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A NOTE FROM THE EDITOR

To my loved ones.

The idea of editing a collective book about probabilistic graphical models in genetics arose in the
spring of 2011. This project was fortunate to obtain the support of researchers at the forefront of
innovation in this domain. From then on, in the back of my mind was always present the concern
of honoring the confidence of the invited authors by achieving the project within a decent time
frame. May they all be warmly thanked for their trust and their deep investment in this project,
as well as for all the intellectually stimulating exchanges we had.
A collective book—not proceedings—is much more than the compendium of the scientific

contributions that supports it, however invaluable these contributions are by themselves; and this
comes at a cost. The edition and compilation of this book drew on any time reserve that could
be ferreted out of a researcher’s timetable. Using a metaphor borrowed from carpentry, sanding,
smoothing, and polishing again and again the job took quite a while before I was able to apply the
undercoat paint layers and the top varnish.
I was therefore converted into a sort of Benedictine monk, of the specific kind that moni-

tors a whole reviewing process, reads two or three successive versions of each chapter, writes a
submission package to gain the support of the prestigious publishing group targeted, controls
bibliographical references, checks figures, tables, captions, homogenizes the presentation
throughout the whole draft, indexes the whole book, and benedictinely runs the LATEX compiler
until it does not scream anymore. As I confess a fierce determination to separate professional
and private lives, this book has been elaborated at my office at the university, during innumera-
ble weekends as well as countless late, or even very late, evenings. By the way, this specific time
schedule offered me the opportunity to frequently hear the owl living in the little wood in front
of the lab, and to catch sight of such furtive animals as badgers and foxes, which one would never
think would live in a university campus.
Fortunately, thesemonths of labor have reached their termwithin the time the tribe I ordinarily

belong to was still able to recognize me. May they all be thanked for their patience and their
attentive listening and concern about the progress of the project.
I am in special debt to Keith Mansfield from Oxford University Press (OUP), for his support

of the project from the very start, and not least for his encouragement and his valuable advice
and guidance in the preparation of the proposal dossier for OUP. Complying to high standards is
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the lot if one wishes to publish with OUP. Driven by the confidence of the invited authors of the
project and of my joint editor, I had therefore an obligation: obtain the sesame to be allowed to
press ahead.

I also wish to warmly thank Clare Charles from Oxford University Press for her efficient
management and attentive monitoring of the production step.

C.S., June, 2014
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PREFACE

At the crossroads between statistics and machine learning, probabilistic graphical models
provide a powerful formal framework to model complex data. Examples of probabilistic
graphical models are Bayesian networks and Markov random fields, which represent two

of the most popular classes of such models. With the rapid advancements of high-throughput
technologies and the ever decreasing costs of these next-generation technologies, a fast-growing
volume of biological data of various types–the so-called omics–is in need of accurate and efficient
modeling methods, prior to further downstream analysis. As probabilistic graphical models are
able to deal with high-dimensional data and non-linear dependences, it is foreseeable that such
models will have a prominent role to play in advances in genome-wide analyses.
Currently, few people are specialists in the design of cutting-edge methods using probabilistic

graphical models for genetics, genomics, and postgenomics. This seriously hinders the diffu-
sion of such methods. The prime aim of this book is therefore to bring the concepts underlying
these advanced models within understanding of a broader audience of scientists, engineers, and
graduate students.
If they are not specialists of probabilistic graphical models, bioinformaticians, statisticians, bio-

statisticians, and experts in statistical genetics with an intuition that their solution to a problem
should involve such models are compelled to glean incomplete information from publications.
We are not even talking of surveys whose consultation will never allow launching out into the
design of advanced methods. Some academic courses may well be delivered here and there, that
dwell on cutting-edge approaches using probabilistic graphical models for the targeted topics; nei-
ther are such courses widely available for the potentially interested audience, nor do they cover a
sufficiently illustrative set of models and applications.
The target readers of this book include researchers and engineers as well as graduate students

starting a master’s or a PhD thesis. Besides, if there is one area where transdisciplinarity is the
daily lot, it is the advanced analysis of genome-wide data. Constructive cooperation with a do-
main specialist requires the ability to hold a productive dialogue, which therefore demands a
deep understanding of the models as well as a solid background regarding these models. Often,
scientists from different fields such as genetics, statistics, or computer science do not use the
same scientific language, and this might lead to confusion and misunderstanding. Bridging the
gap between different scientific worlds thus helps scientists to better communicate, and from a
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higher perspective, contributes to the emergence of new fields of research. Currently, the only
solution for such people to gain a deep understanding is finding spare time to gather information
to learn from it. The book intends to spare such readers this task.

Hopefully, this book will be of equal interest, if still not higher, for the graduate students su-
pervised by members of the aforementioned audience. Depending on their academic institution,
students taught computational methods for genetics, genomics, or postgenomics rarely have ac-
cess to a course presenting the advanced use of probabilistic graphical models in such fields. One
reason for this lies in the fact that these models and their potentialities have only rather recently
created renewed interest in genetics in the broad sense. Another reason might be the lack of ex-
perts possessing this two-fold skill in these students’ institutions. Besides, a few hours taught on
the subject are not sufficient to provide both enough material and hindsight on the topic. This
book attempts to fill this gap.

This book is also designed to help experts in machine learning grasp the interest in designing
advanced methods based on probabilistic graphical models in transdisciplinary collaborations.

