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Preface

Loop quantum gravity has emerged as a possible avenue towards the
quantization of general relativity. Looking at the top 50 cited papers of all
time of the arXiv.org:gr-qc preprint repository (which includes papers on
gravity as a whole, not only quantum gravity), according to the SPIRES
database in SLAC in its latest edition (2006) one finds that 13 papers
are on loop quantum gravity. Although a smaller field than string theory,
the other main approach to quantum gravity pursued today, the number
of researchers working in loop quantum gravity is significant. At the
moment both string theory and loop quantum gravity remain incomplete
paradigms and as a consequence controversies about which is a more
promising approach naturally arise. We will address some of these in this
book.

Many people, including of course physics undergraduates, are inter-
ested in learning about loop quantum gravity. There are indeed excellent
recent textbooks by Rovelli (2007) and Thiemann (2008) for those who
want to pursue the topic in depth, roughly speaking at the level of an
advanced US graduate school course. This type of treatment however,
is largely inadequate for physics undergraduates and for others who
want to get some minimal grasp of the subject in a relatively short
period of time and without the depth expected for someone that is
to do research in the field. An additional complication is that these
“graduate-level” treatments of the subject have knowledge of general
relativity as a prerequisite. This becomes a barrier for many readers.
Although recent books by Hartle (2003) and Schutz (2009) make teaching
general relativity at an undergraduate level possible, most undergraduate
students have curricula that place general relativity at the very end of
their careers (if their institution offers the course at all), which makes
such courses unsuitable as prerequisites for a course in loop quantum
gravity. Something that is not always appreciated is that undergraduates,
particularly in the last semester of their career, are busy individuals.
Most are taking several courses, perhaps conducting some undergraduate
research work, preparing for the graduate record examinations (GRE),
and applying to graduate schools, sometimes on top of holding a job. The
time available to a specific course is very limited.
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In these notes we will attempt to introduce loop quantum gravity
without assuming previous knowledge of general relativity. The only
background we will assume is knowledge of Maxwell’s electromagnetism,
a minimal knowledge of Lagrangian and Hamiltonian mechanics, and
special relativity and quantum mechanics. This will inevitably imply we
will be taking many shortcuts in the coverage of loop quantum gravity, but
this will be the price we pay to introduce the topic in a way that is widely
accessible to undergraduates at most physics programs in the US within
the confines of a one-semester three-credit course. Some undergraduates
and other readers may feel slightly disappointed in not getting more
details and a more complete picture, but we believe the majority will
welcome a book that is light and nimble as a good introduction to a
subject that may otherwise appear intimidating. Some experts may feel
we are short-changing readers by oversimplifying several issues for the
sake of expediency. We will try to be careful to warn readers when we
are doing so. Another goal we had in mind was to create a short book.
Given that we are only introducing people to the topics, being deliberately
superficial, and not attempting a full discussion, it is not worth trying to
be exhaustive and discussing all issues in full detail. Long books tend to
be intimidating to the reader and we think we will serve a larger audience
with a compact book.

The organization of this book is as follows: in Chapter 1 we address
the question of why one should quantize gravity. Chapter 2 will review
Maxwell’s electromagnetism and in particular its relativistic formulation.
Chapter 3 will introduce some minimal elements of general relativity.
Chapter 4 will deal with the Hamiltonian formulation of mechanics and
field theories, including constraints. Chapter 5 will discuss Yang–Mills
theories. Chapter 6 will cover quantum mechanics and some elements of
quantum field theory. Chapter 7 introduces Ashtekar’s new variables for
general relativity. Chapter 8 develops the loop representation for general
relativity. Chapter 9 presents quantum cosmology as an application.
Chapter 10 discusses several miscellaneous applications including black
hole entropy, the master constraint program and uniform discretizations,
spin foams, possible experimental signatures, and the problem of time.
The book ends with a chapter on the controversies surrounding loop
quantum gravity.
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1

Why quantize gravity?

In our current understanding, there exist four fundamental interactions
in nature: electromagnetism, weak interactions, strong interactions, and
gravity. Everyone is familiar with electromagnetism. Weak interactions
are involved in the decay of nuclei. Strong interactions keep nuclei
together. The rules of quantum mechanics have been applied to elec-
tromagnetism, the weak and strong interactions. It is sort of natural to
apply the rules of quantum mechanics to such interactions since they play
key roles in the dynamics of atoms and nuclei and one knows that at such
scales classical mechanics does not give correct predictions. The rules of
quantum mechanics have not been applied to gravity in a satisfactory
manner up to now. Loop quantum gravity is an attempt to do so, but it
is an incomplete theory.

