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Preface

New graduate students often experience something like shock when they are asked to
solve real-world problems for the first time. These problems can be only rarely solved
with pen and paper and the use of computational techniques becomes mandatory. The
role of computation in any scientific endeavor is growing, and presents an increasing set
of challenges. Numerical algorithms play a central role in theoretical prediction and in the
analysis of experimental data. In addition, we see an increasing number of less numerical
tasks taking on major importance in the life of young scientists. For example, how do
you blend together two computing languages or split a computation between multiple
computers? How does one design program libraries of numerical or scientific code for
thousands of users? How is functionality added to a million-line reconstruction program?
How can complicated datasets be visualized? What goes into a monitoring program that
runs in a control room? These tasks are not particularly numerical or even scientific,
but they are nonetheless important in the professional lives of scientists. From data
acquisition systems to solving quantum field theory or presenting information, students
face an intimidating computational environment with many languages and operating
systems, multiple users with conflicting goals and methods, and complex code solving
subtle and complicated problems.

Unfortunately, the typical student is marginally prepared for the challenges faced
in modern computational ecosystems. Most students have had some exposure to a
programming language such as C, C++, Java, or Fortran. In their first contact with
“real” code, they may well be exposed to a proliferation of legacy software that in
some cases is better used as a counterexample of good modern coding practices.
Under these circumstances the usual solution is to learn on the fly. In a bygone
era when the computing environment was simple this learning process was perfectly
satisfactory, but today undirected learning leads to many false starts and some training
has become indispensable. The search for help can be difficult because the nearby senior
physicist probably grew up in an era preceding the explosive development of languages,
paradigms, and computational hardware.

This book aims to fill some of the holes by introducing students to modern computa-
tional environments, object-oriented computing, and algorithmic techniques. We will rely
on ‘canned’ code where reasonable. However, canned code is, by definition, incapable of
solving research problems. It can at best solve portions of problems. At worst, it can lead
the student researcher to false or incomplete conclusions. It is therefore imperative that
the student understands what underlies his code. Thus an explanation of the numerical
issues involved in common computational tasks will be presented.

Sometimes the numerical methods and applications will be quite technical; for this
reason we regard this book as appropriate for newly graduated students. Our examples
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will be drawn primarily from experimental and theoretical physics. Nevertheless, the
book is also useful for students in chemistry, biology, atmospheric science, engineering,
or any field in which complex analytical problems must be solved.

This text is meant for advanced (or graduate) students in the sciences and engineering.
The physics ranges from advanced undergraduate topics in classical and quantum
mechanics, to very advanced subject matter such as quantum field theory, renormal-
ization, and scaling. The concepts of object oriented computing are introduced early in
the text and steadily expanded as one progresses through the chapters. The methods of
parallel computation are also introduced early and are applied in examples throughout.
Since both the physics and the coding techniques can be replete with jargon, we attempt
to be practical and provide many examples. We have not made any effort to prune away
any discussion of fairly pedestrian material on the pretext that it is not advanced enough
for a sophisticated audience. Our criterion is that the topics we discuss be useful, not that
they be graduate-level, particularly since some topics are interdisciplinary in nature.

The numerical algorithms we consider are those applied in the major domain areas
of physics. Classical problems involving a finite number of degrees of freedom are most
often reduced to a coupled set of first-order differential equations. Those involving an
infinite number of degrees of freedom require techniques used to solve partial differential
equations. The study of quantum mechanical systems involves random processes, hence
the temporal evolution of the system is handled though simulation of the underlying
randomness. The computation of physical processes thus can be generally categorized
according to the number of degrees of freedom and the stochastic or deterministic nature
of the system. More complicated situations can mix these. For example, to follow a
charged particle through a magnetic field in the presence of multiple scattering involves
both deterministic and stochastic processes.

The flip side of simulation is data modeling. This is the procedure by which a
mathematical description of data, often along with the values of physically interesting
parameters, is obtained. Data modeling is an activity that consumes much of the time and
creativity of experimental physicists working with datasets, large or small. While many
treatises exist on the statistical analysis of data, the goal here is to explore, in somewhat
greater detail than is usually found, the computational aspects of this field.

This text is neither a treatise on numerical analysis nor a guide to programming, but
rather strives to develop practical skills in numerical and non-numerical methods applied
to real world problems. Because of the emphasis on practical skills, students should
expect to write programs and to refine and develop their programming techniques along
the way. We assume a basic knowledge of C++ (the part of the language taken directly
from C, minus the anachronisms), and treat the newer features in dedicated chapters. We
do not, however, give a complete lesson on the syntax and symantics of any language,
so we advise the reader who has not mastered C++ to learn it in parallel using any one
of a number of sources. Our emphasis can then fall on using the language effectively for
problems arising in physics.

A key ingredient to effective programming nowadays is mastery of object-oriented
programming techniques—we strive to develop that mastery within the context of
greatest interest to the target audience, namely physics. As noted in Numerical Recipes
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(Press 2007), object-oriented programming has been “recognized as the almost unique
successful paradigm for creating complex software”. As a result, object-oriented tech-
niques are widespread in the sciences and their use is growing. The physicist appreciates
object oriented programming because his day-to-day life is filled with a rich menagerie
of interesting objects, not just integers and real numbers, but also vectors, four-vectors,
spinors, matrices, rotation group elements, Euclidean group elements, functions of one
variable, functions of more than one variable, differential operators, etc. One usually gets
more from a programming paradigm that allows user-defined datatypes to fill in gaps left
at the language level. Encapsulation and polymorphism can be effectively used to build
up a more functional set of mathematical primitives for a physicist—and also to build up
an important set of not-so-mathematical objects such as are found in other nonscientific
code.

Many books are devoted to object oriented analysis and design, and while some of
these treatises are perfect for their target audience, a typical scientist or engineer most
likely gets tired of examples featuring the payroll department and looks for a discussion
of object oriented programming that “speaks his language”. Accordingly, we include
three chapters on object oriented programming in C++: Encapsulation, Polymorphism,
and Templates. Other chapters of the book provide excellent examples of object-oriented
techniques applied to various practical problems.

A companion web site has been established for this text at:

• http://www.oup.co.uk/companion/acp

The site includes example code (EXAMPLES area), skeletons which students can use
as a starting point for certain exercises appearing in the text (SKELETONS area), and
raw data for other exercises (DATA area). In addition the site provides user’s guides,
reference manuals, and source code for software libraries provided free of charge and
used within this text. This software is licensed under the GNU Lesser General Public
License. In referencing examples, skeletons, data, etc., we generally omit the full URL
and refer simply to the directory, e.g. EXAMPLES, SKELETONS, DATA, etc.

Course organization

It is our experience that most of the material in this text can be covered in two terms
of teaching. There are three main strands of emphasis: computational, numerical, and
physical, and these are woven together, so the reader will find that emphasis alternates,
though the book begins with more computational topics, then becomes more numerical,
and finally more physical.

Computational topics include: Building programs (Chap 1), Encapsulation (Chap 2),
Some useful classes (Chap 3), How to write a class (Chap 6), Parallel computing
(Chap 9), Graphics for physicists (Chap 10), Polymorphism (Chap 12), and Templates,
the standard library, and modern C++ (Chap 17).

http://www.oup.co.uk/companion/acp
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Numerical topics include Interpolation and extrapolation (Chap 4), Numerical
quadrature (Chap 5), Monte Carlo methods (Chap 6), Ordinary differential equations
(Chap 11).

Topics related to applications in experimental and theoretical physics are Percolation
and universality (Chap 8), Nonlinear dynamics and chaos (Chap 14), Rotations and
Lorentz transformations (Chap 14), Simulation (Chap 15), Data modeling (Chap 16),
Many body dynamics (Chap 18), Continuum dynamics (Chap 19), Classical spin
systems (Chap 20), Quantum mechanics (Chap 21 and 23), Quantum spin systems
(Chap 22), and Quantum field theory (Chap 24).

Finally, there are nearly 400 exercises of widely varying difficulty in the text. To assist
students and instructors in selecting problems, we have labelled those exercises that are
meant to be worked out without the aid of a computer as theoretical [T]; exercises which
are more open-ended and require significant effort are elevated to the status of a project
and labelled with a [P].

Acknowledgments
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Building programs in a Linux
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The goal of this book is to develop computational skills and apply them to problems
in physics and the physical sciences. This gives us a certain license to try to teach
any (legal) computational skill that we believe will be useful to you sooner or later in
your career. The skill set you’ll need includes scientific computing and not-specifically-
scientific computing. For example, applying statistical techniques in data analysis or
solving the Schrödinger equation on the computer are distinctly scientific computing
tasks, whereas learning how to work collaboratively with a code management system is
a not-specifically-scientific task. But you will use both as you progress in your career
and so we will aim to teach you a little of both. We will go back and forth to some
extent between scientific computing topics and general computing topics, so that the
more generic skill set becomes useful in writing programs of a scientific nature, and
the scientific programs provide opportunities to apply and reinforce the full skill set of
numerical and not-so-numerical techniques.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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Like mathematics, computing often appears to be a collection of tricks, with the well-
known tricks elevated to the status of techniques. Deciding which tricks and techniques to
teach is a difficult question, and a book like this has no traditional road-map. Our selection
criterion is usefulness. Many of the topics are concerned with the simulation, classification
and modeling of experimental data. Others (like integration or computational linear
algebra) provide a basis for some of the later topics in simulation and modeling.
Later, application to classical and quantum mechanical problems will be discussed.
Like mathematics, computation is an art, and as practitioners we will pass on our own
approach. If you learn to play a saxophone from John Coltrane, you will be absorbing
John Coltrane’s style, but also, hopefully, developing your own style along the way. So it
is with the art of computation.

Writing executable programs and toolkits is of course central to this enterprise; since
we are not about to describe computational techniques in wholly abstract terms, we have
to be specific about which language(s) we are proposing to use. Our coding examples
are usually expressed in the modern C++ language, or occasionally in the older, simpler
computing language “C”. We will sometimes also employ “pseudocode”, which is a
generic code-like description of any algorithmic process. Like almost any choice in
computation, the focus of C++ is not totally obvious or universally acclaimed, but rather
involves certain pros and cons–a debate that we will not lead you through here. The
motivation for our choice is:

• In physics our lives consist of manipulating objects which are more abstract than
scalar data types, including vectors, spinors, matrices, group elements, etc. While
calculations involving these objects can be done in many computer languages, our
lives will be vastly simpler if our computer languages support the objects of day-
to-day life. No language is vast enough to support these at the language level,
but languages supporting the object-oriented paradigm do allow you to add user-
defined objects to the set of built-in data types. C++ also allows us to define basic
operations on these data types, and maintains the speed of a compiled language.

• Most of a typical operating system is written in C and you will find it very easy
to integrate specifically scientific software together with a vast body of generic
software, particularly lower-level system calls.

Few people learn how to write software by writing programs from the bottom up.
The “software stack” of even a very simple program can already involve toolkits that
have taken a generation or two of computer scientists and physicists to develop. It is
very common to make big scientific contributions by working on a small part of a
huge program. Making modifications to an existing program, or filling in a piece of
an incomplete program, can be a valuable learning experience. Some infrastructure for
building programs is generally required. At a very minimum, a computing platform,
operating system, and suite of compilers is needed. More complicated projects may even
require a sophisticated set of tools to coordinate the development, distribution, and build
of a software system. As more and more software is packaged and distributed for re-use,
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the build of computer programs becomes more challenging. In this chapter we introduce
the basic ideas related to the building of software with some very simple examples.

Our reference operating systems are the popular Ubuntu linux (now at version 17.04)
and macOS (version 10.12.6). These are both variants of unix, an operating system
written in C and dating back to the 1970s; and we will refer to them generically as
such. The commands required for writing, building, and executing programs as well
as tailoring the environment will be expressed as required by the bash shell on a Ubuntu
linux machine. Because of its low cost and portability, the linux operating system is
widely used in scientific computing. Not only can it be used on personal computers
(laptops, desktops, and now even smart phones), but it can also be found running in
the machine rooms of large computer centers on thousands of high-density rack mount
computers. The latest version of Ubuntu linux can always be installed on a PC after
downloading from the website www.ubuntu.com. The installation, management and
customization of operating systems are not trivial skills, but they are also extremely useful.

Your first task is to get a laptop or a PC, and equip it with a basic linux operating
system. We recommend that you install and maintain the operating system yourself.
It is possible to dual-boot desktop and/or laptop computers, preserving the original
operating system (e.g. Windows) which then coexists with linux. A Macintosh
computer, which runs macOS, will also do for this book, since it runs an operating
system similar to linux.

We assume a working knowledge of C++ basics–the part of C++ which is essentially
just the C programming language, but minus anachronisms such as malloc, free,
printf, scanf. In this text we develop in a few chapters that which is necessary to
go beyond the ground level and understand classes, inheritance, polymorphism, and
templates. For those who need to brush up on the basics, a good, short, but somewhat
anachronistic introduction is the famous text of Kernighan and Ritchie (1988). The first
few chapters of Capper (1994) or Bronson (2013) also cover the basics and provide
a more modern introduction to the same subject. Another good source is the tutorial
section of the online reference www.cplusplus.com. While our presentation of the
C++ language will be far less formal than other common treatments of this powerful
computing language, the physics applications will be more interesting and appropriate
for the physical sciences, and you will “learn by doing”, though it may be a good idea to
refer to the above references occasionally if you prefer a more formal treatment of the
language.

1.1 The editor, the compiler, and the make system

You write a program with an editor. There are a large number of these available on
linux, and in principle any one will do. The emacs text editor (provided by the GNU

http://www.ubuntu.com
http://www.cplusplus.com
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Table 1.1 List of programs (center column) commonly used to
compile major computer languages (left column).

Language Compiler under linux, OS X Provided by

Fortran gfortran GNU Project

C cc gcc GNU Project

C++ c++ g++ GNU Project

Java javac Oracle

project; homepage www.gnu.org/s/emacs/) has features such as syntax highlighting,
which can be very helpful in writing code, since it can recognize and draw to your
attention syntax errors so that you can recognize them before they are reported by
the compiler. The gedit text editor (provided by the GNOME project, homepage
projects.gnome.org/gedit/) also has some of these features, and is perhaps more
intuitive though less powerful. A much more basic editor called vi is generally pre-
installed on even the most basic linux distributions. This is the editor of choice for gnarled
veterans. On the other end of the spectrum, interactive development environments
such as Eclipse (provided by the Eclipse foundation, homepage www.eclipse.org)
embed powerful editors in a suite of tools for code development in C++ as well as
other languages. There can be a steep learning curve with Interactive Development
Environments (IDEs) such as Eclipse, but the effort can be worthwhile.

A single file of instructions is called a compilation unit. A compiler turns these into
object code, and a linker puts different pieces of object code together into an executable
program. Each computing language (Fortran, C, C++, Java) has its own compiler. Since
C++ is a superset of C we can and will use the C++ compiler everywhere. Under linux,
g++ and c++ are the same program. A table of common compilers is given in Table 1.1.

