ultimate and correct view about

the structure of the world’ (Suppes, 1970, pp. 90–91). There are also a host of other ways in which
probability is used in science – from determining goodness of fit between predictions deduced

from a theory and the experimental data obtained to describing the distribution of chance events.
21 See: Upshur (2005).
22 See: Kravitz et al. (2004).



Causality, theories and medicine 39

2.5 Causality, theories and an eliminative thesis

Causality has had a rough couple of millennia. Aristotle identified four causes

(efficient, formal, final and material). Today ‘cause’ is only associated with

his efficient cause; the other three are held in various states of derision.

Even efficient cause has been, and still is, under constant attack. It was,

for example, pummelled by David Hume and outright rejected by Bertrand

Russell. Responses and counter-responses abound. Patrick Suppes opens his

excellent A Probabilistic Theory of Causality by quoting the relevant passages
from Russell’s, ‘On the Notion of Cause’; he then argues that Russell’s position

is a relic of a superseded period of physical science – a period in which ‘the

fundamental physical phenomena in question were felt to be much better

understood at a fundamental level than they are today’. Since, I shall provide a

neo-Russellian account repeating the quotation here provides an appropriate

starting point.

All philosophers, of every school, imagine that causation is one of the fundamental

axioms or postulates of science, yet, oddly enough, in advanced sciences such as gravi-

tational astronomy, the word ‘Cause’ never occurs. . . . The law of causality, I believe, like

much that passes muster among philosophers, is a relic of a bygone age, surviving,

like the monarchy, only because it is erroneously supposed to do no harm. . . . The

principle ‘same cause, same effect,’ which philosophers imagine to be vital to science,

is therefore utterly otiose. As soon as the antecedents have been given sufficiently

fully to enable the consequent to be calculated with some exactitude, the antecedents

have become so complicated that it is very unlikely they will ever recur. Hence, if

this were the principle involved, science would remain utterly sterile. . . . No doubt the

reason why the old ‘law of causality’ has so long continued to pervade the books of

philosophers is simply that the idea of a function is unfamiliar to most of them, and

therefore they seek an unduly simple statement. There is no question of repetitions of

the ‘same’ cause producing the ‘same’ effect; it is not in any sameness of causes and

effects that the constancy of scientific laws consists, but in ‘sameness of relations’. And

even ‘sameness of relations’ is too simple a phrase; ‘sameness of differential equations’

is the only correct phrase.

Suppes is correct to point out that the natural sciences at the time he was

writing (1970) were more conceptually and theoretically complex than in the
period Russell was writing (1910–15); the full impact of Einsteinian relativity
(his special theory of relativity was published in 1905 and his general theory
of relativity was presentation to the Prussian Academy of Science in 1915) had
not occurred and quantum theory only began to coalesce in the 1920s. Since
Suppes’ observation, the natural sciences have been influenced by chaotic

dynamical systems, fractal mathematics and computer simulation to mention

but a few important factors. These changes make Suppes’ observation more

apt. Notwithstanding, however, this correct observation of Suppes’, I contend

that Russell uncovered the kernel of a profound reinterpretation of causality.
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The essence of the argument can be sketched by reflecting on the history

of teleology in physics and biology. In the period from Galileo to Newton, the

role of teleological accounts of phenomena shrank in physics and astronomy.

After Newton, its role was miniscule to non-existent – bursts of attempted

resuscitations were unsuccessful. There are cases where the language used

appears to invoke a teleological account. For example, it might be said that

a particular missile is ‘seeking’ a fighter aircraft. The missile changes tra-

jectory as the target moves. That phenomenon is a function of an internal

positive/negative feedback mechanism; the language of ‘seeking’ is simply

a shorthand expression that can readily be replaced by the mechanistic one.

No physicist or engineer – indeed no moderately educated person – would

really believe that the missile was ‘seeking’ the aircraft and was directing its

behaviour to achieving that goal. It is simply behaving in accordance with

its internal structure and program. If anything can be identified as a goal,

it is a humanly constructed goal of incapacitating the aircraft within a larger

military goal. Whether this ‘goal’ is irreducible to a mechanism is complex and

irrelevant to the goal-directed language of the physical entity and its behaviour;

the physical entity and its behaviour have no intrinsic goals.

In biology, teleological accounts of phenomena were alive and well until the

second half of the nineteenth century; the publication of Darwin’s Origin of
Species began the slow decline in the use of teleological accounts. It is not that
the use of teleological language was purged from biology. Indeed, today it is

easy to find such language in biological books and articles – especially those

dealing with the behaviour of organisms. What changed with Darwin was how

this language was understood.

When a biologist remarks, ‘Hymenoptera perform this dance in order to
communicate the direction and distance of a food source to other workers,’

there is no attribution of intentions. The use of ‘in order to’ is shorthand

for a mechanistic understanding. The behaviour has a genetic basis and is,

therefore, biologically programmed and heritable, and the genes responsi-

ble for the behaviour have become ubiquitous in that species because they

enhance reproductive success. There is no goal of communication, in any

teleological sense – though information is in fact conveyed. To the extent any-

thing can be considered a goal, it is the reproductive success of the individual

organisms.

Although Suppes’ (1970) observation that causal language is pervasive in
modern sciences remains true today, I contend that it is, nonetheless, like

the use of teleological language; it is a shorthand expression, which owes

any meaning and validity to the existence of models and theories. It can, and

often should, be eliminated in favour of a mechanistic theoretical account.

The claim ‘A caused B’ is shorthand for ‘The claim, whenever the system is in

state A, the next state of the system will be B (either always or with Pr(x)) can
be deduced from a currently accepted and well-confirmed dynamical theory.’
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On this interpretation of ‘cause’, even in agricultural trials, RCTs do not

justify causal claims; only a theory can do that. In addition, this interpretation

goes to the heart of a diagnosis of the problem with RCTs in medicine. The

problem identified above is that in the absence of a theory, RCTs do not provide

explanations or allow predictions. That is a hefty shortcoming, and were not

so much at stake it would make the claim that RCTs are a gold standard risible.

They do not provide explanations and predictions because the results, unless

connected in ways I have described to a theory, stand isolated; an isolation,

this reinterpretation of ‘cause’ suggests, renders causal claims made on the

basis of RCTs vacuous.

In physics, chemistry and biology, Russell overstated the case with his

claim, ‘The law of causality, I believe, like much that passes muster among

philosophers, is a relic of a bygone age, surviving, like the monarchy, only

because it is erroneously supposed to do no harm.’ In those contexts, using

the shorthand language of causality almost never results in researchers fail-

ing to grasp the importance and role of a theory. Those researchers quite

naturally – almost unconsciously – appeal to theories in making predications

and providing explanations. Russell’s claim, however, has considerable validity

in clinical medicine that focuses on RCTs. An impoverished interpretation

of causality that divorces it from theories results in significant methodolog-

ical, epistemological and logical harms. In turn, these result in the harm

of suspect findings and claims, and poorly or improperly understood inter-

ventions. At the heart of the harm is the undermining of the validity of

explanations, predictions and clinical treatments; and that is far from a trivial

harm.

The conclusion to draw from all this is not that RCTs and the results of

RCTs have no role in medicine; they do. The appropriate conclusion is that

their role is dependent on being integrated into (indeed subservient to) a

theory. Fortunately, in spite of the emphasis on RCTs, robust theories, that

can be used to ground RCTs, abound in medicine; from immunology through

to physiology and endocrinology to neurosciences robust theories are found.

It is these that have provided the solid, lasting basis for medical explanation,

prediction, diagnosis and treatment. Consider, for example, the compendium

on immunobiology by Charles Janeway Jr.23 or the text on medical genetics

by Margaret Thompson et al.24 Their entire treatment of their subject is

experimental and theoretical, and, most notably, RCTs play no role in the

evidence, explanations and predictions provided.25

23 Janeway (1997).
24 Thompson et al. (1996).
25 The same is true in many other research fields in medicine as a perusal of medical texts in

medical genetics, human physiology, neurosciences will reveal.
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To appropriate Dobzansky’s famous claim that, ‘Nothing in biology makes

sense except in the light of evolution’,26 ‘nothing makes sense in medicine

except in the light of a theory’.
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Inferring causation in epidemiology:

Mechanisms, black boxes,
and contrasts

Alex Broadbent

Abstract

This chapter explores the idea that causal inference is warranted if and only if the

mechanism underlying the inferred causal association is identified. This mechanistic
stance is discernible in the epidemiological literature, and in the strategies adopted
by epidemiologists seeking to establish causal hypotheses. But the exact opposite

methodology is also discernible, the black box stance, which asserts that epidemiologists
can and shouldmake causal inferences on the basis of their evidence, without worrying

about the mechanisms that might underlie their hypotheses. I argue that the mech-

anistic stance is indeed a bad methodology for causal inference. However, I detach

and defend a mechanistic interpretation of causal generalisations in epidemiology as

existence claims about underlying mechanisms.

3.1 Causal hypotheses in epidemiology

What does it take to establish a causal hypothesis in epidemiology? What

standards need to be met? Or, if establishment comes in degrees, degrees of

what?

The most obvious aspect of this problem concerns inferring causation in

a particular study. A study reveals a statistical association between smoking

and lung cancer, or a certain gene and obesity. Statistical analysis reveals a

low p-value – a measure of the chance that the association is due to chance.
Study design controls for confounding variables (what philosophers would call

common causes of the putative cause and effect). Can it be inferred that, for

this group, a causal relationship exists between smoking and lung cancer, or
having that gene and obesity?

Oddly enough, this is not a question that epidemiologists like to answer.

A single study would not normally be considered a sufficient basis for a

causal inference. Replication is a guiding epidemiological principle. From a
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methodological point of view this is extremely interesting. Epidemiologists’

credence in a causal hypothesis about Study Group A increases when the

effect is replicated in Study Group B. Explaining (or, I suppose, refuting) this

attitude is a central task for any methodological analysis.

A second difficulty concerns the inference from a study, or a collection of

studies, to a wider population. Epidemiologists are centrally concerned with

extrapolating from the people they study to people they have not studied.

Replication is important here too, because one way to argue that differences

between the population studied and the target population are causally irrel-

evant is to replicate the study among people who are drawn from the target

population. However, replication cannot solve the problem of generalisation.

Often the study group will already be drawn from the target population: for
example, when generalizing from the Whitehall studies to the population

of Britain.1 Differences between those studied and those not studied will

always remain; the difficulty is working out when these differences make a

difference. On other occasions, studies on a subset of the target population

may be impractical: for an obvious example, consider future populations.

Quite generally, a central purpose of epidemiology is to get more for less: to

learn something not only about those who have been studied, but about those
who have not.
Epidemiologists make efforts to be precise about the scope of their claims,

by explicitly stating whether they are intended to apply to the group studied,

or to a wider population, and if the latter what conditions the wider population

are to meet. For example, instead of saying ‘genetic influences cause paediatric

obesity ’, they might say:

Genetic influences on BMI and abdominal adiposity are high in children born since

the onset of the pediatric obesity epidemic.

