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Preface

Why study Bethe ansatz? The Bethe ansatz provides one of the very few methodologies to
calculate the physical properties of models for strongly interacting quantum matter non–
perturbatively. Arguably it is the only such method we have which is exact. This means,
once we have set up the model, there are no approximations or further assumptions
necessary: we can exactly compute physically relevant properties of the model. There is,
furthermore, an infinite set of conserved quantities: the quantum mechanical model is
integrable.

This makes the search for quantum models which are amenable to an exact solution by
the Bethe ansatz methodology so important and rewarding. Even if—as is sometimes, but
certainly not always, the case—the model with an exact solution is not the most physically
relevant one, the exact solution will provide important benchmarks for other models that
may occasionally be closer to physical reality, but do not admit an exact solution. Hence,
for a plethora of cases, the Bethe ansatz solution provides valuable insight into the physics
of strongly interacting quantum matter.

Since Hans Bethe provided the eponymous method to solve the Heisenberg quantum
spin chain, many more models of low-dimensional quantum systems have been found to
be integrable by the Bethe ansatz.

Moreover, these models and their integrability have been and continue to play an influ-
ential role in many subfields of physics, which include classical and quantum statistical
mechanics, quantum field theory, and quantum many-particle and condensed matter
physics, the latter in recent times especially in connection with modern developments in
physics on the nanometre scale and in low dimensions. Quantum optics has also benefited
from studying integrable models, especially in investigations of ultracold Bosonic and
Fermionic quantum gases and Bose–Einstein condensates in artificial crystals of light,
the so-called optical lattices. Recently in string theory and cosmology there is a hype
of activity involving conjectures of Bethe ansatz integrability in the framework of the
celebrated anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence.

Of course, Bethe ansatz and integrability are discussed in Mathematical Physics, but
there is also an ongoing cross-fertilization with various subfields of pure Mathematics.

Some prominent examples of integrable models include: various variants of the
Heisenberg quantum spin chain whose physical realizations are probed by neutron
scattering; the Hubbard model and its variants which inter alia have been discussed
in connection with high-temperature superconductivity; the Kondo model which has
recently seen a renaissance because of the development of tunable quantum dots;
interacting Bose and Fermi gases which can now be produced in very pure and tunable
form in optical lattices.
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But, what is the Bethe ansatz? In its original form, devised by Bethe, it is an ingeniously
guessed form for the wave function of a one-dimensional quantum system. However,
why this wave function is correct and even exact remained an open question which has
only been answered much later through the algebraic form of the Bethe ansatz. This
method enables us to construct an integrable quantum model in one dimension from
a two-dimensional statistical mechanical model. The construction reveals the reason
for quantum integrability and delivers the infinite set of conserved quantities together
with the wave function which Bethe guessed. In our exposition of the Bethe ansatz
methodology, we shall therefore start, somewhat unhistorically, but more systematically,
with the algebraic Bethe ansatz.

Who is this book for? Interestingly, a look at Richard Feynman’s last blackboards (Paz,
1989) reveals that he may well have been interested. In one of his last publications (1988),
Feynman in fact wrote:

‘I got really fascinated by these (1 + 1)-dimensional models that are solved by the Bethe
ansatz and how mysteriously they jump out at you and work and you don’t know why. I
am trying to understand all this better.’ Cited after Batchelor (2007).

In view of the exciting developments in Bethe ansatz of the last two decades, Richard
Feynman’s fascination would certainly have continued.

The most helpful prerequisites for present readers are a good grounding in quantum
mechanics, statistical mechanics, and the basics of quantum many-particle theory,
especially second quantization. However, we shall comprehensively discuss the necessary
tools and background in part I of the book. Through this approach, the book should
be smoothly accessible for Master’s students who look for an area of specialization as
well as for beginning graduate students. Moreover, to paraphrase Paul Halmos (in the
preface of his book on Measure Theory (Halmos, 1978)), the novice to the Bethe ansatz
methodology should not be discouraged if she or he finds that she or he does not have the
prerequisites to read the preliminaries. After all, as Max Born reminds us, where would
quantum physics be if Werner Heisenberg had been discouraged that he did not know
what a matrix was when he developed the matrix form of quantum mechanics?

The book grew out of lecture notes the author prepared for an invited graduate lecture
series at the Indian Institute of Science in Bangalore in 1995, summer school courses
at the University of Jyväskylä in Central Finland in 1997 (on Bethe Ansatz Methods in
Many–Body Physics) and 1999 (on Conformal Invariance in Statistical Physics), a graduate
course at the same University which, together with an amiable group of students,
made the extremely cold Finnish winter of 1999 actually an enjoyable experience, and
postgraduate courses at the University of New South Wales in Sydney in 2000, and
within the Mathematics–Physics MP2 Platform at Göteborg University in 2009, as well
as summer school lectures in Turkey: 2013 in Turunç, 2014 in Izmir and 2013 in Ireland
in Dungarven under the auspices of the School of Theoretical Physics of the Dublin
Institute for Advanced Studies.
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1

Introduction

A journey of a thousand miles begins with a single step.

– Lao Tzu

This brief introductory chapter’s purpose is to direct you, the reader, quickly to those
places in the book where you can find general introductory information that may be
helpful for an overview of and the orientation within the book. It is deliberately kept
short to avoid redundancies.

The general motivation for the writing of the book and the main targeted readerships
as well as the levels of sophistication assumed and detail aimed at in the presentation
of the various parts of the book are outlined in the preface. There, we also attempt a
delineation of an assessment of the relevance of the book’s topics for current and potential
future research.

The list of contents, by its nature in the form of key words and key phrases, provides
a more comprehensive orientation of all the topics treated and their mutual dependence.

The book is divided into six major parts and, including this short introductory chapter,
into twenty chapters. Each part and each chapter begins with a description detailing
their respective subject matter. The part descriptions supply the bigger picture, while the
outlines at the beginnings of each chapter point more specifically to the topics treated.
Wherever this seemed to be helpful, we have attempted to supply further signposts about
what we have achieved and where we plan to go from there.

At various places, we also remark on the depth with which the topics are treated, what
may have been left out or will only be mentioned in passing, the relation to other parts
and chapters and the book’s intentions as a whole, and where to find alternative and
further specialized treatments of these topics.

In order to supply a rough overview, let us briefly summarize the major parts of the
book and their interrelationship.

Part I ranges from the fundamental concepts and tools required for an understanding
of strongly interacting quantum matter to the fundamental models that represent the
physical systems of strongly interacting quantum matter. In this book, we want to
investigate selected aspects of these models with a particular emphasis on the uses of
the exact methodology of the Bethe ansatz and of quantum integrability.

Part II is devoted to the quantum inverse scattering method and the algebraic Bethe
ansatz that demonstrate the quantum integrability of certain one-dimensional strongly
interacting quantum models and provide their exact solution. Our approach makes
decisive use of the intimate connection between these models and two-dimensional

Models of Quantum Matter: A First Course on Integrability and the Bethe Ansatz. Hans-Peter Eckle,
Oxford University Press (2019). © Hans-Peter Eckle. DOI: 10.1093/oso/9780199678839.001.0001
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2 Introduction

models of classical statistical mechanics. The concrete models we shall be enlisting in
this part are the Heisenberg quantum spin chain as one-dimensional quantum model
and the six-vertex model as two-dimensional classical statistical model.

In part III, we introduce the coordinate Bethe ansatz, the original approach Bethe
used to solve the Heisenberg quantum spin chain. Since this approach does not allow
us to understand why the models are quantum integrable, we shall address it only after
we discuss the algebraic Bethe ansatz and the quantum inverse scattering method. The
coordinate Bethe ansatz approach is, however, still extremely useful. We demonstrate this
again for the Heisenberg quantum spin chain and also for a gas of Bosons interacting via
δ-function potentials in one dimension.

Part IV is concerned with strongly interacting quantum models where the fundamen-
tal constituents have internal degrees of freedom. Our examples, the one-dimensional gas
of Fermions interacting via δ-function potentials, the one-dimensional Hubbard model,
and the Kondo model of a magnetic impurity interacting with conduction electrons, are
all electronic models where there is only one internal degree of freedom in addition to the
particle degree of freedom, which is electronic spin. We shall find that these models can
be solved by two interconnected Bethe ansätze. The method is thus called nested Bethe
ansatz.

Thus far, the Bethe ansatz methods discussed were mainly investigating the low-lying
and therefore zero temperature properties of the quantum models. In part V we examine
how to extend the Bethe ansatz to finite temperatures. Again, our quantum models of
choice will be the Heisenberg quantum spin chain and also the Bose gas interacting via
δ-function potentials in one dimension.