This book arises out of a six-year collaboration between its scientific editors. Our various
interests in computer science, machine learning, applied mathematics, Bayesian statistics, ap-
plications in genetics, genomics, and postgenomics have found in probabilistic graphical models
a breeding ground for both our own investigations and the preparation and direction of this
book. Besides, coming from different backgrounds, we found a common ground in demand-
ing the highest self-containedness in the contributions of the invited authors. In addition to
the intrinsic richness of these contributions, our guiding thread was then providing added value
through accessibility for non-specialists of probabilistic graphical models, with no concession on
the informativeness of the book’s contents.

We have been fortunate to obtain the widest consent regarding invited authors’ participation
in our project. We subsequently enjoyed a fruitful period of dense exchanges with these authors,
who accepted this extra workload.

The book is divided into a general introduction, a tutorial on probabilistic graphical networks,
and six main sections devoted to specific application fields in genetics (in the broad sense).
The introductory chapter aims at providing a minimal background for readers that are not fa-
miliar with biology or need information about the high-throughput biological data addressed
by the models described in the book. Moreover, such terms and expressions as genetics, geno-
mics, postgenomics, systems biology, and integrative biology are clarified. Indeed, a leitmotif of
the book is the integration of heterogeneous sources of omics data, to boost downstream bi-
ological applications. Finally, this introduction provides the motivation for using probabilistic
graphical models to handle high-throughput biological data and provides a brief evocation of the
use of probabilistic graphical networks in the six applications highlighted by the book: gene net-
work inference, causality discovery, association genetics, epigenetics, detection of copy number
variations, and prediction of outcomes from high-dimensional genomic data.

The essentials for understanding probabilistic graphical models are offered in a tutorial
at the beginning of the book. This tutorial was carefully designed to be accessible to the
largest audience. Since the concepts and techniques presented in this tutorial may require
broader and non-trivial knowledge, accessibility and self-containedness were again the targeted
objectives.
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Together with a thorough review chapter focusing on selected domains in genetics, fourteen
chapters illustrate the design of advanced approaches, for the six abovementioned applications.
This book offers a lot of new insights that could only be gleaned from the literature available
through excruciating labor. The chapters are self-contained, and they can be read independently
of each other.

C. S. and R. M.
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Fig 9.1 Linkage disequilibrium (LD) plot of a 500 kb SNP sequence. Human genome, chromosome 1, region
[10 000 kb - 10 500 kb]. LD is revealed through the matrix of pairwise dependences between genetic markers. For
a pair of SNPs, the color shade is all the darker as the correlation between the two SNPs is high.

B bisulfite conversion

A methylation-sensitive enzyme digestion C affinity enrichment

Fig 14.1 Three common techniques for genome-scale annotation of DNA methylation. (A) Enzyme digestion: the
genomic DNA is digested with a methylation-sensitive restriction enzyme such as HpaII, which digests unmethylated
CCGG sites. (B) Bisulfite conversion: converts cytosines that are not methylated to uracil. (C) Affinity enrichment:
methylated cytosines in methylated regions are bound by antibodies or methyl-CpG binding proteins. M denotes
methylation site.

Fig 14.2 The methylation state of a site cannot always be determined from the number of fragments that originated
at that site. In many cases, the methylation state of a site cannot be determined from the extent to which it was present
at the end of sequenced fragments but can be determined by integrating sequencing data from its neighborhood. bp,
base pair, M, methylated; U, unmethylated.



Fig 14.5 A section of the genome showing site-specific methylation scores (top panel) and unmethylated clusters
(SUMIs, second panel) as inferred from one of human neutrophil samples. For the site-specific scores, a score of 0
determines a site as fully methylated. The third and fourth panels show BF islands as annotated by [5] and UCSC islands,
respectively. While there is substantial overlap between SUMIs and the islands inferred by the sequence-based methods,
a few novel SUMIs are seen in this figure, one of them at a transcription start site. RefSeq denotes genes annotated in
the National Center for Biotechnology Information reference sequence database.
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Fig 15.1 Clustering heat map showing DNA methylation patterns for 11 normal tissues [8]. Each cell represents an
average beta value from the GoldenGate assay (Illumina). Rows represent one of 500 CpG dinucleotides, columns
represent one of 211 individual samples.
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Fig 15.3 Schematic representation of the RPMM. Rows represent individual specimens or arrays, columns represent
individual CpG loci. Initially, each array is assumed to be drawn from the same multivariate distribution consisting of
a distinct distribution for each CpG (indicated by color). The data set is partitioned recursively into component data
subsets using a two-part mixture model. Along the way, BIC is used to prune the tree, so that partitions that are likely
to be unstable are never attempted.



tumor
normal

1.0

n = 20

n = 5
n =4
n = 4

n = 24

n = 6
n = 4

n = 11
0.5

0.0

Fig 15.4 Recursive partitioning mixture model classification of normal and tumor head and neck tissues. The model
was based on methylation values of 1413 autosomal loci measured using the GoldenGate assay produced by Illumina,
and resulted in eight classes whose average methylation values are represented in the heat map. Distribution of normal
and tumor samples within each class is depicted in pie charts on the right. Reproduced from [28], Figure 1B.
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Fig 15.6 A) DNA copy number states are arranged by chromosome for 500 000 SNP loci. Copy number is red
for amplified regions with three or more copies, white for two normal copies, and green for allele loss (no copies).
Tumors are ordered by unsupervised hierarchical clustering and are dichotomized into low/high clusters of copy number
alterations (CNAs). B) Methylation loci (more methylated = blue, less methylated = yellow) are grouped by Euclidean
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reference. Reproduced from [33].
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CHAPTER 1

Probabilistic Graphical
Models for Next-generation
Genomics and Genetics
christine sinoquet