(Wardle et al. 2008, p. 398)

However, even this is an incomplete specification. The children studied were

British, but the obesity epidemic affects Europe and America too. Are these

results evidence for high genetic influences on BMI and adiposity in children

in Britain only, or in Europe and America too? The incompleteness of the

specification is not necessarily a failing of the authors of the study. It reflects

the genuine difficulty of deciding how to generalize.

Note that replicating the study in European or American children is a way

to avoid the question, not to answer it. Replication cannot tell us whether a
generalisation from this study to American children would be warranted, only
whether it would be correct. In circumstances where we can replicate, that may

1 The Whitehall studies concerned various aspects of social status and health among British

civil servants (Marmot 2006). The aim was to identify social determinants of health, especially the
role of purely social differences in explaining differences in health, by studying a group of people

whose absolute wealth was such that their basic biological needs were met.
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be the best strategy; but for reasons I have already given, we cannot universally

substitute replication for generalisation.

Thirdly, there is a difficulty interpreting general claims, even when their

scope is fixed. A great deal of philosophical attention has been directed

towards singular causal claims, such as ‘Jones’ smoking caused his lung

cancer’. But epidemiologists are almost exclusively concerned with general

claims, such as ‘smoking causes lung cancer’. Does the latter express a rela-

tionship between smoking and lung cancer, or is it a generalisation over

individual causal relationships – along the lines of ‘in X% of cases, smoking
causes lung cancer’?

This difficulty is a relatively familiar one to philosophers, but it is perhaps

not the most pressing one for epidemiologists. In practice, epidemiological

hypotheses are explicitly exception-ridden. Accordingly they are framed not as

universal generalisations, but as measures of the influence of one factor on an
outcome, or measures of the strength of an association, or of the proportion
of an effect that is due to a particular factor or group of factors. These sorts

of claims raise what is fundamentally the same problem, but in a slightly

different way. For example, saying ‘Genetic influences . . . are high’ makes it

clear that the generalisation is not exceptionless. But it still does not make
clear exactly how the degree of influence is to be interpreted. Is the claim

that, in each individual, the genetic influence is high? – This would amount

to a universal generalisation attributing a certain genetic influence to each

individual. Such an interpretation is hard to make sense of on either the effect

side or the cause side. On the effect side, obesity might be absent in some

of the individuals studied. Genetic factors cannot then be said to influence it.

Switching from a qualitative property (obesity) to a quantitative one (such as

bodyweight) will not always be straightforward: the absence of effects such

as lung cancer, diabetes, and suicide are hard to interpret as zero degrees

on any quantitative scale. Similarly on the cause side, it makes little sense to

attribute some degree of influence to a factor that is absent. This is not clear

in the example I have picked, since ‘genetic influences’ are always present

in people, but it is obvious when we consider single-gene conditions. When

somebody lacks the gene but has the trait in question, it makes no sense

to attribute the trait’s presence to the influence of the absent gene in any
degree.

Another interpretation would see measures of influence, proportion,

strength of association, and similar, as measures of the proportion of cases
in which a factor is causal. (This interpretation is akin to the generalisation-
over-singular-causation view of universal causal generalisations.) This view is

easy enough to make sense of, but there is a case that it reflects metaphysical

commitments rather than epidemiological evidence. Take a measure such as

heritability, which is the proportion of a given trait in a given population that

is due to genetic factors. The idea that causes are either present or absent,
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strictly speaking, and the view that we cannot quantify the contribution of

a particular cause to a particular effect, are widespread among philosophers
from John Stuart Mill to David Lewis (Mill 1843; Lewis 1973). On such a
view, heritability expresses the proportion of the population in which the trait
is caused by genetic factors – but in each individual, the trait either is or is
not caused by genetic factors. But this interpretation is not stable, because

on this metaphysical picture, causation is not exclusive. Saying that a trait

is caused by genetic factors in an individual is compatible with saying that

it is caused by non-genetic factors: events have many causes. In the study

I have been using as an example, the aim is to measure the contribution of
genetic influence to obesity in a population. To interpret this as a claim about

the proportion of individuals in whom genetic factors cause obesity would be

bizarre, since genetic factors are part of the causal history in 100% of cases of
obesity. Indeed, every trait is both 100% genetic and 100% environmental, on
this interpretation (Rothman and Greenland 2005, S146). Better, we could see
it as a claim about the proportion of individuals in whom genetic factorsmake
the difference between being obese and not. This interpretation might be made
to work; but that would be no trivial philosophical achievement. The interpre-

tation of heritability is a topic of considerable dispute (e.g. Schonemann 1997;
Sesardic 2005).2

Two lines of response to this bundle of difficulties may be discerned in

the contemporary methodological-epidemiological literature. These lines of

response are in tension. One is the mechanistic stance: the view that causal
inference in epidemiology aims at discovering mechanisms: that discovering

mechanisms is necessary and sufficient for establishing a causal hypoth-

esis. The other is the black box stance: the view that epidemiology is pri-
marily concerned with statistical analysis of associations, and only inciden-

tally concerned with uncovering mechanisms. In Sections 3.2 and 3.3 I
will describe and evaluate each stance, and in Section 3.4 I will propose a
resolution.

My terms ‘stance’, ‘line of thought’, and similar are intended to avoid com-

mitment on the question of whether any actual epidemiologist wholeheartedly

asserts any of the views discussed. I rather doubt that any does. Nonetheless,

these are not straw men: these stances are evident in the methodological

writings of actual epidemiologists, and there is value in seeking to draw them

out into the light for explicit evaluation, even though – indeed, partly because –

2 Heritability is not to be confused with heredity. An individual can inherit a trait from her

parents, for example her eye colour. The disposition to develop blue eyes given a certain broadly

congenial environment is hereditary; favourite colour probably is not. The heritability of a trait is

defined with reference to a population, and makes no sense applied to an individual. It is meant

to be a measure of the relative contribution of genes and environment, and is not fixed for a given
trait. Hence Wardle’s interest in showing that obesity is still highly heritable despite an increase
in the availability of calories.
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nobody would endorse these views when stated explicitly and taken to their

logical conclusions.

3.2 Mechanisms

There has been a surge of interest in mechanisms in recent philosophy of

science. One well-known definition is this:

A mechanism for a behavior is a complex system that produces that behavior by

the interaction of a number of parts, where the interactions between parts can be

characterized by direct, invariant, change-relating generalisations.

(Glennan 2002, S344)

The word ‘mechanism’ is less common in epidemiology than it is in some

other biological sciences. Nevertheless, it would be interesting if a similar idea

could be identified in actual epidemiological practice.

I think it that it can. Epidemiologists, like neuroscientists, use the term

‘mechanism’, and they do so in revealing ways, as I shall argue. But in

addition, I suggest that it is plausible to take the common epidemiological

phrase ‘causal pathway’ as referring to a mechanism. Perhaps a causal path-

way is not exactly the same thing as a mechanism: for one thing, it may be

longer, and include several ‘mechanisms’ in the sense intended by Glennan.

Nevertheless, causal pathways probably do meet the proffered criterion for

mechanisms, since they typically will be postulated to explain a ‘behaviour’,

and will plausibly constitute a ‘complex system’ whose parts interact according

to ‘direct, invariant, change-relating generalisations’. Moreover, identifying a

mechanism in neuroscience, and identifying a mechanism in epidemiology,

satisfy the same goal: they both explain how something works. For these reasons,
it is plausible to see the search for causal pathways in epidemiology as a search

for what Glennan and others call ‘mechanisms’, even if the causal pathways

identified in epidemiology are not terribly similar to the mechanisms in

neuroscience.

The notion of mechanism neatly captures one methodological story that

may be discerned in the epidemiological literature. That story has two parts.

Initially, associations are identified between variables and health outcomes.

By a sort of process of elimination, it is established that it is very unlikely that

the association is due to chance, or to confounding variables (common causes,

to philosophers) or other biases. A variable for which such an association has

been established is called a risk factor. This first part of the process provides
a good reason to think that the risk factor is causal, but a second stage is

required for a conclusive case. The mechanism for the operation of the risk
factor must be identified. Perhaps not immediately; but if in the fullness of

time no mechanism is identified, the credibility of the hypothesis will suffer.
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Moreover establishing a mechanism is sufficient for proving that a causal

hypothesis is correct: showing how A actually causes B is conclusive proof
that A does cause B.3 The mechanistic stance is the methodological position
that identifying the underlying mechanism is both necessary and sufficient

for warranted inference to a causal hypothesis.

As a description of contemporary epidemiological methodology, the mech-

anistic stance is appealing. It has plenty of illustrations. Genetic epidemiology

is an extremely good fit. Consider this extract from the introduction of another

high profile clinical study in the genetics of obesity:

The genetic contribution to body weight has been established through family studies,

investigation of parent–offspring relationships, and the study of twins and adopted

children . . . As is the case for height . . . environmentally driven changes in body weight

in the population occur against a background of susceptibility to weight gain that is

determined by genetic factors. Thus, genetic approaches can be applied to understand

both the molecular and physiological mechanisms involved in human obesity.

(Farooqi and O’Rahilly 2006, p. 710)

The rationale appears to follow exactly the lines of the mechanistic stance

I have described. There is considerable evidence for a causal link between

genetics and weight; the next step is to understand the mechanisms involved.

A similar sentiment is evident at what might be seen as the other end of the

epidemiological spectrum, among those who work on social determinants of

health. They, too, see it as crucial to identify plausible pathways for the deter-

minants they identify. Here is an extract from another introductory rationale,

this time from a chapter by two leading proponents of social determinants of

health research:

Psychosocial factors and their influences on health are active areas of research . . . There

is now enough evidence to suggest that this is an important field for those concerned

with improving public health . . . Plausible mechanisms linking psychosocial factors to

health are described in the first half of this chapter. We then look to the evidence from

both human and animal literature to illustrate the ways in which social organisation

can influence our biology and, therefore, the health of individuals and populations.

(Brunner and Marmot 2006, p. 8)

This passage mixes the mechanistic stance as a purely methodological stance

with the natural companion view that identifying mechanisms is a good way

to improve public health. Setting that aside, the mechanistic stance is clearly

discernible. There is already evidence that psychosocial factors influence

health; the purpose of the chapter is to work out how, by postulating ‘plausible

mechanisms’ and presenting ‘evidence from both human and animal litera-

3 Showing that a given mechanism is how A actually causes Bmust not, of course, be confused
with exhibiting a mechanism by which A could cause B. The entailment goes through only when
what has been shown is how A actually causes B.
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ture’ in support. Whether or not this is the authors’ intention, they certainly

give the impression that providing a mechanism a key element in the case for

the hypothesis that social status is a determinant of health.

In each of these cases, the identification of mechanisms is seen as impor-

tant: important enough to devote an entire paper to. Why? It could be simple
scientific curiosity: the desire to find out how things work, just for the sake

of it. But I think there is more to it than that. Identifying mechanisms is

presented as important not only to complete the scientific picture, but also

to seal the case for existing causal hypotheses. This is especially clear in the

social determinants of health literature, where the identification of pathways

is seen by proponents and detractors alike as crucial for the case that the

socioeconomic factors identified as health determinants really do have the

effects claimed for them. Michael Marmot’s Whitehall studies provide evi-

dence for a causal link between social status and health, among British civil

servants – a population whose basic biological needs (food, water, shelter)

are amply met. Marmot’s efforts to confirm this hypothesis have not focused

merely on replicating the results in different populations (though that is

of course one area of activity). A considerable amount of effort has also

been devoted to identifying mechanisms by which social status might affect

health.

