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TO
PROFESSOR RICHARD SKEMP

whose theories on the learning of mathematics have been
a constant source of inspiration





PREFACE TO THE SECOND EDITION

Theworld has moved on since the first edition of this book was written
on typewriters in 1976. For a start, the default use of male pronouns
is quite rightly frowned upon. Educationally, research has revealed

new insights into how individuals learn to thinkmathematically as they build
on their previous experience (see [3]).1 We have used these insights to add
comments that encourage the reader to reflect on their own understanding,
thereby making more sense of the subtleties of the formal definitions. We
have also added an appendix on self-explanation (written by Lara Alcock,
Mark Hodds, and Matthew Inglis of the Mathematics Education Centre,
Loughborough University) which has been demonstrated to improve long-
term performance in making sense of mathematical proof. We thank the
authors for their permission to reproduce their advice in this text.
The second edition has much in common with the first, so that teachers

familiar with the first edition will find that most of the original content and
exercises remain. However, we have taken a significant step forward. The
first edition introduced ideas of set theory, logic, and proof and used them
to start with three simple axioms for the natural numbers to construct the
real numbers as a complete ordered field. We generalised counting to con-
sider infinite sets and introduced infinite cardinal numbers. But we did not
generalise the ideas of measuring where units could be subdivided to give an
ordered field.
In this edition we redress the balance by introducing a new part IV that

retains the chapter on infinite cardinal numbers while adding a new chapter
on how the real numbers as a complete ordered field can be extended to a
larger ordered field.
This is part of a broader vision of formal mathematics in which certain

theorems called structure theorems prove that formal structures have natural
interpretations that may be interpreted using visual imagination and sym-
bolic manipulation. For instance, we already know that the formal concept of
a complete ordered field may be represented visually as points on a number
line or symbolically as infinite decimals to perform calculations.

1 Numbers in square brackets refer to entries in the References and Further Reading
sections on page 383.
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Structure theorems offer a new vision of formal mathematics in which for-
mal defined concepts may be represented in visual and symbolic ways that
appeal to our human imagination. This will allow us to picture new ideas
and operate with them symbolically to imagine new possibilities. We may
then seek to provide formal proof of these possibilities to extend our theory
to combine formal, visual, and symbolic modes of operation.
In Part IV, chapter 12 opens with a survey of the broader vision. Chap-

ter 13 introduces group theory, where the formal idea of a group—a set with
an operation that satisfies a particular list of axioms—is developed to prove
a structure theorem showing that elements of the group operate by permut-
ing the elements of the underlying set. This structure theorem enables us to
interpret the formal definition of a group in a natural way using algebraic
symbolism and geometric visualisation.
Following chapter 14 on infinite cardinal numbers from the first edition,

chapter 15 uses the completeness axiom for the real numbers to prove a sim-
ple structure theorem for any ordered field extension K of the real numbers.
This shows that K must contain elements k that satisfy k > r for all real
numbers r, which we may call ‘infinite elements’, and these have inverses
h = 1/k that satisfy 0 < h < r for all positive real numbers r, which may be
called ‘infinitesimals’. (There are corresponding notions of negative infinite
numbers k satisfying k < r for all negative real numbers r.) The structure
theorem also proves that any finite element k in K (meaning a < k < b for
real numbers a, b) must be of the form a+hwhere a is a real number and h is
zero or an infinitesimal. This allows us to visualise the elements of the larger
field K as points on a number line. The clue lies in using the magnification
m : K → K given by m(x) = (x – a)/h which maps a to 0 and a + h to 1,
scaling up infinitesimal detail around a to be able to see it at a normal scale.
This possibility often comes as a surprise to mathematicians who have

worked only within the real numbers where there are no infinitesimals. How-
ever, in the larger ordered field we can now see infinitesimal quantities in a
larger ordered field as points on an extended number line by magnifying the
picture.
This reveals two entirely different ways of generalising number concepts,

one generalising counting, the other generalising the full arithmetic of the
real numbers. It offers a new vision in which axiomatic systems may be de-
fined to have consistent structures within their own context yet differing
systems may be extended to give larger systems with different properties.
Why should we be surprised? The system of whole numbers does not have
multiplicative inverses, but the field of real numbers does have multiplica-
tive inverses for all non-zero elements. Each extended system has properties
that are relevant to its own particular context. This releases us from the
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limitations of our real-world experience to use our imagination to develop
powerful new theories.
The first edition of the book took students from their familiar experience

in school mathematics to the more precise mathematical thinking in pure
mathematics at university. This second edition allows a further vision of the
wider world of mathematical thinking in which formal definitions and proof
lead to amazing new ways of defining, proving, visualising, and symbolising
mathematics beyond our previous expectations.

Ian Stewart and David Tall
Coventry 2015
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PREFACE TO THE FIRST EDITION

This book is intended for readers in transition from school math-
ematics to the fully-fledged type of thinking used by professional
mathematicians. It should prove useful to first-year students in uni-

versities and colleges, and to advanced students in school contemplating
further study in pure mathematics. It should also be of interest to a wider
class of reader with a grounding in elementary mathematics seeking an
insight into the foundational ideas and thought processes of mathematics.
The word ‘foundations’, as used in this book, has a broader meaning than

it does in the building trade. Not only do we base our mathematics on these
foundations: theymake themselves felt at all levels, as a kind of cement which
holds the structure together, and out of which it is fabricated. The founda-
tions of mathematics, in this sense, are often presented to students as an
extended exercise in mathematical formalism: formal mathematical logic,
formal set theory, axiomatic descriptions of number systems, and technical
constructions of them; all carried out in an exotic and elaborate symbolism.
Sometimes the ideas are presented ‘informally’ on the grounds that complete
formalism is too difficult for the delicate flowering student. This is usually
true, but for an entirely different reason.
A purely formal approach, even with a smattering of informality, is psy-

chologically inappropriate for the beginner, because it fails to take account of
the realities of the learning process. By concentrating on the technicalities, at
the expense of the manner in which the ideas are conceived, it presents only
one side of the coin. The practising mathematician does not think purely
in a dry and stereotyped symbolism: on the contrary, his thoughts tend to
concentrate on those parts of a problem which his experience tells him are
the main sources of difficulty. While he is grappling with them, logical rig-
our takes a secondary place: it is only after a problem has, to all intents and
purposes, been solved intuitively that the underlying ideas are filled out into
a formal proof. Naturally there are exceptions to this rule: parts of a prob-
lem may be fully formalised before others are understood, even intuitively;
and some mathematicians seem to think symbolically. Nonetheless, the basic
force of the statement remains valid.
The aim of this book is to acquaint the student with the way that a practis-