In part VI, the final part of the book, we relinquish another assumption we made
or had to make in order to find solutions of the Bethe ansatz equations, equations which
generally hold for a finite system. So far, we usually considered the thermodynamic limit,
the limit of an infinite system size. This limit allowed us to rewrite the Bethe ansatz
equations as linear integral equations for certain densities whose solutions characterized
solutions of the Bethe ansatz equations, but only, of course, for the thermodynamic limit.
The Bethe ansatz for finite systems attempts to find corrections to the Bethe ansatz
solutions and physical quantities, e.g. the ground state energy of the thermodynamic limit
that takes into account the finiteness of a system. Again, we inquire into how this can be
achieved using the Heisenberg quantum spin chain as our exemplary model system.

The focus of this book is on selected concepts, methods, and mathematical techniques
in the area of strongly interacting quantum matter systems, especially the various
Bethe ansatz techniques discussed. We hope that these techniques will prove useful
in future research in the area of strongly interacting quantum matter. We also hope
that some physical insight will be gained from the models of quantum matter used as
examples to demonstrate the concepts and techniques and will provide guidance for the
understanding of other systems not treated here.

For the most part, we shall use natural units where the speed of light, Boltzmann’s,
and Planck’s constants are

c = k ≡ kB = h̄ = 1, (1.1)

except when including the constants explicitly will render the results more transparent.
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Part 1

Methods and Models in the
Theory of Quantum Matter

Cannot we be content with experiment alone? No, that is impossible; that would be a
complete misunderstanding of the true character of science. The man of science must
work with method. Science is built up of facts, as a house is built of stones; but an
accumulation of facts is no more a science than a heap of stones is a house.

– Henri Poincaré (1854–1912)

This first part of the book presents an overview of the most important methods
indispensable for an understanding of the theory of strongly interacting quantum matter.
Moreover, we introduce a selection of quantum mechanical many-particle models and
the related concepts that form the background of the theory of quantum matter,
especially in view of the quantum integrable models, whose exact Bethe ansatz solutions
are discussed in later parts of the book. These methods and models are relevant also in
many other parts of theoretical and mathematical physics. It is therefore recommended
that readers review this material to judge how familiar they are with it.

These chapters, however, do not treat and do not attempt to treat their topics in a fully
comprehensive manner. There is always a lot more that could be covered. In fact, there
is a vast literature specifically devoted to these topics. Nevertheless, we attempt as clear
and comprehensible a treatment as possible of the aspects we cover with the intention to
render those aspects that we do cover self-contained. Where a self-contained treatment is
beyond the limitations of this book, we provide appropriate hints to the literature specially
devoted to these topics.

More specifically, in chapter 2, basic facts are reviewed from the quantum mechanics
of many-particle systems, in particular leading from the Hilbert spaces representing
quantum many-particle systems to a discussion of second quantization, which is the
language most useful to formulate the models of strongly interacting quantum matter.

Moreover, in chapter 3 we address the quantum mechanical theory of angular
momentum, especially for many quantum particles, which is indispensable for an
understanding of the magnetic properties of the models of strongly interacting quantum
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matter. These magnetic properties will be at the centre of much of our discussion of
quantum integrable models and their exact Bethe ansatz solutions.

Quantum many-particle theory is, of course, resting on the foundations of equilibrium
statistical mechanics, especially quantum statistical mechanics. But classical statistical
mechanics also will be necessary to appreciate the developments of quantum models
that are integrable by the Bethe ansatz method. An examination of the methods and
results of equilibrium statistical mechanics, both classical and quantum, will therefore be
a useful addition in this first part of the book, and which we take up in chapter 4.

Among the most fascinating phenomena of many-particle systems, again classical
and quantum, phase transitions and critical phenomena occupy a prominent place.
Their theoretical description is challenging and requires an arsenal of sophisticated and
innovative methods that are outlined in chapter 5, where we also analyse the approach
to the thermodynamic limit of systems of finite size.

There is an intimate connection between quantum field theory and (classical) sta-
tistical mechanics on which much of the quantum inverse scattering method and the
algebraic Bethe ansatz is founded. Chapter 6 offers an introduction to this immensely
useful connection, which will also play a central role in the subsequent chapter.

Bethe ansatz calculations for finite systems, being rather more involved than those in
the thermodynamic limit, produce results that can be directly compared to predictions
based on the conformal symmetry of two-dimensional classical statistical mechanics.
In order to fully appreciate this connection, chapter 7 offers an introduction into basic
aspects of the conformal symmetry of critical systems.

While the chapters described so far were mainly concerned with methods useful for
a thorough appreciation of the Bethe ansatz methodologies examined in later parts of
the book, chapter 8 of this first part introduces the physical background of a selection of
models of strongly interacting quantum matter together with methods to investigate and
understand them. The selection criteria have been whether appropriate versions of the
models exhibit quantum integrability and are solvable by Bethe ansatz. The quantum
many-particle models considered range from the Bose fluid to models of itinerant as
well as localized magnetism and to the Fermi liquid and ultimately to models of strong
light–matter interaction.
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2

Quantum Many-Particle Systems
and Second Quantization

One of the principal objects of theoretical research is to find the point of view from
which the subject appears in the greatest simplicity.

Josiah Willard Gibbs (1839–1903)

This chapter reviews some aspects of the quantum mechanics of systems composed of
many particles (many-body or many-particle systems), which will prove useful for the
later developments in this book. We mainly concentrate on the foundations of quantum
many-particle physics leading to the formalism of second quantization as a convenient
language for the formulation of the properties of the many-particle systems of quantum
matter.

Many-particle quantum systems can be described by a many-particle Schrödinger
equation, whose corresponding wave function depends on the configuration of the
particles, e.g. their positions ri and possibly further quantum numbers, e.g. the spin
quantum numbers σ i of the particles. In practice this approach is very cumbersome even
for quite modest numbers of particles, let alone for the macroscopic numbers of particles
of quantum statistical mechanics and condensed matter physics. Second quantization is
a formulation or language of many-particle quantum mechanics that helps to minimize
the technical complications of practical calculations for many-particle systems.

It is also the appropriate language of other branches of theoretical physics, most
notably quantum field theory (see, for example Lancaster and Blundell, 2014).

Two examples illustrate the usefulness of second quantization. In quantum field
theory as well as many applications of many-particle physics and condensed matter
physics, the number of particles is variable, i.e. particles can be created as well as
destroyed.1 Moreover, the Schrödinger equation, and hence the wave function, for a

1 As we shall see, the concept of creating and annihilating particles is a rather abstract one, especially for
Fermions, i.e. particles for which the Pauli exclusion principle applies. Richard Feynman, in his Nobel prize
acceptance speech (Feynman, 1965), alludes to this in a personal reminiscence: ‘I remember that when someone
had started to teach me about creation and annihilation operators, that this operator creates an electron, I said,
“how do you create an electron? It disagrees with the conservation of charge”, and in that way, I blocked my
mind from learning a very practical scheme of calculation.’

Models of Quantum Matter: A First Course on Integrability and the Bethe Ansatz. Hans-Peter Eckle,
Oxford University Press (2019). © Hans-Peter Eckle. DOI: 10.1093/oso/9780199678839.001.0001
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system of N = 1024 particles is different from those of a system of N = 1024 − 1 particles.
Yet, we expect both systems to exhibit the same macroscopic physics. In the language of
second quantization, which is specifically adapted to accommodate variable numbers of
particles, we can cope easily with both situations as detailed work in this chapter and in
chapter 4 on equilibrium statistical mechanics shows, as well as throughout many other
chapters of this book.

Second quantization is a standard topic of quantum many-particle theory and
treatments can be found in many books wholly or partly devoted to this topic. A
classic reference devoted to the method of second quantization is Berezin (1966). Some
standard references are the corresponding chapters of Abrikosov et al. (1975), Fetter
and Walecka (2003), Mahan (2000), and Negele and Orland (1998). More recent work
includes Nazarov and Danon (2013), Altland and Simons (2010), and Coleman (2015).
Of course, all of these works treat many more topics in the theory of quantum many-
particle physics.

In particular, applications of the method of second quantization can be found in
the cited works and in later chapters of this book, where we shall make ample use of
the language of second quantization. In this chapter, however, we concentrate on the
formalism, demonstrating its power with only a few elementary examples.

