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Preface

The mathematician and physicist, Cornelius Lanczos (1893–1974), wrote
one of the best books of physics explanation that has ever been writ-
ten: The Variational Principles of Mechanics.1 It explains the true meaning and
philosophical content of the Principle of Least Action. The present book
is a shorter and simplified version of that classic - but it is an original
interpretation (anything taken directly from Lanczos is attributed and
referenced by page number); it is also a paean to Lanczos.

Who is the book for? It is for you! It concerns a principle that underpins
the whole of physics, so how could it not be important to understand
even a tiny bit of it? The greatest theories have one common feature -
they always bring in wisdom far-surpassing their original remit, extend-
ing into almost every walk of life. Therefore, one should not limit one’s
area of study but rather follow the maxim: “The more you know, the
more you can know; the more you understand, the more you can under-
stand.”2 Moreover, as well as an increased understanding of the world,
you will be privy to a rare reward - to “theories of excessive beauty”.3

It is true that the reader is assumed to have a background in the
physical sciences, however a layreader could also read this book, with
profit and enjoyment, by skim-reading the mathematics, or by read-
ing just the Introduction (Chapter 1), the Final Words (Chapter 9), and
the historical and popular chapters (2 and 8). Furthermore, the book
is not a textbook: there are many equations, but the aim is to explain -
why these equations and not others, and what do the equations mean?4

The appendices are usually at a more advanced level and condensed in
style, but they may be entirely passed over without loss of continuity
in the main text. Apart from the invaluable asset of seeing how a prob-
lem is solved, the reason for so many appendices is twofold: to provide a

1 Lanczos C, The Variational Principles of Mechanics, University of Toronto Press (1949). All
page numbers will refer to the fourth edition, Dover Publications, Inc. New York (1970),
and we shall write ‘Lanczos, page x’.

2 (author’s maxim)
3 Lanczos, page 229.
4 This is in contrast to the approach in Synge and Griffith, Principles of Mechanics,

3rd edition, McGraw-Hill Book Company, Inc (1959), page 413, where the advice is: “Do
not attempt to see a physical meaning in these [mathematical] operations; it will not
help.”
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compact resource for the physicist (for example, a physicist on a beach
holiday); and for the layreader to know what subject-headings to follow
up at a later stage, if so desired. Enrichment material has been included
but often as optional reading (in small font), or in parentheses, or foot-
notes. Also, we have avoided detailing all the qualifications, exemptions,
and special cases, in order to be able to say things simply, and make bold
statements.

Terminology: on the authority of both Lanczos, and Richard
Feynman,5 we refer to all the appropriate principles - Hamilton’s
Principle, Jacobi’s Principle, Lagrange’s Principle, and Maupertuis’s
Principle - as Principles of Least Action, as they are generically so.
‘Variational Mechanics’ means any physics problem that uses the
Principle of Least Action. Also, the fact that we usually say ‘least’ as
opposed to ‘stationary’ is explained in the main text - see Section 6.6.

The University of La Trobe is thanked for granting me an hon-
orary research associateship, and for the use of library and comput-
ing facilities. It was Joe Petrolito, Emeritus Professor of Engineering
at La Trobe, Bendigo campus, who introduced me to the website of
Edwin F Taylor, Senior Research Scientist Emeritus at the Massachusetts
Institute of Technology (MIT). This led to a short but rewarding email
correspondence.

At OUP, I thank Sönke Adlung and Ania Wronski. The use of
LaTeX, Ubuntu, Gimp, Wikipedia, Google, Metapost, Scilab, and Mfpic
are gratefully acknowledged. Mal Haysom and Deborah Peake are
thanked for their help with the diagrams (Deborah drew the maze,
the encumbered porcupine and Stevin’s ‘Wreath of Spheres’). George
Rogers, librarian at DIAS, once again anticipated my needs and supplied
superb images of Lanczos and of Hamilton, with no fuss. Most of all,
I am grateful to Gerald Jay Sussman, Panasonic Professor of Electrical
Engineering at MIT, who undertook a critical reading of the book prior
to printing. The errors he identified have been corrected. Finally, I thank
Murray Peake for helpful discussions on maths and physics, and for
leading me to Lanczos in the first place.