We look at a simple program which is a single compilation unit. It has a routine called
main and like other functions takes arguments and returns an integer value (more on
that, later). We call the file containing these lines foo.cpp. “.cpp” is the most common
extension for c++ code. The program illustrates the important features of the main
program unit, particularly how to write new commands under a unix operating system.

int main (int argc, char ** argv) {
return 0;

}

Here are three ways to build an executable program from this source:

1. Compile to object code and then link to make an executable program.

$c++ -c foo.cpp -o foo.o
$c++ foo.o -o foo

http://www.gnu.org/s/emacs/
http://www.eclipse.org


Building programs in a Linux environment 5

2. Compile/link at the same time to make an executable program in one step.

$c++ foo.cpp -o foo

3. Use make

$make foo

The compilation step transforms human-readable C++ into machine instructions that
the CPU can understand, and is called object code. The link step links together object
code from various sources into an executable program. Which sources? The example
above may give you the impression that there is only one, called foo.cpp but that is
not true. Your program also contains pieces from the C standard library libc.so as
well as others.

Even when the compilation and link is performed in one single command, there are
still two phases to the process, and thus two points of failure. If you get an error message,
try to figure out whether the error message is a compile error or a link error. Link errors
do not occur at specific instructions, but constitute a failure to assemble the final program
from the various pieces of object code, and usually in this case a piece of the program, or
the object code containing the piece has been omitted, is missing, or cannot be located.

Once you’ve built the program you can see which run time libraries have been linked
by issuing the command:

$ldd foo

which will generate the output

linux-vdso.so.1 => (0x00007fffc77fe000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f19f6313000)
/lib64/ld-linux-x86-64.so.2 (0x00007)

In addition to these libraries that are included automatically in the link of any C++
program, additional libraries can be linked by mentioning them explicitly in the list of
arguments to the compiler as we will soon see, using the -l and -L flags. In general
programs will include program libraries containing useful functions and class libraries
containing useful classes (extensions to the basic data types of the language).

Our first example (foo.cpp) is extremely simple and not at all a typical project,
which these days can consist of many thousands of compilation units. Managing the
development and build of large software infrastructure becomes a complicated job. Usu-
ally the make system (provided by the GNU project, homepage http://www.gnu.
org/software/make/) is used to build projects containing multiple compilation
units. A pedagogical guide can be found in Mecklenburg (2004). The third way of
building the program foo illustrates the basic principle of the system: make knows that
a program (foo) can be built from its sources (foo.cpp) with g++, the C++ compiler.

http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
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It applies a set of rules to build the target from its prerequisites. One of those rules says
that the g++ command can be used to build an executable with name foo from a source
code file named foo.cpp.

The make system can be extensively customized (and usually is) whenever make is
used in the context of a large software project. The customization is achieved through
Makefiles, which are files usually named makefile, Makefile, or GNUMakefile that
are placed in directories that contain the source code. In some cases these makefiles are
written by hand and in others they may be generated automatically by another tool. We
will describe this further as the need arises. Powerful as make is, it is often not sufficient
on its own to organize the build of large or complicated projects, so additionally, a number
of code management systems are available to coordinate and manage the distributed
development of software on top of make.

1.1.1 Troubleshooting mysterious problems

On a few occasions you are likely to find that properly written code does not compile,
link, or execute because of the configuration of the platform and not the code itself. Header
files (with .h or extensions, discussed below) are normally installed in a system directory
such as /usr/include or /usr/local/include; they can also be installed in other
locations but then the qualifier

-I/path/to/include/area

must be added to the command line during the compile step. If the header files are
not installed there then obviously the compile step will fail. Libraries, discussed in
Section 1.8, are specified during the link step with the -l flag, and their search path is
specified using the -L flag. These libraries must exist, they must be located during the
link step, they must actually contain the symbols that they are supposed to provide, and
they must be compatible. These symbols are all of the local and global variables known
to the compiled code, as well as all the known structures, classes, free subroutines and
member functions.

Computing hardware and operating systems exist in both 32 bit and 64 bit archi-
tectures, and object code which has been compiled for a 64 bit machine will generally
not run on a 32 bit machine. Normally this type of object code would not be built or
installed on the wrong architecture, but computers are machines and machines can go
wrong. You might find a program or object library on a cross-mounted disk drive shared
by machines having different architectures. Even the execution step can fail if bits of
object code collected in shared libraries (files with the .so extension, discussed below)
do not exist, cannot be located, or are incompatible. Incompatibilities can sometimes
be caused by linking together object code produced by different compilers, or even the
same compiler with different options. If these problems arise, the best approach is to be
systematic in investigating and determining the cause.

To that end, it’s useful to know about a few utilities in unix to help debug mysterious
problems with “perfectly good” code. Table 1.2 summarizes a few of them to help you
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Table 1.2 Table of utilities for examining executable files. This is useful for investigating
“mysterious problems” as described in the text.

Linux command OS X equivalent Purpose

ldd otool -L check shared libraries required by a
program. Prints the location of these
libraries and flags any missing libraries.

file file classifies files. This command can yield
useful information about how object files,
and libraries, were compiled.

nm nm lists symbols in the object files, archives,
shared libraries, and executables (variables
and subroutines). Output can be very long!

c++filt c++filt Decodes “mangled” C++ symbols (for
example, from nm or link error messages)
and prints them in human-readable form.

see what you have just built; the unix manual pages for these commands give more
information.

1.2 A quick tour of input and output

The first program you will generally write, like the famous Hello, World example in
Kernighan and Ritchie (1988), simply echoes a few words to the terminal. In Fortran,
input/output (IO) is handled at the language level; in C it is handled at the level of
standard C functions, and in C++ it is handled through objects. Three important objects
you must learn about are std::cout (the standard output), std::cerr (the standard
error output), and std::cin (the standard input). In fact, since C++ is a superset of
C, the C standard library routines (printf and scanf for the cognoscenti) can also be
used but they are considered obsolete and should be avoided because they are unable to
handle user-defined data types.

Basic usage of the std::cin, std::cout, and std::cerr objects is extremely
easy. You will need to include the iostream header file at the top of any compilation
unit that uses them:

#include <iostream>

Consider the following line:

std::cout << " Hel lo , World " << std::endl;
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The “<<” characters in the above line constitute an operator, the left shift operator,
which is defined in the C++ standard library for the std::cout object. The operator
can stream bits of text,ints, floats, and doubles, and even user-defined data types (if
the designer allows it) to the standard output, i.e. the terminal. You should try this on your
own. This is all we will say about std::cout for the moment. About std::cerr, we
will say only that under unix operating systems (i.e. linux, Mac OS, and other variants), it
is convenient sometimes to have two streams, both of which will normally end up printing
to the terminal, because it is possible to redirect each stream separately1 to a file or a unix
pipe, for example. So, std::cerr functions just like std::cout except that normally
program output is sent to std::cout while informational status, warning, and error
messages are sent to std::cerr.

Your program can read input from the terminal using the std::cin class. This class
can read in bits of text but also read the values of int, float, double (among others)
from text strings from standard input–normally you think of typing these in using your
actual fingers, but under unix you can also tell a program to take its “standard input”
from a file, like this:

$ foo < file.txt

We use std::cin as follows in our programs:

#include <iostream>
...
int i, float f;
std::cin >> i >> f;

Input has one unique subtlety which we need to discuss: it can fail for several reasons.
One reason is that the input may not be convertible to the right data type. For example,
the word “particle” cannot be interpreted as an integer. Another reason is that the input
may have reached its end, if the input were a file, or if the typing were terminated by C^D
(Control+D). So we normally test that input has worked with the following incantation:

int i;
if (std::cin >>i) { // success!
...
}
else { // failure!
...
}

1 for more information, see the unix manual page on bash, particularly the section REDIRECTION.
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1.3 Where to find information on the C++ standard library

The objects std::cout, std::cerr, and std::cin are all part of the C++ standard
library, which contains a very large set of functions and objects, many of which will
be extremely useful. The most usable documentation that we have encountered so far
is an online reference, www.cplusplus.com, particularly the section called “library
reference”.

The C++ standard library is beyond the scope of our treatment and we will not
attempt to explain more than the essentials, just what you’ll need to follow this text
and complete the exercises. We use it throughout the text, and discuss certain aspects
in more detail in Chapters 6, 12, and 17. When you need detailed information, the
ultimate authority on the C++ language and the C++ run time library is the ISO
C++ standard. An updated standard was published in August 2011 by the International
Standards Organization (ISO) and the International Electrotechnical Commission (IEC)
as report number ISO/IEC 14882:2011. While this document is authoritative, it has little
pedagogical value and is really intended for experts.

The best advice we can give to students confronted with such a large and complex set
of standard software tools is to read the documentation as you go along, and try to learn,
along the way, some of the tricks that will make you more efficient in your work. In this
text we will explain bits and pieces of the C++ standard library as we go along, without
any intent or commitment to treat the subject comprehensively.

1.4 Command line arguments and return values

An executable program is, generally speaking, a command like any other command
in unix. Like any command, you can pass in command-line arguments. These are
available through the variable char **argv, an array of character strings, whose length
is given by int argc. Let’s modify our program foo now so that it simply echoes the
command line arguments:

#include <iostream> // Include headers for
basic i/o

int main (int argc, char ** argv) { //
for (int i=0;i<argc; i++) { // Loop over command

line args
std::cout << argv[i] << " "; // Print each argument

to screen.
} //
std::cout << std::endl; // End-of-line.
return 0; // Program successful

}

http://www.cplusplus.com
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If you build this program and execute it with a few command-line arguments, it will
behave as follows:

$./foo A B C D
./foo A B C D

Notice that the zeroth argument is the command name itself. The $ symbol in the
preceding example is the command prompt, echoed by the shell unless the user has
configured his system otherwise.

If you are new to unix, you may not know that the operating system looks for
commands in a standard set of directories. An ordered list of directories is held in the
environment variable PATH. To see what directories are in your path, you can type

$echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:
/usr/games

For that matter, since you have now written a program very much like echo, you can use
it to discover your path as well:

$./foo $PATH
./foo /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin

You can create your own directories where you can create important programs that you
have written:

$mkdir ~/bin
$cp ./foo ~/bin
$export PATH=~/bin/:$PATH

This latter command can be added to the .bashrc file in your home directory, so
that it is executed every time you log in. Then the program foo will appear as a
built-in command, just like any other unix command, which, in fact, are built for the
most part in exactly the same way. The source code for every command in Linux is
free and publicly available–and most are written in the C programming language. For
example, the echo command, which echoes the command line in a way very similar to
foo, is compiled from source code which can be seen in http://git.savannah.
gnu.org/cgit/coreutils.git/tree/src/echo.c; this web page points to a
software repository which also contains other linux commands that may be familiar to
you. You now have a partial glimpse of how a unix operating system, particularly many
of the commands, are constructed.

Now back to our program, foo. The main routine of our program returns an integer
value, zero in our example. This is the return status of the program. It’s value can be

http://git.savannah.gnu.org/cgit/coreutils.git/tree/src/echo.c
http://git.savannah.gnu.org/cgit/coreutils.git/tree/src/echo.c
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accessed after the program has executed by the “special” parameter “?”. Its value is
decoded by prepending a “$”, as for any environment variable (try it! type echo $?). It
is typical to signal successful completion of a command by returning 0, and one or more
failure modes with a nonzero value.

1.5 Obtaining numerical constants from input strings

One way of inputting numerical constants to a program is to read them from standard
input. This is convenient in some circumstances but not in others, since from the point
of view of the user of the program (who is also often the developer) the most useful way
to communicate input to the program may be via the command line. However, as we
have seen, command line arguments are made available as an array of character strings.
How do we extract numbers from these strings?

Part of the C++ standard library is a class called std::istringstream. To use this
object, you initialize it with a character string and then extract the numerical data through
the right shift operator, >>. As with the object std::cin, which is closely related to
std::istringstream objects, you can test for success. Here is an example of how to
parse an integer from the second item on the command line:

#include <sstream>
...
int main (int argc, char **argv) {

...
int anInteger;
std::istringstream stream(argv[1])
if (stream >> anInteger) { // Success!
...
}
else { // Failure!
...
}

}

1.6 Resolving shared libraries at run time

Note that most programs are not complete without a set of shared libraries that are
required by the program. Those shared libraries are to be found, normally, in standard
locations. By default the area /usr/lib is searched for these libraries first, then /lib. By
defining an environment variable called LD_LIBRARY_PATH, which is an ordered
list of colon-separated directories, you can specify other libraries to search. If a shared
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library cannot be found, the system will report an error when you attempt to execute a
program:

$myprogram
myprogram: error while loading shared libraries:
libMyLibrary.so.1: cannot open shared object file: No such file
or directory

Missing libraries will also be reported by the ldd utility, described in section 1.1.

1.7 Compiling programs from multiple units

In textbooks and exercises, programs consist of a few lines of code typed into a single
source code file. In the real world of physical sciences, computations this simple are
rare. In the context of large scientific experiments, often the software infrastructure
is a behemoth consisting of multiple millions of lines of code split across tens of
thousands of individual files, representing a major financial investment on the part of
national governments. This is the ecosystem in which students in the physical sciences,
particularly physics and astrophysics, may find themselves trying to operate. It should
be quite obvious that organizing and managing software infrastructure involves breaking
it down into more manageably sized units. In this and the following sections we will see
how to compile a program from multiple compilation units, and then how to archive the
units and coordinate the build of the program.

While the necessity of splitting up source code arises from very complicated systems,
we will illustrate the basic idea by splitting up a small one. Our program, called iterate,
is designed to make a certain number of calls to the system routine sleep. It takes two
command line parameters: the number of iterations, and the duration of each iteration:

$ iterate 6 4
0 sleeping for 4 seconds
1 sleeping for 4 seconds
2 sleeping for 4 seconds
3 sleeping for 4 seconds
4 sleeping for 4 seconds
5 sleeping for 4 seconds
$

Here is the program, all in one single file, which we call iterate.cpp

#include <iostream> // for std::cout, & cetera
#include <sstream> // for istringstream
#include <cstdlib> // for exit
//
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// Define a data structure
//
struct Control {
int iterations;
int seconds;

};
//
// Parse the command line:
//
Control *initialize (int argc, char ** argv) {
Control *control=NULL;
if (argc!=3) {
std::cerr << " Usage : " << argv[0] << " i t e r a t i o n s seconds "

<< std::endl; exit(0);
}
else {
control =new Control;
control->iterations=0;
control->seconds=0;
{

std::istringstream stream(argv[1]);
if (!(stream >> control->iterations)) return control;

}
{
std::istringstream stream(argv[2]);
if (!(stream >> control->seconds)) return control;

}
}
return control;

}
//
// finalize:
//
void finalize(Control *control) {

delete control;
}
//
// execute:
//
void execute(Control *control) {
if (control) {
for (int i=0;i<control->iterations;i++) {

sleep(control->seconds);
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std::cout << i << " s l e e p i n g f o r " << control->seconds
<< " seconds " << std::endl;

}
}

}
//
//
//
int main(int argc, char ** argv) {

Control *control = initialize(argc, argv);
execute(control);
finalize(control);
return 0;

}

The simplest way to build this is to type make iterate, which will in turn execute the
following command in a child process:

$g++ iterate.cpp -o iterate

To illustrate the typical way of organizing a project with multiple compilation units, we
will separate iterate.cpp into several pieces. The main program declares and defines
three functions (in addition to main): initialize, execute, and finalize. It also
declares a single data structure, called Control. The functions are defined where they
are declared, which must be before they are used. Hence main is the last function to be
defined, rather than the first.

