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Preface

Graphene, discovered in 2004 as a new phase of crystalline matter one atom thick,
exhibits electronic conduction distinct from and superior to conventional metals and
semiconductors and thus opens new opportunities for device design and fabrication.
The single plane of graphite is now known to represent a new class of two-dimensional
materials, one to several atoms in thickness that are conventionally crystalline in lat-
eral dimensions micrometers to centimeters. The electrons in graphene move rapidly
in a way that resembles massless photons and nearly massless neutrinos. They indeed
exhibit Klein tunneling, a quantum phenomenon of unit probability specular tun-
neling through a high potential barrier that was originally conceived as a property
of electrons and positrons in vacuum. These remarkable properties, endowed by the
hexagonal “honeycomb” carbon-atom array onto ordinary electrons, fortunately are
well explained by the methods of condensed matter physics, but that “explaining” has
several initially puzzling aspects that we address.

This book is intended as such an explication: to introduce and simply explain
what is so remarkably different about graphene. It describes the unusual physics of
the material, that it offers linear rather than parabolic energy bands. The Dirac-like
electron energy bands lead to high constant carrier speed, similar to light photons.
The lattice symmetry further implies a two-component wave-function, which has a
practical effect of cancelling direct backscattering of carriers. The resulting high carrier
mobility allows observation of the quantum Hall effect at room temperature, unique
to graphene. The material is two-dimensional, and in sizes micrometers to nearly
meters displays great tensile strength but vanishing resistance to bending. We are
intent as well to summarize the progress toward better samples and the prospects for
important applications, mostly in electronic devices. The book is aimed at researchers
and advanced undergraduate and beginning graduate students as well as interested
professionals. This book is intended not as a text but a comprehensive summary and
resource on a scientific and technological area of rapid advance and promise. The hope
is to span the range between the painstaking small-science extraction from graphite of
high quality graphene layers (that are, of course, part of every pencil lead) and high
flying physics topics, including an anomalous integer quantum Hall effect at room
temperature, bipolar transmission of Cooper pairs in a superconducting proximity
effect, light-like charged particles only explainable by the Dirac equation, evidence for
a unit-probability tunneling behavior (Klein tunneling) heretofore predicted, but never
before observed. This book is also intended to suggest possibilities for new families
of electron devices in a post-Moore’s Law version of nanoelectronics. Benzene rings,
whose “radii” are about 0.190 nm, are excellent conductors (it is estimated that a
screening current of ∼3.9 nanoamperes/Tesla is estimated to flow around a benzene
ring at room temperature) and might be viewed as basic units in graphene electronics.
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Silicon and metal crystals lose their conductivity in small scale structures but the basic
unit of graphene, essentially a benzene ring, still conducts well. A form of “chemistry”
appears in the arrangement of broken bonds at the edges of graphene ribbons (e.g.,
terminations in zig-zag vs. armchair edges). A premium now is placed on experimental
methods for epitaxial growths, from which a new “semiconductor technology” might
arise. Device technologies that will necessarily depend on fabrication and patterning
schemes for graphene layers are in a rapid state of development.

This book is dedicated to four physicists, two of them theorists and two experiment-
alists. P. R. Wallace first understood the unusual linear bandstructure in graphene
(conceived as an approximation to graphite). G. W. Semenoff first understood the
unusual two-sublattice origin of the chiral carriers, avoiding conventional backscat-
tering and improving the mobility. A. K. Geim and K. S. Novoselov, two brilliant,
resourceful and persistent experimentalists, showed how to isolate the individual planes
and convincingly demonstrated their unique properties, indeed as representative of a
new class of two-dimensional crystals.

The author is grateful to Sönke Adlung and Jessica White at Oxford University
Press for invaluable help in conceiving and completing this project. It is a pleasure to
acknowledge assistance from the Department of Applied Physics at NYU Poly, partic-
ularly from Prof Lorcan Folan and Ms. DeShane Lyew. Ankita Shah, Harsh Bhosale,
Vijit Jain, Kiran Koduru and Manasa Medikonda, who have assisted with aspects
of preparing the manuscript and clearing the way to publication. My wife Carol has
helped in many ways and has been a constant source of support and encouragement.

E. L. Wolf, Brooklyn, New York, September, 2013
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Introduction

“Graphene” is the name given to a single-layer hexagonal lattice of carbon atoms,
an extended two-dimensional lattice of benzene rings, devoid of hydrogen atoms. This
one-atom-thick material has recently been found to be robust, if not completely planar,
in samples tens of micrometers up to 30 inches in extent, on a supporting substrate.
Graphene is a contender in the new information technology (and other) applications,
beyond being a scientific breakthrough and curiosity. As we will see, electrons in
graphene display properties similar to photons and neutrinos, never before observed in
a condensed-matter environment. The new electron properties arise in a straightfor-
ward way from the symmetry of the atomic positions and the resulting cone-shaped,
rather than parabolic, regions in the electron energy surfaces. It is reassuring to see
that all the new effects are well described by the Schrödinger-equation-based methods
of condensed matter physics that have served well in understanding solids from semi-
conductors to superconductors. Dirac-equation-like electron behavior in graphene is
obtained directly from appropriate simplification of the Schrödinger theory of atoms,
molecules and solids. Beyond this, graphene is the first example of a new class of
two-dimensional crystals, a new phase of matter. This is a surprise in many ways that
offers new opportunities, especially, in electronics.

The discovery of graphene extends, beyond some theoretical predictions, what
useful forms matter can take. It is truly a new paradigm.

1.1 “Crystals” one atom thick: a new paradigm

A crystal is an ordered array of identical repeating units. We can think of the unit, in
graphene, as the hexagonal benzene ring, whose diameter (between opposite carbon
atoms, say those numbered 1 and 4) is 2a = 284 pm,1 where a is the carbon-carbon
spacing (the 1–2 distance) a = 142 pm. Benzene, C6H6, has one electron per atom
binding a hydrogen atom at each ring location 1, 2, . . . to 6. In graphene, H is
absent and that one electron per atom is delocalized over the whole crystal. The
resulting perfectly ordered honeycomb lattice, for a 10 μm sheet, is thus 35 211 benzene
ring diameters (at 284 pm/ring) in linear size, certainly showing long-range order.

