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Preface

This book is concerned with recent developments in time series and panel data techniques
for the analysis of macroeconomic and financial data. It provides a rigorous, nevertheless

user-friendly, account of the time series techniques dealing with univariate and multivariate time
series models, as well as panel data models. An overview of econometrics as a subject is provided
in Pesaran (1987a) and updated in Geweke, Horowitz, and Pesaran (2008).

It is distinct from other time series texts in the sense that it also covers panel data models
and attempts at a more coherent integration of time series, multivariate analysis, and panel data
models. It builds on the author’s extensive research in the areas of time series and panel data
analysis and covers a wide variety of topics in one volume. Different parts of the book can be
used as teaching material for a variety of courses in econometrics. It can also be used as a reference
manual.

It begins with an overview of basic econometric and statistical techniques and provides an
account of stochastic processes, univariate and multivariate time series, tests for unit roots,
cointegration, impulse response analysis, autoregressive conditional heteroskedasticity mod-
els, simultaneous equation models, vector autoregressions, causality, forecasting, multivariate
volatility models, panel data models, aggregation and global vector autoregressive models
(GVAR). The techniques are illustrated using Microfit 5 (Pesaran and Pesaran (2009)) with
applications to real output, inflation, interest rates, exchange rates, and stock prices.

The book assumes that the reader has done an introductory econometrics course. It begins
with an overview of the basic regression model, which is intended to be accessible to advanced
undergraduates, and then deals with more advanced topics which are more demanding and
suited to graduate students and other interested scholars.

The book is organized into six parts:
Part I: Chapters 1 to 7 present the classical linear regression model, describe estimation and

statistical inference, and discuss the violation of the assumptions underlying the classical linear
regression model. This part also includes an introduction to dynamic economic modelling, and
ends with a chapter on predictability of asset returns.

Part II: Chapters 8 to 11 deal with asymptotic theory and present the maximum likelihood
and generalized method of moments estimation frameworks.

Part III: Chapters 12 and 13 provide an introduction to stochastic processes and spectral den-
sity analysis.

Part IV: Chapters 14 to 18 focus on univariate time series models and cover stationary ARMA
models, unit root processes, trend and cycle decomposition, forecasting and univariate volatility
models.

Part V: Chapters 19 to 25 consider a variety of reduced form and structural multivariate mod-
els, rational expectations models, as well as VARs, vector error corrections, cointegrating VARs,
VARX models, impulse response analysis, and multivariate volatility models.
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viii Preface

Part VI: Chapters 26 to 33 considers panel data models both when the time dimension (T)
of the panels is short, as well as when panels with N (the cross-section dimension) and T are
large. These chapters cover a wide range of panel data models, starting with static panels with
homogenous slopes and graduating to dynamic panels with slope heterogeneity, error cross-
section dependence, unit roots, and cointegration.

There are also chapters dealing with the aggregation of large dynamic panels and the theory
and practice of GVAR modelling. This part of the book focuses more on large N and T panels
which are less covered in other texts, and draws heavily on my research in this area over the past
20 years starting with Pesaran and Smith (1995).

Appendices A and B present background material on matrix algebra, probability and distribu-
tion theory, and Appendix C provides an overview of Bayesian analysis.

This book has evolved over many years of teaching and research and brings together in one
place a diverse set of research areas that have interested me. It is hoped that it will also be of
interest to others. I have used some of the chapters in my teaching of postgraduate students at
Cambridge University, University of Southern California, UCLA, and University of Pennsylva-
nia. Undergraduate students at Cambridge University have also been exposed to some of the
introductory material in Part I of the book. It is impossible to name all those who have helped
me with the preparation of this volume. But I would like particularly to name two of my Cam-
bridge Ph.D. students, Alexander Chudik and Elisa Tosetti, for their extensive help, particularly
with the material in Part VI of the book.

The book draws heavily from my published and unpublished research. In particular:
Chapter 7 is based on Pesaran (2010).
Chapter 25 draws from Pesaran and Pesaran (2010).
Chapter 32 is based on Pesaran (2003) and Pesaran and Chudik (2014) where additional

technical details and proofs are provided.
Chapter 31 is based on Breitung and Pesaran (2008) and provides some updates and extensions.
Chapter 33 is based on Chudik and Pesaran (2015b).
I would also like to acknowledge all my coauthors whose work has been reviewed in this vol-

ume. In particular, I would like to acknowledge Ron Smith, Bahram Pesaran, Allan Timmer-
mann, Kevin Lee, Yongcheol Shin, Vanessa Smith, Cheng Hsiao, Michael Binder, Richard Smith,
Alexander Chudik, Takashi Yamagata, Tony Garratt, Til Schermann, Filippo di Mauro, Stéphane
Dées, Alessandro Rebucci, Adrian Pagan, Aman Ullah, and Martin Weale. It goes without saying
that none of them is responsible for the material presented in this volume.

Finally, I would like to acknowledge the helpful and constructive comments and suggestions
from two anonymous referees which provided me with further impetus to extend the coverage
of the material included in the book and to improve its exposition over the past six months. Ron
Smith has also provided me with detailed comments and suggestions over a number of successive
drafts. I am indebted to him for helping me to see the wood from the trees over the many years
that we have collaborated with each other.

Hashem Pesaran
Cambridge and Los Angeles
January 2015
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1 Relationship Between
Two Variables

1.1 Introduction

There are a number of ways that a regression between two or more variables can be moti-
vated. It can, for example, arise because we know a priori that there exists an exact linear

relationship between Y and X, with Y being observed with measurement errors. Alternatively, it
could arise if (Y , X) have a bivariate distribution and we are interested in the conditional expec-
tations of Y given X, namely E(Y | X), which will be a linear function of X either if the underly-
ing relationship between Y and X is linear, or if Y and X have a bivariate normal distribution. A
regression line can also be considered without any underlying statistical model, just as a method
of fitting a line to a scatter of points in a two-dimensional space.

1.2 The curve fitting approach

We first consider the problem of regression purely as an act of fitting a line to a scatter diagram.
Suppose that T pairs of observations on the variables Y and X, given by

(
y1, x1

)
,
(

y2, x2
)

, . . . ,(
yT , xT

)
, are available. We are interested in obtaining the equation of a straight line such that,

for each observation xt , the corresponding value of Y on a straight line in the (Y , X) plane is as
‘close’ as possible to the observed values yt .

Immediately, different criteria of ‘closeness’ or ‘fit’ present themselves. Two basic issues are
involved:

A: How to define and measure the distance of the points in the scatter diagram from the fitted
line. There are three plausible ways to measure the distance of a point from the fitted line:

(i) perpendicular to x-axis
(ii) perpendicular to y-axis

(iii) perpendicular to the fitted line.
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4 Introduction to Econometrics

B: How to add up all such distances of the sampled observations. Possible weighting (adding-
up) schemes are:

(i) simple average of the square of distances
(ii) simple average of the absolute value of distances

(iii) weighted averages either of squared distance measure or absolute distance measures.

The simplest is the combination A(i) and B(i), which gives the ordinary least squares (OLS)
estimates of the regression of Y on X. The method of ordinary least squares will be extensively
treated in the rest of this Chapter and in Chapter 2. The difference between A(i) and A(ii) can
also be characterized as to which of the two variables, X or Y , is represented on the horizontal
axis. The combination A(ii) and B(i) is also referred to as the ‘reverse regression of Y on X’.
Other combinations of distance/weighting schemes can also be considered. For example A(iii)
and B(i) is called orthogonal regression, A(i) and B(ii) yields the absolute minimum distance
regression. A(i) and B(iii) gives the weighted (or absolute distance) least squares (or absolute
distance) regression.

1.3 The method of ordinary least squares

Treating X as the regressor and Y as the regressand, then choosing the distance measure,
dt = ∣

∣yt − α − βxt
∣
∣, the least squares criterion function to be minimized is1

Q (α, β) =
T∑

t=1

d2
t =

T∑

t=1

(
yt − α − βxt

)2 .

The necessary conditions for this minimization problem are given by

∂Q (α, β)

∂α
=

T∑

t=1

(−2)
(

yt − α̂ − β̂xt

)
= 0, (1.1)

∂Q (α, β)

∂β
=

T∑

t=1

(−2xt)
(

yt − α̂ − β̂xt

)
= 0. (1.2)

Equations (1.1) and (1.1) are called normal equations for the OLS problem and can be written as

T∑

t=1

ût = 0, (1.3)

T∑

t=1

ûtxt = 0, (1.4)

1 The notations
∑T

t=1 and
∑

t are used later to denote the sum of the terms after the summation sign over
t = 1, 2, . . . , T.
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Relationship Between Two Variables 5

where

ût = yt − α̂ − β̂xt , (1.5)

are the OLS residuals. The condition
∑T

t=1 ût = 0 also gives ȳ = α̂ + β̂ x̄, where x̄ =∑T
t=1 xt/T and ȳ = ∑T

t=1 yt/T, and demonstrates that the least squares regression line ŷt =
α̂ + β̂xt , goes through the sample means of Y and X. Solving (1.3) and (1.4) for β̂ , and hence
for α̂, we have

β̂ =
∑T

t=1 xtyt − Tx̄ȳ
∑T

t=1 x2
t − Tx̄2

, (1.6)

α̂ = ȳ − β̂ x̄ (1.7)

or since

T∑

t=1

(xt − x̄)
(

yt − ȳ
) =

T∑

t=1

xtyt − Tx̄ȳ,

T∑

t=1

(xt − x̄)2 =
T∑

t=1

x2
t − Tx̄2,

equivalently

β̂ =
∑T

t=1 (xt − x̄)
(

yt − ȳ
)

∑T
t=1 (xt − x̄)2 = SXY

SXX
,

where

SXY =
∑T

t=1 (xt − x̄)
(

yt − ȳ
)

T
= SYX ,

SXX =
∑T

t=1 (xt − x̄)2

T
.

1.4 Correlation coefficients between Y and X

There are many measures of quantifying the strength of correlation between two variables. The
most popular one is the product moment correlation coefficient which was developed by Karl
Pearson and builds on an earlier contribution by Francis Galton. Other measures of correlations
include the Spearman rank correlation and Kendall’s τ correlation. We now consider each of
these measures in turn and discuss their uses and relationships.
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1.4.1 Pearson correlation coefficient

The Pearson correlation coefficient is a parametric measure of dependence between two vari-
ables, and assumes that the underlying bivariate distribution from which the observations are
drawn have moments. For the variables Y and X, and the T pairs of observations {(y1,x1),
(y2, x2), . . . , (yT , xT)} on these variables, Pearson or the simple correlation coefficient between
Y and X is defined by

ρ̂YX =
∑T

t=1 (xt − x̄)
(

yt − ȳ
)

[∑T
t=1 (xt − x̄)2 ∑T

t=1
(

yt − ȳ
)]1/2 = SXY

(SYY SXX)
1
2

, (1.8)

It is easily seen that ρ̂YX lies between −1 and +1. Notice also that the correlation coefficient
between Y and X is the same as the correlation coefficient between X and Y , namely ρ̂XY =
ρ̂YX . In this bivariate case we have the following interesting relationship between ρ̂XY and the
regression coefficients of the regression Y on X and the ‘reverse’ regression of X on Y . Denoting
these two regression coefficients respectively by β̂Y ·X and β̂X·Y , we have

β̂Y ·Xβ̂X·Y = SYXSXY

(SXXSYY )
= ρ̂

2
YX . (1.9)

Hence, if β̂Y ·X > 0 then β̂X·Y > 0. Since ρ̂
2
XY ≤ 1, if we assume that β̂Y ·X > 0 it follows that

β̂X·Y ≤ 1
β̂Y ·X

. If we further assume that 0 < β̂Y ·X < 1, then β̂X·Y = ρ̂2
XY

β̂Y ·X
> ρ̂

2
XY .

1.4.2 Rank correlation coefficients

Rank correlation is often used in situations where the available observations are in the form of
cardinal numbers, or if they are not sufficiently precise. Rank correlations are also used to avoid
undue influences from outlier (extreme tail) observations on the correlation analysis. A number
of different rank correlations have been proposed in the literature. In what follows we focus on
the two most prominent of these, namely Spearman’s rank correlation and Kendall’s τ correlation
coefficient. A classic treatment of the subject can be found in Kendall and Gibbons (1990).

Spearman rank correlation
Consider the T pairs of observations

{
(yt , xt), for t = 1, 2, . . . , T

}
and rank the observations on

each of the variables y and x, in an ascending (or descending) order. Denote the rank of these
ordered series by 1, 2, . . . , T, so that the first observation in the ordered set takes the value of
1, the second takes the value of 2, etc. The Spearman rank correlation, rs, between y and x is
defined by

rs = 1 − 6
∑T

t=1 d2
t

T(T2 − 1)
, (1.10)

where

dt = Rank(yt : y) − Rank(xt : x),
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and Rank(yt : y) is equal to a number in the range [1 to T] determined by the size of yt relative
to the other T − 1 values of y = (y1, y2, . . . , yT)′. Note also that by construction

∑T
t=1 dt = 0,

and that
∑T

t=1 d2
t can only take even integer values and has a mean equal to (T3 − T)/6. Hence

E(rs) = 0. The Spearman rank correlation can also be computed as a simple correlation between
ryt = Rank(yt : y) and rxt = Rank(xt : x). It is easily seen that

rs =
∑T

t=1(ryt − ry)(rxt − rx)
[∑T

t=1(ryt − ry)2
]1/2 [∑T

t=1(rxt − rx)2
]1/2 ,

where

ry = rx = T−1
T∑

t=1

ryt = T−1
T∑

t=1

rxt = T + 1
2

.

Kendall’s τ correlation
Another rank correlation coefficient was introduced by Kendall (1938). Consider the T pairs
of ranked observations (ryt , rxt), associated with the quantitative measures (yt , xt), for t =
1, 2, . . . , T as discussed above. Then the two pairs of ranks (ryt , rxt) and (rys, rxs) are said to
be concordant if

(rxt − rxs)(ryt − rys) > 0, concordant pairs for all t and s,

and discordant if

(rxt − rxs)(ryt − rys) ≤ 0, discordant pairs for all t and s.

Denoting the number of concordant pairs by PT and the number of discordant pairs by QT ,
Kendall’s τ correlation coefficient is defined by

τT = 2
T(T − 1)

(PT − QT) . (1.11)

More formally

PT =
T∑

t,s=1

I [(rxt − rxs)(ryt − rys)] ,

QT =
T∑

t,s=1

I [−(rxt − rxs)(ryt − rys)] ,

where I(A) = 1 if A > 0, and zero otherwise.
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1.4.3 Relationships between Pearson, Spearman, and Kendall
correlation coefficients

In the case where (yt , xt) are draws from a normal distribution we have

E(τ T) = 2
π

sin−1(ρ),

where ρ is the simple (Pearson) correlation coefficient between yt and xt . Furthermore,

E(rs) = ρs + 3(τ − ρs)

T + 1
,

where ρs is the population value of Spearman rank correlation. Finally, in the bivariate normal
case we have

ρ = 2 sin
(πρs

6

)
.

These relationships suggest the following indirect possibilities for estimation of the simple cor-
relation coefficient, namely

ρ̂1 = sin
(π

2
τ T

)
,

ρ̂2 = 2 sin
[
π

6

(
rs − 3(τ T − rs)

T + 1

)]
,

as possible alternatives to ρ̂, the simple correlation coefficient. See Kendall and Gibbons (1990,
p. 169). The alternative estimators, ρ̂1 and ρ̂2, are likely to have some merit over ρ̂ in small sam-
ples in cases where the population distribution of (yt , xt) differs from bivariate normal and/or
when the observations are subject to measurement errors.

Tests based on the different correlation measures are discussed in Section 3.4.

1.5 Decomposition of the variance of Y

It is possible to divide the total variation of Y into two parts, the variation of the estimated Y and
a residual variation. In particular

T∑

t=1

(
yt − ȳ

)2 =
T∑

t=1

[(
ŷt − ȳ

) − (
ŷt − yt

)]2

=
T∑

t=1

(
ŷt − ȳ

)2 +
T∑

t=1

(
ŷt − yt

)2 − 2
T∑

t=1

(
ŷt − yt

) (
ŷt − ȳ

)

=
T∑

t=1

(
yt − ŷt

)2 +
T∑

t=1

(
ŷt − ȳ

)2 + 2
T∑

t=1

ût
(

ŷt − ȳ
)

.



�

�

�

�

�

�

�

�

OUP CORRECTED PROOF – FINAL, 5/9/2015, SPi

Relationship Between Two Variables 9

But, notice that

T∑

t=1

ût
(

ŷt − ȳ
) =

T∑

t=1

ût

(
α̂ + β̂xt

)
−

T∑

t=1

ût ȳ

= α̂

T∑

t=1

ût + β̂

T∑

t=1

ûtxt − ȳ
T∑

t=1

ût = 0,

since from the normal equations (1.3) and (1.4),
∑T

t=1 ût = 0 and
∑T

t=1 ûtxt = 0, then

∑T
t=1

(
yt − yt

)2 = ∑T
t=1

(
ŷt − ȳ

)2 + ∑T
t=1

(
yt − ŷt

)2 . (1.12)

This decomposition of the total variations in Y forms the basis of the analysis of variance, which
is described in the following table.

Source of variation Sums of squares Degrees of freedom Mean square

Explained by the regression line
∑T

t=1
(

ŷt − ȳ
)2 2

∑T
t=1(ŷt−ȳ)2

2

Residual
∑T

t=1
(

yt − ŷt
)2 T − 2

∑T
t=1(yt−ŷt)

2

T−2

Total variation
∑T

t=1
(

yt − ȳ
)2 T

∑T
t=1(yt−ȳ)2

T

Proposition 1 highlights the relation between ρ̂
2
XY and the variance decomposition.

Proposition 1

ρ̂
2
XY = S2

XY
SXXSYY

= 1 −
∑T

t=1
(

yt − ŷt
)2

∑T
t=1

(
yt − ȳ

)2 . (1.13)

Proof Notice that

1 −
∑

t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2 =

∑
t
(

yt − ȳ
)2 − ∑

t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2 ,

and using the result in (1.12), we have

1 −
∑

t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2 =

∑
t
(

ŷt − ȳ
)2

∑
t
(

yt − ȳ
)2 .

Further, since ŷt = α̂ + β̂xt , we have
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∑

t

(
ŷt − ȳ

)2 =
∑

t

(
α̂ + β̂xt − ȳ

)2

=
∑

t

[
β̂ (xt − x̄) + β̂ x̄ + α̂ − ȳ

]2
,

By (1.1), ȳ = α̂ + β̂ x̄. Hence, it follows that

∑

t

(
ŷt − ȳ

)2 = β̂
2 ∑

t
(xt − x̄)2 = S2

XY
S2

XX
· SXX = S2

XY
SXX

,

1 −
∑

t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2 = S2

YY
SYY SXX

= ρ̂
2
XY .

The above result is important since it also provides a natural generalization of the concept of
the simple correlation coefficient, ρ̂XY , to the multivariate regression case, where it is referred to
as the multiple correlation coefficient (see Section 2.10).