In C++, as in C, every function and data structure (or class) must be declared
before it is used, once, and only once; this amounts to specifying the interface to the
function and/or class. The first step to breaking up this program is to separate the
declarations from the definitions, putting them in a header file that can be included by
each compilation unit. We therefore now create the header file iterate.h, and put it
in the same directory as the source code:

#ifndef _ITERATE_H_
#define _ITERATE_H_

// Data structure controlling the iteration loop:
struct Control {
int iterations;
int seconds;

};

// Initialize. Parse the command line:
Control *initialize(int argc, char ** argv);
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// Execute the iteration loop:
void execute(Control *control);

// Finalize. Clean up the memory:
void finalize(Control *control);

#endif

The preprocessor directives (those including #ifndef, #define, #endif) form an
include guard, guaranteeing that the declarations occur only once, even if the same
header file is included twice, for example, directly, and indirectly.

We can now split our program into four compilation units, which we will call
iterate.cpp (containing only main), initialize.cpp, finalize.cpp, and
execute.cpp. Each one of these should include the header file iterate.h at the
top, along with any other header files that it needs. For example the file execute.cpp
looks now like this:

#include " i t e r a t e . h "
#include <iostream>
void execute(Control *control) {
if (control) {
for (int i=0;i<control->iterations;i++) {

sleep(control->seconds);
std::cout << i

<< " s l e e p i n g f o r "
<< control->seconds
<< " seconds "
<< std::endl;

}
}

}

The functions initialize and finalize have been moved into their own files, in a
similar way; and the program iterate.cpp now becomes very simple:

#include " i t e r a t e . h "
int main(int argc, char ** argv) {
Control *control = initialize(argc, argv);
execute(control);
finalize(control);
return 0;

}

At this stage our directory contains four source code files–one of them containing the
function main, which is required in any program. We can build the program iterate
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in a number of different ways from these sources. The first option that we have is to
compile and link all of the source code at the same time:

$g++ iterate.cpp initialize.cpp execute.cpp finalize.cpp \
-o iterate

This is fine except it has the drawback that if you change one part of this “project” you
need to recompile all of its files. This is not too high a price for the program iterate,
but could be very high in a real-world project. The preferred option is to compile each
unit to object code separately, and then link them together at the end. The g++ command
can be used for both stages of this procedure (here, the -c flag indicates that g++ should
compile to object code and not bother to attempt a link):

$g++ -c -o iterate.o iterate.cpp
$g++ -c -o initialize.o initialize.cpp
$g++ -c -o execute.o execute.cpp
$g++ -c -o finalize.o finalize.cpp
$g++ iterate.o initialize.o execute.o finalize.o -o iterate

A mixed approach can also be taken:

$g++ -c -o iterate.o iterate.cpp
$g++ -c -o initialize.o initialize.cpp
$g++ iterate.o initialize.o execute.cpp finalize.cpp -o iterate

Stepping back and looking at what we have done, we notice that the modularity of the
program is greatly improved; the protocol for each routine is clear from looking at the
header file (where additional documentation can also be collected), and developers can
work individually on one piece of the program at a time. On the other hand, while the
program development itself is simplified, the price is additional complexity on the side
of building the program. In the real world the management of very many compilation
units is an extremely complicated task often carried out by teams of full-time people.
Fortunately, a number of standard tools have been developed to better manage the build
of a program. In the following section we will discuss several of them that are almost
always at the core of any project: libraries of object code, the make system, and a source
code management system.

1.8 Libraries and library tools

Having seen how to break up the source code into more manageable units, we now
address the issue of how to keep the compiled code together in order to ease the
process of compilation. Files containing object code (with the .o extension) are often
collected together into libraries, so that the client code (iterate.cpp in the above
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example) can link with one library rather than many different object files. In the world of
professional programming the library (and associated header files and documentation) is
the implementation of what is called the API, or application programming interface,
which represents a toolkit for the development of applications, vulgarly referred to as
“apps” amongst the rabble.

There are two kinds of libraries, called static (files ending with .a) and shared (files
ending with .so on linux systems or with .dylib on the mac). The main difference
is that at link time, the object code in static libraries becomes part of the executable file;
i.e., it is copied in. Programs linked to a shared library contain only pointers to bits of
executable code which are not copied into the executable; and therefore the shared library
file must be resolved at run time, before the program can be executed (see Section 1.6).
Working with static libraries is usually simpler though it does create larger executables.

The linux command ar manipulates a static library. To create the static library
libIterate.a, give the command:

$ar rc libIterate.a initialize.o execute.o finalize.o

The modifier rc stands for “replace” and “create”: the library (or archive) is created if
it doesn’t exist, and if it does exist then any object files within the library are replaced
by those given on the command line. The contents of the library can be examined
with ar t:

$ar t libIterate.a
initialize.o
execute.o
finalize.o

Also, the contents of the library can be manipulated; for example individual pieces of
object code may be extracted (ar x) or deleted (ar d). More information can be
obtained from the ar manual page.

Now that you’ve built the library, you naturally will wonder how to link it to other
code. The g++ command has two important compiler flags that can be used, -L and
-l. The first one, -L, specifies a directory to be searched for the library. The working
directory is not on that path by default, so if your library lives in your working directory
you should add -L. or -L‘pwd‘ to the g++ command. The second one, -l, gives the
name of the library to link, but with an odd rule: to link to libIterate.a, you should
write -lIterate. In other words, transform “lib” into -l and drop the extension .a.
Both flags can be repeated on the command line and specify a search list: if the library
is not found in the first directory, the second is searched; likewise if the symbols are
not found in the first library on the command line, the second is searched. Therefore
the order of -L and -l arguments is important. In our example, you will use the
command:

$g++ iterate.o -L. -lIterate -o iterate
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To make a shared library, you can use the versatile g++ command again, giving the
list of object files on the command line in addition to the -shared flag, and specifying
a lib prefix and an .so extension for the output file, like this:

$g++ -shared initialize.o execute.o finalize.o -o libIterate.so

Some compilers also require the -fPIC qualifier during the compilation of object code
files like initialize.o in order to produce “relocatable” code required in a shared
library2. The only way to examine the contents of a shared library file is with the nm
command, which dumps the symbol table. It is usually best to pipe this through c++filt,
so that subroutine names are demangled into a readable form. You can link to the shared
library in the same way as you link to a static library, and by default libIterate.so
(for example) will be take precedence over libIterate.a if both files are found.
Typically, when you then run the program, the shared object library will need to be
resolved as well, as we have discussed in Section 1.6.

The software on a linux system is built from packages and these packages include
programs, APIs, and sometimes both programs and APIs. One good (and useful)
example is the gnu scientific library, or gsl, which can be installed (on a Ubuntu
linux system) by typing:

$sudo apt-get install libgsl0-dev

This installs the libraries /usr/lib/libgsl.a, /usr/lib/libgsl.so, as well as
the headers /usr/include/gsl/*.h, and a manual page that can be referenced by
typing

$man gsl

1.9 More on Makefile

The example we have been developing over the last few sections now constitutes a mini-
project with a number of steps in the build process, namely (if we are going to use a static
library):

• build the object files initialize.o, execute.o, finalize.o

• build the archive libIterate.a

• build the executable iterate

Extrapolating our experience to a large project, we can see that while building each
constituent requires knowledge of a few compiler flags at the very least, building the entire

2 This is particularly the case with the gnu compiler g++.
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project interactively quickly becomes prohibitive. One way to automate this is to script
the build (in bash, csh, or a similar scripting language); however with large projects
one prefers to skip compiling code that has not changed since the last compilation. The
make system was invented to build components of a large project from prerequisites.
It can detect when a component is stale (because its prerequisites have changed) and
rebuild it. It does this from rules, some of them built-in, while others can be specified
to the system. The typical way to extend the set of built-in rules is to write a Makefile
which lives in the same directory as the source code. We demonstrate this by an example.
First, notice that the make system already knows that a .cpp file is prerequisite to an .o
file with the same base name; typing make initialize.o is sufficient for the system
to execute

g++ -c -o initialize.o initialize.cpp

when initialize.cpp is found in the working directory and has been modified more
recently than initialize.o. Ditto for execute.o and finalize.o.Makefile does
not know (yet) that these object files are prerequisite to the archive libIterate.a.
Thus, we create a file named Makefile and add the following lines:

libIterate.a:initialize.o execute.o finalize.o

This says that libIterate.a is a target and that it depends on the three listed object
files. Since it is the first target in the Makefile (and the only one for the moment), typing
make will automatically build the three prerequisite files, from built-in rules. Following
this line in the Makefile, one can specify which actions to take to build the target. Such
lines must begin with a tab. The make system is very sensitive to this and using spaces
will cause make to fail. We revise the Makefile so that it looks like this:

libIterate.a:initialize.o execute.o finalize.o
ar rc libIterate.a initialize.o execute.o finalize.o

This can also be written a little differently, since the syntax of Makefile allows you to use
the expression $@, which means “the target”; $? which means “the list of prerequisites”;
and “$<”, which means “the first prerequisite”. Thus one can write:

libIterate.a:initialize.o execute.o finalize.o
ar rc $@ $?

Macros can be defined in a Makefile too, so one can write this as:

OFILES=initialize.o execute.o finalize.o

libIterate.a:$(OFILES)
ar rc $@ $?
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Additional targets can be added to this list which now only includes libIterate.a.
A common one to add is clean which removes all compiled code (.o files, static and/or
shared libraries, the executable) and sometimes the backup files (ending in ~) left by the
emacs editor. Such a line would look like

clean:
rm -f *.a *.o iterate *~

(obviously you must be extremely careful!) and we can clean our directory now by typing
make clean, which will rid the directory of everything but source code. Now we still
have not told the make system how to build the final executable. We insert (at the top, after
macro definition but before any other target) a line that determines how the executable
iteratewill be built; because this line will be the first target in the Makefile,iterate
will be the default target. It will be built merely by typing make from that directory. The
final version of Makefile looks like this:

OFILES=initialize.o execute.o finalize.o

iterate:iterate.o libIterate.a
g++ -o $@ $< -L. -lIterate

libIterate.a:$(OFILES)
ar rc $@ $?

clean:
rm -f *.a *.o iterate

you can build the whole project by typing make, or pieces of it:

$make execute.o
$make libIterate.a

for example.
This probably looks like a nice tool, but even Makefile has its limits and many code

management systems have been built on top of Makefile when things get even more
complicated. We will not discuss these in this book, but be prepared for a shock when
you enter the world of million-line software projects.

1.10 The subversion source code management
system (SVN)

The last important tool that we will discuss in this introduction is the Subversion
system, or SVN, which is very widely used to manage the process of distributed software
development. This is an example of a source code management system. Other examples
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include the Concurrent Version System (CVS), which is now practically obsolete and
git which is more recent and rapidly gaining popularity. In some ways these systems
resemble a dropbox service, which is perhaps more familiar to a general audience.
While a source code management system provides a central synchronized repository
for code, it contains special features that enable tracking source code development and
even restoring an entire project to a specific version and/or date. Some of the exercises
in this book will require you to reposit the assignment in SVN; and your instructor
will provide access to an SVN repository on a remote machine. Besides the ability
to track changes and restore the code to some previous state, SVN allows for multiple
developers to work on the same piece of code. Alternatively, the same individual can
work on a project from multiple locations. This, for example, allows you to move
potentially valuable pieces of work (including, but not limited to code, perhaps your
thesis!) off of your laptop computer and onto a central site. Like many of the tools
discussed in this chapter, SVN has a lot of powerful functionality and we will describe
just enough of it so that you can get started using it. We assume that for your first
experience with the system, somebody else (i.e. your instructor) will set up the SVN
repository for you, set up the necessary access mechanisms, and grant you the necessary
access rights.

1.10.1 The SVN repository

A repository is an abstract concept that implies a central place where code resides. How
central? Repositories can be set up and administered by unprivileged users as files on a
single laptop computer, if desired; more privileged administrators can configure servers
where contributions from users around the country or around the world are centralized;
and now commercial “cloud computing” services operate servers that can be accessed
by users at little or no expense.

In the first case the SVN repository is a single file that the user creates:

$svnadmin create /path/to/repositoryfile

This creates a repository in a file called /path/to/repositoryfile that can now
be filled, but never by acting directly on the repository file, which is henceforth only to be
modified using SVN commands; i.e., those with the format svn command options.
One useful command, svn ls, simply lists the contents of the repository, which, if you
have just created it as explained above, is empty. The syntax of the command is

$svn ls file:///path/to/repositoryfile

If you wish to execute this from a remote machine (assuming that both local and remote
machines can communicate via the secure shell, ssh), you can issue the following
command from the remote machine:

$svn ls svn+ssh://user@host.domain/path/to/repositoryfile
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where user@host.domain specified the username, hostname, and domain name of
the local machine. Other types of servers, using other protocols, may have other prefixes
such as http://, https://, or svn://.

For the following examples we assume that you have access to an SVN repository
because either

• You have created a repository, as described above.

• You have requested and received a repository through a web-hosting service such
as Sourceforge (www.sourceforge.com) or Cloudforge
(www.cloudforge.com).

• Your instructor has set up a repository via one of the above methods, and given you
access and instructions.

Web-hosting services have interesting benefits, first because they require no effort from
the users to maintain and administer, second because they often add additional useful
tools such as web-based code browsing. Whatever solution is adopted will will refer to
the repository in the following as protocol://repository.

1.10.2 Importing a project into SVN

A project can be imported to SVN as follows. First we assume that the original source
code lives in a directory called /path/to/PROJECT. To import that code into SVN issue
the following command:

$svn import /path/to/PROJECT protocol://repository/PROJECT

This creates a project within the repository, and copies all of the files in /path/to/PRO-
JECT into the repository. The project then grows only when additional directories are
added to it, additional files are added to directories, or files are modified.

Each change to the repository is logged, and all the logged information is accessible
via the command svn log. If you execute the svn import command as it appears
above, an editor window will pop up and prompt you for a log message. Alternately, short
log messages can be added by adding the option -m "here is my log message"
to the command line.

1.10.3 The basic idea

We now have both a repository and a project residing in that repository. With this
initialization out of the way, we describe the basic SVN operations for source code
management.

The main idea behind SVN is that the repository holds a master copy of the project,
while developers check out a local copy to their machine and make modifications. When
they are satisfied, they check their modifications back into the master copy (repository).
This is called a copy-modify-merge model. The simplest scenario is illustrated in
Figure 1.1. The command

http://www.sourceforge.com
http://www.cloudforge.com
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Repository

Local Copy

1. SVN checkout

2. SVN commit

Figure 1.1 Sketch of the simplest SVN transaction; first a checkout, then a commit following
modification to the local copy.

$svn checkout protocol://repository/PROJECT.

checks out the package (step 1 in Figure 1.1), and the command

$svn commit -m "message"

puts the modifications back into the repository (and adds the message “message” to the
log). This is all that is needed as long as the file content of the project does not change.
If files need to be added to the project then this is done with svn add file1 [file2]
[file3] . . . ; the command schedules files for addition but does not add them until svn
commit is issued; directories are added in the same way. svn remove file1 [file2]
[file3] . . . can be issued to remove files from the repository (after the files are removed
from the local copy).

With multiple local copies in play (e.g., with multiple developers) the situation is more
complicated because the master copy can change while one of the developers is making
modifications to his or her local copy. Figure 1.2 shows a diagram of a typical transaction.

1. User 1 checks out the package to his/her local copy.

2. User 2 checks out the package to his/her local copy.

3. User 2 commits a modification to the repository. At this point user 1’s local copy
is out of date. User 1 will not be able to commit until he refreshes his own copy with the
changes that have gone into the repository.

