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Preface v

Preface
Digital signal processing (DSP) is one of the ‘foundational’ but some-
what invisible, engineering topics of the modern world, without which,
many of the technologies we take for granted: the digital telephone,
digital radio, television, CD and MP3 players, WiFi, radar, to name
just a few, would not be possible. A relative newcomer by comparison,
statistical machine learning is the theoretical backbone of exciting tech-
nologies that are by now starting to reach a level of ubiquity, such as
automatic techniques for car registration plate recognition, speech recog-
nition, stock market prediction, defect detection on assembly lines, robot
guidance and autonomous car navigation. Statistical machine learning
has origins in the recent merging of classical probability and statistics
with artificial intelligence, which exploits the analogy between intelligent
information processing in biological brains and sophisticated statistical
modelling and inference.
DSP and statistical machine learning are of such wide importance to

the knowledge economy that both have undergone rapid changes and
seen radical improvements in scope and applicability. Both DSP and
statistical machine learning make use of key topics in applied mathe-
matics such as probability and statistics, algebra, calculus, graphs and
networks. Therefore, intimate formal links between the two subjects
exist and because of this, an emerging consensus view is that DSP and
statistical machine learning should not be seen as separate subjects. The
many overlaps that exist between the two subjects can be exploited to
produce new digital signal processing tools of surprising utility and effi-
ciency, and wide applicability, highly suited to the contemporary world
of pervasive digital sensors and high-powered and yet cheap, comput-
ing hardware. This book gives a solid mathematical foundation to the
topic of statistical machine learning for signal processing, including the
contemporary concepts of the probabilistic graphical model (PGM) and
nonparametric Bayes, concepts which have only more recently emerged
as important for solving DSP problems.
The book is aimed at advanced undergraduates or first-year PhD stu-

dents as well as researchers and practitioners. It addresses the founda-
tional mathematical concepts, illustrated with pertinent and practical
examples across a range of problems in engineering and science. The aim
is to enable students with an undergraduate background in mathemat-
ics, statistics or physics, from a wide range of quantitative disciplines,
to get quickly up to speed with the latest techniques and concepts in
this fast-moving field. The accompanying software will enable readers
to test out the techniques to their own signal analysis problems. The
presentation of the mathematics is much along the lines of a standard
undergraduate physics or statistics textbook, free of distracting techni-
cal complexities and jargon, while not sacrificing rigour. It would be an
excellent textbook for emerging courses in machine learning for signals.
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Mathematical foundations 1
Statistical machine learning and signal processing are topics in applied
mathematics, which are based upon many abstract mathematical con-
cepts. Defining these concepts clearly is the most important first step in
this book. The purpose of this chapter is to introduce these foundational
mathematical concepts. It also justifies the statement that much of the
art of statistical machine learning as applied to signal processing, lies in
the choice of convenient mathematical models that happen to be useful
in practice. Convenient in this context means that the algebraic conse-
quences of the choice of mathematical modeling assumptions are in some
sense manageable. The seeds of this manageability are the elementary
mathematical concepts upon which the subject is built.

1.1 Abstract algebras
We will take the simple view in this book that mathematics is based on
logic applied to sets: a set is an unordered collection of objects, often
real numbers such as the set {π, 1, e} (which has three elements), or the
set of all real numbers R (with an infinite number of elements). From
this modest origin it is a remarkable fact that we can build the entirety
of the mathematical methods we need. We first start by reviewing some
elementary principles of (abstract) algebras.

Groups
An algebra is a structure that defines the rules of what happens when
pairs of elements of a set are acted upon by operations. A kind of
algebra known as a group (+,R) is the usual notion of addition with
pairs of real numbers. It is a group because it has an identity, the
number zero (when zero is added to any number it remains unchanged,
i.e.a+0 = 0+a = a, and every element in the set has an inverse (for any
number a, there is an inverse −a which means that a+(−a) = 0. Finally,
the operation is associative, which is to say that when operating on three
or more numbers, addition does not depend on the order in which the
numbers are added (i.e. a + (b + c) = (a + b) + c). Addition also has
the intuitive property that a + b = b + a, i.e. it does not matter if the
numbers are swapped: the operator is called commutative, and the group
is then called an Abelian group. Mirroring addition is multiplication
acting on the set of real numbers with zero removed (×,R−{0}), which
is also an Abelian group. The identity element is 1, and the inverses

Machine Learning for Signal Processing: Data Science, Algorithms, and Computational Statistics. Max A. Little.
c© Max A. Little 2019. Published in 2019 by Oxford University Press. DOI: 10.1093/oso/9780198714934.001.0001



2 Mathematical foundations

are the reciprocals of each number. Multiplication is also associative,
and commutative. Note that we cannot include zero because this would
require the inclusion of the inverse of zero 1/0, which does not exist
(Figure 1.1).

Fig. 1.1: Illustrating abstract groups
and mapping between them. Shown
are the two continuous groups of real
numbers under addition is (left col-
umn) and multiplication (right col-
umn), with identities 0 and 1 re-
spectively. The homomorphism of
exponentiation maps addition onto
multiplication (left to right column),
and the inverse, the logarithm, maps
multiplication back onto addition
(right to left column). Therefore,
these two groups are homomorphic.

Groups are naturally associated with symmetries. For example, the
set of rigid geometric transformations of a rectangle that leave the rect-
angle unchanged in the same position, form a group together with com-
positions of these transformations (there are flips along the horizontal
and vertical midlines, one clockwise rotation through 180° about the
centre, and the identity transformation that does nothing). This group
can be denoted as V4 = (◦, {e, h, v, r}), where e is the identity, h the hor-
izontal flip, v the vertical flip, and r the rotation, with the composition
operation ◦. For the rectangle, we can see that h◦v = r, i.e. a horizontal
followed by a vertical flip corresponds to a 180° rotation (Figure 1.2).
Very often, the fact that we are able to make some convenient alge-

braic calculations in statistical machine learning and signal processing,
can be traced to the existence of one or more symmetry groups that arise
due to the choice of mathematical assumptions, and we will encounter
many examples of this phenomena in later chapters, which often lead to
significant computational efficiencies. A striking example of the conse-
quences of groups in classical algebra is the explanation for why there
are no solutions that can be written in terms of addition, multiplica-
tion and roots, to the general polynomial equation

∑N
i=0 aix

i = 0 when
N ≥ 5. This fact has many practical consequences, for example, it is
possible to find the eigenvalues of a general matrix of size N ×N using
simple analytical calculations when N < 5 (although the analytical cal-
culations do become prohibitively complex), but there is no possibility
of using similar analytical techniques when N ≥ 5, and one must resort
to numerical methods, and these methods sometimes cannot guarantee
to find all solutions!

vh

r

Fig. 1.2: The group of symmetries
of the rectangle, V4 = (◦, {e, h, v, r}).
It consists of horizontal and vertical
flips, and a rotation of 180° about the
centre. This group is isomorphic to
the group M8 = (×8, {1, 3, 5, 7}) (see
Figure 1.3).

