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Preface

A fluid is a material substance in the form of a liquid, a gas, or a vapour. The most common
examples, to be found in both everyday life and in engineering applications, are water, air, and
steam, the latter being the vapour form of water. The flow (i.e. motion) of fluids is essential to
the functioning of a wide range of machinery, including the internal-combustion engine, the
gas turbine (which includes the turbojet, turbofan, turboshaft, and turboprop engines), wind
and hydraulic turbines, pumps, compressors, rapidly rotating discs (as in computer drives),
aircraft, spacecraft, road vehicles, and marine craft. This book is concerned primarily with
Newtonian fluids, such as water and air, for which the viscosity is independent of the flow. The
quantitative understanding of fluid flow, termed fluid dynamics, is based upon the application
of Newton’s laws of motion together with the law of mass conservation. To analyse the flow
of a gas or a vapour, for which the density changes in response to pressure changes (known
as compressible fluids), it is also necessary to take into account the laws of thermodynamics,
particularly the first law in the form of the steady-flow energy equation. The subject of fluid
mechanics encompasses both fluid statics and fluid dynamics. Fluid statics concerns the vari-
ation of pressure in a fluid at rest (as will be seen in Chapter 4, this limitation needs to be stated
more precisely), and is the basis for a simple model of the earth’s atmosphere.
This text is aimed primarily at students studying for a degree in mechanical engineering

or any other branch of engineering where fluid mechanics is a core subject. Aeronautical (or
aerospace), chemical, and civil engineering are all disciplines where fluid mechanics plays an
essential rôle. That is not to say that fluid flow is of no significance in other areas, such as
biomedical engineering. The human body involves the flow of several different fluids, some
quite ordinary such as air in the respiratory system and water-like urine in the renal system.
Other fluids, like blood in the circulatory system, and synovial fluid, which lubricates the joints,
have complex non-Newtonian properties, as do many synthetic liquids such as paint, slurries,
and pastes. A brief introduction to the rheology and flow characteristics of non-Newtonian
liquids is given in Chapters 2, 15, and 16.
As indicated in the title, this text is intended to introduce the student to the subject of

fluid mechanics. It covers those topics normally encountered in a three-year mechanical-
engineering-degree course or the first and second years of a four-yearmechanical-engineering-
degree course, as well as some topics covered in greater detail in the final years. The first ten
chapters cover material suitable for a first-year course or module in fluid mechanics. Com-
pressible flow, flow through axial-flow turbomachinery blading, internal viscous fluid flow,
laminar boundary layers, and turbulent flow are covered in the remaining eight chapters. There
are many other textbooks which cover a similar range of material as this text but often from
a much more mathematical point of view. Mathematics is essential to the analysis of fluid
flow but can be kept to a level within the capability of the majority of students, as is the in-
tention here where the emphasis is on understanding the basic physics. The analysis of many
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flow situations rests upon a small number of basic equations which encapsulate the underly-
ing physics. Between these fundamental equations and the final results, which can be applied
directly to the solution of engineering problems, can be quite extensive mathematical manip-
ulation and it is all too easy to lose sight of the final aim. A basic understanding of vectors is
required but not of vector analysis. Tensor notation and analysis is also not required and the
use of calculus is kept to a minimum.
The approach to certain topics may be unfamiliar to some lecturers. A prime example is di-

mensional analysis, which we suggest is approached using the mathematically simple method
of sequential elimination of dimensions (Ipsen’s method). The author believes that this tech-
nique has clear pedagogical advantages over themore widely used Rayleigh’s exponentmethod,
which can easily leave the student with the mistaken (and potentially dangerous) idea that any
physical process can be represented by a simple power-law formula. The importance of dimen-
sions and dimensional analysis is stressed throughout the book. The author has also found that
the development of the linear momentum equation described in Chapter 9 is more straightfor-
ward to present to students than it is via Reynolds transport theorem. The approach adopted
here shows very clearly the relationship with the familiar F = ma form of Newton’s second
law of motion and avoids the need to introduce an entirely new concept which is ultimately
only a stepping stone to the end result. The treatment of compressible flow is also subtly dif-
ferent from most texts in that, for the most part, equations are developed in integral rather
than differential form. The analysis of turbomachinery is limited to flow through the blading
of axial-flow machines and relies heavily on Chapters 3, 10, and 11.
‘Why do we need a fluid mechanics textbook containing lots of equations and algebra, given

that computer software packages, such as FLUENT and PHOENICS, are now available which
can perform very accurate calculations for a wide range of flow situations?’ To answer this
question we need first to consider what is meant by accurate in this context. The description of
any physical process or situation has to be in terms of equations. In the case of fluidmechanics,
the full set of governing equations is extremely complex (non-linear, partial differential equa-
tions called the Navier-Stokes equations) and to solve practical problems we deal either with
simplified, or approximate, equations. Typical assumptions are that all fluid properties remain
constant, that viscosity (the essential property which identifies any material as being a fluid)
plays no role, that the flow is steady (i.e. there are no changes with time at any given location
within the fluid), or that fluid and flow properties vary only in the direction of flow (so-called
one-dimensional flow). The derivation of the Navier-Stokes equations, and the accompanying
continuity equation, is the subject of Chapter 15. Exact analytical solution of these equations
is possible only for a handful of highly simplified, idealised situations, often far removed from
the real world of engineering. Although these solutions are certainly mathematically accur-
ate, due to the simplifications on which the equations are based they cannot be said to be an
accurate representation of physical reality. Even numerical solutions, however numerically ac-
curate, are often based upon simplified versions of the Navier-Stokes equations. In the case
of turbulent flow, the topic of Chapter 18, calculations of practical interest are based upon
approximate equations which attempt to model the correlations which arise when the Navier-
Stokes equations are time averaged. It is remarkable that valuable information about practical
engineering problems can be obtained from considerations of simplified equations, such as the
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one-dimensional equations, at minimal cost in terms of both time and money. What is essen-
tial, however, is a good physical understanding of basic fluid mechanics and a knowledge of
what any computer software should be based upon. It is the aim of this text to provide just that.
Already in this brief Preface the names Navier, Newton, Rayleigh, Reynolds, and Stokes

have appeared. In Appendix 1 we provide basic biographical information about each of the
scientists and engineers whose names appear in this book and indicate their contributions to
fluid mechanics.
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Notation

Each Roman, Greek, and mathematical symbol is followed by its meaning, its SI unit, and its
dimension(s).

Lower-case Roman symbols

a acceleration m/s2 L/T2

c blade chord length m L
c concentration kg/m3 M/L3

c soundspeed m/s L/T
c wetted perimeter m L
cf skin-friction coefficient – –
c0 speed of light in vacuum m/s L/T
d diameter m L
e energy J ML2/T2

ėxx extensional strain rate in x-direction 1/s 1/T
f non-dimensional velocity – –
fx body force per unit mass acting in the x-direction m/s2 L/T2

fD Darcy friction factor – –
fF Fanning friction factor – –
fF average Fanning friction factor – –
g acceleration due to gravity m/s2 L/T2

g0 acceleration due to gravity at sea level (z = z′ = 0) m/s2 L/T2

h height m L
h spacing of parallel plates m L
h specific enthalpy kJ/kg L2/T2

h0 specific stagnation enthalpy kJ/kg L2/T2

h0,REL relative stagnation enthalpy kJ/kg L2/T2

i angle of incidence ◦ or rad –
j number of independent dimensions – –
k number of non-dimensional groups – –
k radius of gyration m L
k specific turbulent kinetic energy m2/s2 L2/T2

k time-averaged specific turbulent kinetic energy m2/s2 L2/T2

kB Boltzmann constant J/K ML2/T2K
l length m L
lK Kolmogorov length scale m L
lM mixing length m L
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m mass kg M
m wedge-flow exponent – –
mA added mass kg M
ṁ mass flowrate kg/s M/T
n amount of substance kmol M
n number of physical quantities – –
n power-law exponent in power-law viscosity model – –
p static pressure Pa M/LT2

pG gauge pressure Pa M/LT2

pH hydrostatic pressure Pa M/LT2

pREF reference pressure Pa M/LT2

pT total pressure Pa M/LT2

pV vapour pressure Pa M/LT2

p0 stagnation pressure Pa M/LT2

p0,REL relative stagnation pressure Pa M/LT2

p average static pressure Pa M/LT2

p′ fluctuating component of static pressure Pa M/LT2

p′ intermediate static pressure Pa M/LT2

p∗ non-dimensional static pressure – –
q̇ heat transfer rate W ML2/T3

q̇′ heat transfer rate per unit length W/L ML/T3

r radial distance m L
s arc length m L
s cascade-blade spacing (or pitch) m L
s distance along a streamline m L
s specific entropy m2/s2 · K L2/T2θ

s0 specific stagnation entropy m2/s2 · K L2/T2θ

t elapsed time s T
t temperature ◦C θ

t̃ non-dimensional time – –
t∗ non-dimensional time – –
u specific internal energy kJ/kg L2/T2

u velocity component in x-direction m/s L/T
u time-averaged value of velocity component u m/s L/T
u′ fluctuating component of velocity component u m/s L/T
u∗ non-dimensional value of velocity component u – –
u+ velocity component u normalised by uτ – –
uP velocity of plastic plug m/s L/T
u0 centreline velocity m/s L/T
uτ friction velocity m/s L/T
v specific volume m3/kg L3/M
v velocity component in y- or r-direction m/s L/T
v time-averaged value of velocity component v m/s L/T
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v ′ fluctuating component of velocity component v m/s L/T
v+ velocity component v normalised by uτ – –
vK Kolmogorov velocity scale m/s L/T
w specific weight N/m3 M/L2T2

w velocity component in z- or θ-direction m/s L/T
w time-averaged value of velocity component w m/s L/T
w′ fluctuating component of velocity component w m/s L/T
w+ velocity component w normalised by uτ – –
x distance along or parallel to a surface/streamwise distance m L
X length m L
y distance normal to a surface m L
y+ distance y normalised by uτ and ν – –
z blade height (or length) m L
z depth (i.e. distance measured vertically downwards) m L
z′ height (i.e. distance measured vertically upwards) m L
z′ geometric altitude m L
z′G geopotential altitude m L
zC depth of centroid m L
zP depth of centre of pressure m L