This suggests a methodological thesis: that identifying an underlying mech-

anism is both necessary and sufficient for establishing a causal hypothe-

sis.4 I am not suggesting that Marmot or anyone else endorses this the-

sis: indeed it may be that no actual epidemiologist would sign up to it,

in that blunt form. But identifying mechanisms clearly is relevant to estab-
lishing causal hypotheses in epidemiology, and setting up a somewhat

extreme but clear stance may be a useful technique for exploring that rele-

vance.5

It is not hard to see why identifying a mechanism might be considered

necessary and sufficient for establishing a causal hypothesis, at least in epi-

demiology. An argument for its being necessary might appeal to the fact that

epidemiology is clearly not a fundamental science. Causal associations identi-

fied in epidemiology presumably exist in virtue of the way that things are orga-

nized at a more fundemental level. The existence of causal associations at the

population level is naturally seen as arising from certain regularities in the way

that the members of that population are organised, and regularities in their

4 Where there is more than one distinct mechanism underlying a given association, pre-

sumably all the underlying mechanisms would have to be identified to satisfy the spirit of this

requirement.
5 The mechanistic stance is not supposed to be the view that identifying mechanisms is the

goal of epidemiological research: only of causal inference. Causal inference may have other goals,

such as public health intervention, or indeed informing further causal inferences in an iterative

process.
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environment. Identifying a mechanism is just identifying the properties and

activities of the population’s members and environment which together give

rise to the population-level association. If no mechanism can be identified,

then the status of the population-level causal association remains mysterious.

Failure to identify such properties and activities is not always evidence that

they do not exist, of course, and perhaps this is why Austin Bradford Hill

famously urges that ‘biological plausibility’ be treated with caution (Hill 1965).
Nevertheless, a hypothesis for which no mechanism is remotely plausible, or
for which no mechanism is discovered after a long period of time, remains at

best tentative.

It is similarly obvious why identifying a mechanism underlying a causal

association might be considered sufficient for establishing the corresponding

causal hypothesis. If the events and activities giving rise to an association are

identified, then it presumably follows that the variables which the hypothesis

asserts are causally linked at least can be causally connected. There is an
interesting twist here, however. Showing that a mechanism exists by which,

say, stress can cause poor health, does not bear directly on the claim that

stress does cause poor health in any particular population. The mechanisms
identified by Marmot are ways in which the results of the Whitehall studies

might have come about. This explains his two-part strategy outlined in the
excerpt quoted previously, of first identifying mechanisms and then arguing

for their actual operation in humans and animals. So identifying a mech-

anism is not on its own sufficient for establishing a causal hypothesis; a

further inference is required to the claim that the identified mechanism is

indeed the explanation of the causal association asserted by the hypothesis

in question. What is sufficient, then, to establish a causal hypothesis, is the

identification of the mechanism actually responsible for the association, not
merely a mechanism which physically could be responsible for it. I take it that
the fundamental motivation for this stance is that it follows from the claim

that A causes B in a particular way, that A causes B simpliciter. Showing how
A causes B is only possible if, or in other words entails that, A does in fact

cause B.

The mechanistic stance responds as follows to the difficulties facing causal

inference in epidemiology which I identified in Section 3.1. In answer to the
question when we are justified in inferring causation for a studied group,

the mechanistic answer is presumably, ‘Not until a mechanism has been

identified’. A single epidemiological study will not usually identify a mecha-

nism, perhaps explaining why single studies typically provoke replication and

further research, rather than a causal inference. But if epidemiology seeks

to uncover mechanisms, then there may be another, more subtle reason that

replication is important. Replicating in Study B an association observed in

Study A provides evidence that the same mechanism underlies both associa-
tions; it seems prima facie less likely that two different mechanisms gave rise
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to the two associations, than that one did.6 This explains why replication by

Study B can confirm a hypothesis about Study A: because Study B provides

further reason to think that some mechanism underlies both studies, and

thus provides further reason to think that some mechanism underlies the

association first observed in Study A. And showing that some mechanism

underlies an association is sufficient for showing that the association is

indeed causal, on the mechanistic stance. This methodological stance there-

fore explains and vindicates the reluctance of epidemiologists to make causal

inferences on the basis of individual studies, and the importance they attach to

replication.

The mechanistic stance also provides useful clarification of the other diffi-

culties we identified, the problem of generalizing from studies to population,

and the question of how to interpret general causal hypotheses in epidemiol-

ogy. Generalizing to a wider population is typically safer when the mechanism

underlying a causal association has been identified, because knowledge of the

mechanism yields detailed knowledge of what differences are relevant to

the association. For example, our knowledge of the mechanism underlying

the analgesic effect of paracetamol enables us to identify the circumstances

relevant to this effect, and thus to say whether the effect will hold in a very

wide range of circumstances. Moreover, it also gives us a lot of other useful

knowledge, for example, about other associations – other effects of taking
paracetamol. These uncontroversial facts motivate a methodological idea:

that the generalisation of an association observed in a particular study to a

wider population is only really warranted when the mechanism underlying

the association has been identified. generalisation before a mechanism has

been identified may of course be required in some circumstances, but until

the mechanism has been identified, generalizing remains a sort of guessing,

according to the mechanistic stance: because we can’t be sure exactly when our
causal generalisations will hold, until we know why they hold.
This suggests an interpretation of general causal claims, such as ‘smoking

causes lung cancer’ or ‘genetic influences on BMI and abdominal adiposity are

high in children born since the onset of the pediatric obesity epidemic’. Such

claims are to be interpreted, first, as asserting the existence of a mechanism –

or perhaps several – linking the causal and effect variables, and second, as

claiming that the operation of this mechanism(s) is (are) in fact what underlies

the causal association between the two variables. The mechanismmay or may

not be known. When it is, this interpretation is very natural. ‘Paracetamol

causes pain relief’ is naturally precisified, not by specifying more exactly the

probability that an analgesic effect will be observed in various circumstances,

but rather by saying more about the way paracetamol works. Detailed descrip-

tion of the mechanism yields information about whether an analgesic effect

6 This is an application of what is sometimes called the Common Cause Principle.
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will be observed in a wide range of circumstances, in an efficient way. When

a mechanism is not known, the causal generalisation is a sort of stand-in: a

claim that some unknown mechanism does link the variables.

The exception-ridden nature of epidemiological generalisations is unprob-

lematic, on this view. Suppose a causal generalisation is just a claim that a

mechanism underlies the association between two variables C and E . That
is to say, in individual cases where an individual c leads to an individual e ,
a mechanism connects c and e . The exception-ridden nature of the gen-
eralisation reflects the fact that sometimes, C -events occur, but the mech-
anism by which they give rise to E -events is absent, and so E -events fail
to occur. Likewise, the fact that C -events can by a certain mechanism give
rise to E -events does not preclude E -events from coming about some other
way. Causal generalisations are claims about the actual linking of individual

C -events and E -events by actual instances of a mechanism; such claims are
entirely compatible with C -events occurring without the E -producing mech-
anism, or E -events occurring as the result of some other mechanism. The
content of the causal generalisation is that a certain mechanism is responsible
for the causal association between the identified variables; it is not a claim about
the association itself, but about how the association arises. Further support

for this interpretation of exception-ridden causal generalisations derives from

one of the points argued in the last paragraph, that when a mechanism is

known, it is natural to precisify a causal generalisation by specifying the

underlying mechanism, rather than offering more statistical detail about the

circumstances in which the association holds. Whether or not it is a model for

other sciences, it seems to be a good fit for epidemiology.

The one trouble previously identified which themechanistic stance does not

seem to handle is the worry about measures of proportion of influence, such

as heritability. It can handle causal generalisations amounting to associations

of less than 100%, such as ‘smoking causes lung cancer’, in the manner
already indicated. But a claim such as ‘pediatric obesity is over 70% heritable’
does not submit to a mechanistic interpretation, since presumably mecha-

nisms linking genes to weight exist in every human being. I am, however,

inclined to think that this reflects badly on the concept of heritability, and

similar attempts to apportion causal responsibility; such concepts are hard to

make sense of in any analysis. It may be that they have no clear sense, or

that they need further clarification (cf. Lewontin 1974; Schonemann 1997).
Accordingly I propose to set them aside, and focus on interpreting those

epidemiological hypotheses that clearly do make sense.

The mechanistic stance has a lot to recommend it, then: it provides a

neat interpretation of several tricky features of actual epidemiological prac-

tice, and thus vindicates that practice. The idea that epidemiologists ought

to first identify risk factors, and then look for the mechanisms underlying

them, sounds like both sensible methodological advice and a fair description
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of actual epidemiological methodology. In the next section, however, I will

identify and amplify some doubts that some epidemiologists have expressed

about the mechanistic stance.

3.3 Black boxes

Notwithstanding the foregoing, there are some reasons to doubt that the

mechanistic stance provides a good methodology for causal inference in epi-

demiology. Both the necessity and the sufficiency of discovering a mechanism

for inferring causation are open to criticisms of principle, and these criticisms

can be illustrated by actual episodes in epidemiology.

Let us start with the idea that discovering underlying mechanisms is neces-

sary for the inference of general causal hypotheses. The motivation identified

in the previous section for this methodological principle is that the existence

of a mechanism is necessary for the existence of a general causal relationship.

On the mechanistic interpretation, a causal relationship exists at the popu-

lation level between two variables only if the particular instances of those

variables are related by a mechanism. I suggested that the general causal

claim could be interpreted as a claim about the existence of an underlying

mechanism. If so, it is natural enough to require that we discover this mech-
anism when we assert a general causal claim. So an inference to a general

causal claim requires, as warrant, the discovery of an underlyingmechanism –

sooner or later.

This ‘sooner or later’ indicates a difficulty, though. Our failure to discover

an underlying mechanism does not mean the mechanism doesn’t exist. More-

over, when we are entirely ignorant of a mechanism, it seems that we are often

quite incredulous about the existence of one. Combined with the view that

a mechanism must underlie causal associations, this native incredulity can

lead, and on occasion has led, to an unreasonable prejudice against hypotheses

when we do not see how the hypothesised causal link might work. The view

that mechanisms need to be identified for a causal inference to be secure can

colour our assessment of the evidence for new hypotheses or against accepted

hypotheses. I will suggest that this is because it is not really a methodological

principle: it tells us what to aim at (discovery of mechanisms) but not how to

achieve that goal. As a consequence, it tilts the balance in favour of existing

knowledge, and inhibits what it recommends – the discovery of mechanisms

about which we do not yet know.

Several well-known episodes from the history of epidemiology illustrate

these claims. Perhaps most famously, the miasma theory of the nineteenth

century offered a mechanism for the transmission of disease, based on the

movements of ‘miasms’ (roughly, bad air). The fact that the theory pur-

ported to give a mechanism for disease transmission was its principle virtue.
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Nineteenth century epidemiological heroes such as John Snow and Ignaaz

Semmelweis were criticized for failing to identify plausible mechanisms for

their causal hypotheses, leading to unnecessary loss of life in both cases.