Section 2.1 of this chapter constructs the Hilbert spaces, the tensor product spaces,
and the Fock spaces, appropriate for the states of the many-particle system and then
section 2.2, selects from these Hilbert spaces the symmetrized many-particle states of
the many-particle Hilbert space that describe Bosons, where any number of particles
can occupy the same quantum state and the antisymmetrized many-particle states that
describe Fermions, where at most one particle can occupy the same quantum state.

This construction of Hilbert spaces is more general: for any quantum system com-
posed of subsystems, a Hilbert space can be constructed in the way we describe.
Therefore, we initially keep the discussion more general before we focus again on Hilbert
spaces composed of (many) quantum particles.

For the following few sections, we focus on the Bosonic case, before eventually also
discussing Fermions. In section 2.3, we introduce creation and annihilation operators
for Bosons. These operators are the main objects in which the formalism of second
quantization is expressed.

The creation and annihilation operators can be expressed in different orthonormal
and complete bases. The transformations of the creation and annihilation operators
between different abstract orthonormal and complete bases are derived in section 2.4,
while in section 2.5 the creation and annihilation operators in the position basis, then
called quantum field operators, are introduced as one of the most important examples.

Section 2.6 is devoted to the introduction of one-particle operators, section 2.7 to
two-particle operators in the formalism of second quantization.

An elementary introduction of second quantization starts from the time-dependent
single–particle Schrödinger equation of basic quantum mechanics. How this can be
achieved is demonstrated for Bosons in section 2.8 and for Fermions in section 2.10.

Section 2.9 finally returns to Fermions, introducing creation and annihilation opera-
tors for the Fermionic case.
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The penultimate section of this chapter, 2.11 demonstrates explicitly the equivalence
of the many-particle wave function and the formalism of second quantization, while the
final section 2.12 of this chapter touches on the issue of the correct ordering of creation
and annihilation operators, i.e. the normal ordering.

As a prelude to the formalism, we start with an elementary exercise: the quantum
treatment of the single particle one-dimensional harmonic oscillator in terms of creation
and annihilation operators, sometimes also called ladder operators. In this exercise we are
reminded of important notions that help illuminate the more formal treatment of the rest
of this chapter. Moreover, the algebraic structure encountered here will reappear many
times in this and in later chapters. Hence, it may be quite a good idea to go through this
elementary exercise to gain confidence for the more involved later developments.

.....................................................................................................................................

EXERCISE 2.1 Quantum mechanical harmonic oscillator The Hamiltonian of
the one-dimensional harmonic oscillator of a mass m and frequency ω is given in terms
of the position operator x and the momentum operator p = −i d

dx satisfying the canonical
commutation relation

[x, p] = i (2.1)

as

H = 1
2m

p2 + mω2

2
x2. (2.2)

Among the many ways to solve the Schrödinger equation of the harmonic oscillator, a
particularly elegant, and fruitful, way deconstructs the Hamiltonian (2.2) into operators,
the creation and annihilation operator, respectively

a† =
√

mω

2

(
x − i

1
mω

p
)

and a =
√

mω

2

(
x + i

1
mω

p
)

. (2.3)

• Show, using the ladder operators a and a†, that the canonical commutation relation
[x, p] = i becomes

[a, a†] = 1 (2.4)

and the Hamiltonian (2.2)

H = ω

(
a†a + 1

2

)
. (2.5)

• Furthermore, show that, if λ is the eigenvalue corresponding to the normalized
eigenstate |λ〉 of the operator � = a†a, then

a|λ〉 = cλ|λ − 1〉 (2.6)
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a†|λ〉 = dλ|λ + 1〉. (2.7)

• Calculate the coefficients cλ and dλ.
• Prove that λ ≥ 0 and that λ = 0 must be an eigenvalue. What is, hence, the spectrum

of eigenvalues of � and H, respectively? Show that this implies for the ground state
a|0〉 = 0.

• Use the representation (2.3) of the ladder operators as differential operators to
solve the Schrödinger equation for the ground state corresponding to λ = 0, i.e.
determine the ground state wave function 〈x|0〉.

• Determine the wave function of the first excited state by applying the creation
operator a† once to the ground state wave function.

The results obtained thus far suggest that the operator � can be interpreted as
an operator counting the number of excitations of the harmonic oscillator. In order
to make this even more suggestive let us change the notation and replace � by n and
|λ〉 by |n〉. Furthermore, as we shall see in more detail in this chapter, these results
suggest an interpretation of the excitations of the harmonic oscillator as particles or
quasiparticles. The state with no particles |0〉 then corresponds to the vacuum state.

• Show with the help of (2.6) and (2.7) that the properly normalized state of n
excitations or n particles is

|n〉 = 1√
n!

(
a†

)n |0〉. (2.8)

• Finally, to appreciate how fruitful this algebraic treatment of the harmonic oscillator
is, calculate the expectation values of the first few powers of the position operator
in the state |n〉, let us say x, x2, x3, and x4.

• Hint: Prove first that the number operator n = a†a, and hence the Hamiltonian
H = ω

(
a†a + 1

2

)
, are Hermitian operators and that therefore the corresponding

eigenstates, which are non–degenerate (why?), are orthogonal.

.....................................................................................................................................

With this exercise at the back of our minds, we can now start to develop the formalism
of second quantization by first constructing a Hilbert space appropriate for a quantum
many-particle system.

2.1 Many-particle Hilbert spaces

The formalism of ‘second quantization’2 provides an elegant and economic way to
describe a physical system containing a great, possibly indeterminate, number of

2 The name is a trifle unfortunate and originates from the interpretation of the algebra of ladder operators
(see exercise 2.1). These operators and their corresponding quantum excitations can be viewed as discrete
‘quantized’ units. It must be emphasized, however, that ‘second’ quantization is a representation of quantum
mechanics particularly suitable for problems involving many particles. It is not a quantizing an already quantized
theory. However, to be able to distinguish representations, we shall in places also have to use the equally
unfortunate epithet ‘first’ quantization.
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particles. It describes particles as quanta of a quantum field and is, hence, at the heart
of the modern understanding of quantum mechanics and quantum field theory.

We assume that the solution of the quantum problem for one particle is known, i.e.
we assume that

• there is a one-particle Hilbert space (quantum state space) H1, with, especially, the
scalar product 〈φ|ψ〉 of states |ψ〉, |φ〉 ∈ H1 from this Hilbert space;

• this means in particular, that the one-particle Schrödinger eigenvalue problem has
been solved for the single particle Hamiltonian H:

H|λ〉 = ελ|λ〉, (2.9)

where |λ〉 ∈ H1 is a normalized eigenstate and ελ the corresponding eigenvalue;

• furthermore, the time evolution of the particle is determined by the unitary operator
(ignoring the possibility of an explicitly time-dependent Hamiltonian)

U (t) = e−iHt; (2.10)

• lastly, observables such as position r, momentum p, angular momentum L, etc., of
the single particle problem have been determined.

Second quantization is a formalism permitting to construct quantities that correspond
to a system composed of an arbitrary, indeterminate number of such quantum particles
under the assumption that the statements above for a single particle hold true.

The basis of the formalism consists in constructing Hilbert spaces and states for an
arbitrary number of particles from the Hilbert space and states of a single particle.

2.1.1 Composite Hilbert space of two systems A and B

As mentioned in the introduction to this chapter, we begin with a more general point of
view. Assume that there are two quantum systems A and B which may but need not be
individual quantum particles. For instance, system A could denote a microscopic system,
while system B could represent a macroscopic measurement apparatus. Their respective
Hilbert spaces are H A and H B. We are interested in the composite quantum system AB.

We can construct a Hilbert space for the composite quantum system in two different
ways. Both ways begin by forming a space of all ordered pairs of states taken from the
Hilbert spaces H A and H B

M ≡ H A × H B =
{

F |F = ( f A, f B), f A ∈ H A, f B ∈ H B
}

(2.11)

which can be made into a composite Hilbert space by choosing a scalar product in two
different ways.
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2.1.1.1 Tensor product Hilbert space

The first construction is achieved through the introduction of a tensor product Hilbert
space H AB of two Hilbert spaces H A and H B, whose dimensions dim H A and
dim H B need not be the same,

H AB = H A ⊗ H B (2.12)

with dimension dim H AB = (dim H A)(dim H B). With respect to the composite Hilbert
space H AB, the Hilbert spaces H A and H B are called factor spaces.

It should be emphasized that already the Hilbert space of a single particle can be a
tensor product space as the example of the spin-orbit Hilbert space of a single particle
shows where

Hspin-orbit = Horbit ⊗ C 2 (2.13)

is the tensor product of the orbital Hilbert space Horbit of the particle with its two-
dimensional spin state space C 2.