Upper-case Roman symbols

A cross-sectional area m2 L2

A surface area m2 L2

A∗ choking (or sonic) area m2 L2

AE nozzle exit area m2 L2

AT nozzle throat area m2 L2

B barometric (or atmospheric) pressure or external pressure bar M/LT2

B log-law constant – –
Bi Bingham number – –
CD coefficient of discharge – –
CD drag coefficient – –
CF average friction factor – –
CL lift coefficient – –
CP pressure coefficient – –
CP specific heat at constant pressure m2/s2 · K L2/T2θ

CV specific heat at constant volume m2/s2 · K L2/T2θ

D diameter m L
D drag (or drag force) N ML/T2

D mean diameter m L
DH hydraulic diameter m L
DT nozzle throat diameter m L
D′ drag force per unit length of surface N/m M/T2
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E energy released J ML2/T2

E Young’s modulus Pa M/LT2

Eu Euler number – –
F force N ML/T2

F non-dimensional stream function – –
FB buoyancy force N ML/T2

Fθ function in Thwaites’ method – –
Fr Froude number – –
G mass velocity kg/m2 · s M/L2T
G shear modulus (fluid) Pa M/LT2

G modulus of rigidity (solid) Pa M/LT2

H height or depth m L
H horizontal component of force N ML/T2

H boundary-layer shape factor – –
He Hedstrom number – –
H12 boundary-layer shape factor – –
I second moment of area m4 L4

IC second moment of area about an axis through the m4 L4

area’s centroid
Ixy product of inertia m4 L4

K bulk modulus of elasticity Pa M/LT2

K consistency index in power-law viscosity model Pa · sn M/LT2–n

K loss coefficient – –
K turbomachine stagnation-pressure loss coefficient – –
Kn Knudsen number – –
1/K compressibility 1/Pa LT2/M
L length m L
L lift (or lift force) N ML/T2

L∗ choking length m L
M Mach number – –
M molar mass kg/kmol –
M momentum kg ·m/s ML/T
M molecular weight kg/kmol –
MREL relative Mach number – –
Ṁ momentum flowrate kg ·m/s2 ML/T2

Ṁ′ momentum flowrate per unit width of duct kg/s2 M/T2

MG metacentric height m L
N molecular number density 1/m3 1/L3

N number of molecules – –
N rotational speed rps 1/T
NA Avogadro number 1/kmol 1/M
NP turbomachine power-specific speed – –
NS turbomachine specific speed – –
P piezometric pressure Pa M/LT2
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P power W ML2/T3

Po Poiseuille number – –
Pr Prandtl number – –
Q̇ volumetric flowrate m3/s L3/T
Q̇′ volumetric flowrate per unit width m2/s L2/T
R radius m L
R reaction force N ML/T2

R resultant force N ML/T2

R specific gas constant m2/s2·K L2/T2θ

RE mean radius of the earth m L
RH hydraulic radius m L
RI inner radius of annulus m L
RO outer radius of annulus m L
R molar gas constant (universal gas constant) kJ/kmol ·K L2/T2θ

Re Reynolds number – –
Rex Reynolds number based upon length x – –
Reδ Reynolds number based upon length δ – –
ReC critical Reynolds number – –
ReD Reynolds number based upon pipe diameter – –
ReH Reynolds number based upon hydraulic diameter – –
Rep Reynolds number based upon plastic viscosity
S fluid-structure interaction force N ML/T2

St Strouhal number – –
T absolute temperature K θ

T skin-friction coefficient = θτS/μU∞ – –
T surface-tension force N ML/T2

T thrust (or thrust force) N ML/T2

T time interval s T
T torque N ·m ML2/T2

T0 stagnation (or total) temperature K θ

T0,REL relative stagnation temperature K θ

Ta Taylor number – –
U free-stream velocity m/s L/T
U0 scaling velocity m/s L/T
U∞ free-stream velocity m/s L/T
V velocity m/s L/T
V vertical component of force N ML/T2

VB buoyancy force N ML/T2

VD vertically downwards force N ML/T2

VU vertically upwards force N ML/T2

V∞ terminal velocity m/s L/T
V average (bulk-mean) velocity m/s L/T
∼
V non-dimensional velocity – –
V+ average velocity V normalised by uτ – –
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V volume m3 L3

VC critical volume for validity of continuum hypothesis m3 L3

VD displaced volume m3 L3

VS submerged volume m3 L3

V∞ y-direction velocity at edge of boundary layer m/s L/T
W relative velocity m/s L/T
W weight N ML/T2

W width m L
W work J ML2/T2

Ẇ rate of work input (power input) W ML2/T3

We Weber number – –
X length m L
Y boundary-layer thickness m L
Y surface tension N/m M/T2

Z depth of liquid m L

Lower-case Greek symbols (English word in parentheses)

α (alpha) angle of attack ◦ or rad –
α absolute flow angle ◦ or rad –
α conical gap angle ◦ or rad –
α non-dimensional constant in Blasius’ equation – –
α′ constant in shock-structure analysis m2/s L2/T
β (beta) oblique shock angle ◦ or rad –
β relative-flow angle ◦ or rad –
β wedge angle ◦ or rad –
γ (gamma) ratio of specific heats – –
γ̇ shear rate 1/s 1/T
γ̇xy shear rate corresponding to τxy 1/s 1/T
δ (delta) angle of deflection or deviation ◦ or rad –
δ boundary-layer thickness m L
δ radial gap width m L
δA element of area m2 L2

δF element of force N ML/T2

δh infinitesimal height difference m L
δH element of horizontal force N ML/T2

δm element of mass kg M
δp infinitesimal change or difference in pressure Pa M/LT2

δs infinitesimal change of distance m L
δt infinitesimal change in time s T
δV element of vertical force N ML/T2

δV element of volume m3 L3
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δW element of weight N ML/T2

δx element of streamwise or x-direction distance m L
δy element of distance normal to a surface or y-direction m L

distance
δz element of depth or z-direction distance m L
δz′ element of height m L
δ∗ boundary-layer displacement thickness m L
δSUB thickness of viscous sublayer m L
δ1 boundary-layer displacement thickness m L
δ2 boundary-layer momentum-deficit thickness m L
ε (epsilon) turbulent kinetic energy dissipation rate m2/s3 L2/T3

ε upwash or downwash angle ◦ or rad –
ε (epsilon) eccentricity m L
ε non-dimensional annular gap with – –
ε surface-roughness height m L
ε+ surface-roughness height normalised by uτ and ν – –
η (eta) dynamic viscosity Pa · s M/LT
η boundary-layer similarity variable – –
θ (theta) angle ◦ or rad –
θ boundary-layer momentum-deficit thickness m L
θ contact angle ◦ –
θ turning angle ◦ –
θ̇ angular velocity rad/s 1/T
θ̈ angular acceleration rad/s2 1/T2

κ (kappa) lapse rate K/m θ /L
κ von Kármán’s constant – –
κ wavenumber 1/m 1/L
λ (lamda) time constant s T
λ pressure-gradient parameter – –
λ Pohlhausen’s pressure-gradient parameter – –
λ wavelength of turbulence m L
λP Poiseuille-flow pressure-gradient parameter – –
λθ boundary-layer pressure-gradient parameter – –
μ (mu) dynamic viscosity Pa · s M/LT
μ Mach angle ◦ or rad –
μEFF effective viscosity Pa · s M/LT
μP viscosity of plastic plug Pa · s M/LT
μT eddy viscosity Pa · s M/LT
μ∞ infinite-shear-rate viscosity Pa · s M/LT
ν (nu) kinematic viscosity m2/s L2/T
ν Prandtl-Meyer function ◦ –
νT kinematic eddy viscosity m2/s L2/T
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ξ (xi) blade stagger angle ◦ or rad –
ξ non-dimensional distance – –
ξ turbomachine enthalpy-loss coefficient – –
ξP non-dimensional radius of plastic plug – –
ρ (rho) density kg/m3 M/L3

σ (sigma) density ratio – –
σ relative density – –
σ surface tension N/m M/T2

σxx normal stress in x-direction Pa M/LT2

τ (tau) characteristic time s T
τ shear stress Pa M/LT2

τK Kolmogorov time scale s T
τS surface shear stress Pa M/LT2

τS average surface shear stress Pa M/LT2

τY yield stress Pa M/LT2

τxy shear stress acting in y-direction Pa M/LT2

φ (phi) angle ◦ or rad –
φ blade camber angle ◦ or rad –
φ turbomachine flow coefficient – –
χ (chi) blade angle ◦ or rad –
χ boundary-layer scale factor – –
ψ (psi) stream function 1/s 1/T
ψ hydraulic machine pressure-change coefficient – –
ω (omega) angular velocity rad/s 1/T

Upper-case Greek symbols

Γ (gamma) circulation m2/s L2/T
Γ lapse rate ◦C/km θ /L
ΓAD adiabatic lapse rate ◦C/km θ /L
� (delta) finite change or difference – –
� scaling length m L
�S shock thickness m L
�p finite pressure difference Pa M/LT2

�p0 reduction in stagnation pressure Pa M/LT2

�Z finite depth difference m L
�ρ density difference kg/m3 M/L3

Θ (theta) dilation 1/s 1/T
Θ̃ ratio θ /δ, where θ = boundary-layer – –

momentum-deficit thickness
Λ (lamda) degree of reaction – –
Λ molecular mean free path m L
� (pi) non-dimensional group – –
Π shock strength – –