If I have inspired any reader to seek out the work of the master,
Cornelius Lanczos, then it will be ‘mission accomplished’.

5 Feynman R P, Feynman’s Lectures on Physics, Volume II, Chapter 19.
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1
Introduction

It would be wonderful if there was one principle, simple to state, that
could account for every process in the physical universe. But there
is such a principle, a surprisingly well-kept secret, that accounts for
almost every physical process. It is a principle that is more powerful than
Newton’s ‘F = ma’, and a principle that doesn’t have energy conser-
vation as a requirement in every scenario. We know that Newtonian
Mechanics must be replaced when speeds are very high, or the masses
are tiny, or huge - but this ‘new’ principle still applies in these extreme
regimes. How can one principle explain so much? The clue comes from
the deep wisdom of the eighteenth-century French philosophe, Jean le
Rond d’Alembert:1

“L’univers, pour qui saurait l’embrasser d’un seul point de vue,
ne serait, s’il est permis de le dire,
qu’un fait unique et une grande vérité.”

(“If one could grasp the whole Universe from one viewpoint,
it would appear, if it is permitted to say this,
as a unique fact and a great truth.”)

No one knows whether d’Alembert’s beautiful claim is correct but one
thing is certain, if we cannot find one universal viewpoint then we will
not arrive at one universal truth. For our viewpoint to be universal it
is not a question of us all looking at the view from the same hilltop,
rather, it is a requirement that all viewpoints are equivalent, and that
there is just one universal rule or law or algorithm that solves the prob-
lem. Our new principle achieves this - but it seems incredible that one
simple ‘algorithm’ could cope with all the specificity, variety, and com-
plexity across the whole of physics. To make this plausible, we consider
the following fable.

1 D’Alembert, J le R, Discours préliminaire de l’encyclopédie, 1751.

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001



2 The Lazy Universe

Figure 1.1 The suitors’ puzzle.

There once was a King and he set a fiendish puzzle for prospective
suitors who wanted to marry his daughter, the beautiful princess. The
King had constructed a maze and the successful suitor had to provide
the princess with instructions for collecting treasure from a casket.
The young suitors had a few hours to look at a map of the maze and
prepare their instructions. The King then looked at their answers and
quickly whittled away the number of competitors to just two. These
two suitors, Alfredo and Bruno, had very different approaches to the
puzzle. Alfredo provided detailed instructions for every route, advising
the princess to sight the tall column, visible from a distance over the
hedges, to let her nose guide her to the fragrance of the frangipani tree,
and also to listen out for the sound of bells chiming in the bell-tower,
and water splashing at the fountain. Bruno came forwards with just a
tiny scrap of paper on which it said, “Wherever you may find yourself,
turn left at the next intersection. Eventually you will reach the casket.”
(The King had assured the contestants that there were no disconnected
‘islands’ within the maze.)

The King, a veritable sage, awarded the hand of his daughter in
marriage to this second suitor.

The amazing thing about this suitor’s instructions is that they are
very simple to state and they are universal - they apply to any maze
(although the maze must satisfy certain geometrical restrictions, for
example, it cannot contain disconnected islands). There is also another
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curious attribute of Bruno’s algorithm - it is local. The princess need only
ever look as far ahead as the very next step (while always keeping an eye
open for the casket). Although Alfredo’s instructions may be broken
down into steps the method is not local in the true sense (there are ref-
erences to distant features - the sound of the fountain, the smell of the
frangipani, the sight and sound of the bells in the bell-tower).