The explosion in “omics” and other types of biological data has increased the demand for
solid, large-scale statistical methods. These data can be discrete or continuous, dependent
or independent, and from many individuals or tissue types. There might be millions of

correlated observations from a single individual or observations at different scales and levels, in
addition to covariates. The study of living systems encompasses a wide range of concerns, from
prospective to predictive and causal questions, reflecting the multiple interests in understanding
biological mechanisms, disease etiology, predicting outcomes, and deciphering causal relation-
ships in data. Precisely, probabilistic graphical models provide a flexible statistical framework
that is suitable to analyze such data. Notably, graphical models are able to handle dependences
within data, which is an almost defining feature of cellular and other biological data.
This introductory chapter aims at providing a minimal background for readers that are not

familiar with biology or need information about the high-throughput biological data the models
described in the book deal with. The chapter also provides the motivation for using probabilistic
graphical models to handle high-throughput biological data. The chapter is organized as follows.
Section 1.1 describes the fine-grained components studied by molecular biology and provides
the definitions of key terms. The biological information allows to conduct studies in the fields
of genetics, genomics, and postgenomics. The respective scopes of these three domains are first
defined. In these domains, various types of analyses allow inference of knowledge about one or
several levels of description of living systems. Section 1.2 then focuses on the multiple levels of
biological organization of living systems to which the chapters of this book are connected. This
section takes the opportunity to clarify which definition of the expression “systems biology” the

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics. First Edition. Christine Sinoquet
& Raphaël Mourad (Eds). © Oxford University Press 2014. Published in 2014 by Oxford University Press.



book is interested in. The definition of “integrative biology” is also clarified. In the era of modern
genomics, the data are provided by high-throughput technologies; Section 1.3 briefly surveys the
types of data covered by the book. Finally, this section emphasizes the complexity of the biological
data available nowadays, and stresses various issues encountered when handling such data. This
emphasis serves as a transition to Section 1.4, which starts advocating the use of probabilistic
graphical models in genetics, genomics, and postgenomics: thus can be evidenced and exploited
dependences within various biological components, with the aim of explanation and prediction.
The chapter ends with a brief evocation of the use of probabilistic graphical networks in the six
applications highlighted by the book: gene network inference, causality discovery, association
genetics, epigenetics, detection of copy number variations, and prediction of outcomes from high-
dimensional genomic data.

1.1 Fine-grained Description of Living Systems

1.1.1 DNA and the Genome

Except in viruses, the cell is the smallest structural unit of all living organisms that is capable of
independent functioning, throughmetabolic activities. Themetabolism encompasses all chemical
transformations within the cell. In contrast with the procaryotic cell (e.g., bacteria), the eukaryotic
cell is typically described as possessing a nucleus isolated by a membrane from the rest of the cell
(cytoplasm); the nucleus contains the majority of the hereditary material, called the genome. In
prokaryotes, the hereditary material is not bound within a nucleus. All the applications described
in this book address the human genome, which explains our focus on eukaryotic cells. Under the
influence of environmental factors, the genome plays an important role in the development of
the individual’s observable features (also called phenotypes). For instance, it is known that genes
influence race, hair and eye color, gender, height, and weight.

In each eukaryotic cell of a living organism, the same genetic information is encoded in a bio-
chemical molecule, the DNA. The DNA molecule is double-stranded, and it is twisted into a
helix. Each strand consists of a long polymer of nucleotides (or bases). The genome is encoded
through an alphabet of four bases: adenine (A), guanine (G), cytosine (C), and thymine (T). The
two strands of the DNAmolecule are paired, based on hybridization properties: A and T (respec-
tively C and G), on opposite strands, are physically connected together as complementary bases.
DNAmolecules determine the synthesis of proteins, via intermediary messenger ribonucleic acid
(mRNA) molecules: mRNA is produced from DNA through the transcription step; proteins are
produced frommRNA by the translation step. The deshybridization property, which locally frees
the two DNA strands, is involved in the replication and transcription processes. The replication
step produces a DNA copy from a DNAmolecule; the transcription step produces a single-strand
RNA molecule from a double-strand DNA molecule. One of the most revolutionary levers in
science in the twentieth century is the polymerase chain reaction (PCR), which exploits the hy-
bridization and deshybridization properties; PCR thus allows to obtain several million identical
copies from a single DNA fragment.

In eukaryotes, the genome is packaged into chromosomes, each consisting of a specific DNA
sequence tightly packed into a complex series of coils thanks to proteins (i.e., histones). The
human genome contains approximately 3.4 billion base pairs of DNA packaged into 23 chro-
mosomes. Most cells in the body, except female ova and male sperm, are diploid. Diploidy means
that such cells possess two sets of homologous chromosomes. Therefore, each cell contains a total
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of 6.8 billion base pairs of DNA. If (virtually) laid end to end, the 46 DNA molecules in each
human cell would produce a two-meter long sequence.
Between any two humans, genetic variation roughly amounts to 0.1%. Thus, on average, about

one base pair out of every 1000 is different between any two individuals. Various types of DNA
polymorphism are known: the most common type is the single nucleotide polymorphism (SNP),
where genetic variations consist in single base-pair differences; moreover, another characteristic
of SNP is that over the four possible nucleotides (A, G, C, and T), only two variants are ex-
hibited over a studied population. Other less frequent types of polymorphisms include insertions,
deletions, duplications, and rearrangements of segments of DNA, as well as differences in the
numbers of copies of a given segment.