ing mathematician tackles his subject. This involves including the standard
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‘foundations’ material; but our aim is to develop the formal approach as a
natural outgrowth of the underlying pattern of ideas. A sixth-form student
has a broad grasp of many mathematical principles, and our aim is to make
use of this, honing his mathematical intuition into a razor-sharp tool which
will cut to the heart of a problem. Our point of view is diametrically opposed
to that where (all too often) the student is told ‘Forget all you’ve learned up
till now, it’s wrong, we’ll begin again from scratch, only this time we’ll get it
right’. Not only is such a statement damaging to a student’s confidence: it is
also untrue. Further, it is grossly misleading: a student who really did forget
all he had learned so far would find himself in a very sorry position.
The psychology of the learning process imposes considerable restraints on

the possible approaches to a mathematical concept. Often it is simply not
appropriate to start with a precise definition, because the content of the def-
inition cannot be appreciated without further explanation, and the provision
of suitable examples.
The book is divided into four parts to make clear the mental attitude re-

quired at each stage. Part I is at an informal level, to set the scene. The first
chapter develops the underlying philosophy of the book by examining the
learning process itself. It is not a straight, smooth path; it is of necessity a
rough and stony one, with side-turnings and blind alleys. The student who
realises this is better prepared to face the difficulties. The second chapter ana-
lyses the intuitive concept of a real number as a point on the number line,
linking this to the idea of an infinite decimal, and explaining the importance
of the completeness property of the real numbers.
Part II develops enough set theory and logic for the task in hand, looking in

particular at relations (especially equivalence relations and order relations)
and functions. After some basic symbolic logic we discuss what ‘proof ’ con-
sists of, giving a formal definition. Following this we analyse an actual proof
to show how the customary mathematical style relegates routine steps to a
contextual background—and quite rightly so, inasmuch as the overall flow
of the proof becomes far clearer. Both the advantages and the dangers of this
practice are explored.
Part III is about the formal structure of number systems and related con-

cepts. We begin by discussing induction proofs, leading to the Peano axioms
for natural numbers, and show how set-theoretic techniques allow us to con-
struct from them the integers, rational numbers, and real numbers. In the
next chapter we show how to reverse this process, by axiomatising the real
numbers as a complete ordered field. We prove that the structures obtained
in this way are essentially unique, and link the formal structures to their in-
tuitive counterparts of part I. Then we go on to consider complex numbers,
quaternions, and general algebraic and mathematical structures, at which

xii | PREFACE TO THE FIRST EDITION



point the whole vista of mathematics lies at our feet. A discussion of infinite
cardinals, motivated by the idea of counting, leads towards more advanced
work. It also hints that we have not yet completed the task of formalising our
ideas.
Part IV briefly considers this final step: the formalisation of set theory.

We give one possible set of axioms, and discuss the axiom of choice, the
continuum hypothesis, and Gödel’s theorems.
Throughout we are more interested in the ideas behind the formal façade

than in the internal details of the formal language used. A treatment suitable
for a professional mathematician is often not suitable for a student. (A series
of tests carried out by one of us with the aid of first-year undergraduates
makes this assertion very clear indeed!) So this is not a rigidly logical
development from the elements of logic and set theory, building up a
rigorous foundation for mathematics (though by the end the student will
be in a position to appreciate how this may be achieved). Mathematicians
do not think in the orthodox way that a formal text seems to imply. The
mathematical mind is inventive and intricate; it jumps to conclusions: it
does not always proceed in a sequence of logical steps. Only when everything
is understood does the pristine logical structure emerge. To show a student
the finished edifice, without the scaffolding required for its construction, is
to deprive him of the very facilities which are essential if he is to construct
mathematical ideas of his own.

I.S. and D.T.
Warwick
October 1976
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PART I
The Intuitive Background

The first part of the book reflects on the experiences that the reader will have
encountered in school mathematics to use it as a basis for a more sophisti-
cated logical approach that precisely captures the structure of mathematical
systems.
Chapter 1 considers the learning process itself to encourage the reader to

be prepared to think in newways tomake sense of a formal approach. As new
concepts are encountered, familiar approaches may no longer be sufficient to
deal with them and the pathway may have side-turnings and blind alleys that
need to be addressed. It is essential for the reader to reflect on these new
situations and to prepare a new overall approach.
Using a ‘building’ metaphor, we are surveying the territory to see how we

can use our experience to build a firm new structure in mathematics that will
make it strong enough to support higher levels of development. In a ‘plant’
metaphor, we are considering the landscape, the quality of the soil, and the
climate to consider how we can operate to guarantee that the plants we grow
have sound roots and predictable growth.
Chapter 2 focuses on the intuitive visual concept of a real number as a

point on a number line and the corresponding symbolic representation as an
infinite decimal, leading to the need to formulate a definition for the com-
pleteness property of the real numbers. This will lead in the long term to
surprising new ways of seeing the number line as part of a wider programme
to study the visual and symbolic representations of formal structures that
bring together formal, visual, and symbolic mathematics into a coherent
framework.





chapter 1

Mathematical Thinking

Mathematics is not an activity performed by a computer in a vac-
uum. It is a human activity performed in the light of centuries of
human experience, using the human brain, with all the strengths

and deficiencies that this implies. You may consider this to be a source of
inspiration and wonder, or a defect to be corrected as rapidly as possible, as
you wish; the fact remains that we must come to terms with it.
It is not that the human mind cannot think logically. It is a question of

different kinds of understanding. One kind of understanding is the logical,
step-by-step way of understanding a formal mathematical proof. Each indi-
vidual step can be checked but this may give no idea how they fit together, of
the broad sweep of the proof, of the reasons that lead to it being thought of
in the first place.
Another kind of understanding arises by developing a global viewpoint,

from which we can comprehend the entire argument at a glance. This in-
volves fitting the ideas concerned into the overall pattern of mathematics,
and linking them to similar ideas from other areas. Such an overall grasp of
ideas allows the individual to make better sense of mathematics as a whole
and has a cumulative effect: what is understood well at one stage is more
likely to form a sound basis for further development. On the other hand,
simply learning how to ‘do’ mathematics, without having a wider grasp of its
relationships, can limit the flexible ways in which mathematical knowledge
can be used.
The need for overall understanding is not just aesthetic or educational.