1.6 Linear statistical models

So far we have viewed the regression equation as a line fitted to a scatter of points in a two-
dimensional space. As such it is purely a descriptive scheme that attempts to summarize the scat-
ter of points by a single regression line. An alternative procedure would be to adopt a statistical
model where the regression disturbances, ut ’s, are characterized by a probability distribution.
Under this framework there are two important statistical models that are used in the literature:

A: Classical linear regression model. This model assumes that the relationship between Y
and X is a linear one:

yt = α + βxt + ut , (1.14)

and that the disturbances uts satisfy the following assumptions:

(i) Zero mean: the disturbances ut have zero means, i.e., E(ut) = 0.
(ii) Homoskedasticity: conditional on xt the disturbances ut have constant conditional

variance. Var (ut |xs ) = σ 2, for all t and s.
(iii) Non-autocorrelated error: the disturbances ut are serially uncorrelated. Cov(ut , us) =

0 for all t �= s.
(iv) Orthogonality: the disturbances ut and the regressor xt are uncorrelated, or condi-

tional on xs, ut has a zero mean (namely E (ut | xs) = 0 , for all t and s).

Assumption (i) ensures that the unconditional mean of yt is correctly specified by the
regression equation. The other assumptions can be relaxed and are introduced to provide
a simple model that can be used as a benchmark in econometric analysis.
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B: Another way of motivating the linear regression model is to focus on the joint distribution
of Y and X, and assume that this distribution is normal with constant means, variances
and covariances. In this case the regression of Y on X defined as the conditional mean
of Y given a particular value of X, say X = x will be a linear function of x. In particular
we have:

E (Y |X = xt ) = α + βxt , (1.15)

and

Var (Y |X = xt ) = Var (Y)
(

1 − ρ2
XY

)
, (1.16)

and where Var (Y) is the unconditional variance of Y and

ρXY = Cov (Y , X) /
√

Var (X) Var (Y)

is the population correlation coefficient between Y and X.

The parameters α and β are related to the moments of the joint distribution of Y and X in the
following manner:

α = E (Y) − Cov (X, Y)

Var (X)
E (X) , (1.17)

and

β = Cov (X, Y)

Var (X)
= ρXY

√
Var (Y)

Var (X)
. (1.18)

Using (1.17) and (1.18), relation (1.15) can also be written as:

E (Y |X = xt ) = E (Y) + Cov (X, Y)

Var (X)
[xt − E (X)] . (1.19)

Model B does not postulate a linear relationship between Y and X, but assumes that (Y , X) have a
bivariate normal distribution. In contrast, model A assumes linearity of the relationship between
Y and X, but does not necessarily require that the joint probability distribution of (Y , X) be
normal. It is clear that under assumption (iv), (1.14) implies (1.15). Also (1.15) can be used to
obtain (1.14) by defining ut to be

ut = yt − E (Y |X = xt ) ,

or more simply

ut = yt − E
(

yt |xt
)

. (1.20)
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It is in the light of this expression that u′
ts are also often referred to as ‘innovations’ or ‘unexpected

components’ of yt .
Both the above statistical models are used in the econometric literature. The two models can

also be combined to yield the ‘classical normal linear regression model’ which adds the extra
assumption that ut are normally distributed to the list of the four basic assumptions of the clas-
sical linear regression model set out above.

Finally, it is worth noting that under the normality assumption using (1.16) we also have

Var (ut |xt ) = σ 2 = Var (Y)
(

1 − ρ2
YX

)
. (1.21)

Hence,

ρ2
YX = 1 − σ 2

Var (Y)
,

which is the population value of the sample correlation coefficient defined by (1.8) and (1.13).

1.7 Method of moments applied to bivariate regressions

The OLS estimators can also be motivated by the method of moments originally introduced by
Karl Pearson in 1894. Under the method of moments the parameters α and β are estimated by
replacing population moments by their sample counterparts. Under Assumptions (i) and (iv)
above that the errors, ut , have zero means and are orthogonal to the regressors, we have the fol-
lowing two moment conditions

E(ut) = E(yt − α − βxt) = 0,
E(xtut) = E [xt(yt − α − βxt)] = 0,

which can also be written equivalently as

E(yt) = α + βE (xt) ,

E(ytxt) = αE(xt) + βE(x2
t ).

It is clear that α and β can now be derived in terms of the population moments, E(yt), E(xt),
E(x2

t ), and E(ytxt), namely

(
α

β

)
=

(
1 E (xt)

E (xt) E(x2
t )

)−1 (
E(yt)

E(ytxt)

)
. (1.22)

The inverse exists if Var(xt) = E(x2
t ) − [E (xt)]2 > 0. The method of moment estimators of α

and β are obtained when the population moments in the above expression are replaced by the
sample moments which are given by

Ê(yt) = ȳ, Ê (xt) = x̄,

Ê(x2
t ) = T−1

T∑

t=1

x2
t , Ê(ytxt) = T−1

T∑

t=1

ytxt .
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Using these sample moments in (1.22) gives α̂MM and β̂MM , that are easily verified to be the
same as the OLS estimators given by (1.7) and (1.6).

In cases where the number of moment conditions exceed the number of unknown parameters,
the method of moments is generalized to take account of the additional moment conditions
in an efficient manner. The resultant estimator is then referred to as the generalized method of
moments (GMM), which will be discussed in some detail in Chapter 10.

1.8 The likelihood approach for the bivariate
regression model

An alternative estimation approach developed by R. A. Fisher over the period 1912–22 (build-
ing on the early contributions of Gauss, Laplace, and Edgeworth) is to estimate the unknown
parameters by maximizing their likelihood. The likelihood function is then given by the joint
probability distribution of the observations. In the case of the bivariate classical regression model
the likelihood is obtained from the joint distribution of y = (y1, y2, . . . ., yT)′, conditional on
x = (x1, x2, . . . , xT)′. To obtain this joint probability distribution, in addition to the assump-
tions of the classical linear regression, (i)-(iv) given in Section 1.6, we also need to specify the
probability distribution of the errors, ut . Typically, it is assumed that u′

ts are normally distributed,
and the joint probability distribution of y conditional on x, is then obtained as (since the Jaco-
bian of the transformation between yt and ut is unity)

Pr
(

y
∣
∣x,α, β , σ 2 ) = Pr(u1, u2, . . . , uT |x ).

But under the assumption that the errors are normally distributed, the non-autocorrelated error
assumption, (iii), implies that the errors are independently distributed and hence we have

Pr
(

y
∣∣x,α, β , σ 2 ) = Pr(u1) Pr(u2) . . . . Pr(uT).

But the probability density function of a N(0, σ 2) random variable is given by

Pr(ut) = (2πσ 2)−1/2exp
( −1

2σ 2 u2
t

)
.

Using this result and noting that ut = yt − α − βxt , we have

Pr
(

y
∣
∣x,α, β , σ 2 ) = (2πσ 2)−T/2exp

[
− ∑T

t=1
(

yt − α − βxt
)2

2σ 2

]

.

The likelihood of the unknown parameters, which we collect in the 3×1 vector θ = (α, β , σ 2)′,
is the same as the above joint density function, but is viewed as a function of θ rather than y.
Denoting the likelihood function of θ by LT(θ) we have

LT(θ) = (2πσ 2)−T/2exp

[
− ∑T

t=1
(

yt − α − βxt
)2

2σ 2

]

. (1.23)
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To obtain the maximum likelihood estimator (MLE) of θ it is often more convenient to work
with the logarithm of the likelihood function, referred to as the log-likelihood function, which
we denote by 	T(θ). Using (1.23) we have

	T(θ) = − T
2

log(2πσ 2) −
∑T

t=1
(

yt − α − βxt
)2

2σ 2 .

It is now clear that maximization of 	T(θ) with respect to α and β will be the same as minimizing
∑T

t=1
(

yt − α − βxt
)2 with respect to these parameters, which establish that the MLE of α and

β is the same as their OLS estimators, namely α̂ML = α̂, and β̂ML = β̂ , where α̂, and β̂ are given
by (1.7) and (1.6), respectively. The MLE of σ 2 can be obtained by taking the first derivative of
	T(θ) with respect to σ 2. We have

∂	T(θ)

∂σ 2 = − T
2σ 2 +

∑T
t=1

(
yt − α − βxt

)2

2σ 4 .

Setting ∂	T(θ)/∂σ 2 = 0 and solving for σ̂
2
ML in terms of the MLE of α and β now yields

σ̂
2
ML =

∑T
t=1

(
yt − α̂ML − β̂MLxt

)2

T
=

∑T
t=1

(
yt − α̂ − β̂xt

)2

T
=

∑T
t=1 û2

t
T

, (1.24)

where ût is the OLS residual, given be (1.5).
The likelihood approach is used extensively in subsequent chapters. For an analysis of the

MLE for multiple regression models see (2.4). The general theory of maximum likelihood esti-
mation is provided in Chapter 9.

1.9 Properties of the OLS estimators

Under the classical assumptions (i)–(iv) in Section 1.6 above, the OLS estimators of α and β

possess the following properties:

(i) α̂ and β̂ are unbiased estimators. Namely, that E
(
α̂
) = a and E

(
β̂
) = β , where α and

β are the ‘true’ values of the regression coefficients.
(ii) Both estimators are linear functions of the values of yt .

(iii) Among the class of linear unbiased estimators, α̂ and β̂ have the least variances. This
result is known as the Gauss–Markov theorem.

In what follows we present a proof of properties (i) to (iii) for β̂ . A similar proof can also be
established for α̂. Recall that

β̂ = SXY

SXX
=

∑T
t=1

(
yt − ȳ

)
(xt − x̄)

∑T
t=1 (xt − x̄)2 .
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But the numerator of this ratio can be written as

T∑

t=1

(
yt − ȳ

)
(xt − x̄) =

T∑

t=1

yt (xt − x̄) −
T∑

t=1

ȳ (xt − x̄) ,

and since
∑T

t=1 ȳ (xt − x̄) = ȳ
∑T

t=1 (xt − x̄) = 0, then

T∑

t=1

(
yt − ȳ

)
(xt − x̄) =

T∑

t=1

yt (xt − x̄) .

Hence β̂ can be written as a weighted linear function of yt ’s

β̂ =
T∑

t=1

wtyt , (1.25)

where the weights

wt = xt − x̄
∑T

t=1 (xt − x̄)2 (1.26)

are fixed and add up to zero, namely
∑T

t=1 wt = 0. This establishes property (ii).
Notice that xt ’s are taken as given, which is justified if they are strictly exogenous. Further dis-

cussion of the concept of strict exogeneity is given in Section 2.2, but in the present context xt
will be strictly exogenous if it is uncorrelated with current, past, as well as future values of the
error terms, us; more specifically if Cov(xt , us) = 0, for all values of t and s. Under this assump-
tion, taking conditional expectations of both sides of (1.25), we have:

E
(
β̂
)

= E

( T∑

t=1

wtyt |x1, x2, . . . , xT

)

=
T∑

t=1

wtE
(

yt |xt
)

,

But using (1.14) or (1.15), conditional on xt , we have E
(

yt |xt
) = α + βxt . Consequently,

E
(
β̂
)

=
T∑

t=1

wt (α + βxt)

= α

T∑

t=1

wt + β

T∑

t=1

wtxt . (1.27)
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However, using (1.26) we have

T∑

t=1

wtxt =
∑T

t=1 xt (xt − x̄)
∑T

t=1 (xt − x̄)2 ,

and since

T∑

t=1

(xt − x̄)2 =
T∑

t=1

(xt − x̄) (xt − x̄)

=
T∑

t=1

xt (xt − x̄) −
T∑

t=1

x̄ (xt − x̄)

=
T∑

t=1

xt (xt − x̄) − x̄
T∑

t=1

(xt − x̄)

=
T∑

t=1

xt (xt − x̄) ,

it then follows that
∑T

t=1 wtxt = 1. We have also seen that
∑T

t=1 wt = 0, hence it follows from
(1.27) that E

(
β̂
) = β , which establishes that β̂ is an unbiased estimator, that is, point (i).

The variance of β̂ can also be computed easily using (1.25). We have

Var
(
β̂
)

=
T∑

t=1

w2
i Var

(
yt |xt

)

=
T∑

t=1

w2
i Var (ut |xt )

= σ 2
T∑

t=1

w2
i ,

and using (1.26) yields

Var
(
β̂
)

= σ 2
∑T

t=1 (xt − x̄)2 = σ 2

SXX
. (1.28)

Similarly, we have

Var
(
α̂
) = σ 2 ∑T

t=1 x2
t

T
∑T

t=1 (xt − x̄)2 , (1.29)



�

�

�

�

�

�

�

�

OUP CORRECTED PROOF – FINAL, 5/9/2015, SPi

Relationship Between Two Variables 17

and

Cov
(
α̂, β̂

)
= −σ 2x̄

∑T
t=1 (xt − x̄)2 . (1.30)

The Gauss–Markov theorem (i.e., property (iii) above) states that among all linear, unbiased esti-
mators of β (or α) the OLS estimator, β̂ , has the smallest variance. To prove this result consider
another linear unbiased estimator of β and denote it by β̃ . Then by assumption

β̃ =
T∑

t=1

w̃tyt ,

where w̃t are fixed weights (which do not depend on yt) and satisfy the conditions

T∑

t=1

w̃t = 0, (1.31)

and

T∑

t=1

w̃txt = 1. (1.32)

These two conditions ensure that β̃ is an unbiased estimator of β , that is, that E
(
β̃
) = β . Sup-

pose now w̃t differ from wt , the OLS weights given in (1.26), by the amount δt and let

w̃t = wt + δt , t = 1, 2, . . . , T, (1.33)

where δt is the amount of discrepancy between the two weighting schemes. Since
∑T

t=1 wt =∑T
t=1 w̃t = 0. It follows also that

∑T
t=1 δt = 0, and since

∑T
t=1 wtxt = ∑T

t=1 w̃txt = 1, then
we should also have

∑T
t=1 δtxt = 0.

The variance of β̃ is now given by

Var
(
β̃
)

=
T∑

t=1

w̃2
t Var

(
yt |xt

)

= σ 2
T∑

t=1

w̃2
t ,

and using (1.33)

Var
(
β̃
)

= σ 2

( T∑

t=1

w2
i +

T∑

t=1

δ2
t + 2

T∑

t=1

wtδt

)

.
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But, using (1.26),

T∑

t=1

wtδt =
∑T

t=1 δt (xt − x̄)
∑T

t=1 (xt − x̄)2 .

The numerator of this ratio can be written more fully as

T∑

t=1

δt (xt − x̄) =
T∑

t=1

δtxt − x̄
T∑

t=1

δt ,

which is equal to zero. Recall that
∑T

t=1 δt = 0, and
∑T

t=1 δtxt = 0. Hence
∑T

t=1 wtδt = 0,
and

Var
(
β̃
)

= σ 2

{ T∑

t=1

w2
i +

T∑

t=1

δ2
t

}

≥ Var
(
β̃
)

,

which establishes the Gauss–Markov theorem for β̂ . The equality sign holds if and only if δt = 0
for all i. The proof of the Gauss–Markov theorem for the multivariate case is presented in
Section 2.7.

1.9.1 Estimation of σ 2

Since Var
(
α̂
)

and Var
(
β̃
)

depend on the unknown parameter, σ 2 (the variance of the distur-
bance term), in order to obtain estimates of the variances of the OLS estimators, it is also neces-
sary to obtain an estimate of σ 2. For this purpose we first note that

σ 2 = Var (ut |xt ) = E
(

u2
t
)

.

It is, therefore, reasonable to interpret σ 2 as the mean value of the squared disturbances. A
moment estimator of σ 2 can then be obtained by the sample average of u2

t . In practice, how-
ever, ut ’s are observed indirectly through the estimates of α and β . Hence a feasible estimator of
σ 2 can be obtained by replacing α and β in the definition of ut by their OLS estimators. Namely,

σ̃ 2 =
∑T

t=1 û2
t

T
=

∑T
t=1

(
yt − α̂ − β̂xt

)2

T
,

which is the same as the ML estimator of σ 2 given by (3). When T is large, this provides a rea-
sonable estimator of σ 2. However, in finite samples a more satisfactory estimator of σ 2 can be
obtained by dividing the sum of squares of the residuals by T − 2 rather than T. Namely,

σ̂
2 =

∑T
t=1

(
yt − α̂ − β̂xt

)2

T − 2
, (1.34)
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where ‘2’ is equal to the number of estimated unknown parameters in the simple regression
model (here, α̂ and β̂). Unlike σ̃ 2, the above estimator of σ 2 given by (1.34) is unbiased. Namely
E
(
σ̂

2) = σ 2.
Using the above estimator of σ 2 it is now possible to estimate the variances and covariances

of β̂ given in (1.28). For example we have

V̂ar
(
β̂
)

= σ̂
2

∑T
t=1 (xt − x̄)2 ,

and similarly for V̂ar
(
α̂
)

and Ĉov
(
α̂, β̂

)
.

The problem of testing the statistical significance of the estimates and their confidence bands
will be addressed in Chapter 3.

1.10 The prediction problem

Suppose T pairs of observations
(

y1, x1
)

,
(

y2, x2
)

, . . .
(

yT , xT
)

are available on Y and X and
assume that the linear regression of Y on X provides a reasonable model for this T-tuple. The
problem of prediction arises when a new observation on X, say xT+1, is considered and it is
desired to obtain the ‘best’ estimate yT+1, the value of Y which corresponds to xT+1. This is
called the problem of conditional prediction, namely estimating the value of Y conditional on
a given value of X. The solution is given by the mathematical expectation of yT+1 conditional
on the available information, namely x1, x2, …, xT , xT+1, and possibly observations on lagged
values of Y . In the case of the simple linear regression (1.14) we have

E
(

yT+1
∣
∣y1, y2, . . . , yT; x1, x2, . . . , xT , xT+1

) = E
(

yT+1 |xT+1
) = α + βxT+1.

An estimate of this expression gives the estimate of the conditional predictor of yT+1. The OLS
estimate of yT+1 is given by

ŷT+1 = Ê
(

yT+1 |x1, x2, . . .
) = α̂ + β̂xT+1.

The variance of the prediction can now be computed as2

Var
(

ŷT+1
) = Var

(
α̂
) + x2

T+1Var
(
β̂
)

+ 2xT+1 Cov
(

â, β̂
)

.

2 Notice that for the two random variables x and y, and the fixed constants α and β , we have

Var
(
αx + βy

) = α2Var (x) + β2Var
(

y
) + 2αβ Cov

(
x, y

)
.
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Now using the results in (1.28) we have:

Var
(

ŷT+1
) = σ 2 ∑

t x2
t

T
∑

t (xt − x̄)2 +
{

x2
T+1

σ 2
∑

t (xt − x̄)2

}
+ 2xT+1

[ −x̄σ 2
∑

t (xt − x̄)2

]

=
σ 2

[∑
t x2

t
T + x2

T+1 − 2x̄xT+1

]

∑T
t=1 (xt − x̄)2

= σ 2

T

[∑
t x2

t + Tx2
T+1 − 2

(∑
t xt

)
xT+1

∑
t (xt − x̄)2

]

.

Therefore

Var
(

ŷT+1
) = σ 2

T
∑

t (xt − x̄)2

[
∑

t
(xt − x̄)2 + T (xT+1 − x̄)2

]

,

or

Var
(

ŷT+1
) = σ 2

[
1
T

+ (xT+1 − x̄)2
∑

t (xt − x̄)2

]
. (1.35)

An estimate of Var
(

ŷT+1
)

is now given by

V̂ar
(

ŷT+1
) = σ̂

2
[

1
T

+ (xT+1 − x̄)2
∑

t (xt − x̄)2

]
. (1.36)

The general theory of prediction under alternative loss functions is discussed in Chapter 17.

1.10.1 Prediction errors and their variance

The error of the conditional forecast of yT+1 is defined by

ûT+1 = yT+1 − ŷT+1.

Under the assumption that yT+1 is generated according to the simple regression model we have

ûT+1 = α + βxT+1 + uT+1 − α̂ − β̂xT+1.