This is only a story but it demonstrates some essential points. In our
new principle the method is truly local, and this is never the case for
Newtonian Mechanics, even when a path may be broken down into lots
of tiny incremental steps. But most astounding of all we shall find that
the ensuing equations are invariant, taking exactly the same form, no
matter what the scenario or what coordinates are used. It is not even
necessary that the setting is time-independent, or that the components
are passive (so the maze could writhe and undulate with time, and
the princess could affect the maze, say, by trimming the hedges as
she passed by). The reason for this invariance is that we have at last
found something absolute: it is not a universal timepiece, yardstick, or
reference frame, for there are none, it is a principle, and one that applies
across almost every area of physics. We introduce it by way of a brief
historical aside.

One of the most awe-inspiring developments in physics has been the
shift from Newton’s to Einstein’s view of gravity. In Newton’s Theory
of Universal Gravitation, gravity is a force acting between bodies, how-
ever near or far. In Einstein’s Theory of Gravitation (the Theory of
General Relativity), the force is completely dispensed with. It is replaced
by a patchwork of reference frames, sufficiently small, but seamlessly
joined together, and, instead of responding to a force, the orbiting body
now responds to geometry - the ‘curvature’ of ‘space’. This is often rep-
resented heuristically by the image of, say, the Earth resting on a large
two-dimensional surface, such as a trampoline, distorting this surface,
and thereby affecting the trajectory of nearby small bodies, such as the
Moon. These two theories - Newton’s and Einstein’s - are utterly dif-
ferent, and yet, amazingly, the experimental differences, for example,
the predictions of the Moon’s orbit, are practically nil. It turns out
that Einstein’s approach involves much more complicated calculations
and, as we have just stated, barely any practical advantage - so why use
it? The answer is that it has deeper explanatory power, it is applicable
over a much greater range of problems, and it is philosophically more
sound.
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We have been talking just of gravitation, but the principle that we
introduce explains not only gravitation but all kinds of problems in
the physical sciences (statics and dynamics, optics, electricity and mag-
netism, quantum mechanics, physical chemistry, statistical mechanics,
astronomy, materials science, hydrodynamics, quantum electrodynam-
ics (QED), and so on); it also has deeper explanatory power, is applicable
over a much greater range of problems, and is philosophically more
sound. This principle is the Principle of Stationary Action (the PSA). It
can be stated as:

The Principle of Stationary Action
The physical system seeks out the ‘flattest’ region of ‘space’.

This is equivalent to choosing the ‘straightest’ possible path, which
(usually) translates as the path of least ‘distance’. One more thing,
whether considering the ‘flatness of space’ or the ‘straightness of paths’,
or the ‘least distance’, only the ‘space’ nearby - that is to say, locally, -
needs to be inspected.

The subtitle of this book is the Principle of Least Action (PLA), but the
principle just given is the Principle of Stationary Action (PSA)? ‘Stationary’
is a mathematical term meaning ‘at a flat point of ‘space’ ’ but whether
that flat point implies a least path requires a further investigation -
therefore the PSA is the more general principle, and incorporates the
PLA. However, we shall find that the more stringent condition, the
PLA, is the one we need, and later on we’ll switch to calling our prin-
ciple: the Principle of Least Action. We’ll explain this in a later chapter
(Section 6.6, Chapter 6).

Einstein’s Theory of Special Relativity, that preceded his theory of
General Relativity, starts with two postulates: 1) the laws of physics
take the same form in every reference frame,2 2) the speed of light in
a vacuum is a constant. These two postulates are strikingly different:
the first postulate (the Principle of Relativity) is philosophical in char-
acter - Einstein coached us into realizing that physics just couldn’t be
practised unless postulate 1) applied. On the other hand, postulate 2)
appears to be empirical - the speed of light is constant, yes, but perhaps,
in another Universe, it might have been variable? Similarly, in the case