Many simple groups with the same number of elements are isomorphic
to each other, that is, there is a unique function that maps the elements
of one group to the elements of the other, such that the operations
can be applied consistently to the mapped elements. Intuitively then,
the identity in one group is mapped to that of the other group. For
example, the rotation group V4 above is isomorphic to the group M8 =
(×8, {1, 3, 5, 7}), where×8 indicates multiplication modulo 8 (that is,
taking the remainder of the multiplication on division by 8, see Figure
1.3).
Whilst two groups might not be isomorphic, they are sometimes ho-

momorphic: there is a function between one group and the other that
maps each element in the first group to one or more elements in the
second group, but the mapping is still consistent under the second oper-
ation. A very important example is the exponential map, exp (x), that
converts addition over the set of real numbers, to multiplication over
the set of positive real numbers: ea+b = eaeb; a powerful variant of
this map is widely used in statistical inference to simplify and stabilize
calculations involving the probabilities of independent statistical events,
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by converting them into calculations with their associated information
content. This is the negative logarithmic map − ln (x), that converts
probabilities under multiplication, into entropies under addition. This
map is very widely used in statistical inference as we shall see.

Fig. 1.3: The table for the symme-
try group V4 = (◦, {e, h, v, r}) (top),
and the group M8 = (×8, {1, 3, 5, 7})
(bottom), showing the isomorphism
between them obtained by mapping
e 7→ 1, h 7→ 3, v 7→ 5 and r 7→ 7.

For a more detailed but accessible background to group theory, read
Humphreys (1996).

Rings
Whilst groups deal with one operation on a set of numbers, rings are a
slightly more complex structure that often arises when two operations
are applied to the same set. The most immediately tangible example
is the operations of addition and multiplication on the set of integers Z
(the positive and negative whole numbers with zero). Using the defini-
tion above, the set of integers under addition form an Abelian group,
whereas under multiplication the integers form a simple structure known
as a monoid – a group without inverses. Multiplication with the integers
is associative, and there is an identity (the positive number one), but the
multiplicative inverses are not integers (they are fractions such as 1/2,
−1/5 etc.) Finally, in combination, integer multiplication distributes
over integer addition: a × (b+ c) = a × b + a × c = (b+ c) × a. These
properties define a ring: it has one operation that together with the set
forms an Abelian group, and another operation that, with the set, forms
a monoid, and the second operation distributes over the first. As with
integers, the set of real numbers under the usual addition and multipli-
cation also has the structure of a ring. Another very important example
is the set of square matrices all of size N × N with real elements un-
der normal matrix addition and multiplication. Here the multiplicative
identity element is the identity matrix of size N ×N , and the additive
identity element is the same size square matrix with all zero elements.
Rings are powerful structures that can lead to very substantial com-

putational savings for many statistical machine learning and signal pro-
cessing problems. For example, if we remove the condition that the
additive operation must have inverses, then we have a pair of monoids
that are distributive. This structure is known as a semiring or semifield
and it turns out that the existence of this structure in many machine
learning and signal processing problems makes these otherwise computa-
tionally intractable problems feasible. For example, the classical Viterbi
algorithm for determining the most likely sequence of hidden states in a
Hidden Markov Model (HMM) is an application of themax-sum semifield
on the dynamic Bayesian network that defines the stochastic dependen-
cies in the model.
Both Dummit and Foote (2004) and Rotman (2000) contain detailed

introductions to abstract algebra including groups and rings.
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1.2 Metrics
Distance is a fundamental concept in mathematics. Distance functions
play a key role in machine learning and signal processing, particularly
as measures of similarity between objects, for example, digital signals
encoded as items of a set. We will also see that a statistical model often
implies the use of a particular measure of distance, and this measure
determines the properties of statistical inferences that can be made.
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Fig. 1.4: Metric 2D circles d (x,0) = c
for various distance metrics. From
top to bottom, Euclidean distance,
absolute distance, the distance

d (x, y) =
(∑D

i=1 |xi − yi|
0.3)0.3−1

,
and the Mahalanobis distance for
Σ11 = Σ22 = 1.0, Σ12 = Σ21 = −0.5.
The contours are c = 1 (red lines)
and c = 0.5 (blue lines).

A geometry is obtained by attaching a notion of distance to a set: it
becomes a metric space. A metric takes two points in the set and returns
a single (usually real) value representing the distance between them. A
metric must have the following properties to satisfy intuitive notions of
distance:

(1) Non-negativity: d (x, y) ≥ 0,
(2) Symmetry: d (x, y) = d (y, x) ,
(3) Coincidence: d (x, x) = 0, and
(4) Triangle inequality: d (x, z) ≤ d (x, y) + d (y, z).

Respectively, these requirements are that (1) distance cannot be nega-
tive, (2) the distance going from x to y is the same as that from y to
x, (3) only points lying on top of each other have zero distance between
them, and (4) the length of any one side of a triangle defined by three
points cannot be greater than the sum of the length of the other two
sides. For example, the Euclidean metric on a D-dimensional set is:

d (x,y) =

√√√√ D∑
i=1

(xi − yi)2 (1.1)

This represents the notion of distance that we experience in everyday
geometry. The defining properties of distance lead to a vast range of
possible geometries, for example, the city-block geometry is defined by
the absolute distance metric:

d (x,y) =
D∑
i=1
|xi − yi| (1.2)

City-block distance is so named because it measures distances on a
grid parallel to the co-ordinate axes. Distance need not take on real
values, for example, the discrete metric is defined as d (x, y) = 0 if
x = y and d (x, y) = 1 otherwise. Another very important metric is the
Mahalanobis distance:

d (x,y) =
√

(x− y)T Σ−1 (x− y) (1.3)

This distance may not be axis-aligned: it corresponds to the finding
the Euclidean distance after applying an arbitrary stretch or compression
along each axis followed by an arbitrary D-dimensional rotation (indeed
if Σ = I, the identity matrix, this is identical to the Euclidean distance).
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Figure 1.4 shows plots of 2D circles d (x,0) = c for various metrics, in
particular c = 1 which is known as the unit circle in that metric space.
For further reading, metric spaces are introduced in Sutherland (2009)

in the context of real analysis and topology.