Before continuing we should clarify that from now on “gravity” is
meant to be described not by the theory of Newton that one learns in
elementary physics courses, but by Einstein’s general theory of relativity.
Numerous experimental tests of high accuracy agree with the predictions
of general relativity (Will 2005). In such description, gravity is not really
an “interaction” but rather a deformation of space-time. The latter is
not flat and therefore objects do not follow naturally straight trajecto-
ries in space-time. This accounts for what one normally perceives as a
gravitational “force,” which in reality does not exist as such. In everyday
parlance, we reinterpret the curved space-time around us as generating a
gravitational force.

As we will discuss in this book, the fact that gravity is not a force
but a deformation of space-time will make its quantization harder. The
standard computational techniques of quantum field theories all assume
one works on a given background space-time, even though in the end
the goal is to create an S-matrix assuming that space-time is flat in the
asymptotic past, future, and spatial infinity. But in gravity space-time is a
field and therefore the object to be quantized without the presence of any
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background space-time. The lack of a background structure technically
translates itself into the theory being naturally invariant under diffeo-
morphisms1 of the space-time points, since there is nothing to distinguish
one point from another. There is little experience in applying quantum
field theory techniques to diffeomorphism invariant theories, except for
certain topological theories with no local degrees of freedom. Moreover,
gravity is not a very important force in the microscopic realm, where one
expects quantum effects to be dominant. To understand this, consider
the ratio of gravitational to electromagnetic forces between, say, a proton
and an electron; gravity is about 10−40 times weaker. This is the root
cause of why even today we do not have a single experiment that clearly
requires quantum gravity for its explanation. It is perhaps the first time
in the history of physics that one is trying to build a theory without
experimental guidance. If gravity is harder to quantize, and in domains
where it really is important quantum effects are expected to be small, why
bother quantizing it at all? Could we not keep it as a classical interaction?
This is not a moot question: attempts to quantize gravity have been made
since the 1930s. If in nearly 80 years we have not succeeded, why keep
trying?

To begin with, even though there are no calls from experimentally
accessible situations where one needs to quantize gravity for their descrip-
tion, there are many physical processes one can imagine that require a
quantum theory of gravity for their description. A simple example would
be to study the collision of two particles at energies so high that gravity
becomes relevant. Another example we will discuss later in the book would
be to consider a black hole that evaporates via Hawking radiation until
its mass is comparable to Planck’s mass (10−5g). Or another point we will
cover later in the book: what happened to the universe close to the Big
Bang? There is also the issue of conceptual clarity and unity in physics
that suggests that quantizing three of the four fundamental interactions
while keeping gravity classical is unsatisfactory. It is to be noted that the
point of view of unification of theories (or more precisely unification of
frameworks underlying theories) has been highly successful in history. For
instance, putting Newton’s mechanics and Maxwell’s electromagnetism
on the same footing led to special relativity. Incorporating gravity into

1A diffeomorphism is a map that assigns to each point of the manifold another point
and that it is differentiable. It essentially “moves the points of the manifold around.”
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this framework led to general relativity. Incorporating special relativity
into quantum mechanics led to quantum field theory. Similarly, unifying
electromagnetism and the weak interactions led to the first satisfactory
theory of the latter. In all instances putting theories on the same footing
has led to the prediction of new physics, some of which have had dramatic
implications. For instance, incorporating gravity, an apparently weak
force, into special relativity leads to the notion of black holes and the Big
Bang. Quantum field theory led to the notion of particles and antiparticles
being created all the time in the vacuum.

Moreover, since we do not have a complete theory of quantum gravity
it is hard to argue precisely that there are no experimental consequences
of such a potential theory. There certainly are unexplained phenomena
related to gravity out there, for instance those associated with dark energy
and dark matter in cosmology, that—some conjecture—may eventually
require a modification of the theory of gravity. That quantum gravity is
in any way responsible for those effects remains to be seen.

But if we ignore theoretical considerations, is there a practical need
to quantize gravity? As we argued before, there are no outstanding
experiments that we know of that require a theory of quantum gravity
for their explanation. There is no conclusive answer to this point, but
it can be argued that it will be hard to have a consistent theory of
classical gravity interacting with quantum fields. One quickly runs into
problems with the uncertainty principle. Eppley and Hannah (1977) and
Page and Geilker (1981) have devised thought experiments that illustrate
this point (see however Mattingly (2006) for criticisms). For instance,
consider a quantum object in a state with very small uncertainty in
momentum and therefore a large uncertainty in position. We measure
its position with great accuracy using a very sharp package of (classical)
gravitational waves. That will require a superposition involving waves
of very high frequency, which, however, in classical gravity can have
arbitrarily small momentum. Through the measurement of the position
with great accuracy, the uncertainty in momentum in the quantum
system has suddenly become very large. We have therefore potentially
produced a large change in the momentum of the total system, suggesting
conservation of momentum may be violated.