1One picometer (pm) = 10−12 m. Common units on the atomic scale include Ångströms
(10−10 m) and nanometers 1nm = 10−9 m. The Bohr radius of the hydrogen atom, also taken
as the base unit of length on the atomic scale, is a0 = 0.0529 nm.
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(Actually the lattice repeat distance, the “cell constant,” is the 1–3 distance in the ring,
namely 246 pm.) And for the 30-inch sample the number of benzene ring diameters
is 2.68 billion! (The corresponding two-dimensional honeycomb crystalline array will
then certainly have defects, grain boundaries and dislocations, as are well known in
conventional crystals.)

The honeycomb array in graphene is dictated by the facile three-fold planar bond-
ing, via Schrödinger’s equation, of the quantum states of the carbon atom called 2s
and 2p (discussed in Chapter 3). (One possibly might ask how honeybees chose the
honeycomb lattice, composed of hexagons? Perhaps in the evolution of honeybees, the
3-fold lattice (that would put centers in all the hexagons) did not leave enough room
for honey, and the cubic 4-fold lattice might collapse flat, like a cardboard box without
the ends, squeezing the honey out.)2

In fact, the most economical description of the honeycomb lattice is that generated
by fundamental translations of the basis atoms 1 and 2 (called A and B by physicists).
This two-atom unit, when translated by ± multiples of the translation vectors : 1→3,
1→5 gives the honeycomb lattice.3

The angle between these vectors is 60◦, and we see that atoms 1, 3, 5 and 2, 4,
6 form triangles (they lie on the A and B sublattices, respectively), and that the two
sublattices are separated by the interatomic vector 1→2. So the honeycomb lattice
is fundamentally two interpenetrating triangular lattices, known as A and B. Thus
nearest-neighbor atoms lie on opposite sublattices, with profound consequences in the
unusual electronic bandstructure, as first recognized by the American physicist Wallace
in 1947.

But the achieved 30-inch, one-atom-thick graphene sample certainly will be so
floppy that it will have to be supported on some surface. This is the real question as
to whether it is a crystal. If we imagine the honeycomb sheet as unsupported, we realize
it is very susceptible to being bent out of its flat planar condition. The chemical bonds
(“pi-bonds” = “π-bonds” between two 2pz electrons) will tend to return it to a flat
planar condition, but this restoration force is weak. The large graphene sheet is very
strong in tension, but weak against flexing motion. It is like a bedsheet, in being flex-
ible but inextensible, but, unlike a bedsheet, it retains a weak restoring force toward
a perfectly planar condition. We may italicize the word “crystal,” because inherent
in two dimensions (2D) (embedded in three dimensional space) are long-wavelength
flexural phonons that allow large root-mean-square (rms) fluctuational displacements,
much larger than a lattice constant. How floppy the sheet will be depends on its size,
as we will see shortly. It may be a matter of semantics whether a slightly bent crys-
tal is still crystalline. From a familiar example: on a diving board, the deflections
imposed by the diver’s weight exceed the cell dimension, but obviously do not suggest

2Why the honeybee evolution avoided 5-fold rings or tilings, all having unequal angles that do not
permit an infinite crystal (but of course a honeycomb is finite), may have to do with eyes and brains
better able to generate 120◦ angles, than the several angles in any 5-fold tiling.)

3A slightly different definition of the basis vectors as 1→3, 5→1 is given in Fig. 1.2b. In that
choice, the angle between the basis vectors is 120◦. Figure 4.1 shows the same choice of basis vectors
as our present text.
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collapse of the material supporting the diver. By formal definition, long-range order
does not occur, but in practice the local distortions can be small, so that it is still
useful to consider the sample as a crystal, if slightly distorted. For graphene in prac-
tice, the out-of-plane deflections are the main concern as to whether the system is
crystalline.

But there is more, fortunately not of much practical importance, to the story of
crystallinity in two dimensions. In addition, there are more subtle points, really only
of academic interest that lead theorists to say that any 2D array, even if arbitrar-
ily kept absolutely planar , cannot have long-range (infinite) order except at T = 0.
(The planarity would have to be imposed without transverse pinning; the closest
system of this type may be electron crystals on the surface of liquid helium.) We
will discuss these points in Chapter 2, including a proof that an infinitely large 2D
array would exhibit, at any finite temperature, large absolute in-plane motions (but
without sensibly affecting local inter-atom distances). This might have a real effect,
for example, in smearing the electron- or x-ray- diffraction spots on a sufficiently
large sample, unless that sample was in effect pinned to be stationary at the meas-
urement site. But since the phonon wavelengths (now in 2D) involved are large, local
regions move intact so that local order is not disrupted. For example, the cohesive
energy of the system is not reduced and this has nothing to do with the melting
point of the system (that we connect with local order). In the words of Das Sarma
(2011) “There is nothing mysterious or remarkable about having finite 2D crystals with
quasi-long-range positional order at finite temperatures, which is what we have in 2D
graphene flakes.” We return to this subject in Chapter 2, but simply comment here
that the academic points in the literature do not in any way detract from the import-
ant potential uses of graphene in electronics and nano-electromechanical systems, as
examples.

While there had been earlier suggestions that the single planes of graphite might be
extracted for individual study (contrary to a theoretical literature that suggested that
crystals in two dimensions should not be stable), Novoselov et al . (2004, 2005) were
the first to demonstrate that such samples were viable, and indeed represented a new
class of 2D materials with useful properties and potential applications. (Hints toward
isolating single layers had earlier been given by Boehm et al . (1962), Van Bommel et al .
(1975), Forbeaux et al . (1998) and Oshima et al . (2000), among others. And, as we will
see in Section 5.1.2, chemists, since 1859, with notable work in 1898, have developed
bulk processes to “exfoliate” graphite, as extracted from the ground, into “expanded,”
typically oxidized, forms exposing, to a greater or lesser degree, the individual planes
now called graphene.)