The human mind tends to make errors: errors of fact, errors of judgement,
errors of interpretation. In the step-by-step method we might not notice
that one line is not a logical consequence of preceding ones. Within the
overall framework, however, if an error leads to a conclusion that does not
fit into the total picture, the conflict will alert us to the possibility of a
mistake.
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For instance, given a column of a hundred ten-digit numbers to add up,
where the correct answer is 137568304452, we might make an arithmetical
error and get 137568804452 instead. When copying this answer we might
make a second error and write 1337568804452. Both of these errors could
escape detection. Spotting the first would almost certainly need a step-by-
step check of the calculation. The second error, however, is easily detected
because it does not fit into the overall pattern of arithmetic. A sum of 100
ten-digit numbers will be at most a twelve-digit number (since 9999999999×
100 = 999999999900) and the final proposed answer has thirteen.
It is a combination of step-by-step and overall understanding that has the

best chance of detecting mistakes; not just in numerical work, but in all areas
of human understanding. The student must develop both kinds, in order
to appreciate the subject fully and be an effective practitioner. Step-by-step
understanding is fairly easy; just take one thing at a time and do lots of ‘drill’
exercises until the idea sinks in. Overall understanding is much harder; it
involves taking a lot of individual pieces of information and making a coher-
ent pattern out of them. What is worse is that having developed a particular
pattern which suits the material at one stage, new information may arise
which seems to conflict. The new information may be erroneous but it often
happens that previous experiences that worked in one situation no longer
operate in a new context. The more radical the new information is, the more
likely that it does not fit, and that the existing overall viewpoint has to be
modified. That is what this first chapter is about.

Concept Formation

When thinking about any area of mathematics, it helps to understand a little
about how we learn new ideas. This is especially true of foundational issues,
which involve revisiting ideas that we already think we know. When we dis-
cover that we do not—more precisely, that there are basic questions that we
have not been exposed to—we may feel uncomfortable. If so, it’s good to
know that we are not alone: it happens to nearly everyone.
All mathematicians were very young when they were born. This platitude

has a non-trivial implication: even the most sophisticated mathematician
must have passed through the complex process of building up mathematical
concepts. When first faced with a problem or a new concept, the mathem-
atician turns it over in the mind, digging into personal experiences to see if
it is like something that has been encountered before. This exploratory, cre-
ative phase of mathematics is anything but logical. It is only when the pieces
begin to fit together and the mathematician gets a ‘feel’ for the concept, or
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the problem, that a semblance of order emerges. Definitions are formulated
in ways that can be used for deduction, and there is a final polishing phase
where the essential facts are marshalled into a neat and economical proof.
As a scientific analogy, consider the concept ‘colour’. A dictionary defin-

ition of this concept looks something like ‘the sensation produced in the eye
by rays of decomposed light’. We do not try to teach the concept of colour to
a child by presenting them with this definition. (‘Now, Angela, tell me what
sensation is produced in your eye by the decomposed light radiating from
this lollipop . . . ’) First you teach the concept ‘blue’. To do this you show a
blue ball, a blue door, a blue chair, and so on, accompanying each with the
word ‘blue’. You repeat this with ‘red’, ‘yellow’, and so on. After a while the
child begins to get the idea; you point to an object they have not seen be-
fore and their response is ‘blue’. It is relatively easy to refine this to ‘dark
blue’, ‘light blue’, and so forth. After repeating this procedure many times,
to establish the individual colours, you start again. ‘The colour of that door
is blue. The colour of this box is red. What colour is that buttercup?’ If the
response is ‘yellow’ then the concept ‘colour’ is beginning to develop.
As a child develops and learns scientific concepts they may eventually be

shown a spectrum obtained by passing light through a prism. This may lead
to learning about the wavelength of light, and, as a fully fledged scientist,
being able to say with precision which wavelength corresponds to light of a
particular colour. The understanding of the concept ‘colour’ is now highly
refined, but it does not help the scientist to explain to a child what ‘blue’ is.
The existence of a precise and unambiguous definition of ‘blue’ in terms of
wavelength is of no use at the concept-forming stage.
It is the same with mathematical concepts. The reader already has a large

number of mathematical concepts established in their mind: how to solve a
quadratic equation, how to draw a graph, how to sum a geometric progres-
sion. They have great facility in arithmetical calculations. Our aim is to build
on this wealth of mathematical understanding and to refine these concepts
to a more sophisticated level. To do this we use examples, drawn from the
reader’s experience, to introduce new concepts. Once these concepts are es-
tablished, they become part of a richer experience upon which we can again
draw to aim even higher.
Although it is certainly possible to build up the whole of mathematics

by axiomatic methods starting from the empty set, using no outside infor-
mation whatsoever, it is also totally unintelligible to anyone who does not
already understand the mathematics being built up. An expert can look at
a logical construction in a book and say ‘I guess that thing there is meant
to be “zero”, so that thing is “one”, that’s “two”, . . . this load of junk must
be the integers, . . . what’s that? Oh, I think I see: it must be “addition”. . . ’.
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The non-expert is faced with an indecipherable mass of symbols. It is never
sufficient to define a new concept without giving enough examples to ex-
plain what it looks like and what can be done with it. Of course, an expert
is often in a position to supply their own examples, and may not need
much help.

Schemas

Amathematical concept, then, is an organised pattern of ideas that are some-
how interrelated, drawing on the experience of concepts already established.
Psychologists call such an organised pattern of ideas a ‘schema’. For instance,
a young child may learn to count (‘one, two, three-four-five, once I caught a
fish alive’) progressing to ideas like ‘two sweets’, ‘three dogs’, . . . and eventu-
ally discovers that two sweets, two sheep, two cows have something in com-
mon, and that something is ‘two’. He or she builds a schema for the concept
‘two’ and this schema involves the experience that everyone has two hands,
two feet, last week we saw two sheep in a field, the fish-alive rhyme goes ‘one,
two, . . . ’, and so on. It is really quite amazing how much information the
brain has lumped together to form the concept, or the schema.
The child progresses to simple arithmetic (‘If you have five apples and you

give two away, how many will you have left?’) and eventually builds up a
schema to handle the problem ‘What is five minus two?’ Arithmetic has very
precise properties. If 3 and 2 make 5, then 5 take away 2 leaves 3. The child
discovers these properties by trying to make sense of arithmetic. It then be-
comes possible to use known facts to derive new facts. If the child knows that
8 plus 2 makes 10, then 8 plus 5 can be thought of as 8 plus 2 plus 3, so the
sum is 10 plus 3, which is 13. Over time the child can build up a rich schema
of whole number arithmetic.
At this point, if you ask ‘What is five minus six?’ the response is likely