To compute the variance of ûT+1 we first note that both α̂ and β̂ are linear functions of the
disturbances over the estimation period (namely u1, u2, . . . , uT) and do not depend on uT+1.
Since by assumption ut ’s are serially uncorrelated it therefore follows that

Cov
(

uT+1, α̂ − α
) = 0,

Cov
(

uT+1, β̂ − β
)

= 0.
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Hence, conditional on xT+1, uT+1 and ŷT+1 = α̂ + β̂xT+1 will also be uncorrelated, and

Var
(

ûT+1
) = Var (uT+1) + Var

(
ŷT+1

)
.

Now noting that Var (uT+1) = σ 2 and using (1.35) we have

Var
(

ûT+1
) = σ 2

{
1 + 1

T
+ (xT+1 − x̄)2

∑
t (xt − x̄)2

}
. (1.37)

This variance can again be estimated by

V̂ar
(

ûT+1
) = σ̂

2
{

1 + 1
T

+ (xT+1 − x̄)2
∑

t (xt − x̄)2

}
.

In the case where {xt} has a constant variance, Var
(

ûT+1
)

converges to σ 2 as T → ∞. The
above derivations also clearly show that Var

(
ûT+1

)
is composed of two parts: one part is due

to the inherent uncertainty that surrounds the regression line (i.e., Var (ut) = σ 2), and the
other part is due to the sampling variation that is associated with the estimation of the regression
parameters, α and β . It is, therefore, natural that as T → ∞, the latter source of variations
disappears and we are left with the inherent uncertainty due to the regression, as measured by σ 2.

1.10.2 Ex ante predictions

In the case of the linear regression model the ex ante prediction of yT+1 is obtained without
assuming xT+1 is known. The prediction is conditional on knowing the past (but not the cur-
rent) values of x. To obtain ex ante prediction of yT+1 we therefore also need to predict xT+1
conditional on its past values. This requires developing an explicit model for xt . One popular
method of generating ex ante forecasts is to assume a univariate time series process for xts, and
then predict xT+1 from information on its lagged values. A simple example of such a time series
process is the AR(1) model:

xt = ρxt−1 + εt , |ρ| < 1,

where εts are assumed to have zero means and constant variances. Under this specification the
‘optimal’ forecast of xT+1 (conditional on past values of x’s) is given by

E (xT+1 |x1, x2, . . . , xT ) = ρxT ,

which in turn yields the following ex ante forecast of yT+1

E
(

yT+1
∣∣x1, x2, . . . , xT , y1, y2, . . . , yT

) = α + βE (xT+1 |x1, . . . , xT ) .

An estimate of this forecast is now given by

ŷT+1 = Ê
(

yT+1 |xT
) = α̂ + β̂ρ̂xT ,
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where ρ̂ is the OLS estimator of ρ, obtained from the regression of xt on its one-period lagged
value. In Chapter 17 we review forecasting within the general context of ARMA models, intro-
duced in Chapter 12.

1.11 Exercises

1. Show that the correlation coefficient defined in (1.8) ranges between −1 and 1.
2. In the model yt = α + βxt + ut what happens to the OLS estimator of β if xt and/or yt are

standardized by demeaning and scaling by their standard deviations?
3. The following table provides a few key summary statistics for daily rates of change of UK stock

index (FTSE) and the GB pound versus US dollar.

Daily UK stock returns and GBP/US$ rate (%)
sample period 2 Jan 1987–16 June 1998

Stock (FTSE) FX (GBP/US$)

Max 5.69 2.82
Min −12.11 −3.2861
Mean 0.0396 0.0033
St. dev. 0.8342 0.6200
Skewness −1.82 −0.27
Kurtosis − 3 26.17 2.55

Using these statistics what do you think are the main differences between these two series and
how best these differences are characterized?

4. Consider the following data

Height in centimeters Weight in kilograms

(X) (Y)
169.6 71.2
166.8 58.2
157.1 56.0
181.1 64.5
158.4 53.0
165.6 52.4
166.7 56.8
156.5 49.2
168.1 55.6
165.3 77.8

X̄ = 165.52 Ȳ = 59.47

We obtain
SXX = 472.076,
SYY = 731.961,
SXY = 274.786.
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Plot Y against X. Run OLS regressions of Y on X and the reverse regression of Y on X. Check
that the fitted regression line goes through the means of X and Y .

5. Consider the simple regression model

yt = α + βxt + ut , t = 1, 2, . . . , T

where xt is the explanatory variable and ut is the unobserved disturbance term.

(a) Explain briefly what is meant by saying that an estimator, β̂ , of β is:
i. unbiased

ii. consistent
iii. maximum likelihood.

(b) Under what assumptions is the OLS estimator of β:
i. the best linear unbiased estimator

ii. the maximum likelihood estimator
(c) For each of the assumptions you have listed under (b) give an example where the assump-

tion might not hold in economic applications.
(d) In the model above, why do econometricians make assumptions about the distribution

of ut when testing a hypothesis about the value of β?

6. Consider the following two specifications

Wi = a + b log(Ei) + εi,
ln (Wi) = α + β log(Ei) + vi,

where Wi = P Fi/Ei, is the share of food expenditure of household i, P is the price of food
assumed fixed across all households, Ei = Fi + NFi, with Fi and NFi are respectively food
and non-food expenditures of the household, εi and vi are random errors, a, b, α and β are
constant coefficients.

(a) How do you use these specifications to compute the elasticity of food expenditure rela-
tive to the total expenditure?

(b) Discuss the relative statistical and theoretical merits of these specifications for the analy-
sis of food expenditure.
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2.1 Introduction

This chapter considers the extension of the bivariate regression discussed in Chapter 1 to
the case where more than one variable is available to explain/predict yt , the dependent

variable. The topic is known as multiple regression analysis, although only one relationship
is in fact considered between yt and the k explanatory variables, xti, for i = 1, 2, . . . , k. The
problem of multiple regressions where m sets of dependent (or endogenous) variables, ytj, j =
1, 2, . . . , m are explained in terms of xti, for i = 1, 2, . . . , k will be considered in Chapter 19
and is known as multivariate analysis and includes topics such as canonical correlation and fac-
tor analysis. This chapter covers standard techniques such as ordinary least squares (OLS) and
examines the properties of OLS estimators under classical assumption, discusses the Gauss–
Markov theorem, multiple correlation coefficient, the multicollinearity problem, partitioned
regression, introduces regressions that are nonlinear in variables and discusses the interpreta-
tion of coefficients.

2.2 The classical normal linear regression model

Consider the general linear regression model

yt =
k∑

j=1

β jxtj + ut , for t = 1, 2, . . . , T, (2.1)

where xt1, xt2, . . . , xtk are the tth observation on k regressors. If the regression contains an inter-
cept, then one of the k regressors, say the first one xt1, is set equal to unity for all t, namely xt1 = 1.
The parameters β1, β2, . . . , βk assumed to be fixed (i.e., time invariant) are the regression coef-
ficients, and ut are the ‘disturbances’ or the ‘errors’ of the regression equation. The regression
equation can also be written more compactly as

yt = β ′xt + ut , for t = 1, 2, . . . , T, (2.2)
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where β = (β1, β2, . . . , βk)
′ and xt = (xt1, xt2, . . . , xtk)

′. Stacking the equations for all the T
observation and using matrix notations, (2.1) or (2.2) can be written as (see Appendix A for an
introduction to matrices and matrix operations)

y = Xβ + u, (2.3)

where

X =

⎛

⎜
⎜
⎜
⎝

x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xT1 xT2 · · · xTk

⎞

⎟
⎟
⎟
⎠

, y =

⎛

⎜
⎜
⎜
⎝

y1
y2
...

yT

⎞

⎟
⎟
⎟
⎠

, u =

⎛

⎜
⎜
⎜
⎝

u1
u2
...

uT

⎞

⎟
⎟
⎟
⎠

.

The disturbances ut (or u) satisfy the following assumptions:

Assumption A1: Zero mean: the disturbances ut have zero means

E(u) = 0, or E(ut) = 0, for all t.

Assumption A2: Homoskedasticity: the disturbances ut have constant conditional variances

Var(ut |x1, x2, . . . , xT ) = σ 2 > 0, for all t.

Assumption A3: Non-autocorrelated errors: the disturbances ut are serially uncorrelated

Cov(ut , us |x1, x2, . . . , xT ) = 0, for all t �= s.

Assumption A4: Orthogonality: the disturbances ut and the regressors xt1, xt2, . . . , xtk are uncor-
related

E(ut |x1, x2, . . . , xT ) = 0, for all t.

Assumption A5: Normality: the disturbances ut are normally distributed.

Assumption A2 implies that the variances of uts are constant also unconditionally, since,1

Var (ut) = Var [E(ut |x1, x2, . . . , xT )] + E [Var(ut |x1, x2, . . . , xT )] = σ 2,

given that, under A4, E(ut |x1, x2, . . . , xT ) = 0. The assumption of constant conditional and
unconditional error variances is likely to be violated when dealing with cross-sectional regres-
sions, while that of constant conditional error variances is often violated in analysis of financial
and macro-economic times series, such as exchange rates, stock returns and interest rates. How-
ever, it is possible for errors to be unconditionally constant (time-invariant) but conditionally

1 See Appendix B, result (B.22).
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time varying. Examples include stationary autoregressive conditional heteroskedastic (ARCH)
models developed by Engle (1982) and discussed in detail in Chapters 18 and 25.

In time series analysis the critical assumptions are A3 and A4. Assumption A3 is particu-
larly important when the regression equation contains lagged values of the dependent variable,
namely yt−1, yt−2, . . . . However, even if lagged values of yt are not included among the regres-
sors, the breakdown of assumption A3 can lead to misleading inferences, a problem recognized
as early as 1920s by Yule (1926), and known in the econometrics time series literature as the
spurious regression problem.2 The orthogonality assumption, A4, allows the empirical analysis
of the relationship between yt and xt1, xt2,…,xtk to be carried out without fully specifying the
stochastic processes generating the regressors, also known as ‘forcing’ variables. We notice that
assumption A1 is implied by A4, if a vector of ones is included among the regressors. It is there-
fore important that an intercept is always included in the regression model, unless it is found to
be statistically insignificant.

As they stand, assumptions A2, A3, and A4 require the regressors to be strictly exogenous, in
the sense that the first- and second-order moments of the errors, ut , t = 1, 2, . . . , T, are uncor-
related with the current, past and future values of the regressors (see Section 9.3 for a discussion
of strict and weak exogeneity, and their impact on the properties of estimators). This assump-
tion is too restrictive for many applications in economics and in effect treats the regressors as
given which is more suitable to outcomes of experimental designs rather than economic obser-
vations that are based on survey data of transaction prices and quantities. The strict exogeneity
assumption also rules out the inclusion of lagged values of yt amongst the regressors. However,
it is possible to relax these assumptions somewhat so that it is only required that the first- and
second-order moments of the errors are uncorrelated with current and past values of the regres-
sors, but allowing for the errors to be correlated with the future values of the regressors. In this
less restrictive setting, assumptions A2–A4 need to be replaced by the following assumptions:

Assumption A2(i) Homoskedasticity: the disturbances ut have constant conditional variances

Var(ut |x� ) = σ 2 > 0, for all � ≤ t.

Assumption A3(i) Non-autocorrelated errors: the disturbances ut are serially uncorrelated

Cov(ut , us |x� ) = 0, for all t �= s and � ≤ min(t, s).

Assumption A4(i) Orthogonality: the disturbances ut and the regressors xt1, xt2, . . . , xtk are
uncorrelated

E(ut |x� ) = 0, for all � ≤ t.

Under these assumptions the regressors are said to be weakly exogenous, and allow for
lagged values of yt to be included in xt .

Adding assumption A5 to the classical model yields the classical linear normal regression
model. This model can also be derived using the joint distribution of yt , xt , and by assuming

2 Champernowne (1960) and Granger and Newbold (1974) provide Monte Carlo evidence on the spurious regression
problem, and Phillips (1986) establishes a number of theoretical results.
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that this distribution is a multivariate normal with constant means, variances and covariances. In
this setting, the regression of yt on xt , defined as the mathematical expectation of yt conditional
on the realized values of the regressors, will be linear in the regressors. The linearity of the regres-
sion equation follows from the joint normality assumption and need not hold if this assumption
is relaxed. To be more precise suppose that

(
yt
xt

)
� N (μ, �) , (2.4)

where

μ =
(

μy
μx

)
, and � =

(
σ yy σ yx
σ xy �xx

)
.

Then using known results from theory of multivariate normal distributions (see Appendix B for
a summary and references) we have

E
(

yt |xt
) = μy + σ yx�

−1
xx (xt − μx),

Var
(

yt |xt
) = σ yy − σ yx�

−1
xx σ xy.

Under this setting, assuming that (2.2) includes an intercept, the regression coefficients β will be
given by (μy − σ yx�

−1
xx μx, σ yx�

−1
xx )′. It is also easily seen that the regression errors associated

with (2.4) are given by

ut = yt − (μy − σ yx�
−1
xx μx) − σ yx�

−1
xx xt ,

and, by construction, satisfy the classical assumptions. But note that no dynamic effects are
allowed in the distribution of (yt , x′

t)
′.

Both of the above interpretations of the classical normal regression model have been used in
the literature (see, e.g., Spanos (1989)). We remark that the normality assumption A5 may be
important in small samples, but is not generally required when the sample under consideration
is large enough.

All the various departures from the classical normal regression model mentioned here will be
analysed in Chapters 3 to 6.

2.3 The method of ordinary least squares in multiple
regression

The criterion function in this general case will be

Q
(
β1, β2, . . . , βk

) =
T∑

t=1

⎛

⎝yt −
k∑

j=1

β jxtj

⎞

⎠

2

. (2.5)
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The necessary conditions for the minimization of Q
(
β1, β2, . . . , βk

)
are given by

∂Q
(
β1, β2, . . . , βk

)

∂β s
= −2

T∑

t=1

xts

⎛

⎝yt −
k∑

j=1

β̂ jxtj

⎞

⎠ = 0, s = 1, 2, . . . , k, (2.6)

where β̂ j is the OLS estimator of β j. The k equations in (2.6) are known as the ‘normal’ equa-
tions. Denoting the residuals by ût = yt − ∑

j β̂ jxtj, the normal equations can be written as
∑T

t=1 xtsût = 0, for s = 1, 2, . . . , k, or, in expanded form

T∑

t=1

xtsyt =
T∑

t=1

k∑

j=1

β̂ jxtjxts

=
k∑

j=1

β̂ j

( T∑

t=1

xtjxts

)

.

Without the use of matrix notations, the study of the properties of multiple regression would be
extremely tedious. In matrix form, the criterion function (2.5) to be minimized is

Q (β) = (
y − Xβ

)′ (y − Xβ
)

, (2.7)

and the first-order conditions become

∂Q (β)

∂β
= −2X′ (y − Xβ̂

)
= 0,

which yield the normal equations,

(
X′X

)
β̂ = X′y.

Suppose now that X′X is of full rank, that is Rank
(

X′X
) = k, [or Rank(X) = k] a necessary

condition for this is that k ≤ T. There should be at least as many observations as there are
unknown coefficients. Then

β̂ = (
X′X

)−1 X′y. (2.8)

In the case where Rank(X) = r < k, β̂ = (
X′X

)− X′y, where
(

X′X
)− represents the gen-

eralized inverse of X′X. In this case only r linear combinations of the regression coefficients are
uniquely determined.

2.4 The maximum likelihood approach

Under the normality assumption A5, the OLS estimator can be derived by maximizing the like-
lihood function associated to model (2.2) (or (2.3)). Let θ = (

β ′, σ 2)′, then the likelihood of
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a sample of T independent, identically and normally distributed disturbances is3

LT (θ) = (
2πσ 2)−T/2 exp

(

− 1
2σ 2

T∑

t=1

u2
t

)

= (
2πσ 2)−T/2 exp

[

− 1
2σ 2

T∑

t=1

(
yt − β ′xt

)2
]

.

Adopting the matrix notation,

LT (θ) = (
2πσ 2)−T/2 exp

[
− 1

2σ 2

(
y − Xβ

)′ (y − Xβ
)
]

. (2.9)

Taking logs, we obtain the log-likelihood function for the classical linear regression model

�T (θ) = log LT (θ) = −T
2

log
(

2πσ 2) − 1
2σ 2

T∑

t=1

(
yt − β ′xt

)2 . (2.10)

The necessary conditions for maximizing (2.10) are

(
∂�T(θ)

∂β

∂�T(θ)

∂σ 2

)

=
( 1

σ 2 X′ (y − Xβ
)

− T
2σ 2 + 1

2σ 4

(
y − Xβ

)′ (y − Xβ
)

)

=
(

0
0

)
.

The values that satisfy these equations are

β̃ = (
X′X

)−1 X′y, and σ̃ 2 =
∑

t ũ2
t

T
= ũ′̃u

T
,

where ũ = y − Xβ̃ . Notice that the estimator for the slope coefficients is identical to the OLS
estimator (2.8), while the variance estimator differs from (2.14) by the divisor of T instead
of T − k. Clearly, the OLS estimator inherits all the asymptotic properties of the ML esti-
mator. We refer to Chapter 9 for a review of the theory underlying the maximum likelihood
approach, and to Chapter 19 for an extension of the above results to the case of multivariate
regression.

The likelihood approach also forms the basis of the Bayesian inference where the likeli-
hood is combined with prior distributions on the unknown parameters to obtain posterior
probability distributions which is then used for estimation and inference: see Section C.6 in
Appendix C.

3 See also Section 1.8 where the likelihood approach is introduced for the analysis of bivariate regression models.
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2.5 Properties of OLS residuals

The residual vector is given by

û = y − Xβ̂ = y − X
(

X′X
)−1 X′y

=
[

IT − X
(

X′X
)−1 X′] y

= My,

where IT is an identity matrix of order T, M = IT − X(X′X)−1X′, with the property M2 = M,
which makes M to be an idempotent matrix. Also M = IT −P, where P = X(X′X)−1X′ is called
the projection matrix of the regression (2.3). Note that

MX =
[

IT − X
(

X′X
)−1 X′]X

= X − X
(

X′X
)−1 X′X

= X − X = 0.

Therefore

X′û = X′My = 0, (2.11)

or
∑T

t=1 xtsût = 0, for s = 1, 2, . . . , k which are the normal equations of the regression problem.
Therefore, the regressors are by construction ‘orthogonal’ to the vector of OLS residuals.

In the case where the regression equation contains an intercept term (i.e., when one of the xtj’s
is equal to 1 for all t) we also have

T∑

t=1

ût = 0 = T
(

ȳ − β̂1x̄1 − β̂2x̄2 − . . . − β̂kx̄k

)
= 0,

where x̄j stands for the sample mean of the jth regressor, xtj. This result follows directly from
the normal equations

∑T
t=1 xtsût = 0, by choosing xts to be the intercept term, namely setting

xts = 1 in
∑T

t=1 xtsût = 0.
To summarize, the OLS residual vector, û, has the following properties:

(i) By construction all the regressors are orthogonal to the residual vector, that is, X′û = 0.
(ii) When the regression equation contains an intercept term, the residuals, ût , have mean

zero exactly, i.e.
∑T

t=1 ût = 0. This result also implies that the regression plane goes
through the sample mean of y and the sample means of all the regressors.

(iii) Even if ut are homoskedastic and serially uncorrelated, the OLS residuals, ût , will be het-
eroskedastic and autocorrelated in small samples.