Now the construction of the tensor product Hilbert space H AB proceeds as follows.
For each pair of states f A ≡ |ψA〉 ∈ H A and f B ≡ |ϕB〉 ∈ H B there is a (formal)
product state F for which different notations are in use

F ≡ |ψAB〉 ≡ |ψA〉 ⊗ |ϕB〉 ≡ |ψA〉|ϕB〉 ≡ |ψA, ϕB〉 ≡ |ψ , ϕ〉. (2.14)

These notations, going from left to right, emphasize less and less that the states belong
to, in general, different Hilbert spaces. Hence, their use requires more and more caution
and a clear understanding of their meaning in particular situations.

The composite states are linear in each of their factors separately, i.e.

|ψA〉 ⊗ |
(
λ|ϕB

1 〉 + μ|ϕB
2 〉

)
= λ|ψA〉 ⊗ |ϕB

1 〉 + μ|ψA〉 ⊗ |ϕB
2 〉, (2.15)

(
λ|ψA

1 〉 + μ|ψ2〉
)

⊗ |ϕB〉 = λ|ψA
1 〉 ⊗ |ϕB〉 + μ|ψA

2 〉 ⊗ |ϕB〉 (2.16)

with complex numbers λ and μ.
The scalar product between composite states is formed in a space-wise manner by

〈ψA|〈ϕB| · |ξA〉|ζB〉 = 〈ψA|ξA〉〈ϕB|ζB〉. (2.17)

In order to obtain a composite Hilbert space H AB large enough to contain states that
cannot be written as pure product states, i.e. states of the form

|ψA
1 〉 ⊗ |φB

1 〉 + |ψA
2 〉 ⊗ |φB

2 〉 (2.18)
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we need to consider the linear span (also called linear hull) of the space M . This is
achieved by taking bases of the factor Hilbert spaces H A and H B, e.g. {|nA〉} and {|mB〉},
to form a basis of the composite Hilbert space H AB

{|nA〉 ⊗ |mB〉}, (2.19)

a so-called (tensor) product basis, in the sense that all states of the form

|ψAB〉 =
∑
n,m

cn,m|nA〉 ⊗ |mB〉 (2.20)

with complex numbers cn, m as expansion coefficients, i.e. the linear span of M , define
the composite Hilbert space H AB.

Since an orthonormal basis in H AB satisfies, using (2.17),

〈nA, mB|pA, qB〉 = 〈nA|pA〉〈mB|qB〉 = δnpδmq, (2.21)

that is, the basis of the composite Hilbert space is orthonormal if the bases of the factor
states are orthonormal, we obtain for the scalar product of two states of the form (2.20)

〈ψAB
1 |ψAB

2 〉 =
∑
n,m

c(1)∗
nm c(2)

nm, (2.22)

which completes the construction of the composite Hilbert space H AB.
Using the notion of a product Hilbert space H AB, we are now in a position to

introduce in a formal way an important notion at the heart of many investigations in
quantum physics. It is the notion of quantum entanglement, which goes back to important
publications by Einstein, Podolsky, and Rosen 1935, and especially by Schrödinger
(1935). A composite state in H AB is called entangled if it cannot be represented as a
product state but only as a superposition of product states, as in (2.20).

Examples of composite states that cannot be written as product states are the so-called
Bell states

|AB± 〉 = 1√
2

(
|0A, 0B〉 ± |1A, 1B〉

)
(2.23)

|�AB± 〉 = 1√
2

(
|0A, 1B〉 ± |1A, 0B〉

)
, (2.24)

which are states in the composite Hilbert space

H AB = H A
2 ⊗ H B

2 (2.25)
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where the factor states describe two-level systems or so-called qubits. These states are
maximally entangled states. Details about maximally entangled states and entanglement
measures in general can be found in Audretsch (2007).

2.1.1.2 Composite Hilbert space as a direct sum

However, a different way is also possible to construct a composite Hilbert space from the
Hilbert spaces H A and H B of the two quantum systems A and B. The starting point is
again the space M of ordered pairs of states given in (2.11).

However, now we define the scalar product of two states F = ( f A, f B) ≡ |ψAB〉 ≡
(|ψA〉, |ψB〉) and G = (g A, gB) ≡ |ϕAB〉 ≡ (|ϕA〉, |ϕB〉) from M as

F · G = f A · g A + f B · g B ≡ 〈ψAB|ϕAB〉 ≡ 〈ψA|ϕA〉 + 〈ψB|ϕB〉. (2.26)

This definition of a scalar product for the space M makes it into a composite Hilbert
space H̃ AB different from the tensor product Hilbert space H AB we constructed in
the previous section. This composite Hilbert space is called a direct sum space and is
denoted

H̃ AB = H A ⊕ H B. (2.27)

In order to avoid possible confusion, we mention that multiplication by a complex
number λ is to be understood component-wise

λF =
(
λf A, λf B

)
= λ|ψAB〉 =

(
λ|ψA〉, λ|ψB〉

)
, (2.28)

in contrast to the tensor product Hilbert space H AB where

λ|ψAB〉 =
(
λ|ψA〉

)
|ψB〉 = |ψA〉

(
λ|ψB〉

)
= λ|ψA〉|ψB〉. (2.29)

We encounter this important kind of space later under the name of Fock space when
we discuss situations involving particle production and destruction and, hence, need a
Hilbert space with a variable number of particles.

There we shall also need the notion of orthogonality for states from different Hilbert
spaces that can be conveniently defined using a direct sum of these spaces. We extend
the vectors f A ∈ H A and g B ∈ H B to the space H = H A ⊕ H B by defining

F0 ≡
(

f A, 0
)

, (2.30)

G0 ≡
(

0, g B
)

. (2.31)
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Calculating the scalar product (2.26) of these two special vectors of H , we discover the
important result

F0 · G0 = f A · 0 + 0 · g B = 0, (2.32)

namely, that states from different subspaces of a direct sum Hilbert space are orthogonal
to each other.

2.1.2 Case of many distinguishable particles

The construction of a composite Hilbert space consisting of the Hilbert spaces of
two subsystems, discussed in the previous section, can easily be generalized to the
case of many subsystems. From now on we focus on the case of many subsystems
where each subsystem is a single quantum particle. In constructing the many-particle
Hilbert space, let us assume for the time being that the particles are distinguishable. Of
course, in quantum physics, we encounter many situations where particles are indeed
distinguishable, e.g. the electron and proton forming a hydrogen atom are distinguishable
quantum particles.

The Hilbert space of a system composed of exactly N particles is given by the tensor
product Hilbert space of N copies of the single-particle Hilbert space H1 with dimension
dim H1:

H ⊗N
1 ≡

N∏
i=1

⊗H1 ≡ H1 ⊗ H1 ⊗ · · · ⊗ H1︸ ︷︷ ︸
N

(2.33)

The states of this Hilbert space are formed from linear combinations of product states
of the form (cp. (2.14))

|ϕ1, ϕ2, . . . , ϕN 〉 = |ϕ1〉|ϕ2〉 . . . |ϕN 〉, |ϕi〉 ∈ H1. (2.34)

Such a state vector represents a state of the system where the first particle is in state |ϕ1〉,
the second in the state |ϕ2〉, . . ., and the Nth in the state |ϕN 〉. Crucially, we note that the
states of different particles may coincide, i.e. that the possibility

|ϕi〉 = |ϕj〉 (2.35)

for particles i �= j must be taken into account.
The scalar product in H ⊗N

1 is defined by generalizing (2.17)

〈ϕ1, ϕ2, . . . , ϕN |ψ1, ψ2, . . . , ψN 〉 = 〈ϕ1|ψ1〉〈ϕ2|ψ2〉 · · · , 〈ϕN |ψN 〉. (2.36)
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In order to be able to consider a state with zero particles, we formally introduce a one-
dimensional Hilbert space V , the vacuum space,

V ≡ H ⊗0
1 (2.37)

which contains only one normalized basis state, the zero particle or vacuum state |0〉, i.e.
〈0|0〉 = 1.

To each basis of H1, there corresponds a basis of H ⊗N
1 . Explicitly this statement

means that, if a set of orthonormal vectors |k〉 (k = 1, . . . , dim H1 ≡ M) spans the
one-particle Hilbert space H1, then the set of vectors

|k1, k2, . . . , kM〉 = |k1〉|k2〉 . . . |kM〉 (2.38)

forms an orthonormal basis of H ⊗n
1 , i.e. with complex numbers ck, we have for each

single-particle state |ϕ〉

|ϕ〉 =
M∑

k=1

ck|k〉. (2.39)

The number of single-particle basis states |k〉, i.e. dim H1 = M, depends on the concrete
single-particle problem at hand and may be finite or infinite, or there can be a continuous
dependence, e.g. for a free particle described by a plane wave of continuous momentum
p. In the latter case, the sum in (2.39) will be replaced by an integral over the appropriate
range of the continuous variable k.