On small size scales, perhaps 10 nm to 10 μm, the graphene array of carbon atoms is
“crystalline,” and has sufficient local order to provide electronic behavior as predicted
by calculations based on an infinite 2D array. Micrometer-size samples of graphene
show some of the best electron mobility values ever measured. In microscopy, on scales
10 nm to 1 μm, it sometimes may appear that the atoms are not entirely planar, but
undulate slightly out of the plane. While it has been suggested that such “waves” are
intrinsic (Morozov et al ., 2006), it is quite likely, on the contrary that they actually
originate as the classical response of the thin membrane to inevitable stress from its
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mounting, or as a result of adsorbed molecules, since in graphene every carbon atom
is exposed. Monolayer graphene is strong and continuous, but, because of its small
thickness,4 t ∼ 0.34 nm, all but the shortest samples are extremely “soft” in the
sense of easily bending with a small transverse force. This can be understood from the
classical “spring constant K”5 for deflection x of a cantilever of width w , thickness t
and length L (with Young’s modulus Y ) under a transverse force F : F = −Kx . Since
K ∼ Y wt3/L3 (discussed in Section 7.4), with t near a single atom size, one sees that
graphene, in spite of a large value of Young’s modulus, Y ∼ 1 TPa, is the softest
possible material against transverse deflection.

As we will see in Chapter 7, graphene rectangles, length L, width w and thick-
ness t , quantitatively bend and vibrate as predicted by classical engineering formulas.
For example, the spring constant K defined for deflection and applied force at the
center of a rectangle clamped on two sides depends strongly on the dimensions as
K = 32Yw t3/L3. A square of graphene, of size L = w = 10 nm, from the above for-
mula, gives K = 12.6 N/m, while a square of size 10 μm has K = 12.6 × 10−6 N/m.
If the sample is short, approaching atomic dimensions, the spring constant is large and
the object appears to be rigid. For example, the spring constant of a graphene square
ten benzene molecules on a side against bending can be estimated as ∼156 N/m, using
the formula, while the spring constant of a carbon monoxide (CO) molecule (in exten-
sion), deduced from its measured vibration at 64.3 THz, is known to be 1860 N/m.
A further quantity in the graphene literature is Yt , a 2D rigidity that has a value
of about 330 N/m. But for graphene longer than a few micrometers, with the spring
constant K of a square falling off as 1/L2, the material is exceedingly soft.

Accordingly, graphene, on micrometer-size scales, conforms to any surface under
the influence of attractive van der Waals forces. In an electron micrograph, graphene on
a substrate appears adherent, more like a wet dishrag or “membrane” than a playing
card, quite unlike a 10-inch diameter wafer of silicon. These 2D “crystals” cannot,
at present, be grown from a melt, as is silicon and as were graphite and diamond in
the depths of the earth at high temperature. Graphene crystals can only be obtained
(see Chapter 5) by extraction from an existing crystal of graphite, or by being grown
epitaxially on a suitable surface such as SiC or catalytically on Cu or Ni from a
carbon-bearing gas such as methane.

4The space per layer in graphite is 0.34 nm that is widely quoted as the nominal thickness of the
graphene layer. An equivalent elastic thickness of graphene, closer to the actual atomic thickness, is
about 0.1 nm, see Section 2.7.

5The spring constant K is a macroscopic dimension-related engineering quantity quoted in SI units
as N/m. It is related to the “bending rigidity” or “rigidity” κ =Yt3, a microscopic property usually
quoted in eV that is about 1 eV for graphene. (The Young’s modulus Y , an engineering quantity, is
defined as pressure/(relative strain) = P/(δx/x) and is about 1012 N/m2 = 1 TPa for graphene, but
see Section 2.7.1) The rigidity κ has units of energy, as force times distance. One sees that the rigidity
κ of graphene, by virtue of the minimal atomic value of thickness t , is the lowest of any possible
material. In connection with extension of a chemical bond, the spring constant K relates to the bond
energy E as K = d2E/dx2.
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Notably, graphene is an excellent electronic conductor, somewhat like a semimetal,
but with conical rather than parabolic electron energy bands near the Fermi energy
with a characteristic linear dependence of energy on crystal momentum, k = p/�: i.e.,
E = “pc” = c∗� k. These electrons move like photons, at speed c∗ ≈ 106m/s and with
vanishing effective mass. There is nothing magic about this; it simply results, in band
theory, from the particular crystal lattice. This aspect also presents a new paradigm in
the realm of condensed matter physics. Not only is Graphene nature’s closest approach
to a two-dimensional (2D) self-supporting material, it also has charge carriers moving
in a different way, as if their mass were zero. The physics of the situation also confirms
that “back-scattering” is “forbidden” leading to measurably larger carrier mobility.

In the real world of atoms, no material can be mathematically two dimensional:
the probability distribution P(x,y,z ) must extend in the z -direction by at least one
Bohr radius. There are well-known examples of 2D subsystems of particles, notably
electrons on the surface of liquid helium and the “2-DEG” two-dimensional electron
gases engineered into leading semiconductor devices. The latter useful electron sys-
tems are supported by quantum well heterostructures. The remarkable difference, in
graphene, is that there is no external supporting system, the layer of carbon atoms
is the mechanical support, as well as the medium exhibiting light-like propagation of
electrons. How is this possible?

The answer was not entirely clear before the discoveries of Geim and Novoselov:
indeed the existence of free-standing graphene layers with novel electronic properties
was a surprise, worthy of a Nobel Prize in Physics. Other one-layer materials include
BN (BN)n(C2)m, with n, m, integers; MoS2, TaS2, NbSe2 and the superconductor
Bi2Sr2CaCu2Ox, although the last is seven atoms thick (Novoselov et al ., 2005). So the
Nobelists, in fact, confirmed the practical reality of a new class of 2D locally crystalline
materials.