2 When we say ‘reference frame’ we shall automatically mean a ‘valid reference
frame’.
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of the Principle of Stationary Action, the Principle has two postulates of
very different natures. The first postulate, 1), we have already described -
that the system ‘space’ is as ‘flat’ as possible, locally. This appears reason-
able but rather abstract and philosophical; it sounds more like geometry
than physics, and we need to know - ‘flat’ with respect to what? This is
where the second postulate comes in, the one that contains the physical
input. Postulate 2) states that what is actually being flattened is a cer-
tain specific physical quantity - ‘action’. This quantity has dimensions of
energy× time, or linear momentum× distance or angular momentum× angle, and
so on. In one of its first incarnations, ‘action’ was given as ‘m×v×ds’,
where m is the mass of a ‘free’ particle, v is its speed, and ds is a small
distance along the particle’s path. As we have to do with a postulate,
we cannot justify the choice by deduction from even more elemental
principles. Nevertheless, ‘action’ does seem like a worthy candidate for
a telling physical quantity - it is a scalar (a pure magnitude, having no
direction - therefore more likely to be an invariant), it ‘spans the phys-
ical space’ (nothing crucial is missed out), and it does so in the simplest
way possible (mvds is postulated rather than, say, m2v3d4s/dt4).

D’Alembert’s “one viewpoint” implies objectivity, and this is diffi-
cult to arrive at in everyday life where prejudice abounds. For example:
we barely notice the reaction-force against the soles of our feet, or on
our bottoms, that is present almost every minute of our lives (Einstein
teaches us that we are thereby not in ‘free-fall’, and so do not serve as a
‘natural’ frame of reference); on the other hand, in the rapidly rotating
‘gravitron’ at the funfair, we feel pinned as if by a great weight but have
no sensation of our spinning motion (we merely notice that we can
barely nod or move our arms). When revisiting a park that we knew as a
child, we find that it resembles a pocket handkerchief rather than a vast
estate - is the slight increase in the height of our eyes the source of this
change? No, it arises because we have undergone an enormous (non-
local) translation in time, during which our brain has totally altered.
We watch the water sloshing about in a neighbour’s swimming pool -
perhaps they have installed a wave-generating machine? Upon closer
inspection we find no machine, but realize that ‘a giant hand’ - an Earth
tremor - is gently rocking the pool: therefore our initial assumption of
an isolated system, defined by the edges of the pool, is wrong.

What helps us to achieve objectivity in physics (as opposed to every-
day life) is the fact that we are bound by the strictures of mathemat-
ical tests. The PSA is centred on a mathematical test - a ‘test of the
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flatness of ‘space’ ’ - which is remarkable for its ability to winnow away
the distracting observer-dependent features and so arrive at the true
invariant laws. It succeeds in this because it involves an ‘extremal’ fea-
ture of the mathematical landscape (something like ‘shortest route
between Peshawar and Kabul’), and these features are unique in that
they don’t depend upon the type of map or even the units used (the
route is shortest whether we use a Mercator’s or a Peter’s projection, and
whether we measure in feet or in metres). Before the test can be applied,
we have to define what we mean by ‘space’. We follow the historical
development, and return to our discussion of Newton.

You most likely know Newton’s Laws of Motion3 but we want now
to give a different perspective of them, emphasizing the philosophical
assumptions. An implicit premise of Newton’s Mechanics was the out-
standing advance: ‘space’ and ‘physics’ are totally separate from each
other. ‘Physics’ means forces, masses, and masses in motion. ‘Space’, fol-
lowing Descartes’ invention of the coordinate system, means the three
everyday space dimensions (commonly designated x, y, and z), and the
time, t. All of x, y, z, and t are assumed independent of each other, and
each goes on to infinity. Gone are the sixteenth century’s tendencies,
empathies, abhorrences, and vortices; and Newton’s ‘space’ is empty,
not full like Descartes’. (It is a void, which Newton does not abhor.)

Next after ‘space’ come particles - bodies with no internal structure
but having an intrinsic property, mass. By Law (Newton’s First), each
‘free’ particle is either at rest, or moves at constant speed and in a
constant direction.