1.3 Vector spaces
A space is just the name given to a set endowed with some additional
mathematical structure. A (real) vector space is the key structure of
linear algebra that is a central topic in most of classical signal pro-
cessing — all digital signals are vectors, for example. The definition
of a (finite) vector space begins with an ordered set (often written as
a column) of N real numbers called a vector, and a single real num-
ber called a scalar. To that vector we attach the addition operation
which is both associative and commutative, that simply adds every cor-
responding element of the numbers in each vector together, written as
v + u. The identity for this operation is the vector with N zeros, 0.

Fig. 1.5: Important concepts in 2D
vector spaces. The standard basis
(e1, e2) is aligned with the axes. Two
other vectors (v1, v2) can also be used
as a basis for the space, all that is re-
quired is they are linearly indepen-
dent of each other (in the 2D case,
they are not simply scalar multiples
of each other). Then x can be rep-
resented in either basis. The dot
product between two vectors is pro-
portional to the cosine of the an-
gle between them: cos (θ) ∝ 〈v1, v2〉.
Because (e1, e2) are at mutual right
angles, they have zero dot product
and therefore the basis is orthogo-
nal. Additionally, it is an orthonor-
mal basis because they are unit norm
(length) (‖e1‖ = ‖e2‖ = 1). The other
basis vectors are neither orthogonal
nor unit norm.

Additionally, we define a scalar multiplication operation that multi-
plies each element of the vector with a scalar, λ. Using the scalar
multiplication by λ = −1, we can then form inverses of any vector.
Scalar multiplication should not matter in which order two scalar mul-
tiplications occur, e.g. λ (µv) = (λµ)v = (µλ)v = µ (λv). We
also require that scalar multiplication distributes over vector addition,
λ (v + u) = λv + λu, and scalar addition distributes over scalar multi-
plication, (λ+ µ)v = λv + µv.
Every vector space has at least one basis for the space: this is a set of

linearly independent vectors, such that every vector in the vector space
can be written as a unique linear combination of these basis vectors
(Figure 1.5). Since our vectors have N entries, there are always N
vectors in the basis. Thus, N is the dimension of the vector space.
The simplest basis is the so-called standard basis, consisting of the N
vectors e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T etc. It is easy to see that
a vector v = (v1, v2, . . . , vN )T can be expressed in terms of this basis as
v = v1e1 + v2e2 + · · ·+ vNeN .
By attaching a norm to a vector space (see below), we can measure

the length of any vector, the vector space is then referred to as a normed
space. To satisfy intuitive notions of length, a norm V (u) must have
the following properties:

(1) Non-negativity: V (u) ≥ 0,
(2) Positive scalability: V (αu) = |α|V (u),
(3) Separation: If V (u) = 0 then u = 0, and
(4) Triangle inequality: V (u+ v) ≤ V (u) + V (v).

Often, the notation ‖u‖ is used. Probably most familiar is the Eu-
clidean norm ‖u‖2 =

√∑N
i=1 u

2
i , but another norm that gets heavy use

in statistical machine learning is the Lp-norm:
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‖u‖p =
(

N∑
i=1
|ui|p

) 1
p

(1.4)

of which the Euclidean (p = 2) and city-block (p = 1) norms are special
cases. Also of importance is the max-norm ‖u‖∞ = maxi=1...N |ui|,
which is just the length of the largest co-ordinate.
There are several ways in which a product of vectors can be formed.

The most important in our context is the inner product between two
vectors:

α = 〈u,v〉 =
N∑
i=1

uivi (1.5)

This is sometimes also described as the dot product u · v. For complex
vectors, this is defined as:

〈u,v〉 =
N∑
i=1

uiv̄i (1.6)

where ā is the complex conjugate of a ∈ C.
We will see later that the dot product plays a central role in the sta-

tistical notion of correlation. When two vectors have zero inner prod-
uct, they are said to be orthogonal; geometrically they meet at a right-
angle. This also has a statistical interpretation: for certain random vari-
ables, orthogonality implies statistical independence. Thus, orthogonal-
ity leads to significant simplifications in common calculations in classical
DSP.
A special and very useful kind of basis is an orthogonal basis where

the inner product between every pair of distinct basis vectors is zero:

〈vi,vj〉 = 0 for all i 6= j, i, j = 1, 2 . . . N (1.7)

In addition, the basis is orthonormal if every basis vector has unit
norm ‖vi‖ = 1 – the standard basis is orthonormal, for example (Figure
1.5). Orthogonality/orthonormality dramatically simplifies many calcu-
lations over vector spaces, partly because it is straightforward to find
the N scalar coefficients ai of an arbitrary vector u in this basis using
the inner product:

ai = 〈u,vi〉
‖vi‖2

(1.8)

which simplifies to ai = 〈u,vi〉 in the orthonormal case. Orthonormal
bases are the backbone of many methods in DSP and machine learning.
We can express the Euclidean norm using the inner product: ‖u‖2 =√
u · u. An inner product satisfies the following properties:

(1) Non-negativity: u · v ≥ 0,
(2) Symmetry: u · v = v · u, and
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(3) Linearity: (αu) · v = α (u · v).
There is an intuitive connection between distance and length: assuming
that the metric is homogeneous d (αu, αv) = |α| d (u,v) and transla-
tion invariant d (u,v) = d (u+ a,v + a), a norm can be defined as the
distance to the origin ‖u‖ = d (0,u). A commonly occurring example
of this the so-called squared L2 weighted norm ‖u‖2A =uTAu which is
just the squared Mahalanobis distance d (0,u)2 discussed earlier with
Σ−1 = A.
On the other hand, there is one sense in which every norm induces an

associated metric with the construction d (u,v) = ‖u− v‖. This con-
struction enjoys extensive use in machine learning and statistical DSP to
quantify the “discrepancy” or “error” between two signals. In fact, since
norms are convex (discussed later), it follows that metrics constructed
this way from norms, are also convex, a fact of crucial importance in
practice.