The binding energy of a crystal, an extended periodic array of atoms, for tem-
peratures below a melting temperature, TM, is a subject of solid state physics. The
methods of this discipline do not always predict binding of an infinite 2D crystal.
Indeed, thin layers of many substances are found to break up into “islands” as their
thickness is reduced, especially if the attraction of atom to substrate exceeds the attrac-
tion atom-to-atom. This island breakup definitely does not occur with graphene: on
the contrary, graphene is found to be among the strongest known materials under
tension. Tenth-millimeter scale sheets of one-atom-thick graphene have been studied
as elastic beams and sheets, whose vibrational frequencies have been measured con-
sistent with a Young’s modulus ∼1 TPa. At a lattice constant of 0.246 nm, a 20 μm
graphene sheet (80 000 unit cells) looks flat, if suspended across a trench, but may bend
in response to van der Waals forces from the mounting. In some cases, 10 nm-scale
“waves” or “ripples” of ∼1 nm amplitude have been inferred from transmission elec-
tron microscope measurements, with a likely origin in a combination of molecular
surface adsorbates and mounting strain. Subtle physics is involved here, but exper-
iments trump the situation; these “crystals” are large enough to be useful in many
circumstances.
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Molecules have vibrations: in an extended crystal these are called phonons. The
vibrational motions of molecules are 3D in nature and any real 2D crystal6 will have
vibrational motion in the z -direction, termed flexural. In an extended real 2D sample
the flexural motion extends to low frequency and large amplitude, at any finite tem-
perature T. Even when restricted completely to planar motion, the methods of solid
state physics have predicted that thermal vibrations at any finite temperature will
lead to excessive transverse motion and destroy long-range (as distinct from short-
range) order (Mermin and Wagner, 1966; Mermin, 1968). These theorems, it seems,
do not prohibit (Das Sarma et al ., 2011) the observed finite size samples of graphene,
although the theoretical predictions probably had a deterring effect on experimenters
prior to the pioneers, Geim and Novoselov.

The benzene ring is planar, with restoring forces against bending. The two-
and three-ring compounds naphthalene and anthracene, respectively, are also planar.
We saw above that an effective spring constant K ≈ Ywt3/L3 provides a useful estim-
ate of the rigidity, depending on the length L. If graphene is an extended polymer of
benzene rings, with the same 2s and 2p electrons (4 per atom) supporting the struc-
ture, it should similarly resist bending, tending to remain planar. Yet the resistance
to bending is not so strong as to prevent rolled forms of graphene, including carbon
nanotubes and scrolls (Braga et al ., 2004). An energy in favor of the 3D conforma-
tion is the sum of bonding energies of otherwise dangling or weakly satisfied bonds
and of course, the van der Waals attraction that binds graphene layers into graphite.
More stable states of carbon will clearly occur in 3D, where roughly there will be
6–8 nearest neighbors vs. 3 or 4 in a 2D configuration. A typical conformation of an
extended micron-scale sheet of graphene laid onto a substrate is shown in Fig. 1.1.
The behavior is that of a limp but nearly inextensible sheet, with wrinkles and conical
cusps where there are singular elastic strains. It resembles a wrinkled sheet of paper,
except that when removed from the substrate the wrinkles and conical cusps will dis-
appear. The classical physics of this situation is described in Section 2.7.3 “Isometric
distortions of a soft inextensible membrane”.

On size scales of tens to hundreds of micrometers, adequate for electronic devices,
ambient temperature graphene is planar, exhibiting high carrier mobility. We will see
later (Section 7.1.5) that removing adsorbates by heating to a modest temperature
∼400◦C can greatly improve the carrier mobility and electrical conductivity. There is
some danger that unrecognized adsorbates have led to false impressions of “intrinsic”
rippled behavior in graphene. We find that most small-scale non-planarity in the form
of “corrugations” with lateral size scales of 10 to 100 nm with ∼1 nm vertical amp-
litude, are the response of the nearly inextensible sheet to boundary conditions that
inevitably introduce strain. The system will minimize the energy cost of the waves by
maximizing their wavelength.

6A useful notation for a “real 2D crystal” is “2D-3” meaning that motion into the third dimension
is available. A “pure” 2D system is one, like electrons on the surface of liquid helium, where no motion
into the third dimension is allowed, the z -motion is represented by a single quantum state. We take
the electron system inside graphene to be “pure 2D” as confined by the graphene lattice, even though
that lattice may slightly undulate or flex into the third dimension.
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Fig. 1.1 Micrometer-scale transmission electron microscope (TEM) image of graphene sheet

draped onto a substrate. It can be seen that the sheet is continuous but has little resistance

to bending and folding. On a micrometer scale the single atomic layer, showing ripples with

cusps or corners at their terminations, conforms to its supporting surface under the influence

of van der Waals forces. Under tension it is very strong, with Young’s modulus on the order

of 1 TPa. Only on a much smaller size scale can it be considered to be stiff or rigid against

bending. (From Pereira et al., 2010. c© 2010 by the American Physical Society).

1.2 Roles of symmetry and topology

The interesting observed electronic properties of graphene are usefully predicted by
theoretical solid state physics. The hexagonal honeycomb lattice, formally a triangular
lattice with two atoms per unit cell (in 2D), leads to electronic bands in the usual way.
In fact the electron bands, if not the subtle implications of their symmetry, were
correctly predicted starting in 1947 (Wallace, 1947; McClure, 1956). The Brillouin
zone is shown in Figs. 1.2a and 1.3b; the unit cell in Fig. 1.2b. A view of the lattice is
again shown in Fig. 1.3a.

It is of extreme importance that A and B sublattices interpenetrate to form the
honeycomb and the two sublattices, generated by the two atoms per unit cell, represent
two separate groups of allowed states or bands. A carrier can be described by a two-
component wavefunction, conveniently as if it had an “iso-spin” one-half that is not
related to the physical spin of the electron.

1.2.1 Linear bands, “massless Dirac” particles

From an electronic band structure point of view, the essential novel feature is a set of
linear electron bands: twin collinear intersecting vertical cones with apices at inequi-
valent corners K, K′ of the hexagonal Brillouin zone. The Fermi energy lies near
these degenerate intersection points in pure material, but EF can be pulled up into
the upper cones, making an n-type metal, or depressed into the lower cones, making
a p-type metal, by an electric field (or by chemical doping). While the pure crystal
at T = 0 has zero carriers, the material is typically observed to have finite conduct-
ivity, on the order of e2/h. (With further work, this aspect has turned out to be an
experimental artifact and a really pure and ordered sample is insulating at T = 0.) In
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Fig. 1.2 (a) Hexagonal Brillouin zone of honeycomb lattice, resulting from A and B inter-

penetrating triangular lattices. If the nearest-neighbor distance is a = 142 pm, the lattice

constant is 31/2a and the zone boundary M (half the reciprocal lattice vectors b1, b2), is

2π/3a. The coordinates of the corner point K are (2π/3a, π/3
√

3a) so that the distance

from the origin to point K is 4π/(3
√

3a). Since the conduction and valence bands touch pre-

cisely at K, we have kF = |K| and the Fermi wavelength λF = 2π/kF = 3
√

3a/2 = 369 pm.