Finally, forces, F, are introduced, such as an attractive force between
one particle and another. A force has one effect and one effect only - it
causes a particle to accelerate. This is where mass plays its role, it deter-
mines how big the acceleration shall be, for a given force. (Apart from
this, mass is inert - it doesn’t depend on when or where the particle is,
or on its state of motion.) All this is asserted in the Second Law, F = ma.4

Another outstanding hypothesis was that for composite bodies (bodies
made from many particles), or indeed for any complicated arrangement
of particles, the net outcome could be obtained by ‘summing’ over the

3 See Appendix A1.1, Newton’s Laws of Motion.
4 (But it could all have been so much more complicated; the force could have left the

motion unchanged but caused the mass to swell, or it could have caused an acceleration
not in line with F, or caused a third-order change in the position, and so on.)
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influence of each particle considered on its own.5 Thus was born the
idea of the ‘rigid body’, an extended body made up from separate par-
ticles, but which could itself be treated as if it were one single particle,
with all its mass concentrated at one point.

325 years on from Newton’s “Principia”6 it is hard to remain sufficiently
impressed. As the philosopher, Schopenhauer, said, a theory passes
from being rejected as ridiculous to being accepted but taken to be
obvious.7 Consider Newton’s use of ‘acceleration’. It was already known,
from Galileo’s Principle of Relativity, that uniform motion is relative
to the observer. Newton turned this around: all non-uniform, that is
to say, accelerated, motion is not relative to the observer, it can be known
absolutely. Acceleration with respect to what? Answer, with respect
to ‘space’. But as the accelerations are absolute, then Newton’s ‘space’
is absolute. So we have arrived back at Newton’s wonderful abstrac-
tion, an infinite ‘space’, an inert and absolute background to physical
happenings.

With the PSA, every tenet of Newton’s Mechanics is challenged: the
absolutes of Newton are avoided as every measure - whether it be a pos-
ition, a speed, a direction, a time, and so on - is always defined with
reference to something within the given system; action-at-a-distance
does not occur - a global picture is built up, piece by piece, but by anten-
nae which are sensitive only to conditions locally; the axes of ‘space’ no
longer extend to infinity, are not necessarily independent of each other,
and not necessarily independent of the masses within; and Newton’s
modular approach, building up complexity from more and more com-
plicated arrangements of particles, each taken singly, is replaced by a
holistic ‘systems’ approach.

Let’s explain this ‘systems’ approach by analogy. Bertrand Russell
(philosopher and mathematician) quipped that the activities of man-
kind amounted to the redistribution of matter within ±0.2% of the
Earth, at its surface (this was before the era of space travel). To check
Russell’s claim, we could exhaustively track the motion of every sin-
gle person, throughout recorded history, and note what masses they
were carrying and where they deposited them; or, we could estimate the

5 (Again, it could have been more complicated, the force might have been cast anew
for, say, each trio of particles.)

6 Newton, Isaac, Philosophiae naturalis principia mathematica (The Mathematical Principles of
Natural Philosophy), 1687.

7 (There is then the third phase, when the theory is again rejected.)
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matter-content of cities built, crops grown, monuments constructed,
bodies buried, and so on. In the second, ‘systems’, approach, we have
lost the simplicity of basic elements (a person, their movements, what
they are carrying) and instead have more abstract concepts relating
to the whole system (cities, roads, pyramids, etc.). Some totally new
possibilities arise (‘the deceased’) that were not catered for (!) in the first
approach. We end up with a static tally of the mass distribution.

Another, more dynamic, example is given by the description of a
football match. In the modular description we have only ‘players’
and ‘a football’; in the other approach, the ‘systems-view’, we have
‘defence-position’, ‘attack’, ‘tackling’, ‘dribbling the ball’, ‘goal-kick’,
and so on. One counter-intuitive aspect of this systems-view is that we
appear to have lost that quintessential feature of motion - its direc-
tionality. However, we soon realize that it is not lost but embedded in
the whole-system structures (for example, ‘goal-kick’ has no absolute
direction (say, 30◦ West) yet it conveys all the directional information
required, and makes reference only to features within the system - the
goal posts).