1.1.2 Genes and Proteins

Any DNA region that produces a functional RNA molecule is called a gene. In addition, the
most well-known acception of the term “gene” relates to the class of genes that code for pro-
teins. The human genome contains approximately 20 000 such genes. Proteins are largemolecules
that play most of roles in an organism. In a multicellular organism, proteins are required for the
structure, function, and regulation of the organism’s tissues and organs. For instance, enzymes
catalyze an overwhelming part of the thousands of chemical reactions that occur in a cell; such
proteins are thus essential to the production of the remaining organic biomolecules necessary
for life. For example, the phenylalanine hydroxylase enzyme converts the amino acid phenylala-
nine into another amino acid, the tyrosine. Another crucial role is that of transcription factors.
Such proteins bind to specific DNA sequences, alone or in a complex, to promote (activate) or
block (repress) the positioning of the RNA polymerase enzyme on the DNAmolecule. Both pre-
vious types of proteins thereby control the flow of genetic information from DNA to mRNA, and
thus the formation of new protein molecules. Other proteins form the structural components
of the cell. On a larger scale, they also allow an organism to move. For instance, actin fila-
ments are structural proteins built up of multiple subunits; they help cells maintain their shape
and are also involved in muscle contraction. Storage and transport are two other crucial func-
tions performed by proteins: the proteins concerned bind to atoms or small molecules; transport
throughout an organism is thus made possible. For instance, ferritin, a protein made up of 24
identical subunits, is involved in iron storage. Some proteins are messengers that transmit signals
to coordinate biological processes between different cells, tissues, and organs. An example is the
growth hormone, which regulates cell growth. We complete the enumeration of the vital func-
tions fulfilled by proteins with the mention of antibodies. An antibody is a protein that binds to a
specific foreign particle, such as a virus or a bacterium, to help protect an organism. For instance,
immunoglobulin G is a type of antibody present in the blood.

1.1.3 Phenotype and Genotype

The phenotype of an organism is defined as the combination of the organism’s observable cha-
racteristics or traits. In particular, phenotypes can be described at the lowest level of living sys-
tems, that is the cellular level: the definition of phenotype can be extended so as to designate cha-
racteristics that are only made observable by some technical procedure. Such traits are connected
to the various levels of the scale through which a biological system is observed. Higher level traits
include biochemical properties, physiological properties, development and morphology, pheno-
logy, and behavior. For instance, phenological traits comprise periodic biological phenomena,
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such as flowering, breeding, and migration, in relation to climatic and habitat conditions. Even
this level is subject to the influence of the genetic information carried by an organism. Phenotypes
result from the expression of an organism’s genes as well as the influence of environmental factors
and the interplay between the two.

The genotype of an organism is defined as the set of alternate variations of genes expressed in
some specific traits. Such traits are often expressed through the synthesis of proteins. In genetics,
gene expression is the most fundamental level at which the genotype gives rise to the phenotype.
In another common usage, the genotype of an organism is more systematically defined as the
description of DNA variations, based on a set of genetic markers. Genetic markers are well-
characterized loci of the genome, which represent many short windows in which to observe DNA
polymorphism between individuals. In particular, the genotype of a diploid organism accounts for
the DNA variants—or alleles—present at opposite loci, on the two homologous chromosomes of
a pair of chromosomes. Comparing genotypes among a set of organisms of the same species is
the key to deciphering the differences in phenotypes observed.

1.1.4 Molecular Biology, Genetics, Genomics, and Postgenomics

Molecular biology is the branch of biology that describes the molecular characteristics of the ge-
nome as DNA, RNA, and proteins. Various definitions can be provided for the terms genetics and
genomics. In the scope of the present book, the word genetics designates the discipline that stu-
dies variations between the genomes of individuals in some population; this analysis of variations
may focus on simple units (genetic markers) or on more complex units (genes). The definition
of genomics generally encompasses the range of biotechnological and computational analyses
related to genome sequencing, gene mapping, and genome annotation; functional genomics is
the appropriate expression for this book. Functional genomics focuses on transcription, trans-
lation, and interactions between proteins. Notably, functional genomics includes the study of
the transcriptome, through DNA chips, to describe and quantify gene expression: for example,
gene expression correlation potentially indicates that genes belong to the same gene interaction
network; the identification of differentially expressed genes, for instance between affected and
unaffected individuals, allows to identify putative causes for a studied disease.

Beyond functional genomics, postgenomics takes a step further to encompass an increasingly
large range of topics. All such topics essentially aim at teasing higher functional biological un-
derstanding out of raw data. These data allow different viewpoints on living organisms. Such
viewpoints may be transcriptomics (analysis of gene expression level through mRNAs), pro-
teomics (analysis of gene expression as proteins), andmetabolomics (characterization of the small
molecules that are intermediates and products of metabolism), to name but a few.

In genetics, genomics, and postgenomics, various types of analyses enable the inference of
knowledge about one or several levels of description of living systems. The next section describes
the levels that are addressed in this book.

1.2 Higher Description Levels of Living Systems

The activity and state of amulticellular organismmay be described from different viewpoints: cell,
organ or tissue, system (e.g., cardiovascular, nervous), and whole organism. In this book, methods
based on probabilistic graphical models are described that allow the inference of knowledge about
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various description levels of living systems. The chapters in this book deal with the following
description levels:

• genome,

• transcriptome,

• gene interaction networks,

• phenotype.

Depending on the chapter, knowledge inference addresses a single level or deals with several
levels. We introduce this section by giving a flavor of the complexity of the processes and the
variety of actors involved in the life of a cell. Then, we focus on the multiple levels of biological
organization of living systems to which the chapters of this book are connected.