NOTATION xxix

Π wake parameter – –
Σ (sigma) summation – –
Φ̃ (phi) ratio δ∗/δ – –
Ω (omega) angular velocity rad/s 1/T

Mathematical symbols

div vector operator of divergence 1/m 1/L
∇ del (or gradient) operator 1/m 1/T
∇2 Laplacian operator 1/m2 1/L2

Lower-case Roman subscripts

f friction
r radial direction
t throat
x x-direction
y y-direction
z z-direction

Upper-case Roman subscripts

A actual
B back (pressure)
C centroid or critical
E exhaust
F fluid or fuel or full scale
G centre of gravity or gas
H based on hydraulic diameter
H2O water
I inlet or inner surface
L laminar or liquid or lower surface
M manometer
M model
O outer surface
P centre of pressure
REF reference condition
S isentropic or solid or submerged or surface
T total or turbulent
TH theoretical
U upper surface

Lower-case Greek subscript

θ θ-direction
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Numerical subscripts

0 stagnation or reference conditions
1 conditions upstream of a shockwave
2 conditions downstream of a shockwave

Superscripts

T isothermal
∗ choking (or critical or sonic) condition



1 Introduction

Why do students of many branches of engineering need to study fluid mechanics? First and
foremost, the answer is ‘design’. It can be argued that the principal purpose of engineering is
engineering design, and it is frequently the case that considerations of fluid flow are crucial
to the engineering-design process. It would be inappropriate here to discuss in detail what is
meant by engineering design. Suffice to say, design is sometimes confused with styling, which
refers primarily to the external appearance of a device or machine, whereas engineering design
is concerned with its functioning and invariably involves calculations based upon the laws of
physics. In this introductory chapter we indicate the wide and diverse range of practical situ-
ations where fluid mechanics plays a central role, often together with such related subjects
as heat transfer, thermodynamics, and combustion. Although the emphasis in this book is
on applications of fluid mechanics in mechanical, aeronautical, and civil engineering, other
examples could be taken from biomedical, building, chemical, and environmental engineer-
ing. Within this book we also mention many of the natural phenomena for which fluids, and
the way they flow, play a fundamental role. Although the origins of fluid mechanics can be
traced to ancient Greek (Archimedes) and Roman (Frontinus) times, and important contri-
butions were made in the 15th (da Vinci), 16th, 17th (Newton, Pascal), 18th (Bernoulli and
Euler), and 20th centuries (Prandtl, Taylor), most of the major developments in the subject
were made by engineers, mathematicians, and physicists in the 19th century (including Kelvin,
Mach, Navier, Rankine, Rayleigh, Reynolds, and Stokes). Many effects, functions, equations,
non-dimensional parameters (see Chapter 3), etc., are named after these pioneers and other
major contributors to fluid mechanics: brief biographies are included in Appendix A.
A thorough understanding of the contents of this book should enable the student to

• use the results of dimensional analysis (Chapter 3) to scale up the results of wind-tunnel
model tests1. A typical example is in the analysis of wind-tunnel data for the aerodynamic
behaviour of a Formula 1 racing car, as shown in Figure 1.1 (to illustrate the point, we
could just as well have chosen, e.g. a fighter aircraft or a bridge).

• specify the characteristics of a centrifugal pump, as illustrated in Figure 1.2, required to
handle large quantities of oil, based upon small-scale tests with water, again guided by
dimensional analysis

• calculate the flowspeed in a wind tunnel using a Pitot-static tube and a U-tube mano-
meter, as shown in Figure 1.3 (the size of the manometer relative to the Pitot tube is

1 Where the aerodynamic characteristics of an aircraft, a car, a locomotive, or any other vehicle are to be investig-
ated in a wind or water tunnel, it is usual for the vehicle to be fixed in position with the fluid flowing around it. This
change is known formally as a Galilean transformation. In a wind tunnel used to investigate vehicles in contact with
a road, the surface in contact with the vehicle usually moves at the same speed (and direction) as the working fluid.
Such an arrangement is referred to as a rolling road. Note too that the flow direction in all figures in this book is from
left to right, a convention adopted in the majority of fluid mechanics textbooks.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 1.1 Wind-tunnel test of a racing car
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Figure 1.2 Centrifugal-pump testing

much reduced in the diagram). This calculation involves both hydrostatics (Chapter 4)
and Bernoulli’s equation (Section 8.9).

• using the principles of hydrostatics (Section 8.5), calculate the resultant force exerted by
the water in a reservoir on the face of a dam, as shown by R in Figure 1.42

• use the principles of hydrostatics to design a floating boom to contain an oil slick, as shown
in Figure 1.5

• use Bernoulli’s equation (see Chapter 8) to calculate the lift force resulting from the airflow
over the surfaces of an aerofoil, as shown in Figure 1.6. A qualitative discussion of the
underlying physical phenomena which explain lift is given in Section 17.7.

• use Bernoulli’s equation to determine the flowrate at which internal boiling occurs at
room temperature as a consequence of reduced pressure (so-called cavitation, discussed in
Section 8.11) in the flow of a liquid through a constriction, such as a valve or, as illustrated
in Figure 1.7, a convergent-divergent nozzle

2 The inverted triangle is used to identify a free surface.
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Figure 1.7 Cavitation in water flow through a convergent-divergent nozzle

• use the mass-conservation (Section 6.8) and momentum-conservation (Chapter 9 and
Section 10.4) equations to calculate the thrust developed by a turbofan engine, such as that
shown schematically in Figure 1.8, which is a simplified version of Figure 14.1

• use the continuity and momentum equations, together with Bernoulli’s equation, to cal-
culate the power output of a Pelton hydraulic turbine (Section 10.11), as shown in
Figure 1.9
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Figure 1.10 Turbine stage

Figure 1.11 Viscous flow through a concentric annulus with centrebody rotation

• use the mass- and momentum-conservation equations, the steady-flow energy equation,
and the perfect-gas law to calculate the power output of a turbine (or compressor) stage
(Section 14.8), as shown in Figure 1.10

• use the mass- and momentum-conservation equations, together with Newton’s law of
viscosity, to calculate the flow of a viscous fluid through a concentric annulus with
centrebody rotation as shown in Figure 1.11 (Section 16.5)
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Figure 1.12 Supersonic flow with shock and expansion waves over a diamond-shaped aerofoil

• use the tabulated solution of the Blasius equation for a laminar boundary layer (Sec-
tion 17.3) to calculate the drag force on a thin flat plate immersed in a viscous fluid
flow

• use the Virginia Tech Compressible Aerodynamics Calculator (see Section 11.3) to calcu-
late the shock and expansion waves, the Mach number and pressure distributions, and
lift force (Section 12.3) of supersonic perfect-gas flow over a diamond-shaped aerofoil

The thickness of the shock waves in Figure 1.12 is greatly exaggerated (see Section 11.8).
The subscriptedM’s indicate the Mach numbers in each region of the flow.
The foregoing is just a selection of the engineering applications of fluid mechanics con-

sidered in this textbook. As we emphasise in the remainder of this chapter, there are few
areas of life, whether man-made or natural, in which fluids and fluid mechanics do not play a
vital role.

1.1 What are fluids and what is fluid mechanics?

Without salt-free water to drink, we die within about ten days, and become brain dead within
about four minutes without the oxygen which makes up about 21% by volume of the air
we breathe (the rest is mainly nitrogen, 78%). Water is a liquid, air is a gas, and both are
what we call fluids. The total mass of air in the atmosphere which surrounds the earth (see
Section 4.13) is estimated to be about 5.3 × 1018 kg (or 5.3 petatonnes3), and the total mass of

3 Peta- and exa- are two of the 20 approved prefixes of The International System of Units (SI) presented in
Section 3.2.
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water in all the oceans, lakes, rivers, etc., the so-called hydrosphere, is about 1.4 × 1021 kg (or
1.4 exatonnes). Given their abundance, and their importance to our very existence, it is hardly
surprising that water and air are the two fluids encountered most commonly in fluid mech-
anics. There are, of course, many other familiar ‘everyday’ fluids: methane, ethane, hydrogen,
helium, oxygen, and nitrogen are all gases which behave much like air; similarly, natural (as
opposed to synthetic) fluids such as oil, petrol, mercury, honey, glycerine, and alcohol are all
relatively simple liquids much like water, but with different densities, viscosities, and other
properties (Chapter 2 is concerned with fluid properties and what makes fluids different from
solids). We call these simple fluids, with viscosities independent of their motion (though not
their temperature), Newtonian. Blood, synovial fluid (which lubricates our joints), custard,
mayonnaise, salad cream, ketchup, hair gel, toothpaste, drilling fluid, fracking (or fracturing)
fluids, freshly mixed cement slurry, and paint are all liquids but with viscous properties and
flow behaviour very different from those of water. These differences arise primarily because
such liquids have either a complex molecular structure or consist of a mixture of a simple li-
quid (such as water) and many tiny (often in the micron range) suspended particles. Because
of the complexity of their viscosities, these liquids are termed non-Newtonian. The study of
the viscous properties of non-Newtonian liquids is a subject in itself, called rheology. There is
a brief account of non-Newtonian liquids in Section 2.10. Simple models for such liquids and
their flow are discussed in Sections 15.5 and 16.6.
We know from everyday experience that liquids flow. Water flows from the mains supply

when we open the tap. Water flows from the sink or bath into the drainage system. Tea flows
from a teapot. Beer flows into our digestive system from a glass, bottle, or can, and then, usually
after a biological/chemical transformation and temporary storage, flows out again from our
urinary system. Blood flows through our arteries and veins, pumped by a natural or artificial
heart. Air flows into our lungs, and carbon dioxide flows out into the atmosphere. Liquid
or gaseous fuel flows into the engines of passenger vehicles, trains, aircraft, and ships, while
exhaust gases flow out, again into the atmosphere. Town gas, a mixture consisting primarily
of hydrogen, methane, and carbon dioxide, flows to our cookers and boilers, and products of
combustion flow out. Air flows around us as we walk, run, or ride our bicycles. It flows over
the bodywork of our cars, over the wings and fuselages of the aircraft in which we fly, and
through the blades of wind turbines, causing them to rotate and generate electrical power. Oil,
gas, brine, and drilling fluid flow from deep in the earth to the surface when we drill for oil
or gas. Water flows from rivers into reservoirs, lakes, and the sea and from reservoirs through
hydraulic turbines again to generate electrical power. It also flows into the boilers of power-
generating steam turbines where it is converted into steam, a vapour. It flows around the hull
of a ship or submarine. Lava, a non-Newtonian liquid, flows from an active volcano.
We should also be aware that some substances can exist in more than one state (or phase).