4. User 1 refreshes by typing svn update.

5. Then user 1 checks his changes into the repository with svn commit, after
resolving any conflicts.
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Repository

Local Copy 1

1. SVN checkout

3. SVN commit
Local Copy 2

2. SVN checkout package

4. SVN update 

5. SVN commit

Figure 1.2 A diagram of a more complicated set of SVN transactions arising from two users
simultaneously developing within the same package. See text for details.

Conflicts can arise when two users simultaneously work on the same package, but
usually SVN is smart enough to resolve those without user intervention. SVN will resolve
situations in which two users work on two different files in the same project. It will also
resolve conflicts when two users have altered different parts of the same file. The only
situation that normally requires user intervention is when two users have changed the
same part of the same file; this can occur when two people jump in to fix the same bug.
Conflicts are clearly indicated in the text and generally do not cause much trouble. We
refer the reader to Collins-Sussman et al. (2004) for a detailed description of what to do
when these cases arise.

The entire set of operations is carried out with very few SVN commands: checkout,
commit, update, add, remove, status, and log; which suffices for most needs. The
svn checkout and update commands have options that let users checkout, or update
to, a tagged version, or a version that was current on a specific date and time. The
SVN log command allows one to view the whole revision history of a file, including
all of the comment messages that were given as arguments to the commit command.
Finally, svn status displays the status of the project as a whole and/or individual file,
depending on the parameters to the command.

It is important to never introduce executable programs, libraries, object code, backup
copies, or large binary data files into the repository. These will make the administration
of the repository difficult. Besides, these files need not be stored in the repository since
they are typically regenerated from source. Putting Makefiles in the repository to aid
in the build is generally a good idea.
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After this brief introduction, we leave the reader to explore the full set of SVN
operations using the references and/or the exercises.

1.11 Style guide: advice for beginners

We close with an offering of advice for beginners that has been gleaned over 80 combined
years of programming experience. Presumably these good practices will be set by
protocols if you are working in a large group. If you are not, read on.

dive in. Learning a computer language should be like learning French or German.
You don’t need to have mastered all the nuances of the plus-que-parfait tense to
order a burger in Paris. Look at examples, learn some basics, and get coding!

adopt a convention. Adopting a convention for naming your files, libraries, vari-
ables, objects, and classes is important. Established conventions do exist, but we
will not venture to advocate one over another since this is a matter of personal
choice (or a choice that has been imposed by management). Peruse the Wikipedia
article on Hungarian notation to get an idea of the options, and controversy, in
adopting conventions.

use descriptive names. Calling an index i is traditional, but it is much better to give
it a descriptive name such as particleNumber.

document your code. You will not remember the inner workings of your code
after a few months. Describe its purpose, method, important variables, compiler
directives, and usage somewhere (often at the top of the main file). If you are not
using a repository, record revision history.

write clear code. You might think this is obvious, but it is quite easy for code to
become unclear and one must be vigilant. Sooner or later you will find some clever
compact way to do something and add it to your code. But you will not remember
the trick the next time you look at your program and will not feel so clever. If you
are going to be clever at least document it.

At a more general level, clear code is the result of clearly understanding the
computational issue. Of course, as scientific programmers it is your duty to
understand your problem to the best of your ability.

Lastly, if your code is destined to be used by others you should also consider
the typical user’s conceptualization of the code. In particular, you want the user
interface to match the user’s expectations. A familiar version of this problem is
when a user attempts to change an aspect of text in a word processing program
and all sorts of unexpected and frustrating code behavior ensues.

trap errors. A part of structured programming is trapping and dealing with errors
when they are generated. This is implemented, for example, in C++ or java with
the try and catch statements. Unfortunately, no such functionality exists in C or
Fortran. Do what you can.
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avoid magic numbers. Strings of digits should not appear in your code. You may
recognize 0.197327 as h̄c in the appropriate units but the next person to work on
your code may not. Better to place a statement such as static float hbarc =
0.197327 somewhere. While we are on this, why would you ever write double
pi = 3.1415926 when you could write double pi = 4.0*atan(1.0), or
even better include the header <cmath>, which defines many mathematical
constants, including M_PI?

allow for parameter input. Students tend to code parameter values directly into
their programs. In our experience, programs are never run once and it is therefore
important to allow for flexible parameter input. This is typically accomplished in
one of three ways: (i) query the user for console input, (ii) via the command line,
(iii) via an input file. Option (i) is simple; option (ii) permits easy scripting; and
option (iii) is useful when many parameters are required but is more difficult to
manage. One approach is to query the user and echo input data into a file. This
file can then be modified and redirected as input in subsequent runs: ./foo <
input.txt. A more sophisticated approach might use a graphical user interface
or a database.

specify default parameters. It is easy to spend days or weeks determining param-
eter values that optimize sought behavior. Once these are found they should
be documented with the project, preferably as defaults in the code itself. We
guarantee that you will not remember the preferred temporal grid spacing in your
electromagnetic field computation a few months from now.

document the output. Most scientific code produces output files, sometimes
dozens of them. These files should contain header information that specifies the
program that created them, parameter values that were used, and the meaning (and
units) of the output.

learn a debugger. Simple programs can be debugged with judicious print state-
ments. However more complicated issues will require the use of a debugger, such
as gdb. The GNU collaboration has created a free graphical front end for a variety
of debuggers called DataDisplayDebugger that we happily recommend. Integrated
Development Environments (such as Eclipse) often have debugging capability as
well. It is worth the effort to learn to use these.

squash kludge. As you develop code you will often find yourself adding options to
deal with an ever-increasing number of cases. The result is a kludgy mess with
multiple layers of if or case statements. At this stage it is better to redesign the
program or, more simply, to clone variant code.

develop systematically. Plan the general code structure before writing anything.
Develop code in small logical chunks and debug as you go. Rushing ahead is a
guarantee of future headache.
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test extensively. If you are writing scientific code, you are doing science, and your
code must be reliable. Check your results against known limits and special cases
with analytical solutions. If you must strike out on your own, try to make the
change from known territory as minimal as possible (for example, substituting a
complicated potential for a square well potential in a quantum mechanics problem).
Debugging Monte Carlo code is extremely difficult! You need analytic limits and
simple cases worked out for comparison.

understand code parameters. Students often confuse physical parameters and
algorithmic parameters. The former define the physics problem that you want to
solve. The latter specify the method in which you solve the problem–in principle
your answer should be independent of algorithmic parameters. It is up to you to
confirm this! In practice this means extrapolating to infinity or zero. You can always
double or halve an algorithmic parameter and confirm stability of your answer.
Even better is to plot how your answer changes with algorithmic parameters, and
better yet is to have a theoretical understanding of the functional form of that
dependence so that reliable extrapolations can be made.

Similar advice with additional detail is contained in Wilson (2014).

1.12 Exercises

1. Write and compile an empty program. Name it exp.cpp, and put in in a directory
called CH1/EX1. Compile it, and use the four utilities in Table 1.2 to examine the
output file. Add to your empty program a call to the math library function exp,
which requires you to include the header file:

#include <cmath>

Run the nm and the ldd utilities on the program and describe carefully what happens
before and after the call to exp is added. Try this with both a constant and a variable
argument to exp. Pipe the output of nm through c++filt and explain how the
output is different. (This is called “name mangling” and “demangling”).

2. Now write a variant of this program in a directory called CH1/EX2. Add to your
program a single command line argument. Your program should now accept a single
command line argument and echo the exponential of that argument, like this:

$exp 5
148.413

Examine the program with ldd and nm. Pipe the output of nm through c++filt.
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3. In a directory called CH1/EX3, replace the call to your own version of the exp
function. Use a Taylor series expansion3. Check again with ldd, nm and nm |
c++filt. Tabulate x vs. exp(x) for x = {−10, −8, −6....6, 8, 10}. By switching
between your version of exp, and the one in the math library, determine how nm tells
you whether the exp routine is internal or external to the executable program file.

4. In unix the wildcard character is the star or asterisk, “*”. In a directory called
CH1/EX4, write the program foo described in Section 1.4. Go into your home
directory and execute /path/to/foo *. Explain the output.

5. Write a program called plus (in a directory called CH1/EX5) which expects two
integers on the command line, adds the two integers and prints out the answer. The
expected behavior of this program is:

$plus 3 7
3+7=10

6. In the previous example, break the code up into three compilation units:

a) main.cpp – main program

b) parse.cpp – parses the command line

c) add.cpp – adds the two input values

d) print.cpp – prints the result

Put these four files together a directory called CH1/EX6, and add a Makefile which
builds:

a) a library called libPlus.a

b) an executable called plus

Make sure that the Makefile contains a “clean” target to remove all object code and
executables generated by the compiler during the make procedure.

7. Clone the directory CH1/EX6 into a directory CH1/EX7; then modify your Makefile
so that the shared library libPlus.so is used, rather than a static library. Check and
report the size of the final executable in both circumstances.

8. Write Makefiles in the directories (CH1/EX1-CH1/EX7) to build all of the targets
in the previous exercises. Make sure each executable has a “clean” target.

9. Your instructor will provide access to a SVN repository. Add the source code and
Makefiles for CH1/EX1-CH1/EX7 to the repository.

a) make sure that you do not reposit any object code.

b) make sure that you can check out and build each executable from scratch.

3 In Chapter 4 we will learn a better way to implement an exponential function
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2.1 Introduction

In the previous chapter we concentrated on how computer codes are written, compiled,
archived, linked, and executed; how executable systems interact with the linux operating
system; how source code is managed; and how build procedures can be automated. In this
chapter we will talk more about the code itself, assuming that the reader has familiarity
with the basics of C++, namely things like operations, control structures, functions,
arrays, and pointers.

While datatypes are likely also familiar to the reader, we discuss integer, floating point,
and complex datatypes in some detail for two reasons. The first is that in numerical
calculations, one needs to understand the limitations in accuracy arising from the
representation of numbers on a computer and the way in which they are acted upon
by the CPU during an arithmetic calculation.

The second reason is more subtle. A new feature of C++ (relative to its predecessors
C and Fortran), and probably the most important building-block of modern code, is the
user-defined datatype or class. Some of these datatypes, like those you are already using
for input and output, are part of the C++ standard library, while others may be imported
from other sources and ultimately written by you.

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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If the notion of a class is unfamiliar, we will not give a full or accurate definition
here, but for our numerically literate target audience it is productive to initially think
of a class as a new type of numerical datatype, like a floating point number or an
integer. For example, in C++ complex numbers are not built into the language; they
are represented by their own class in the C++ standard library. Vectors, four-vectors,
matrices, quaternions, octonions, and other useful entities can be imported from a variety
of sources.

When a skilled programmer implements a class in C++, his or her implementation
shares some of the same features that make the built-in datatypes convenient to use.
Most notably, there is a clean separation between the representation of the datatype and
its interface; i.e., the set of operations to which it responds. This separation is called
encapsulation. We expect to find this feature in classes as well. Along with inheritance
and polymorphism, to be tackled later, encapsulation is one of the key components in
the object-oriented style of programming.

2.2 The representation of numbers

A number, floating point or otherwise, is represented by a array of bits held on a
magnetic storage device or a silicon flip-flop circuit. Encoding this information is fairly
simple in the case of integers but can be quite complicated in the case of floating point
numbers. Encapsulation is achieved by hiding all of this internal structure in several
datatypes:

• int

• unsigned int

• float

• double,

which respond to four basic operations +,-,/,*, as well as a few others. The encapsulation
of the internal representation of these numbers is so effective that many programmers
seldom consider it. For numerical work it is, however, important to know about the
internal structure because the accuracy of numerical computations depends on it. We
therefore describe the manner in which numbers are represented and the attendant
consequences for computation.

Numbers are stored in arrays of bits, which are comprised of 0’s and 1’s. A collection
of eight bits is called a byte. All built-in datatypes require at least one byte of storage. The
number of bytes used to store a datatype is called the size of the datatype, and it varies
from platform to platform. The size can can be determined with the sizeof operator
in C(++):

int sizeofA=sizeof(a);
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A short program to print out the size of the major built-in datatypes is shown below:

#include <iostream>
int main(int argc, char **argv) {
std::cout << sizeof(bool) << std::endl;
std::cout << sizeof(char) << std::endl;
std::cout << sizeof(int) << std::endl;
std::cout << sizeof(unsigned int) << std::endl;
std::cout << sizeof(long int) << std::endl;
std::cout << sizeof(long unsigned int) << std::endl;
std::cout << sizeof(short int) << std::endl;
std::cout << sizeof(short unsigned int) << std::endl;
std::cout << sizeof(float) << std::endl;
std::cout << sizeof(double) << std::endl;

}

You should copy this into an editor and compile and run it on your machine.

2.2.1 Integer datatypes

An unsigned int has 4 bytes or 32 bits. It uses these to express a number in base-2
according to the expression:

x = a31231 + a30230 + . . . + a020

where ai is either 1 or 0. This is called fixed-point notation. Other unsigned integer
datatypes are char, with a size of one byte, and long unsigned int, which is 32 bits
on some machines and 64 bits on more modern ones. In an int variable the upper bit
is reserved for the sign:

x = (−1)a31(a30230 + . . . + a020)

A consequence is that there is a maximum and minimum integer that can be represented
for every datatype; between those limits integers are stored exactly. Integer operations
+ (addition),– (subtraction) and * (multiplication) are also exact as long as one does not
overflow or underflow the range, but the operation / (division) discards any remainder
to obtain an integer result. The range of integer datatypes can be obtained using the
std::numeric_limits class:

#include <iostream>
#include <iomanip>
#include <limits>
int main( int argc, char ** argv) {
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std::cout << std::numeric_limits<bool>::min() << std::endl;
std::cout << std::numeric_limits<bool>::max() << std

::endl;
std::cout << (int) std::numeric_limits<unsigned char>

::min() << std::endl;
std::cout << (int) std::numeric_limits<unsigned char>

::max() << std::endl;
std::cout << std::numeric_limits<int>::min() << std::endl;
std::cout << std::numeric_limits<int>::max() << std::endl;
std::cout << std::numeric_limits<unsigned int>::min()

<< std::endl;
std::cout << std::numeric_limits<unsigned int>::max()

<< std::endl;
std::cout << std::numeric_limits<long int>::min() << std::

endl;
std::cout << std::numeric_limits<long int>::max() << std::

endl;
std::cout << std::numeric_limits<long unsigned int>::min()

<< std::endl;
std::cout << std::numeric_limits<long unsigned int>::max()

<< std::endl;
}

Good documentation on this class can be obtained from the online reference www.
cplusplus.com. Running this code reveals that a 32 bit int has an allowed range
of −2147483648 to 2147483647. For an unsigned int the range is [0,4294967295].
A char has a range of [0,255]. These ranges are not big; for larger numbers one needs
to resort to floating-point datatypes.

2.2.2 Floating point datatypes

A fixed-length datatype can store a finite number of values, while (even within a finite
range of values) the number of rational numbers is infinite, and the number of real
numbers is even larger. Thus only certain floating point numbers can be represented
exactly, and the result of floating point operations involves some roundoff error.

The typical error in a floating point calculation is called the machine precision; for
float variables this is between 6 and 7 decimal places, and for double variables it is
between 15 and 16 decimal places. The class numeric_limits reveals that the range
of floats is between 1.17549·10−38 and 3.40282·1038, while that of double variables
is from 2.22507·10−308 to 1.79769·10+308.