1.2.1 Complexity in Cells

A eukaryotic cell consists of the nucleus and various organelles—the “organs” of the cell, for
short—which are immersed in the cytoplasm (see Fig. 1.1). The cell is surrounded by a semi-
permeable membrane. Although no exact number can be provided, the number of cells in an
adult human body can be approximated as 1014. A unique cell, the fertilized egg, is the origin
of all these cells, through cell division. However, though they bear the same genetic information
in their nucleus, the cells of a multicellular organism perform different specific tasks, depending
on their location in organs or tissues: red blood cells exchange oxygen, muscle cells expand and
contract, and cells in the immune system recognize pathogens. Modifications in gene expression
play a key role in guiding and maintaining cell differentiation.
Extrinsic and intrinsic factors regulate gene expression in cells. The first category includes small

molecules, secreted proteins, temperature, and oxygen. Within the organism, cells communicate
with each other by sending and receiving secreted proteins (e.g., growth factors, morphogens,

Fig 1.1 Typical animal and plant cells.

2010 Encyclopaedia Britannica, Inc.
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cytokines). The receipt of these signaling molecules triggers intercellular signaling cascades that
modify the expression of genes. Sequence-specific transcription factors are considered the most
important and diverse mechanisms of gene regulation in cells [28]. An example of cell-intrinsic
regulation is that of the modification of chromatin (DNA associated with histone proteins) by
a cell’s own machinery. A possible consequence of chromatin modification is a change in the
accessibility of genes to transcription factors; the impact on gene expression may be positive or
negative. Two major classes of chromatin modifications include DNA methylation and histone
modification.
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In a cell, the metabolism comprises thousands of complex chemical reactions. These reactions
are chained in metabolic pathways. A metabolic pathway consists of a series of biochemical reac-
tions, starting from a substrate S to generate a product P. Each intermediate reaction (that is
except the first and the last ones) uses at least one product from another reaction in the path-
way as a substrate, and generates the substrate of another reaction in the pathway. For instance,
the metabolic pathway most widespread in living systems is glycolysis, which breaks down glu-
cose to produce energy and takes place in the cell cytoplasm. Another example of a metabolic
pathway is the Krebs cycle (see Fig. 1.2), whose specificity lies in that one of its basic substrates
is also the end product of the pathway. Cells produce and transform the organic molecules that
supply both the material and the energy requested for life. Metabolism consists of two opposed
processes, catabolism, and anabolism. Catabolism extracts energy from complex molecules (e.g.,
glucids, lipids) by breaking them into smaller molecules. Anabolism requires energy to synthe-
size complex molecules from simple molecules. Metabolic pathways are controlled by enzymes.
Enzymes are proteins that catalyze chemical reactions; namely they accelerate reactions, even
in small amounts, and without participating in these reactions. Since many proteins are enzymes,
the control of metabolism and the regulation of gene expression are intimately linked. Sometimes,
metabolic control aims at homeostasis, that is, maintaining constant levels of some variables or
constant rates of some processes; sometimes adaptation demands change. Gene regulation allows
the cell to express protein when needed, thus ensuring the versatility and adaptability of an or-
ganism. Regulation of gene expression involves a wide range of mechanisms and actors (proteins,
microRNAs, chromatin) and complex dynamics (production, storing, degradation). All steps of
gene expression can bemodulated, encompassing transcriptional initiation, RNAprocessing, pro-
tein synthesis, and post-translational modification of proteins. Fig. 1.3 (page 10) illustrates the
hierarchical organization of living systems.

1.2.2 Genetics, Epigenetics, and Copy Number Polymorphism

Genetics, DNA methylation in epigenetics, and Copy Number Polymorphism all deal with the
DNA sequence.
The dependences within genetic data (e.g., SNPs) define the linkage disequilibrium (LD). Faith-

ful models of LD are required for the visualization of LD at various scales—including the genome
scale—or to perform downstream analyses such as association studies (see Subsection 1.2.6). LD
occurs because DNA variants close on the chromosome are scarcely separated by the shuffling
of chromosomes (recombination) that takes place during sex cell formation. Such variants are
therefore transmitted together (as a haplotype) from parent to child. Such patterns are at the
basis of the so-called haplotype block structure [12]: “blocks”, where statistical dependences bet-
ween loci are high, alternate with shorter regions characterized by low statistical dependences, the
recombination hotspots.
Epigenetic features, such as DNAmethylation and histonemodifications, the twomost studied,

are known to be heritable across cell divisions. It has been shown that epigenetic mechanisms
influence phenotype through the regulation of gene expression. Epigenetic features differ across
different tissues and cell types. Most of the vertebrate genome is methylated. Unmethylated sites
show a propensity to cluster together along the genome; unmethylated clusters are often pres-
ent in the regulatory regions of many genes. DNA methylation is an important regulator of
gene transcription and is tightly linked with cellular differentiation. Besides, in many diseases,
abnormal hypermethylation of these clusters results in transcriptional silencing of the nearby
genes. Specifically, associations between altered methylation states and various cancers have been
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Fig 1.3 Hierarchical organization of living systems.

reported. Moreover, DNA methylation in tumor cells encodes phenotypic information about the
tumor or the tumor subtypes. In analogy with the difference between genome sequencing and
genotyping, where only a small subset of an individual’s nucleotides are assayed, methyltyping
suffers from low resolution in comparison withmethylome sequencing. Thus, methyltyping poses
a challenge in DNA methylation profiling. Modeling DNA methylation to exhibit subtypes in a
population is another challenge.