Water, for example, can exist as ice (a solid), water (a liquid), or steam. The latter exhibits some
of the characteristics of a gas, particularly at very high temperatures, and is termed a vapour.
Many gases, including air, can be liquefied by subjecting them to very high pressure and/or
low temperature.
Engineering fluid mechanics is concerned with analysing fluid flows, such as those men-

tioned above, in order to calculate the rates at which they flow, the changes in pressure as they
flow, and the stresses and forces they exert on the machines and surfaces through and over
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which they flow. The law of conservation of mass, Newton’s laws of motion, and the laws of
thermodynamics (principally the first law in the form of the steady-flow energy equation),
together with appropriate representation of fluid properties, form the basis of the analysis.
Before we go into further detail, it is useful to expand the catalogue of situations where fluid
mechanics plays an essential role.

1.2 Fluid mechanics in nature

The height of the atmosphere, that is the altitude beyond which we are in the vacuum of outer
space, is usually taken to be about 80 km. For many purposes, the atmosphere can be taken as a
series of stationary spherical layers of air with the temperature variation shown in Figure 1.13.
We consider this hydrostatic model of the atmosphere in some detail in Section 4.13. We

know, of course, that the atmosphere, especially the part of it we inhabit, is very often far from
static;meteorology is the branch of fluid mechanics devoted to the study of its motion. Any-
one who has seen time-lapse images of clouds knows that, in addition to being swept along
by winds, they are in constant motion due to thermals (finite packets of warm air moving up-
wards which allows gliders to rise to altitudes up to about 15 km), evaporation, condensation,
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and shearing (which gives rise to the clear-air turbulence often experienced by passenger air-
craft). We should also mention dust devils, tornadoes, and hurricanes which are examples of
the intense, often violent, swirling motion which can arise in the lower atmosphere due to
combined thermal and shearing effects.
While it is essential that the earth is surrounded by a layer of air, it is just as important for

humans (at least in our current state of evolution) that all the water in the hydrosphere is not
distributed uniformly over the planet’s surface. Were that the case, the water layer would be
about 2.7 km deep. Instead, this water actually covers about 71% of the earth’s surface, with
regions of the deepest ocean being about 10 km deep, almost equal in magnitude to the height
of Mount Everest. As with the atmosphere, much can be learned about the oceans, reservoirs,
lakes, etc., by considering them to be at rest. Chapters 4 and 5 are devoted to hydrostatics—
the study of fluids at rest—with a considerable fraction concerned with the forces exerted on
surfaces, such as the face of a dam, as shown in Figure 1.4.Oceanography is the branch of fluid
mechanics which deals with tides, currents, waves, stratification (water-density variations due
to salinity and temperature changes with depth), and other phenomena associated with water
motion in the oceans. Related topics involving fluid mechanics are erosion, sedimentation,
whirlpools, river flows, and also the flow in canals and sewers, although the latter are man-
made rather than natural systems. In principle, we could also include here the fluid mechanics
associated with the wave-like body motion which fish, eels, aquatic mammals, and sperm use
to swim.
Undeniably natural are the flows of lava from an active volcano and of hot water and

steam from a geyser. The flow of formation fluids (oil, methane, hydrogen sulphide, brine,
etc.), as well as drilling mud, from an oil well represents a mixture of man-made and nat-
ural phenomena. There would be no flow were it not for the man-made well, but the flow
of formation fluids through porous rock involves natural fluids flowing through naturally
occurring channels in a natural medium. Here again, however, in hydraulic fracturing (com-
monly referred to as ‘fracking’) we are dealing with a combination of man-made and natural
processes.
The study of flow in the circulatory, respiratory, urinary, and other biological systems is

termed biofluid mechanics. As with all natural systems, an additional difficulty is that the
geometry of the flow channels is not well defined and often not fixed. For example, arteries
and veins are flexible and so change in cross section as blood pressure increases and decreases
with every beat of the heart. To further complicate matters, blood is not a homogeneous li-
quid but consists mainly of red corpuscles, which are thin discs about 8 μm in diameter with
a thick rim, suspended in plasma. As a consequence of this composition, the effective viscos-
ity (see Section 2.10) of blood decreases with shearing (relative tangential movement) and is
slightly elastic (viscoelastic) in character, i.e. blood is a non-Newtonian fluid. At rest, blood
has an effective viscosity about 100 times that of water, although this factor decreases to about
five in the arteries. In any event, the saying ‘blood is thicker than water’ is entirely accurate.
Although synovia, the fluid which lubricates our joints, is a homogeneous liquid, it is again a
non-Newtonian fluid with shear-thinning, viscoelastic properties, in this instance because it
has a polymer-like molecular structure.
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1.3 External flows

As engineers, we are concerned primarily with fluids which flow either through or around
man-made devices, which we term internal and external flows, respectively. In either case,
viscosity (or to be more precise, dynamic viscosity) is the key fluid property which determines
the details of the flow. Wherever velocity gradients occur in a flowing fluid, the fluid property
viscosity leads to shear stresses and forces. A fundamental concept in fluidmechanics is the no-
slip condition according to which, in the immediate vicinity of a solid surface, a consequence
of viscosity is that the fluid is brought to rest (or, more generally, if the surface is itself moving,
to the same velocity as the surface so that the relative velocity is zero). In essence, the fluid
adheres to the surface. For an external flow, the major effects of viscosity are confined to a
relatively thin region close to the surface called the boundary layer, the subject of Chapter 17.
In the case of buildings, smoke stacks (or chimneys), bridges, wind turbines, windmills, off-

shore structures such as drilling platforms, etc., the external flow (there may be quite separate
internal flows, such as exhaust gases) is provided by nature. The damage which sometimes
occurs to these and other structures when high windspeeds arise tells us that the wind can im-
pose massive forces on their surfaces. In certain circumstances, even at relatively low speed, a
steady wind can excite vibrations (flow-induced vibrations) which can be of sufficient amp-
litude to cause structural damage. Huge plate-glass windows have been known to pop out of
their frames due to wind-induced torsional oscillations of skyscrapers, as happened to the 241
m high John Hancock Tower opened in Boston in 1976. The best known example of wind-
induced vibration was the complete destruction in 1940 of the Tacoma Narrows Bridge in
Washington State, USA. Remarkably, in both instances, the vibration was initiated at wind-
speeds no greater than about 70 kph. In order to design structures which are safe, we need to
calculate both the steady and periodic forces due to the wind, either from fundamental the-
ory or, more likely, from a combination of theory and experimental data obtained from tests
carried out in a wind or water tunnel. The use of experimental data, generalised using di-
mensional analysis (Chapter 3), is termed empiricism. Environmental fluid mechanics also
concerns the dispersion of pollutants in the atmosphere and in the sea, rivers, lakes, etc.
Some of the most advanced theoretical and experimental work in fluid mechanics has been

associated with the development of aircraft, spacecraft, and missiles. There have been re-
markable advances in aviation since December 1903, when Orville Wright flew a powered,
heavier-than-air, machine some 260m in 59 s. For example, we now take for granted passenger
aircraft such as the turbofan-powered Airbus A380-800 with a passenger-carrying capacity up
to about 850, a maximum take-off weight of 575,000 kg, a wingspan of 80 m, a cruising speed
of 945 km/h (just below soundspeed), and a range of 15,700 km. Although taken out of service
in 2003, just as impressive was the performance of the turbojet-powered (see Section 10.3)
British Aerospace Corporation/Aérospatiale supersonic transport aircraft, Concorde, which
routinely carried about 130 passengers at twice soundspeed (a flight speed of about 2130 km/h)
in the stratosphere (see Section 4.13). Although, as we see from Figure 1.10, the atmospheric
temperature at cruise altitude (about 18 km) is about –56.5 ◦C, the skin of Concorde reached
a temperature of about 120 ◦C, due to frictional heating, causing the length of the aircraft to
increase by about 0.3 m. Modern combat aircraft, such as the Lockheed Martin F-22 Raptor,
again turbofan powered, can fly at Mach numbers above two (about 2500 km/h). Although
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manned flights into space are now regarded as almost routine, in reality each flight repres-
ents an extraordinary engineering achievement. For example, the speed required to escape the
earth’s gravitational pull is about 11 km/s (i.e. 40,000 km/h or a Mach number above 30) and,
on re-entry into the earth’s atmosphere, the air surrounding the space shuttle becomes so hot
(6000 ◦C plus) that the craft is surrounded by a glowing plasma.
One of the ways we distinguish between different flight regimes is through the Mach num-

ber, which is the ratio of the flight speed of an aircraft to the speed of sound at the flight altitude
(discussed further in Section 3.12 and Chapter 11). As the Mach number increases, the fluid
mechanics becomes more complicated because an increasing number of physical phenomena
have to be taken into account. If the Mach number is considerably less than unity (0.3 is the
value usually taken), changes in fluid density are negligible and the flow is said to be incom-
pressible. For higher Mach numbers, compressibility effects (i.e. density changes) become
increasingly important but can be accounted for in a relatively straightforward way using the
perfect-gas law to relate temperature, pressure, and density (see Section 2.4), together with
the first law of thermodynamics (Chapter 11). Once the Mach number exceeds about five,
however, very high temperatures develop near surfaces, and the air properties change due to
chemical breakdown of the molecules and the subsequent reaction of free atoms. At this point,
physical chemistry also comes into play, but beyond the scope of this book.
The preceding paragraphs suggest an important aspect of the subject of fluid mechanics