A modern CPU does not require more time to carry out floating point opera-
tions on double variables than on floats, so double will be our preferred float-
ing point datatype (unless memory or disk space forces us to use a more compact
representation).

http://www.cplusplus.com
http://www.cplusplus.com
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Table 2.1 Bit allocation for float and double
datatypes.

Type Sign Exponent Fraction

double 1 Bit 11 Bits 52 Bits

float 1 Bit 8 Bits 23 Bits

The IEEE-754 standard format for a floating point number is the following:

x = (−1)s1.f × 2e−b

where:

• s is the sign bit.

• 1 is always implied. It is called the “ghost bit”

• 1.f is the mantissa, with f being the fraction. For doubles, it is stored in 52 bits
(23 for float)

• e is the exponent. For doubles, it is stored in 11 bits (8 for float)

• b is the bias. For doubles, it has a fixed value 1023 (127 for float).

Note that zero can have the sign bit set or unset, so the numbers +0 and −0 are distinct,
though they give the same results in all floating point operations. Table 2.1 shows bit
allocation for float and double datatypes.

The exponent of a floating point number is stored exactly, so the precision of the
number is the precision of the full mantissa.

In scientific notation the numbers 3.0 × 104 and 30 × 103 are the same. Since a fixed
number of bits are allocated for the mantissa it is advantageous to have the mantissa as
left-shifted as possible. In this form the binary representation is 1.x×2n. Since the binary
digit to the left of the decimal point is always 1 it is not stored. The resulting number is
referred to as normalized.

2.2.3 Special floating point numbers

The result of a numerical operation can be undefined if, for example, a division by zero is
made. Even if the result of a calculation is defined mathematically, it can still result in an
underflow or overflow due to the limited range of floating point variables. For doubles
the exponent is stored in eleven bits. The normalized numbers discussed above have an
exponent between 0 and 2046 (in binary 11111111110). Underflows, overflows, and
other the results of undefined operations are represented by an exponent field with all
eleven bits set (i.e., decimal 2047).

Infinity of either sign is represented by a fraction of zero, with the sign determined by
the sign bit. When the fraction is nonzero the number represents an undefined quantity,
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called NaN (“not a number”). This could result, for example, from dividing by zero
or taking the square root of a negative number. The value of the fraction (called the
payload) contains extra information that can be decoded by clever programmers.

If the first bit of a fraction is nonzero the invalid number is called a signalling NaN .
When such variables arise, many floating point routines will raise a signal and exit with
an error. If the first bit is not set, the invalid number is called a quiet NaN . Computations
are expected to fail silently when they encounter such a number. These numbers can be
obtained from the numeric_limits class:

double qNaN=double nan=std::numeric_limits<double>
::quiet_NaN();

double sNaN=double nan=std::numeric_limits<double>
::signaling_NaN();

double inf =double nan=std::numeric_limits<double>
::infinity();

The smallest floating point numbers are represented with an exponent e = 0. In this
case a smaller bias is taken (1022 for double, instead of 1023; for float 126 instead
of 127) and the ghost bit is taken but subnormal numbers. Subnormal numbers lie
between true underflow and the result of std::numeric_limits<double>::min()
which in fact returns the smallest normalized number. They lack the precision of
normal numbers. A routine called std::fpclassify is available as part of the
runtime library:

#include <cmath>
int std::fpclassify(double x);

which classifies floating point numbers as zero, NaN, normal, or subnormal. Like all
library and system calls, the routine is documented in the linux manual pages and you
can read the documentation by typing

man fpclassify

A related routine called

int std::isfinite(double x);

returns 1 if the number is normal or subnormal and 0 if it is infinite or NaN. This is useful
when debugging code. For example, the following code illustrates how isfinite can be
used to track down a divide-by-zero error.

#include <sstream>
#include <stdexcept>
...
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double z = y/x;
if (!std::isfinite(z)) {

std::ostringstream stream;
stream << " x , y , z =: " << x << " , " << y << " , " << z << std::

endl;
throw std::runtime_error(stream.str());

}

This example throws an exception, which is a good way for C++ to signal that
something has gone wrong; calling routines can catch the exception and take appropriate
actions. In an interactive debugger, one can not only print out information about the
condition that led to an infinite or undefined value of z, but also set a breakpoint at the
print statement and examine other variables at that point in the program’s execution in
order to determine why the abnormal condition has occurred.

Routines called std::isnormal, std::isnan, and std::isinf also exist and
are defined in the <cmath> header file. Their functionality is pretty obvious; details can
be found in the manual pages.

2.2.4 Floating point arithmetic on the computer

When two floating point numbers are added in the CPU, the mantissa of the smaller of
the two numbers is right-shifted (divided by two), an operation that is compensated by
incrementing the exponent by one unit, until the exponents of the two numbers are equal.
As a result the lower-order bits are shifted away and precision is lost. Once this is done,
the CPU takes the sum of the two mantissas and uses the common exponent to form the
result, which it then normalizes. The summation is carried out in an arithmetic logic
unit that mostly consists of simple gates capable of carrying out Boolean operations on
the bits of the numbers.

A simple example illustrates the loss of precision in base−10 arithmetic.

• We are going to add 1.276 × 106 to 2.852 × 108.

• The smaller number is expressed as 0.012 × 108.

• The sum is 2.864 × 108. Notice that the last two digits in the first operand have
been lost.

The same type of rounding error takes place in base-2 arithmetic with floating point
operations in the CPU and one has to worry about the cumulative effect of these
rounding errors. Notice that the entire mantissa is shifted away when the number of
digits in the mantissa is less than the difference in the exponents of two summands. In
this case the sum is equal to the larger summand.The largest number for which this
occurs is the machine precision mentioned before. The numerical value of the machine
precision depends on the data type and can be accessed via the numeric_limits class:

std::numeric_limits<float>::epsilon()
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Example: In the Large Hadron Collider (LHC), experiments energy deposits of
hundreds of GeV can be placed in the heavy materials of a device called a calorimeter.
The deposit consists of very many smaller ionizations called hits, where the hits can
consist of deposits down to about one KeV. The full deposit and the hits that contribute
to this deposit therefore range over about eight orders of magnitude. When summing
all of the smaller hits into one deposit using floats, one eventually reaches a point
where including additional low energy hits produces no difference, and this energy is
lost to the calculation. The simplest resolution is to employ higher precision data types
such as double. An algorithmic alternative is to sum small numbers in a hierarchical
fashion.

A similar loss of precision occurs with subtraction. Subtraction is performed in very
much the same way as addition: the two numbers are expressed with a common exponent
(shifting the mantissa if needed) and then the mantissas are subtracted using logic gates
in the CPU. When two numbers of similar size are subtracted, the result will be expressed
in only a few bits. When the result is normalized, those bits will be shifted left as much
as possible and the trailing bits will be filled with zeros. The resulting roundoff error can
be significant.

Sometimes the problem can be avoided with a little cleverness. For example, consider
the stretch factor γ = 1/

√
1 − β2 for a relativistic particle, where β = v/c, v is the

particle’s speed, and c is the speed of light. Since relativistic particles have β ≈ 1, there is
a good chance that a loss of precision will make the denominator of this expression zero.
One can instead express 1−β2 = (1+β)(1−β). Setting ε = 1−β gives γ = 1/

√
(2 − ε)ε,

which will generally be calculated to higher precision.
Machines carry out approximate computations on approximate representations of

real numbers. Nevertheless, one must admire the skill with which the developers of the
IEEE-754 standard, and our compiler set, have kept these details so effectively hidden
from our sight, thereby freeing us to frame the problems of our day-to day life in terms
of numbers, rather than bits. We will attempt to achieve the same functionality, via
encapsulation, when defining our own datatypes.

2.3 Encapsulation: an analogy

In discussing the notion of encapsulation, we find it germane to draw an analogy
to a development in electrical engineering that parallels developments in software
engineering. We are referring to the advent of integrated circuitry, which has promoted
the proliferation of highly complex circuitry such as sophisticated Central Processing
Units (CPUs) with up to 10 billion transistors on a single chip.

Figure 2.1 shows a popular operational amplifier called the LM741. On the right is a
circuit diagram, which gives one view of what is inside the neat little package.

Users of the LM741 need to be knowledgeable about the eight pins in the package,
which, counterclockwise from the upper left, are the offset null used to cancel voltages
that appear as the result of leakage currents, the negative and positive input, the negative
supply voltage, an unused pin, the output, the positive supply voltage, and a second offset
null. While sometimes a serious designer needs to know about the internal circuitry of this
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Figure 2.1 Picture (left) and circuit diagram (right) of the LM741 operational amplifier (adapted from
svg file by Daniel Braun from https://en.wikipedia.org/wiki/Operational_amplifier. Creative commons
BY SA 3.0).

device, most of the time he or she can forget those details when building more complex
devices, or at least relegate their consideration to the later stages of design.

The LM741 implements a clean separation between what is exposed to the outside
world and the messy internal hardware. The choice to hide the details of the circuit is a
matter of convenience and practicality. The choice of which parts of the circuit to expose
on the chip’s interface is a matter for the chip designer, who must develop a clear idea
of what is to be achieved with the chip. In this case, the LM741 is an amplifier. Should
it contain headphones then? No, because it is not an iPod.

In carrying out computational work we use (and sometimes write) classes for math-
ematics and physics that help us with these computations. Such classes can represent
vectors or matrices, for example. And these classes should, like the integrated circuit,
have a trustworthy mechanism on the inside which is not exposed, and a clean, simple,
and logical interface on the outside. This is what we call encapsulation. While the
LM741 is encapsulated in a plastic case, encapsulation in object-oriented programming
is conceptual and is applied to user-defined datatypes, namely the aforementioned
classes.

2.4 Complex numbers

Our next example of a numerical datatype is std::complex. Unlike float, double,
and the integer datatypes,std::complex is a C++ class; actually it is a class template;
roughly speaking this is essentially a recipe for generating a class for complex numbers
once the internal representation of real and imaginary numbers (float or double)

https://en.wikipedia.org/wiki/Operational_amplifier
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is fixed. The choice is in your hands. The following incantation will create a complex
variable:

#include <complex>
std::complex<double> I(0,1);

This creates a variable I and assigns it the value i = √−1, where i is evaluated to double
precision. The statement is intended to closely parallel the declaration of an integer
variable i:

int i=1;

Here,std is a namespace, which is a mechanism to avoid clashes between the names we
give to constants, variables, and datatypes. If you don’t want to type the full namespace-
qualified form of the declaration, you can also add the line using namespace std;
prior to the declaration, usually at the top of a compilation unit or near the beginning of
a particular function.

We introduce some vocabulary which applies to classes. The declaration (found in
<complex>) of a class does not create any new variables, known as objects, but only
specifies how those variables are created and what they can do, i.e. their interface. New
objects are created typically with a statement that looks like the declaration of any other
variable. For a class representing a vector the statement might look like

Vector m(0,0,0)

—think:

int i(0);

The creation of an object actually results in a function call, to the so-called constructor.
Vector is the class, and m is the object. A class is a category of objects which all behave
according to a common interface. Each object is said to be an instance of the class, and
the creation of objects is also called instantiation.

Classes typically contain bound functions, which are invoked like this:

object.function(arguments);

rather than the free subroutine calls that you are used to, i.e.,

function(arguments);

When we invoke a function bound to an object we are said to be sending a message to
the object.
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The class template std::complex is a built-in part of the C++ standard library; we
say that it is parameterized on the data type used to represent the real and imaginary
parts of the complex number. To instantiate:

std::complex<double> U(1,0);
std::complex<double> I(0,1);

where the datatype double is called the template parameter, the values used in the
constructor call are the real and imaginary parts of the complex number. The first
variable declared above (U) is the real number 1, while the second variable I is the
imaginary number i = √−1. One way to simplify the declaration of variables such as
these is to use a type definition to establish a typedef-name:

typedef std::complex<double> Complex;

then, one can use the more convenient typedef-name (Complex) instead of the parame-
terized class (std::complex<double>). A number of functions are declared to carry
out elementary operations on complex numbers; these are defined in the Table 2.2. The
operations in this table can be used to add, subtract, multiply and divide any combination

Table 2.2 Summary of operations defined on complex numbers.

Operation Function Example

+ operator +() w=x+y

- operator -() w=x-y

* operator *() w=x*y

/ operator /() w=x/y

z∗ (complex conjugation) conj() w=conj(z)

Re(z) real() w=z.real()

Im(z) imag() w=z.imag()

|z| abs() double x=abs(z)

|z|2 norm() double x=norm(z)

arg(z) arg() double phi=arg(z)

addition assignment operator += w+=z

subtraction assignment operator -= w-=z

multiplication assignment operator *= w*=z

division assignment operator /= w/=z
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of floating point numbers and complex numbers. A number of important mathematical
functions (cos, cosh, exp, log, pow, sin, sinh, sqrt, tan, and tanh) have also
been overloaded to work with complex arguments.

Complex numbers find widespread use in physics. We will illustrate how to work with
the std::complex class with a simple problem in planar geometry. Complex numbers
can be used to represent a point in a plane, if we consider the number u = a + ib to be
a representation of the vector ax̂ + bŷ. Note that the magnitude of the complex number
|u| = √

a2 + b2 is the length of the vector. Also, if v = c + id, then uv∗ = (ac + bd) +
i(bc − ad), so that the real part of this number is the dot product of the two vectors and
the imaginary part is the magnitude of the cross product, �v × �u. To translate a point, we
merely have to add a constant (complex) number t = tx + ity to the point. Rotations can
be carried out by multiplying by exp(iφ), where φ is the angle of rotation; the sense of
the rotation is counterclockwise for φ > 0.

One of the earliest ways in which the value of the constant π was obtained was to
compute the perimeter of a polygon inscribed within a circle. Starting with a regular
hexagon, one obtains the approximate value of 3.0. One can then consider a regular
inscribed polygon of 12 sides, 24 sides, 48 sides, and so forth. In 265 AD the Chinese
mathematician Liu Hui found an approximation for π based on a 3,072 sided polygon,
and in 480 AD Zu Chongzhi found a more accurate value based on a 12,288 sided
polygon. We will compute these approximations to π by starting with a 6-sided polygon
centered at the origin, oriented so that one of the vertices is at x̂ and the other is
at 1

2 x̂ +
√

3
2 ŷ. The two points will be represented by complex numbers x0 = 1 and

x1 = 1
2 +

√
3

2 i. The length of the segment joining the two vectors is |x1 − x0|, so the
total perimeter of the inscribed polygon is six times this length, which is exactly equal to
3. From this first approximation we proceed to more accurate approximations with the
following steps.

• Find the midpoint of the line joining the two vertices. The complex number
representing that point is the average of x0 and x1.

• This point lies in the middle of a segment of the polygon, but not on the circle. We
can put it on the circle by normalizing it to unit length, i.e. transforming

x0 + x1

2
→ x0 + x1

2
/|x0 + x1

2
| = x1 + x0

|x1 + x0|

• At the next step this value becomes the new x1, and we double the number of sides.
The perimeter of the inscribed polygon is again taken.