Two chapters are dedicated to the genome-scale modeling of dependences within genetic
data:

Chapter 9: Modeling Linkage Disequilibrium and Performing Association Studies
through Probabilistic Graphical Models: A Visiting Tour of Recent Advances (C.
Sinoquet and R. Mourad), and

Chapter 10: Modeling Linkage Disequilibrium with Decomposable Graphical Models
(H. Abel and A. Thomas).
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The two chapters above deal with Single Nucleotide Polymorphism. The chapter below
addresses another kind of DNA polymorphism, DNA Copy Number Variations:

Chapter 16: Detection of Copy Number Variations from Array Comparative Ge-
nomic Hybridization Data using Linear-chain Conditional Random Field Models
(X. Yin and J. Li).

In diploid genomes, for each gene, or more generally for each genomic segment, each indivi-
dual inherits one copy from its father and one copy from its mother. Thus, in principle, the total
number of copies is two. However, copy number mutations may occur: the total number of copies
may be one (deletion), or three or more (amplifications/insertions).
Copy number alterations have been reported to be associated with numerous diseases. In par-

ticular, such chromosal aberrations as amplifications and deletions have led to the discovery
of important oncogenes or tumor suppress genes. Array comparative genomic hybridization
(aCGH) is a technology that allows the identification of copy number alterations across genomes.
In aCGH, which is an array-based technology, fluorescence is used to measure indirectly the

number of copies for each DNA fragment in the array. Analyzing copy number polymorphisms
using aCHG data consists of two tasks: detection of the boundaries where the copy number ex-
hibits changes, and inference of the copy number state for any such designated regions. Basic
data integration within the genomic level is performed in this case, since it is necessary to align
the regions targeted by the array, and thus to refer to the genome sequence.
In another category, but again in the line of methods addressing the lowest level of biological

organization—the DNA sequence—two other chapters address DNA methylation profiling. The
chapter below analyzes DNA methylation profiles to cluster data:

Chapter 15: Latent Variable Models for Analyzing DNA Methylation (E. Andrés
Houseman).

The other chapter will be mentioned in the next section. As it relies on prior genomic
knowledge, it is an example of data integration.

1.2.3 Epigenetics with Additional Prior Knowledge on the Genome

In the chapter mentioned below, knowledge integration is performed within the same level of
description (DNA):

Chapter 14: Bayesian Networks in the Study of Genome-wide DNA Methylation (M.
Singer and L. Pachter).

Therein, more information is incorporated from the genomic data. Basically, the genomic
structure is used as a prior on methylation status: in vertebrates, unmethylated sites tend to clus-
ter together. Besides, the so-called CpG sites, which are unmethylated, are more conserved than
other sites. Therefore, when experimental annotation of CpG sites is available, the richness of
genomic regions in CpG clusters tends to point out unmethylated regions.

1.2.4 Transcriptomics

The sequence of an mRNA mirrors the sequence of the DNA from which it was transcribed.
Consequently, by analyzing the entire collection of RNAs (transcripts) in a cell, transcriptomics
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can determine which gene is turned on or off in the cells and tissues of an organism. Different
cells show different patterns of gene expression. Transcriptomics examines gene expression
microarrays, in which individuals are observed for a common set of genes.

One aim of transcriptomics is to determine how gene expression changes under the pressure of
various factors such as tissue type, stage of development, drugs, or disease status. Differentially ex-
pressed genes are genes whosemean expression over a group of individuals sampled under a given
condition (treatment, disease status (affected)) is significantly higher or lower than the mean ex-
pression over the control group (e.g. unaffected). For rigorous differential expression assessment,
there is much more information in a microarray data set than the usual analysis extracts: the cor-
relation structure between genes should be taken into account. The usual simplifying assumption
of no correlation is unreasonable as genes are known to be connected in pathways or networks.

Since proteins can be transcription factors for other genes, genes’ interplays may be sum-
marized in gene regulatory networks. Genes targeted (in their regulatory regions) by the same
transcription factors tend to show similar expression patterns along time. Thus, genes that are
simultaneously co-expressed in some experimental or physiological condition (that is, genes that
are highly correlated since they have similar expression profiles) are likely to be co-regulated by
the same gene or genes.

However, gene network inference is far more complicated than identifying clusters of co-
expressed genes. Genes expressed or inhibited in similar conditions or time points are likely to
interact together. Yet, gene network reconstruction requires distinguishing between the corre-
lation of two genes due to direct causal relationships and the correlation that originates from
intermediate genes. Therefore, it is necessary to evaluate the correlation between genes conditio-
ning on other genes. Through the exhibition of direct causal relationships, gene network inference
highlights potential regulations or chains of regulations. For example, it is crucial to identify hubs,
those key genes that regulate many other genes. On the other hand, modules—or communities—
of genes are main contributors to the robustness and evolvability of biological networks; a module
is defined as a set of interacting genes, whose function is separable from the function of other
modules. The role of biologists remains to validate the gene network inferred or to clarify which
are the exact paths corresponding to regulatory chains.

Observation across various conditions sheds light on the constants or variations of these
dependences, that is, on the flexibility of the gene regulation network. In contrast to gene re-
lationships unique to particular conditions or samples, some interactions may be shared across
conditions or samples. Potentially complex distributions of gene expression across a wide range
of conditions may be described through mixture models.

In some cases, merging different experimental conditions mainly aims at enlarging the number
of observations available to infer a gene network. In this case, heterogeneity among micro-
array experiments represents an issue to cope with. A remedy is to study multiple networks
simultaneously with an incentive to share interplays across conditions.

One chapter focuses on the acknowledgment of gene correlation in the assessment of
differential expression:

Chapter 3: Graphical Models and Multivariate Analysis of Microarray Data (H. Kiiveri).