Fig. 1.6: A ‘flow diagram’ depicting
linear operators. All linear opera-
tors share the property that the op-
erator L applied to the scaled sum
of (two or more) vectors α1u1 + α2u2
(top panel), is the same as the scaled
sum of the same operator applied to
each of these vectors first (bottom
panel). In other words, it does not
matter whether the operator is ap-
plied before or after the scaled sum.

A final product we will have need for in later chapters is the elemen-
twise product w = u ◦ v which is obtained by multiplying each element
in the vector together wn = unvn.

Linear operators
A linear operator or map acts on vectors to create other vectors, and
while doing so, preserve the operations of vector addition and scalar
multiplication. They are homomorphisms between vector spaces. Lin-
ear operators are fundamental to classical digital signal processing and
statistics, and so find heavy use in machine learning. Linear operators
L have the linear combination property:

L [α1u1 + α2u2 + · · ·+ αNuN ] = (1.9)
α1L [u1] + α2L [u2] + · · ·+ αNL [uN ]

What this says is that the operator commutes with scalar multiplica-
tion and vector addition: we get the same result if we first scale, then
add the vectors, and then apply the operator to the result, or, apply the
operator to each vector, then scale them, and them add up the results
(Figure 1.6).
Matrices (which we discuss next), differentiation and integration, and

expectation in probability are all examples of linear operators. The
linearity of integration and differentiation are standard rules which can
be derived from the basic definitions. Linear maps in two-dimensional
space have a nice geometric interpretation: straight lines in the vector
space are mapped onto other straight lines (or onto a point if they are
degenerate maps). This idea extends to higher dimensional vector spaces
in the natural way.

Matrix algebra
When vectors are ‘stacked together’ they form a powerful structure
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which is a central topic of much of signal processing, statistics and ma-
chine learning: matrix algebra. A matrix is a ‘rectangular’ array of
N ×M elements, for example, the 3× 2 matrix A is:

A =

 a11 a12
a21 a22
a31 a32

 (1.10)

This can be seen to be two length three vectors stacked side-by-side.
The elements of a matrix are often written using the subscript notation
aij where i = 1, 2, . . . , N and j = 1, 2, . . . ,M . Matrix addition of two
matrices, is commutative: C = A + B = B+A, where the addition is
element-by-element i.e. cij = aij + bij .
As with vectors, there are many possible ways in which matrix multi-

plication could be defined: the one most commonly encountered is the
row-by-column inner product. For two matrices A of size N ×M and
B of size M ×P , the product C = A×B is a new matrix of size N ×P
defined as:

cij =
M∑
k=1

aikbkj i = 1, 2, . . . , N, j = 1, 2, . . . , P (1.11)

Fig. 1.7: A depiction of the geo-
metric effect of invertible and non-
invertible square matrices. The in-
vertible square matrix A maps the
triangle at the bottom to the ‘thin-
ner’ triangle (for example, by trans-
forming the vector for each vertex).
It scales the area of the triangle by
the determinant |A| 6= 0. However,
the non-invertible square matrix B
collapses the triangle onto a single
point with no area because |B| = 0.
Therefore, A−1 is well-defined, but
B−1 is not.

This can be seen to be the matrix of all possible inner products of each
row of A by each column of B. Note that the number of columns of the
left hand matrix must match the number of rows of the right hand one.
Matrix multiplication is associative, it distributes over matrix addition,
and it is compatible with scalar multiplication: αA = B simply gives the
new matrix with entries bij = αaij , i.e. it is just columnwise application
of vector scalar multiplication. Matrix multiplication is, however, non-
commutative: it is not true in general that A×B gives the same result
as B×A.
A useful matrix operator is the transpose that swaps rows with

columns; if A is an N ×M matrix then AT = B is the M ×N matrix
bji = aij . Some of the properties of the transpose are: it is self-inverse(
AT
)T = A; respects addition (A + B)T = AT + BT ; and it reverses

the order of factors in multiplication (AB)T = BTAT .

Square and invertible matrices
So far, we have not discussed how to solve matrix equations. The case
of addition is easy because we can use scalar multiplication to form the
negative of a matrix, i.e. given C = A + B, finding B requires us to
calculate B = C −A = C + (−1) A. In the case of multiplication, we
need to find the “reciprocal” of a matrix, e.g. to solve C = AB for B we
would naturally calculate A−1C = A−1AB = B by the usual algebraic
rules. However, things become more complicated because A−1 does not
exist in general. We will discuss the conditions under which a matrix
does have a multiplicative inverse next.
All square matrices of size N × N can be summed or multiplied to-
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gether in any order. A square matrix A with all zero elements except
for the main diagonal, i.e. aij = 0 unless i = j is called a diagonal ma-
trix. A special diagonal matrix, I, is the identity matrix where the main
diagonal entries aii = 1. Then, if the equality AB = I = BA holds, the The N ×N identity matrix is de-

noted IN or simply I when the
context is clear and the size can
be omitted.

matrix B must be well-defined (and unique) and it is the inverse of A,
i.e. B = A−1. We then say that A is invertible; if it is not invertible
then it is degenerate or singular .
There are many equivalent conditions for matrix invertibility, for ex-

ample, the only solution to the equation Ax = 0 is the vector x = 0
or the columns of A are linearly independent. But one particularly
important way to test the invertibility of a matrix is to calculate the
determinant |A|: if the matrix is singular, the determinant is zero. It
follows that all invertible matrices have |A| 6= 0. The determinant calcu-
lation is quite elaborate for a general square matrix, formulas exist but
geometric intuition helps to understand these calculations: when a linear
map defined by a matrix acts on a geometric object in vector space with
a certain volume, the determinant is the scaling factor of the mapping.
Volumes under the action of the map are scaled by the magnitude of
the determinant. If the determinant is negative, the orientation of any
geometric object is reversed. Therefore, invertible transformations are
those that do not collapse the volume of any object in the vector space
to zero (Figure 1.7).

Fig. 1.8: An example of diagonal-
izing a matrix. The diagonalizable
square matrix A has diagonal matrix
D containing the eigenvalues, and
transformation matrix P containing
the eigenbasis, so A = PDP−1. A
maps the rotated square (top), to
the rectangle in the same orientation
(at left). This is equivalent to first
‘unrotating’ the square (the effect
of P−1) such that it is aligned with
the co-ordinate axes, then stretch-
ing/compressing the square along
each axis (the effect of D), and finally
rotating back to the original orienta-
tion (the effect of P).