If the number of particles of the system is indeterminate, the states of the system are
obtained by superposition of states that correspond to each possible value of N. The state
space is the direct sum of all state spaces H ⊗N

1 for N = 0, 1, 2, . . .:

H = H ⊗0
1 ⊕ H ⊗1

1 ⊕ H ⊗2
1 ⊕ . . . ≡

∞∑
N=0

H ⊗N
1 . (2.40)

The state space H is defined by its subspaces H ⊗N
1 . More precisely, if |ϕ(N)〉 denotes

an arbitrary state vector of H ⊗N
1 , then a state in H is defined as an infinite series of

states with particle numbers N = 0, 1, 2, . . . which we can formally write as a sum (cp.
section 2.1.1.2)

(
|ϕ(0)〉, |ϕ(1)〉, . . . , |ϕ(N)〉, . . .

)
≡ |ϕ(0)〉 + |ϕ(1)〉 + . . . + |ϕ(N)〉 + . . . (2.41)

and the scalar product of this state with another state |ψ(0)〉 + |ψ(1)〉 + . . . + |ψ(N)〉 +
. . . of H is given by
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∞∑
N=0

〈ϕ(N)|ψ(N)〉 (2.42)

where the scalar products 〈ϕ(N)|ψ(N)〉 are calculated according to equation (2.36).
The vacuum state for N = 0 is here denoted by |ϕ(0)〉 = α|0〉, for some complex
number α.

Using the notation of (2.38), the set of states of the form

|0〉, |k〉, |k1, k2〉, . . . , |k1, k2, . . . , kN 〉, . . . (2.43)

is a complete orthonormal basis of H , i.e.

〈0|0〉 = 1,

〈k|k′〉 = δkk′ , (2.44)

〈k1, k2|k′
1, k′

2〉 = δk1k′
1
δk2k′

2
,

. . .

and

|0〉〈0| = I,∑
k

|k〉〈k| = I, (2.45)

∑
k1,k2

|k1, k2〉〈k1, k2| = I,

. . . .

2.1.3 Case of many indistinguishable particles

At the microscopic level, quantum particles of the same kind, e.g. two electrons or two
Helium atoms, are indistinguishable, except for possible inner degrees of freedom of the
particles, e.g. spin.

For a system of N indistinguishable particles, also called identical particles, the
HamiltonianH depends on the dynamical and internal degrees of freedom of all particles.
However, indistinguishability implies that the Hamiltonian cannot change if the degrees
of freedom of two arbitrary particles i and j are exchanged

H = H(1, 2, . . . , i, . . . , j, . . . , N) = H(1, 2, . . . , j, . . . , i, . . . , N), (2.46)

where the labels 1, 2, . . ., i, . . ., j, . . ., N represent the degrees of freedom of the particles,
e.g. their momenta, positions, and internal degrees of freedom, e.g. spin.
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The corresponding many-particle state

|ϕ〉 = |ϕ1, ϕ2, . . . , ϕN 〉 = |ϕ1〉|ϕ2〉 . . . |ϕN 〉 (2.47)

of this assembly of N indistinguishable quantum particles is, under exchange of two
arbitrary particles, either totally symmetric or totally antisymmetric. This can be seen
by acting with the operator exchanging two arbitrary particles, i and j, on a state of N
identical particles

Tij |ϕ1, ϕ2, . . . , ϕi , . . . , ϕj , . . . , ϕN 〉 = |ϕ1, ϕ2, . . . , ϕj , . . . , ϕi , . . . , ϕN 〉 (2.48)

= ηij |ϕ1, ϕ2, . . . , ϕi , . . . , ϕj , . . . , ϕN 〉, (2.49)

which produces a state that may not be physically different from the original state, so
that there can only be a phase factor

ηij = eiαij . (2.50)

Moreover, because of

Tji = Tij (2.51)

we have

T 2
ij = 1 (2.52)

and, hence

ηij = ±1. (2.53)

Lastly, the phase factor must be the same for all pairs (i, j) of particles because the
exchange operators, and thus the phases, satisfy

TijTjk = TkiTij and ηijηjk = ηkiηij , (2.54)

hence

ηjk = ηki = η = ±1 (2.55)

the phase factors are the same for all pairs of particles because the choice of particles i,
j, and k has been arbitrary.

The validity of (2.54) is easiest seen graphically (Figure 2.1).
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Figure 2.1 Action of two pairs of particle exchange operators leading to the same final state.

These results imply that there are only two types of quantum particles:

• η = +1 particles whose states are symmetrical under particle exchange,

• η = −1 particles whose states are antisymmetrical under particle exchange.

2.1.3.1 Pauli exclusion principle

As an immediate consequence of the restriction of the eigenvalues of the transposition
operator to only two allowed values η = ±1, (2.55), we obtain an important result that is
connected to Wolfgang Pauli’s name: the exclusion principle in its form for many-particle
systems.

While the case η = +1 imposes no restriction on the many-particle state

|ϕ〉 = |ϕ1, ϕ2, . . . , ϕi , . . . , ϕj , . . . , ϕN 〉 = |ϕ1〉|ϕ2〉 . . . |ϕi〉 . . . , |ϕj〉 . . . , |ϕN 〉 (2.56)

if two single-particle states in it are equal, e.g. |ϕi〉 = |ϕj〉, the case η = −1 implies that
the many-particle state |ϕ〉 vanishes if two single-particle states in it are equal.

Many-particle states with η = +1 under exchange of single-particle states describe
systems of Bose particles, or Bosons. Many-particle states with η = −1 under exchange of
single-particle states describe systems of Fermi particles, or Fermions. These two possi-
bilities are the only two possibilities for quantum particles under ordinary circumstances
(with an exception). The two kinds of particles show clearly distinct properties.

Thus we can state the famous Pauli exclusion principle:

• The probability for a many-particle state to contain two or more Fermions in the
same single-particle state vanishes.
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• In other words, it is impossible that two Fermions in a many-Fermion state coincide
in all quantum variables, e.g. in position and spin quantum number.

• There can be at most one Fermion in each single-particle state of a many-Fermion
state.

Such a many-particle state is, however, quite possible for Bosons, as we have seen. A
many-particle Bosonic state can contain an arbitrary number of Bosons, described by
equal single-particle states.

A few further remarks are in order at this stage.

• In another important contribution, Wolfgang Pauli (1940) proved by his famous
spin-statistics theorem that Bosons carry integer spin, s = 0, 1, 2 . . . , while
Fermions carry half-integer spin, s = 1/2, 3/2, . . ..

• The following sections discuss the drastic consequences of this distinction. Fur-
thermore, the two types of particle exhibit very different statistical behaviour as we
discuss in chapter 4. This fact is also the reason for the name of the famous theorem
Pauli proved.

• Note that the spin-statistics theorem depends on the spatial dimension. It pre-
supposes three (or more) space dimensions. In lower dimensions, the behaviour
of particles under exchange may offer much richer possibilities. This has been
demonstrated by Leinaas and Myrheim (1977) and has been a major research
area of theoretical physics of low-dimensional systems ever since. The postulated
particles of fractional statistics, called anyons, play a major role in the physics of the
quantum Hall effect. For recent reviews of anyons in relation to the quantum Hall
effect, see Stern (2008) and Stern (2010).

.....................................................................................................................................

EXERCISE 2.2 Consequence of the indistinguishability of particles For this
exercise we first need to show that any permutation P of the permutation group SN
is a unitary operator, i.e.

P† = P−1. (2.57)

Reminder: Permutations are defined as arrangements of the numbers (1, 2, . . ., N) in a
particular sequence and written as P = (p1, p2, . . . , pN ). The number of arrangements
of N numbers (1, 2, . . ., N) is a(N) = N !. The permutations of N numbers form a
group SN with I = (1, 2, . . . , N) as identity element. A pair of numbers pi and pj in the
permutation P for which pi > pj form an inversion. A permutation with an even number
of inversions is called even, a permutation with an odd number of inversions is called
odd. Each permutation is thus characterized by

χ(P) = e J(P) = ±1 (2.58)

where J(P) is the number of inversions and χ(P) = +1 for an even, χ(P) = −1 for an
odd permutation.
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The indistinguishability of quantum particles means that there can be no observable
O of the many-particle system that can be used to distinguish the particles.