Result (iii) follows by noting that

û = My = M (Xβ + u) = Mu,



�

�

�

�

�

�

�

�

OUP CORRECTED PROOF – FINAL, 5/9/2015, SPi

Multiple Regression 31

and

E
(

ûû′) = E
(

Muu′M′) = ME
(

uu′)M′.

But under the classical assumptions E
(

uu′) = σ 2IT . Hence

E
(

ûû′) = M
(
σ 2IT

)
M′ = σ 2MM′ = σ 2M,

which is different from an identity matrix and establishes that ût and ût′
(

t �= t′
)

are neither
uncorrelated nor homoskedastic. These properties of OLS residuals lie at the core of some of
the difficulties encountered in practice in developing tests of the classical assumptions based on
OLS residuals, that perform well in small samples. Fortunately, the serial correlation and het-
eroskedasticity properties of OLS residuals tend to disappear in ‘large enough’ samples.

2.6 Covariance matrix of β̂

The covariance matrix of β̂ is defined as

Var
(
β̂
) = E

{[
β̂ − E

(
β̂
)] [

β̂ − E
(
β̂
)]′}

=

⎛

⎜
⎜
⎜
⎝

Var
(
β̂1
)

Cov
(
β̂1, β̂2

) · · · Cov
(
β̂1, β̂k

)

Cov
(
β̂2, β̂1

)
Var

(
β̂2
) · · · Cov

(
β̂2, β̂k

)

...
Cov

(
β̂k, β̂1

)
Cov

(
β̂k, β̂2

) · · · Var
(
β̂k
)

⎞

⎟
⎟
⎟
⎠

. (2.12)

The diagonal elements of the matrix Var
(
β̂
)

are the variances of the OLS estimators, β̂ =
(
β̂1, β̂2, . . . , β̂k

)′, and the off-diagonal elements are the covariances.
To obtain the formula for Var

(
β̂
)

we first note that

β̂ = (
X′X

)−1 X′y = (
X′X

)−1 X′ (Xβ + u)

= β + (
X′X

)−1 X′u.

But E(X′u |X ) = X′E(u |X ) and, under assumption A4, E(u |X ) = 0, and hence E
(
β̂
) = β ,

namely that β̂ is an unbiased estimator of β . Also

β̂ − E
(
β̂
)

= (
X′X

)−1 X′u.

Therefore

Var
(
β̂
)

= E
[(

X′X
)−1 X′uu′X

(
X′X

)−1
]

.
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Again under assumption A4

E
[(

X′X
)−1 X′uu′X

(
X′X

)−1 |X
]

= (
X′X

)−1 X′E
(

uu′ |X )
X
(

X′X
)−1 ,

and under assumptions A2 and A3, E
(

uu′ |X ) = σ 2IT . Therefore,

E
[(

X′X
)−1 X′uu′X

(
X′X

)−1 |X
]

= σ 2 (X′X
)−1 ,

and hence

Var
(
β̂
)

= σ 2E
[(

X′X
)−1

]
. (2.13)

For given values of X an estimator of Var
(
β̂
)

is

V̂ar
(
β̂
)

= σ̂
2 (X′X

)−1 ,

where σ̂
2 is

σ̂
2 =

∑
t û2

t
T − k

= û′û
T − k

, (2.14)

with k being the number of regressors, including the intercept term. As in the case of the simple
regression model, σ̂ 2 is an unbiased estimator of σ 2, namely E(σ̂

2
) = σ 2. Unbiasedness of σ̂ 2

is easily established by noting that û = Mu and hence

E
(
σ̂

2
)

=
(

1
T − k

)
E
(

u′Mu
)

=
(

1
T − k

)
E
[

Tr
(

u′Mu
)] =

(
1

T − k

)
E
[

Tr
(

uMu′)]

=
(

1
T − k

)
Tr
[

ME
(

uu′)] =
(

1
T − k

)
Tr
(

Mσ 2) ,

Noting that

Tr (M) = Tr
[

IT − X
(

X′X
)−1 X′]

= Tr (IT) − Tr
[

X
(

X′X
)−1 X′] = T − k,

it follows that

E
(
σ̂

2
)

= σ 2Tr (M)

T − k
= σ 2.
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The estimator of Cov
(
β̂ j, β̂ s

)
is given by the

(
j, s
)th element of matrix σ̂

2 (X′X
)−1.

Example 1 Consider the three variable regression model

yt = β1 + β2xt2 + β3xt3 + ut , t = 1, 2, . . . , T, (2.15)

where we have set the first variable, xt1, equal to unity to allow for an intercept in the regres-
sion. To simplify the derivations we work with variables in terms of their deviations from their
respective sample means. Summing the equation (2.15) over t and dividing by the sample size, T,
yields:

ȳ = β1 + β2x̄2 + β3x̄3 + ū, (2.16)

where ȳ = ∑
t yt/T, x̄2 = ∑

t xt2/T, x̄3 = ∑
t xt3/T , ū = ∑

t ut/T are the sample means.
Subtracting (2.16) from (2.15) we obtain

yt − ȳ = β2 (xt2 − x̄2) + β3 (xt3 − x̄3) + (ut − ū) .

The OLS estimators of β2 and β3 are now given by (using (2.8))

(
β̂2
β̂3

)
=
(

S22 S23
S23 S33

)−1 ( S2y
S3y

)
,

where

Sjs = ∑
t
(

xtj − x̄j
)
(xts − x̄s) = ∑

t
(

xtj − x̄j
)

xts, j, s = 2, 3,
Sjy = ∑

t
(

xtj − x̄j
)

yt , j = 2, 3,

(
S22 S23
S23 S33

)−1
= 1

S22S33 − S2
23

[
S33 −S23

−S23 S22

]
.

Hence

β̂2 = S33S2y − S23S3y

S22S33 − S2
23

, (2.17)

β̂3 = S22S3y − S23S2y

S22S33 − S2
23

. (2.18)

The estimator of β1, the intercept term, can now be obtained recalling that the regression plane goes
through the sample means when the equation has an intercept term. Namely

ȳ = β̂1 + β̂2x̄2 + β̂3x̄3,
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and hence

β̂1 = ȳ − β̂2x̄2 − β̂3x̄3. (2.19)

The estimates of the variances and the covariance of β̂2 and β̂3 are given by [using (2.12) and
(2.13)]

Ĉov
(

β̂2
β̂3

)
= σ̂

2
(

S22 S23
S23 S33

)−1
,

or

V̂ar
(
β̂2

)
= σ̂

2S33

S22S33 − S2
23

, (2.20)

V̂ar
(
β̂3

)
= σ̂

2S22

S22S33 − S2
23

, (2.21)

and

Ĉov
(
β̂2, β̂3

)
= − σ̂

2S23

S22S33 − S2
23

. (2.22)

Finally,

σ̂
2 =

∑
t û2

t
T − 3

=
∑

t

(
yt − β̂1 − β̂2xt2 − β̂3xt3

)2

T − 3
. (2.23)

Notice that the denominator of σ̂
2 is T − 3, as we have estimated three coefficients, namely the

intercept term, β1, and the two regression coefficients, β2 and β3.

2.7 The Gauss–Markov theorem

The Gauss–Markov theorem states that under the classical assumptions A1–A4 the OLS estima-
tor (2.8) has the least variance in the class of all linear unbiased estimators of β , namely it is the
best linear unbiased estimator (BLUE). More formally, let β∗ be an alternative linear unbiased
estimator of β defined by

β∗ = β̂ + C′y, (2.24)

where C is a k × T matrix with elements possibly depending on X, but not on y. It is clear that
β∗ is a linear estimator. Also since β̂ is an unbiased estimator of β , for β∗ to be an unbiased
estimator we need
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E
(
β∗) = E

(
β̂
)

+ C′E
(

y
) = β + C′E

(
y
) = β ,

or that C′E
(

y
) = 0, which in turn implies that

C′E
(

y
) = C′ (Xβ + E (u)) = C′Xβ = 0, (2.25)

for all values of β .
To prove the Gauss–Markov we need to show that subject to the unbiasedness condition

(2.25), Var(β̂) ≤ Var
(
β∗

)
, in the sense that Var

(
β∗

) − Var(β̂) is a semi-positive definite
matrix. Using (2.3) and (2.8) in (2.24), we have

β∗ =
[(

X′X
)−1 X′ + C′] y

=
[(

X′X
)−1 X′ + C′] (Xβ + u) ,

or

β∗ − β = C′Xβ +
[(

X′X
)−1 X′ + C′] u.

But using (2.25), C′Xβ = 0 and

β∗ − β =
[(

X′X
)−1 X′ + C′] u.

Hence (for a given set of observations, X)

Var
(
β∗) = E

[(
β∗ − β

) (
β∗ − β

)′]

= σ 2
[(

X′X
)−1 + C′C + (

X′X
)−1 X′C + C′X

(
X′X

)−1
]

.

However, since C′Xβ = 0 for all parameter values, β , then we should also have C′X = 0, and

Var
(
β∗) = σ 2 (X′X

)−1 + σ 2 (C′C
)

.

Therefore

Var
(
β∗) − Var

(
β̂
)

= σ 2 (C′C
)

,

which is a semi-positive definite matrix.
The Gauss–Markov theorem readily extends to the OLS estimator of any linear combination

of the parameters, β . Consider, for example, the linear combination

δ = λ′β ,
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where λ is a k × 1 vector of fixed coefficients. Denote the OLS estimator of δ by δ̂, and the
alternative linear unbiased estimator by δ∗. We have

δ̂ = λ′β̂ , δ∗ = λ′β∗,

and

Var
(
δ∗) − Var

(
δ̂
)

= λ′Var
(
β∗)λ − λ′Var

(
β̂
)

λ

= λ′ [Var
(
β∗) − Var

(
β̂
)]

λ.

But we have already shown that Var
(
β∗)− Var(β̂) is a semi-positive definite matrix. Therefore,

Var
(
δ∗) − Var

(
δ̂
)

≥ 0.

A number of other interesting results also follow from this last inequality. Setting λ′ = (1, 0, . . . , 0),
for example, gives

δ = λ′β = β1,

and establishes that

Var
(
β∗

1
) − Var

(
β̂1

)
≥ 0.

Similarly, Var(β∗
j ) − Var(β̂ j) ≥ 0, for j = 1, 2, . . . , k.

It is important to bear in mind that the Gauss–Markov theorem does not apply if the regressors
are weakly exogenous even if all the other assumptions of the classical model are satisfied.

2.8 Mean square error of an estimator and the bias-variance
trade-off

The Gauss–Markov theorem states that, under the classical assumptions, it is not possible to find
linear unbiased estimators of regression coefficients which have smaller variances than the OLS
estimator, (2.8). However, as shown by James and Stein (1961), it is possible to find other esti-
mators that are biased but have a lower variance than the OLS estimator. The trade-off between
bias and variance can be formalized if the alternative estimators are compared by their mean
square error defined as

MSE(β̃) = E
[
(β̃−β0)(β̃−β0)

′] ,

where β̃ denotes an alternative estimator to the OLS estimator, β̂ , and β0 is the true value of β .
To see the bias-variance trade-off we first note that
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E
[
(β̃−β0)(β̃−β0)

′] = E
{[(

β̃−E(β̃)
)− (

β0 − E(β̃)
)] [(

β̃−E(β̃)
)− (

β0 − E(β̃)
)]′}

= E
{[

β̃−E(β̃)
] [

β̃−E(β̃)
]′} + E

{[
β0 − E(β̃)

] [
β0 − E(β̃)

]′}

− E
{[

β̃−E(β̃)
] [

β0 − E(β̃)
]′} − E

{[
β0 − E(β̃)

] [
β̃ − E(β̃)

]′} .

But β0 − E(β̃) is a constant (i.e., non-stochastic), and can be taken outside of the expectations
operator. Also

E
{[

β̃−E(β̃)
] [

β̃−E(β̃)
]′} = Var

(
β̃
)

,

and by construction

E
[
β̃−E(β̃)

] = 0.

Hence

MSE(β̃) = Var
(
β̃
) + [

β0 − E(β̃)
] [

β0 − E(β̃)
]′ .

Namely, the MSE(β̃) can be decomposed into a variance term plus the square of the bias. In
principle it is clearly possible to find an estimator for β with lower variance at the expense of
some bias, leading to a reduction in the overall MSE. This result has been used by James and
Stein (1961) to propose a biased estimator for β such that its MSE is smaller than the MSE of
β̂ . Specifically, they considered the estimator

β̃ j =
[

1 − (k − 2) σ 2

β̂
′
(XX′) β̂

]

β̂ j, j = 1, 2, . . . ., k,

obtained by minimizing the overall MSE of β̃ . James and Stein proved that this estimator, by
shrinking the OLS estimator towards zero, has a MSE smaller than the MSE of OLS estimator
when k > 2. For further details see, for example, Draper and van Nostrand (1979) and Gruber
(1998).

2.9 Distribution of the OLS estimator

Under the classical normal assumptions A1–A5, for a given realization of the regressors, X, the
OLS estimator, β̂ , is a linear function of ut , for t = 1, 2, . . . , T, and hence is also normally dis-
tributed. More specifically, using (2.8), note that

β̂ = β + (X′X)−1X′u,

and since under assumptions A1–A5, u ∼ N(0,σ 2IT), then recalling that X′X is a positive defi-
nite matrix, we have
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(
β̂ − β

)
∼ N[0,σ 2(X′X)−1].

Equivalently,

(X′X)1/2

(
β̂ − β

σ

)

∼ N(0, Ik),

and

(
β̂ − β

)′ (X′X
σ 2

)(
β̂ − β

)
∼ χ2

k , (2.26)

where χ2
k stands for the central chi-square distribution with k degrees of freedom. The above

result also follows unconditionally.
Consider now the distribution of σ̂ 2, the unbiased estimator of σ 2, given by (2.14). We note

that û = Mu, where M = IT −X(X′X)−1X′ is an idempotent matrix with rank T −k. Then the
singular value decomposition of M is given by GMG′ = �, where G is an orthonormal matrix
such that GG′ = IT , and

� =
(

IT−k 0
0 0

)
.

Hence

(T − k) σ̂
2

σ 2 = û′û
σ 2 = u′Mu

σ 2 = ξ ′�ξ ,

where ξ = σ−1Gu ∼ N(0, IT). Partition ξ conformable to �, and note that

(T − k) σ̂
2

σ 2 =
T−k∑

i=1

ξ 2
i ,

where ξ i are independently and identically distributed as N(0, 1). Thus

(T − k) σ̂
2

σ 2 ∼ χ2
T−k. (2.27)

Finally, using (2.26) and the above result, we have

T − k
k

(
β̂ − β

)′ (X′X
σ 2

) (
β̂ − β

)

(T−k)σ̂ 2

σ 2

=
(
β̂ − β

)′ (
X′X

) (
β̂ − β

)

kσ̂ 2 ∼ F(k, T − k),

where F(k, T − k) stands for the central F-distribution with k and T − k degrees of freedom.
This result follows immediately from the definition of F-distribution, which is given by the ratio
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of two independent chi-squared variates corrected for their respective degrees of freedom (see
Appendix B). In the present application, the two chi-squared distributions are

(T − k) σ̂
2

σ 2 = u′Mu
σ 2 ∼ χ2

T−k,

and

(
β̂ − β

)′ (X′X
σ 2

)(
β̂ − β

)
= u′X(X′X)−1

(
X′X
σ 2

)
(X′X)−1X′u

= u′(IT − M)u
σ 2 ∼ χ2

k .

The independence of u′Mu and u′(IT−M)u follows from the fact that (IT−M)M = M − M2 =
M − M = 0.

The above results can be readily adapted for deriving the distribution of linear subsets of β̂ .
Suppose we are interested in the distribution of Rβ̂ , where R is an r×k matrix of fixed constants
with rank r ≤ k. Then

(
Rβ̂ − Rβ

)′ [
R
(

X′X
)−1 R′

]−1 (
Rβ̂ − Rβ

)

rσ̂ 2

=
(

Rβ̂ − Rβ
)′ [

RV̂ar(β̂)R′
]−1 (

Rβ̂ − Rβ
)

r
∼ F(r, T − k). (2.28)

In the case where r = 1, the F-test reduces to a t-test. For example, by setting R = (1, 0, . . . , 0),
the above result implies

(β̂1 − β1)
2

V̂ar(β̂1)
∼ F(1, T − k),

which in turn yields the familiar t-test statistic, given by
(
β̂1 − β1

)
/

√
V̂ar(β̂1) ∼ tT−k.

2.10 The multiple correlation coefficient

By analogy to the case of the simple regression model, the strength of the fit of a multiple
regression equation is measured via the multiple correlation coefficient, R, defined by the pro-
portion of the total variation of y explained by the regression equation:

R2 =
∑

t
(

ŷt − ȳ
)2

∑
t
(

yt − ȳ
)2 . (2.29)
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As in the case of the simple regression equation, the total variation of y, measured by Syy =
∑

t
(

yt − ȳ
)2, can be decomposed into that explained by the regression equation,

∑
t
(

ŷt − ȳ
)2,

and the rest:4

∑

t

(
yt − ȳ

)2 =
∑

t

(
ŷt − ȳ

)2 +
∑

t

(
yt − ŷt

)2 .

Hence, R2 can also be written as

R2 =
∑

t
(

yt − ȳ
)2 − ∑

t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2 ,

or

R2 = 1 −
∑

t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2

= 1 −
∑

t û2
t

Syy
= 1 − û′û

Syy
, (2.30)

which provides an alternative interpretation for R2 and establishes that 0 ≤ R2 ≤ 1, so long as
the underlying regression equation contains an intercept.5 The limiting value of R2 = 1 indi-
cates perfect fit and arises if and only if û = 0 (or ût = 0, for t = 1, 2, . . . , T). When T, the
sample size, is finite this can only happen if the number of estimated regression coefficients, k, is
equal to T. The R2 statistic is problematic as a measure of quality of the fit of a regression mod-
els because it always increases when a new regressor is added to the model. Therefore a high
value of R2 is not by itself indicative of a good fit. An alternative measure of fit which attempts to
take account of the number of estimated coefficients is due to Theil. It is called adjusted R2, and
written as R̄2:

R̄2 = 1 − T − 1
T − k

∑
t û2

t
∑

t
(

yt − ȳ
)2 , (2.31)

or equivalently (using (2.14)):

R̄2 = 1 − σ̂
2

SYY/ (T − 1)
.

This ‘adjusted’ measure provides a trade-off between fit, as measured by R2, and parsimony as
measured by T − k. To make this trade-off more explicit R̄2 is also often defined as

1 − R̄2 = T − 1
T − k

(
1 − R2) . (2.32)

4 The proof is similar to that presented in Chapter 1 for the bivariate regression model and will not be repeated here.
5 When the regression equation does not contain an intercept term, R2 can become negative.
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All the above three definitions of R̄2 are algebraically equivalent. Note that, unlike R2, there is
no guarantee for the R̄2 to be non-negative, and hence R̄ is not always defined.

In applied econometrics, R̄2 is often used as a criterion of model selection. However, its use
can be justified when the regression models under consideration are non-nested, in the sense
that none of the models under consideration can be obtained from the others by means of some
suitable parametric restrictions. In the case where the models are nested, a more suitable pro-
cedure would be to apply classical hypotheses testing procedures and test the models against
one another by means of F- or t-tests. (See Chapter 3 on hypotheses testing in linear regression
models.)