Another matrix operator which finds significant use is the trace tr (A)
of a square matrix: this is just the sum of the diagonals, e.g. tr (A) =∑N
i=1 aii. The trace is invariant to addition tr (A + B) = tr (A)+tr (B),

transpose tr
(
AT
)

= tr (A) and multiplication tr (AB) = tr (BA). With
products of three or more matrices the trace is invariant to cyclic per-
mutations, with three matrices: tr (ABC) = tr (CAB) = tr (BCA).

Eigenvalues and eigenvectors
A ubiquitous computation that arises in connection with algebraic prob-
lems in vector spaces is the eigenvalue problem for the givenN×N square
matrix A:

Av = λv (1.12)

Any non-zero N × 1 vector v which solves this equation is known as
an eigenvector of A, and the scalar value λ is known as the associated
eigenvalue. Eigenvectors are not unique: they can be multiplied by any
non-zero scalar and still remain eigenvectors with the same eigenvalues.
Thus, often the unit length eigenvectors are sought as the solutions to
(1.12).
It should be noted that (1.12) arises for vector spaces in general e.g.

linear operators. An important example occurs in the vector space of
functions f (x) with differential the operator L = d

dx . Here, the cor-
responding eigenvalue problem is the differential equation L [f (x)] =
λf (x), for which the solution is f (x) = aeλx for any (non-zero) scalar
value a. This is known as an eigenfunction of the differential operator
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L.
If they exist, the eigenvectors and eigenvalues of a square matrix A can

be found by obtaining all scalar values λ such that|(A− λI)| = 0. This
holds because Av−λv = 0 if and only if |(A− λI)| = 0. Expanding out
this determinant equation leads to an N -th order polynomial equation
in λ, namely aNλN + aN−1λ

N−1 + · · · + a0 = 0, and the roots of this
equation are the eigenvalues.
This polynomial is known as the characteristic polynomial for A and

determines the existence of a set of eigenvectors that is also a basis for
the space, in the following way. The fundamental theorem of algebra
states that this polynomial has exactly N roots, but some may be re-
peated (i.e. occur more than once). If there are no repeated roots of the
characteristic polynomial, then the eigenvalues are all distinct, and so
there are N eigenvectors which are all linearly independent. This means
that they form a basis for the vector space, which is the eigenbasis for
the matrix.
Not all matrices have an eigenbasis. However matrices that do are

also diagonalizable, that is, they have the same geometric effect as a
diagonal matrix, but in a different basis other than the standard one.
This basis can be found by solving the eigenvalue problem. Placing all
the eigenvectors into the columns of a matrix P and all the corresponding
eigenvalues into a diagonal matrix D, then the matrix can be rewritten:

A = PDP−1 (1.13)

See Figure 1.8. A diagonal matrix simply scales all the coordinates of
the space by a different, fixed amount. They are very simple to deal with,
and have important applications in signal processing and machine learn-
ing. For example, the Gaussian distribution over multiple variables, one
of the most important distributions in practical applications, encodes
the probabilistic relationship between each variable in the problem with
the covariance matrix. By diagonalizing this matrix, one can find a lin-
ear mapping which makes all the variables statistically independent of
each other: this dramatically simplifies many subsequent calculations.
Despite the central importance of the eigenvectors and eigenvalues a

linear problem, it is generally not possible to find all the eigenvalues by
analytical calculation. Therefore one generally turns to iterative numer-
ical algorithms to obtain an answer to a certain precision.

Special matrices
Beyond what has been already discussed, there is not that much more to
be said about general matrices which have N ×M degrees of freedom.
Special matrices with fewer degrees of freedom have very interesting
properties and occur frequently in practice.
Some of the most interesting special matrices are symmetric matrices

with real entries – self-transpose and so square by definition, i.e. AT =
A. These matrices are always diagonalizable, and have an orthogonal
eigenbasis. The eigenvalues are always real. If the inverse exists, it is
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also symmetric. A symmetric matrix has 1
2N (N + 1) unique entries, on

the order of half the N2 entries of an arbitrary square matrix.
Positive-definite matrices are a special kind of symmetric matrix for

which vTAv > 0 for any non-zero vector v. All the eigenvalues are
positive. Take any real, invertible matrix B (so that Bv 6= 0 for all
such v) and let A = BTB, then vTBTBv = (Bv)T (Bv) = ‖Bv‖22 > 0
making A positive-definite. As will be described in the next section,
these kinds of matrices are very important in machine learning and signal
processing because the covariance matrix of a set of random variables is
positive-definite for exactly this reason.
Orthonormal matrices have all columns which are vectors that form

an orthonormal basis for the space. The determinant of these matrices
is either +1 or −1. Like symmetric matrices they are always diagonal-
izable, although the eigenvectors are generally complex with modulus
1. An orthonormal matrix is always invertible, the inverse is also or-
thonormal and equal to the transpose, AT = A−1. The subset with
determinant +1, correspond to rotations in the vector space.
For upper (lower) triangular matrices, the diagonal and the entries

above (below) the diagonal are non-zero, the rest zero. These matrices
often occur when solving matrix problems such as Av = b, because the
matrix equation Lv = b is simple to solve by forward substitution if L
is lower-triangular. Forward substitution is a straightforward sequential
procedure which first obtains v1 in terms of b1 and l11, then v2 in terms
of b1, l21 and l22 etc. The same holds for upper triangular matrices and
backward substitution. Because of the simplicity of these substitution
procedures, there exist methods for decomposing a matrix into a product
of upper or lower triangular matrices and a companion matrix.
Toeplitz matrices are matrices with 2N − 1 degrees of freedom that

have constant diagonals, that is, the elements of A have entries aij =
ci−j . All discrete convolutions can be represented as Toeplitz matrices,
and as we will discuss later, this makes them of fundamental importance
in DSP. Because of the reduced degrees of freedom and special structure
of the matrix, a Toeplitz matrix problem Ax = b is computationally
easier to solve than a general matrix problem: a method known as the
Levinson recursion dramatically reduces the number of arithmetic oper-
ations needed.
Circulant matrices are Toeplitz matrices where each row is obtained

from the row above by rotating it one element to the right. With only
N degrees of freedom they are highly structured and can be understood
as discrete circular convolutions. The eigenbasis which diagonalizes the
matrix is the discrete Fourier basis which is one of the cornerstones of
classical DSP. It follows that any circulant matrix problem can be very
efficiently solved using the fast Fourier transform (FFT).
Dummit and Foote (2004) contains an in-depth exposition of vector

spaces from an abstract point of view, whereas Kaye and Wilson (1998)
is an accessible and more concrete introduction.
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1.4 Probability and stochastic processes
Probability is a formalization of the intuitive notion of uncertainty.
Statistics is built on probability. Therefore, statistical DSP and machine
learning has, at it’s root, the quantitative manipulation of uncertainties.
Probability theory contains the axiomatic foundation of uncertainty.