Snow argued, on the basis of incredibly careful door-to-door inquiries, that

a causal connection existed between water supply and cholera (Cameron and

Jones 1983). Semmelweis that differential childbed fever rates between two
wards in a Vienna hospital were caused by the dirty hands of medical students,

who worked in one ward but not the other (Carter 1994). Both hypotheses were
resisted by the authorities and many doctors (although Snow was somewhat

more persuasively successful than Semmelweis), and the principal reason

given was that no plausible mechanism for the transmission of disease along

these vectors had been identified. It was not until some decades later that a

mechanism which might plausibly underlie their respective hypotheses was

identified, in the shape of microbial theory (Carter 2003, esp. Ch. 3, 4).
J.P. Vandebroucke argues that Snow had a ‘contagionist’ hypothesis about

the mechanism of disease transmission, and thus that this is not an example

of ‘black box’ epidemiology (Vandenbroucke 1988). Nevertheless, it is doubtful
that Snow had what we now view as a correct theory of cholera transmission
(and contagionism is certainly false as a general theory, since it is possible
to contract diseases other than from another diseased person, e.g. tetanus;

puerperal fever). It is important to distinguish psychological claims about

what leads scientists to their theories, frommethodological claims about what

justifies or otherwise warrants those theories. Snow’s results are impressive

to modern epidemiologists, even though we now believe he was wrong about
the mechanism of disease transmission. His proposed mechanism cannot,

therefore, be part of the warrant which we now accept for his conclusions
(whatever he thought); yet we still regard those conclusions as warranted to

a high degree by the evidence he procured. Semmelweis also hypothesised

a disease mechanism, namely the resorption of animal-organic matter lead-

ing to the decaying of the blood (Gillies 2005). But similarly, acceptance of
Semmelweis’s resorption/decaying blood mechanism surely cannot be part

of our reason for thinking that any of Semmelweis’s causal hypotheses were
well-founded, since we believe the resorption/decaying blood mechanism is

not what underlay the associations he identified, for instance between dis-

infecting hands and reductions in differences in mortality between the two

wards. Yet even though we reject his account of the underlying mechanism,

this does not prevent us from accepting Semmelweis’s causal hypothesis that

disinfecting hands caused the reduction. Vandenbroucke’s argument stum-

bles on exactly the point I am trying to make, confusing the discovery of

mechanism as a goal of causal inference, with the discovery of mechanism
as method. I am suggesting that it is a good goal, but a lousy method. It
is not their theories of the mechanism of disease transmission which have

elevated Snow and Semmelweis almost to hero status in the eyes of many



Inferring causation in epidemiology 57

modern epidemiologists; and it is not the failure of their contemporaries

to appreciate these mechanism-theories that is so often lamented. Rather, it

is the way they procured evidence to support their causal hypotheses and

to refute counter-hypotheses, which is so widely admired; and the way that

evidence was ignored that is lamented.

Thus these episodes cast doubt on the usefulness of a methodological prin-

ciple stating that discovery of mechanism is necessary for warranted causal

inference. At least three doubts are distinguishable. First, the obvious logical

point that has already been mentioned: that the inference from no known

mechanism to nomechanism is a tricky one. Second, demanding that a mech-

anism be identified before a causal inference is accepted simply seems to be

an unreasonable position, because it seems possible to have excellent evidence

for a causal link, without understanding how the link works. Even if the mech-

anistic interpretation is plausible, and general causal claims are to be inter-
preted as existence claims about underlying mechanisms, it does not follow

that a general causal claim is only warranted when the underlying mechanism

is identified. It is possible, in an epidemiological context, to know that there is

a causal link – and therefore that a mechanismmust exist, on the mechanistic

stance – yet not know what that mechanism is. The opponents of Snow and

Semmelweis are generally considered to have been unreasonable to doubt the
extremely convincing evidence for a causal link; this is difficult to explain if

warrant for causal inference requires the identification of a mechanism.

Of course, in these cases, a mechanism was eventually discovered. But (and
this is the third doubt) the discovery came after the causal hypothesis was well-
established. The mechanistic methodology gets things the wrong way round,

in these cases. The discovery of a mechanism can of course help to confirm
a causal hypothesis, but a causal hypothesis can also be solidly confirmed

well before the underlying mechanism is known. Therefore discovery of an

underlying mechanism is not a necessary condition on warranted causal

inference.

It must be remarked that drawing morals from historical episodes is a

delicate business, because it is possible for different commentators to see

different lessons in the same episode. For example, while most commentators

(of a moral-drawing sort) would agree that something went wrong in the

Semmelweis episode, Federica Russo and Jon Williamson see the episode

differently. They insist that, to establish a causal claim, it is necessary to
identify an underlying mechanism. But they do not adopt the mechanistic

stance as I have outlined it, because they do not think that identifying a mech-

anism is sufficient for causal inference: they hold that it is also necessary to

provide what they variously refer to as ‘statistical’ and ‘probabilistic’ evidence.

In support, they cite episodes where causal hypotheses were supported by

evidence of one kind but not of the other, and were rejected on that basis.

Thus they cite the Semmelweis episode to illustrate the claim that ‘the relation
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between contamination and puerperal fever . . . was not accepted until backed

up by mechanistic evidence, i.e. until the germ theory had been developed’

(2007, p. 11), as an instance of their more general thesis that identifying
mechanisms is necessary (though not sufficient) for causal inference. They go

on to propose a theory of causation which is intended to fit this methodological

picture.

This line of argument makes me uneasy, because I am unsure whether it

is meant as a descriptive account of causal inference (then and now), or as a

normative account of the standards which ought to be used when deciding
whether to infer causation. Suppose we grant (for the argument) Russo–

Williamson’s descriptive claim, that Semmelweis’s contemporaries rejected

his theories because of a lack of ‘mechanistic evidence’, which I take to mean

a lack of any then-acceptable theory about what the underlying mechanism for

the proposed causal association might be. In this sense, indeed, Semmelweis

did fail to establish his various causal hypotheses: he failed to provide evidence

which was in fact compelling, as demonstrated by the fact that his evidence
did not compel many of his contemporaries. But in another sense he clearly

succeeded in establishing (at least some of) his causal hypotheses: he provided
evidence which, in the eyes of most modern epidemiologists, his colleagues

ought to have taken more seriously. In particular, the evidence for the efficacy
of his proposed intervention – disinfecting (not merely washing) hands –

is extremely strong. And replication would have made it stronger, without

necessarily advancing knowledge of underlying mechanisms.

Unfortunately a purely descriptive reading of Russo andWilliamson’s claim

renders it largely irrelevant from a methodological point of view, and does not

justify or explain why they themselves treat it as a motivation to seek a theory

of causation, apt for the health sciences. If the claim is merely descriptive,

then we may conclude that Semmelweis’s contemporaries were simply wrong
to insist that a mechanism be identified before they accepted any causal

connection. (And so we do not need a new theory of causation that would be

compatible with this insistence.) Suppose, then, that Russo and Williamson

intend their claim to be normative. Then they are making a normative claim

that mechanistic (as well as statistical) evidence is necessary for good, rational,
warranted causal inference. On this reading, the lesson Russo andWilliamson
draw from the Semmelweis episode is that Semmelweis’s theories ought not to
have been accepted until knowledge of underlying mechanisms was obtained.

(This explains why they offer a theory of causation intended to justify this

stance.)

But if this is indeed what Russo and Williamson are claiming, then I fear

they need a far stronger argument than any they supply. For then they are

committed to the startling view that, had germ theory not come along and

the underlying mechanism remained a mystery, we today would be rational to

dismiss Semmelweis’s work, no matter how much evidence we had gathered
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in the meantime about the efficacy of disinfecting hands. That is not a view

which many modern epidemiologists would share. Modern epidemiologists

set very high store in some methods, such as the randomized control trial,

which involve no requirement to identify underlying mechanisms. Empirical

evidence suggests that this view would cost lives if it were adopted by modern

epidemiologists, and that indeed it did cost lives if it was in fact the reason that

Semmelweis’s claims were not accepted more promptly. In short, the descrip-

tive Russo–Williamson thesis does not (without further argument) support

any claims about causation, nor bear on questions about how causation ought
to be inferred; while the normative thesis is false by the methodological stan-

dards prevalent in epidemiology, and also, arguably, in light of the empirical

evidence from episodes such as the Semmelweis case itself.

In fact, on the mechanistic interpretation, it is not surprising that a causal

hypothesis can be well confirmed before the underlying mechanism is discov-

ered. On the mechanistic interpretation I have suggested, a causal generali-

sation asserts that there is some mechanism that is responsible for the asso-
ciation in question. We could have good reason to believe that there is some

mechanism, yet not know what it is.7 Moreover, this order of events suggests

a plausible story about how we discover mechanisms when we previously had

no idea about them. We make warranted inferences to causal generalisations;

these generalisations imply the existence of underlying mechanisms; and we

then conduct further research to find themechanisms.We knowwhere to look.
It seems, then, that the mechanistic metaphysics does not after all motivate

the corresponding methodological principle that the discovery of underlying

mechanism is necessary for warranted causal inference.

Stepping for a moment beyond the confines of the methodology of epi-

demiology, there seems to be little intuitive support for the idea that causal

inferences require knowledge of mechanisms as warrant. There are many

everyday cases where we take ourselves to have knowledge of causal relations,

without having the slightest idea about the mechanisms underlying them.

I know that the clear Turkish liquor, rakı, goes cloudy when water is added, but

I don’t know what the underlying mechanism is. Presumably someone does,

and it might be suggested that I can have a warranted causal belief just as long

as I have recourse to an expert who can explain the mechanism to me. But the

Turks have known for centuries that rakı goes cloudy when water is added. It

is absurd to insist that, for centuries before the underlying mechanism was

known, the Turks did not know that mixing water and rakı in roughly equal

quantities caused the cloudiness they routinelys witnessed.

Moreover, to insist as a general matter that underlying mechanisms must

be identified before a causal inference is warranted raises a dilemma. As we go

7 This is an instance of the more general fact that we can know that something exists without
knowing what it is. For example, I know that there is something holding the floor up, but I don’t
know what it is; you may know that there is something in the cave, but not what, etc.
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on uncovering underlying mechanisms, either we will come up against causal

relations for which no underlying mechanism can be discovered, or we will

not. If we do, then none of our causal knowledge will be secured, because we

will have reached a point where we are unable to discover underlying mech-

anisms and therefore unable to obtain the warrant we sought for our higher-

level causal inferences.8 If we do not, then we will never finish uncovering

underlying mechanisms, and thus again we will never obtain the warrant

we seek for our causal inferences. As a general methodological principle,

then, the requirement that underlying mechanisms be identified, before a

causal inference is warranted, is a guarantee that we can never have causal

knowledge. If it has any applicability then it must be confined to particular

domains, such as causal inference in epidemiology; but historical episodes

previously alluded to suggest that it does not work even so confined.