Such experiments are not conclusive proof, since they cannot be carried
out in practice (the above one has the problem that gravitational waves
are very difficult to generate and control due to the weakness of the
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gravitational interaction). Carlip (2008) has argued that to consistently
couple a classical gravitational field to a quantum system will require non-
linear modifications of quantum mechanics that could be experimentally
tested in some future.

In addition to this the two main paradigms of physics, general rel-
ativity and quantum field theories, have problems of their own. In
general relativity powerful mathematical theorems proved in the 1960s
and 1970s indicate that under generic conditions space-times become
singular. Examples of such singularities are the Big Bang we believe to be
present at the origin of the universe and the singularities that arise inside
black holes. A singularity generically is associated with a divergence in
quantities that indicates the theory has been pushed beyond its realm
of applicability. Near such singularities one usually encounters energy
densities that are not compatible with a completely classical treatment
anymore. The expectation is therefore that a theory unifying quantum
field theory with general relativity could offer a new perspective, and
perhaps eliminate the singularities altogether.

Similarly, the quantum theory of fields has the problem that many
quantum operators are in the mathematical sense not functions but
distributions, like the Dirac delta. When one studies interactions one
has to consider products of these operators and such products are usually
not well defined. Some of the divergences in quantum field theories can
be eliminated, redefining the coupling constants through a procedure
known as renormalization, and one can use the theories to formulate
physical predictions. In spite of this, as freestanding mathematical theo-
ries quantum field theories are usually poorly defined, and have to be
treated using perturbative series that are not really convergent (they
are what is technically known as asymptotic expansions). Singularities
in quantum field theory arise due to the distributional nature of the
fields and operators. It is clear that if one changes the underlying picture
of space and time the distributional nature of fields and operators may
change. This may open the possibility of eliminating the singularities of
field theory.

Summarizing the last two points: the current physical paradigms for
gravity and for field theories are incomplete and include singularities.
There appears the distinct possibility that by unifying these paradigms,
singularities could be eliminated. We will take the point of view that aes-
thetics, the previously mentioned thought experiments, and the attractive
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possibility that unification may cure the problems of the standalone
paradigms of gravity and quantum field theory, are enough motivation
to say that gravity needs to be quantized.

The previous discussion also highlights some of the open problems of
the field that people are attempting to address in contemporary research.
Is there a singularity at the Big Bang or did our current universe evolve
from a previous universe? If so, are there remnants of information coming
from the previous universe? Does such a potential modification of the Big
Bang influence the rest of the cosmological evolution, in particular how
inflation developed, nucleosynthesis, and the formation of structure in
the universe? What happens inside a black hole when curvatures become
large? Does one again travel into another space-time region? We now
know that black holes radiate like black bodies and could eventually evap-
orate. How is such evaporation described in detail? Since the final product
of the evaporation is purely thermal radiation with no distinctive features
apart from its temperature, what happened to the information included in
the matter that formed the black holes? Are there any phenomenological
consequences of quantizing gravity that we could observe? We will touch
upon all these topics in the applications chapter towards the end of the
book.

Let us now turn to a bit of history of the field. We will not attempt
a detailed history here, just give some minimal background. A good
concise treatment of the history of quantum gravity is in the article by
Rovelli (2002). Although one already encounters mention of the quan-
tization of gravity in papers by Einstein in 1916 and Rosenfeld and
Bronstein then wrote the first detailed papers on the subject in the
1930s, significant attempts to quantize gravity started only in the early
1960s. Three different approaches emerged. One approach was canonical
quantization, which we will largely follow in this book, since it is the
one that resembles the elementary treatments of quantum mechanics
of undergraduate textbooks that students may be familiar with. In this
approach one has to separate space-time into space and time and as we
will see, this will add complications. It took quite a while to understand
how to work out the Hamiltonian formulation of theories like the one
that describes gravity. We will get a flavor in this book of why it took
some effort. Another approach was to study the theory perturbatively,
by assuming that space-time is flat plus small perturbations. Such per-
turbative approaches worked well for electromagnetism and the weak
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and strong interactions (in the latter case in certain particular regimes).
In gravity this approach ran into trouble. In electromagnetism and the
weak and strong interactions one can formulate the theory in terms
of a coupling constant that is dimensionless (in electromagnetism, for
instance, it is the fine structure constant). In gravity one cannot do
that. Having a coupling constant with dimensions implies that if one
makes expansions in powers of the coupling constant, as one does in
perturbation theory, extra powers of momentum have to be introduced
at each order to keep the expression dimensionally uniform. The extra
powers of momentum make the integrals arising in the interaction terms
divergent. One can correct such divergences by modifying the action, but
it requires an infinite number of modifications to cure all divergences.
To have to specify an infinite number of terms by hand implies that the
theory does not have predictive power. This problem is known as non-
renormalizability. Stelle (1977) showed that one could cure the problem
by adding some higher order terms to the action, but the resulting theory
of gravity has unphysical properties. A good review of the perturbative
approach is that of Woodard (2009). We will present a highly simplified
discussion in this book. The third approach that was tried is the one
known as Feynman path integral. Such an approach requires summing
probability amplitudes over all classical trajectories, which in the case of
gravity requires summing over all possible space-times. This has proved
formidably difficult to do. Remarkably, loop quantum gravity techniques
are helping define the path integral in a rigorous way, in an approach
called spin foams. We will cover spin foams only briefly in this book.