(b) Honeycomb lattice, resulting from A and B interpenetrating triangular lattices. If the

nearest-neighbor distance is a = 142 pm, the lattice constant is 31/2 a = 246 pm. The basis

vectors of the triangular lattice are a1 = (
√

3/2,−1/2)a, a2 = (0, 1)a, and the sublattices

are connected by b1 = (1/2
√

3, 1/2)a, b2 = (1/2
√

3,−1/2)a, b3 = (−1/
√

3, 0)a. (From

Semenoff, 1984. c© 1984 by the American Physical Society).

Holes

(a) (b)

Electrons K

K’

Fig. 1.3 (a) Honeycomb lattice emphasizing its composition as two interlocking triangular

lattices. One may imagine the light shaded balls as the A lattice, the dark shaded balls as

the B lattice. (b) Hexagonal Brillouin zone of honeycomb lattice, showing intersecting conical

electron bands. The linear bands and the two “valleys” at K and K′ give unusual electronic

properties to graphene. In a pure sample the lower cones are filled with electrons and the

upper cones are empty.



Roles of symmetry and topology 9

experimental practice, the resistivity is typically less than h/e2 ∼ 25 kΩ (Ohms per
square [Ω/�] in 2D).

This gives an aspect of a zero-band-gap semiconductor, except for the linear dis-
persion (Wallace, 1947). (This is in contrast to the usual case, as in Si and GaAs,
where the electron bands have parabolic minima, leading to effective masses given
by m∗ = �

2/d2E/dk2, with the result that carrier speeds vary linearly with crys-
tal momentum, k = p/�.) In this linear region for graphene, the particle velocity,
c∗ = vF = 3ta/(2�) (Wallace, 1947; Katsnelson and Novoselov, 2007), is constant,
entering light-like relations, E = “pc” = c∗�|k − K|, valid near each “Dirac point”.
In this expression t is a nearest neighbor hopping energy, about 2.8 eV and a is the
nearest-neighbor distance, 142 pm.

While the linear dispersion near the Fermi energy is novel for electrons, the
calculation, including the speed c∗, is straightforward in the conventional, Schrödinger-
equation-based, “tight-binding” method, using a nearest- neighbor hopping interaction
t and bond length a. Taking t as 2.8 eV and a = 142 pm, one finds c∗ = 0.91 × 106 m/s,
or about c/300. The connection between the linear dispersion and term
“massless fermion” comes from the total energy formula of special relativity,
E = [(pc)2 + (mc2)2]1/2 where the observed linear dependence E = pc arises in the
limit m = 0. The conical band structure, as mentioned, predicts zero conductivity
for neutral graphene with the Fermi energy at the Dirac point where the density of
states vanishes. Clearly, because (at zero temperature) “undoped graphene has no free
electrons, an infinite sample cannot conduct electricity,” as stated by Snyman and
Beenakker (2007).

Experiments (Novoselov et al ., 2004) showed that the electrical conductivity as a
function of charge density of graphene rises symmetrically on either side of a minimum
at the neutrality point. In the experiment, a gate applied electric fields to induce charge
of either sign, much as in a field-effect transistor. The sharp peak in resistivity at the
crossing point, and other features, are confirmed by Zhang et al . (2005), as shown in
Fig. 1.4.

As indicated in Fig. 1.4, the mobility in graphene rises as the carrier concentra-
tion falls, and values as high as 200 000 cm2/Vs = 20 m2/Vs have been obtained in
suspended samples (Bolotin et al ., 2008).

While the mobility is clearly sample dependent, the maximum resistivity values
near h/4e2 ≈ 6.45 kΩ, were initially suggestive of a quantum condition, catalogued
by Novoselov et al . (2005) as shown in Fig. 1.5, a bit larger than the ∼4 kΩ shown in
Fig. 1.4. The exact formula for the quantum limit was still discussed until 2011. The
leading theoretical value, h/4πe2, seems small by a factor of π, but is in disagreement
with a basic paper (Abrahams et al ., 1979) that predicts an infinitely large resistivity
at zero temperature.

It is now believed that the “minimum conductivity,” a practical matter in dealing
with graphene, is actually an artifact of extrinsic electron and hole “puddles,” for which
similar theoretical conductivity estimates can be found, on the basis of percolation and
tunneling between adjacent puddles. An early indication of this non-metallic behavior
was offered by Bolotin et al . (2008) who described “a nonuniversal conductivity that
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Fig. 1.4 Electric field effect in single-layer graphene obtained by variation of voltage Vg on

gate underlying the sample (see the upper right inset). (a) A resistance maximum about

4 kΩ is seen here at 1.7 K at gate voltage corresponding to the neutrality point, where Fermi

level drops to the apices shown in upper left inset. (b) The carrier density n, shown as open

circles, from a Hall measurement, and the mobility are plotted. The mobility, on the order

of 4 m2/Vs at peak, implies a long mean free path λ ∼1 μm. The line in lower panel, well

matching the measured carrier density points, comes from an estimate of the charge induced

by the gate voltage, n = CgVg/e, where Cg = 115 aF/(μm)2 is obtained from the geometry.

(From Zhang et al., 2005, by permission from Macmillan Publishers Ltd., c© 2005).

decreases with decreasing T,” after applying a heating procedure to their 4-point-
probed graphene sample to remove adsorbed impurities. The simple cleaning procedure
was found to increase the conductivity by about a factor of 10. Surface scattering is
thus a factor in much of the literature before 2008, for example, in the earlier work in
the Kim group, Tan et al . (2007).

A recent experiment on screened graphene which succeeded in nearly removing the
“puddles,” reveals what appears to be a conventional Mott–Anderson transition to an
insulating state at low temperature, shown in Fig. 1.6.