which students often find difficult to understand: even at relatively low flowspeeds, there are
few problems we can solve completely, usually because the mathematics involved becomes
far too complicated, even if we understand all the physics involved and know the relevant
equations. To a degree, computers can take over at some stage in the analysis of a prob-
lem to provide a numerical rather than an analytical (i.e. algebraic) solution. Unfortunately,
even the largest and fastest computers available at the present and in the foreseeable future
are inadequate to solve most practical problems and we have no choice but to introduce ap-
proximations, assumptions, and simplifications. In fact, this ‘engineering’ approach represents
common sense. For example, if we are dealing with a low-speed gas flow where we know that
the fluid density remains practically constant, there is no point in making our task more dif-
ficult (and more expensive) than necessary by not introducing this simplification from the
outset. Of course, it is usually a matter of experience, or even hindsight, which tells us what
simplifications are justified. In this textbook, we approach problems using the simplest pos-
sible physics and mathematics, with the aim of deriving approximate solutions which provide
some insight into the interplay between fluid properties, flow geometry, and flowspeed. The
reader needs to bear in mind that our approach often represents only a start to, rather than a
complete treatment of, the solution of problems of fluid flow.
Even land vehicles have now reached speeds where air-density variations must be accounted

for. The land-speed record, held by the turbofan-powered car Thrust SSC since 1997, is 1228
km/h, which corresponds to a Mach number of 1.018, i.e. just supersonic (Mach numbers in
the range close to unity are termed transonic). A new turbofan-powered car, Bloodhound
SSC, is being developed with a target speed of about 1700 km/h (Mach 1.9). Somewhat slower
is the Japanese Tōhoku Shinkansen ‘Bullet Train’ which has a top speed of about 320 km/h
or 89 m/s, corresponding to a Mach number of 0.26, so that compressibility effects are largely
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insignificant. However, some racing cars can achieve speeds where compressibility effects can-
not be neglected: the highest speed reached at the California Speedway track in Fontana,
California, is about 400 km/h or 111 m/s, which corresponds to a Mach number of 0.33. Al-
though this figure is close to the 0.3 ‘cutoff ’, it must be the case that on the bodywork of the
cars there would have been regions where the airspeed was considerably higher. It has to be
said that normal cars, buses, and lorries have considerably lower top speeds and the airflow
around them can safely be considered to be incompressible (i.e. to have constant density).
Although the speeds of even the fastest marine vehicles are much lower than for most land

vehicles, the fluid mechanics involved is complicated by wave motion which arises due to the
tendency for gravitational pull to overcome any disturbance to a water surface. We are all
familiar with the surface gravity waves which propagate radially outwards when we throw a
stone into a pond, whereas the forward movement of a ship creates a vee-shaped pattern of
surface waves. Although invisible to the eye, a submarine travelling deep below the surface
also generates gravity waves as it disturbs water layers of different densities which occur due to
variations with depth of salt content and temperature. The energy required to generate waves
has to be provided by the propulsion system of the ship or submarine and so corresponds to
an additional contribution to the drag force, so-called wave drag.

1.4 Internal flows

Most of the flow situations dealt with in this textbook are concerned with internal flows
through pipes, ducts, nozzles, engines, turbomachines, etc. In one sense, internal flows are
easier to deal with than external flows because the flow is confined within solid boundaries un-
like the flow over an aerofoil (Figure 1.6), for example, where the region of flow is practically
unlimited.
The most common man-made device through which flow occurs is a metal, plastic, or glass

pipe of circular cross section. Pipes of this kind allow oil and gas to flow to the earth’s surface
from reservoirs which may be many kilometres below, often deep below the seabed, and then
hundreds of kilometres across land, directly to refineries or to ports for transfer to ships. Oil
and gas pipelines, and also the pipes which convey water into the turbines of a hydroelectric
power plant, may be a metre or more in diameter. The enormous capital cost involved means
that careful consideration has to be given to the design of such pipelines including all the asso-
ciated valves, bends, contractions, expansions, pumps, monitoring equipment, etc. Smaller
diameter pipes connect the pumps, separators, boilers, distillation columns, burners, filters,
etc., of oil refineries and other chemical-processing plant. Such pipes allow gas and water to be
transported to the homes where we live and to the offices and factories where we work. Fluid
flow through a straight pipe is resisted by friction between the fluid and the internal surface of
the pipe, which arises due to the viscosity of the fluid (see Section 2.8) and has to be overcome
by a pressure difference created by a pump or compressor, or by gravitational effects. Friction
also causes the fluid temperature to rise, the fluid density to decrease, and the average fluid
velocity to increase. Much like the situation of an external flow, a boundary layer develops and
grows in thickness with downstream distance so that, in an internal flow, if the flow channel is
long enough, it is inevitable that eventually fluid across the entire cross section of the channel
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is affected by viscosity (see Chapter 16). Pipe flow of compressible fluids is considered in detail
in Chapter 13. Due to surface friction or external heating, in the case of a gas, the fluid velocity
in a pipe may even reach the speed of sound, causing an effect called choking (see Chapters 11
and 13), which limits the volume of gas which can be pumped through the pipe. Clearly, even
a flow which at first sight probably appears to be the simplest we can think of turns out to
be rather complicated. In fact, the situation is even more complicated than we have indicated
so far because it is only for low flowrates or small-diameter pipes or highly viscous fluids (all
of these influences are accounted for by a non-dimensional parameter termed the Reynolds
number, which we discuss further in Chapters 3 and 15 to 18) that the flow remains smooth
and steady (so-called laminar flow) and we are able to analyse it completely. The majority of
flows of engineering interest exhibit a high degree of random unsteadiness which we call tur-
bulence (see Chapter 18) and, even today, we are able to calculate turbulent pipe flow from
first principles only through the use of supercomputers. Fortunately, the principles of dimen-
sional analysis apply whether a flow is laminar or turbulent, and this enables us to generalise
experimental data for use in engineering-design calculations.
In industrial applications, pipes rarely stay straight or keep the same diameter for long (see

Section 18.11). Often more important than understanding the details of the flow within a pipe
or pipe system is the ability to calculate the hydrodynamic forces which arise when a pipe
changes direction and, perhaps, also diameter, as illustrated by the pipe bend in Figure 1.14
(see Section 10.7).
The calculation of hydrodynamic forces is one of the main topics of Chapter 10, which

brings together many of the concepts and principles introduced in previous chapters, par-
ticularly those in Chapters 6, 7, and 9.
Combustion chambers, furnaces, boilers, jet pumps, control valves, guidevanes, cyclone

separators, radiators, oil coolers, fuel-injection systems, carburettors, rocket engines, and the
coolant channels within the core of a nuclear reactor or the block of a petrol or diesel engine

flow
inlet

flow
outlet

reaction
force

Figure 1.14 Hydrodynamic reaction force exerted on a pipe bend
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are all examples involving internal fluid flow. As we show in Chapter 10, the flow characterist-
ics which underlie the design of many of these devices, including the rocket engine, jet pump,
and cascade of guidevanes, shown in Figures 1.15, 1.16, and 1.17, respectively, can be determ-
ined using the principles of fluid mechanics that we cover in this textbook. The analysis of
most of the other cases requires more advanced aspects of fluid mechanics and may also in-
volve considerations of heat transfer, thermodynamics, and chemistry, all of which are beyond
the scope of this book.
The turbojet and turbofan engines shown in Figures 10.3(a) and 1.8, respectively, are

examples of a class of devices called turbomachines, derived from the Latin word turbo,
which has the meanings ‘whirlwind’ and ‘spinning top’. Other examples of turbomachines are
pumps, fans, compressors, steam turbines, gas turbines, hydraulic turbines (see Figure 1.9),
turbochargers, and superchargers. A common feature of all turbomachines is a central rotating
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Figure 1.15 Thrust of a liquid-propellant rocket
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Figure 1.16 Performance of a jet pump
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Figure 1.17 Hydrodynamic forces on a cascade of guidevanes

shaft which carries blades (the rotor or impeller) to transfer momentum and work either to
or from the fluid which flows through them by causing changes in the direction of fluid flow.
Most turbomachines also incorporate stationary blades (called stators or nozzle rings) at-
tached to the casing to guide the flow to and from the rotor stages. As we show in Chapter 10,
we can learn a considerable amount about the performance of these complex machines simply
by considering the state of flow at inlet and outlet. The basic flow within a stator or rotor stage
can be analysed inmuch the same way as that through a stationary cascade of guidevanes; but,
to take the analysis further, as we do in Chapter 14, requires that we use more advanced aspects
of fluid mechanics, often together with considerations of thermodynamics.

1.5 SUMMARY

In this chapter, we have indicated the wide array of engineering devices, from the kitchen
tap (a valve) to supersonic aircraft, for which the basic design depends upon considerations
of the flow of gases and liquids. Much the same is true of most natural phenomena, from
our weather to ocean waves and the movement of sperm and other bodily fluids. This text-
book introduces a number of the concepts, principles, and procedures which underlie the
analysis of any problem involving fluid flow. In this Introduction, we have selected a num-
ber of examples for which, by the end of the book, the student should be in a position to
make practically useful engineering-design calculations. We emphasise that simply attend-
ing lectures or reading this book is not sufficient: it is absolutely essential for the student
to spend at least twice the amount of lecture time attempting to solve the self-assessment
problems which follow most chapters.