Two other chapters address gene network inference:

Chapter 4: Comparison of Mixture Bayesian and Mixture Regression Approaches to
Infer Gene Networks (S.L. Rodriguez-Zas and B.R. Southey), and
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Chapter 5: Network Inference in Breast Cancer with Gaussian Graphical Models and
Extensions (M. Jeanmougin, C. Charbonnier, M. Guedj and J. Chiquet).

1.2.5 Transcriptomics with Prior Biological Knowledge

Chapter 5 is another example of the integrative approach described by this book. Therein, prior
knowledge on the latent gene network structure is used. Many sources can be used as a biological
prior on the network structure. For instance, prior knowledge may come from the gene level, as
information about metabolic pathways or about which genes code for other genes’ transcription
factors. Metabolic pathways are available from the KEGG (Kyoto Encyclopedia of Genes and
Genomes) [20] or BioCarta databases (http://www.biocarta.com/genes/index.asp); the connec-
tion between two genes is promoted or penalized depending on whether the genes belong to the
same pathway or not. In addition, binding sites of transcription factors point out which genes are
potentially regulated by the transcription factors.
All other chapters in the book infer knowledge through the integration of various sources

of data.

1.2.6 Integrating Data from Several Levels

This transition provides the opportunity to define the concepts of integrative biology and
systems biology. According to some scientists, integrative biology denotes multidisciplinary re-
search (cross-disciplinary, transdisciplinary) incorporating chemistry, physics, mathematics, and
computer science, as appropriate. At the interfaces, significant issues are discussed among scien-
tists bringing together diverse but specific skills. As each chapter in this book takes a machine
learning approach to deal with genetics, genomics, or postgenomics, this first definition of
integrative biology holds for the book.
To other researchers, integrative biology means using a panel of various techniques and ap-

proaches to fulfill their own research programs. The previous definition includes the hierarchical
approaches that deal with integration across levels of biological organization. At the extreme, such
integrative frameworks describe life from molecules to the biosphere, with diversity across taxa,
encompassing viruses, bacteria, plants, and animals. The availability of omics data (genomics,
transcriptomics, proteomics, metabolomics, phenomics . . .) allows the implementation of inte-
grative approaches across as many levels of biological organization [19]. In this book, all chapters
not alreadymentioned in the present section fit this specific latter definition of integrative biology.
To some extent, the above definition meets the concept of systems biology. Systems biology is

an approach in biology and biomedical research meant to understand living systems as wholes, be
they an organism, a tissue, or a cell. In the more traditional so-called reductionist biology, a sys-
tem’s pieces are studied separately. In contrast, the purpose of systems biology is to put a system’s
pieces together, in a holistic perspective. Through this integration, systems biology aims at disco-
vering the emergent properties of cells, tissues, and organisms functioning as systems. Evidencing
such emergent properties is ideally addressed by observing multiple components simultaneously
and by rigorously integrating data, based on mathematical models. These emergent properties
mainly describe the complex interactions within biological systems, as illustrated by gene regu-
lation networks, causal phenotype networks, and associations between genotype and phenotype.
All three previous topics are at the core of fourteen of the chapters in this book. The hierarchies of
biological levels that are spanned therein may not appear very deep as they connect the genomic
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and gene levels, relying on genetics, transcriptomics, and phenomics. Nonetheless, the integrative
approaches depicted require advanced models.

integrating genetics and phenomics

Four chapters in this book deal with quantitative genetics, which is the understanding of how
genotype contributes to phenotype. In the biomedical research domain, an association study
aims at identifying a causal relation between some genomic locus or loci and a disease status
(affected/unaffected). Genome-wide association studies (GWASs) tackle the issue of unraveling
such genotype-phenotype dependences from massive data. Such data usually describe thousands
or ten thousands of subjects with a few hundred thousands to one or two millions of SNPs. The
two following chapters address GWAS strategies:

Chapter 9: Modeling Linkage Disequilibrium and Performing Association Studies
through Probabilistic Graphical Models: A Visiting Tour of Recent Advances (C.
Sinoquet and R. Mourad),

Chapter 11: Scoring, Searching, and Evaluating Bayesian Network Models of Gene-
phenotype Association (X. Jiang, S. Visweswaran and R.E. Neapolitan).

In addition, one chapter thoroughly reviews various refined concepts of association, whereas
another chapter takes the slightly different viewpoint of predicting phenotypes from GWAS
data:

Chapter 13: Bayesian, Systems-based, Multilevel Analysis of Associations for Complex
Phenotypes: From Interpretation to Decision (P. Antal, A. Millinghoffer, G. Hullám, G.
Hajós, P. Sárközy, A. Gézsi, C. Szalai and A. Falus), and

Chapter 17: Prediction of Clinical Outcomes from Genome-wide Data (S. Visweswaran).

integrating genetics, phenomics, and prior knowledge
on biological pathways

In the quantitative genetics domain, one chapter of the book illustrates integration across three
levels of biological organization:

Chapter 12: Graphical Modeling of Biological Pathways in Genome-wide Association Studies (M. Chen, J. Cho
and H. Zhao).