Sample spaces, events, measures and distributions
We start with a set of elements, say, Ω, which are known as outcomes.
This is what we get as the result of a measurement or experiment. The
set Ω is known as the sample space or universe. For example, the die
has six possible outcomes, so the sample space is Ω = {1, 2, 3, 4, 5, 6}.
Given these outcomes, we want to quantify the probability of certain
events occurring, for example, that we get a six or an even number in
any throw. These events form an abstract σ−algebra, F , which is, all
the sets of subsets of outcomes that can be constructed by applying
the elementary set operations of complement and (countable) unions
to a selection of the elements in 2Ω (the set of all subsets of Ω). The
elements of F are the events. For example, in the coin toss, there are
two possible outcomes, heads and tails, so Ω = {H,T}. A set of events
that are of interest make up aσ−algebra F = {∅, {H} , {T} ,Ω}, so that
we can calculate the probability of heads or tails, none, or heads or
tails occurring (N.B. the last two events are in some senses ‘obvious’ —
the first is impossible and the second inevitable — so they require no
calculation to evaluate, but we will see that to do probability calculus
we always need the empty set and the set of all outcomes).
Given the pair Ω,F we want to assign probabilities to events, which

are real numbers lying between 0 and 1. An event with probability 0 is
impossible and will never occur, whereas if the event has probability 1
then it is certain to occur. A mapping that determines the probability
of any event is known as a measure function µ : F → R. An example
would be the measure function for the fair coin toss which is µ ({∅}) =
0, µ ({H,T}) = 1, µ ({H}) = µ ({T}) = 1

2 . A measure satisfies the
following rules:

(1) Non-negativity: µ (A) ≥ 0 for all A ∈ F ,
(2) Unit measure: µ (Ω) = 1 and,
(3) Disjoint additivity: µ (

⋃∞
i=1Ai) =

∑∞
i=1 µ (Ai) if the events Ai ∈

F do not overlap with each other (that is, they are mutually dis-
joint and so contain no elements from the sample space in com-
mon).

We mainly use the notation P (A)for the probability (measure) of event
A. We can derive some important consequences of these rules. For
example, if one event is wholly contained inside another, it must have
smaller probability: if A ⊆ B then P (A) ≤ P (B) with equality if
A = B. Similarly, the probability of the event not occurring is one
minus the probability of that event: P

(
Ā
)

= 1− P (A).
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Of great importance to statistics is the sample space of real numbers.
A useful σ-algebra is the Borel algebra formed from all possible (open)
intervals of the real line. With this algebra we can assign probabilities
to ranges of real numbers, e.g. P ([a, b]) for the real numbers a ≤ b. An
important consequence of the axioms is that P ({a}) = 0, i.e. point set
events have zero probability. This differs from discrete (countable) sam-
ple spaces where the probability of any single element from the sample
space can be non-zero.

Fig. 1.9: Distribution functions and
probabilities for ranges of discrete
(top) and continuous (bottom) ran-
dom variables X and Y respec-
tively. Cumulative distribution func-
tions (CDF) FX and FY are shown
on the left, and the associated prob-
ability mass (PMF) and probability
density functions (PDF) fX and fY
on the right. For discrete X defined
on the integers, the probability of
the event A such that a ≤ X (A) ≤ b

is
∑b

x=a fX (x) which is the same as
FX (b) − FX (a− 1). For the continu-
ous Y defined on the reals, the prob-
ability of the event A = (a, b] is the
given area under the curve of fY ,
i.e. P (A) =

´
A fY (y) dy. This is just

FY (b) − FY (a) by the fundamental
theorem of calculus.

Given a set of all possible events it is often natural to associate nu-
merical ‘labels’ to each event. This is extremely useful because then we
can perform meaningful numerical computations on the events. Ran-
dom variables are functions that map the outcomes to numerical val-
ues, for example the random variable that maps coin tosses into the set
{0, 1}, X ({T}) = 0 and X ({H}) = 1. Cumulative distribution func-
tions (CDFs) are measures as defined above, but where the events are
selected through the random variable. For example, the CDF of the
(fair) coin toss as described above would be:

P ({A ∈ {H,T} : X (A) ≤ x}) =
{

1
2 for x = 0
1 for x = 1

(1.14)

This is a special case of the Bernoulli distribution (see below). Two
common shorthand ways of writing the CDF are FX (x) and P (X ≤ x).
When the sample space is the real line, the random variable is contin-

uous. The associated probability of an event, in this case, a (half open)
interval of the real line is:

P ((a, b]) = P ({A ∈ R : a < X (A) ≤ b}) = FX (b)− FX (a) (1.15)

Often we can also define a distribution through a probability density
function (PDF) fX (x):

P (A) =
ˆ
A

fX (x) dx (1.16)

where A ∈ F , and in practice statistical DSP and machine learning is
most often (though not exclusively) concerned with F being the set of
all open intervals of the real line (the Borel algebra), or some subset of
the real line such as [0,∞). To satisfy the unit measure requirement, we
must have that

´
R fX (x) dx = 1 (for the case of the whole real line). In

the discrete case, the equivalent is the probability mass function (PMF)
that assigns a probability measure to each separate outcome. To simplify
the notation, we often drop the random variable subscript when the
context is clear, writing e.g. F (x), f (x).
We can deduce certain properties of CDFs. Firstly, they must be non-

decreasing, because the associated PMF/PDFs must be non-negative.
Secondly, ifX is defined on the range [a, b], we must have that FX (a) = 0
and FX (b) = 1 (in the commonly occurring case where either a or b
are infinite, then we would have, e.g. limx→−∞ FX (x) = 0 and/or
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limx→∞ FX (x) = 1). An important distinction to make here between
discrete and continuous random variables, is that the PDF can have
f (x) > 1 for some x in the range of the random variable, whereas PMFs
must have 0 ≤ f (x) ≤ 1 for all values of x in range. In the case of PMFs
this is necessary to satisfy the unit measure property. These concepts
are illustrated in Figure 1.9.
An elementary example of a PMF is the fair coin for which:

f (x) = 1
2 for x ∈ {0, 1} (1.17)