These famous historical episodes havemore recent echoes. In an influential

(but not uncontroversial) report for the US government, Richard Doll and

Richard Peto argued that many environmental causes of cancer could be iden-

tified from careful analysis of epidemiological evidence (Doll and Peto 1981).
This approach suggests that epidemiologists should treat diseases as ‘black

boxes’ (Peto 1984), and that the identification of a causal mechanism is not
necessary for a warranted causal inference. Accordingly, epidemiologists need

not concern themselves with the discovery of mechanisms, but can directly

attack causal questions without worrying about the mechanisms underlying

the hypotheses they generate. As in the cases of Snow and Semmelweis, the

pragmatic benefits of this approach are evident. If Doll and Peto are correct,

then labouring to uncover mechanisms may well prove to be a waste of time

and money, from a public health point of view. Especially where environmen-

tal causes are concerned (smoking being the best-known example), refusing

to make a causal inference until a mechanism is known can be seriously

detrimental to public health. Doll and Peto’s recommendation typifies what

I will call the black box stance.
A great deal of contemporary research is, I think, undecided between the

mechanistic and the black box stances. On the one hand, epidemiological

research largely proceeds by identifying associations and applying various

statistical tests and methodological principles to form a view about whether

these associations are causal. On the other hand, the explosion of identified

risk factors has not produced a corresponding increase in the scope of our

8 Might it be objected that warrant of a higher-level causal hypothesis can be conferred by

knowledge of an underlying mechanism, even if that underlying mechanism contains causal

links for which yet lower-level underlying mechanisms are not known? No: because (on this view)

we are not warranted in believing that the causal links in the mechanism underlying our higher-

level hypothesis, until we have identified the mechanisms underlying them in turn. Without that

warrant, we do not know (on this view) that they are causal links: for all we know (on this view),

our putative mechanism may be a coincidental dance of its parts.
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understanding of the conditions studied, nor has it been accompanied by

a corresponding explosion in public health or medical interventions. This

is not just a case of technology lagging: it is also due to the fact that the

causal hypotheses in question do not seem terribly reliable. For example,

studies seemed to show that hormone replacement therapy reduced risk of

heart disease, and public health policies were implemented on this basis,

before subsequent studies found the opposite effect (Rutter 2007). A slightly
more subtle problem is that directly translating a causal hypothesis into a

public health intervention may have unintended consequences (an instance

of the generalisation problem). For example, beta blockers administered after

surgery appeared to reduce the risk of death by heart attack, but subsequent

studies showed that they increased the risk of death overall by increasing

risk of death by stroke and other conditions (Devereaux et al. 2008). This,
of course, is grist to the mill of the mechanistic stance, because one of the

chief benefits of discovering the mechanism underlying an association is

that it often comes with information about other associations, and so makes
unintended consequences of this sort less likely.

Requiring that a mechanism be identified before a causal hypothesis is

accepted may be too strict; but it does at least have the merit of clarity. It is

easy to tell whether a mechanism has been postulated; moreover testing the
hypothesis by replicating the mechanism may sometimes be a more straight-
forward (because lab-based or clinical) business than replicating the associa-

tion itself in a large observational study. Whereas analysing the methodology

of a published study in order to form a view as to the security of its results is

devilishly difficult. Indeed it may be impossible, depending on the accuracy

and completeness of the published methods section.

One solution to this tension, then, would be to require the discovery of

mechanisms as an admittedly too strong necessary condition on causal infer-

ence. In pragmatic contexts where great harm appears to be a real possibility,

but where a mechanism cannot be identified, some other decision-theoretic

principle, such as the precautionary principle, might be appealed to. This stub-

bornmechanistic stance is, however, a last resort, because of the difficulties we

have been discussing, and because identifying sound principles for decision-

making under uncertainty is itself a difficult task. Even erring on the side of

safety is not straightforward. The HRT/heart disease example shows that we

can be wrong, not only in our causal inferences, but also in deciding which

way it is safe to err.

So far I have been focusing on the view that mechanism discovery is

necessary for causal inference. What about the claim that it is sufficient? Here,

the mechanistic stance might appear to be on stronger ground: showing how
A causes B seems to entail that A does cause B.
Unfortunately, that does not mean that ‘look for mechanisms’ is a good

methodological principle. It has at least two serious weaknesses. First, it is
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too vague. Ironically, it does not tell us how to look for mechanisms. It states a
goal, but gives no indication how to get there. This, I suggest, explains why the

mechanistic stance has on occasion led to a bias towards existing knowledge.

Mechanisms we already take ourselves to know about satisfy the methodolog-

ical directive; but the same directive doesn’t help us find mechanisms we don’t

know about.

Second, the search for mechanisms can mislead, because it can allow us to

believe we have achieved an understanding of something when we have not.

Showing how A causes B indeed entails showing that A causes B. But giving
information about an event’s causes is not sufficient to explain that event, nor

to allow you to devise an effective intervention. If I explain my late arrival by

telling you that I was born, I am citing a cause of my late arrival: but I am prob-

ably not providing a good explanation of my late arrival. Similarly, identifying a

mechanism by which, say, hydrochloric acid leads to ulceration of the stomach

lining is indeed sufficient for showing that the presence of acid causes ulcera-
tion. But there is an explanation for the presence of excessive acid, in the case

of many sufferers, namely the presence of bacteria, Helicobacter pylori. Show-
ing that stomach acid causes ulceration by identifying the mechanism is a

good method for proving causation; but epidemiologists (like other scientists)

are typically interested in more than cataloguing the causes of the phenomena

they study. They are interested in explaining them, and intervening to change

them. Each of these goals plausibly requires the identification of causes.

But not just any causes. The mechanistic methodology misleads because it
provides a sufficient criterion for causation, but no guidance on whether the

‘right’ causes have been identified, or what the ‘right’ causes are.

This philosophical point is also well-illustrated by famous historical

episodes. I have already mentioned the discovery ofH pylori. Thoroughly doc-
umenting the mechanism by which hydrochloric acid causes stomach ulcer-

ation did not lead to the discovery of H pylori. Moreover, the hypothesis that
peptic ulcer might in many cases be an infectious disease was initially treated

with considerable scepticism – because it was thought that bacteria could

not survive in such an acidic environment as the stomach. What led to the

discovery of H pylori was initially chance observation of unknown bacteria in
patients with peptic ulcer, followed up by observational studies, clinical work

on the bacteria, and a dramatic piece of self-experimentation (for a summary

see Angel 2008, Ch 2).9 Of course, the discovery of the mechanism by which
H pylori causes ulcer is also an important feature of this episode. I don’t mean
to deny that discovering mechanisms is important and useful: only that the

directive to do so is not a reliable guide for causal inference in epidemiology.

This is not because it does not establish causation, but because it does not

identify the right causal associations. Identifying causes, any causes, is not

9 One of the discoverers, Barry Marshall, drank a solution containing the bacteria and devel-

oped gastritis, then took antibiotics and recovered.
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enough; there may be other causes – like H pylori – which better explain the
phenomena in question, or offer readier foci for intervention. Mere causal
inference is not all it is cracked up to be.

What makes the H pylori case such a neat illustration is that acid does play
a role in ulceration. The bacteria cause excessive acid production, which is

what directly causes ulceration. So there is a mechanism there. In the cases
of Snow and Semmelweis, on the other hand, the mechanisms identified we

would now regard as non-existent. So in those historical cases, a defender of

the mechanistic stance might argue that, had the real mechanism of disease
transmission been believed rather than miasma theory, the hypotheses of

Snow and Semmelweis would have been better received. That may well be so.

But this argument confuses reality with our grasp on it. A sound methodolog-

ical principle cannot rely on our already knowing what we are trying to find

out. In the case of miasma theory, many medical scientists thought they knew
the mechanism of disease transmission. Partly as a consequence, they failed

to properly appreciate the evidence before them. This is not simply a case

of scientists being convinced of something and failing to give due weight to

disconfirming evidence: it is a case of scientists believing they understand how
something happens, and rejecting causal hypotheses that appear incompatible

with this mechanism.

This problem seems to be at least partly what Doll and Peto have in mind

when the advocate the black box stance. They argue that epidemiological

evidence can warrant many causal inferences, without the underlying mecha-

nisms being known. This sounds like a sort of call to arms for epidemiologists,

a rallying cry for them to have faith in the methods of their discipline, and in

particular to pay attention to the causal associations revealed by the evidence,

without worrying about how the causal associationsmight work. Nevertheless,

the black box stance does not offer much in the way of positive methodological

recommendations. And it does not entirely dispense with the fundamental

motivation of the mechanistic stance: that if we want to really explain – or
control – something, we need to know how it works. In the next section I will

propose a reconciliation.

3.4 Contrasts

It may be tempting to see the contrast between the mechanistic stance and

the black box stance as a disagreement about the goals of epidemiology. One

epidemiologist puts it like this:

. . . the epidemiologist who tries to explain, and if possible eliminate, variations in

disease occurrence without much regard for mechanisms, stands in contrast to the

laboratory scientist who prefers to disentangle the mechanisms first.

(Vandenbroucke 1988, p. 708)
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The mechanistic stance might be seen as a more properly scientific view,

interested in deep explanation; while the black box stance might be thought

of as a more pragmatic view, interested primarily in designing public health

interventions by the most direct inferential route available.

This is a misunderstanding, in my opinion. The strengths and weaknesses

of the mechanistic stance apply equally to the goals of explanation and inter-

vention. Let me enumerate the principle strengths and weaknesses of the

mechanistic stance, starting with the strengths.

(i) Interpreting causal generalisations in epidemiology as existence claims

about underlying mechanisms resolves gives a clear and plausible

meaning to those generalisations, and helps us to understand the role

of replication in epidemiology.

(ii) How widely we can generalize from a known association seems to be

directly linked to how well the underlying mechanism is understood.

(iii) Discovering an underlying mechanism proves the truth of the causal

hypothesis in question.

(iv) A mechanistic explanation of a causal association increases our under-

standing of that association.

(v) Knowledge of the mechanism underlying one causal association gives

us, or at least can lead to, knowledge of other causal associations.

Each of these is a strength, whether the goal is scientific explanation or public

health intervention. (i) is perhaps the most philosophical advantage, but it

is surely of some importance to the scientist and the public health policy

maker alike to have a good grasp on the nature of the causal generalisations

they employ. For the scientist, it yields greater understanding; for the policy-

maker, the ability to avoid practical consequences of misunderstanding. (ii) is

evidently of central interest to the policy-maker, since how widely the results

of a given study apply is central to the question of what interventions it

warrants. It is also of evident interest for someone who is interested primarily

in explanation, since it bears on how much a given causal hypothesis might

explain. (iii) is of interest for both explanation and intervention, since false

causal inferences are neither explanatory nor reliable guides for intervention.

(iv) is evidently of value for those interested primarily in explanation, but it is

also of use to the intervention-focused. This is because when we understand

a mechanism, we are often able to identify more than one point at which we

might intervene on that mechanism (if we want to prevent it) or more than

one point at which it might be vulnerable to breaking down (if we want to

protect it). (v) is useful from an explanatory perspective, since knowledge of

other associations is a symptom of explanatory power, as well adding to the

grand total of our knowledge. And it is evidently useful from the point of view

of intervention, because it enables us to avoid unintended consequences.
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A similar exercise shows the weaknesses of the mechanistic stance to apply

regardless of whether explanation or intervention is the goal. To summarize

the weaknesses:

(i) A general causal hypothesis can be warranted before the underlying

mechanism is discovered (indeed, a warranted causal hypothesis is a

great reason to look for a mechanism).