Remark 1 When yt is trended (upward or downward) it is possible to obtain an R2 very close to unity,
irrespective of whether the trend is deterministic or stochastic. This is because the denominator of
R2, namely Syy = ∑

t
(

yt − ȳ
)2, implicitly assumes that yt is stationary with a constant mean

and variance (see Chapter 12 for definition of stationarity). In the case of trended variables a more
appropriate measure of fit would be to define R2 with respect to the first differences of yt , �yt =
yt − yt−1, namely

R2
�y = 1 − û′û

∑
t
(
�yt − �y

)2 ,

where �y = ∑
t �yt/T. This measure is applicable irrespective of whether yt is trend-stationary

(namely when its deviations from a deterministic trend line are stationary), or first difference sta-
tionary. A variable is said to be first difference stationary if it must be first differenced once before it
becomes stationary (see Chapter 15 for further details). The following simple relation exists between
R2and R2

�y :

1 − R2
�y =

( ∑
t
(

yt − ȳ
)2

∑
t
(
�yt − �y

)2

)
(

1 − R2) .

Since in the case of trended yt , for modest values of T, the sum
∑

t
(

yt − ȳ
)2 will most certainly be

substantially larger than
∑

t
(
�yt − �y

)2, it then follows that in practice R2
�y will be less than

R2, often by substantial amounts. Also as T tends to infinity R2 will tend to unity, but R2
�y remain

bounded away from unity. An alternative approach to arriving at a plausible measure of fit in the
case of trended variables would be to ensure that the dependent variable of the regression is station-
ary by running regressions of first differences, �yt on the regressors, xt , of interest. But in that case
it is important that lagged values of yt , are also included amongst the regressors, namely a dynamic
specification should be considered. This naturally leads to the analysis of error correction specifica-
tions to be discussed in Chapters 6, 23, and 24.

2.11 Partitioned regression

Consider the classical linear regression model

y = Xβ + u, (2.33)
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and suppose that X is partitioned into two sub-matrices X1 and X2 of order T × k1 and T × k2

such that k = k1 + k2.6 Partitioning β conformably with X = (
X1

...X2
)

we have

y = X1β1 + X2β2 + u. (2.34)

Such partitioned regressions arise, for example, when X1 is composed of seasonal dummy vari-
ables or time trends, and X2 contains the regressors of interest, or the ‘focus’ regressors. The OLS
estimators of β1 and β2 are given by the normal equations

X′
1y = (

X′
1X1

)
β̂1 + (

X′
1X2

)
β̂2, (2.35)

X′
2y = (

X′
2X1

)
β̂1 + (

X′
2X2

)
β̂2. (2.36)

Solving for β̂1 and β̂2 we have

β̂1 = (
X′

1M2X1
)−1 X′

1M2y, (2.37)

β̂2 = (
X′

2M1X2
)−1 X′

2M1y, (2.38)

where

Mj = IT − Xj

(
X′

j Xj

)−1
X′

j , for j = 1, 2.

The estimators of the ‘focus’ coefficients, β̂2, can also be written as (recall that Mj are symmetric
and idempotent: M′

j = Mj = M2
j ):

β̂2 = [
(M1X2)

′ (M1X2)
]−1

(M1X2)
′ y,

or

β̂2 = (
X̃′

2X̃2
)−1 X̃′

2y,

where X̃2 = M1X2 and ỹ = M1y are the residual matrices and vectors of the regressions of X2
on X1 and of y on X2, respectively. The residuals from the regression of ỹ = y − ŷ on X̃2 =
X2 − X̂2 are also given by ũ = ỹ− X̃2β̂2. It is now easily seen that ũ is in fact the same as the OLS
residual vector from the unpartitioned regression of y on X.7 Therefore, a regression of y on X̃2
yields the same estimate for β2 as the standard regression of y on X1 and X2 simultaneously and

6 See Section A.9 in Appendix A for a description of partitoned matrices and their properties.
7 Notice that

ũ =
[

I − X1
(

X′
1X1

)−1 X′
1

]
y −

[
I − X1

(
X′

1X1
)−1 X′

1

]
X2β̂2

= y − X2β̂2 − X1
(

X′
1X1

)−1
[

X′
1y − X′

1X2β̂2

]
.

(continued)
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without orthogonalization of the effect of X1 on X2. This property is known as the Frisch-Waugh-
Lovell theorem, first introduced by Frisch and Waugh (1933), and then by Lovell (1963). For
further details see also Davidson and MacKinnon (1993).

The partitioned and the unpartitioned regressions also yield the same results for the variance
matrix of β̂2. It is, therefore, possible to estimate the coefficients of the ‘focus’ regressors in two
ways. The partitioned method first ‘filters’ the observations by allowing for the effect of ‘non-
focus’ variables by running regressions of y on X1, and X2 on X1 and then computes estimates of
β2 by regression of the filtered variables. In the case where X1 contains seasonal dummies, the
residuals from regression of y on X1 represent seasonally adjusted y, and similarly the residuals
from regressions of the columns of X2 on X1 represent seasonally adjusted X2. Hence, regression
of seasonally adjusted variables yields the same coefficient estimates as running a regression of
seasonally unadjusted variables so long as the same seasonal dummies used to adjust y and X2 are
also included in the unseasonally adjusted regression. The same results also hold for the regres-
sions of detrended and non-detrended variables.

Special care should be exercised when using the above results from partitioned regressions.
Firstly, the results do not apply when the seasonal adjustments or detrending are carried out
over a time period that differs from the period over which the regression of focus variables are
run. Neither do they apply if the seasonal adjustments are carried out by government agencies
who often use their own in-house methods. Secondly, the computer results based on regression
of seasonally adjusted variables do not generally take account of the loss in degrees of freedom
associated with the estimation of seasonal or trend effects. In view of these pitfalls, it is often
advisable to base estimation and hypothesis testing on the unpartitioned regression of y on X.
The use of partitioned regressions is helpful primarily for pedagogic purposes.

2.12 How to interpret multiple regression coefficients

The issue of how to interpret the regressions coefficients in a multiple regression model has been
recently discussed in Pesaran and Smith (2014). Suppose we are interested in measuring the
effects of a unit change in the regressor xit on yt . The standard procedure is to use the estimated
coefficient of xit , namely β i, on the assumption that the hypothetical change in xit , does not affect
xjt , j �= i, namely it assumes that the hypothetical change in xit is accompanied with holding the
other regressors constant, the so called ceteris paribus assumption. But in almost all economic
applications we are not able to control the inputs and the counterfactual exercise by which all
other regressors can be held constant might not be relevant. Pesaran and Smith (2014) argue
that in time series analysis, rather than focussing on the signs of individual coefficients in mul-
tiple regressions holding the other variables constant, we should measure a total impact effect
which allows for direct and indirect induced changes that arise due to the historical correlations
amongst the regressors. The limitation of the usual ceteris paribus approach lies in the fact that it
ignores the stochastic interdependence of the regressors which we need to allow for in time series
economic applications. Similar issues arise in the derivation of impulse response functions for

But using (2.35), X′
1y − X′

1X2β̂2 = (
X′

1X1
)
β̂1, and hence

ũ = y − X2β̂2 − X1
(

X′
1X1

)−1 (X′
1X1

)
β̂1

= y − X1β̂1 − X2β̂2 = û.
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the analysis of dynamic models and have been discussed by Koop, Pesaran, and Potter (1996)
and Pesaran and Shin (1998) and will be addressed in Chapter 24.

To illustrate Pesaran and Smith (2014)’s argument consider the following simple classical lin-
ear regression model with two regressors:

yt = β0 + β1x1t + β2x2t + ut .

Suppose further that x1t and x2t are random draws from a bivariate normal distribution with
the covariance matrix

Var
(

�x1t
�x2t

)
=
(

σ 11 σ 21
σ 21 σ 22

)
.

It is now easily seen that

E(�x2t |�x1t ) = ρ21�x1t ,

where ρ21 = σ 21/σ 11. The total effect of a unit change in xit on yt is therefore given by

E(�yt |�x1t ) = (
β1 + ρ21β1

)
�x1t ,

which reduces to the β1 only if σ 21 = 0.
As a second example, suppose that we have a quadratic function of a single regressor, so that

the regression model is given by

yt = β0 + β1xt + β2x2
t + ut . (2.39)

Here it clearly does not make any sense to ask what is the effect on yt of a change in xt , holding
x2

t fixed. In this case we have

E(�yt |�xt ) = (
β1 + 2β2xt

)
�xt , (2.40)

for sufficiently small increments, �xt .
Pesaran and Smith (2014) show that the total effect of a unit change in xit on yt can be esti-

mated consistently by a simple regression of yt on xit , which is to be contrasted with the ceteris
paribus effect of unit change in xit on yt which is given by β i and requires estimation of the cor-
rectly specified multiple regression model.

2.13 Implications of misspecification for the OLS estimators

The unbiasedness property of the OLS estimators in the classical linear regression model cru-
cially depends on the validity of the classical assumptions and the correct specification of the
regression equation. Here we consider the effects of misspecification, that results from adding or
omitting a regressor in error, on the OLS estimators. In Chapter 3 we consider the implications
of such misspecifications for inference on the regression coefficients.
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2.13.1 The omitted variable problem

Suppose that yt ’s are generated according to the classical linear regression equation

yt = α + β1xt + β2zt + ut , (2.41)

but the investigator estimates the simple regression equation

yt = α + βxt + εt , (2.42)

which omits the regressor zt . The new error, εt , now contains the effect of the omitted variable
and the orthogonality assumption that requires xt and εt to be uncorrelated might no longer
hold. To see this consider the OLS estimator of β in (2.42), which is given by

β̂ =
∑T

t=1 (xt − x̄)
(

yt − ȳ
)

∑T
t=1 (xt − x̄)2 .

Under the correct model (33.34)

yt − ȳ = β1 (xt − x̄) + β2 (zt − z̄) + ut − ū.

Hence

β̂ = β1 + β2

∑
t (xt − x̄) (zt − z̄)
∑

t (xt − x̄)2 +
∑

t (xt − x̄) (ut − ū)
∑

t (xt − x̄)2 ,

and taking expectations conditional on the regressors

E
(
β̂
)

= β1 + β2bx•z, (2.43)

where bx•z stands for the OLS estimator of the regression coefficient of xt on zt . In general, there-
fore, β̂ is not an unbiased estimator of β1 [the ‘true’ regression coefficient of xt in (2.41)]. The
extent of the bias depends on the importance of the zt variable as measured by β2 and the degree
of the dependence of xt on zt . Only in the case where xt and zt are uncorrelated β̂ will yield an
unbiased estimator of β1. See Section 3.13 on the effects of omitting relevant regressors on test-
ing hypothesis involving the regression coefficients.

The omitted regressor bias can be readily generalized to the case where two or more relevant
regressors are omitted. The appropriate set up is the partitioned regression equation given in
(2.34). Suppose that in that equation the regressors X2 are incorrectly omitted and β1 is esti-
mated by

β̂ = (X′
1X1)

−1X′
1y.
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Then, under (2.34), it is easily seen that

E(β̂ − β1 |X ) = (X′
1X1)

−1X′
1X2β2 = P12β2,

Also see Exercise 3 at the end of this chapter.

2.13.2 The inclusion of irrelevant regressors

Inclusion of irrelevant regressors in the regression equation is less problematic. For example,
suppose that the correct model is

yt = α + βxt + ut ,

but we estimate the expanded regression equation by mistake:

yt = α + β1xt + β2zt + εt .

The OLS estimator of β1 in this regression will still be unbiased, but will no longer be an efficient
estimator. There will also be the possibility of a multicollinearity problem that can arise if the
erroneously included regressor, zt , is highly correlated with xt (see Section 15.3.1). In general
suppose that the correct regression model is

y = Xβ + u, (2.44)

but β is estimated by running the expanded regression of y on X and Z. The OLS estimator of
the coefficients of X in this regression, say β1, is given by (see also (2.37))

β̂1 = (
X′MzX

)−1 X′Mzy,

where Mz = IT − Z(Z′Z)−1Z. Under (2.44) we have

E
(
β̂1 − β |X, Z

)
= (

X′MzX
)−1 X′MzE (u |X, Z ) .

Therefore, so long as Z as well as X are strictly exogenous and the orthogonality assumption
E (u |X, Z ) = 0 is satisfied we obtain

E
(
β̂1 − β |X, Z

)
= 0,

or unconditionally

E
(
β̂1

)
= β .

Notice, however, that the additional variables in Z can not be weakly exogenous. For example,
adding lagged values of yt to the regressors in error can lead to biased estimators.
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2.14 Linear regressions that are nonlinear in variables

A linear regression model does not necessarily require the relationship between y (the regres-
sand) and x (the regressor) to be linear. A simple example of a linear regression model with a
nonlinear functional relationship between y and x is given by the quadratic regression equation:

yi = α + βxi + γ x2
i + ui.

To transform this nonlinear relation to a linear regression model, set zi = x2
i and write the

quadratic equation as

yi = α + βxi + γ zi + ui,

which is a linear regression in the two regressors xi and zi. Other examples of nonlinear relations
that are transformable to linear regressions are general polynomial regressions, logistic models,
log-linear, semi-log-linear and inverse models. Here we examine some of these models in more
detail.

Example 2 Consider the following Cobb–Douglas production function

Q i = ALα
i Kβ

i exp (ui) ,

where Q i is output of firm i, Li and Ki are the quantities of labour and capital used in the production
process, and ui are independently distributed productivity shocks. Taking logarithms of both sides
now yields the linear logarithmic specification

log Q i = log A + α log Li + β log Ki + ui,

and setting yi = log Q i, x1i = log Li, x2i = log Ki, a = log A, yields

yi = a + αx1i + βx2i + ui,

which is a linear regression equation in the two regressors x1i and x2i. The estimate of A can now be
obtained by Â = exp

(
â
)

, where â is the OLS estimate of the intercept term in the above regression.

Example 3 (Logistic function with a known saturation level) The logistic model has the general
form

Yi = A

1 + γ xβ
i exp (ui)

, β , γ > 0, xi > 0,

where A is the saturation level of Y , which is assumed to be known. We also assume that A > Yi,
for all i. This is clearly a nonlinear model in terms of Y and x. To transform this model into a linear
regression model in terms of the unknown parameters γ and β , we first note that
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γ xβ
i exp (ui) = A

Yi
− 1,

which upon taking logarithms of both sides yields

yi = log
(

A − Yi

Yi

)
= α + β log xi + ui,

in which α = log (γ ). In the case where A is known the parameters α and β (and hence γ and
β) can be estimated by the OLS regression of yi = log

(
A−Yi

Yi

)
on logxi. The logistic function,

has important applications in econometrics (e.g. ownership of demand for durable goods, TV’s, cars
etc.) and in population studies.

Other examples of nonlinear functions that can be transformed into linear regressions include
semi-logarithmic model

yi = α + β log xi + ui,

and the inverse model

yi = α + β

xi
+ ui.

These models have proved very useful in cross-section studies of household consumption
behaviour.

2.15 Further reading

Further reading on multiple regression and on the properties of OLS estimator can be found in
Wooldridge (2000) and in Greene (2002) (see Chapters 2–4). An interesting geometric inter-
pretation of linear regression, shedding light on the numerical properties of OLS, is presented
in Davidson and MacKinnon (1993). The latter also provides an in-depth discussion on the
Frisch–Waugh–Lovell theorem, and partitioned regression.

2.16 Exercises

1. Suppose that in the classical regression model yi = α+βxi+ui the true value of the constant,
α, is zero. Compare the variance of the OLS estimator for β computed without a constant term
with that of the OLS estimator for β computed with the constant term.

2. Consider the following linear regression model

yt = α + βxt + γ wt + ut . (2.45)
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Suppose that the classical assumptions are applicable to (2.45), but β is estimated by running
an OLS regression of yt on a vector of ones and xt . Denote such an estimator by β̂ , and show
that β̂ is a biased estimator of β in (2.45). Derive the formula for the bias of β̂ in terms of the
correlation coefficient of xt and wt , and their variances, namely ρxw, σ 2

x , σ 2
w.

3. Consider the following partitioned classical linear regression model:

y = X1β1 + X2β2 + u,

where y is a T ×1 vector of observations on the dependent variable, and X1 and X2 are T ×k1
and T × k2 observation matrices on the regressors.

(a) Show that if we omit the variables included in X2, and estimate β1 by running a regression
of y on X1 only, then β̂1 is generally biased with the bias:

E(β̂1|X) − β1 = P12β2, where P12 = (X′
1X1)

−1X′
1X2,

where X = (X1, X2).
(b) Interpret the elements of matrix P12. Under what conditions β̂1 will be unbiased?
(c) A researcher is estimating the demand equation for furniture using cross-section data. As

regressors she uses an intercept term, the relative price of furniture, and omits the relevant
income variable. Find an expression for the bias of the OLS estimate of the price variable
in such a regression. What other regressors should she have considered, and how could
their omission have affected her estimate of the price effect?

4. Consider the following linear regression model

yt = α + β1x1t + β2x2t + εt , (2.46)

and suppose that the observations (yt , x1t , x2t), for t = 1, 2, . . . , T are available.

(a) Specify the assumptions under which (2.46) can be viewed as a classical linear regres-
sion model. In your response clearly distinguish between the cases where x1t and x2t are
fixed in repeated samples, strictly exogenous, and weakly exogenous (see Chapter 9 for
definition of strictly exogenous, and weakly exogenous regressors).

(b) Suppose that the classical assumptions are applicable to (2.46), but β1 is estimated by
running an OLS regression of yt on a vector of ones and x1t , and β2 is estimated by run-
ning an OLS regression of yt on a vector of ones and x2t . Denote these estimators by β̂yx1

and β̂yx2 . Show that in general β̂yx1 and β̂yx1 are biased estimators of β1 and β2 in (2.46).

(c) Denote the OLS estimators of β1 and β2 in the regression of yt on x1t and x2t as in (2.46)
by β̂1 and β̂2, respectively. Show that
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β̂1 = β̂yx1 − r(s2/s1)β̂yx2

1 − r2 ,

β̂2 = β̂yx2 − r(s1/s2)β̂yx1

1 − r2 ,

where s1 and s2 are the standard deviations of x1t and x2t , respectively, and r denotes the
correlation coefficients of x1t and x2t . Discuss the relevance of these results for empirical
time series research.

5. Consider the regression model

y = Xβ + u, u ∼ N(0, σ 2IT),

where X is a T × k stochastic matrix of rank k, distributed independently of u = (u1,
u2, . . . , uT)′, and ut � IID(0, σ 2).

(a) Let λmax(X′X) and λmin(X′X) denote the largest and the smallest characteristic roots (or
eigenvalues) of X′X. Prove that the following four statements are equivalent:
• λmin(X′X) tends to infinity
• λmax

(
(X′X)−1) tends to zero

• Trace
(
(X′X)−1) tends to zero

• Every diagonal element of (X′X)−1 tends to zero
(b) Using the results under (a), or otherwise show that the OLS estimator of β is consistent

if λmin(X′X) tends to infinity.

(c) Prove σ̂
2 = û′û/T is a consistent estimator of σ 2, where û is the vector of OLS

residuals.
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3 Hypothesis Testing in
Regression Models

3.1 Introduction

Statistical hypothesis testing is at the core of the classical theory of statistical inference.
Although it is closely related to the problem of estimation, it can be considered almost inde-

pendently of it. In this chapter, we introduce some key concepts of statistical inference, and show
their use to investigate the statistical significance of the (linear) relationships modelled through
regression analysis, or to investigate the validity of the classical assumptions in simple and mul-
tiple linear regression.