As the number of sides is increased, the perimeter converges to twice the value of π . The
program shown below, called threePi, can be found in CH2/EXAMPLES/THREEPI.
It obtains the value of π in three ways. First, it just prints the value of the macro M_PI,
defined in the header file cmath. This illustrates the usual way of obtaining the value of
π in a program—it’s superior, of course, to typing in the value. The second way is the
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inscribed polygon algorithm, which is essentially an illustration of how to use the class
std::complex. The last way uses Euler’s famous expression eiπ = −1. Taking the
logarithm of both sides gives a number whose real part is zero and whose imaginary part
is π . This is included as an illustration of overloaded functions that operate on complex
numbers in the C++ standard library. Here is the code example:

#include <complex>
#include <iostream>
#include <cmath>
#include <iomanip>
#include <limits>
//
// threePi is a small program to obtain pi in three
// different ways:
//
typedef std::complex<double> Complex;
main () {

// 1. Just print out the macro:
std::cout << std::setprecision(16) << M_PI << std::endl;

// 2. From the area of inner inscribed polygons. Start
// with a hexagon and subdivide the arc into smaller
// pieces. Liu Hui(n=3072, 265 AD); Zu Chongzhi

(n=12288, 480 AD)

Complex x0=1.0;
Complex x1(1.0/2.,sqrt(3.0)/2.0);
unsigned int nsides=6;

while (nsides < std::numeric_limits<int>::max()) {
double lside = abs(x1-x0);
double approx=nsides*lside/2.0;
std::cout << " S ides "

<< nsides
<< " ; approx="
<< std::setprecision(16)
<< approx
<< std::endl;

x1=(x1+x0)/abs(x1+x0);
nsides *=2;

}
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// 3. Take the logarithm of the imaginary number -1:
std::cout << std::setprecision(16)

<< imag(log(Complex(-1,0)))
<< std::endl;

}

The notion of encapsulation applies to classes in C++. In the case of complex numbers,
one can see a clean separation between the internal structure of the number and the
protocol summarized in Table 2.2 that it obeys. In the next section we describe some of
the mechanisms for achieving this; for achieving, in other words, encapsulation.

2.5 Classes as user defined datatypes

C++ classes are major building blocks of modern computer codes, and we shall introduce
many examples in the next chapter. What is a class though, exactly? Historically, data
structures, which were mere agglomerations of related data, were the precursors to
classes. For example, the four components of a quaternion can be agglomerated into a
single entity called a structure. A quaternion is like a four-component complex number
which is useful for representing rotations in three dimensions, among other things. In C
and C++ the structure may be declared as:

struct Quaternion{
double a;
double b;
double c;
double d;

};

The structure can be passed to functions, returned from functions, and placed into
arrays. Since structures are agglomerations of data, they can also agglomerate other
structures to build hierarchies of structured data.

Classes add bound functions, a.k.a. methods, to structures. For example, a class called
Quaternion may return the magnitude,

√
a2 + b2 + c2 + d2:

class Quaternion{

public:

// return the magnitude
double abs() { return sqrt(a*a+b*b+c*c+d*d);}

private:
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double a;
double b;
double c;
double d;

};

In furnishing this example, we had to slip in two important keywords in order for our
Quaternion class to make sense. These are public and private, and they enforce
encapsulation. These keywords are like switches, switching back and forth between
two access modes, public and private. When data or a member functions are public,
it means that client code can invoke them. In contrast, clients may not access private
data or member functions, and the compiler generates an error whenever such access
is attempted. This locks away certain parts of the class which the designer does not
intend for general purpose use, thereby enforcing the separation between interface and
implementation.

In the above example, the quaternion’s components a, b, c, and d are private so, they
can be neither written nor read. At the very least the clients of this class need to initialize
them. This is done in a constructor, as shown in this more complete example (which also
provides accessors to the data members):

class Quaternion{

public:

// Constructor
Quaternion (double a, double b, double c, double d):
a(a),b(b),c(c),d(d){}

// return the magnitude
double abs() { return sqrt(a*a+b*b+c*c+d*d);}

// return the components
double getA() const {return a;}
double getB() const {return b;}
double getC() const {return c;}
double getD() const {return d;}

private:

double a;
double b;
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double c;
double d;

};

The syntax of the constructor may strike you as funny. We discuss it in more detail
in Chapter 6. Finally, for the sake of accuracy, we mention one fact about structures
and classes. While structures were originally simple agglomerations with data without
methods, C++ allows developers to add methods to structures, too, making them
technically nearly the same as classes. Like classes, the keywords public and private
also function within structure definitions to control access. There is in fact only one
difference between structures and classes: the default access, which is public for
structures and private for classes. In our work we generally use structures where simple
agglomeration without member functions is required.

2.6 Style guide: defining constants and conversion factors
in one place

In the physical sciences we encounter several types of constants that appear frequently
in our work: mathematical constants like π and e; fundamental constants like Planck’s
constant h̄, the speed of light c, the fine structure constant α, the Hubble constant H0,
masses of elementary particles, and so forth. It is not good style to repeat the definitions
of these constants in many places in the code. One common solution is to define them in
a header file. Namespaces, discussed in Section 2.4, are often used in conjunction with
this solution to prevent constants like α from clashing with local definitions. An excerpt
from a header file defining physical constants within a namespace is:

#ifndef _PHYSICALCONSTANTS_
#define _PHYSICALCONSTANTS_

// This file defines physical constants. All quantities
// are specified in SI units.

namespace physics {
static const double hBar =1.0545718E-34; // m^2 kg /s
static const double cLight=299 792 458; // m / s
static const double alpha =7.2973525664E-3; // dimensionless
...

};
#endif
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Client code can then access variables by including the header file and referencing the
variables as, for example physics::cLight. To input the value of a particle moving
at 4/5 the speed of light one could type, for example:

#include " phys i c s . h "
...
double velocity = 4.0/5.0*physics::cLight;

A related task is converting units. Suppose that one was working cheifly with SI units,
but one occasionally needed to input or output the value of some measure of length in
mm, cm, feet, or other unit of length. The conversion factors can also be collected in a
single header file and scoped within a namespace:

#ifndef _UNITS_
#define _UNITS_

// This file contains conversion factors from SI units to
// other common systems

namespace units {
//
// Length.
//
static const double meter =1.0;
static const double cm =0.01;
static const double mm =0.001;
static const double micron =1.0E-6;;
static const double nm =1.0E-9;
static const double feet =0.3048;
static const km =1000.0;
static const mile =1609.34;
...

};
#endif

To input constants one can then give a number and a unit:

#include " u n i t s . h "
using namespace units;
double distanceToMoon=238.9E3*mile;
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while to output a constant one can print something like,

#include " u n i t s . h "
...
using namespace units;
std::cout << " The d i s t a n c e from e a r t h to moon i s "

<< distanceToMoon/mile
<< " m i l e s . "
<< std::endl;

No single file is likely to be adequate for defining all of the physical constants and
conversion factors for all of physics, but centralizing definitions for particular projects
can eliminate redundant definitions, confusion, and errors.

2.7 Summary

In this chapter we have surveyed built-in numerical datatypes, and discussed their
representations and the limitations to numerical precision that these binary represen-
tations unavoidably imply. We also drew attention to the skillful way in which details
of the representation are hidden through clever compiler design so that application
programmers do not get hung up on these details. This feature, encapsulation, is also
evident in the design of the C++ template class std::complex, which we introduced
in Section 2.4, and will be part of every serious API, some of which will be introduced in
the following chapter. The keywords public and private control access to methods
and data within a class and enforce encapsulation. You will need to know about these
as you design your own classes and class libraries, but it’s also important to distinguish
these access patterns while using classes provided within the C++ standard library or by
third parties.

Further Reading

Basics on the representation of floating point numbers can be found in Press (2007). As
we are now beginning to discuss those features of C++ which are not a part of C, we
recommend a good introduction to the C++ language at this point. The online reference

www.cplusplus.com/doc/tutorial

is excellent, and in print works such as Bronson (2013) or Capper (1994) can be
consulted. When you get a little more practiced with the basic ideas of C++, you’ll start
to encounter minor dilemmas about how to write your own classes. We’ll scratch the

http://www.cplusplus.com/doc/tutorial
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surface in upcoming chapters, and you will find much more helpful advice in Meyers
(2005a and 2005b).

2.8 Exercises

1. Compute the expected machine precision of float and double datatypes, and then
check your calculation with a program.

2. Compute the “stretch-factor” γ for a relativistic particle for speeds approaching the
speed of light, i.e. for β = v/c=0.9, 0.99, 0.999, 0.9999.... Compute this in two ways,
first as γ = 1/

√
1 − β2 and then as γ = 1/

√
(2 − ε)ε where ε = 0.1, 0.01, 0.001,

0.0001.... Suppose that the the fractional error in the calculation is required to be
one part in one thousand or less. What is the maximum value of β for which this
accuracy can be obtained, if one computes it using the former method?

3. Three points labeled A = 3x̂ + 7ŷ, B = 3x̂ + 2ŷ, and C = 10x̂ + 2ŷ lie in a plane.

a) Using std::complex, write a program ex1 to compute the area of a triangle
whose vertices lie at points A, B, and C. Use the dot product and/or cross product
and carry out the computations with complex numbers.

b) Create a complex number t representing a translation to the point O = 4x̂ +
5ŷ. Apply the translation to A, B, and C, and print out the translated vectors
A′, B′, and C′. Check that the translation leaves your computation of the area of
the triangle invariant.

c) Create a complex number r such that |r| = 1 by using the exp function to
exponentiate a pure imaginary number. Choose the imaginary number such that
r represents a clockwise rotation about the origin through 45◦. Apply the rotation
to the vectors A′, B′, and C′ from the previous step. Print out the rotated vectors
A′′, B′′, and C′′, and check that the rotation leaves your computation of the area
invariant.

4. Modify the program in the previous exercise such that instead of computing the
area of triangle ABC, it computes and prints out the location of the point of closest
approach (in the plane) of segment AC to point B. Use the dot product and/or cross
product and carry out the computations with complex numbers. Check that this
distance is invariant to rotation and to translation.

5. Using std::complex, compute the position of the points A = 3x̂ + 7ŷ,
B = 3x̂ + 2ŷ, and C = 10x̂ + 2ŷ after they are rotated by +755◦ about the point
O = 4x̂ + 5ŷ.

6. Write a program, based on the example program threePi in this chapter (which is
available EXAMPLES/CH2/THREEPI). Your program should compute π from the
areas of small isoceles triangles making up the polygon inscribed within the radius
of a circle rather than the length of their base.

7. Consider the quantum mechanical problem of a particle of energy E incident upon
a potential barrier in one dimension of height V , which turns on at x = 0. Write
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a program that determines the wavefunction for all value of x, and compute the
transmission and reflection coefficients, R and T , for different values of the V/E.
Do not write a fundamentally different function for the case in which E < V and
E > V ; instead carry out the computation in complex numbers, in a manner which
is valid for both cases.

8. Two identities which relate the trigonometric functions to hyperbolic trig functions
are (for x real): sin (ix) = i sinh (x) and cos (ix) = cosh (x). Test these relations for a
few values using std::complex.

9. Write a function to solve the equation ax2 + bx + c = 0 which returns a pair of
complex values, and test this for the following values of a, b, and c:

• a = 1, b = 4, c = 0

• a = 1, b = 4, c = 2

• a = 1, b = 4, c = 6

• a = 1, b = 4i, c = −6

• a = 1, b = 4i, c = −4

• a = 1, b = 4i, c = 0

• a = 1, b = 2 + 2i, c = −6

• a = 1, b = 2 + 2i, c = −0

• a = 1, b = 2 + 2i, c = 6

10. Write a function to diagonalize a 3x3 complex matrix by solving its secular equation.
The function should take a 3×3 array of complex numbers as input and should
output

• An array of three complex numbers containing the eigenvalues of the matrix.

• A 3×3 array of complex numbers, the columns of which contain normalized
eigenvectors of the matrix.

Test your function on the following matrix and provide the result:

⎛

⎝
0.333333 −0.244017 0.910684
0.910684 0.333333 −0.244017

−0.244017 0.910684 0.333333

⎞

⎠.

..........................................................................................
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3.1 Introduction

We have seen that one of the reasons classes are useful is because they provide a
mechanism by which implementation details can be hidden from the user. In this chapter
we continue the exploration of classes by applying a number of high quality classes to
typical scientific problems. The practice of writing classes will be taken up again in
Chapter 6. Users requiring a more structured introduction to the C++ language are
directed to the references at the end of the previous chapter.

Use cases for these classes are taken from classical and quantum physics. In this
chapter we carry out numerical solutions to problems which admit, possibly, analytic
solutions with the idea that their familiarity makes them good learning examples.

In adopting a class library, we shall always prefer universally available software to
widely available software, and widely available software to custom software. Universally

Applied Computational Physics. Joseph F. Boudreau and Eric S. Swanson, Oxford University Press (2018).
© Joseph F. Boudreau and Eric S. Swanson. DOI:10.1093/oso/9780198708636.001.0001
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available software is that which is found in the C++ standard library. Most of the widely
available software can be installed using package management software; on Ubuntu, this
would be either the apt-get command or the graphical installer synaptic.

3.2 Coupled oscillations

Consider the problem of N beads, arranged left to right on a taut frictionless wire. They
are free to move in one dimension, but they are connected to their neighbors with ideal
springs. The beads are labeled with the index i = 0, 1, 2...N − 1; the ith bead has a mass
of mi ; it is connected to its left neighbor by a spring constant ki and to its right neighbor
by a spring constant ki+1. The first and last beads are attached on one side only. Neither
the masses nor the spring constants need be taken equal in the general case. The position
of the ith bead with respect to its equilibrium position is denoted by xi(t).

The force on the ith bead is related to the stretch of its neighboring springs, and
Newton’s law yields:

mi
d2xi

dt2 = ki(xi−1 − xi) + ki+1(xi+1 − xi) . (3.1)

This is a set of coupled differential equations. For the case N = 4 (the generalization is
clear) it can be written in matrix form as:

⎛

⎜⎜
⎝

m0 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m3

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

ẍ0
ẍ1
ẍ2
ẍ3

⎞

⎟⎟
⎠ = −

⎛

⎜⎜
⎝

k1 −k1 0 0
−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3
0 0 −k3 k3

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

x0
x1
x2
x3

⎞

⎟⎟
⎠

(3.2)

or

M · ẍ = −K · x (3.3)

where M is the mass matrix, K is the matrix involving the spring constants, and x is a
column vector containing the displacement of each mass from its equilibrium position.