2 Fluids and fluid properties

Wet. Sticky. Viscous. Viscid. Gelatinous. Slippery. Greasy. Oily. Lubricious. Slimy. Oleaginous.
Oozy. Soapy. Thick. Thin. Runny. Syrupy. Treacly. Tacky. Claggy. Muddy. Gummy. Gooey.
Mucilaginous. Glutinous. These are among the many adjectives commonly used to describe
liquids, to convey something about how liquids feel, how they flow, or how they respond to
being stirred or mixed. The list of words available to describe gases is far more limited: viscous,
viscid, heavy, and dense. We could also include smelly in both lists, although in the case of li-
quids what is sensed is the vapour form. In contrast to these adjectives, which primarily give
us a qualitative tactile impression, in this chapter we introduce the properties used to quantify
the physical characteristics of liquids and gases: dynamic and kinematic viscosity, density,
specific volume, relative density, bulk modulus of elasticity and compressibility, speed of
sound (or soundspeed), vapour pressure, and surface tension, together with the perfect-gas
law and an equation of state for liquids. We discuss how and why fluids and solids are dif-
ferent both on a molecular and on a macroscopic scale. We show that central to the definition
of the physical properties of fluids, and the way in which we go on to analyse fluid flow, is the
continuum hypothesis, which allows us to define properties on a scale which is far smaller
than any scale of engineering interest but still far larger than the underlying molecular scale.

2.1 Fluids and solids

The state of any substance can be classified as solid or fluid, with the term fluid including
liquids, gases, and vapours. From an engineering viewpoint, the essential difference between
a fluid and a solid is the way in which the substance resists shear stress. In the case of a solid,
the shear stress is resisted by a static deformation, the magnitude of which (for a given shear
stress) depends upon a material property called themodulus of rigidity. For a fluid, no matter
how low the shear stress, the deformation increases without limit as long as the shear stress
is applied. The rate of deformation of a fluid is determined by a property called the dynamic
viscosity (or just the viscosity). A fluid for which the viscosity is zero is said to be inviscid,
whereas a fluid with non-zero viscosity is said to be viscous4. A fluid with vanishingly small
viscosity is also termed a perfect fluid, the only known example of which is liquid helium
cooled to 2.17 K, at which critical temperature a fraction of the liquid becomes an inviscid
superfluid.
We can begin to quantify the statements in the first sentences of the preceding paragraph as

follows. Suppose we have a solid rectangular block subjected to a shear (i.e. tangential) force F,

4 The term viscid is also used.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 2.1 (a) Shear force applied to an elastic solid (b) Shear stress applied to a fluid

as illustrated in Figure 2.1(a). Unless the magnitude of the force is so great that the material
fractures or deforms plastically (in a sense, behaving like a liquid), the solid resists the force F
by a static deformation which we can measure by the angle φ (the Greek letter phi). In the case
of an elastic solid, according to Hooke’s law, the deformation is proportional to the applied
force, so we can write

F
A = τ = Gφ (2.1)

where A is the surface area over which F is distributed, τ (the Greek letter tau) is the shear
stress (i.e. the shear force per unit area), and the constant of proportionality G is called the
modulus of rigidity or shear modulus.
Consider now the situation illustrated in Figure 2.1(b), which shows a fluid between two

parallel plates separated by a short distance h, with the lower plate stationary and the upper
plate moving at velocity V . A fundamental concept of the flow of a viscous fluid, called the no-
slip condition (see Sections 6.4 and 15.3), is that fluid in contact with a solid surface adheres
to it and moves at the speed of the surface. Thus, the fluid in the immediate vicinity of the
upper surface moves forwards at velocity V , the fluid in contact with the lower surface is at
rest, and the fluid in-between moves as though in infinitesimally thin layers with velocity u,
which increases progressively with distance y from the lower surface, i.e.

u =
Vy
h
. (2.2)
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If we imagine a line normal to the plate surfaces and marking the fluid at some instant of time,
at time t later the line will have rotated through an angle φ, as shown in Figure 2.1(b), so that

tanφ = Vt
h
. (2.3)

If the time t is short, the angle φ will be small and negligibly different (measured in radians)
from tanφ, so that

φ = Vt
h
, (2.4)

from which we see that if t doubles, φ also doubles; if t triples, φ also triples; and so on. Rather
than think of progressive deformation in this way, it is far more convenient to think in terms
of the rate of change of deformation, which is given by

dφ
dt

= V
h
. (2.5)

From equation (2.2) and Figure 2.1(b) we can see that the quantity V/h is the gradient of the
velocity u with respect to distance y, i.e.

du
dy

= V
h
. (2.6)

Because gradients of velocity within a fluid occur due to the effects of shear stress, the rate
of deformation du/dy is referred to as the shear rate. For a fluid, the statement equivalent to
equation (2.1) can now be written as

τ = μdφ
dt

= μdu
dy

(2.7)

where the symbol μ (the Greek letter mu) represents the fluid property known as dynamic
viscosity (usually just referred to as the viscosity). In some books, the symbol η (the Greek
letter eta) is used rather than μ. Viscosity is the principal property which distinguishes a fluid
from a solid, and many of the adjectives listed at the beginning of this chapter are qualitative
descriptions of the viscous nature of fluids. For many simple fluids, including air and water,
μ is a thermodynamic property which depends only upon temperature and pressure but not
on the shear rate. As mentioned in Chapter 1, such fluids are known as Newtonian. One of
Newton’s many contributions to scientific understanding was the recognition that the resist-
ance to relative motion between two ‘layers’ of a fluid is proportional to the velocity difference
between the layers, as represented by equation (2.7).
It is easy to find descriptive distinctions between the four states (solid, liquid, gas, vapour)

in which matter occurs. Solids are hard and not easily deformed. A liquid has no inherent
shape and is so easily deformed that under the influence of gravity it takes up the shape of any
container into which it is poured without a change in volume. A gas is even easier to deform
than a liquid and increases in volume without limit unless constrained by a closed container,
which it then fills completely. The volume of a fixed mass of gas is decreased by any increase
in pressure, whereas to decrease the volume of a liquid by a measurable amount requires very
high pressures (see Section 2.6). These and other differences between the gas, liquid, and solid
states can be explained on the basis of their molecular structures. Movement of the molecules
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of a solid is highly restricted because they are closely packed in a fixed lattice structure with
large intermolecular cohesive forces between them. The molecules of a liquid have freedom
of movement and are further apart (though the typical spacing is still only 10–10 m or 0.1 nm)
so the intermolecular forces are smaller. In fact, the molecules are in a continual state of inter-
action with their neighbours and never move very far. Gas molecules, on the other hand, move
about randomly but in straight lines at high speed (about 1.2 to 1.5 times the speed of sound),
occasionally colliding with each other or the surfaces of a confining container. For both liquids
and gases the continual bombardment of any surface by molecules gives rise to a stress which
is normal to the surface and which we call pressure.
Since many substances can exist in any one of the three basic states, the differences in mo-

lecular structure are largely a matter of degree, and there is the possibility of transition between
these states. For example, the volume of a fixed mass of gas is easily decreased by increasing
its pressure, a process termed compression, while expansion is the opposite process. At very
high levels of compression the gas molecules are forced so close together that the gas becomes
indistinguishable from a liquid and is said to liquefy. Liquefaction can also be achieved by
cooling a gas to a temperature below its critical temperature. The free surface of any liquid is
always in contact with its gaseous state, called a vapour. At sufficiently high temperature many
solids melt and become liquid and, with further increase in temperature, increasing amounts
of vapour are produced until all the material is in the gaseous state. These different states are
identified thermodynamically as phases which represent forms of matter which are physically
and chemically stable.

2.2 Fluid density ρ

The density ρ (the Greek letter rho) of a fluid (or a solid), sometimes referred to as its mass
density, is the ratio of the massm of a given volume of that substance to its volume V, i.e.

ρ = m
V
. (2.8)

In the SI system of units, which we use exclusively in this textbook and present in some detail in
Chapter 3, the unit of mass is the kilogram (symbol kg), that of volume is the cubic metre (m3),
and the unit of density is kilogram per cubic metre (kg/m3). As we indicated in Section 2.1,
we can decrease the volume of a fixed mass of gas by increasing its pressure. According to
equation (2.8), the consequence of compression is an increase in the gas density. The pressure
of the air flowing through the core of a jet engine, such as that illustrated in Figure 1.8, is
increased progressively as the air passes through the compressor stages and so the air density
also increases (there is an accompanying increase in temperature).
As may be evident, our definition of density in the previous paragraph is incomplete: the

idea that the density of air can vary with location as it flows through a compressor implies
that we regard density as having a value at a given point, as is the case for all fluid properties.
A more complete definition of density requires that the volume V, and hence the mass m, is
so small that there is no appreciable variation of density within it. At the extreme, we could
define a volume so small that at any instant of time it contained a single molecule but this
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Figure 2.2 Variation of the ratio mass: volume with volume

does not lead to a sensible definition of density, not least because the molecule would not
have a fixed location. However, by progressively increasing the volume above such a low value,
we eventually reach a situation where, although molecules are continuously moving into and
out of the volume at its boundary, the net number of molecules within the volume at any
instant is practically constant. The effect on the ratio m:V of progressively increasing V is
shown schematically in Figure 2.2. The horizontal scale is compressed to the right of the ver-
tical line, and expanded to its left. OnceV exceeds the critical valueVC, we can define a density
as a thermodynamic property (i.e. a physical property which depends only upon temperature
and pressure) which is independent of volume and which can vary smoothly and continu-
ously throughout the entire body of fluid. We shall quantify the order of magnitude of VC
in Section 2.5. The densities and other properties of pure water and dry air at a pressure of 1
atm are given in Tables A.3 and A.4, respectively5. For other fluids of engineering interest the
physical properties are given in Tables A.5 (liquids) and A.6 (gases), also at a pressure of 1 atm.
There are two principal ways in which the density of a fluid influences flow. The most im-

portant stems from Newton’s second law of motion, which tells us that the acceleration of a
given mass is proportional to the net force applied to it. We shall discuss in detail the applic-
ation of Newton’s second law to fluid flow in many of the chapters in this book. For the time
being it is sufficient to realise that to produce a change in the velocity of a high-density fluid,
such as a liquid, involves much larger forces (per unit volume) than is the case for a fluid of
low density, such as a gas. For example, the power required to propel a submerged submarine
would be about a thousand times greater than for an airship of the same size and speed flying
through the air. The second way in which density plays a role involves gravity and the associ-
ated decrease in atmospheric pressure with altitude or increase in pressure with liquid depth.
These and other hydrostatic effects are the subject of Chapters 4 and 5. Compressible flow,
in which there can be very large, and even discontinuous, changes in density, is the subject of
Chapters 11, 12, and 13.