Express this requirement as a relation between the observable O and an arbitrary
permutation P ∈ SN . You may want to start from the expressions for the expectation
values of the observable O in an arbitrary many-particle state |ψ〉 and the permuted state
P|ψ〉.
.....................................................................................................................................

2.2 Occupation number representation:
Bosons and Fermions

The states in H ⊗N
1 and H = ∑

N H ⊗N
1 behave in complicated ways under the

exchange of pairs of particles. To describe this behaviour would require the full
representation theory of the permutation group SN . However, as we have seen, for
indistinguishable particles, we only need to consider many-particle states that are
symmetric or antisymmetric under particle exchange, which corresponds to two simple
one-dimensional representations of the permutation group. Only those states which
remain either completely unchanged or only change by an overall sign, corresponding to
η = ±1, are physically relevant.

In order to project out the physically relevant basis states, we introduce sym-
metrization S and antisymmetrization A operators for a fixed number N of particles.
The symmetrization operator S produces states which automatically satisfy η = 1 by
permuting the basis states to form a permanent

S|k1, k2, . . . , kN 〉 = 1√
N !N1! · · · NM !

∑
P

|ki1 , ki2 , . . . , kiN 〉 (2.59)

where the sum is taken over the N ! permutations of the basis states |ki1〉, . . . , |kiN 〉. The
factor 1/

√
N ! normalizes the sum consisting of N ! terms.

As discussed, not all single-particle basis states in the many-particle basis state must
be different (cf. the discussion with respect to 2.35). In order not to overcount basis
states for which this happens, we introduce the factors Nl ! for l = 1, . . ., M with M ≤ N,
the numbers Nl counting the basis states in |k1, k2, . . ., kN 〉 which are equal. M = N
corresponds to all basis states being different, i.e. all Nl = 1. The numbers Nl , which here
appear for normalization purposes, will obtain a physical interpretation as occupation
numbers of the corresponding states and, thus, play an important role in the following
developments.

Similarly, we introduce an antisymmetrization operator A

A|k1, k2, . . . , kN 〉 = 1√
N !

∑
P

(−1)P |ki1 , ki2 , . . . , kiN 〉, (2.60)
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where the sum is over all N ! permutations P of 1, 2, . . ., N. As opposed to the
symmetrized state, (2.59), we can disregard multiple single-particle states because their
contribution to (2.60) vanishes by construction as is required from an antisymmetrical
many-particle state.

The real space wave function 〈r1, r2, . . . , rN |A|k1, k2, . . . , kN 〉 then becomes a deter-
minant, called the Slater determinant,

〈r1, r2, . . . , rN |A|k1, k2, . . . , kN 〉 = 1√
N !

∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN (r1)

ϕ1(r2) ϕ2(r2) · · · ϕN (r2)
...

...
. . .

...
ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣
(2.61)

where ϕi(rj) = 〈rj |ki〉.

2.2.1 Fock spaces for Bosons and Fermions

We now come back to our goal to deal with systems where the number of particles is
indeterminate, potentially even infinite. In order to achieve this, we recall that the notion
of a composite Hilbert space as a direct sum introduced in section 2.1.1.2 allowed us to
construct a composite Hilbert space H for an indeterminate number of particles as a
direct sum of composite tensor product Hilbert spaces H ⊗N

1 each for a fixed number
N = 0, 1, 2, . . . of particles (cf. 2.40)

H = H ⊗0
1 ⊕ H ⊗1

1 ⊕ H ⊗2
1 ⊕ . . . ≡

∞∑
N=0

H ⊗N
1 . (2.62)

This Hilbert space can be symmetrized or antisymmetrized by performing the corre-
sponding operation on all many-particle basis states for a fixed number N of particles, as
described in section 2.1.2. The Hilbert spaces SH and AH constructed in this way are
subspaces of H , called Fock spaces, describing Bosonic and Fermionic many-particle
spaces where the numbers of Bosons and Fermions are indeterminate.

The many-particle states (2.59) and (2.60) for N = 0, 1, 2, . . . form bases of the
respective Fock spaces, which can be characterized by the sequence of occupation
numbers Nl and written as

|φ〉 = (S/A)|k1, k2, . . . , kN 〉 ≡ |N1, N2, . . .〉 = |{N}〉 (2.63)

with Nl = 0, 1, 2, . . . for Bosons (S), and Nl = 0, 1 for Fermions (A). The occupation
numbers Nl completely characterize the state |φ〉. Viewed as a state in the Fock space, the
state |φ〉 has an infinite number of occupation number levels labelled by l = 1, 2, . . . ∞.
Nevertheless, each state |φ〉 contains a fixed number of particles
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N =
∞∑

l=1

Nl . (2.64)

However, an important new feature the construction of the Fock spaces generates is
that the total number of particles in these spaces is not fixed any more as it was in each
tensor product many-particle Hilbert space. It is now rather a dynamic variable whose
corresponding operator we obtain in the following section.

The states |φ〉 form a complete orthonormal set of many-particle states

〈N1, N2, . . . |N ′
1, N ′

2, . . .〉 = δN1N ′
1
δN2N ′

2
. . . (2.65)

and

∑
N1,N2,...

|N1, N2, . . .〉〈N ′
1, N ′

2, . . . | = I. (2.66)

.....................................................................................................................................

EXERCISE 2.3 Properties of symmetrization and antisymmetrization opera-
tors Show that the symmetrization and antisymmetrization operators have the following
properties:

• S and A are Hermitian operators.
• S and A are idempotent, i.e. S2 = S and A2 = A.
• S and A are orthogonal, i.e. SA = AS = 0.

.....................................................................................................................................

In the following, we treat the cases of Bosons and Fermions separately, beginning in
the next section with the Bose case.

2.3 Creation and annihilation operators for Bosons

This section concentrates on the Bosonic case while Fermions are discussed in sec-
tion 2.9.

On the Fock space SH , we define an operator a†
i acting on occupation level i of the

state |φ〉 as

a†
i |φ〉 = √

Ni + 1|φ′〉 = √
Ni + 1|N1, . . . , Ni + 1, . . .〉. (2.67)

This operator, called a creation operator, creates a particle in the occupation level i of
the many-particle state |φ〉. It is important to note that, while |φ〉 is a many-particle state
with N particles, the state |φ′〉 is a many-particle state with N + 1 particles. However,
both states are states in the direct sum Hilbert or Fock space SH . The Fock space SH
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has been constructed expressly for the purpose of accommodating the action of creation
operators a†

i for i = 1, 2, . . ..
Similarly, we define an operator ai

ai|φ〉 = √
Ni|φ′′〉 = √

Ni|N1, . . . , Ni − 1, . . . , Nl〉 (2.68)

which annihilates a particle in the occupation level i of the many-particle state |φ〉, and
hence is called an annihilation operator. From these definitions it is easy to demonstrate
that a†

i and ai are, as the notation suggests, mutually adjoint operators. Hence, the two
definitions are not independent of each other and one would have sufficed since it implies
the other.

The creation and annihilation operators ai
† and ai permit a convenient representation

of the many-particle state |φ〉. By repeated application of the annihilation operator ai for
i = 1, 2, . . . all particles in a given state |φ〉 can be eliminated one by one and we arrive
at an empty, no–particle, or vacuum, state

|vac〉 = |0, 0, 0, 0, . . .〉 ∈ SH . (2.69)

This state has formally to be distinguished from the empty state |0〉 ∈ H⊗0. One more
application of an arbitrary annihilation operator ai

ai|vac〉 = ai|0, 0, 0, 0, . . .〉 = 0 (2.70)

annihilates the vacuum state altogether.
On the other hand, applying creation operators ai

† for i = 1, 2, . . . on the vacuum state
|vac〉 we can built up any many-particle state |φ〉 one particle at a time. For example, a
many–particle basis state with just one particle has the form

|1α〉 = a†
α|vac〉 = |0, 0, . . . , 0, Nα = 1, 0, . . .〉. (2.71)

We shall call such a many-particle state a one-particle state to contrast it with the single-
particle states |k〉. Later, we will shall also need two-particle states

|1α1β〉 = a†
αa†

β |vac〉 = |0, 0, . . . , 0, Nα = 1, 0, . . . , 0, Nβ = 1, 0, . . .〉, (2.72)

|2α〉 = 1√
2!