This matrix equation can be solved in the time-honored tradition of guessing a trial
solution:

x = a e−iωt (3.4)

where a is a constant undetermined column vector, and where we imply the real part of
the right-hand side. Substituting this into Eq. 3.3, one obtains

K · a = ω2M · a (3.5)
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The matrix M is diagonal and has positive elements only. We can define a matrix M1/2

such that M1/2M1/2 = M, and M−1/2 to be its inverse, and re-express the previous
equation as:

M−1/2KM−1/2 · M1/2a = ω2M1/2 · a (3.6)

We define the matrix �2 ≡ M−1/2KM−1/2, and b ≡ M1/2a, so

�2 · b = ω2b (3.7)

and we see that we are faced with an eigenvalue problem. The matrix �2 is real
and symmetric; it is a well-known property of such matrices that they possess N
eigenvalues and eigenvectors which can be taken real. These will be denoted as λj = ω2

j
and bj , j = 0, 1..N − 1. The λ’s are not only real but also positive (Exercise 10),
and therefore the ω’s are real. The eigenvectors are mutually orthogonal in the case
of nondegenerate eigenvalues, and they may be chosen to be orthogonal in the case of
degenerate eigenvalues by a Gram-Schmidt orthogonalization procedure. They can be
normalized1 by rescaling them such that bT

j · bj = 1. Then, the eigenvectors constitute
an orthonormal set, such that:

bT
j · bk = δjk. (3.8)

Suppose that the initial positions and velocities of all of the beads are known at a give time
t = 0. The problem is to find the subsequent motion of all of the beads. There are two
steps to this: determining the eigenfrequencies ωj = √

λj of �2 and their corresponding
eigenvectors bj for j = 0, 1 . . . N −1; and constructing the particular solution from these
eigenvalue/eigenvector pairs. This particular solution is the linear combination:

x(t) = Re
N−1∑

j=0

ηjaj e−iωj t

= Re
N−1∑

j=0

ηj

(
M−1/2 · bj

)
e−iωj t (3.9)

where x(t) is a column vector representing the positions of each of the beads, and ηj
(j = 0, 1..N − 1) is a set of N complex coefficients which are determined as follows.
Using the orthonormality (Eq. 3.8) of the bj ’s, we project out the coefficients:

bT
j · M1/2 · x(t) = Re

(
ηj e−iωj t

)
(3.10)

1 Numerical methods for diagonalizing symmetric matrices usually yield orthonormal eigenvectors sorted
by eigenvalue, freeing the user to think about other issues.
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which at t = 0 reads

Re(ηj) = bT
j · M1/2 · x0 , (3.11)

x0 being the initial position of the beads. Representing the velocity of the beads as a
column vector

v = dx
dt

(3.12)

and taking the time derivative of Eq. 3.9 we have

v(t) = Re
N−1∑

j=0

−iωjηj

(
M−1/2 · bj

)
e−iωj t (3.13)

which leads, in a similar way, to the equation

Im(ηj) = bT
j · M1/2 · v0

ωj
(3.14)

(v0 indicates the initial velocities) and thus

ηj = bT
j · M1/2 · x0 + i

bT
j · M1/2 · v0

ωj
. (3.15)

This relation, when substituted into Eq. 3.9 furnishes a complete solution to the program.
To obtain it for a variety of configurations and initial conditions we will use a good class
library for linear algebra, which is the topic of our next section.

3.3 Linear algebra with the Eigen package

To carry out the computations arising in the previous section, we are going to need
a decent class library which provides for matrix algebra, vector algebra, and solutions
to eigenvalue problems. It would be nice if powerful linear algebra classes were an
integral part of the C++ standard library, because if that were the case one could have a
reasonable expectation that any compiler on any platform would compile the code with
no extra package installation required. However, no such set of classes has, so far, been
integrated with the C++ standard.

Fortunately, a class library known as Eigen:

eigen.tuxfamily.org
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contains a high-quality set of classes for linear algebra and geometry. It can be freely
downloaded and installed on your laptop. The package can be installed (on our reference
platform, Ubuntu) as follows:

$sudo apt-get install libeigen3-dev libeigen3-doc

After the installation is complete, you will find header files in the area

/usr/include/eigen3

and there are no libraries to install since all of the classes and functions provided
by the Eigen library are inline; in other words, they are expanded in the body of
the calling routine rather than compiled separately and placed into a static or shared
library of object code. This area should be added to the include search path (using the
-I/usr/include/eigen3 option) during compilation. Documentation can be found
at eigen.tuxfamily.org. Eigen is a very complete class library which we will not
describe in full detail; our goal for the moment is to familiarize you with a small portion
of the library that will prove immediately useful.
Eigen can handle both real and complex vectors and matrices. To begin with, we

consider real vectors and matrices, and return to complex vectors and matrices a little
further on.

We assume that you have installed a basic linux operating system on your laptop,
desktop, or other computer. Your next task is to install software development kits
in order to obtain a minimal environment for compiling and running the examples
given in this text, and for conducting the end-of-chapter exercises. The first external
package we ask you to install is Eigen.

In our first example we use two classes called Eigen::VectorXd and Eigen::
MatrixXd to solve a very simple matrix equation. The Xd suffix on these datatypes
signifies that the dimensionality of the object (matrix or vector) is determined at runtime
rather than compile time, and that the matrix elements are represented by doubles.
Complex vectors and matrices are denoted (in Eigen) by Eigen::VectorXcd and
Eigen::MatrixXcd. The cd indicates that std::complex<double> is used in the
representation of the matrix elements.

Let’s start by solving a simple matrix inversion problem. We seek �x where A · �x = �y
and:

A =
(

1.0 2.0
4.0 9.0

)

�y =
(

1
3

)
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This can easily be accomplished as follows:

#include <Eigen/Dense>
#include <iostream>
int main(int argc, char **argv) {

Eigen::VectorXd Y(2);
Y(0)= 1.0;
Y(1)= 3.0;
Eigen::MatrixXd A(2,2);
A(0,0)= 1.0; A(0,1)=2.0;
A(1,0)= 4.0; A(1,1)=9.0;

Eigen::MatrixXd AInv= A.inverse();
std::cout << AInv*Y;

}

To obtain a solution to the coupled oscillation problem of the previous section,
we need a mechanism for solving eigenvalue problems. A few remarks are necessary
before starting. Suppose we have a matrix with real elements, such as the matrix A of
the above example. It is still possible that the eigenvalues and eigenvectors are complex.
Therefore we would in general be looking for complex return values. However, in the case
of coupled oscillations, our matrix is real and symmetric and therefore the eigenvalues
and vectors will all be real.

Eigen provides two classes for the solution of eigenvalue problems; the first class
is called EigenSolver (namespace Eigen) and can always obtain a solution (but it
may be complex), while the second is called SelfAdjointEigenSolver and requires
self-adjoint matrices (and returns real eigenvalues and real, orthonormal eigenvectors).
Self-adjoint matrices, real or complex, are those for which A† = A, where A† ≡ (AT )∗.
Real symmetric matrices, like the ones we encounter in the coupled oscillator problem,
are a subset of self-adjoint matrices.

Like std::complex, the eigenvalue solvers are template classes, you need to furnish
the datatype of the matrix which is to be diagonalized as a template parameter. Here is
an example, using a simple 2 × 2 matrix:

#include <Eigen/Dense>
#include <iostream>
int main(int argc, char **argv) {

// Find the eigenvalues and the eigenvectors
// of the matrix
// A = 1.0 2.0
// 4.0 9.0

Eigen::MatrixXd A(2,2);
A(0,0)= 1.0; A(0,1)=2.0;
A(1,0)= 4.0; A(1,1)=9.0;
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// initialize an eigensolver with A

Eigen::EigenSolver<Eigen::MatrixXd> s(A);

// and solve

Eigen::VectorXcd val=s.eigenvalues();
Eigen::MatrixXcd vec=s.eigenvectors();
std::cout << val << std::endl;
std::cout << vec << std::endl;

}

The eigenvectors are returned in a complex-valued vector (VectorXcd val) and
the eigenvectors are returned together as a matrix (MatrixXcd vec); each column of
the matrix contains a complex eigenvector. Note that if you compute (numerically or
analytically) the eigenvalues of the original matrix,

A =
(

1 2
4 9

)
(3.16)

you will find that they happen to be real-valued, however Eigen cannot determine this
in advance so the results are returned in complex datatypes. If on the other hand we have
to find the eigenvalues(vectors) of

A =
(

1 2
2 9

)
(3.17)

then it is known in advance from the symmetric form of the matrix that the eigenvalues
and eigenvectors are real. The SelfAdjointEigenSolver can be used in this case; it
returns its results in real-valued datatypes, VectorXd and MatrixXd. In addition, the
matrix containing the eigenvectors will be orthogonal, i.e., it will satisfy the condition
that �T · � = I, the identity matrix.

You now know everything you need to solve the coupled oscillators problem. Imple-
menting the solution is left to the exercises.

3.4 Complex linear algebra and quantum mechanical
scattering from piecewise constant potentials

In our second example, we develop a computational solution to a simple problem in one-
dimensional quantum mechanics. This problem is treated in almost every elementary
text, for example Gasiorowicz (2003) or Griffiths (2005). Analytical solutions give
insights that computational solutions cannot—and vice versa.

A particle with energy E > 0 is incident upon a rectangular potential barrier with
barrier height of V and a spatial extent from x = −a to x = a. The time-independent
Schrödinger equation is:
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[

− h̄2

2m
∂2

∂x2 + V (x)

]

ψ(x) = Eψ(x) (3.18)

We re-write this as:

[
− 1

k2

∂2

∂x2 + v(x)

]
ψ(x) = ψ(x), (3.19)

where v = V/E and k2 = 2mE/h̄2.
We will assume a particle incident on the barrier from the negative-x direction, and

we divide space into region I (x < −a), region II (−a < x < a), and region III (x > a).
In regions I and III, where the piecewise constant potential is zero, the Schrödinger
equation is:

d2ψ(x)

dx2 = −k2ψ(x) (3.20)

while in region II it is:

d2ψ(x)

dx2 = −n2k2ψ(x) (3.21)

where

n ≡ √
1 − v (3.22)

is a sort of “index of refraction” expressing (for fixed energy) the ratio of wavenumber
in a region with constant potential to the corresponding wavenumber in a potential-free
region; alternately it is the inverse of the ratio of the wavefunction’s phase velocity in the
two regions.

The general solution to the Schrödinger equation is:

ψ(x) = e±ikx regions I and III (3.23)

and

ψ(x) = e±inkx region II . (3.24)

The particular solution to the Schrödinger equation, describing an incident wave and
reflected wave in regions I and II and a transmitted wave in region III can be written as:
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ψ(x) = Aeikx + Be−ikx (region I)

ψ(x) = Ceinkx + De−inkx (region II)

ψ(x) = Feikx (region III)

The constants A, B, C, D, and F are constrained by the continuity of the wavefunction
and its first derivative at x = −a and x = a, whence:

Ae−ika + Beika = Ce−inka + Deinka

Ceinka + De−inka = Feika

ikAe−ika − ikBeika = inkCe−inka − inkDeinka

inkCeinka − inkDe−inka = ikFeika .

This can be written in terms of the amplitude of the incoming wave as:

⎛

⎜⎜
⎝

eika −e−inka −einka 0
0 einka e−inka −eika

−ik eika −ink e−inka ink einka 0
0 ink einka −ink e−inka −ik eika

⎞

⎟⎟
⎠ ·

⎛

⎜⎜
⎝

b
c
d
f

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

−e−ika

0
−ike−ika

0

⎞

⎟⎟
⎠ (3.25)

where b ≡ B/A, c ≡ C/A, d ≡ D/A, f ≡ F/A. This set of equations is solved
analytically in elementary textbooks; here we aim to solve it numerically with the help
of complex matrix classes from the package Eigen. An example is furnished in the
next section.

We remark that one of the advantages is that the technique can be extended easily to
deal with more complicated, piecewise-constant potentials. In fact, any potential in one
dimension can be treated in this way by dividing it into sufficiently small pieces. Thus
the general one-dimensional problem is equivalent to inverting an infinite size matrix
equation of the type just developed.

3.4.1 Transmission and reflection coefficients

The wavefunction ψ determines the particle probability density ρ(x, t) ≡ ψ(x, t)ψ∗(x, t)
and the probability current:

j(x, t) ≡ ih̄
2m

(
ψ(x, t)

dψ(x, t)∗

dx
− ψ(x, t)∗ dψ(x, t)

dx

)
. (3.26)

The two are related by a conservation law:

∂ j(x, t)
∂x

+ ∂ρ(x, t)
∂t

= 0 (3.27)
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which follows from the Schrödinger equation. In the barrier potential problem, the
transmission and reflection coefficients can be computed as the ratio of the mag-
nitude of the probability current of the transmitted and reflected waves to that of the
incoming wave. These are:

h̄k
m

⎧
⎪⎨

⎪⎩

|A|2 Incident wave
−|B|2 Reflected wave
|F |2 Transmitted wave

. (3.28)

3.5 Complex linear algebra with Eigen

In developing a numerical solution to the problem of the previous section, we
will need to manipulate complex vectors and matrices. The relevant datatypes are
Eigen::VectorXcd and Eigen::MatrixXcd. The following code can be found
in the directory EXAMPLES/CH3/RECTBARRIER. It computes the coefficients b, c, d,
and f , and also computes the transmission coefficient |f |2 and the reflection coefficient
|b|2; these should sum to unity, and this can verified as a sanity check. The inputs are V
(specified in units of E) and k (specified in units of a−1):

#include <Eigen/Dense>
#include <iostream>
#include <complex>
#include <string>
#include <sstream>
typedef std::complex<double> Complex;
int main(int argc, char **argv) {

using namespace std;
string usage = string( " Usage : ")
+ argv[0]
+ " [ −?] [−v p o t e n t i a l ] [−k wvnumber ] ";

if (argc>1 && argv[1]==string( "−? ")) {
cout << usage << endl;
exit (0);

}

// default values
double v=0.5;
double k=0.2;

try {
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// overwritten by command line:
for (int i=1; i<argc;i+=2) {

istringstream stream(argv[i+1]);
if (string(argv[i])== "−v ") stream >> v;
if (string(argv[i])== "−k ") stream >> k;

}
}
catch (exception &) {
cout << usage << endl;
exit (0);

}

Complex I(0,1.0);
Complex nk=k*sqrt(Complex(1-v));

Eigen::VectorXcd Y(4);
Y(0)= -exp(-I*k);
Y(1)= 0;
Y(2)= -I*k*exp(-I*k);
Y(3)= 0;

Eigen::MatrixXcd A(4,4);
// First row:
A(0,0)= exp(I*k) ;
A(0,1)=-exp(-I*nk) ;
A(0,2)= -exp(I*nk) ;
A(0,3)=0 ;

// Second row:
A(1,0)= 0 ;
A(1,1)= exp(I*nk) ;
A(1,2)= exp(-I*nk) ;
A(1,3)=-exp(I*k) ;

// Third row:
A(2,0)= -I*k*exp(I*k) ;
A(2,1)=-I*nk*exp(-I*nk);
A(2,2)= I*nk*exp(I*nk) ;
A(2,3)=0 ;

// Fourth row:
A(3,0)= 0 ;
A(3,1)=I*nk*exp(I*nk) ;
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A(3,2)=-I*nk*exp(-I*nk);
A(3,3)=-I*k*exp(I*k) ;

Eigen::MatrixXcd AInv= A.inverse();
Eigen::VectorXcd BCDF=AInv*Y;
Complex B=BCDF(0), F=BCDF(3);
cout << " Complex c o e f f i c i e n t s " << endl;
cout << BCDF << endl;
cout << endl;
cout << " R e f l e c t i o n c o e f f i c i e n t : " << norm(B)

<< endl;
cout << " Transmiss ion c o e f f i c i e n t : " << norm(F)

<< endl;
cout << "Sum: " << norm(B)+norm(F)

<< endl;

}

In addition to the operations illustrated in the above example, real and complex matrices
have a rich set of other operations that can be used. Some of these appear in Table 3.1,
and others can be found in the Eigen documentation.

Table 3.2 shows operations that apply to real or complex vectors. Note that transpose
and adjoint operations return a 1×N matrix and not a column vector, which is identical
to a N×1 matrix.

Table 3.1 Matrix operators.

Operation Function Example

(,) subscript A(2,3)

+ operator +() C=A+B

- operator -() C=A-B

* operator *() C=A*B

* operator *() B=2.0*A

- unary - A=-B

trA trace x=A.trace()

|A| determinant x=A.determinant()

A−1 inverse AINV=A.inverse()

AT transpose AT=A.transpose();

A† adjoint ADagger=A.adjoint()
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Table 3.2 Complex and real operations.