(ii) The directive to seek mechanisms is non-specific, and does not tell us

how to find mechanisms; on some occasions, this appears to have led

to a bias in favour of known mechanisms and against causal associa-

tions for which no mechanism is yet known.

(iii) A causal hypothesis may be deficient even though the underlying

mechanism is understood, because it may lead us to believe that we

have obtained a greater understanding of a phenomenon than we really

have.

From an intervention-oriented point of view, (i) is a serious drawback of the

mechanistic stance, because it shows that the mechanistic stance could lead

to serious unnecessary delays on intervention. Less obviously, it is also a

drawback from the explanatory point of view, because it leads to the unnec-

essary rejection of good explanations. From an explanatory point of view,

the mechanistic stance is guilty of a why-regress fallacy. The ‘why regress’

is simply the fact that it is always possible to ask ‘Why?’, including on occa-

sions when the explanation offered is a good one (Lipton 2004, pp. 21–2).
What I call a why-regress fallacy is the refusal to accept an explanation on

the grounds that the explanation itself has not been explained. As a general

rule, such grounds are fallacious, because explanations can be good as far

as they go, without providing the entire causal history of the explanandum.

Otherwise, epidemiologists would study the Big Bang. (ii) is clearly a problem

for any application of themechanistic stance on causal inference, regardless of

motivation. (iii) applies to intervention- and explanation-oriented foci equally,

since it means that we miss out on potentially more fruitful interventions or

explanations, respectively.

What, then, is the diagnosis of the tension between mechanistic and black

box stances? I suggest it arises from a simple confusion of metaphysics and

methodology. On the one hand, it does not follow from the strengths listed

that discovering mechanisms is necessary for causal inference, nor that the

discovery of mechanisms is a sufficient guide for explanation or intervention.

None of these points directly motivate the mechanistic methodological stance

on causal inference; what they motivate is interpreting causal hypotheses as
existence claims about underlying mechanisms, and seeking these underlying
mechanisms. Neither directive tells us anything about the method of causal
inference; at most, they tell us about the goal. On the other hand, it does
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not follow from the weaknesses listed that we should abandon a mechanistic

interpretation of causal hypotheses, or that we should abandon the search

for mechanisms. It only follows that we should not set the identification of

a mechanism as a necessary condition for causal inference; nor confuse the

power of a mechanistic explanation for a given causal association with the

explanatory power of the association itself, with respect to the goals of our

investigative activities.

The advantages of a mechanistic interpretation of causal hypotheses in

epidemiology were laid out in Section 3.2. My suggestion is that we endorse
this interpretation, but resist the temptation to take the mechanistic method-

ological stance with respect to causal inferences. Themechanistic metaphysics

is good, but its methodology is bad.

The obvious next question is: how should causation be inferred? I do

not think there is an easy answer. There are just a bundle of methods,

organised around a common theme of identifying patterns of differences

and similarities (Mill 1843; Lipton 2004), but increasingly statistically sophis-
ticated (Spirtes, Glymour and Scheines 1993; Pearl 2000), and (it is to be
hoped) increasingly reliable. The point of this paper is not to contribute a

new method of causal inference, but to identify and debunk a tempting bad

method. That method is what I called the mechanistic stance. But at the

same time, I hope to have shown that a mechanistic metaphysics for causal

generalisations has a great deal to offer epidemiology. There is, therefore,

no need to choose between the identification of causal associations at the
population level, and the identification of underlying mechanisms. On the

mechanistic interpretation, causal hypotheses at the population level are exis-
tence claims about underlying mechanisms. There need be no opposition

between epidemiologists conducting observational studies, and those trying

to ‘disentangle’ mechanisms in a laboratory. They are studying the same

thing.

It is not necessary to identify the underlying mechanism in order to have

warrant for a causal hypothesis. But it is necessary in order to explain the asso-
ciation. A hypothesis can be perfectly warranted, without being understood.

Conversely, a hypothesis may be well (mechanistically) understood, but may

itself fail to provide a good explanation of the phenomenon in question for

the purposes at hand. To prove a causal hypothesis, it is sufficient to identify

an underlying mechanism. But identifying a mechanism is no guarantee of

the explanatory power of the hypothesis itself – the explanatory power of

the hypothesis that stomach acid causes ulcer, for example. Mechanism is

sufficient for causation; but causation is not sufficient for explanation, or for

purposes of intervention. Oxygen is a cause of every car crash, and I make that

assertion not on the basis of any statistical information, but entirely on the

basis of my knowledge of the mechanisms underlying internal combustion

engines and human respiration. Yet oxygen offers good explanations of few,
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if any, car crashes; and controlling the oxygen supply is not a particularly

promising avenue for policy makers to pursue.10

What I have not done is offer any detailed analysis of the notion of a

mechanism. The goal of this paper is to see what the notion can offer causal

inference in epidemiology, not to analyse that notion itself. Nevertheless,

I would like to finish by sketching a view of the relation between mecha-

nistic explanation and other kinds of causal explanation. I am inclined to

see mechanistic explanation as of a kind with causal explanation in general.

I take it as widely accepted that causation is not sufficient for explanation,

and that for a causal association to explain, it must amount to a difference

between fact and foil (Lewis 1986; Lipton 2004, Ch 3). In a public health
context, health provides a plausible contrast class, as I have argued elsewhere

(Broadbent, 2009b). To give a mechanistic explanation of an association is
to tell a story about how events of one type cause events of another, by

filling in the intervening steps in the causal chain, and specifying what

conditions must hold. It is tempting to see mechanistic explanations as

causal explanations, with associations as their explananda. Presumably the

relevant contrast class is the failure of that association to hold. Identifying

possible failures is not purely a hypothetical exercise: typically there will be

plenty of actual failures, since epidemiological generalisations are typically

exception-ridden.

If this sketch of a contrastive analysis is approximately correct, it would

explain why mechanistic explanations are so useful in epidemiology and pub-

lic health: because they provide information about what makes the difference

between cause-events leading to effect-events, and not doing so. And interven-

ing on links of this sort is the central purpose of public health policy. However,

this sketch also illustrates why mechanistic explanation is not necessary for

good causal inference: because a causal difference between fact and foil can

be identified, even before the causal link between the proposed explanans and

the fact is understood. We can know that drinking dirty water is the cause
of the difference between people with cholera and those without, even if we

don’t know how drinking dirty water results in cholera. And the contrastive

approach shows why mechanistic explanation is not sufficient for effective

intervention or explanation. If a causal hypothesis fails to identify a causal

difference between good health and ill, then it will offer neither explanation

10 Sometimes a distinction is drawn between distal and proximate causes of disease; and

sometimes biological causes are also distinguished, which may be either distal or proximate.

However, drawing and defending such distinctions is not easy, as a large literature in philosophy

and also in jurisprudence shows (for references see, respectively: Broadbent 2008; 2009a). A
discussion of these distinctions would not be relevant here, since there is no particular reason

to hope that the most explanatory cause in a given circumstance will be either proximate, or

distal, or biological. Moreover, even if there were some reason for epidemiologists to favour one

of these categories, a choice would still have to be made among causes within them.
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of nor intervention on that difference; and a mechanistic explanation of the

causal hypothesis (e.g. miasma theory) cannot improve matters.

The correct analysis of mechanistic explanation is not, however, the purpose

of this paper. To apply the moral reflexively, we can know that mechanistic

explanation works, without knowing how it works. I hope to have shown

the strengths of a mechanistic interpretation of causal hypotheses in epi-

demiology, and to have illuminated the pitfalls of a tempting but erroneous

companion methodology.
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Causal modelling, mechanism,
and probability in epidemiology

Harold Kincaid

Abstract

This chapter looks at interrelated issues concerning causality, mechanisms, and prob-

ability with a focus on epidemiology. I argue there is a tendency in epidemiology,

one found in other observational sciences I believe, to try to make formal, abstract

inference rules do more work than they can. The demand for mechanisms reflects this

tendency, because in the abstract it is ambiguous in multiple ways. Using the Pearl

directed acyclic framework (DAG), I show how mechanisms in epidemiology can be

unnecessary and how they can be either helpful or essential, depending on whether

causal relations or causal effect sizes are being examined. Recent work in epidemiology

is finding that traditional stratification analysis can be improved by providing explicit

DAGs. However, they are not helpful for dealing with moderating variables and other

types of complex causality which can be important epidemiology.

Introduction

This chapter focuses on the three subthemes of this volume – causality, mech-

anism, and probability – largely through the lens of recent causal modelling

approaches in epidemiology combined with some general morals from the

philosophy of science. The general morals concern tendencies in the sciences

to try to make formal methods do more than they can and to down play

domain-specific substantive assumptions in scientific inference, a process

sometimes called ‘black boxing’. The issues about mechanisms that I pur-

sue largely concern claims by epidemiologists (Hafeman & Schwartz, 2009),
claims echoed by social scientists (Hedström & Swedberg, 1998; Morgan
& Winship, 2007), that various explanations in their fields are inadequate
because they lack mechanisms. I use causal modelling results and my philos-

ophy of science morals to help evaluate that criticism and to show some ways

in which traditional epidemiology – analytic stratification analysis without use

of explicit causal models – sometimes tries to get more out formal inference

methods than they can really yield and how some recent uses of causal
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modelling in epidemiology does the same. One particular instance of this

over extension, I argue, comes from appealing to probabilities in epidemiology

when they are ungrounded.

Section 4.1 explains the framework and some general morals about mech-
anism, causation and probability. Section 4.2 looks at the standard epidemi-
ological practice of identifying risk factors by stratification analysis. I argue

that traditional epidemiology tries to get by with very little in the way of

causality andmakes much less use of probability than it advertises. Section 4.3
turns tomore recent developments in epidemiology employing Pearle’s graph-

ical approach to causality. I discuss both its strengths and limits in under-

standing the place of mechanism and probability in analysing causality in

epidemiology.

4.1 A framework

Some philosophical preliminaries will be useful for framing the kind of issues

I want to discuss in epidemiology. There are two truths from the past decades

of history and philosophy of science about scientific method and explanation

that I would defend: (1) that scientific inference and explanation cannot be
adequately captured by an a priori, domain independent logic of science or,

put in a positive vein, domain specific, substantive assumptions play key roles

in scientific inference; and (2) scientists often believe or act as if they believe
that their results are the product of precisely such a logic when they are not.

There are many lines of reasoning to (1). They include:

(a) The argument ad Carnapium given by Quine: if Carnap could not find

a successful inductive logic, then there is not one or, more seriously,

informative general inductive logics have not been forthcoming.1 The

causal modelling techniques discussed later in the chapter illustrate the

situation: there are useful things that can be said using them, but their

range of application is restricted because of the strong assumptions and

prior background knowledge needed.

(b) The argument from holism: every part of the web of belief is at least

indirectly connected to every other, and given a big enough empirical

change in one part of the web, we might have to give up those parts of

the web that look like logical truths. Thus no inference rule is indefea-

sible (Quine & Ullian, 1970).