These new results are revealed by Ponomarenko et al . (2011) in a paper entitled
“Tunable metal-insulator transition in double-layer graphene heterostructures”. The
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10% intervals around the average value ∼h/4e2. Bolotin et al . (2008) found that mobilities

about a factor of 10 larger were easily available by gently heating the samples to release

adsorbed gases that evidently strongly scatter charge carriers. (From Novoselov et al., 2005,

by permission from Macmillan Publishers Ltd., c© 2005).

tuning is of the carrier concentration in the graphene layer intervening between
the (puddle-inducing) substrate, containing charged impurities, and the measured
graphene layer. The two graphene layers are separated by d = 12 nm and the concen-
tration in the screening layer is 3 × 1011 cm−2. The 12 nm spacing is large enough that
the measured graphene layer does not exchange carriers with the screening layer: more
details are contained in Section 7.5. (A tunneling FET configuration is attainable at
smaller spacings d , as will be described in Chapter 9.)

These features are in accord with the band diagram in Fig. 1.3 and the upper left
inset to Fig. 1.4 and are further discussed in Section 7.5. But there are further unusual
aspects of graphene, subtle but important, due to the dual sublattices arising from the
two atoms per unit cell that we now discuss.

1.2.2 “Pseudo-spins” from dual sublattices and helicity

The need for a two-component or “pseudo-spin” electron wavefunction near these
“Dirac points” was more recently realized (DiVincenzo and Mele, 1984; Semenoff,
1984; Novoselov, et al ., 2004, 2005, 2006, 2007). These workers showed that the double-
sublattice origin of the states in the cones K, K′ requires such a treatment, based on
a “pseudo-spin” of lattice origin. Semenoff described the graphene Brillouin zone as
having two “right- and left-handed degeneracy points” (where valence and conduction
bands meet). In each hexagonal ring, three atoms are in the A lattice and three atoms
are in the B lattice, as we have seen. (We will return to the band structure of graphene
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(From Ponomarenko et al., 2011, by permission from Macmillan Publishers Ltd., c© 2011).

in Chapter 4.) The tight-binding Hamiltonian used is of the simplest form, allowing
only nearest-neighbor interactions t(a∗i bj + b∗i aj) (on opposite sublattices) plus second-
nearest-neighbor interactions (same sublattice): t′(a∗i aj + b∗i bj).

7

By the symmetry of the lattice, the Schrödinger theory expression simplifies into
a Dirac-like form giving conical bands.

In this range of energies, |E| <≈ 1 eV, the Hamiltonian for the single-layer electron
system, making use of the “tight binding” and “k • p” approximations, widely used
in semiconductor physics (Yu and Cardona, 2010; Semenoff 1984), reduces to the
matrix form

Ĥ = �c∗
(

0 kx − iky

kx + iky 0

)
= hc∗σ • k (1.1)

7In such expressions, ai
∗(ai) represent operators that create (destroy) an electron on site i .
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Fig. 1.7 Model energy dispersion E = �c∗ |k| at each Dirac point. The ascending line arises

from one sublattice, the descending line from the other, suggesting that transitions between

branches are “spin-forbidden”. Back-scattering is thus reduced, making the quantum Hall

effect observable even at room temperature.

where k is the quasiparticle momentum and σ the two-dimensional Pauli matrix. This
reduction of the Hamiltonian into a form similar to the Dirac equation for mass-
less particles comes from the crystal symmetry and the two equivalent sublattices A
and B. The cosine-like energy bands (each C atom has one participating 2pz valence
electron that form π∗ anti-bonding bands at positive energy and π bonding bands
at negative energy) intersect in the cones at the six corners of the Brillouin zone.
That the electronic states arise from two (A and B) triangular sublattices leads, as
mentioned above, to a two-component wavefunction (Semenoff, 1984) mathematically
treated as spin 1/2. The Pauli matrix σ here refers to the pseudo-spin, not to the
actual electron spin that is neglected at this point. These features only appear near
the degeneracy (Dirac) points, where their importance is clear from measurements on
graphene.

The wavefunction that is needed near the Dirac point K’ can be written (Kane and
Mele, 1997; Castro Neto et al ., 2009) as

ψ±,K
′(k) =

1√
2

(
eiθk/2

±e−iθk/2

)
(1.2)

θq = arctan
(
qx
qy

)
(1.3)

for π∗ states above (+) and π states (−) below the Fermi energy. Here q is the
momentum measured from the Dirac point K′, and the angle θ is measured around
that point. Similar equations apply for point K, with the opposite choice of ± sign in



14 Introduction

eqn (1.2), to reverse the helicity. In both cases, the two components of the wavefunction
indicate the separate contributions from the separate sublattices, A and B. Thus one
may say that each π-electron carries, in addition to its physical spin and momentum,
an internal pseudo-spin index, labeling the sublattice state, and a further “pseudo-
spin” index, labeling the two independent Dirac spectra derived from the K and K′

points in the Brillouin zone.
The pseudo-spin of the particle, in relation to its motion, gives rise to helicity or

chirality. Helicity is the projection of spin σ onto the direction of motion k and is
positive (negative) for electrons (holes) defined as:

h = 1/2 σ • p/|p| (1.4)

The concept of helicity is valid near the Fermi energy and to the extent that second-
nearest-neighbor interactions are negligible. Its relevance is confirmed by observation
of anomalous quantum Hall effects in graphene. Further, the long, micrometer-scale,
mean free paths seen in metallic carbon nanotubes (McEuen et al ., 1999) have been
related to cancellation of backscattering of chiral electrons within a given valley (see
Section 8.4). The reversal of kx to –kx, because of the chirality, involves a rota-
tion of the pseudo-spin (that always points in the direction of motion). But the
reversal of the pseudo-spin is forbidden because the electronic wavefunctions of the
A and B sublattice contributions are orthogonal. We will return to this topic in
Chapter 8.

As an alternative narrative, the “spin” part of the wavefunction eqn (1.2) has half-
angles, so that, if the particle executes a closed path, with angle θ gaining 2π, as it
might in returning from a scattering center, the wavefunction phase advances by θ/2,
an angle π, leading to a minus sign and cancellation of backscattering.