to be ‘You can’t do it’, or perhaps just an embarrassed giggle that an adult
should ask such a silly question. This is because the question does not fit
the child’s schema for subtraction: when thinking about ‘five apples, take
six away’, this simply cannot be done. At a later stage, experiencing nega-
tive numbers will give the answer ‘minus one’. What has happened? The
child’s original schema for ‘subtraction’ has been modified to accommodate
new ideas—perhaps by thermometer scales, or the arithmetic of banking, or
whatever—and the understanding of the concept changes. During the pro-
cess of change, confusing problems will arise (what does minus one apple
look like?) which may eventually be resolved satisfactorily (apples don’t
behave like thermometer readings).
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A large part of the learning process involves making an existing schema
more sophisticated, so that it can take account of new ideas. This process,
as we have said, may be accompanied by a state of confusion. If it were
possible to learn mathematics without becoming confused, life would be
wonderful.
Unfortunately, the human mind does not seem to work that way. More

than 2000 years ago, Euclid supposedly told King Ptolemy I that ‘There is no
royal road to geometry’. The next best thing is to recognise not just the con-
fusion, but also its causes. At various stages in reading this book the reader
will be confused. Sometimes, no doubt, the cause will be the authors’ slop-
piness, but often it will be the process of modifying personal knowledge to
make sense of a more general situation. This type of confusion is creative,
and it should be welcomed as a sign that progress is being made—unless
it persists for too long. By the same token, once the confusion is resolved,
a sudden clarity can appear with a feeling of great pleasure that the pieces
fit together perfectly like a jigsaw. It is this feeling of perfect harmony that
makes mathematics not only a challenge, but also an endeavour that leads to
deep aesthetic satisfaction.

An Example

This way to develop new ideas is illustrated by the historical development of
mathematical concepts—itself a learning process, but involving many minds
instead of one. When negative numbers were first introduced, they met con-
siderable opposition: ‘You can’t have less than nothing’. Yet nowadays, in
this financial world of debits and credits, negative numbers are a part of
everyday life.
The development of complex numbers is another example. Like all math-

ematicians, Gottfried Leibniz knew that the square of a positive number or
of a negative number must always be positive. If i is the square root of minus
one, then i2 = –1, so i cannot be a positive or a negative number. Leibniz be-
lieved that it should therefore be endowed with great mystical significance:
a non-zero number neither less than zero nor greater than zero. This led to
enormous confusion and distrust concerning complex numbers; it persists
to this day in some quarters.
Complex numbers do not fit readily into many people’s schema for ‘num-

ber’, and students often reject the concept when it is first presented. Modern
mathematicians look at the situation with the aid of an enlarged schema in
which the facts make sense.
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Imagine the real numbers marked on a line in the usual way:

Fig. 1.1 The real numbers

Negative numbers are to the left of zero, positive to the right. Where does i
go? It can’t go to the left; it can’t go to the right. The people whose schema
does not allow complex numbers must argue thus: this means that it can’t
go anywhere. There is no place on the line where we can mark i, so it’s not a
number.
However, there’s an alternative. We can visualise complex numbers as the

points of a plane. (In 1758 François Daviet de Foncenex stated that it was
pointless to think of imaginary numbers as forming a line at right angles to
the real line. Fortunately others disagreed.) The real numbers lie along the
‘x-axis’, the number i lies one unit above the origin along the ‘y-axis’, and the
number x+iy lies x units along the real line and then y units above it (change
directions for negative x or y). The objection to i (‘it can’t lie anywhere on the
line’) is countered by the observation that it doesn’t. It lies one unit above the
line. The enlarged schema can accommodate the disturbing facts without any
trouble.

x

x + iy

Fig. 1.2 Putting i in its place

This happens quite often in mathematics. When a particular situation is
generalised to a new context, some properties operate in the same way as be-
fore, such as addition and multiplication both being commutative. But other
properties (such as the order properties of real numbers) that work well in
the original schema are no longer relevant in the extended schema (in this
case the schema of complex numbers).
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This is a very general phenomenon; it has happened not only to stu-
dents, but to mathematicians throughout history, up to the present day. If
you work in an established situation where the ideas have been fully sorted
out, and the methods used are sufficient to solve all of the usual prob-
lems, it is not that difficult to teach an apprentice the trade. All you need
is to grasp the current principles and develop fluency in the methods. But
when there is a genuine change in the nature of the system, as happened
when negative numbers were introduced in a world that only used natural
counting numbers, or when complex numbers were encountered solving
equations, then there is a genuine period of confusion for everyone. What
are these newfangled things? They certainly don’t work the way I expected
them to!
This can cause deep confusion. Some conquer it by engaging with the ideas

in a determined and innovative fashion; others suffer a growing feeling of
anxiety, even revulsion and rejection.
One such major occasion began in the final years of the nineteenth cen-

tury and transformed the mathematics of the twentieth and twenty-first
centuries.

Natural and Formal Mathematics

Mathematics began historically with activities such as counting objects
and measuring quantities, dealing with situations in the natural world.
The Greeks realised that drawing figures and counting pebbles had
more profound properties, and they built up the method of Euclidean
proof in geometry and the theory of prime numbers in arithmetic. Even
though they developed a Platonic form of mathematics that imagined
perfect figures and perfect numbers, their ideas were still linked to na-
ture. This attitude continued for millennia. When Isaac Newton studied
the force of gravity and the movement of the heavenly bodies, science
was known as ‘natural philosophy’. He built his ideas about calculus on
Greek geometry, and on algebra that generalised the natural operations of
arithmetic.
The reliance on ‘naturally occurring’ mathematics continued until the late

nineteenth century, when the focus changed from the properties of objects
and operations to the development of formal mathematics based on set-
theoretic definition and logical proof. This historical transition from natural
to formal mathematics involved a radical change of viewpoint, leading to
far more powerful insights into mathematical thinking. It plays an essential
role in the shift from school geometry and algebra to formal mathematics at
university.
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Building Formal Ideas on Human Experience