1 I take it that ‘do not violate the probability calculus, first order logic, etc’. is not informative

in that it does not say anything about standard methodological disputes, for example on the

importance of novel data. I have argued elsewhere that Bayes’ theorem is uninformative in this

way (Kincaid, 2002).
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(c) The argument from underdetermination: there are always possible

alternative theories compatible with any given set of data and therefore

there cannot be a logic of inference that tells us which is correct, given

those data (Longino, 1990).

(d) The argument from conceptual humility: There is no reason to

think our concepts, including the concepts of justification, rationality,

explanation and other epistemic concepts, have a logic of necessary

and sufficient conditions that determine their domain of application

(Wilson, 2006).

(e) The argument from history and social studies of science, which is really

many related arguments or pieces of evidence about science in practice:

Specific instances of inference rules such as parsimony or inference to

the best explanation turn out to involve non-logical, domain substantive

empirical assumptions (Day & Kincaid, 1994; Sober, 1988). Scientific
experiments in our best science seem to be declared decisive by a com-

plex social process that looks contingent (Gallison, 1987). Apparently
general scientific inference rules or virtues can conflict and have to

be balanced on substantive grounds (Kuhn, 1977). Scientific papers do
not reflect the process and uncertainties of the reasoning that went

into them. There can be science that is well done by the most obvious

standards such as replication, peer review, etc. and yet that involves non-

epistemic values (Longino, 1990).

Obviously these arguments are of varying quality, clarity, and upshot. In

particular, it is important to note the difference between conclusions about

what cannot in principle be done anywhere in science and conclusions about

what some specific research programme currently cannot do in practice.

Science is a multifaceted process, and pronouncements about it as a whole in

fact violate the pragmatist spirit that motivates many of the arguments given

above. Of course, rules of inference that approach a logical status are great

when you can get them, because if usable by real humans, they guarantee

reliability. However, the above arguments are at least some reason to think

that we should be alert to the substantive, domain-specific knowledge that is

often needed for successful inference.

It is when conclusions are claimed to follow from rules alone, when in truth

they do not, that problems can begin. My claim (2) above that scientists make
such exaggerated assertions is an empirical one. One line of evidence that

will be further supported in this paper comes from the widespread abuse

of statistical significance in the social, behavioural and biomedical sciences.

Other evidence is found in the studies cited in (e) above. On common-sense

grounds it seems clear that scientists have to use methods developed by

others without fully understanding how they work because of the scientific

division labour. Not understanding the full details of a method can lead to
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underestimating its limitations. It is the hope for and the difficulties of finding

tight inference rules that I shall use in framing my discussion of mechanism,

probability, and causation in epidemiology.

Some general morals follow from the above perspective that I will argue

are equally applicable to epidemiology. The first is the now perhaps standard

truism of Cartwright’s (Cartwright, 1994) that if there are no causes in, there
will be no causes out. There is no logic that gets you from probabilities or

associations alone to causal conclusions. However, at this level of abstraction,

the claim is not that interesting (if the premises do not use the predicate

‘cause’ it is not going to be in a validly drawn conclusion). The interesting

question is which causes in are needed to get what causes out. That is an

important, non-obvious question of real import to epidemiology and one that

will be discussed below.

Anothermoral concerns the place of mechanisms. Asking that mechanisms

be provided is a demand that can mean multiple things resulting in different

claims:

1. In the philosophy of science literature (Bechtel, 2008), mechanisms are
usually thought of as the component processes realizing some higher

level capacities, e.g. the mechanism of memory. I call these ‘vertical’

mechanisms’. However, many requests for mechanisms are about pro-

viding intervening or mediating variables between a putative cause and

its effect. Call these ‘horizontal’ mechanisms. The latter is generally

more relevant to epidemiology, particularly to the causal modelling work

I shall discuss.

2. We can also want mechanisms for explanation as opposed to confirma-
tion. Those who want mechanisms because they might rule out spuri-

ous causation are targeting their role in confirmation and are generally

invoking horizontal mechanisms. These are the kinds of concerns that

I discuss in epidemiology and causal modelling. The philosophy of sci-

ence literature on mechanisms largely emphasizes the idea that mecha-

nisms are needed to provide sufficiently deep explanations, working with

at least implicitly an ideal of the ‘full’ explanation. The work in epidemi-

ology that I discuss does not generally come from this motivation.

3. Mechanisms might be important for establishing that there exist causal
relations between variables or for establishing causal effect sizes. Their

‘importance’ might mean knowing the mechanisms is essential or not

essential but useful.

Identifying these distinctions helps support my general doubts that there

are useful universal methodological rules when it comes to the demand for

mechanisms. There are just too many free parameters in that demand for us

to take it as binding in the abstract. So, for example, consider the claim that
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identifyingmechanisms is necessary for ruling out spurious causation. If I am

worried that the association observed between A and B might not be evidence

for causation because they might be the common causes of some third factor,

it may not help me to know how A and B’s properties are realized, i.e. to know

the vertical mechanism. What is needed is not the microdetail but evidence

about possible other causes at the level of A and B.

I next want to draw some limited morals about probability from the general

framework. We certainly do have clear formal rules for handling probability,

and those are universal and a priori if anything is. However, their range of

applicability may not be, and we must again be aware of extension beyond rea-

sonable bounds. Arguably the twomost basic situations grounding probability

judgements come from either (a) there are chance mechanisms, processes, or

devices or (b) measurement of consistent degrees of belief. Random sampling

from a population, random assignment to treatment or control groups, or

random measurement errors are the main instances of the first category and

Bayesian updating of the second.We have to assess case by case which of these

groundings, if any, is applicable. This may all seem obvious, but we shall see

in that epidemiology sometimes uses probability notions where none of these

groundings exist.

4.2 Traditional epidemiology

Much of standard epidemiology – what I will call ‘traditional epidemiology’

in contrast to newer work with explicit causal modelling that I discuss later –

consists in identifying risk factors in observational data for disease via stratifi-

cation analysis to eliminate confounders. I want to sketch some typical work

in this vein to serve as the source of my general discussion. My focus is on

the epidemiology of leukemia and, more specifically, the roles of benzene

exposure and diet in leukemia.

Benzene is a hydrocarbon extracted from petroleum for a variety of uses.

The first cases reporting a link between benzene and leukemia date back to

the 1920s. It was only in the 1960s that evidence beyond case reports began
to appear. Supporting studies are either case-control studies or cohort studies

(Glass et al. 2006). Case-control studies identify a set of present or past cases
of the leukemia and compare benzene exposure in that group to exposure and

disese in a control group. Cohort studies follow a group of individuals over

time, tracking exposure and disease status. A standard outcome measure is

the odds ratio, which is the odds of disease in the exposed divided by the odds

of disease in the non-exposed. The data are typically analysed in two ways.

In simple stratification analysis correlation coeffecients are calculated within

the relevant stratifying subset, for example potential exposures to other carnio-

gens, producing a new estimate of the odds ratio. More complex analysis make
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use of multiple regression, where other possible ‘risk factors’ are included

and the adjusted odds ratio is reported along with either a signficance level or

confidence interval for the association. Benzene, for example, is consistently

statistically signficantly associated with chronic lympahtic leukemia but the

associations with other leukemias do not usually meet standard significance

levels and are described as ‘not significantly associated with’ these diseases.

Numerous studies have also ‘implicated’ (a standard wording) diet in can-

cer. The connection between diet and leukemia, however, is based largely on

the one study of Jensen et al. (2004). That study identified cases of childhood
leukemia in a northern California registry and interviewed all who agreed

to participate (83%) about diet of the mother during pregnancy. Controls
were selected from the same geographic area based on birth certificates and

were matched on variables such as race. Again odds ratios were caculated,

multiple regressions run with other risk factors, and associations reported

with significance levels. Consumption of fruits and vegetables was inversely

associated with acute lymphatic leukemia, the more agressive form of lym-

phatic leukemia commonly found in children. Benzene exposure was not

ascertained.

These kinds of studies are a dominant form of inquiry and research report-

ing in epidemiology. They predominate in the journals. The main textbooks

(Rothman, Greenland & Lash, 2008) consist mostly of discussion of the tech-
niques for doing these kinds of studies. Their general form – (a) reporting

multiple regression correlations from (b) observational samples relying on (c)

tests of significance and confidence intervals as the acceptance criteria – is also

common across the social sciences. Probability, mechanism, and causality get

relative little focus in this traditional approach, and the discussions they do

get are skewed by the logic of science gloss I mentioned above, or so I want to

argue.

A somewhat curious element of this traditional practice is that it is acausal.

The Glass et al. study is illustrative. The word ‘cause’ is used only twice, both
times in the initial background discussion referring to the work of others. The

paper’s conclusion is repeatedly stated as establishing an association between

low levels of benzene and leukemia. The standard risk factor analysis paper

that makes up the majority of the published work in epidemiology shares the

same trait: results are always reported as associations, not as causes.

Is this eschewal of causal conclusions merely reasonable humility about

the limits of inferring causes from correlations? No doubt it in part is.2

2 A referee wondered whether the reluctance to use causal language was counter-evidence to

my thesis that there is a tendency in epidemiology, as in all science, to extend formal methods

beyond their reasonable reach. In so far as epidemiology really is motivated by that goal it is indeed

and that is a good thing. However, as I point out, despite the admonition to not confuse correlation

with causation, epidemiology in the end makes lots of causal claims based on associations. What

is exciting about work in causal modelling is that makes such assertions possible in a disciplined

way, but also shows when those implicit moves are illegitimate.
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However, the roots go considerably deeper than that. Historically, the origins

of epidemiology are closely tied to ‘positivist’ doubts about causation as a

legitimate scientific notion. Karl Pearson was extremely influential among the

early practitioners of epidemiology. In his Grammar of Science, Pearson (1900)
argued that the concept of cause had no place in modern science. Causation

was too metaphysical a notion; association, on the other hand, could be given

full mathematical rigour and should replace causal talk in modern science.

So from the start epidemiology was built on correlations taken as ends in

themselves.

Moreover, the prejudice against causes is built into the analytic methodol-

ogy of epidemiology. The ubiquitous stratification techniques actually can be

inconsistent with a causal interpretation. Standard practice is to report relative

risks or odd ratios after adjustment for any factor that might be thought to

change the size of relevant risk. Confounders are often defined in purely

statistical terms – confounding of an association between two variables occurs

when there is a third factor or variable that, when controlled for, changes

the value of the correlation between the two variables at issue. If one were

looking for causes, such a procedure would be guaranteed sometimes to

produce wrong results. Multiple causal interpretations are possible, as I will

discuss in more detail below, when controlling for a third variable changes the

correlation between two variables under study. Conditioning on the common

effect of two independent variables creates correlations that do not represent

causal influence. Conditioning on a moderator variable – one that influences

the effect size of another cause (more on this later) – reduces correlation as

does conditioning on a common cause or an intermediate cause. So the very

procedures that are used by themselves have no consistent causal interpreta-

tion. No doubt some or many epidemiologists realize this on some level, and

I will report on their attempts to get clear on a better notion of confounding

in the next section.