3.2 Statistical hypothesis and statistical testing

A statistical hypothesis is an assertion about the distribution of one or more random variables. If
the hypothesis completely specifies the probability distribution, it is called a simple hypothesis,
otherwise it is called a composite hypothesis. For example, suppose x1, x2, . . . , xT are drawn from
N (θ , 1). Then H : θ = 0 is a simple hypothesis, while H : θ > 0 is a composite hypothesis. If
one hypothesis can be derived as a limiting sequence of another, we say the two hypotheses are
nested. If neither hypothesis can be obtained from the other as a limiting process, then we call
the hypotheses under consideration non-nested. For example, suppose x1, x2, . . . , xT are drawn
from log-normal distribution under H0, while under H1 they are drawn from an exponential
distribution. Then H0 and H1 are non-nested hypotheses. We refer to Chapter 11 for a review of
tests for non-nested hypotheses.

3.2.1 Hypothesis testing

A test of a statistical hypothesis H is a rule for rejecting H. If the sample space is denoted by χ =
(x1, x2, . . . , xT), a test procedure decomposes χ into two regions. If (x1, x2, . . . , xT) ∈ CT ,
where CT is called the critical or rejection region of the test, then H is rejected, otherwise H is
not rejected. In practice we often map (x1, x2, . . . , xT) into a test statistic T (x1, x2, . . . , xT) and
consider whether T (x1, x2, . . . , xT) ≥ CT or not.
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The hypothesis being tested (i.e. the maintained hypothesis) is usually denoted by H0 and
is called the null hypothesis. The hypothesis against which H0 is tested is called the alternative
hypothesis and is usually denoted by H1.

3.2.2 Types of error and the size of the test

The decision rule yields two types of error:

• The type I error is the error involved in rejecting H0 when it is true
• The type II error is the error involved in not rejecting H0 when it is false

The probability of a type I error is called the size of the test and, often denoted by αT , αT ×100
per cent, is also called the significance level of the test. The probability of the type II error is called
the size of the type II error and is often denoted by βT . Ideally, we would like both errors to be as
small as possible. However, there is a trade-off between the two, and by reducing the probability
of a type I error, we must increase the probability of a type II error.

The power of a test is defined as 1 minus the size of the type II error, namely powerT = 1−βT .
For a given significance level, αT , we would like the power of the test, powerT , to be as large as
possible.

Example 4 (Testing a hypothesis about a mean) Assume we have a sample of T observations
x1, x2, . . . , xT, obtained as random draws from a normal N(μ, σ 2) distribution, with σ 2 known.
Suppose that we wish to test H0 : μ = μ0, where μ0 is a given (assumed) value of μ. To this end,

consider the sample mean x̄ = T−1
T∑

i=1

xi. Under the null hypothesis the random variable

z =
√

Tx̄ − μ0
σ

,

is distributed as a N (0, 1) and the critical values of the normal distribution will be applicable.
Setting the significance level at 5 per cent, the critical value for a two-sided test (with the alternative
being μ �= μ0) is 1.96. Hence, in this case the power of the test is the probability that the absolute
value of the test statistic will exceed 1.96 given that the true value of μ is not μ0. The power clearly
depends on the alternative value selected for μ. As expected, the test becomes more powerful the
further the true mean is from the hypothesized value. The interval

P
(

x̄ − 1.96σ/
√

T ≤ μ ≤ x̄ + 1.96σ/
√

T
)

= 0.95,

is called the 95 per cent confidence interval of μ.

Let the critical region of a test be defined by T (x1, x2, . . . , xT) ≥ CT , we have

Prob. of type I error = Pr {T (x1, x2, . . . , xT) ≥ CT |H0 } = αT ,
Prob. of type II error = Pr {T (x1, x2, . . . , xT) < CT |H1 } = βT .
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Let �T denote the power of the test, then

�T = 1 − βT = 1 − Pr {T (x1, x2, . . . , xT) < CT |H1 } ,

or equivalently,

�T = Pr {T (x1, x2, . . . , xT) ≥ CT |H1 } .

3.3 Hypothesis testing in simple regression models

In deriving the ordinary least squares (OLS) estimator and its properties in Chapter 2, we have
not used Assumption A5 on the normality of ut . This assumption is useful for hypotheses testing.
Consider first the simple regression model

yt = α + βxt + ut ,

and assume that Assumptions A1–A4 hold (see Chapter 2), together with Assumption A5, that
is, ut ∼ N

(
0, σ 2). Suppose that we are interested in testing the null hypothesis

H0 : β = β0,

against the two-sided alternative hypothesis

H1 : β �= β0,

where β0 is a given value of β . To construct a test for β , first recall that, from (1.25) and (1.26),

β̂ =
T∑

t=1

wtyt ,

where

wt = xt − x̄
∑T

s=1 (xs − x̄)2 .

Replacing yt = α + βxt + ut in the above expression now yields

β̂ =
T∑

t=1

wt (α + βxt + ut),

β̂ = α

( T∑

t=1

wt

)

+ β

( T∑

t=1

wtxt

)

+
T∑

t=1

wtut ,
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and since
∑T

t=1 wt = 0,
∑T

t=1 wtxt = 1 (see the derivations in Section 1.9), we have

β̂ = β +
T∑

t=1

wtut . (3.1)

Noting that the weighted average of normal variates is also normal, it follows that

β̂ |x ∼ N
[
β , Var

(
β̂
)]

, (3.2)

where

Var
(
β̂
)

= σ 2
T∑

t=1

w2
t = σ 2

∑T
t=1 (xt − x̄)2 .

In the case where σ 2 is known, we can base the test of H0 : β = 0, on the following standardized
statistic

Z
β̂

= β̂ − β0√
Var
(
β̂
) = β̂ − β0

S.E.
(
β̂
) , (3.3)

where S.E. (·) stands for the standard errors. Under the null hypothesis, Z
β̂

∼ N (0, 1) and the
critical values of the normal distribution will be applicable.

The appropriate choice of the critical values depends on the distribution of the test statistic,
the size of the test (or the level of significance), and whether the alternative hypothesis is two
sided, (namely H1 : β �= β0) or one-side, namely whether H1 : β ≥ β0 or H1 : β ≤ β0.

In the case where σ 2 is not known, the use of statistic Z
β̂

defined by (3.3) is not feasible and
σ 2 needs to be replaced by its estimate. Using the unbiased estimator of σ 2, given by (1.34),
namely

σ̂
2 =

∑
t

(
yt − α̂ − β̂xt

)2

T − 2
,

we have the t-statistic

t
β̂

= β̂ − β0√
V̂ar
(
β̂
) = β̂ − β0

σ̂
/{∑

t (xt − x̄)2} 1
2

,

which under the null hypothesis, H0 : β = β0 has a t-distribution with T − 2 degrees
of freedom. The t

β̂
statistic is pivotal in the sense that it does not depend on any unknown

parameters.
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Example 5 Suppose we are interested to test the hypothesis that the marginal propensity to consume
out of disposable income is equal to unity. Using aggregate UK consumption data over the period
1948–89 we obtained the following OLS estimates:

ĉt = 7600.3
(2108.9)

+ 0.87233
(0.01169)

yt .

The bracketed figures are standard errors. The estimate of the marginal propensity to consume is
equal to β̂ = 0.87233. To test H0 : β = 1 against H1 : β �= 1 we compute the t-statistic

t
β̂

= β̂ − β0

S.E.(β̂)
= 0.87233 − 1.0

0.01169
= −10.92.

The number of degrees of freedom of this test is equal to 42 − 2 = 40, and the 95 per cent critical
value of the t-distribution with 40 degrees of freedom for a two-sided test is equal to ±2.021. Hence
since the value of t

β̂
for the test of β = 1 against β �= 1 is well below the critical value of the test

(i.e., −2.021) we reject the null hypothesis that β = 1.

3.4 Relationship between testing β = 0, and testing the
significance of dependence between Y and X

Recall that the correlation coefficient between Y and X is estimated by (see Section 1.9)

ρ̂
2
XY = S2

XY
SXXSYY

.

But since

β̂ = SXY

SXX
,

V̂ar(β̂) = σ̂
2

SXX
,

we have

ρ̂
2
XY = β̂

2
S2

XX
SXXSYY

= β̂
2

SXX

SYY
. (3.4)

The t-statistic for testing H0 : β = 0 against H1 : β �= 0 is given by

t̂β = β̂
√

V̂ar(β̂)

,
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or upon using the above results:

t̂2
β = β̂

2
SXX

σ̂
2 . (3.5)

Finally, recall from the decomposition of SYY = ∑(
yt − ȳ

)2 in the analysis of variance table
that (see Section 1.5)

ρ̂
2
XY = 1 −

∑
t
(

yt − ŷt
)2

∑
t
(

yt − ȳ
)2 = 1 − (T − 2) σ̂

2

SYY
,

or

σ̂
2 =

SYY

(
1 − ρ̂

2
XY

)

T − 2
. (3.6)

Consequently, using (3.4) and (3.5) in (3.6) we have

t2
β̂

= (T − 2) ρ̂
2
XY(

1 − ρ̂
2
XY

) . (3.7)

Alternatively, ρ̂2
XY can be written as an increasing function of t2

β̂
for T > 2, namely

ρ̂
2
XY =

t2
β̂

T − 2 + t2
β̂

< 1. (3.8)

These results show that in the context of a simple regression model the statistical test of the
‘fit’ of the model (i.e., H0 : ρXY = 0 against H1 : ρXY �= 0) is the same as the test of zero
restriction on the slope coefficient of the regression model (i.e., test of H0 : β = 0 against
H1 : β �= 0). Moreover, the test results under the null hypothesis of a zero relationship between
Y and X is equivalent to testing the significance of the reverse regression of X on Y , namely testing
H0 : δ = 0, against H1 : δ �= 0, in the reverse regression

xt = ax + δyt + vt , (3.9)

assuming that the classical assumptions now apply to this model. Of course, it is clear that the
classical assumptions cannot apply to the regression of Y on X and to the reverse regression of X
on Y at the same time. But testing the null hypothesis that β = 0 and δ = 0 are equivalent since
the null states that there is no relationship between the two variables. However, if the null of no
relationship between Y and X is rejected, then to measure the size of the effect of X on Y (βX·Y )
as compared with the size of the effect of Y on X (βY .·X), will crucially depend on whether the
classical assumptions are likely to hold for the regression of Y on X or for the reverse regression
of X on Y . As was already established in Chapter 1, β̂Y ·Xβ̂X·Y = ρ̂

2
YX = ρ̂

2
XY (see (1.9)), from



�

�

�

�

�

�

�

�

OUP CORRECTED PROOF – FINAL, 8/9/2015, SPi

Hypothesis Testing in Regression Models 57

which it follows in general that the estimates of the effects of X on Y and the effects of Y on X do
not match, in the sense that β̂Y ·X is not equal to 1/β̂X·Y , unless ρ̂

2
XY = 1, which does not apply

in practice.
Hence, in order to find the size of the effects the direction of the analysis (whether Y is

regressed on X or X regressed on Y) matters crucially. But, if the purpose of the analysis is sim-
ply to test for the significance of the statistical relationship between Y and X, the direction of the
regression does not matter and it is sufficient to test the null hypothesis of zero correlation (or
more generally zero dependence) between Y and X. This can be done using a number of alterna-
tive measures of dependence between Y and X. In addition to ρYX , one can also use Spearman
rank correlation and Kendall’s τ coefficients defined in Section 1.4. The rank correlation mea-
sures are less sensitive to outliers and are more appropriate when the underlying bivariate distri-
bution of (Y and X) show significant departures from Gaussianity and the sample size, T, under
consideration is small. But in cases where T is sufficient large (60 or more), and the underlying
bivariate distribution has fourth-order moments, then the use of simple correlation coefficient,
ρYX , seems appropriate and tests based on it are likely to be more powerful than tests based on
rank correlation coefficients.

Under the null hypothesis that Y and X are independently distributed
√

Tρ̂YX is asymptoti-
cally distributed as N(0, 1), and a test of ρYX = 0 can be based on

zρ = √
Tρ̂YX →d N(0, 1).

Fisher has derived an exact sample distribution for ρ̂YX when the observations are from an
underlying bivariate normal distribution. But in general no exact sampling distribution is known
for ρ̂YX in the case of non-Gaussian processes. In small samples more accurate inferences can

be achieved by basing the test of ρYX = 0 on t
β̂

= ρ̂YX

√
(T − 2) /(1 − ρ̂

2
YX) which is dis-

tributed approximately as the Student’s t with T − 2 degrees of freedom. This result follows
from the equivalence of testing ρYX = 0 and testing β = 0 in the simple regression model
yt = α + βxt + ut .

To use the Spearman rank correlation to test the null hypothesis that Y and X are independent,
we recall from (1.10) that the Spearmen rank correlation, rs, between Y and X is defined by

rs = 1 − 6
∑T

t=1 d2
t

T(T2 − 1)
, (3.10)

where dt is the difference between the ranks of the two variables. Under the null hypothesis of
zero rank correlation between y and x (ρs = 0, where ρs is the rank correlation coefficient in the
population from which the sample is drawn) we have

Var(rs) = 1
T − 1

. (3.11)

Furthermore, for sufficiently large T, rs is normally distributed. A more accurate approximate
test of ρs = 0 is given by

ts,T−2 = rs
√

T − 2
√

1 − r2
s

, (3.12)
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which is distributed (under ρs = 0) as Student t with T − 2 degrees of freedom
Alternatively, Kendall’s τ correlation coefficient, defined by (1.11), can be used to test the

null hypothesis that Y and X are independent, or in the context of Kendall’s measure under the
null hypothesis of zero concordance between Y and X in the population. Under the null of zero
concordance E(τ T) = 0 and Var(τT) = 2(2T+5)/ [9T(T − 1)], and the test can be based on

zτ =
√

9T(T − 1)τ T√
2(2T + 5)

, (3.13)

which is approximately distributed as N(0, 1).

3.5 Hypothesis testing in multiple regression models

Consider now the multiple regression model

yt = β ′xt + ut , ut ∼ N
(

0, σ 2) , (3.14)

and suppose that we are interested in testing the null hypothesis on the jth coefficient

H0 : β j = β j0, (3.15)

against the two-sided alternative

H1 : β j �= β j0.

Using a similar line of reasoning as above, it is easy to see that conditional on X

β̂ j ∼ N
(
β j, σ

2 (X′X
)−1

jj

)
,

where
(

X′X
)−1

jj is the (j, j) element of the matrix
(

X′X
)−1 (see expression (2.13)). Hence, in the

case where σ 2 is known, the test can be based on the following standardized statistic

Z
β̂ j

= β̂ j − β j0

σ
[
(X′X)−1

jj

]1/2 ,

Under the null hypothesis (3.15), Z
β̂ j

∼ N (0, 1) and the critical values of the normal distribu-

tion will be applicable. When σ 2 is not known, the unbiased estimator of σ 2, given by (2.14),
namely

σ̂
2 =

∑
t û2

t
T − k

= û′û
T − k

,
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can be used, where k is the number of regression coefficients (inclusive of an intercept, if any).
Replacing σ 2 with σ̂

2, yields the t-statistic

t
β̂ j

= β̂ j − β j0

σ̂
[
(X′X)−1

jj

]1/2 ,

which, under the null hypothesis, H0 has a t-distribution with T − k degrees of freedom.

3.5.1 Confidence intervals

Knowledge of the distribution of the estimated regression coefficients β̂1, β̂2, . . . , β̂k can also be
used to construct exact confidence intervals for the regression coefficients β1, β2, . . . , βk. Con-
sider the multiple regression model (3.14), and suppose that we are interested in (1 − α) ×
100 per cent confidence interval for the regression coefficients. Since β̂ j individually have a
t-distribution with T−k degree of freedom, then the (1 − α)×100 per cent confidence interval
for β j is given by

β̂ j ± tα (T − k) Ŝ.E.
(
β̂ j

)
, (3.16)

where tα (T − k) is the (1 − α) × 100 per cent critical value of the t-distribution with T − k
degrees of freedom for a two-sided test, and Ŝ.E.

(
β̂ j

)
is the estimated standard error of β̂ j.

3.6 Testing linear restrictions on regression coefficients

Consider the linear regression model

yt = α + β1xt1 + β2xt2 + ut , (3.17)

and assume that it satisfies all the classical assumptions. Suppose now that we are interested in
testing the hypothesis

H0 : β1 + β2 = 1,

against

H1 : β1 + β2 �= 1.

Let

δ = β1 + β2 − 1, (3.18)

then the test of H0 against H1 simplifies to the test of

H0 : δ = 0,
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against

H1 : δ �= 0.

The OLS estimator of δ is given by

δ̂ = β̂1 + β̂2 − 1,

and the relevant statistic for testing δ = 0 is given by

t
δ̂

= δ̂ − 0
√

V̂ar
(
δ̂
) = b̂1 + b̂2 − 1

√
V̂ar
(
δ̂
) .

where

V̂ar
(
δ̂
)

= V̂ar
(
β̂1

)
+ V̂ar

(
β̂2

)
+ 2Ĉov

(
β̂1, β̂2

)
.

The relevant expressions of the variance-covariance matrix of the regression coefficients are
given in relations (2.20)–(2.22).

An alternative procedure for testing δ = 0 which does not require knowledge of Cov
(
β̂1, β̂2

)

would be to use (3.18) to solve for β1 or β2 in the regression equation (3.17). Solving for β2,
for example, we have

yt = β0 + β1xt1 + (δ − β1 + 1
)

xt2 + ut ,

or

yt − xt2 = β0 + β1 (xt1 − xt2) + δxt2 + ut . (3.19)

Therefore, the test of δ = 0 against δ �= 0 can be carried out by means of a simple t-test on the
regression coefficient of xt2 in the regression of (yt − xt2) on (xt1 − xt2) and xt2.

Example 6 This example describes two different methods of testing the hypothesis of constant returns
to scale in the context of the Cobb–Douglas (CD) production function

Yt = AKα
t Lβ

t eut , t = 1, 2, . . . , T, (3.20)

where Yt = Output, Kt = Capital Stock, Lt = Employment. The unknown parameters A, α and β

are fixed, and uts are serially uncorrelated disturbances with zero means and a constant variance.
We also assume that uts are distributed independently of Kt and Lt. The constant returns to scale
hypothesis postulates that proportionate changes in inputs (Kt and Lt) result in the same propor-
tionate change in output. For example, doubling Kt and Lt should, under the constant returns to
scale hypothesis, lead also to the doubling of Yt. This imposes the following parametric restriction
on (3.20):
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H0 : α + β = 1,

which we consider as the null hypothesis and derive an appropriate test of it against the two-sided
alternative:

H1 : α + β �= 1.

In order to implement the test of H0 against H1, we first take logarithms of both sides of (3.20),
which yield the log-linear specification

LYt = a + αLKt + βLLt + ut (3.21)

where

LYt = log(Yt), LKt = log(Kt), LLt = log(Lt)

and a = log (A). It is now possible to obtain estimates of α and β by running OLS regressions
of LYt on LKt and LLt ( for t = 1, 2, . . . , T), including an intercept in the regression. Denote the
OLS estimates of α and β by α̂ and β̂ , and define a new parameter, δ, as

δ = α + β − 1. (3.22)

The hypothesis α + β = 1 against α + β �= 1 can now be written equivalently as

H0 : δ = 0,
H1 : δ �= 0.