As mathematics becomes more sophisticated, new concepts often involve
some ideas that generalise, but others that operate in new ways. As the
transition is made from school mathematics to formal mathematics, it may
seem logical to start anew with formal definitions and learn how to make
formal deductions from first principles. However, experience over the last
half-century has shown that this is not a sensible idea. In the 1960s, schools
tried a new approach to mathematics, based on set theory and abstract def-
initions. This ‘new math’ failed because, although experts might understand
the abstract subtleties, learners need to build up a coherent schema of know-
ledge to make sense of the definitions and proofs. We now knowmore about
how humans learn to think mathematically. This lets us give examples from
practical research to show how students have interpreted ideas in ways that
are subtly different from what is intended in the printed text. We mention
this to encourage you to think carefully about the precise meanings involved,
and to develop strong mathematical links between ideas.
It is helpful to read proofs carefully and to get into the habit of explaining

to yourself why the definitions are phrased as they are and how each line of a
proof follows from previous lines. (See the Appendix on Self-Explanation on
page 377.) Recent research [3] has shown that students who make an effort to
think through theorems for themselves benefit in the long run. Eye-tracking
equipment has been used to study how students read pages from the first edi-
tion of this very book. There is a strong correlation between spending longer
considering significant steps in a proof and obtaining higher marks on tests
administered at a later stage. It’s a no-brainer really. A stronger effort at mak-
ing personal links gives you a more coherent personal schema of knowledge
that will be of benefit in the long run.
You need to be sensible about how to proceed. In practice, it is not always

possible to give a precise, dictionary definition for every concept encoun-
tered. We may talk about a set being ‘a well-defined collection of objects’,
but we will be begging the question, since ‘collection’ and ‘set’ mean the same
thing.
When studying the foundations of mathematics, we must be prepared to

become acquainted with new ideas by degrees, rather than by starting from
a watertight definition that can be assimilated at once. As we continue along
that path, our understanding of an idea can become more sophisticated. We
can sometimes reach a stage where the original vague definition can be refor-
mulated in a rigorous context (‘yellow is the colour of light with a wavelength
of 5500 Å’). The new definition, seemingly so much better than the vague
ideas that led to its formulation, has a seductive charm.
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Wouldn’t it be so much better to start from this nice, logical definition?
The short answer is ‘no’.
In this book, we begin in Part I with ideas that you have met in school.

We consider the visual number line, and how it is built up by marking
various number systems, such as the whole numbers, 1, 2, 3, . . . ; then frac-
tions between adjacent whole numbers; then signed numbers to the right
and left of the origin, including signed whole numbers (the integers) and
signed fractions (the rationals); then expanding to the real numbers includ-
ing both rational and irrational numbers. In particular, we focus on natural
ways to perform operations such as addition, multiplication, subtraction,
and division, using whole numbers, fractions, decimals, and so on, to high-
light properties that can be used as a basis for formal axioms for the various
number systems.
Part II lays the foundations for set theory and logic, appropriate to the

concept of proof used by mathematicians, with a sensible balance of logical
precision andmathematical insight. In particular, the reader should note that
it is essential to focus not only on what the definitions actually say, but also
to be careful not to assume other properties that may arise not from the def-
inition but from mental links set up by previous experience. For instance,
students in school meet functions such as y = x2 or f (x) = sin 3x, which
are always given by some kind of formula. However, the general notion of a
function does not require a formula. All that is needed is that for each value
of x (in a specified set) there is a single corresponding value of y. This broader
definition applies to sets in general, not just to numbers. The properties that a
defined concept must have are deduced from the definition by mathematical
proof.
Part III develops the axiomatic structures appropriate for the succes-

sion of number systems, starting with axioms for natural numbers and
proof by induction. The story continues by demonstrating how successive
systems—integers, rationals, and real numbers—can be constructed from
first principles using set-theoretic techniques. This process culminates in a
list of axioms that defines the system of real numbers, with two operations
(addition and multiplication) that satisfy specified properties of arithmetic
and order, together with a ‘completeness axiom’ that states that any increas-
ing sequence bounded above must tend to a limit. These axioms define a
‘complete ordered field’, and we prove that they specify the real numbers
uniquely. Real numbers may be pictured as points on a line with the defined
operations of addition, multiplication, and order, where the line is filled out
to include irrational numbers such as

√
2 or π as infinite decimals that may

be computed to any required accuracy as a finite decimal. For instance,
√
2

is 1·414 to 3 decimal places, π is approximately equal to the fraction 22/7,
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or may be calculated to any desired accuracy as a decimal, say 3·14 to two
decimal places or 3·1415926536 to ten places.

Formal Systems and Structure Theorems

This sequence of development, building a formal system from a carefully
chosen list of axioms, can be generalised to cover a wide range of new situ-
ations. It has a huge advantage compared to dealing with naturally occurring
systems that are encountered in everyday life. The theorems that can be de-
duced from a given list of axioms using formal proof must hold in any system
that satisfies the axioms—old or new. Formal theorems are future-proofed.
The theorems apply not only to systems that are already familiar, but also
to any new system that satisfies the given axioms. This releases us from the
necessity of re-checking our beliefs in every new system we encounter. This
is a major step forward in mathematical thinking.
Another more subtle development is that some theorems deduced within

a formal system prove that the system has specific properties that allow it to
be visualised in a certain way, and other properties that allow its operations
to be carried out using symbolic methods. Such theorems are called structure
theorems. For example, any complete ordered field has a unique structure
that may be represented as points on a number line or as decimal expansions.
This shifts formal proof to a new level of power. Not only do we devote

lengthy resources to develop a consistent approach to formal proof, ultim-
ately we can develop new ways of thinking that blend together formal, visual,
and symbolic ways of operation that combine human ingenuity and formal
precision.

Using Formal Mathematics More Flexibly

In Part IV we show how these more flexible methods can be applied in vari-
ous contexts, first by applying the ideas to group theory and then to two quite
different extensions of finite ideas to infinite concepts. One is the extension
of counting from finite sets to infinite sets, by saying that two sets have the
same cardinal number if all their elements can be paired so that each elem-
ent in one set corresponds to precisely one element in the other. Cardinal
numbers have many properties in common with regular counting numbers,
but they also have new and unfamiliar properties. For instance, we can take
away an infinite subset (such as the even numbers) from an infinite set (such
as the natural numbers) to leave an infinite subset (the odd numbers) with
the same cardinal number of elements as the original set. By the same token,
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subtraction cannot be uniquely defined for infinite cardinal numbers, nor
can division, so the reciprocal of an infinite cardinal number is not defined
as a cardinal number.
The second extension places the real numbers, which form a complete or-

dered field, inside a larger (but not complete) ordered field. Here, an element
k in the larger field may satisfy the order property ‘k > r for every real num-
ber r’. In this sense, k is infinite: in the formally defined order, it is greater
than all real numbers. Yet this k behaves quite differently from an infinite
cardinal number, because it has a reciprocal 1/k. Moreover, 1/k is smaller
than any positive real number.
Upon reflection, we should not be surprised by these apparently contra-

dictory possibilities, where an infinite number has a reciprocal in one system
but not in another. The system of whole numbers that we use for counting
does not provide reciprocals, but the systems of rational and real numbers
do. If we select certain properties to generalise different systems, we should
not be surprised if the generalisations are also different.
This brings us to an important conclusion. Mathematics is a living subject,

in which seemingly impossible ideas may become possible in a new formal
context, determined by stating appropriate axioms.
Writing over a century ago, when the new formal approach to mathemat-

ics was becoming widespread, Felix Klein [4] wrote:

Our standpoint today with regard to the foundations is different from that
of the investigators of a few decades ago; and what we today would state
as ultimate principles, will certainly be outstripped after a time.