At the same time as these approaches were encountering difficulties, a
parallel line of thought was being pursued, namely that of unification
of the elementary interactions into a single theory. A motivation for
this comes from the weak interactions: it turns out that one cannot
quantize the weak interactions by themselves, but only when they are
integrated into a theory that unifies them with electromagnetism. Could
the situation be similar in gravity? Could it be that integrating gravity
with the other interactions into a single theory would help with its
quantization? This point of view tends to be favored by most physicists
with backgrounds in particle physics. Over the years it has led to a
series of theories that attempt to unify gravity with the other interactions
and at the same time provide a theory of quantum gravity. The various
approaches included the Kaluza–Klein theories, supergravity, and lately,



OUP CORRECTED PROOF – FINAL, 11/8/2011, SPi

Why quantize gravity? 7

string theory and M-theory. We will not attempt a discussion of these
approaches here. A textbook for undergraduates on string theory is
available by Zwiebach (2009).

In addition to the approaches described above, there are other ideas
that are pursued by smaller groups of researchers. These include causal
dynamical triangulations, causal sets, matrix models, Regge calculus,
twistors, noncommutatiave geometries, and the asymptotic safety sce-
nario. We will not discuss them in this book. A good introductory
overview is presented in the book by Smolin (2002).

In the mid 1980s, Ashtekar noted that one could rewrite the equations
of gravity in terms of variables that made the theory resemble the theories
of particle physics. This raised hopes that techniques from particle physics
could be imported to the quantization of gravity. The resulting approach
to quantizing gravity is called “loop quantum gravity” and is the one we
will cover in this book. It is an attempt to understand the quantization
of gravity by itself, without the need to unify it with other interactions.

Currently, both string theory and loop quantum gravity are incomplete
theories. Some people view them as competing theories and imply that
if one ends up being correct the other will not be. Our point of view
is more conservative. It could end up being that string theory and
loop quantum gravity both provide quantum theories of gravity cast in
different language and highlighting different aspects of the problem in
more natural ways in each approach. At the moment it is still unclear if
this is the case.
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Special relativity
and electromagnetism

Newton’s laws of mechanics take their simplest form in certain reference
frames called inertial frames. One cannot distinguish a preferred inertial
frame, they are all equivalent, and in all of them Newton’s laws take the
same form. This is the principle of Galilean relativity. However, when one
considers electromagnetism as formulated by Maxwell there do appear to
exist preferred frames of reference. This caught the attention of Einstein,
who found the situation unsatisfactory. He was particularly troubled that
in order to describe a magnet moving close to a wire, or a wire moving
close to a magnet, one needed to use two different physical laws even
though the end result, the production of a current in the wire, was
exactly the same in both cases. This was only one of the many apparent
conflicts that arose when trying to understand electromagnetic behavior
in mechanical terms.

Einstein’s observation was that all physical laws should be subject to
the principle of relativity, they should take the same form in all inertial
frames. In particular, if Maxwell’s equations take the same form in all
inertial frames, the speed of light should take the same value in all
inertial frames. This last observation indicates that inertial frames cannot
be related by Galilean transformations, since the latter do not keep the
speed of light constant. If one accepts this point of view, Galilean trans-
formations have to be abandoned along with the concomitant hypotheses
about space and time that were used to build Newton’s theory. In their
place one needs to introduce new transformation laws to relate events
viewed from different inertial reference frames. Such transformations are
the Lorentz transformations. Galilean relativity was built on daily life
observations that seemed rooted in common sense, but in reality were
only observations made in a relatively narrow range of relative speeds. It
turns out that Galilean relativity is only a slow speed approximation of
a more fundamental (and more importantly, physically correct) relativity
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principle. The latter has many implications involving our ideas of space,
time, and simultaneity. In this chapter we will explore some of these ideas
and in particular introduce the mathematical notation for it that we will
later use to describe general relativity.