We now consider two alternative methods of testing δ = 0: a direct method and a regression
method. The first method directly focuses on the OLS estimates of δ, namely δ̂ = α̂ + β̂ − 1,
and examines whether this estimate is significantly different from zero. For this we need an estimate
of the variance of δ̂. We have

V(δ̂) = V(α̂) + V(β̂) + 2 Cov
(
α̂, β̂

)
,

where V(·) and Cov(·) stand for the variance and the covariance operators, respectively. The OLS
estimator of V(δ̂) is given by

V̂(δ̂) = V̂(α̂) + V̂(β̂) + 2Ĉov(α̂, β̂).

The relevant test-statistic for testing δ = 0 against δ �= 0 is now given by

t
δ̂

= δ̂
√

V̂(δ̂)

= α̂ + β̂ − 1
√

V̂(α̂) + V̂(β̂) + 2Ĉov(α̂, β̂)

, (3.23)

and, under δ = 0, has a t-distribution with T − 3 degrees of freedom. An alternative method for
testing δ = 0 is the regression method. This starts with (3.21) and replaces β (or α) in terms of δ
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and α (or β). Using (3.22) we have

β = δ − α + 1.

Substituting this in (3.21) for β now yields

LYt − LLt = a + α(LKt − LLt) + δLLt + ut ,

or

Zt = a + αWt + δLLt + ut , (3.24)

where Zt = log(Yt/Lt) = LYt − LLt and Wt = log(Kt/Lt) = LKt − LLt. A test of δ = 0
can now be carried out by first regressing Zt on Wt and LLt (including an intercept term), and then
carrying out the usual t-test on the coefficient of LLt in (3.24). The t-ratio of δ in (3.24) will be
identical to t

δ̂
defined by (3.23). We now apply the two methods discussed above to the historical

data on Y, K, and L used originally by Cobb and Douglas (1928), covering the period 1899–1922.
The following estimates of α̂, β̂ and of the variance covariance matrix of (α̂, β̂)′ can be obtained:

α̂ = 0.23305, β̂ = 0.80728,
⎡

⎣
V̂(α̂) Ĉov

(
α̂, β̂

)

Ĉov
(
α̂, β̂

)
V̂(β̂)

⎤

⎦ =
[

0.004036 −0.0083831
−0.0083831 0.021047

]
.

Using the above results in (3.23) yields

t
δ̂

= 0.23305 + 0.80728 − 1√
0.004036 + 0.021047 − 2(0.0083831)

= 0.442. (3.25)

Comparing t
δ̂

= 0.442 and the 5 per cent critical value of the t-distribution with T − 3 = 24 −
3 = 21 degrees of freedom (which is equal to 2.080), it is clear that since t

δ̂
= 0.442 < 2.080,

then the hypothesis δ = 0 or α + β = 1 cannot be rejected at the 5 per cent level. Implementing
the regression approach, we estimate (3.24) by OLS and obtain estimates for the coefficients of
Wt and LLt of 0.2330(0.06353) and 0.0403(0.0912), respectively. (The figures in brackets are
standard errors.) Note that the t-ratio of the coefficient of the LL variable in this regression is equal
to 0.0403/0.0912 = 0.442, which is identical to t

δ̂
as computed in (3.25). It is worth noting that

the estimates of α and β , which have played a historically important role in the literature, are very
‘fragile’, in the sense that they are highly sensitive to the sample period chosen in estimating them.
For example, estimating the model (given in (3.21)) over the period 1899–1920 (dropping the
observations for the last two years) yields α̂ = 0.0807(0.1099) and β̂ = 1.0935(0.2241).

3.7 Joint tests of linear restrictions

So far we have considered testing a single linear restriction on the regression coefficients. Suppose
now that we are interested in testing two or more linear restrictions, jointly. One simple example
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is the joint test of zero restrictions on the regression coefficients:

H0 : β1 = β2 = 0,
H1 : β1 �= 0 and/or β2 �= 0.

Note that this joint hypothesis is different from testing the following two hypotheses separately.

{
HI

0 : β1 = 0,
HI

1 : β2 �= 0. or
{

HII
0 : β2 = 0,

HII
1 : β1 �= 0.

The latter tests are known as separate induced tests and could lead to test outcomes that differ
from the outcome of a joint test.

The general procedure for testing joint hypotheses in regression contexts is to construct
the F-statistic that compares the sum of squares of residuals (SSR) of the regression under
the restrictions (i.e., under H0) with the SSR under the alternative hypothesis, H1, when the
parameter restrictions are not applied. This procedure is valid for a two-sided test. Carrying
out one sided tests in the case of joint hypotheses is more complicated and will not be
addressed here.

The relevant statistic for the joint test of r ≤ k different linear restrictions on the regression
coefficients is

F =
(

T − k − 1
r

)(
SSRR − SSRU

SSRU

)
, (3.26)

where

SSRR ≡ Restricted sum of squares of errors (residuals)
SSRU ≡ Unrestricted sum of squares of errors
k ≡ Number of regression coefficients, excluding the intercept term
T ≡ Number of observations
r ≡ Number of independent linear restrictions on the

regression coefficients.

Under the null hypothesis, the above statistic, F, has an F-distribution with r and T − k − 1
degrees of freedom.

Consider now the application of this general procedure to the problem of testing β1=β2= 0.
The restricted sum of squares of errors (SSRR) for the problem is obtained by imposing the
restrictions β1 = β2 = 0 on (3.17) and then by estimating the restricted model

yt = β0 + ut .

This yields β̂0 = ȳ and hence

SSRR =
∑

t

(
yt − ȳ

)2 = SYY .
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The unrestricted sum of squares of errors is given by

SSRU =
∑

t

(
yt − β̂0 − β̂1xt1 − β̂2xt2

)2

=
∑

t
û2

t .

Hence

F =
(

T − 3
2

)(
SYY −∑t û2

t∑
t û2

t

)
,

which under the null hypothesis H0 : β1 = β2 = 0, has an F-distribution with 2 and T − 3
degrees of freedom. The joint hypothesis is rejected if F is larger that the (1−α) per cent critical
value of the F-distribution with 2 and T − 3 degrees of freedom.

3.8 Testing general linear restrictions

All the above tests can be derived as a special case of tests of the following r general linear
restrictions

H0 : Rβ − d0= 0,
H1 : Rβ − d0 �= 0,

where R is an r×k matrix of known constants with full row rank given by r ≤ k, and d is an r×1
vector of constants. The different hypotheses considered above can be obtained by appropriate
choice of R and d0. For example, if the object of the exercise is to test the null hypothesis that
the first element of β is equal to zero, then we need to set R = (1, 0, . . . , 0), and d0=0. To test
the hypothesis that the sum of the first two elements adds up to 2 and the sum of the second two
elements of β adds up to 3 we set

R =
(

1 1 0 0 . . . 0
0 1 1 0 . . . 0

)
, d0 =

(
2
3

)
.

The F-statistic for testing H0 is given by

F =
(

Rβ̂ − d0

)′ [
R(X′X)−1R′]−1

(
Rβ̂ − d0

)

rσ̂ 2 , (3.27)

where β̂ is the unrestricted OLS estimator of β , and σ̂
2 = (y − Xβ̂)

′
(y − X ˆβ)/(T − k) is the

unbiased estimator of σ 2. Using the distributional results obtained in Chapter 2, in particular
the result given by (2.28), it follows that under H0 the F statistic given by (3.27) has a central
F-distribution with r and T−k degrees of freedom. This result of course requires that the classical
normal regression assumptions A1–A5 set out in Chapter 2 hold.
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3.8.1 Power of the F-test

To obtain the power of the F-test defined by (3.27), consider the alternative hypothesis, H1,
where Rβ = d1, and recall that R is an r × k matrix of constants with full column rank r. Note
that, under H1,

Rβ̂ − d0 = Rβ − d0 + R(X′X)−1X′u
= δ + R(X′X)−1X′u ∼ N(δ,σ 2R(X′X)−1R′),

where δ = d1 − d0. Hence

X1 =
(

Rβ̂ − d0

)′ [
R(X′X)−1R′]−1

(
Rβ̂ − d0

)

σ 2 ∼ χ2
r (λ), (3.28)

where χ2
r (λ) is a non-central chi-square variate with r degrees of freedom and the non-centrality

parameter1

λ = δ′ [R(X′X)−1R′]−1
δ

σ 2 = δ′ [RVar(β̂)R′]−1
δ. (3.29)

Furthermore, from (2.27) we know that X2 = (T − k) σ̂
2
/σ 2

∼ χ2
T−k. Using a similar line of

reasoning as in Chapter 2, it is easily seen that X1 (defined by (3.28)) and X2 are independently
distributed, and hence under H1 the F-statistic given by (3.27) is distributed as a non-central
F-distribution with r and T − k degrees of freedom, and the non-centrality parameter, λ, given
by (3.29). For given values of r and k, the power of the F test is monotonically increasing in λ.
It is clear that the power is higher the greater the distance between the null and the alternative
hypotheses as measured by δ, and the greater the precision with which the OLS estimators are
estimated, as measured by the inverse of Var(β̂).

3.9 Relationship between the F -test and the coefficient
of multiple correlation

The relationship between the correlation coefficient and the t-statistic discussed earlier
can be readily extended to the multivariate context. Consider the multivariate regression
model

yt = β0 +
k∑

j=1

β jxtj + ut , t = 1, 2, . . . , T,

1 For further information regarding the non-central chi-square distribution see Section B.10.2 in Appendix B.
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and suppose we are interested in testing the joint significant of the regressors xt1, xt2, . . . , xtk.
The relevant hypothesis is

H0 : β1 = β2, · · · = βk = 0,
H1 : β1 �= 0, β2 �= 0, · · · βk �= 0.

The F-test for this test is given by

F =
(

T − k − 1
k

)(
SYY −∑t û2

t∑
t û2

t

)
,

The multiple correlation coefficient is defined by (see (2.30))

R2 = 1 −
∑

t û2
t

SYY
.

Hence

F =
(

T − k − 1
k

)(
SYY∑

t û2
t

− 1
)

=
(

T − k − 1
k

)(
R2

1 − R2

)
,

which yields the generalization of the result (3.7) obtained in the case of the simple
regression.

3.10 Joint confidence region

To construct a joint confidence region of size (1 − α) × 100 for
(
β1, β2, . . . , βk

)
, we first

note that the combination of the confidence intervals (3.16) constructed for each β j sepa-
rately does not yield a joint confidence region with the correct size (namely 1 − α). This is
because of dependence of the estimated regression coefficients on each other. Only in the case
where Cov

(
β̂ i, β̂ j

)
= 0 for all i �= j, the joint confidence region of

(
β1, β2, . . . , βk

)
coin-

cides with the intersection of the confidence intervals obtained for each regression coefficient
separately. The appropriate joint confidence region for β1, β2, . . . , βk is constructed using the
F-statistic.

The (1 − α)×100 per cent joint confidence region for β1 and β2 in the three variable regres-
sion model (2.15) is an ellipsoid in the β1 and β2 plane. The shape and the position of this ellip-
soid is determined by the size of the confidence region, 1 −α, the OLS estimates β̂1 and β̂2 and
the degree of the statistical dependence between the estimators of β1 and β2. In matrix notations
the formula for this ellipsoid is given by

Fα (2, T − 3) =
(
β − β̂

)′ [
Ĉov

(
β̂
)]−1 (

β − β̂
)

, (3.30)
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where β = (β1, β2
)′,

Ĉov
(
β̂
)

=
⎛

⎝
V̂ar
(
β̂1

)
Ĉov

(
β̂1, β̂2

)

Ĉov
(
β̂1, β̂2

)
V̂ar
(
β̂2

)

⎞

⎠ ,

and Fα (2, T − 3) is the (1 − α) × 100 per cent critical value of the F-distribution with 2 and
T − 3 degrees of freedom.

3.11 The multicollinearity problem

Multicollinearity is commonly attributed to situations where there is a high degree of intercorre-
lations among the explanatory variables in a multivariate regression equation. Multicollinearity
is particularly prevalent in the case of time series data where there often exists the same com-
mon trend in two or more regressors in the regression equation. As a simple example consider
the model

yt = β0 + β1xt1 + β2xt2 + ut , (3.31)

and assume for simplicity that (xt1, xt2) have a bivariate distribution with the correlation coeffi-
cient, ρ12. That is

ρ12 = Cov (xt1, xt2)

[Var (xt1) Var (xt2)]
1
2

.

It is clear that as ρ approaches unity separate estimation of the slope coefficients β1 and β2
becomes more and more problematic. Multicollinearity (namely a value of ρ12 near unity in the
context of the present example) will be a problem if xt1 and xt2 are jointly statistically significant
but neither is statistically significant when taken individually. Put differently, multicollinearity
will be a problem when the hypothesis β1 = 0 and β2 = 0 can not be rejected when tested
separately, while the joint hypothesis that β1 = β2 = 0 is rejected. This clearly happens when
xt1 (or xt2) is an exact linear function of xt2 (or xt1). In this case xt2 = γ xt1 and (3.31) reduces
to the simple regression equation

yt = α + (β1 + β2γ
)

xt1 + ut ,

and it is only possible to estimate β1 +γ β2. Neither β1 nor β2 can be estimated (or tested) sep-
arately. This is the case of ‘perfect multicollinearity’ and arises out of faulty specification of the
regression equation. One important example is when four seasonal dummies are included in a
quarterly regression model that already contains an intercept term. In general the multicollinear-
ity problem is likely to arise when ρ2

12 is close to 1.
The multicollinearity problem is also closely related to the problem of low power when test-

ing hypotheses concerning the values of the regression coefficients separately. It is worth not-
ing that no matter how large the correlation coefficient between xt1 and xt2, so long as it is not
exactly equal to ±1, a test of β1 = 0 (or β2 = 0) will have the correct size. The high degree of
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correlation between xt1 and xt2 causes the power of the test to be rather low and as a result we
may end up not rejecting the null hypothesis that β1 = 0 even if it is false.

Example 7 To demonstrate the multicollinearity problem and its relation to the problem of low power,
using Microfit 5.0 we generated 1,000 observations on x1, x2 and y in the following manner.

x1 ∼ N (0, 1) ,
x2 = x1 + 0.15v,

v ∼ N (0, 1) ,
y = β0 + β1x1 + β2x2 + u,
u ∼ N (0, 1) ,

with β0 = β1 = β2 = 1 and where x1, v and u were generated as independent standardized
normal variates using respectively the ‘seeds’ of 123, 321 and 4321 in the normal random generator.
The Microfit batch file for this exercise is called MULTI.BAT and contains the following instruc-
tions:

SAMPLE 1 1000;
X1 = NORMAL(123);
V = NORMAL(321);
U = NORMAL(4321);
X2 = X1+0.15*V;
Y = 1 + X1 + X2 + U;

Now running the regression of y on x1 and x2 (including an intercept term) using only the first fifty
observations yields

yt = 0.9047
(0.1299)

+ 1.0950
(1.0403)

xt1 + 0.8719
(1.0200)

xt2 + ût t = 1, 2, . . . , 50, (3.32)

R2 = 0.8498, σ̂ = 0.8890, F2,47 = 132.98, (3.33)

The standard errors of the parameter estimates are given in brackets, R is the multiple correlation
coefficient, σ̂ is the estimated standard error of the regression equation, and F2,47 is the F-statistics
for testing the joint hypothesis

HJ
0 : β1 = β2 = 0,

against

HJ
1 : β1 �= 0, β2 �= 0.

The t-statistics for the test of the separate induced tests of

HI
0 : β1 = 0
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against

HI
1 : β1 �= 0,

and of

HII
0 : β2 = 0,

against

HII
1 : β2 �= 0,

It is firstly clear that since the value of the F-statistic (F2,47 = 132.98) for the test of HJ
0 : β1 =

β2 = 0 is well above the 95 critical value of the F-distribution with 2 and 47 degrees of freedom, we
conclude that the joint hypothesis β1 = β2 = 0 is rejected at least at the 95 per cent significance
level. Turning now to the tests of β1 = 0 and β2 = 0 separately, (i.e. testing the separate induced
null hypotheses HI

0 and HII
0 ), we note that the t-statistics for these hypotheses are equal to t

β̂1
=

1.0950/1.0403 = 1.05 and t
β̂2

= 0.8719/1.0200 = 0.85, respectively. Neither is statistically
significant and the null hypothesis of β1 = 0 or β2 = 0 can not be rejected. There is clearly a
multicollinearity problem. The joint hypothesis that β1 and β2 are both equal to zero is strongly
rejected, but neither of the hypotheses that β1 and β2 are separately equal to zero can be rejected.
The sample correlation coefficient of x1 and x2 computed using the first 50 observations is equal to
0.99316 which is apparently too high, given the sample size and the fit of the underlying equation,
for the β1 and β2 coefficients to be estimated separately with any degree of precision. In short, the
separate induced tests lack the necessary power to allow rejection of β1 = 0 and β2 = 0 separately.
The relationship between the F-statistic used to test the joint hypothesis β1 = β2 = 0, and the
t-statistics used to test β1 = 0 and β2 = 0 separately, can also be obtained theoretically. Recall
from Section 3.7 that

F =
(

T − 3
2

)(
SYY −∑t û2

t∑
t û2

t

)
. (3.34)

Denote the t-statistics for testing β1 = 0 and β2 = 0 separately by t1 and t2, respectively. Then

t2
j = β̂

2
j

V̂ar
(
β̂ j

) , j = 1, 2.

But using results in Example 1 (Chapter 2)

V̂ar
(
β̂1

)
= σ̂

2S22

S11S22 − S2
12

,

V̂ar
(
β̂2

)
= σ̂

2S11

S11S22 − S2
12

,



�

�

�

�

�

�

�

�

OUP CORRECTED PROOF – FINAL, 8/9/2015, SPi

70 Introduction to Econometrics

where as before Sjs = ∑
t
(

xtj − x̄j
)
(xts − x̄s). Also since yt − ȳ = β̂1 (xt1 − x̄1) +

β̂2 (xt2 − x̄) + ût we have2

SYY =
∑

t

(
yt − ȳ

)2 = β̂
2
1S11 + β̂

2
2S22 + 2β̂1β̂2S12 +

∑

t
û2

t .

Using these results in the expression for the F-statistic in (3.34) we obtain:

F = t2
1 + t2

2 + 2ρ12t1t2

2
(

1 − ρ2
12
) , (3.35)

where ρ12 is the sample correlation coefficient between xt1 and xt2.3 This relationship clearly shows
that even for small values of t1 and t2 it is possible to get quite large values of F so long as ρ12 is
chosen to be close enough to 1.

The above example considers the simple case of a regression model with two explanatory
variables. In case of regression models with more than two regressors the detection of the multi-
collinearity problem becomes more complicated. For example, when there are three regressors
with the coefficients β1, β2 and β3, we need to consider all the possible combinations of the
coefficients, namely testing them separately: β1 = 0, β2 = 0, β3 = 0; in pairs: β1 = β2 = 0,
β2 = β3 = 0, β1 = β3 = 0; and jointly: β1 = β2 = β3. Only in the case where the results of
separate induced tests, the ‘pairs’ tests and the joint test are free from contradictions can we be
confident that multicollinearity is not a problem.