On the same page he noted:

Many have thought that one could, or that one indeed must, teach all
mathematics deductively throughout, by starting with a definite number
of axioms and deducing everything from these by means of logic. This
method, which some seek to maintain on the authority of Euclid, certainly
does not correspond to the historical development of mathematics. In fact,
mathematics has grown like a tree, which does not start from its tini-
est roots and grow merely upward, but rather sends its roots deeper and
deeper at the same time and rate that its branches and leaves are spread-
ing upwards. Just so—if we may drop the figure of speech—mathematics
began its development from a certain standpoint corresponding to normal
human understanding and has progressed, from that point, according to
the demands of science itself and of the then prevailing interests, now in
one direction toward new knowledge, now in the other through the study
of fundamental principles.
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We follow this development throughout the book by starting from the ex-
periences of students in school, digging deeper in Part II to find fundamental
ideas that we use in Part III to build into formal structures for number
systems, and expanding the techniques to wider formal structures in Part
IV. In Part V, we close this introduction to the foundations of mathematics
by reflecting on the deeper development of fundamental logical principles
that become necessary to support more powerful mathematical growth in
the future.

Exercises

The following examples are intended to stimulate you into considering your
own thought processes and your present mathematical viewpoint. Many of
them do not have a ‘correct’ answer, however it will be most illuminating
for you to write out solutions and keep them in a safe place to see how your
opinions may change as you read the text. Later in the book (at the end of
chapters 6 and 12) you will be invited to reconsider your responses to these
questions to see how your thinking has changed. Don’t be afraid at this time
to say that some of the ideas do not make sense to you at the moment. On
the contrary, it is to your advantage to acknowledge any difficulties you may
have. The intention of this book is that the ideas will become much clearer
as you develop in sophistication.

1. Think how you think about mathematics. If you meet a new problem
which fits into a pattern that you recognise, your solution may follow
a time-honoured logical course, but if not, then your initial attack may
be anything but logical. Try these three problems and do your best to
keep track of the steps you take as you move towards a solution.
(a) John’s father is three times as old as John; in ten years he will only

be twice John’s age. How old is John now?
(b) A flat disc and a sphere of the same diameter are viewed from the

same distance, with the plane of the disc at right angles to the line
of vision. Which looks larger?

(c) Two hundred soldiers stand in a rectangular array, in ten rows of
twenty columns. The tallest man in each row is selected and of
these ten, S is the shortest. Likewise the shortest in each column
is singled out and T is the tallest of these twenty. Are S and T one
and the same? If not, what can be deduced about the relative size
of S and T?

Make a note of the way that you attempted these problems, as well as
your final solution, if you find one.
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2. Consider the two following problems:
(a) Nine square metres of cloth are to be divided equally between five

dressmakers; how much cloth does each one get?
(b) Nine children are available for adoption and are to be divided

equally between five couples; howmany children are given to each
couple?

Both of these problems translate mathematically into:

‘Find x such that 5x = 9’.

Do they have the same solution? How can the mathematical formula-
tion be qualified to distinguish between the two cases?

3. Suppose that you are trying to explain negative numbers to someone
who has not met the concept and you are faced with the comment:

‘Negative numbers can’t exist because you can’t have less than
nothing.’

How would you reply?
4. What does it mean to say that a decimal expansion ‘recurs’? What

fraction is represented by the decimal 0·333 . . .?What about 0·999 . . .?
5. Mathematical use of language sometimes differs from colloquial us-

age. In each of the following statements, record whether you think
that they are true or false. Keep them for comparison when you read
chapter 6.
(a) All of the numbers 2, 5, 17, 53, 97 are prime.
(b) Each of the numbers 2, 5, 17, 53, 97 is prime.
(c) Some of the numbers 2, 5, 17, 53, 97 are prime.
(d) Some of the numbers 2, 5, 17, 53, 97 are even.
(e) All of the numbers 2, 5, 17, 53, 97 are even.
(f ) Some of the numbers 2, 5, 17, 53, 97 are odd.

6. ‘If pigs had wings, they’d fly.’
Is this a logical deduction?

7. ‘The set of natural numbers 1, 2, 3, 4, 5, . . . is infinite.’ Give an
explanation of what you think the word ‘infinite’ means in this context.

8. A formal definition of the number 4 might be given in the following
terms.
First note that a set is specified by writing its elements between curly
brackets { } and that the set with no elements is denoted by ∅. Then we
define

4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}.
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Can you understand this definition? Do you think that it is suitable for
a beginner?

9. Which, in your opinion, is the most likely explanation for the equality

(–1)× (–1) = +1?

(a) A scientific truth discovered by experience.
(b) A definition formulated by mathematicians as being the only

sensible way to make arithmetic work.
(c) A logical deduction from suitable axioms.
(d) Some other explanation.
Give reasons for your choice and retain your comments for later
consideration.

10. In multiplying two numbers together, the order does not matter,
xy = yx. Can you justify this result
(a) when x, y are both whole numbers?
(b) when x, y are any real numbers?
(c) for any numbers whatever?
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chapter 2

Number Systems

The reader will have built up a coherent understanding of the arith-
metic of the various number systems: counting numbers, negative
numbers, and so on. But he or she may not have subjected the pro-

cesses of arithmetic to close logical scrutiny. Later, we place these number
systems in a precise axiomatic setting. In this chapter we give a brief re-
view of how the reader may have developed their ideas about these systems.
Although constant use of the ideas will have smoothed out many of the dif-
ficulties that were encountered when the concepts were being formed, these
difficulties tend to reappear in the formal treatment and have to be dealt with
again. It is therefore worth spending a little time to recall the development,
before we plunge into the formalities.
The experienced reader may feel tempted to skip this chapter because of

the very simple level of the discussion. Please don’t. Every adult’s ideas have
been built up from simple beginnings as a child. When trying to understand
the foundations of mathematics, it is important to be aware of the genesis of
your own mathematical thought processes.