2.1 Space and space-time

Let us start with some elementary vector notation in ordinary three-
dimensional space. We start by setting up Cartesian coordinates in space
xi with i = 1, 2, 3. The distance between two points in space is given by
Δs with,

Δs2 =
(
Δx1

)2
+

(
Δx2

)2
+

(
Δx3

)2
=

3∑
i=1

(
Δxi

)2
(2.1)

with Δxi the separation of the two points along the i-th coordinate. One
can choose a new set of Cartesian axes, like those shown in Fig. 2.1 (for
simplicity we draw a two-dimensional example), and the distance between
two points remains unchanged,

Δs2 =
3∑

i=1

(
Δxi′

)2
(2.2)

Δs

Δx

Δx’

y

x’

x

y’

Δy’

Δy

Fig. 2.1 Two sets of Cartesian axes.
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where we have denoted by xi′ the new set of axis. This notation of using
a prime in the index rather than in the name of the coordinate will prove
useful later on. If the rotation between the axes shown in the figure is
given by an angle θ then one can relate the values of xi and xi′ by,

xi′ = Λi′
ix

i ≡
3∑

i=1

Λi′
ix

i, (2.3)

and also

Δxi′ = Λi′
iΔxi, (2.4)

where we have introduced the Einstein summation convention, in which
any index that is repeated is summed over from one to three. At the
moment the use of subscripts or superscripts in a given quantity makes
no difference, but it will later on. The matrix Λ is given by

Λi′
i =

⎛
⎜⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎟⎠. (2.5)

A vector is a collection of three numbers Ai that transform under
coordinate transformations like the coordinates themselves, that is,

Ai′ = Λi′
iA

i. (2.6)

You are probably familiar with all this, we are just fixing notation here.
Something you are perhaps not so familiar with is with the notion of
tensor. A tensor is a multi-index generalization of a vector. The key idea
is that each index in a tensor transforms as if it were sitting on a vector,
without any regard to what happens to the other indices. For instance, if
we consider a tensor with two indices Sij, it will transform as,

Si′j′ = Λi′
iΛ

j′
jS

ij (2.7)

where again we are assuming two summations, one on i and one on j.
In ordinary Newtonian physics, if one uses Cartesian coordinates, these

are all the vector transformations one needs. In particular the time vari-
able t remains unchanged. In special relativity the situation is different.
Special relativity refers to space-time and involves transformations that
mix space and time together. Remarkably, we will see that the language
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for coordinate transformations that we have described up to now applies
almost unchanged to special relativity.

Let us now consider a space-time, that is, a four-dimensional space with
coordinates xμ with μ = 0, 1, 2, 3, with the 1, 2, 3 components coinciding
with xi, and the zeroth component will be given by ct where c is the
speed of light. The reason we need c is to have the same units in all
the components. In theoretical physics it is common to choose units in
which c = 1. In this text we will choose this convention unless we want
to emphasize the role of the speed of light, in which case we will state it
explicitly. A choice of c = 1 requires measuring time in units of distance.
A “point” in space-time is an “event,” it is an assignment of a point in
space and an instant in time.

Up to now there is nothing special being done from the point of view of
physics. We could have set up a similar notation in Newtonian mechanics,
bundling space and time into four-dimensional vectors. But it would not
have been very useful. Since in Newtonian mechanics time is unchanging,
we would only be doing transformations that involve the components
1, 2, 3 of the four-vectors and leaving the zeroth unchanged. There would
be nothing gained.

For something physically new to happen we need to introduce the idea
of “distance” in space-time that is physically useful in special relativity.
Such “distance” between two events is given by,

Δs2 = −(cΔt)2 + (Δx1)2 + (Δx2)2 + (Δx3)2. (2.8)

Notice that this is not a true distance in that it can be positive, negative,
or even zero (even for points that do not coincide). This distance is kept
invariant under the Lorentz transformations, that is1, xμ′

= Λμ′
μx

μ,

Δs2 = −(cΔt′)2 + (Δx1′)2 + (Δx2′)2 + (Δx3′)2. (2.9)

Lorentz transformations come in various kinds. First of all, ordinary
spatial rotations are included, for instance the θ rotation we considered
in Fig. 2.1 yields the following Lorentz transformation,

1When we are considering space-time quantities repeated indices are summed from
0 to 3.