There exist a number of measures in the literature that purport to detect and measure the
seriousness of the multicollinearity problem. One commonly used diagnostic is the condition
number defined as the square root of the ratio of the largest to the smallest eigenvalue of the
matrix X′X, where the columns of X have been re-scaled to length 1 (namely, the elements of the
jth column of X have been divided by sj = (

∑T
t=1 x2

tj)
1/2, for j = 1, 2, . . . , k). The condition

number detects whether the matrix X′X has a small determinant, namely if it is ill-conditioned.
The larger the condition number, the more ill-conditioned is the matrix, and difficulties can be
encountered in calculations involving (X′X)−1. Values of condition number higher than 30 are
suggested as indicative of a problem (see Belsley, Kuh, and Welsch (1980) for details). Another
diagnostic used to detect multicollinearity is the variance-inflation factor (VIF), defined as VIFj =
(1 − R2

j )
−1, for the jth regressor, where R2

j is the squared multiple correlation coefficient of the
regression of xtj on all other variables in the regression. A high value of VIFj suggests that xtj is
in some collinear relationship with the other regressors. As a rule of thumb, for scaled data, a
VIFj higher than ten indicates severe collinearity (see Kennedy (2003)). We remark that these
measures only examine the inter-correlation between the regressors, and at best give a partial
picture of the multicollinearity problem, and can often ‘lead’ to misleading conclusions.

2 Note that the OLS residuals are orthogonal to the regressors.
3 In the simulation exercise we obtained t1 = 1.05, t2 = 0.85 and ρ12 = 0.99316. Using these estimates in (3.35)

yields F = 131.50, which is of the same order of magnitude as the F-statistic reported in (3.34). The difference between
the two values is due to the error of approximations.
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A useful rule of thumb which goes beyond regressor correlations is to compare the squared
multiple correlation coefficient of the regression equation, R2, with R2

j . Klein (1962) suggests
that collinearity is likely to be a problem and could lead to imprecise estimates if R2 < R2

j , for
some j = 1, 2, . . . , k.

Example 8 To illustrate the problem return to the simulation exercise, and use the first 500 obser-
vations (instead of the first 50 observations) in computing the regression of y on x1 and x2. The
results are

yt = 0.9307
(0.0428)

+ 1.1045
(0.28343)

xt1 + 0.93138
(0.27081)

xt2 + ût t = 1, 2, . . . , 500,

R2 = 0.8333, σ̂ = 0.95664, F2,497 = 1242.3.

As compared with the estimates based on the first 50 observations [see (3.32) and (3.33)], these
estimates have much smaller standard errors and using the 95 percent significance level we arrive
at similar conclusions whether we test β1 = 0 and β2 = 0 separately or jointly. Yet the sam-
ple correlation coefficient between xt1 and xt2 estimated over the first 500 observations is equal to
0.9895 which is only marginally smaller than the estimate obtained for the first 50 observations. By
increasing the sample size from 50 to 500 we have increased the precision with which β1 and β2
are estimated and the power of testing β1 = 0 and β2 = 0 both separately and jointly.

The above illustration also points to the fact that the main cause of the multicollinearity prob-
lem is lack of adequate observations (or information), and hence the imprecision with which
the parameters of interest are estimated. Assuming the regression model under consideration
is correctly specified, the only valid solution to the problem is to increase the information on
the basis of which the regression is estimated. The new information could be either in the form
of additional observations on y, x1 and x2, or it could be some a priori information concerning
the parameters. The latter fits well with the Bayesian approach, but is difficult to accommodate
within the classical framework. There are also other approaches suggested in the literature such
as the ridge regression, and the principle component regression to deal with the multicollinear-
ity problem. For a Bayesian treatment of the regression analysis see Section C.6 in Appendix C.
However, in using Bayesian techniques to deal with the multicollinearity problem it is important
to bear in mind that the posterior means of the regression coefficients are well defined in small
samples even if the regressors are highly multicollinear and even if X′X is rank deficient. But in
such cases the posterior mean of β can be very sensitive to the choice of the priors, and unless
T−1X′X tends to a positive definite matrix the Bayes estimates of β could become unstable as
T → ∞.

Example 9 As an example consider the following Fisher type explanation of nominal interests esti-
mated on US quarterly data over the period 1948(1)–1990(4) using the file USGNP.FIT provided
in Microfit 5:

Rt = −0.0381
(0.1295)

+ 1.2606
(0.0754)

Rt−1 −.61573
(0.1144)

Rt−2 + 0.6073
(0.1208)

Rt−3 −

0.3168
(0.0782)

Rt−4 + 0.13198
(0.1075)

DMt−1 + 0.1072
(0.1064)

DMt−2 + ût ,
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R2 = 0.9520, R̄2 = 0.9503, σ̂ = 0.7086, F6,165 = 545.83,

where Rt = nominal rate of interest, DMt = the growth of money supply (M2 definition). In this
regression, the coefficients of the lagged interest rate variables are all significant, but neither of the
two coefficients of the lagged monetary growth variable is statistically significant. The t-ratios for
the coefficients of DMt−1 and DMt−2 are equal to 1.23 and 1.01, respectively, while the 95 percent
critical value of the t-distribution with 165 (namely T − k = 172 − 7) degrees of freedom is
equal to 1.97. As we have seen above, it would be a mistake to necessarily conclude from this result
that monetary growth has no significant impact on the nominal interest rates in the US. The sta-
tistical insignificance of the coefficients of DMt−1 and DMt−2, when tested separately may be due
to the high intercorrelation between the regressors. Also we are not interested in testing the statis-
tical significance of individual coefficients of the past monetary growth rates. What is of interest is
the sum of the two coefficients of the lagged monetary growth rates, and not the individual coeffi-
cients, separately. Denote the coefficients of DMt−1 and DMt−2 by γ 1 and γ 2 respectively, and let
δ = γ 1 + γ 2. We have

δ̂ = γ̂ 1 + γ̂ 2 = 0.1319 + 0.1072 = 0.2391

To compute the estimate of the standard error of δ̂ we recall that

V̂ar
(
δ̂
)

= V̂ar
(
γ̂ 1
)+ V̂ar

(
γ̂ 2
)+ 2Ĉov

(
γ̂ 1, γ̂ 2

)
,

and using the Microfit package we have

V̂ar
(
γ̂ 1
) = 0.01156, V̂ar

(
γ̂ 2
) = 0.01132, Ĉov

(
γ̂ 1, γ̂ 2

) = −0.00854

and hence
√

V̂ar
(
δ̂
)

= 0.0762, and tδ = 0.2391/0.0762 = 3.14 which is well above the 95

percent critical value of the t-distribution with 165 degrees of freedom. Therefore, we strongly reject
the hypothesis that monetary growth has no effect on the nominal interest in the US. We also note
that for every one percent increase in the growth of money supply there is around 0.24 of one percent
increase in nominal interest within the space of two quarters. The long-run impact of money supply
growth on nominal interest is much larger and depends on the magnitude of the lagged coefficients
of the nominal interest rates.

3.12 Multicollinearity and the prediction problem

Consider the following regression model

y = X1β1 + X2β2 + u = Xβ + u,

where y = (y1, y2, . . . , yT)′, X1 and X2 are T×k1 and T×k2 regressor matrices that are perfectly
correlated, namely

X2 = X1A′,
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and A is a k2×k1 matrix of fixed constants. Further assume that X′
1X1 is a positive definite matrix.

Consider now the forecast of yT+1 conditional on xT+1 = (x′
1T , x′

2T)′ which is given by4

ŷT+1 = x′
T+1β̂T = x′

T+1(X′X)+X′y,

where (X′X)+ is the generalized inverse of X′X, defined by (see also Section A.7)
(

X′X
)
(X′X)+

(
X′X
) = (X′X

)
.

It is well known that (X′X)+ is not unique when X′X is rank deficient. In what follows we show
that ŷT+1 is unique despite the non-uniqueness of (X′X)+. Note that

X′X =
(

X′
1X1 X′

1X1A′
AX′

1X1 AX′
1X1A′

)
= HX′

1X1H′,

where H is a k × k1 matrix (k = k1 + k2):

H =
(

Ik1
A

)
.

Also

X′y = HX′
1y, and x′

T+1 = x′
1TH′.

Hence

ŷT+1 = x′
T+1(X′X)+X′y = x′

1TH′ (HX′
1X1H′)+ HX′

1y.

Since X′
1X1 is a symmetric positive definite matrix, then

ŷT+1 = x′
1T
(

X′
1X1
)−1/2 (X′

1X1
)1/2 H′ (H

(
X′

1X1
)1/2 (X′

1X1
)1/2 H′)+

H
(

X′
1X1
)1/2 (X′

1X1
)−1/2 X′

1y,

or

ŷT+1 = x′
1T
(

X′
1X1
)−1/2 G′ (GG′)+ G

(
X′

1X1
)−1/2 X′

1y,

where

G = H
(

X′
1X1
)1/2 .

Consider now the k1 × k1 matrix G
(

G′G
)+ G′ and note that from properties of generalized

inverse we have

4 A general treatment of the prediction problem is given in Chapter 17.
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(
GG′) (GG′)+

(
GG′) = (GG′) .

Pre- and post-multiplying the above by G′ and G, we have

(
G′G

)
G′(GG′)+G

(
G′G

) = (G′G
) (

G′G
)

. (3.36)

But

G′G = (X′
1X1
)1/2 H′H

(
X′

1X1
)1/2 ,

and since

H′H = Ik1 + A′A,

then

G′G = (X′
1X1
)1/2 (Ik1 + A′A

) (
X′

1X1
)1/2 ,

is a nonsingular matrix (for any A) and has a unique inverse. Using this result in (3.36) it now
follows that

G′(GG′)+G = Ik1 ,

and hence

ŷT+1 = x′
1T
(

X′
1X1
)−1/2 G′ (GG′)+ G

(
X′

1X1
)−1/2 X′

1y

= x′
1T
(

X′
1X1
)−1 X′

1y,

which is unique and invariant to the choice of the generalized inverse of X′X.

3.13 Implications of misspecification of the regression
model on hypothesis testing

Suppose that yt is generated according to the classical linear regression equation

yt = β0 + β1xt + β2zt + ut , (3.37)

but the investigator estimates the simple regression equation

yt = α + βxt + εt , (3.38)

which omits the regressor zt . We have seen in Section 2.13 that omitting a relevant regressor,
zt , may lead to biased estimates, unless the included regressor, xt , and the omitted variable, zt ,
are uncorrelated. However, even in the case xt and zt are uncorrelated, β̂ will not be an efficient
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estimator of β1. This is because the correct estimator of the variance of β̂ requires knowledge of
an estimator of σ 2

u = Var (ut), namely

σ̂
2
u =

∑
t û2

t
T − 3

=
∑

t

(
yt − β̂0 − β̂1xt − β̂2zt

)2

T − 3
.

with β̂0, β̂1, and β̂2 being OLS estimators of parameters in (3.37), while the regression with the
omitted variable only yields an estimator of σ 2

ε = Var (εt), namely

σ̂
2
ε =

∑
t ε̂

2
t

T − 2
=
∑

t

(
yt − α̂ − β̂xt

)2

T − 2
,

with α̂ and β̂ being OLS estimators of parameters in (3.38). Notice that, in general, σ̂ 2
ε ≥ σ̂

2
u,

and therefore the variance of β̂ will be generally larger than the variance of β̂1. A similar prob-
lem in the estimation of the variance of estimated regression parameters arises when additional
irrelevant variables are included in the regression equation.

3.14 Jarque–Bera’s test of the normality
of regression residuals

In many applications, particularly involving financial time series, it is important to investigate
the extent to which regression errors exhibit departures from normality. There are two impor-
tant ways that error distributions could deviate from normality: skewness and Kurtosis (or tail-
fatness)

Skewness =
√

b1 = m3/m3/2
2 ,

Kurtosis = b2 = m4/m2
2,

where

mj =
∑T

t=1 ûj
t

T
, j = 1, 2, 3, 4,

For a normal distribution
√

b1 ≈ 0, and b2 ≈ 3. The Jarque–Bera’s test of the departures from
normality is given by (see Jarque and Bera (1980) and Bera and Jarque (1987))

χ2
T(2) = T

{ 1
6 b1 + 1

24 (b2 − 3)2} ,

if the regression contains an intercept term (note that in that case m1 = 0). When the regression
does not contain an intercept term, then m1 �= 0, and the test statistic has the additional term

Tb0 = T
{

3m2
1/(2m2) − m3m1/m2

2
}

,
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namely

χ2
T(2) = T

{
b0 + 1

6 b1 + 1
24 (b2 − 3)2} .

3.15 Predictive failure test

Consider the following linear regression models specified for each of the two sample periods

y1 = X1β1 + u1; u1 ∼ N(0, σ 2
1IT1), (3.39)

y2 = X2β2 + u2; u2 ∼ N(0, σ 2
2IT2), (3.40)

where yr , Xr , r = 1, 2, are Tr ×1 and Tr ×k observation matrices on the dependent variable and
the regressors for the two sample periods, and IT1 and IT2 are identity matrices of order T1 and
T2, respectively. Combining (3.39) and (3.40) by stacking the observations on the two sample
periods now yields

[
y1
y2

]
=
[

X1 0T1×T2
X2 IT2

] [
β1
δ

]
+
[

u1
u2

]
.

The above system of equations may also be written more compactly as

y0 = X0β1 + S2δ + u0, (3.41)

where y0 = (y′
1, y′

2)
′, X0 = (X′

1, X′
2)

′, and S2 represents the (T1 + T2) × T2 matrix of T2
dummy variables, one dummy variable for each observation in the second period. For example,
for observation T1 +1, the first column of S2 will have unity on its (T1 + 1)th element and zeros
elsewhere. The predictive failure test can now be carried out by testing the hypothesis of δ = 0
against δ �= 0 in (3.41). This yields the following F-statistic

FPF = (û′
0û0 − û′

1û1)/T2

û′
1û1/(T1 − k)

∼ F(T2, T1 − k), (3.42)

where

– û0 is the OLS residual vector of the regression of y0 on X0 (i.e., based on the first and the
second sample periods together).

– û1 is the OLS residual vector of the regression of y1 on X1 (i.e., based on the first sample
period).

Under the classical normal assumptions, the predictive failure test statistic, FPF , has an exact
F-distribution with T2 and T1 − k degrees of freedom.

The LM version of the above statistic is computed as

χ2
PF = T2FPF

a∼ χ2(T2), (3.43)
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which is distributed as a chi-squared with T2 degrees of freedom for large T1 (see Chow (1960),
Salkever (1976), Dufour (1980), and Pesaran, Smith, and Yeo (1985), section III.)

It is also possible to test if the predictive failure is due to particular time period(s) by applying
the t- or the F-tests to one or more elements of δ in (3.41).

3.16 A test of the stability of the regression coefficients:
the Chow test

This test is proposed by Chow (1960) and aims at testing the hypothesis that in (3.39) and
(3.40) β1 = β2, conditional on equality of variances, that is, σ 2

1 = σ 2
2. In econometrics litera-

ture this is known as the Chow test, and is known as the analysis of covariance test in the statistics
literature (see Scheffe (1959)). The F-version of the Chow test statistic is defined by

FSS = (û′
0û0 − û′

1û1 − û′
2û2)/k

(û′
1û1 + û′

2û2)/(T1 + T2 − 2k)
∼ F(k, T1 + T2 − 2k), (3.44)

where

– û0 is the OLS residual vector for the first two sample periods together
– û1 is the OLS residual vector for the first sample period
– û2 is the OLS residual vector for the second sample period.

The LM version of this test statistic is computed as

χ2
SS = kFSS

a∼ χ2(k). (3.45)

For more details see, for example, Pesaran, Smith, and Yeo (1985, p. 285).

3.17 Non-parametric estimation of the density function

Suppose f (y) denotes the density function of a variable Y at point y, and y1, y2, . . . , yT are obser-
vations drawn from f (.). Two general approaches have been proposed to estimate f (.). The first is
a parametric method, which assumes that the form for f (.) is known (e.g., normal), except for the
few parameters that need to be estimated consistently from data (e.g., the mean and variance).
In contrast, the non-parametric approach tries to estimate f (.) directly, without strong assump-
tions on its form. One simple example of such an estimator is the histogram, although it has the
drawback of being discontinuous, and not applicable for estimating the distribution of two or
more variables. The non-parametric density estimator takes the following general form

f̂ (y) = 1
T

T∑

t=1

1
hT

K
(

y − yt

hT

)
,
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where K(·) is called kernel function, and hT is the window width, also called the smoothing
parameter or bandwidth. The kernel function needs to satisfy some regularity conditions typical
of probability density functions, for example, K (−∞) = K (∞) = 0, and

∫ +∞
−∞ K (x) dx = 1.

There exists a vast literature on the choice of this function. One popular choice is the Gaussian
kernel, namely

K
(

y
) = 1√

2π
e−

y2
2 .

Another common choice is the Epanechnikov kernel

K
(

y
) =

{
3
4
(

1 − 1
5 y2) /

√
5, if

∣
∣y
∣
∣ <

√
5,

0, otherwise.

As also pointed by Pagan and Ullah (1999), the choice of K is not critical to the analysis, and the
optimal kernel in most cases will only yield modest improvements in the performance of f̂ (y),
over selections such as the Gaussian kernel.

When implementing density estimates, the choice of the window width, hT , plays an essential
role. One crude way of choosing hT is by a trial-and-error approach, consisting of looking at
several different plots of f̂ (y) against y, when f̂ (y) is computed for different values of hT . Other
more objective and automatic methods for selecting hT have been proposed in the literature.
One popular choice is the Silverman rule of thumb, according to which

hsrot = 0.9 · A · T− 1
5 , (3.46)

where A = min (σ , R/1.34), σ is the standard deviation of the variable y, R is the interquartile
range, and T is the number of observations, see Silverman (1986, p. 47). Another very popular
method is the least squares cross-validation method, according to which the window width is the
value, hlscv, that minimizes the following criterion

ISE (hT) = 1
T2hT

T∑

t �=s

K2

(
yt − ys

hT

)
− 2

T

T∑

t=1

f̂−t
(

yt
)

, (3.47)

where K2(.) is the convolution of the kernel with itself, defined by

K2
(

y
) =

∫ +∞

−∞
K (t) K

(
y − t

)
dt.

and f̂−t
(

yt
)

is the density estimator obtained after omitting the tth observation. We have

1
T

T∑

t=1

f̂−t
(

yt
) = 1

T (T − 1) hT

T∑

t �=j

K
(

yt − yj

hT

)
.
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If K is the Gaussian kernel, then K2 is N(0, 2), or

K2(y) = (4π)−1/2e−y2/4,

for the Epanechnikov kernel we have

K2
(

y
) =

{
3
√

5
100
(

4 − y2) , if
∣
∣y
∣
∣ <

√
5

0, otherwise.
.

For the Gaussian kernel the expression for ISE (hT) simplifies to (see Bowman and Azzalini
(1997, p. 37))

ISE (hT) = 1
(T − 1)

φ
(

0,
√

2hT

)
+ T − 2

T(T − 1)2

T∑

t �=j

φ
(

yt − yj,
√

2hT

)

− 2
T(T − 1)

T∑

t �=j

φ
(

yt − yj, hT
)

,

where φ(y, σ) denotes the normal density function with mean 0 and standard deviation σ :

φ(y, σ) = (2πσ 2)−1/2exp
(−y2

2σ 2

)
.

In cases where local minima are encountered we select the bandwidth that corresponds to the
local minimum with the largest value for hT . See Bowman and Azzalini (1997, pp. 33–4). See also
Pagan and Ullah (1999), Silverman (1986), Jones, Marron, and Sheather (1996), and Sheather
(2004) for further details.

3.18 Further reading

Further material on statistical inference and its application to econometrics can be found in Rao
(1973) and Bierens (2005). See also Appendix B for a review of key concepts from probability
theory and statistics useful for this chapter. For what concerns non-parametric density estima-
tors, further discussion can be found in Horowitz (2009), which contains a treatment of non-
parametric methods within econometrics.

3.19 Exercises

1. Consider the model

log Yt = β0 + β1 log Lt + β2 log Kt + ut ,