Operation Function Example

() subscript v(2)

+ operator +() v=u+w

- operator -() v=u-w

* operator *() u=2.0*v

- unary - u=-v

return norm norm() double x=norm(u)

return squared norm squaredNorm() x2=squaredNorm(u)

normalize in place normalize() v.normalize()

return normalized copy normalized() u=v.normalized()

vT transpose vT=v.transpose();

v† adjoint vDagger=v.adjoint()

3.6 Geometry

A “vector” has multiple meanings in mathematics, physics, and computer science. On
one hand it is a linear algebraic object, an n-dimensional tuple in a vector space, acted
upon by linear transformations in that space that are represented by matrices. On the
other hand (restricting ourselves to Cartesian 3-space) we identify a vector as an object
with magnitude and direction, which supports the operations of cross product and dot
product, which is affected by a rotation of spatial coordinates, and which are sometimes
called three-vectors; such three-vectors may be represented on a computer by a triplet
of coordinates, but one should not confuse a particular representation with the actual
vector, which is a more abstract notion–a thing with magnitude and direction, which
we may visualize as an arrow. Thus there are two possible abstractions: an algebraic
vector or a geometric vector. In Section 3.7 we will encounter another kind of “vector”,
representing a computer scientist’s notion of the term, and unlikely to be confused with
the algebraic or geometric vectors.

Some class libraries provide different classes for each type of object. The Eigen class
library stores both types of vector in the same object but provides the extra operation of
cross product which is valid when applied to three-dimensional vectors, Vector3f or
Vector3d. The former is represented by floats, the latter by doubles; and both classes
are typedef’d template classes. The length of these objects (3) is fixed at compile time.
The cross product and dot product for Eigen::Vector3d and Eigen::Vector3f
are invoked like this:
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#include " Eigen / Dense "
using namespace Eigen;
Vector3d u,v;
Vector3d w=u.cross(v);
double d=u.dot(v);

The vectors interoperate with a set of transformations (rotations and affine transfor-
mations) that are defined in the header Eigen/Geometry. In the following section we
provide a few examples of how one can use the vector classes for simple calculations.

3.6.1 Example: collisions in three dimensions

Consider two free particles in three dimensions. Particles 1 and 2 travel from positions
�P1 and �P2 with velocities �v1 and �v2, respectively. Our aim is to compute how close the
particles approach each other, and how close their straight trajectories become (these
are not the same thing). To compute how close the two particles become, step into the
reference frame of particle 1: the velocity of particle 2 in that frame is �v = �v2 − �v1, and
the position of particle 2 is �r = �P2 − �P1. The distance of closest approach is the quantity
|�r × v̂|. This can be implemented as a short function as follows:

#include " Eigen / Dense "
double distance(const Eigen::Vector3d & P1,

const Eigen::Vector3d & P2,
const Eigen::Vector3d & v1,
const Eigen::Vector3d & v2) {

// Compute the distance of closest approach of particle 2
// to particle 1:

return (P2-P1).cross((v2-v1).normalized()).norm();

}

To compute the distance between the two trajectories, we designate points �Q1 as the point
on the trajectory of particle 1 which lies closest to the trajectory of particle 2, and �Q2 as
the point on trajectory 2 which lies closest to trajectory 1. We can make a displacement
from �P1 to �P2 in three steps, first, by moving an unknown distance s from �P1 to �Q1 along
the direction v̂1; then by moving an unknown distance t from �Q1 to �Q2; then by moving
an unknown distance u from �Q2 to �P2 along the direction v̂2. The distances s, t, and u
are signed quantities, and the displacement from �Q1 to �Q2 takes place along a direction
which is perpendicular to both v̂1 and v̂2, and thus it lies along the direction v̂1 × v2. We
can therefore write:

sv̂1 + t( ̂�v1 × �v2) + uv̂2 = �P2 − �P1
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We are interested in knowing the quantity t, which we can obtain by dotting this
expression into ̂�v1 × �v2:

t = ( �P2 − �P1) · ̂(�v2 × �v1)

This quantity can be positive or negative, and we only care about the magnitude. In code
we could write:

#include " Eigen / Dense "
double trajSeparation(const Eigen::Vector3d & P1,

const Eigen::Vector3d & P2,
const Eigen::Vector3d & v1,
const Eigen::Vector3d & v2) {

// Compute the distance of closest approach of
trajectory 2

// to trajectory 1:

return fabs((P2-P1).dot(v2.cross(v1).normalized()));

}

The quantities s and u can also be computed from the simultaneous solution to these two
equations:

s + u(v̂2 · v̂1) = ( �P2 − �P1) · v̂1

s(v̂1 · v̂2) + u = ( �P2 − �P1) · v̂2 .

3.7 Collection classes and strings

The classes std::vector and std::string are similar in some regards to the more
basic built-in array-of-object and array-of-characters. However, they do considerably
more and are much easier to use. Classes like std::vector and std::string are
sometimes referred to as first-class datatypes, while their built-in cousins are called second-
class. First-class datatypes are so powerful and easy to use that they have practically
displaced the use of their second-class cousins in most application programming.

The std::vector class holds objects, like an array, but it can increase its size auto-
matically. The class is designed to simplify the storage of objects, and no mathematical
operations are defined for it. The most common way to add elements to a vector is by
pushing them onto the end of the array. The most common way to access the stored
element is by random access using the subscripting operator, [ ].
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Actually, like std::complex, std::vector is not a class, but a class template,
which means it’s a recipe for generating a class, and here the class can be generated by
specifying as a template argument what kind of object the vector holds. Templates avoid
the necessity of writing multiple classes when the only real difference between them is
the datatype used in the representation. To declare a vector of doubles one writes:

#include <vector>
std::vector<double> myVector;

To add a few doubles to the new vector you could write:

myVector.push_back(2.0);
myVector.push_back(3.14159);
myVector.push_back(7.0);

The vector can be copied (or passed by reference) between two functions, like typical
C++ objects. The size of the vector can be retrieved, as can the elements:

for (int i=0;i<myVector.size();i++) {
std::cout << myVector[i] << std::endl;

}

A good exercise is to type the preceding lines of code into a short program, and see what
it prints; then change the template parameter from double to int, recompile, and look
again at the output.

Another useful class is std::string. This class represents a basic string of char-
acters (words, sentences, paragraphs), and the interface supports searching strings,
appending strings (which is done with the “+” operator), and editing strings. A
std::vector can hold not only ints, floats, and doubles, but any kind of object,
such as a string. We modify the code written above, transforming our vector-of-doubles
into a vector-of-strings.

#include <vector>
#include <string>
main() {
std::vector<std::string> myVector;
myVector.push_back( " Trout ");
myVector.push_back( " F i sh ing ");
myVector.push_back( " In ");
myVector.push_back( " America . ");
for (int i=0;i<myVector.size();i++) {
std::cout << myVector[i] << std::endl;

}
}
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which outputs

Trout Fishing In America.

The class std::vector has a lot of other functionality, which you can explore yourself
or by consulting a good text such as Weiss (2014). The std::vector class is part of
the C++ standard library, which also contains more specialized container classes such
as deque, list, set, map, and multimap, which are also very useful, and make up
the so-called Standard Template Library(STL). The STL (Stepanov, 1995) was once a
separate package but is now fully integrated into the C++ standard library.

3.8 Function objects

Function-objects, or functors, are a type of first-class object that overload the function-
call operator, operator(). The unusual name is not a C++ keyword of any kind,
but just a descriptive name given to such classes. Our functors come from the
QatGenericFunctions library, part of the Qat libraries, which is custom software
developed by the authors and available through the companion website:

http://www.oup.co.uk/companion/acp

We shall discuss and use it throughout the book.

Go to http://www.oup.co.uk/companion/acp and follow instructions to
install the Qat packages.

The QatGenericFunctions library provides many classes, most of which repre-
sent functions of one or more variables. These objects are similar to their second-class
cousins, normal C/C++ functions, but they do more. Probably the simplest of these is the
class Variable, (namespace Genfun) which we will use to illustrate the most important
use cases. The function-call operator for this class simply returns its argument:

#include " QatGenericFunct ions / V a r i a b l e . h "
#include <iostream>
main() {
Genfun::Variable X;
std::cout << X(3.14) << std::endl;

}

The program prints out 3.14. The object X can be used in expressions, and these expres-
sions can be assigned to a datatype called Genfun::GENFUNCTION. The following

http://www.oup.co.uk/companion/acp
http://www.oup.co.uk/companion/acp
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expression manufactures the function f (x) = 1 + 2x + x3; it prints out a table of the
function and its derivative at three points:

main () {
Genfun::Variable X;
Genfun::GENFUNCTION f=1 + 2*X + X*X*X;
std::cout << 1 << " " << f(1) << " " << f.prime()(1) << std

::endl;
std::cout << 2 << " " << f(2) << " " << f.prime()(2) << std

::endl;
std::cout << 3 << " " << f(3) << " " << f.prime()(3) << std

::endl;
}

The class library contains basic functions (Sin, Exp, Gamma) and not-so-basic
functions, shown in Table 3.3. These functions can all be used interchangeably and
combined in expressions as here:

#include " QatGenericFunct ions / Sin . h "
.
.
.
{
Genfun::Sin sin;
Genfun::GENFUNCTION f=(1 + sin)/2;

}

Table 3.3 List of the most basic functions in the QatGenericFunctions library.

Name Description

Variable Basic building-block of expressions

F1D General purpose adapter to any function

FixedConstant, Power, Sqrt, Square Powers

Sigma Sum of component functions

ArrayFunction Defined by an input array

Sin, Cos, Tan, ASin, ACos, ATan Trig and inverse functions

Sinh, Cosh, Tanh, ASinh, ACosh, ATanh Hyperbolic Trig and inverse functions

Exp, Log, Gamma, LGamma, Erf exponential, log, gamma, and error functions
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Note, the sin functor is here given the same name as the sin function from the math
library, it shadows that function (i.e. makes it invisible). The function sin can still be
referenced as std::sin.

Another more compact way to write the same function is:

#include " QatGenericFunct ions / Sin . h "
{
.
..
Genfun::GENFUNCTION f=(1 + Genfun::Sin())/2;

}

How, you may ask, does one express a function like sin 3x? Since QatGenericFunctions
allows function composition, you can express it like this:

#include " QatGenericFunct ions / Sin . h "
#include " QatGenericFunct ions / V a r i a b l e . h "
{
.
..
Genfun::Variable X;
Genfun::Sin sin;
Genfun::GENFUNCTION f=sin(3*X);

}

or more compactly as:

#include " QatGenericFunct ions / Sin . h "
#include " QatGenericFunct ions / V a r i a b l e . h "
{
.
..
Genfun::GENFUNCTION f=Genfun::Sin()(3*Genfun::Variable());

}

To define a function, you can either manufacture it out of more primitive functions
as illustrated above; or you can introduce your own extender functors–which we will
cover later since this is a little more difficult. Alternately, you can use the adapter class
F1D, which endows any function double f(double x) with algebraic properties,
in particular the operations (+,-,*, / ), as well as composition f (g(x)) and the derivative.
For example, here we turn the hyperbolic tangent, tanh, from the standard c++ library,
into a functor:

#include " QatGenericFunct ions /F1D. h "
Genfun::GENFUNCTION tanh=Genfun::F1D(std::tanh);
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With this, we can now carry out function-arithmetic in the same way that you are used
to carrying out floating point arithmetic. For example, the following expression

Genfun::GENFUNCTION f=1-tanh*tanh;

defines a functor that computes f (x) = sech2(x)–something that is impossible using raw
C/C++ function pointers.

There is one important difference between functors defined with the adapter class
F1D, and functors that are predefined in the QatGenericFunctions library: usually
the predefined functors return analytical derivatives, while the adapters return a deriva-
tive computed numerically. Thus the adapter is inferior to either predefined functors, or
properly implemented user-defined extender functors.

3.8.1 Example: root finding

An equation of one variable F(x) = 0 can have zero, one, or many solutions, commonly
called roots of the equation. Finding these in the most general case of a nonlinear equation
can be challenging. One of the commonly used algorithms can be traced back to Isaac
Newton and Joseph Raphson, and is now called the Newton-Raphson method. It is
an iterative method, in which one proceeds from an initial estimate which is then refined
until convergence is achieved. One takes the tangent to the curve at the starting point,
and intersects it with the x-axis. The intersection provides a refined estimate of the root.
This continues until the estimate is invariant under further refinement. Note that the
algorithm may not converge if a poor starting point is used, so good initial estimates are
essential. The Newton-Raphson method is therefore perhaps more accurately described
as an algorithm for refining estimates rather then obtaining them from scratch.

The line tangent to F(x) is obtained by taking the first derivative F ′(x), and the
intersection with the x-axis is given by x − F(x)/F ′(x). The whole algorithm can be
coded like this:

double newtonRaphson(double x, Genfun::GENFUNCTION P) {
double x1=x;
while (1) {
double deltaX=-P(x)/P.prime()(x);
x+=deltaX;
if (float(x1)==float(x)) break;
x1=x;

}
return x;

}

The algorithm iterate until convergence is achieved at float precision.
The case of multiple roots is more complicated, but after each root is found one can

simplify the discovery of the remaining roots. The method, called deflation, is to divide
the function fi(x) by (x − xi) after each root xi is found: fi(x) → fi+1(x) = fi(x)/(x − xi).
The updated function fi+1(x) is zero wherever fi(x) is zero, except at x = xi ; and one



Some useful classes with applications 71

can locate the remaining roots by evaluating fi+1(x). To start the procedure one sets
f0(x) = F(x). The process, applied to a fifth order polynomial, is illustrated in Figure 3.1.
This example can be found in EXAMPLES/CH3/NRDEFLATE. The key elements of this
code are summarized in this excerpt::

using namespace Genfun;
Variable X;
GENFUNCTION F=(X-1)*(X-2)*(X-3)*(X-M_PI)*(X-4);
const AbsFunction * f=&F;
for (int i = 0; i<5; i++ ) {

double x = newtonRaphson(-1.0, *f);
GENFUNCTION F1 = (*f)/(X-x);
if (f!=&F) delete f;
f=F1.clone();

}

Note that at each iteration of the Newton-Raphson step, we have been careful to
step away from the root we have just found; that’s because evaluation of the deflated
function will yield a divide-by-zero error there. Exercise 15 gives some practice with this
algorithm, which is frequently required in other exercises throughout the book. A more
complete discussion of these methods can be found in Press (2007).

Eigenvalue methods

In Exercise 10 of Chapter 2, you are asked to diagonalize a matrix by solving a secular
equation. If you attempted this exercise, you will have noticed that the Eigen classes,
particularly EigenSolver<MatrixXd> provide a far simpler mechanism. So, you
may ask, rather than finding the roots of a polynomial as a means of diagonalizing a
matrix, can we diagonalize a matrix as a means of finding the roots of a polynomial? The
answer is yes.

A monic polynomial is a polynomial whose highest order monomial appears with
a coefficient of 1, for example x4 − 4x2 − 1

2 x − 1. Obviously any polynomial can be
expressed as a numerical factor times a monic polynomial. For purposes of root finding
we can ignore the factor, while expressing the monic polynomial as:

p(x) = xn +
n−1∑

i=0

cixi (3.29)

Now define the companion matrix for the polynomial

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
. . . 0 .
. . . 0 .
. . . 0 .
0 0 . . . 1 −cn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.30)