To satisfy unit measure, we must have
∑
a∈X(Ω) f (a) = 1. The measure

of an event is similarly:

P (A) =
∑

a∈X(A)

f (a) (1.18)

Some ubiquitous PMFs include the Bernoulli distribution which rep-
resents the binary outcome:

f (x) =
{

1− p for x = 0
p for x = 1

(1.19)

A compact representation is f (x) = (1− p)1−x
px. A very important

continuous distribution is the Gaussian distribution, whose density func-
tion is:

f (x;µ, σ) = 1√
2πσ2

exp
(
− (x− µ)2

σ2

)
(1.20)

The semicolon is used to separate the random variable from the ad-
justable (non-random) parameters that determine the form of the pre-
cise distribution of X. When the parameters are considered random
variables, the bar notation f (x|µ, σ) is used instead, indicating that X
depends, in a consistent probabilistic sense, on the value of the parame-
ters. This latter situation occurs in the Bayesian framework as we will
discuss later.

Joint random variables: independence, conditionals,
and marginals
Often we are interested in the probability of multiple simultaneous events
occurring. A consistent way to construct an underlying sample space is
to form the set of all possible combinations of events. This is known
as the product sample space. For example, the product sample space
of two coin tosses is the set Ω = {(H,H) , (H,T ) , (T,H) , (T, T )} with
σ−algebra F = {∅, {(H,H)} , {(H,T )} , {(T,H)} , {(T, T )} ,Ω}. As with
single outcomes, we want to define a probability measure so that we can
evaluate the probability of any joint outcome. This measure is known
as the joint CDF :
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FXY (x, y) = P (X ≤ x and Y ≤ y) (1.21)

In words, the joint CDF is the probability that the pair of random
variables X,Y simultaneously take on values that are equal to x, y at
the most. For the case of continuous random variables, each defined on
the whole real line, this probability is a multiple integration:

FXY (x, y) =
ˆ y

−∞

ˆ x

−∞
f (u, v) du dv (1.22)

where f (u, v) is the joint PDF . The sample space is now the plane
R2, and so in order to satisfy the unit measure axiom, it must be that´
R
´
R f (u, v) du dv = 1. The probability of any region A of R2 is then

the multiple integral over that region: P (A) =
´
A
f (u, v) du dv.

The corresponding discrete case has that P (A×B) =∑
a∈X(A)

∑
b∈Y (B) f (a, b) for any product of events where A ∈ ΩX ,

B ∈ ΩY , and ΩX ,ΩY are the sample spaces of X and Y respectively,
and f (a, b) is the joint PMF . The joint PMF must sum to one over the
whole product sample space:

∑
a∈X(ΩX)

∑
b∈Y (ΩY ) f (a, b) = 1.

More general joint events over N variables are defined similarly and
associated with multiple CDFs, PDFs and PMFs, e.g.
fX1X2...XN

(x1, x2 . . . xN ) and, when the context is clear from the ar-
guments of the function, we drop the subscript in the name of the
function for notational simplicity. This naturally allows us to define
distribution functions over vectors of random variables, e.g. f (x) for
X = (X1, X2 . . . XN )T where typically, each element of the vector comes
from the same sample space.
Given the joint PMF/PDF, we can always ‘remove’ one or more of

the variables in the joint set by integrating out this variable, e.g.:

f (x1, x3, . . . , xN ) =
ˆ
R
f (x1, x2, x3, . . . , xN ) dx2 (1.23)

This computation is known as marginalization.
When considering joint events, we can perform calculations about the

conditional probability of one event occurring, when another has already
occurred (or is otherwise fixed). This conditional probability is written
using the bar notation P (X = x|Y = y): described as the ‘probability
that the random variable X = x, given that Y = y’. For PMFs and
PDFs we will shorten this to f (x| y). This probability can be calculated
from the joint and single distributions of the conditioning variable:

f (x| y) = f (x, y)
f (y) (1.24)

In effect, the conditional PMF/PDF is what we obtain from restricting
the joint sample space to the set for which Y = y, and calculating the
measure of the intersection of the joint sample space for any chosen x.
The division by f (y)ensures that the conditional distribution is itself a
normalized measure on this restricted sample space, as we can show by
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marginalizing out X from the right hand side of the above equation.
If the distribution of X does not depend upon Y , we say that X

is independent of Y . In this case f (x| y) = f (x). This implies that
f (x, y) = f (x) f (y), i.e. the joint distribution over X,Y factorizes into
a product of the marginal distributions over X,Y . Independence is a
central topic in statistical DSP and machine learning because whenever
two or more variables are independent, this can lead to very significant
simplifications that in some cases, make the difference between whether a
problem is tractable at all. In fact, it is widely recognized these days that
the main goal of statistical machine learning is to find good factorizations
of the joint distribution over all the random variables of a problem.

Bayes’ rule
If we have the distribution function of a random variable conditioned on
another, is it possible to swap the role of conditioned and conditioning
variables? The answer is yes: provided that we have all the marginal
distributions. This leads us into the territory of Bayesian reasoning.
The calculus is straightforward, but the consequences are of profound
importance to statistical DSP and machine learning. We will illustrate
the concepts using continuous random variables, but the principles are
general and apply to random variables over any sample space. Suppose
we have two random variables X,Y and we know the conditional dis-
tribution of X given Y , then the conditional distribution of Y on X
is:

f (y|x) = f (x| y) f (y)
f (x) (1.25)

This is known as Bayes’ rule. In the Bayesian formalism, f (x| y) is
known as the likelihood, f (y) is known as the prior , f (x) is the evidence
and f (y|x) is the posterior.
Often, we do not know the distribution over X; but since the nu-

merator in Bayes’ rule is the joint probability of X and Y , this can be
obtained by marginalizing out Y from the numerator:

f (y|x) = f (x| y) f (y)´
R f (x| y) f (y) dy (1.26)

This form of Bayes’ rule is ubiquitous because it allows calculation of
the posterior knowing only the likelihood and the prior.
Unfortunately, one of the hardest and most computationally intractable

problems in applying the Bayesian formalism arises when attempting
to evaluate integrals over many variables to calculate the posterior in
(1.26). Fortunately however, there are common situations in which it is
not necessary to know the evidence probability. A third restatement of
Bayes’ rule makes it clear that the evidence probability can be consid-
ered a ‘normalizer’ for the posterior, ensuring that the posterior satisfies
the unit measure property:
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f (y|x) ∝ f (x| y) f (y) (1.27)

This form is very commonly encountered in many statistical inference
problems in machine learning. For example, when we wish to know
the value of a parameter or random variable given some data which
maximizes the posterior, and the evidence probability is independent of
this variable or parameter, then we can exclude the evidence probability
from the calculations.