5 Table A.1 lists some atomic and molecular weights, and Table A.2, some universal constants. The physical
properties of the 1976 Standard Atmosphere (see Section 4.13) are given in Table A.7. Tables A.1 to A.7 form
Appendix 2.
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2.3 Atoms, molecules, andmoles

All matter is made up of a limited number of elementary substances, the chemical elements
(as of November 2011, 118 had been identified: 94 naturally occurring and 24 synthetic). So far
as this textbook is concerned, the basic building block for any chemical substance is the atom,
a tiny (typically with a radius less than 1 nm) particle which cannot be split without losing the
properties of the element. Each element has a relative atomicmass (atomic weight) based on a
scale in which the mass of the carbon-12 (12C) atom, the most abundant (almost 99%) isotope
of carbon, is 12. Most substances consist of molecules in which atoms are bound together
by interatomic forces. In a way similar to that of atomic weight, the molecular weight M
(relative molecular mass, or molecular mass), with the units kg/kmol, of these compounds
is defined relative to the mass of 12C. The atomic weights and molecular weights of some
common substances are listed in Table A.1 in Appendix 2, together with the symbols used for
atoms or the molecular formulae for molecules.
Although molecular weight is defined as a ratio, and so is a non-dimensional quantity (see

Chapter 3) which has no units, it is useful to express molecular weights in terms of a unit called
themole (symbol mol), 1 mol being the amount of a substance in grams numerically equal to
its molecular weight, or the kilomole (symbol kmol), which is the amount of substance in kilo-
grams. In the case of methane, for example,M = 16.04 kg/kmol. The number of molecules in 1
kmol of any substance is given by theAvogadro number,NA, a fundamental physical constant
the value of which is 6.022× 1026 molecules/kmol. If we have N molecules of a substance with
molecular weight M, the amount of that substance n = N/NA kmol, and the corresponding
mass ism = nM = NM/NA kg.

2.4 Perfect-gas law

At very high temperatures (above about 1000 ◦C) the molecular structure of a gas breaks down
(a process known as dissociation) and at very high pressures or low temperatures, as we have
already indicated in Section 2.1, gases can liquefy. Away from these extremes, most gases are
in good agreement with a thermal equation of state known as the perfect-gas6 law

p = ρRT, (2.9)

where p is the gas pressure in pascal (Pa = N/m2), T is the absolute temperature of the gas
in degrees kelvin (K = 273.15 + ◦C), and R is a constant of the gas called the specific gas
constant (with units m2/s2 ·K or kJ/kg ·K). A gas which obeys the equation of state p = ρRT
is a thermally perfect gas7. The unit m2/s2 ·K suggests a connection between R and a speed
which we shall show in Section 2.12 is that for the propagation of sound through the gas, i.e. the
speed of sound. The specific gas constant is related to the universal (or molar) gas constant
R as follows

6 The term perfect gas should not be confused with perfect fluid, which is an idealised fluid lacking both viscosity
and thermal conductivity.

7 Such a gas is sometimes termed an ideal gas rather than a perfect gas.
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R = MR, (2.10)

where M (with the unit kilogram per kilomole) is the molecular weight of the gas. The uni-
versal gas constant is defined in terms of the Boltzmann constant kB and the Avogadro
number NA as

R = kBNA. (2.11)

Boltzmann’s constant has the value 1.3807 × 10–23 J/K, and the universal gas constant has the
value 8.31451 kJ/kmol ·K (or 8314.51 J/kmol ·K).
The specific gas constant R is equal to the difference between the specific heats at constant

pressure CP and constant volume CV , i.e.

R = CP – CV . (2.12)

For a range of gases, values for the molecular weight M, the specific gas constant R, and the
ratio of the specific heats,

γ = CP
CV

(2.13)

are tabulated in Table A.6. A perfect gas for which CP and CV , and hence γ , are con-
stant is called a calorically perfect gas. It is usual to refer to a calorically perfect and
thermally perfect gas obeying p = ρRT simply as a perfect gas. The quantities in Table A.6
play an important role in compressible-flow theory (see Chapters 11, 12, and 13). Al-
though values for the corresponding gas density ρ at STP (20 ◦C, 1 atm) are also tabulated,
this is not essential, since the density of any of the gases listed can be calculated from
equation (2.9).

ILLUSTRATIVE EXAMPLE 2.1

Calculate the density of nitric oxide (NO) at 20 ◦C and 1 atm and also at 500 ◦C and 5 bar.

Solution

M = 30.01 kg/kmol (from Table A.6); p1 = 1.01325 × 105 Pa; T1 = 293.15 K; p2 = 5 × 105 Pa;
T2 = 773.15 K.
From equation (2.10)

R = R/M = 8314.51/30.01 = 277.1m2/s2.K.

From equation (2.9)

ρ1 =
p1
RT1

= 1.01325 × 105
277.1 × 293.15 = 1.248 kg/m3

and

ρ2 =
p2
RT2

= 5 × 105
277.1 × 773.15 = 2.334 kg/m3.
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Comments:

(a) It is generally unnecessary to carry so many significant figures (s.f.) in an engineering
calculation; 4 s.f. forR and 3 for other quantities are usually sufficient.

(b) As they should be, the values calculated here for R and ρ1 for NO are precisely the same
as those in Table A.6.

(c) The first step in the solution was to restate the data given (in this case for temperature
and pressure) in standard SI units. The student should develop the habit of converting
given data to standard SI form in this way.

2.5 Continuum hypothesis andmolecular mean free path

In Section 2.1 we discussed some of the qualitative differences between the molecular struc-
tures of liquids and gases. As we shall now see, these differences have a direct influence on the
size of the critical volume VC introduced in Section 2.4.
We consider first a gas with molecular weightM which obeys the perfect-gas law, to calcu-

late the average number of molecules contained in a cube (the choice of a cube is arbitrary, and
we could just as well have chosen another shape, such as a sphere) of gas of side length L m.
If the fluid density is ρ, from equation (2.8) the mass of the cube will be ρL3, since the cube
volume V = L3. From equations (2.9) and (2.10) we have

ρ = pM/RT (2.14)

so that the mass of our cube is given by

m = ρV = pMV/RT. (2.15)

From Section 2.3 we know that the molecular weight M is the mass in kg of 1 kmol of that
substance, so that our cube contains pV/RT kmol (the unit kmol is often written as kg mole).
Since the number of molecules in 1 kmol of any substance is given by the Avogadro number,
NA, the value of which is 6.022 × 1026 molecules/kmol, we see that the average number of
molecules N in the cube must be given by

N = pVNA/RT. (2.16)

Equation (2.16) can be rearranged as

V = NRT/pNA (2.17)

fromwhich we can calculate the volumeV, which containsN molecules of a gas at temperature
T (K) and pressure p (Pa).
In terms of the gas density ρ, equation (2.17) becomes

V = NM/ρNA. (2.18)

Equation (2.16) shows that, since R is a universal constant, the same for all gases, the aver-
age number of molecules N in a volume V of any gas depends only upon its pressure p and
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Table 2.1 Number N of gas molecules in a volume V.

L V N

(m3)

1 mm 10–9 2.7 E+16

1 μm 10–18 2.7 E+7

100 nm 10–21 2.7 E+4

50 nm 1.25 × 10–22 3362

33.4 nm 3.73 × 10–23 1000

20 nm 9 × 10–24 215

10 nm 10–24 27

3.34 nm 3.73 × 10–26 1

absolute temperature T. This equation can therefore be regarded as a quantitative form of
Avogadro’s law: equal volumes of two gases, at the same temperature and pressure, contain the
same number of molecules. Table 2.1 shows the results obtained for N using equation (2.16),
for 0 ◦C and 1 atm (standard temperature and pressure, or STP).
As we shall see in Section 4.13, the air density in the atmosphere decreases with altitude.