Returning now to the PSA, the method is as follows: (i) Instead of
particles we have individual components of the system. These are chosen in
a system-specific way. (They can be billiard balls, atoms, planets, lever
arm, pendulum, capacitor, and so on, as the given problem demands);
(ii) Instead of forces there are ‘scalar structure functions’, what in a pre-
vious life we have called the energy functions (the kinetic energy, and the
potential energy); (iii) we identify all the independent ‘motions’ that the
system can undergo. These ‘motions’ are the physical changes that hap-
pen naturally and that characterize the given system - what in a later life
we shall call the ‘degrees of freedom’. (For example, the planet orbits,
the lever arm rotates, swings swing, and roundabouts turn.) (iv) We
come finally to the application of a principle, a principle that requires
an exploration of the ‘space’ in which the physical problem occurs.
Knowing all the ‘motions’, we then choose an alternative set of ‘motions’
that could occur. These motions are hypothetical - we have hypothe-
sized them - however we are not free to hypothesize anything we like:
the ‘motions’ must all be in the same given ‘space’ (each system has its
own ‘system-space’), occur in the given time-window, and they must be
‘nearby’. Now these ‘motions’ imply certain amounts of kinetic energy
and potential energy consumed or generated in the given time. From
these energies we compute a certain quantity - the total action - used up
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in the given time. In short, we determine the total hypothetical action
for this choice of hypothetical motions. We then continue the explor-
ation and consider another choice of hypothetical motions and again
determine the consequential hypothetical action. And so on. The prin-
ciple then asserts that of all choices for hypothetical motions, the actual
motions are those which make the change-in-action-between-choices come out to zero.
More evocatively, the system finely adjusts itself, via the actual motions
(acting in concert but instant by instant taking their marching orders
from the scalar structure functions) in just such a way that the action
used is least. That these subtly different versions - the italicized one
and the evocative one - are the same will emerge during the course of
this book.

Be reassured: these ideas are new and many and abstract; there is
no way they can be understood in one go. It is useful to collect them
together in one place, but not possible to convey all the nuances in a
single paragraph. For example, we shall later on discover that some-
times the ‘space’ exploration is made explicitly by us (in the method
known as the Principle of Virtual Work) and sometimes the mathem-
atics takes care of it (in the Variational or Lagrangian Mechanics). Also,
there is sometimes an elision made between the ‘motions’ as ‘degrees of
freedom’ and the ‘motions’ as hypothetical ‘variations’.

Did we write ‘hypothetical’? Yes, this is the piece de resistance: the
‘system-space’ is a virtual abstract space, and this is what finally enables
us to achieve the required objectivity (the actual physical space could
have this, that, or the other observer-bias, whereas the virtual abstract
space is neutral).

Here is a summary of the main virtues of the PSA.

(i) It does the job.

(ii) As forces play no part in the method then ‘forces-of-constraint’
also play no part. Incredible but true.

(iii) Better understanding of physics. We can now have ‘cat’ and
‘mouse’ instead of only ‘particles’ and ‘particle-particle inter-
actions’. But a ‘cat’ is more than the sum of its ‘particles’.

(iv) No hard and fast distinction between ‘active’ and ‘passive’ com-
ponents. (Just as a river carves out the river-bed, and the
river-bed determines the path of the river, so the ‘curvature of
space’ affects the paths of bodies, and moving bodies affect the
‘curvature of space’.)
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(v) Philosophically superior: local (and this is all we ever detect
experimentally); no pre-existing empty ‘space’ (just take the
world as it is and then examine it8); the system is what’s
important.

(vi) Global View. Even when ‘space’ is flat locally, ‘curvature’ can
still arise globally - by patching together smaller regions with
the requirement that there is no ‘puckering at the seams’.

(vii) The PSA gives prominence to energy and to the whole system.
Kinetic energy is shown to be a more fundamental and primitive
concept than force. Also the dichotomy between kinetic energy
and potential energy is explained.