The electron states, finally, have 4-fold degeneracy, including the valley (K, K′)
degeneracy and the electron spin degeneracy. The density of states per unit cell is
g(E) = 2AC |E| /(π�

2v2
F), where vF = c∗ and AC = 3

√
3, a2/2 is the cell area, with

a the nearest-neighbor distance. (See also eqn (4.13), and related text.)

1.3 Analogies to relativistic physics backed by experiment

A 2D electron system in a perpendicular magnetic field gives rise to Landau levels (LL)
whose energies conventionally are E = (n+ 1/2) (eB�/m), with n = 0, 1, 2, . . .
and m the electron mass. The minimum energy in this set is 1/2 �ωc, where
the cyclotron frequency is ωc = eB/m. (We use SI units, note that much of the
theoretical literature on graphene and quantum Hall effect uses cgs (centimeter-
gram-second) units, where the cyclotron frequency would be written as eB/mc.)
For a system of area A, the total number of orbital states at the LL energy is
N = AB/ϕ0, where ϕ0 = h/e is the (one electron) magnetic flux quantum. The
quantum Hall effect occurs when N is similar to the total number of mobile elec-
trons in the system so that “all electrons are in fully quantized states”. This
effect is only present in two-dimensional 2D systems, as will be discussed in
Chapter 2. (The quantum Hall effect is observable in graphene even at room tem-
perature, as we will see in Section 8.3, because of the exceptionally large mean free
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at zero energy [corresponding to central peak in density of states (DOS)]. This anomalous

observation is the signature of the massless Dirac Fermion. The conventional QHE has a gap

at zero energy. The measured quantity on the right, contrary to the label, is −σxy ≈ R−1
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that conventionally rises by gs e2/h, with gs the spin degeneracy, as a Landau level crosses

the Fermi energy. (From Zhang et al., 2005, by permission from Macmillan Publishers Ltd.,

c© 2005).

path.) The graphene LL spectrum is anomalous, including a prominent level at zero
energy that supports the pseudo-spin wavefunction. The anomalous observed levels
can be written (Novoselov, 2011) as

En = ± vF[2e�B(n+ 1/2 ± 1/2)]1/2 where n = 0, 1, 2, . . . (1.5)

In this expression, describing a half-integer quantum Hall effect, the ±1/2 term is
related to the chirality of the quasiparticles and ensures the existence of two energy
levels (one electron-like and one hole-like) at exactly zero energy, each with degeneracy
half that of all other Landau levels (McClure, 1956, 1960).

The data of Zhang et al . (2005) are shown in Fig. 1.8 (very similar data were
reported on p. 197 of the same journal by Novoselov et al . [2005]). We will return to
this topic later (in Section 8.3), in the book.

The spacing of the Landau levels shown in Fig. 1.8 is similar to that predicted
for massless Dirac electrons (as measured by a scanning single electron transistor)
shown in Fig. 1.9a and directly observed by Miller et al . (2009) in scanning tunneling
spectroscopy, in Fig. 1.9b.

The data in Fig. 1.9a are due to Martin et al . (2009), using a scanning single
electron transistor (SSET, described in Chapter 6) to locally measure what is called
the “inverse compressibility” of the electron system.8

8The measured quantity is dμ/dn where μ is the chemical potential and n is the density of carriers.
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Fig. 1.9 (a) The observed anomalous B1/2 energy dependence of Landau levels, contrary to

the usual linear dependence, is strong evidence that the electron carriers in graphene behave

as “massless Dirac fermions,” because of the unusual lattice symmetry. The conventional

formula ω = eB/m is untenable for m essentially zero. Measurements by method of scanning

Single Electron Transistor (SET) by Martin et al . (2009). (This measurement method will

be mentioned in Chapter 6.) (Martin et al ., 2009, Fig. 1). (From Martin et al ., 2009, by

permission from Macmillan Publishers Ltd., c© 2009) (b) The observed anomalous B1/2

energy dependence of Landau levels, as well as the zero-energy Landau level, are clearly seen

in Scanning Tunneling Spectroscopy. (From Miller et al ., 2009, with permission from AAAS).

The data are obtained at 11.7 T with the scanning SET tip hovering “a few
tens of nanometers” above the monolayer graphene, supported on the conventional
oxidized silicon wafer. The indexing used by Martin et al . (2009) for the Landau
levels is

Ei = sgn(i) [2e�v2
F|i|B]1/2 (1.6)

with integer i running from i = −4 to i = +4. Positive i values indicate electron-
like Landau levels, and negative i values indicate hole-like Landau levels. The solid
lines are calculated on this formula using the best fit value vF = 1.1 × 106 m/s that
the authors say is ten percent higher than the theoretical estimate. The anomalous
zero-energy Landau level is prominent.

To summarize, the Landau level spectrum of graphene is doubly anomalous, first
in the presence of the zero-energy peak and second in the uneven spacing of the levels,
represented by the square-root factor in eqn (1.5).



Nobel Prize in Physics in 2010 to Andre K. Geim and Konstantin S. Novoselov 17

1.4 Possibility of carbon ring electronics

Transistors can be made from single-layer carbon films, a saving in material costs for
a start. One does not have to grow a large crystal and saw it into wafers, although
it is true that an epitaxial substrate such as SiC may still be needed. The mobility
of the carriers is exceptionally high, translating into the chance for a ballistic device
working at room temperature. Further, the mobility remains high even for high carrier
concentrations. The valley degeneracy and spinor property prohibiting backscattering
offer new avenues for making devices. The drawback that one sees at the outset is that
graphene does not have a high resistivity state, so On/Off ratios in a conventional FET
configuration are limited. Patterning graphene into nanoribbons, with space quantiz-
ation of levels across the ribbon, offers the chance to introduce energy barriers, even
though in some situations anomalous Klein tunneling of carriers is expected. Patterning
is itself a major, if not impossible, challenge, on the size scale of a benzene ring, as is
potentially available. The details of the patterned edge, whether it is “armchair” or
“zigzag” in the notation of carbon nanotubes, significantly affect the electrical proper-
ties. How the unpaired electrons at the “broken bonds” are passivated may also be an
important aspect. The graphene sheet can, in principle, be patterned to act as a single
electron transistor (SET) as well as a field-effect transistor, and indeed on a molecular
scale. As we will see in Chapter 9, activity in these directions is occurring at leading
firms. There is no question that graphene elements will play important supplemental
roles in the silicon chip industry. A more realistic and detailed account of graphene
field-effect FET transistors, including a possible family of graphene tunneling T-FET
switching devices is given in Chapter 9, especially Section 9.8.