At the lower limit of the stratosphere (an altitude of about 20 km), according to Table A.7,
the temperature is about 217 K, and the pressure is 5475 Pa (the corresponding density is
0.0880 kg/m3), while at the outer limit of the mesosphere (about 80 km) the values are 196.7 K
and 0.886 Pa, respectively, so that, according to equation (2.17), a cube of air containing 1000
molecules would have a side length of 81.7 nm at an altitude of 20 km, and 0.797 μm at 80 km,
both of which are negligibly small compared with the dimensions of any object likely to be
flying at such altitudes. Equation (2.18) also shows that the density of air would have to fall to
4.8× 10–14 kg/m3 (which would correspond to an altitude of about 1600 km) for the cube size
to reach 1 mm.
We cannot give a precise value but would probably not want the number of molecules over

which to form an average to be any lower than 1000 and so conclude that for a gas at STP
the concept of fluid density begins to fail if the cube size VC is below about 30 nm (i.e. 0.3
μm or 3 × 107m). To put this in perspective, the diameter of a human hair is typically about
100 μm, and the wavelength of visible light is about 589 nm. There are few, if any, practical
situations involving gas-flow channels with dimensions which come anywhere close to 30 nm.
Even devices known as microchannels typically have dimensions in the range 1 to 500 μm.
Gases for which the number of molecules in a 1 μm cube fall below about 1000 are said to be
rarified and are normally encountered only in outer space.
Because the molecular structure of a liquid is generally more complex than that of a gas,

the number of molecules per unit volume, N, which is termed themolecular number density,
varies from liquid to liquid. For a cube of side length L of liquid with density ρ the mass is
again given by m = ρL3. The number of kilomoles of liquid is then ρL3/M, and the number
of molecules is ρL3NA/M. Table 2.2 shows values of N for several liquids, with L = 1 μm
(V= 10–18 m3).
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Table 2.2 Number N of molecules in a liquid cube of
side length L = 1 μm

Liquid N

Petrol, C8H18 4.4 E+9
Carbon tetrachloride, CCl4 6.3 E+9
Liquid oxygen, O2 7.7 E+9
Pure glycerol, C3H8O3 8.2 E+9
Ethyl alcohol, C2H5OH 1.0 E+10
Water, H2O 3.35 E+10
Mercury, Hg 4.07 E+10

If we compare Table 2.2 with Table 2.1, we see that the molecular number density N for
liquids far exceeds that for gases. We conclude from the foregoing that, except in extreme cir-
cumstances, VC will always be far smaller than any volume of engineering interest and can
be regarded as defining what we mean by a point in a fluid. Although we have specifically
discussed the property density, the same considerations apply to any physical property and
enable us to define point values of these properties, which vary smoothly and continuously
throughout a fluid. Although these ‘large-scale’ (ormacroscopic) properties reflect the under-
lying molecular structure, it is generally the case that we can treat the majority of problems
of fluid flow without the need to consider molecular structure directly. The idea that both
fluid properties and flow properties can be treated in this way is known as the continuum
hypothesis.
If molecules in a fluid are considered to be hard spheres of effective diameter σ in random

motion constantly colliding with each other elastically, kinetic theory leads an approximate
expression for the average distanceΛ between successive collisions

Λ = 1√
2πNVσ

2 (2.19)

where NV is the number of molecules per unit volume or the volume number density. The
quantity Λ is termed themolecular mean free path, and equation (2.19) is usually attributed
to James Clerk Maxwell. The equation for Λ can be written in terms of other quantities as
follows. The number of moles n in a mass of gas m of molecular mass (or molecular weight)
M is given by

n = m/M (2.20)

and so the number of molecules in the mass of gas NM is

NM = nNA = mNA/M (2.21)

where NA is the Avogadro number (see Section 2.3).
It follows that

NV = NM/V = mNA/MV = ρNA/M (2.22)
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and, from equation (2.19),

Λ = M/
√
2πρNAσ

2. (2.23)

SinceM and σ are fixed for a given gas, and NA is a universal constant, equation (2.23) leads
to the conclusion that Λ is inversely proportional to the gas density ρ. As we shall see in
Section 4.13, the density of the air in the earth’s atmosphere decreases with altitude (as can be
seen from Table A.7). Although at an altitude of 71 km ρ has fallen to about 0.01% of its value
at sea level, the corresponding value ofΛ is still less than 1 mm.
If we introduce the perfect-gas equation (2.9), p = ρRT, equation (2.23) may be written as

Λ = RT/
√
2πpNAσ

2 (2.24)

where we have made use of equation (2.10) to introduce the universal gas constant R. Since
the ratioR/NA defines the Boltzmann constant kB, the equation forΛmay also be written as

Λ = kBT√
2πpσ 2

. (2.25)

Table 2.3 includes values of the effective molecular diameter σ and molecular mean free path
Λ for some common gases at 0 ◦C and 1 atmosphere8.

Table 2.3 Effective molecular diameter σ and molecular mean
free pathΛ for some common gases at 0 ◦C and 1 atmosphere

Gas σ Λ

(pm) (nm)

Air 366 69.1
Argon 342 62.6
Carbon dioxide 390 39.0
Carbon monoxide 371 58.6
Chlorine 440 27.4
Ethylene 423 34.3
Helium 258 173.6
Hydrogen 297 110.6
Methane 380 48.1
Neon 279 124.0
Nitrogen 375 58.8
Nitrous oxide 388 38.7
Oxygen 354 63.3
Sulphur dioxide 429 27.4

8 With the exception of those for air, the values for σ and Λ have been taken from Kaye and Laby online. The
values for air are from the CRC Handbook of Chemistry and Physics. Many of the values from these two sources differ
by as much as 20%.
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For the gases in the table, the arithmetic average value for Λ = 66.8 nm. A cube with this
side length 66.8 nm would have a volume of about 3 × 10–22 m3 and so contain about 8000
molecules, another indication of the validity of the continuum hypothesis.

ILLUSTRATIVE EXAMPLE 2.2

Calculate the molecular mean free path for a gas with molecular weight 28.96 kg/kmol, density
1.28 kg/m3, and effective molecular diameter 366 pm.

Solution

M = 28.96 kg/kmol; ρ = 1.28 kg/m3; σ = 3.66× 10–10 m; NA = 6.022× 1026 molecules/kmol.
We use equation (2.23) to findΛ

Λ = M/
√
2πρNAσ

2

= 28.96√
2×π × 1.28× 6.022× 1026 × (3.66× 10–10

)2
= 6.33× 10–8 m or 63.3 nm.

Comment:

The value for Λ calculated from equation (2.23) represents the result of kinetic theory for
a gas with the properties of dry air. This value differs by about 8% from the experimentally
determined value of 69.1 nm.

2.6 Equation of state for liquids

Although equation (2.12) for the ratio of specific heats γ , has no generally valid equivalent
applicable to liquids, it is usually adequate to assume that ρ = constant, and CP = CV =
constant, so that

γ = CP
CV

= 1. (2.26)

An approximate equation, cited by Batchelor (2000), for the influence of extreme pressure
(typically in excess of 1000 bar) on the density of water is

ln
(
ρ

ρ0

)
= 1
n ln
(
p/p0 + C
1 + C

)
(2.27)

where p is the static pressure measured in bar, ρ is the corresponding density, p0 = 1 bar (i.e.
approximately equal to atmospheric pressure), ρ0 = 1000 kg/m3, C = 3000, and n = 7. For
p/p0 = 1000, approximately equal to the pressure at a water depth of 10 km, the equation
gives ρ/ρ0 ≈ 1.04, confirming that the effect of pressure on water density can be considered
practically negligible.
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A more general equation for the influence of pressure on the density of a range of liquids is
the modified Tait equation

1 + ρ
ρ0

= A ln
(
p/p0 + D
1 + D

)
(2.28)

where p0 is a low pressure (usually the barometric pressure B or 1 bar), ρ0 is the liquid density
at pressure p0, and A and D are constants for the given liquid.

2.7 Specific volume v, relative density σ , and specific
weightw

In thermodynamics it is often more convenient to work in terms of specific volume v than
density ρ. The word ‘specific’ here means ‘per unit mass’, i.e.

v = V
m (2.29)

from which we see that the unit of v is m3/kg.
Relative density σ (Greek letter sigma) is the ratio of the density of a fluid to that of a

standard reference fluid ρREF , i.e.

σ = ρ

ρREF
(2.30)

Because it is defined as the ratio of two physical quantities with the same unit, relative density9

has a purely numerical value without unit and is again non-dimensional (see Chapter 3).
For liquids, the reference fluid is usually taken to be pure water at 4 ◦C and 1 atm when it

has a density ρREF = 1000 kg/m3. Water shows anomalous behaviour in that between 0 ◦C and
4 ◦C its density increases to a maximum of 999.972 kg/m3 at 4 ◦C. Below 0 ◦C water solidifies
to become ice. The temperature for the reference fluid is sometimes taken as 20 ◦C at which
the density of water is 998.20 kg/m3.
For gases the reference fluid is usually pure air (although hydrogen is sometimes used),

which has a density of 1.204 kg/m3 at 20 ◦C and 1 atm. In practice, relative density is little used
for gases.
Specific weight w, which should not be confused with specific gravity (i.e. relative dens-

ity), is the weight per unit volume of a substance. Since density ρ is mass per unit volume, it
follows that

w = ρg (2.31)

where g is the acceleration due to gravity and has the value 9.807 m/s2, usually rounded to
three significant figures as 9.81 m/s2. The units of w can be shown to be N/m3 because, as we
shall see in Chapter 3, 1 newton (symbol N) = 1 kg ·m/s2.

9 Particularly in older texts, the term specific gravity is sometimes used instead of relative density.
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ILLUSTRATIVE EXAMPLE 2.3

Calculate the density and specific weight for liquid oxygen, which has a relative density of 1.46
at –252.7 ◦C and 1 atm.

Solution

σ = 1.46 = ρ/ρREF ; so, with ρEF = 1000 kg/m3, for a liquid, ρ = σρREF = 1.46 × 1000 = 1460
kg/m3.

w = ρg = 1460 × 9.81 = 14 320N/m3.

Comments:

(a) In any problem where either relative density or specific weight is specified, the first step
should always be to calculate the fluid density in SI units.

(b) It is almost always advisable to work through any problem using algebraic symbols and
to substitute numerical values as late as possible.

2.8 Dynamic viscosity (viscosity) μ

In Section 2.1, we introduced dynamic viscosity (symbol μ) as the property which provides
the link between the shear stress applied to a fluid and the resulting rate of deformation. For
the simple case of a fluid confined between two parallel plates, one fixed, the other moving,
we showed that the rate of deformation was equal to the velocity gradient within the fluid. In
most flows the spatial variation of velocity is more complicated than the linear variation shown
in Figure 2.1. In more general situations, such as that shown in Figure 2.3, the continuum
hypothesis allows us to relate the shear stress τ at any point in a fluid to the velocity gradient
(often termed the shear rate) du/dy at that point according to

τ = μdu
dy

. (2.32)

y

u

slope = shear rate, du
dy

Figure 2.3 Velocity versus normal distance to illustrate velocity gradient