(viii) The PSA reveals a deep connection between symmetry and con-
served properties. (Newton’s Mechanics does not lead naturally
to any conservation laws except for one, the conservation of
linear momentum.)

(ix) In Newtonian Mechanics no attempt is given to show how
robust the solution is (how it changes following small changes in
the starting conditions) or to give ball-park estimates. The PSA,
via Hamilton’s Mechanics, does address these questions.

(x) Amazing unity of approach across almost the whole of physics.
(Almost? The exceptions will be discussed in due course.)

Apart from the fact that the PSA is the keystone of physics, and there-
fore an indispensable tool for the professional engineer or physical
scientist, there are two other reasons why we would like to awaken an
appreciation of it, even a non-mathematical appreciation. The first is
a pragmatic reason. We all know, roughly speaking, what space, time,
mechanics, quantum mechanics, matter, and energy are about. These
ideas have passed into the public domain. It would be inefficient to start
from scratch in our science classes, and not even incorporate advances
made during the seventeenth and eighteenth centuries. Somehow the
PSA has got missed out - it is time to correct this. The second reason
is aesthetic. The beauty of physics does not reside only in the beauty of
the night sky, a rainbow, or a sunset. It resides even more in the inter-
ior logic, the principles which reach across vast areas of the physical

8 This is more correct, especially when we remember that all our observations really
have been carried out in the presence of large gravitating masses. Even where experi-
ments are carried out in remote regions, the results still need to be brought back to
Earth - in our present state of evolution.
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world, unifying them into a self-consistent whole, and with the most
economical set of starting premises. (One could call it the ‘Aha’ feeling.)

Alice (from Lewis Carroll’s Alice’s Adventures in Wonderland) tried so hard
to get through the door in order to see the exquisitely beautiful garden
beyond. Consider this garden as a metaphor for physics: it’s true that
without mathematics we shall never be able to wander freely around
this garden, but it would be wonderful indeed if we could just be lifted
up to peer at it through the keyhole.



2
Antecedents

A new principle rarely arises completely out of the blue, there are usu-
ally vague presentiments in the air. Some precursors to the Principle
of Least Action are described (we don’t attempt to give an exhaustive
history).

Simon Stevin (1548–1620)

Stevin (Stevinus) was a ‘geometer’ from Bruges in Flanders. The dis-
covery of which he was most proud concerns the condition for static
equilibrium of weights on inclined planes (see Figure 2.1):

What relation must hold between the masses and the lengths of the
triangle in order for the system to be in equilibrium? Our first guess
might be to ‘resolve the forces’ into components, then balance the hori-
zontal components to zero, and, finally, equate the vertical components
to the weights. Stevin, in Antwerp in 1588, attacked the problem in a
different way - (he was working 200 years before vectors, and 99 years
before Newton’s forces).

The first remarkable thing Stevin did was to bring (hypothetical)
motion into this static set-up. He recast the problem and imagined a
chain of spherical masses that could circulate around the triangle, with
the lower part of the chain hanging freely. Stevin idealized this arrange-
ment: the chain could move in either direction, without friction, and
would never get stuck on the pointy bits (imagine a little frictionless
pulley at the apex of the triangle). Also, the mass had to be uniformly dis-
tributed along the chain - think of a bead chain like the ones used today
to open and close Venetian blinds. Stevin argued that if the section of
chain from A to X pulls more than the section from X to B then the
chain will over-balance to the left. It will circulate anticlockwise (excuse
the anachronism) until the original portion AX then occupies the arc Y
to A. The entire length of chain that hangs freely below the little table,
between A and B, can be ignored - by symmetry it is always in balance

The Lazy Universe. Jennifer Coopersmith, Oxford University Press (2017).
© Jennifer Coopersmith. DOI 10.1093/acprof:oso/9780198743040.001.0001
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Figure 2.1 Weights, connected by a cord, on inclined planes.