1.5 Nobel Prize in Physics in 2010 to Andre K. Geim
and Konstantin S. Novoselov

The 2010 Nobel Prize in Physics was shared by Andre K. Geim and Konstantin S.
Novoselov for their work on graphene. They had isolated and named the single layers
in 2004. The method that they used, basically using Scotch tape to pull the graphite
apart, was simple and accessible, and provided samples still the best available. This
caused a rush of new experiments. Graphene, as they showed, was really only one
example of a class of two-dimensional crystals that they had discovered. Their experi-
mental work revealed the remarkable electronic properties of graphene, and they tied
these to earlier work in relativistic particle physics. The material itself has unique and
superior properties, both mechanically and electrically, and has many possible applic-
ations. The explosion of publications related to graphene has been truly remarkable.
A very recent review of the rapidly expanding literature and assessment of applications
is given by Novoselov et al . (2012).

The Nobel Lectures are: Andre K. Geim (2011), “Random Walk to Graphene”
and K. S. Novoselov (2011), “Graphene: Materials in the Flatland”. These are excel-
lent sources of information including references up to 2010. The citation for the
Nobel Prize mentions “groundbreaking experiments regarding the two-dimensional
material graphene.” An added source of information is “Scientific Background on the
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Nobel Prize in Physics 2010: Graphene” compiled by the Class for Physics of the
Royal Swedish Academy of Sciences. The two physicists have been knighted by Queen
Elizabeth II in the UK.

1.6 Perspective, scope and organization

The discovery of 2004 has led to an explosion of literature on graphene and to a lesser
extent on the class of 2D crystalline systems.

The brilliant experimental work has revealed a vast amount of new information.
Experimental work on graphene is very difficult because every carbon atom is exposed
to the environment that contains contaminating atoms and molecules, and also stray
electric fields that have the effect of inducing charge carriers in the graphene. The new
field has gone through phases where effects were seen repeatedly and thought to be fun-
damental when, in light of improving methods and sample quality, the effects were later
realized as consequences of contaminants, mounting strains or stray electric fields. The
field has also appeared more mysterious than it really is by the uncertain relevance of
the theoretical literature on the limitations of crystalline order in two dimensions. The
other mysterious behaviors, analogies between the electrons in graphene and photons
and neutrinos in high energy physics are confirmed and explained by the brilliant
experiments including observation of the Klein tunneling effect, to make graphene
indeed an interesting material.

This book undertakes to systematically review all of the work, taking seriously
even those aspects that now appear less urgently relevant. We cover in Chapter 2 all
of the literature on 2D systems, theoretical and experimental. The theoretical literat-
ure has two branches, one devoted to ideal 2D arrays with no motion allowed into the
third dimension, where excessive in-plane thermal motion, described by logarithmic
divergences in atomic excursions from lattice sites, are correctly predicted at finite
temperature, but have not been seen in experiment. Purely 2D systems, before discov-
ery of the free electron subsystem contained in graphene, were realized experimentally
as electrons on the surface of liquid helium and electrons in the quantum Hall effect.
We review the quantum Hall effect, as it was a key to understanding 2D electron beha-
vior in graphene. In the second branch of 2D that we can refer to as 2D-3, a planar
system, like graphene, can distort into the third dimension. A large literature here
comes from polymer work, and the central question has often been whether or how
the 2D system (“membrane”) may “crumple” at high temperature, in such a way that
an initially flat system of area L2 eventually fills a volume of size up to L3. Mechanical
engineering also understands 2D-3 systems in the context of bending beams and plates,
and it appears that these descriptions are actually more applicable to graphene than
are the polymer-related treatments. In the end it appears that graphene does not in
fact crumple, but disintegrates near 4900 K. Graphene, suggested as unstable, cer-
tainly seems to exist at least to 3900 K, the measured sublimation temperature of
graphite.

In Chapters 3, 4 and 5 we deal, respectively, with properties of carbon as atoms,
molecules (with attention to benzene rings), and in its solid forms; with the electron
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bandstructure of mono-layer and bi-layer graphene; and with the sources and types
of graphene, ribbons and bilayers. Chapter 6 introduces several of the less-familiar
experimental methods that have been helpful in understanding graphene, includ-
ing angle-resolved photoemission spectroscopy (ARPES), electron scanning tunneling
microscopy and spectroscopy (STM, STS) and the scanning single-electron transistor
(SSET). Chapter 7 is a review of the physical properties of graphene, with attention
to the lattice stability of the material as affected by the flexural modes of vibration
well studied by neutron diffraction and other methods. The question of undulations
and waves is examined, from the view of experiment and the view of theory, leading
to the suggestion that the effects are subtle responses of the atomically thin system
to typical environments including gaseous contamination and strain introduced by a
mounting structure. Chapter 8 describes several areas of graphene behavior that can
be regarded as anomalous, including the predicted disintegration at 4900 K primarily
into linear chain fragments of carbon moving away into space. This chapter also covers
the Klein tunneling discovery, recent results in the quantum Hall effect, discovery of
non-local behavior and work suggesting a nematic phase transition of the electron sys-
tem. Chapter 9 is devoted to applications of graphene. The emphasis is on electronic
devices with particular attention to transistors, including radio-frequency (100 GHz)
transistors, flash memory elements, optical devices and the interesting questions relat-
ing to a possible new class of switching transistors that can be miniaturized beyond
the limits of Moore’s Law as it applies to silicon. Finally, emphasis is on types of
graphene transistors that are potentially manufacturable in existing technology and
that will operate as switches in spite of the essentially semi-metallic nature of graphene.
Chapter 10 is a summary and assessment, with attention to key questions of expanding
methods to obtain high quality samples for electronic applications at reasonable cost.
Briefly it is suggested that the primary advantage of graphene in device applications is
the continuity and high conductivity available literally down to a thickness of one atom.