Thus this attempt to stick to associations alone is really not sustainable,

for both pragmatic and theoretical reasons. The pragmatic reasons come

because epidemiology wants to be relevant to policy – whether it is govern-

ments intervening or individuals deciding how to behave – and interven-

tions concern what can be causally influenced. So a typical epidemiological

report will describe only associations and provide no explicit causal model,

but then conclude with something relevant to policy. The theoretical reason

that epidemiology cannot be consistently associationist and non-causal is

that associations alone are unacceptably arbitrary. Associations are always

associations in a population or sample from a population. If the population

is not in some sense a causally homogeneous one, then indefinitely many

uninteresting associations of the ‘coffee users on Tuesday have less leukemia’

sort can be found. The number of associations is restricted only by our ability

to imagine possible predicates or categories.
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I would use this last point along with several others to argue that the

place of probability in actual epidemiological practice in more minimal than

might be imaged. My worry about arbitrarily many associations could be

put as a variant of Cartwright’s dictum ‘no causes in, no causes out’ that

reads ‘sometimes, no causes in, no objective probabilities out’. An objective

probability, I take it, is one that picks up a real distinction in nature. Cash-

ing out ‘real distinction’ is of course a matter of controversy, but grounding

inferences to other populations seems essential to the notion. Doing that

requires us to think there is a causal process behind the probabilities or

correlations that we identify. That does not mean that objective probabilities

or what philosophers would call ‘nomic’ generalizations or correlations must

always represent a cause – generalizable correlations can result from a causal

process involving colliders, for example, which will generate objective non-

causal probabilities if the same causal process can be found out of sample.

However, I believe that the associations of epidemiology, stripped of any causal

basis, may not provide for reliable inferences to populations beyond those

where the associations are initially found, because there are a great many acci-

dental associations in any population. Probability talk in such circumstances

is misleading, which is precisely a standard critique of probabilistic accounts

of causation.

I also am suspicious that the main targets of epidemiological explanation –

generic risk claims – are probabilities, though I admit that they may seem to

be (see Russo & Williamson, 2007). The kinds of things epidemiologists want
to explain are relative risks, odds ratios, and population attributable fractions

of disease. These are not measures that vary from zero to one. They are

based on frequencies, for sure, and can be converted to percentages. However,

though they are loath to say it until that final paragraph with the policy and

behaviour implications, what epidemiologists really want these to measure is

effect size, a causal notion that need not be cashed out in probability terms.

Relative risk can make sense in a single fixed population with deterministic

causes that results from no sampling distribution or random assignment. Use

of epidemiological information to make risk claims about individuals in the

process of diagnosis may well be probability claims, but they are part of clinical

medicine, not epidemiology proper.

Not only can measures of relative risk make sense in such populations,

these kinds of populations are predominantly what epidemiology deals with.

This fact provides another reason to think that probability plays a more limited

role in epidemiology than it might seem. Most epidemiological studies do not

involve samples picked randomly from a population (and generally random-

ized experiments are thought not to be part of epidemiology with the exception

of clinical epidemiology). Take the work on leukemia cited above. None of it

involves random samples except on a few occasions for the control groups,

and then the samples come from a ‘population’ that is in effect a convenience
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sample. This work shows that diet has some connection to leukemia in those

individuals living in northern California willing to participate in a study. No

one would pretend these are random samples from anything.

Epidemiologists nonetheless report significance levels taken as the prob-

ability of seeing a given result when there is no real correlation. However,

we have to ask ‘no real correlation where?’ Since these probabilities are

not explicitly taken to be subjective degrees of belief, their interpretation

remains unclear. The closest I can find to a coherent answer in this regard

is that the population is some hypothetical super-population from which the

population under study is an instantiation and random sample (Morgan &

Winship, 2007). However, that framework is to my knowledge notably under-
studied. Why, for instance do we think that the population is a random sample

from the hypothetical population? And why do we want to make inferences

about hypothetical populations anyway, unless we are doing so to talk about

counterfactual causal possibilities rather than sampling error?

However, there is a natural Bayesian interpretation of the probability claims

made by significance tests for these nonrandom samples. I can reasonably ask

what probability I should attach to the claim ‘if there were some randomizing

process such as measurement error that was involved in generating my data,

then it is probable/improbable that I should see data like this’. One can then

use objective mathematical facts about the hypothetical source or error to

assign a conditional probability, which is objective not in the sense of having

been generated by a real mechanism but in the sense of following deductively

from assumptions.3 However, traditional analytic epidemiology is decidedly

non-Bayesian.

That non-Bayesian commitment is also illustrated by the other ways that

probability is minimized in epidemiology, namely, in the studied avoidance of

using Bayes’ theorem to make sense of results. Like much other biomedical

and social research, epidemiologists sometimes use significance levels as

straight indicators of probable truth or falsity. This, of course, contravenes

Bayes’ theorem in that both the prior probability of the hypothesis and the

likelihood of the data on the maintained hypothesis – the power – are needed

to interpret a significance level. Note that the role attributed to significance

levels does not result simply from a reversion to subjective priors, for power

calculations are rare as well. Rothman et al. (2008) devote three pages to the
concept.

These familiar practices seem to me a clear instance of hoping that signif-

icance testing can provide a logic of inference without the need for further

3 A standard way to do this, one not often invoked in epidemiology, is through what is called

permutation analysis. For example, suppose one has values for treatment for cases and controls.

The mean of observed differences is then compared to the distribution of the mean that is

produced if the labels case and control are switched in many different ways.
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substantive knowledge. Standard practice portrays itself as rule driven infer-

ence when it clearly cannot be, at least where the rules are valid.

Pushing the formulas to do more than they can also shows up when what

I have been calling traditional epidemiology does try to talk about causality.

One practice that epidemiology shares with the social sciences and other

biomedical fields is the use of the R-squared statistic as a measure of how well

the given causes account for an outcome. A second practice more specific to

epidemiology is reporting what is called the ‘population attributable fraction’

as a way of measuring how much of the disease burden is due to some risk

factor. Both are calculated with the correlational evidence that is common

to traditional epidemiology. Not surprising, as purely statistical measures,

neither is a reliable guide to causal importance.

Put in the usual regression terms, R-squared – ‘the explained variance’ – is
calculated in terms of the predictive errors of the regression. It is the squared

ratio of the covariance to the product of the standard deviations:

R2 =
Cov (X, Y)

StdDev (X)× StdDev (Y) .

It is common to take a high R-squared tomean that the causal factors included
in the model capture most of the causal influence.

However, this causal interpretation is more than the formula can warrant.

The formula gives a statistical measure of how close the data points are to

the regression line estimated from them. In the simple case where X causes
Y with no other causes involved and we regress percentage changes of Y
on changes in X with measurement error, it is obviously the slope of the
regression line – the percentage change in Y that is associated with a percent
change in X – that measures the size of the causal effect. The data points may
be close to a regression line with a shallow slope and they may be far from one

with a steep slope. The R-squared statistic is orthogonal to measures of causal
influence.

It is not that this confusion has gone unnoticed. It has been. Rather, my

point is: the hope for purely formal criteria leads to using formal measures

beyond their legitimate domain of application. Warnings about interpretation

are ignored.

The ‘population attributable fraction’ is a statistical measure specific to

epidemiology that compares the amount of disease burden in a population

exposed to a risk factor to the burden with no exposure. Thus it is:

(P(D)P(D|E−))/P(D), where P(D) is the (unconditional) probability of disease over
a specified time period, and P(D|E−) is the probability of disease over the same time
period conditional on non-exposed status.

There has recently been a large debate between obesity researchers

and researchers on other major causes of diseases such as cancer and
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cardiovascular disease over whose disease contributes most to mortality (Fle-

gal et al. 2005). The measure being used in the debate is the population
attributable factor.

The population attributable fraction is no better a measure of causal impor-

tance than R-squared (Levine, 2008). People are subject to overlapping risk
factors for the same condition. If we assess them one by one for causal

importance in the manner recommended by this formula, the total causal

contributions will sum to more than one or, put alternatively, there will be

more explained deaths than there actually are.

Let me now turn to the role of mechanisms in traditional epidemiology.

Needless to say, if traditional epidemiology avoids causal claims, then it

is likely to avoid mechanisms as well. So it does. Here, however, I would

argue that it is on better grounds than with its approaches to probability

and causation, and indeed for causal reasons that epidemiologists invoke

indirectly.

Consider the cases of benzene, diet, and leukemia cited above. I think they

nicely illustrate my point (Ok, they were selected to do so) that whether mech-

anisms are needed for respectable science depends on the context. Currently

there is mostly only speculation about the molecular route by which benzene

might cause cancer (Atkinson, 2009). Actually the problem is not that routes
are hard to picture but that there are too many imagined routes and not much

evidence to pick among them. The molecular changes involved in cancer are

enormously complex and diverse, so much so that there are reasons to doubt

that the cancers form much of a natural kind (Kincaid, 2008). There are many
routes to tumorigenic transformations and various metabolites of benzene

could be involved in various of those routes. There is no definitive evidence for

any of these possibilities as the mechanism by which benzene causes cancer,

and most of these possible pathways have only been understood in the last

decade.

Yet arguably the evidence was good that benzene causes cancer some time

ago. Although the traditional epidemiological reports shy away from causal

claims, they do provide evidence that allows for causal interpretation. The

cohort and case control studies can mimic, if not ideally realize, the logic of

the clinical trial. They can do so by showing that differences in exposure are

associated with differences in outcome and then arguing that there is no third

factor that might explain the association. The clinical trial logic is precisely

designed to establish causality without having to understand the intervening

steps or mechanism. Of course, the evidence is fallible and adding in the

mechanisms to the story would strengthen the evidence in various ways we

will discuss in the next section.

The dietary case tells a different story. The mechanism is not known and

there are not many concrete ideas about how diet would influence leukemia.

One concrete hypothesis is that foods with DNA topoisomerase II (DNAt2)
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inhibitor eaten during pregnancy reduce DNA damage. However, in the study

described above, when the subset of possible protective dietary factors was

restricted to those with DNA topoisomerase II (DNAt2) inhibitor, the inverse
correlation with leukemia lost statistical significance. We have considerably

less confidence in the plausibility of a mechanism in the case of diet than in

the case of benzene.

This weakness in the evidence takes on considerable importance because

the correlational evidence for a link between diet and leukemia is much

shakier than in the case of benzene. The number of studies is small and the

association between diet and leukemia is not always seen. The effect is likely to

be small compared to that of benzene and thus proportionately harder to find.

The number of possible confounding variables is large and it is hard to make

a case that they have all been controlled for. As we noted, the study described

here did not control for benzene exposure, certainly a possible confounder.

Diet is in much greater need of a mechanism if we are going to label it as a

cause of leukemia.

4.3 Causal modelling

I turn in this section to explicit causal modelling efforts in epidemiology, with

the focus again on themes related to mechanisms, causality, and probability.

I ask to what extent the Pearl (2000) programme can shed light on the need
for mechanisms, on the role of probability in identifying causality, and the

limitations of the Pearl approach for some epidemiological questions.

A central and intuitive element of the Pearl programme is the directed,

acyclic graph (DAG), an instance of which is given in Figure 4.1. The graph
is directed in that there are arrows between the variables representing causal

relations. A cause is direct if does not go through another variable or ‘node’ to

A B E F

C

D

Fig. 4.1 Directed acyclic graph (DAG) with six variables.