In this chapter, a standard GWAS provides a list of genes associated with a studied disease. On
the other hand, some other genes, not surveyed by the GWAS, are known to belong to the same
biological pathways as the previous genes. The purpose is to estimate the probability that these
other genes may be associated with the disease.

integrating genetics and transcriptomics

The phenotypes dealt with in the above cited chapters are discrete variables (affected/unaffected
status). In Section 1.1, it was recalled that an organism’s phenotype consists in the expression
of its genotype, under defined environmental conditions. The expression of observable characte-
ristics includes features that are only observable through the aid of technology. Transcriptomics
provides gene expression levels for the genes targeted by a microarray. These expression levels
represent as many continuous—or quantitative—phenotypes.
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A quantitative phenotype (or trait) is defined as any physical, physiological, or biochemical
quantitative feature that may be observed for organisms. The purpose of quantitative trait loci
(QTL)mapping is to identify the genomic regions, namedQTLs, where genotype variation entails
phenotype variation. The definition of QTLs is straightforwardly transposed to expression QTLs
(eQTLs) for which the continuous phenotype is a gene expression level.
Dissecting the causal relationships among expression traits involved in the same biological

pathways—and therefore correlated—is a current research topic. Assumptions about the causal
structure of observed variables are often represented in a directed acyclic graph. In causality infe-
rence, the identification of the eQTLs causal to each phenotype is of prime importance. The
genetic architecture (GA) of a given phenotype denotes the locations and effects of its (directly)
causal QTLs. The inference of a causal phenotype network (CPN) has to benefit from the know-
ledge about the genetic architecture: adding causal QTL nodes to a phenotype network allows
the inference of causal relationships between phenotypes that could not be distinguishable using
phenotype data alone. Conversely, GA inference may be refined based on the information borne
by the CPN.
Three chapters in the book are dedicated to the inference of causal phenotype networks. Two

of them rely on the mere integration of genetics and transcriptomics:

Chapter 6: Utilizing Genotypic Information as a Prior for Learning Gene Networks (K.
Chipman and A. Singh), and

Chapter 8: Structural Equation Models for Studying Causal Phenotype Networks in
Quantitative Genetics (G.J.M. Rosa and B.D. Valente).

integrating genetics, transcriptomics, and prior biological
knowledge

To reconstruct causal phenotype networks, the chapter below implements further data
integration:

Chapter 7: Bayesian Causal Phenotype Network Incorporating Genetic Variation and
Biological Knowledge ( J. Young Moon, E. Chaibub Neto, X. Deng and B.S. Yandell).

Prior biological knowledge is incorporated, which may originate from various sources of bio-
logical information. One possible source of information is chromatin immunoprecipitation with
microarray experiments (ChIP on chip), which is used to investigate the interaction of proteins
and DNA in vivo. This technology is employed to generate putative lists of target genes for a given
transcription factor; it evidences that a given transcription factor binds to some putative target.
Regulation inference from knock-out data and protein–protein interaction can also be used as a
prior. Knock-out gene technology allows to inactivate specific genes within an organism. Genes
are knocked out by modifying the region of the gene that codes for the protein. Thus can be de-
termined the effect of this gene on the functioning of the organism. Pathway information can also
guide to refine the causal phenotype network. Finally, information from the Gene Ontology (GO)
[6] may contribute to the biological prior. The GO is a specific vocabulary of terms describing the
molecular functions, biological processes, and cellular components of a gene. The GO terms an-
notate a large fraction of genes. A similarity measure between genes may be defined in this GO
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framework, that enables the connection of genes in a gene network. This network is subsequently
used as a prior for causal phenotype network inference.

Finally, not only does the method described in Chapter 7 perform data integration, it
also performs process integration; whereas most approaches conduct GA inference and CNP
reconstruction separately, these two processes are intertwined.

1.2.7 Recapitulation

Table 1.1 offers a summarized description of the various data sources involved in the integrative
approaches described in this book.

1.3 An Era of High-throughput Genomic Technologies

In the previous section, we emphasized the integrative dimension present in all chapters in this
book but one. For readers not familiar with data originating from high-throughput technologies,
we now briefly describe the data and the genesis of the data dealt with by the chapters of this book.
This section may be skipped by other readers.

Various technologies can be used to generate genome-scale data that provide measurements
at various levels of biological organization. These so-called “omics” data offer an unprecedented
potential to gain insights on the workings of living systems.

1.3.1 Genotyping

In the broad sense, genotyping is the process of determining the genetic composition of an
organism by inspecting its DNA sequence.

Genotyping can be achieved through a variety of methods, depending on the polymorphism
of interest (e.g., SNPs, insertions, deletions, duplications, and rearrangements) and the resources
available. Copy Number Variations (CNVs), which result from duplications and deletions, will
be addressed in Subsection 1.3.2. In the present section, we concentrate on SNPs. SNP-based
genotyping focuses on a small subset of nucleotide locations, known to exhibit variety within a
population of subjects. The characteristic of SNP lies in that, in each such location, when refer-
ring to one of the two DNA strands, only two variants are observable among the four possible
nucleotides. According to the international HapMap project [7], the estimated number of SNPs
in the human genome amounts to 10millions. SNP genotyping is associated with low cost but low
resolution techniques. The use of genotyping chips or arrays is an efficient and accurate option
for examining many loci simultaneously. In addition, next-generation technologies have reduced
the costs of DNA sequencing down to the point that genotyping by sequencing is now feasible.

Subsection 1.3.4 is devoted to the presentation of the principle used in array techniques.
DNA sequencing aims to determine the exact sequence of a given region of DNA. Such regions

may cover a short piece, the whole genome, or parts of the genome (e.g., the “exome”, which is
the 2% or so of the human genome that contains genes). If the targeted DNA stretches encompass
SNPs, DNA sequencing may fulfill the purpose of genotyping. The remaining part of this section
succinctly explains the technology behind DNA sequencing.

DNApolymerase is the enzyme involved inDNA replication, the biological process that enables
the generation of DNA copies from a DNA template molecule. The molecule produced consists
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