Natural Numbers

The natural numbers are the familiar counting numbers 1, 2, 3, 4, 5, . . . .
Young children learn the names of these, and the order in which they come,
by rote. Contact with adults leads the children to an awareness of the mean-
ing that adults attach to phrases such as ‘two sweets’, ‘four marbles’. Use of
the word ‘zero’ and the concept ‘no sweets’ is more subtle and follows later.
To count a collection of objects, we point to them in turn while reciting

‘one, two, three, . . .’ until we have pointed to all of the objects, once each.
Next we learn the arithmetic of natural numbers, starting with add-

ition. At this stage the basic ‘laws’ of addition (which we can express
algebraically as the commutative law a+ b= b+ a, and the associative law
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a+ (b+ c) = (a+ b) + c) may or may not be ‘obvious’, depending on the ap-
proach used. If addition is introduced in terms of combining collections of
real-world objects and then counting the result, then these two laws depend
only on the tacit assumption that rearranging the collection does not alter the
number of things in it. Similarly, one modern approach using coloured rods
whose lengths represent the numbers (which are added by placing them end
to end) makes commutativity and associativity so obvious that it is almost
confusing to have them pointed out. However, if a child is taught addition
by ‘counting on’, the story is quite different. To calculate 3 + 4, he or she
starts at 3 and counts on four more places: 4, 5, 6, 7. The calculation 4 + 3
starts at 4 and counts on three places: 5, 6, 7. That the two processes yield the
same answer is now much more mysterious. In fact children taught this way
often have difficulty doing a calculation such as 1+ 17, but find 17+ 1 trivial!
Next we come to the concept of place-value. The number 33 involves two

threes, but they don’t mean the same thing. It must be emphasised that this
is purely a matter of notation, and has nothing to do with the numbers
themselves. But it is a highly useful and important notation. It can represent
(in principle) arbitrarily large numbers, and is very well adapted to calcula-
tion. However, a precise mathematical description of the general processes
of arithmetic in Hindu-Arabic place notation is quite complicated (which is
why children take so long to learn them all) and not well adapted to, say,
a proof of the commutative law. (This can be done, but it’s harder than we
might expect.) Sometimes a more primitive system has some advantages. For
instance, the ancient Egyptians used the symbol | to represent 1, a hoop

⋂
to represent 10, the end of a scroll for 100, with other symbols for 1000,
etc. A number was written by repeating these symbols: thus 247 would have
been written

Adding in Egyptian is easy: all we do is to put the symbols together. Now
the commutative and associative laws are obvious again. But the notation
is less suited to computation. To recover place-notation from Egyptian we

must supply some ‘carrying rules’, such as and insist that we
never use any particular symbol more than nine times.
Before proceeding, we introduce a small amount of notation. We write N

for the set of all natural numbers. The symbol ∈ will mean ‘is an element of ’
or ‘belongs to’. So the symbols

2 ∈ N

are read as ‘2 belongs to the set of natural numbers’, or in more usual
language, ‘2 is a natural number’.
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Fractions

Fractions are introduced into arithmetic to make division possible. It is easy
to divide 12 into 3 parts: 12 = 4 + 4 + 4. It is not possible to divide, say, 11
into 3 equal parts if we insist that these parts are natural numbers. Hence we
are led to define fractions as m/n where m, n ∈ N and n �= 0. This intro-
duces a new idea, that different fractions such as 2/4 and 3/6 can involve two
different processes, where the first divides an object into 4 equal pieces and
takes 2 of them to get 2 fourths while the second would divide the object into
6 equal pieces and take 3 to get 3 sixths. The processes are different, but the
quantity produced is the same (a half ). These fractions are said to be equiva-
lent. Equivalent fractions, when marked on a number line, are marked at the
same point.
This observation proves to be seminal throughout this book: equivalent

concepts at one stage are often reconsidered as single entities later on. In this
case equivalent fractions are considered as a single rational number.
Operations of addition and multiplication on the set F of fractions can be

defined algebraically by the rules

m
n

+
p
q
=
mq + np

nq
,

m
n
× p

q
=
mp
nq

.

It is straightforward (but somewhat tedious) to prove that if the fractions
are replaced by equivalent fractions, these formulas for the operations yield
equivalent results.

Integers

What fractions do for division, integers do for subtraction. A subtraction
sum like 2 – 7= ? cannot be answered in N. To do so, we introduce negative
numbers. Children are often introduced to negative numbers in terms of a
‘number line’: a straight line with equally spaced points marked on it. One of
them is called 0; then natural numbers 1, 2, 3, . . . are marked successively to
the right, and negative numbers –1, –2, –3, . . . to the left.

Fig. 2.1 The integers
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This gives an extended number system called the ‘integers’. An integer is
either a natural number n, or a symbol –n where n is a natural number, or 0.
We use Z to denote the set of integers. (Z is the initial letter of ‘Zahlen’, the
German for integers.)
In your own learning, you met counting numbers N before the integers

Z were introduced. This step is usually motivated by thinking of a negative
number as a ‘debt’. Then we can see why we have the rule that ‘minus times
minus makes plus’, because taking away a debt has the same result as giving
the corresponding credit.
Sometimes in school mathematics, a distinction may initially be made be-

tween counting numbers, 1, 2, 3, . . ., and positive integers +1, +2, +3, . . .with
their negative counterparts –1, –2, –3, . . . . There are times when this distinc-
tion is useful or necessary. Indeed, later we start with counting numbers and
show how to construct integers formally. In this process there is a difference
between the two. However, if we carry on maintaining such distinctions,
we will only be making unnecessary work for ourselves. For example, the
symbolic statement 4 – (+2) (taking away +2 from 4) involves a different op-
eration from 4 + (–2) (adding –2 to 4). However, it is clearly sensible to say
that both equal 4 – 2.
In the same way, later we start with counting numbers and use set the-

ory to construct integers. This process leads to a different symbolism for
counting numbers and positive integers; however, they clearly have the same
properties, so it is sensible to think of them as being the same.
In set-theoretic notation, the symbol ⊆ means ‘is a subset of ’. We then

have

N ⊆ Z,
where every natural number is also a (positive) integer. Similarly

N ⊆ F.

Rational Numbers

The system Z is designed to allow subtraction in all cases; the system F allows
division (except by zero). However, in neither system are both operations
always possible. To get both working at once we move into the system of
rational numbersQ (for ‘quotients’). This is obtained from F by introducing
‘negative fractions’ in much the same way that we obtained Z from N.
We can still representQ by points on a number line, by marking fractions

at suitably spaced intervals between the integers, with negative ones to the
left of 0 and positive ones to the right. For example, 4/3 is marked one third
of the way between 1 and 2, like this:
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Fig. 2.2 Marking a rational number

The rules for adding and multiplying rational numbers are the same as for
fractions, but now m, n, p, q are allowed to be integers rather than natural
numbers.
Both Z and F are subsets of Q. We can summarise the relations between

the four number systems so far encountered by the diagram:

N Q
Z

F

Fig. 2.3 Four number systems

Real Numbers

Numbers can be used to measure lengths or other physical quantities.
However, the Greeks discovered that there exist lines whose lengths, in
theory, cannot be measured exactly by a rational number. They were
magnificent geometers, and one of their simple but profound results was
Pythagoras’ theorem. Applied to a right-angled triangle whose two shorter
sides have lengths 1, this implies that the hypotenuse has length x, where
x2 = 12 + 12 = 2.