(
a†
α

)2 |vac〉 = |0, 0, . . . , 0, Nα = 2, 0, . . .〉. (2.73)

As shown in previous sections, Bosonic, as well as Fermionic, many-particle states are
characterized by their behaviour under the exchange of pairs of particles. Building up
a general many-particle basis state by repeated application of creation operators will
have to be consistent with this symmetry under pairwise exchange of particles. This
is guaranteed for Bosons by the commutation relations



OUP CORRECTED PROOF – FINAL, 11/6/2019, SPi

Creation and annihilation operators for Bosons 23

[ai , aj] = [a†
i , a†

j ] = 0, [ai , a†
j ] = δij (2.74)

which can be verified by evaluating the action of the commutators on an arbitrary many-
particle state |φ〉.

The general many-particle basis state in the Fock space SH can now be written with
the help of the creation operators a†

i for i = 1, 2, . . .

|φ〉 = |N1, N2, . . . , Nα, . . .〉 (2.75)

= 1√
N1!N2! . . . Nα! . . .

(
a†

1

)N1
(

a†
2

)N2
. . .

(
a†
α

)Nα

. . . |vac〉 (2.76)

or, due to the commutation relations, in any other permuted order of the creation
operators acting on the vacuum state.

From the definitions (2.67) and (2.68) we also obtain

a†
i ai|φ〉 = Ni|φ〉 (2.77)

and

aia
†
i |φ〉 = (Ni + 1)|φ〉. (2.78)

This justifies the interpretation of the operator

ni = a†
i ai (2.79)

as the operator that counts the number of particles in the occupation level i of the many–
particle state |φ〉, the particle number operator. The total particle number operator is
thus

N =
∞∑

i=1

ni =
∞∑

i=1

a†
i ai . (2.80)

.....................................................................................................................................

EXERCISE 2.4 Bogoliubov transformation for Bosons A canonical transformation
of the form

b = ua + va†, (2.81)

b† = ua† + va, (2.82)

where u and v are real, is called a Bogoliubov transformation (after the mathematician
and theoretical physicist Nikolai Bogoliubov).

Derive the condition under which the Bose commutation relations are preserved.
.....................................................................................................................................
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The following exercises furnish us with useful formulas for calculations involving
Bosonic creation and annihilation operators.

However, let us start with a useful property of operator-valued functions, which are
defined by a power series

f (O) =
∞∑

n=0

a(n)On (2.83)

with complex numbers a(n).

.....................................................................................................................................

EXERCISE 2.5 Operator relation Show that for operators O and P and an operator-
valued function f (O), defined by the power series (2.83), the equation

P−1f (O)P = f (P−1OP) (2.84)

holds.
This equation is particularly useful for the exponential function

f (O) = eO, (2.85)

for which it becomes

P−1eOP = e
(
P−1OP

)
. (2.86)

.....................................................................................................................................

The result of this exercise will prove useful for exercise 2.7.
Here are the first set of exercises that expound important relations for Bosonic creation

and annihilation operators.

.....................................................................................................................................

EXERCISE 2.6 Functions of Bosonic creation and annihilation operators A
function f (b, b†) of the Bosonic operators b and b† is defined by its power series with
respect to the two arguments, i.e.

f (b, b†) =
∞∑

n,m=0

a(n, m)bn(b†)m (2.87)

with complex numbers a(n, m).

• Show that the following generalized commutator relations

bf (b, b†) − f (b, b†)b = ∂f (b, b†)

∂b†
, (2.88)
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b†f (b, b†) − f (b, b†)b† = −∂f (b, b†)

∂b
. (2.89)

are satisfied.
• Starting from the elementary commutation relation

bb† − b†b = 1 (2.90)

prove first, by complete induction, the special case of, e.g., (2.88)

b(b†)n − (b†)nb = n(b†)n−1. (2.91)

• Show that the relations (2.88) and (2.89) imply

e−αb†
beαb† = b + α, (2.92)

e−αbb†eαb = b† − α (2.93)

for any complex number α.

More generally, you may want to show that

U†bU = b + α (2.94)

U†b†U = b† + α∗ (2.95)

with the unitary operator

U = eαb†−α∗b = e−|α|/2eαb†
e−α∗b. (2.96)

EXERCISE 2.7 Factorization of the exponential function For this exercise the
result of exercise 2.5 will prove useful.

Show that the exponential function of a sum of a creation and an annihilation operator
can be factorized

eαb†+βb = eαb†
eβbe

αβ
2 = eβbeαb†

e−
αβ
2 . (2.97)

EXERCISE 2.8 Commutation with an exponential of b†b Derive the formulas

eαb†bbe−αb†b = e−αb (2.98)

eαb†bb†e−αb†b = eαb† (2.99)

which can also be written in the form of commutation relations

be−αb†b = e−αe−αb†bb (2.100)

b†e−αb†b = eαe−αb†bb†. (2.101)

.....................................................................................................................................
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2.4 Basis transformation

The states |1α〉 we constructed in (2.71), special cases of the many-particle states |φ〉 =
|N1, N2, . . .〉, are one-particle states in the many-particle Fock space. These states are in
themselves orthonormal and complete

〈1α|1β〉 = δαβ , (2.102)

∑
α

|1α〉〈1α| = I, (2.103)

and hence, they form a many-particle basis {|1α}. They are useful for a number of
purposes where the fully general many-particle state |φ〉 would obscure the argument.

The creation and annihilation operators have been defined using the general many-
particle state |φ〉, but an equivalent definition makes use of only the one-particle states

a†
α|0〉 = |1α〉, (2.104)

aα|1β〉 = δαβ |0〉. (2.105)

We now want to see how they transform under a basis transformation {|1α〉} → {|1i}.
Different basis states {|1α〉} and {|1i〉} are mutually related via the completeness

relations

|1α〉 =
∑

i

|1i〉〈1i|1α〉, (2.106)

|1i〉 =
∑
α

|1α〉〈1α|1i〉. (2.107)

The creation and annihilation operators which use the specific one-particle basis states
{|1α〉}, are transformed by the unitary transformations

a†
i =

∑
α

〈1α|1i〉a†
α, (2.108)

ai =
∑
α

〈1i|1α〉aα, (2.109)

such that in the new basis the corresponding relations

|1i〉 = a†
i |0〉, (2.110)

|0〉 = ai|1i〉 (2.111)

hold as expected.



OUP CORRECTED PROOF – FINAL, 11/6/2019, SPi

Quantum field operators 27

The inverse transformations are

a†
α =

∑
i

〈1i|1α〉a†
i , (2.112)

aα =
∑

i

〈1α|1i〉ai . (2.113)

These relations for the creation and annihilation operators, together with the complete-
ness relations in the different bases, are mutually consistent.

In the next section we exploit a particularly important case of basis transformation,
which involves one-particle and two-particle basis states of well-defined position r

{|1α〉} = {|r〉}, (2.114)

where orthonormality and completeness take the form

〈r|r′〉 = δ(r − r′), (2.115)

∫
d3r |r〉〈r| = I (2.116)

The resulting operators are called quantum field creation and annihilation operators.

2.5 Quantum field operators

So far, the states have been states of an abstract Hilbert space, and, consequently, the
creation and annihilation operators have been acting in abstract Hilbert spaces.

We now use for the following developments of investigating quantum field operators,
as prepared in Section 2.4, the transformation to the particular position basis {|r〉}, i.e. we
deal with the creation and annihilation of particles at definite points r in physical space.
This can be achieved by introducing quantum field operators for creating and annihilating
particles at position r using the following transformations, which are special cases of the
general transformations discussed earlier

a†
α → ψ†(r) =

∑
α

〈1α|r〉a†
α =

∑
α

u∗
α(r)a†

α, (2.117)

and

aα → ψ(r) =
∑
α

〈r|1α〉aα =
∑
α

uα(r)aα, (2.118)
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where uα(r) is the wave function of the one-particle state |1α〉. The quantum field
operators create and annihilate, respectively, a particle at position r

ψ†(r)|0〉 = |r〉, (2.119)

ψ(r)|r′〉 = δ(r − r′)|0〉. (2.120)

The inverse transformations are

a†
α =

∫
d3r 〈r|1α〉ψ†(r) =

∫
d3r uα(r)ψ†(r) (2.121)

and

aα =
∫

d3r 〈1α|r〉ψσ (r) =
∫

d3r u∗
α(r)ψ(r). (2.122)

The number of particles at point r in a small volume d3r is

ψ†(r)ψ(r)d3r = ρ(r)d3r, (2.123)

and, hence, the total number of particles

N =
∫

d3r ρ(r) =
∫

d3r ψ†(r)ψ(r). (2.124)

The commutators become
[
ψ†(r), ψ†(r′)

]
= 0, (2.125)

[
ψ(r), ψ(r′)

] = 0, (2.126)

[
ψ(r), ψ†(r′)

]
= δ(r − r′). (2.127)

We close this section with an elementary example.