Figure 2.2 ‘Wreath of spheres’ draped over inclined planes (after Stevin).

with itself. However, the replacement section of chain now lying along
AX will again over-balance that new section now lying along XB. In
other words, the new state, after circulation, is identical to the initial
state. But this will always be true (the new state, after circulation, will
always be identical to the initial state), and so the chain will always
over-balance, and will keep circulating for ever.
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But a continuously circulating chain, without an engine to drive it,
is absurd. This is the second remarkable step taken by Stevin - he con-
sidered ‘perpetual motion’ as self-evidently absurd, and used this as the
basis for an argument (a reductio ad absurdum argument).1 To avoid the
absurd outcome then the starting premise - section AX over-balances
section XB - must be wrong; in other words, the initial distribution of
masses, with the chain draping itself smoothly over the surfaces, must
already be in equilibrium. This is a powerful proof, as it applies for an
infinity of different starting states (different inclined planes).

Stevin realized he had discovered an eternal truth, and he displayed
a diagram of his ‘Wreath of Spheres’ (clootcrans) as the frontispiece of
his book on mechanics. The punchline, from our point of view, is
that: without the use of forces, considering only gentle movements
of the chain in harmony with the constraints (motion within certain
surfaces), Stevin showed that, with respect to these motions, nothing
changes, and equilibrium is maintained. In fact (going beyond Stevin’s
own interpretation), the proof can be made to sound like pure geom-
etry: for equilibrium, it is only necessary that the length of chain along
an inclined plane is equal to the length of that inclined plane. Moreover,
as any bumpy surface can be thought of as lots of tiny triangles, we have
only to lie a uniform chain on this surface, with no bunching up or
stretching out, and it will be in equilibrium.

Christiaan Huygens (1629–95)

Huygens, in Paris in 1656, tried to understand billiard-ball-type colli-
sions but without the use of forces (this was some thirty years before
Newton’s Principia, but billiards was a game that had been played since
the fifteenth century). Then, as now, scientists were motivated by the
thrill of showing that a great name was wrong. Descartes was the tower-
ing authority in the middle of the seventeenth century, and we shall see
that three scientists (natural philosophers) in our story found errors in
Descartes’ work - Fermat, Huygens, and Leibniz.

Back to Huygens. In his rules of collision, Descartes had claimed that
a small body, hitting a larger body at rest, would never be able to shift it.
Huygens knew that this couldn’t possibly be right - it didn’t agree with

1 This is probably the first time this had ever been done - that is, the use of the
impossibility of perpetual motion as the basis of an argument.
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experiment.2 To show that Descartes was wrong, he used a remarkable
demonstration. (Huygens might have been a bit apprehensive about
contradicting the Cartesian view - Descartes had been a regular vis-
itor to the Amsterdam home of Huygens’s parents, and his tutor was
horrified to hear of the young Huygens’ ‘heresy’.)

Huygens’s remarkable demonstration consisted in putting the
Principle of the Relativity of Motion (due to Galileo) to quantitative use -
the first time this had ever been done.3 He imagined a ‘billiard-ball
collision’ viewed simultaneously from two vantage points - from a
smoothly coasting canal-boat, and from the canal-bank (undoubtedly
his childhood in Amsterdam was an influence). Here is a picture of this
thought-experiment, taken from the frontispiece of Huygens’s treatise.

It’s not clear from this picture whether the experiment was carried
out on the boat or on the canal-bank. It doesn’t matter, so let’s say it
happened on the boat. On the boat, the large mass hits a stationary
smaller mass. Now we are free to choose the speed of the canal-boat

Figure 2.3 Huygens’s canal-boat thought experiment4 (from De Motu corpore ex
percussione, 1656)5.

2 Descartes also knew that experiment was contradicted, but he had the perfect
fudge - see Coopersmith, J, Energy, the Subtle Concept, Revised Edition, Oxford University
Press, (2015) - hereafter referred to as Coopersmith, EtSC.

3 (to the author’s knowledge)
4 The figure shows balls of the same size, yet we can imagine that one is more massive

than the other.
5 Huygens C, De Motu corpore ex percussione, 1656, published by Martin Nijhoff NV.