Fig. 2.4 Pythagoras and
√
2

However, x cannot be rational, because there is no rational numberm/n such
that (m/n)2 = 2. To see why, we use the result that any natural number can
be factorised uniquely into primes. For instance, we can write

360 = 2× 2× 2× 3× 3× 5

or

360 = 5× 2× 3× 2× 3× 2,
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but however we write the factors we will always have one 5, two 3s, and three
2s. Using index notation we write

360 = 23 × 32 × 5.

We shall prove this unique factorisation theorem formally in chapter 8 but
for the moment we assume it without further proof.
If we factorise any natural number into primes and then square, each

prime will occur an even number of times. For instance,

3602 = (23 × 32 × 5)2 = 26 × 34 × 52,

and the indices 6, 4, 2 are all even. A general proof is not hard to find.
Now take any rational numberm/n and square it. (Sincem/n has the same

square as –m/n, we may assume m and n positive.) Factorise m2 and n2 and
cancel factors top and bottom if possible. Whenever a prime p cancels, then
since all primes occur to even powers it follows that p2 cancels. Hence, after
cancellation, all primes still occur to even powers. But (m/n)2 is supposed to
equal 2, which has one prime (namely 2) which only occurs once (which is
an odd power).
It follows that no rational number can have square 2, so the hypotenuse of

the given triangle does not have rational length.
With a little more algebraic symbolism we can tidy up this proof and

present it as a formal argument, but the above is all that we really need. The
same argument shows that numbers like 3, 3/4, or 5/7 do not have rational
square roots.
The implication is clear. If we want to talk of lengths like

√
2, we must

enlarge our number system further. Not only do we need rational numbers,
we need ‘irrational’ ones as well.
Using Hindu-Arabic notation this can be done by introducing decimal

expansions. We construct a right-angled triangle with sides of unit length,
and using drawing instruments transfer the length of its hypotenuse to the
number line. We then obtain a specific point on the number line that we call√
2. It lies between 1 and 2 and, on subdividing the unit length from 1 to 2

into ten equal parts, we find that
√
2 lies between 1·4 and 1·5.

Fig. 2.5 Marking
√
2

By further subdividing the distance between 1·4 and 1·5 into ten equal
parts we might hope to obtain a better approximation to

√
2.
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Fig. 2.6 Marking more accurately

Already in a practical situation we are reaching the limit of accuracy in
drawing. We might imagine that in an accurate diagram we can look suf-
ficiently close, or magnify the picture, to give the next decimal place. If we
were to look at an actual picture under amagnifying glass, not only would the
lengths be magnified, but so would the thickness of the lines in the drawing.
This would not be a very satisfactory way to obtain a better estimate for

√
2.

Fig. 2.7 Using a magnifying glass

Practical drawing is in fact extremely limited in accuracy. A fine drawing
pen marks a line 0 ·1millimetres thick. Even if we use a line 1metre long as a
unit length, since 0·1mm = 0·0001metres, we could not hope to be accurate
to more than four decimal places. Using much larger paper andmore refined
instruments gives surprisingly little increase in accuracy in terms of the num-
ber of decimal places we can find. A light year is approximately 9 ·5 × 1015

metres. As an extreme case, suppose we consider a unit length 1018 metres
long. If a light ray started out at one end at the same time that a baby was
born at the other, the baby would have to live to be over 100 years old before
seeing the light ray. At the lower extreme of vision, the wavelength of red
light is approximately 7 × 10–7 metres, so a length of 10–7 metres is smaller
than the wavelength of visible light. Hence an ordinary optical microscope
cannot distinguish points which are 10–7 metres apart. On a line where the
unit length is 1018 metres we cannot distinguish numbers which are less than
10–7/1018 = 10–25 apart. This means that we cannot achieve an accuracy of
25 decimal places by a drawing. Even this is a gross exaggeration in practice,
where three or four decimal places is often the best we can really hope for.

Inaccurate Arithmetic in Practical Drawing

The inherent inaccuracy in practice leads to problems in arithmetic. If we
add two inaccurate numbers, the errors also add. If we cannot distinguish
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errors less than some amount e, then we cannot tell the difference, in prac-
tice, between a and a + 3

4 e and between b and b + 3
4 e. But adding, we can

distinguish between a + b and a + b + 3
2 e. When we come to multiplication,

errors can increase even more dramatically. We cannot hope to get answers
to the same degree of accuracy as the numbers used in the calculation.
If we use arithmetic to calculate all answers correct to a certain number

of decimal places, the errors involved lead to some disturbing results. Sup-
pose, for example, that we work to two decimal places (‘rounding up’ if the
third place is 5 or more and down if it is less). Given two real numbers a
and b, we denote their product correct to two decimal places by a ⊗ b. For
example, 3·05 ⊗ 4·26 = 12·99 because 3·05 × 4·26 = 12·993. Using this law
of multiplication we find that

(1·01⊗ 0·5)⊗ 10 �= 1·01⊗ (0·5⊗ 10).

The left-hand side reduces to 0·51 ⊗ 10 = 5·1, whilst the right-hand side
becomes 1·01 ⊗ 5 = 5·05. This is by no means an isolated example, and it
shows that the associative law does not hold for⊗.
If we further define a⊕ b to be the sum correct to two decimal places, we

will find other laws that do not hold, including the distributive law

a⊗ (b⊕ c) ?= (a⊗ b)⊕ (a⊗ c).

A Theoretical Model of the Real Line

We have just seen that if our measurement of numbers is not precise, then
some of the laws of arithmetic break down. To avoid this we must make our
notion of real number exact.
Suppose we are given a real number x on a theoretical real line, and we try

to express it as a decimal expansion. As a starting point, we see that x lies
between two integers.

Fig. 2.8 Marking a real number

In the above example x is between 2 and 3, so x is ‘two point something’.
Next we divide the interval between 2 and 3 into ten equal parts.
Again, x lies in some sub-interval. In the picture, x lies between 2·4 and

2·5, so x is ‘2·4 something’. To obtain a still better idea, we divide the interval
between 2·4 and 2·5 into ten equal parts and repeat the process to find the
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