Expectation, generating functions and characteristic
functions
There are many ways of summarizing the distribution of a random vari-
able. Of particular importance are measures of central tendency such
as the mean and median. The mean of a (continuous) random variable
X is the sum over all possible outcomes weighted by the probability of
that outcome:

E [X] =
ˆ

Ω
x f (x) dx (1.28)

Where not obvious from the context, we write EX [X] to indicate that
this integral is with respect to the random variable X. In the case of
discrete variables this is E [X] =

∑
a∈X(Ω) x f (x). As discussed ear-

lier, expectation is a linear operator, i.e. E [
∑
i aiXi] =

∑
i aiE [Xi]

for arbitrary constants ai. A constant is invariant under expectation:
E [a] = a. The mean is also known as the expected value, and the in-
tegral is called the expectation. The expectation plays a central role
in probability and statistics, and can in fact be used to construct an
entirely different axiomatic view on probability. The expectation with
respect to an arbitrary transformation of a random variable, g (X) is:

E [g (X)] =
ˆ

Ω
g (x) f (x) dx (1.29)

Using this we can define a hierarchy of summaries of the distribution of
a random variable, known as the k-th moments:

E
[
Xk
]

=
ˆ

Ω
xkf (x) dx (1.30)

From the unit measure property of probability it can be seen that the
zeroth moment E

[
X0] = 1. The first moment coincides with the mean.

Central moments are those defined “around” the mean:

µk = E
[
(X − E [X])k

]
=
ˆ

Ω
(x− µ)k f (x) dx (1.31)

where µis the mean. A very import central moment is the variance,var [X] =
µ2, which is a measure of spread (about the mean) of the distribution.
The standard deviation is the square root of this std [X] = √µ2. Higher
order central moments such as skewness (µ3) and kurtosis (µ4) measure
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aspects such as the asymmetry and sharpness of distribution, respec-
tively.
For joint distributions with joint density function f (x, y), the expec-

tation is:

E [g (X,Y )] =
ˆ

ΩY

ˆ
ΩX

g (x, y) f (x, y) dx dy (1.32)

From this, we can derive the joint moments:

E
[
XjY k

]
=
ˆ

ΩY

ˆ
ΩX

xjykf (x, y) dx dy (1.33)

An important special case is the joint second central moment, known
as the covariance:

cov [X,Y ] = E [(X − E [X]) (Y − E [Y ])] (1.34)

=
ˆ

ΩY

ˆ
ΩX

(x− µX) (y − µY ) f (x, y) dx dy

where µX , µY are the means of X,Y respectively.
Sometimes, the hierarchy of moments of a distribution serve to define

the distribution uniquely. A very important kind of expectation is the
moment generating function (MGF), for discrete variables:

M (s) = E [exp (sX)] =
∑

x∈X(Ω)

exp (sx) f (x) dx (1.35)

The real variable s becomes the new independent variable replacing the
discrete variable x. When the sum (1.35) converges absolutely, then the
MGF exists and can be used to find all the moments for the distribution
of X:

E
[
Xk
]

= dkM

dtk
(0) (1.36)

This can be shown to follow from the series expansion of the exponential
function. Using the Bernoulli example above, the MGF is M (s) =
1 − p + p exp (s). Often, the distribution of a random variable has a
simple form under the MGF that makes the task of manipulating random
variables relatively easy. For example, given a linear combination of
independent random variables:

XN =
N∑
n=1

anXn (1.37)

it is not a trivial matter to calculate the distribution of XN . However,
the MGF of the sum is just:

MXN
(s) =

N∏
n=1

MXn (ans) (1.38)
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from which the distribution of the sum can sometimes be recognized
immediately. As an example, the MGF for an (unweighted) sum of N
i.i.d. Bernoulli random variables with parameter p, is:

MXN
(s) = (1− p+ p exp (s))N (1.39)

which is just the MGF of the binomial distribution.
A similar expectation is the characteristic function (CF), for contin-

uous variables:

ψ (s) = E [exp (isX)] =
ˆ

Ω
exp (isx) f (x) dx (1.40)

where i =
√
−1. This can be understood as the Fourier transform of

the density function. An advantage over the MGF is that the CF al-
ways exists. It can therefore be used as an alternative way to define a
distribution, a fact which is necessary for some well-known distributions
such as the Levy or alpha-stable distributions. Well-known properties of
Fourier transforms make it easy to use the CF to manipulate random
variables. For example, given a random variable X with CF ψX (s), the
random variable Y = X +m where m is a constant is:

ψY (s) = ψX (s) exp (ism) (1.41)

From this, given that the CF of the standard normal Gaussian with
mean zero and unit variance, is exp

(
− 1

2s
2), the shifted random variable

Y has CF ψY (s) = exp
(
ism− 1

2s
2). Another property, similar to the

MGF, is the linear combination property:

ψXN
(s) =

N∏
i=1

ψXi
(ais) (1.42)

We can use this to show that for a linear combination (1.37) of indepen-
dent Gaussian random variables with mean µnand variance σ2

n, the CF
of the sum is:

ψXN
(s) = exp

(
is

N∑
n=1

anµn −
1
2s

2
N∑
n=1

a2
nσ

2
n

)
(1.43)

which can be recognized as another Gaussian with mean
∑N
n=1 anµn

and variance
∑N
n=1 a

2
nσ

2
n. This shows that the Gaussian is invariant to

linear transformations, a property known as (statistical) stability, which
is of fundamental importance in classical statistical DSP.

Empirical distribution function and sample expecta-
tions
If we start with a PDF or PMF, then the specific values of the parameters
of these functions determine the mathematical form of the distribution.
However, often we want some given data to “speak for itself” and de-
termine a distribution function directly. An important, and simple way