Examples 1 Free particle in a box A simple but important example is provided by
choosing the abstract one-particle basis {1i} in (2.108) and (2.109) to be the basis
of momentum eigenstates {|k〉} with

pi|k〉 = k|k〉, (2.128)

∑
k

|k〉〈k| = I, (2.129)

〈k|k′〉 = δkk′ . (2.130)
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We obtain

a†
k =

∑
α

〈1α|k〉a†
α =

∑
α

∫
d3r 〈1α|r〉〈r|k〉a†

α =
∫

d3r 〈r|k〉ψ†(r), (2.131)

ak =
∑
α

〈k|1α〉aα =
∑
α

∫
d3r 〈k|r〉〈r|1α〉aα =

∫
d3r 〈k|r〉ψ(r), (2.132)

where we have used (2.117) and (2.118). The functions

〈r|k〉 = (〈k|r〉)∗ = uk(r) = ei k·r (2.133)

where the wave vector k is given by

k = 2π

L

⎛
⎝ n1

n2
n3

⎞
⎠ , ni ∈ N. (2.134)

describe a free particle confined to a cubic volume V = L3 and subject to periodic
boundary conditions. The final result for creation and annihilation operators is then
given by

a†
k =

∫
d3r ei k·rψ†(r), (2.135)

and

ak =
∫

d3r e−ik·rψ(r), (2.136)

respectively, with the inverse relations

ψ†(r) = 1
V

∑
k

e−ik·ra†
k, (2.137)

ψ(r) = 1
V

∑
k

eik·rak. (2.138)

We will now express arbitrary operators in terms of creation and annihilation opera-
tors. In doing so, we distinguish operators acting on one, two, . . ., N particles. The most
important operators in practical situations are the one- and two-particle operators, to
which the next two sections are devoted.

2.6 One-particle operators

The simplest operators to consider are additive one-particle operators. Recall that in first
quantization an additive one-particle operator O1 is given formally by its dependence on
the dynamical variables of the particles, e.g. position operator r and momentum operator



OUP CORRECTED PROOF – FINAL, 11/6/2019, SPi

30 Quantum Many-Particle Systems and Second Quantization

p. The additive one-particle operator is given by the sum over operators O(1)
i , each of

which acts only on one particle

O1 =
∑

i

O(1)
i (2.139)

An example is the Hamiltonian of non-interacting particles in an external potential

H =
∑

i

(
p2

i

2m
+ V (ri)

)
=

∑
i

Hi . (2.140)

In order to make contact with the occupation number representation introduced in the
previous discussion, we need to drop the particle index i of the operators O(1)

i and derive
their action first on the abstract basis states discussed in sections 2.2 and especially 2.4,
which are basis states where occupation levels are populated with particles (cf. (2.75)),
especially one or two particles (cf. (2.71), (2.72), and (2.73)).

Let us assume now that there is a one-particle basis {|1α〉} in which the operators O(1)

are diagonal with eigenvalues ωα

O(1)|1α〉 = ωα|1α〉, (2.141)

as is, for instance, the case for momentum eigenstates of the momentum operator p (see
the example 2.2), then the one-particle operator becomes

O1 =
∑
α

ωαNα =
∑
α

ωαa†
αaα. (2.142)

In any other one-particle basis {|1i〉} whose creation and annihilation operators are related
to those of the one-particle basis {|1α〉} by (2.108) and (2.109) the second quantized form
of the general operator (2.139) is then

O1 =
∑

ij

〈1i|O(1)|1j〉a†
i aj . (2.143)

In the real space or position basis {|r〉}, the matrix elements in this expression can be
written as

〈1i|O(1)|1j〉 =
∫

d3r d3r′ u∗
i (r)〈r|O(1)|r′〉uj(r′), (2.144)
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which reduces for operators O(1) diagonal in this representation to

〈1i|O(1)|1j〉 =
∫

d3r u∗
i (r)O

(1)(r, p)uj(r), (2.145)

Let us look at a few concrete examples.

2.6.1 Examples of one-particle operators

Examples 2 Position operator The simplest example is arguably the position operator,
i.e. O1 = R and O(1) = r̂.3 We use quantum field operators ψ†(r) and ψ(r) and
the basis of position eigenstates {|r〉} in the general expression (2.143) to obtain

R =
∫

d3r d3r′ 〈r|r̂|r′〉ψ†(r)ψ(r′) =
∫

d3r rψ†(r)ψ(r), (2.146)

where we used the property of the position eigenstates 〈r|r̂|r′〉 = r′〈r|r′〉 =
r′δ(r − r′).

Examples 3 Linear momentum operator In the case of linear momentum O1 = P and
O(1) = p we obtain for arbitrary one-particle states {|1i〉}

P =
∑

ij

〈1i|p|1j〉a†
i aj , (2.147)

which can be rewritten using the completeness relation for position states∫
d3r |r〉〈r| = I as

P =
∑

ij

∫
d3r d3r′ a†

i 〈1i|r〉〈r|p|r′〉〈r′|1j〉aj =
∫

d3r d3r′ ψ†(r)〈r|p|r′〉ψ(r′). (2.148)

Next, we insert the completeness relation
∑

k |k〉〈k| = I for the basis of momentum
eigenstates pi|k〉 = k|k〉, which yields the final result that the momentum operator
is diagonal in this basis (as was to be expected)

P =
∑
kk′

∫
d3r d3r′ ψ†(r)〈r|k〉〈k|p|k′〉〈k′|r′〉ψ(r′) =

∑
k

k a†
kak, (2.149)

where 〈r|k〉 = eik·r are plane waves and (2.135) and (2.136) have been used.
We could have obtained this result more directly by choosing as one-particle

basis states {|1i〉} the basis of momentum eigenstates {|k〉} from the outset.

3 Where, for once, we use the symbol ˆ to distinguish an operator.
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However, it is also often useful to stay in the position basis and use the
momentum operator in position representation p = −i∇, so that we can write
(2.148) as

P =
∫

d3r ψ†(r) (−i∇) ψ(r). (2.150)

Examples 4 Kinetic energy Similarly the kinetic energy of a particle of mass m

O(1) = p2

2m
(2.151)

yields the kinetic energy of N identical non-interacting particles

H0 =
N∑

i=1

p2
i

2m
= 1

2m

∑
ij

〈ui|p2|uj〉a†
i aj , (2.152)

which in the basis of momentum eigenstates becomes again diagonal

H0 =
∑

k

k2

2m
a†

kak. (2.153)

In the position basis, we have the useful expression

H0 =
∫

d3r ψ†(r)
(

− 1
2m

∇2
)

ψ(r), (2.154)

which can be readily generalized to particles in an external potential U(r)

H =
∫

d3r ψ†(r)
(

− 1
2m

∇2 + U (r)
)

ψ(r). (2.155)

Examples 5 Particle density We obtain the particle density from (2.123) together with
(2.117) and (2.118), choosing as basis {|k〉} for {|1α〉}

ρ(r) = ψ†(r)ψ(r) =
∑
kk′

〈k|r〉〈r|k′〉a†
kak′ , (2.156)

whose Fourier transform is

ρ(q) =
∫

d3r e−iq·rρ(r) =
∑
kk′

(∫
d3r ei(k′−(k+q))·r

)
a†

kak′ , (2.157)

so that

ρ(q) =
∑

k

a†
kak+q =

∑
k

a†
k−q/2ak+q/2. (2.158)
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.....................................................................................................................................

EXERCISE 2.9 Current In the same way it can be shown that the Fourier transform
of the particle current

j(r) = − i
2m

[
ψ†(r) (∇ψ(r)) −

(
∇ψ†(r)

)
ψ(r)

]
(2.159)

is given by

j(q) = 1
m

∑
k

(
k + q

2

)
a†

kak+q. (2.160)

.....................................................................................................................................

2.7 Two-particle operators

A general two-particle operator is

O2 =
∑

ij

O(2)
ij , (2.161)

where the sum runs over all pairs of particles. The second quantized form in the abstract
two-particle basis (2.72) and (2.73) becomes thus

O2 =
∑
ijmn

〈1i1j |O(2)|1m1n〉a†
i a†

j anam. (2.162)

Note the reversed order of the indices n and m of the pair of annihilation operators as
compared to their order in the matrix elements. This is a convention we adopt that is
useful especially for Fermions where, as we shall see below in sections 2.9 and 2.11, and,
especially, 2.12, changing the order of operators produces minus signs.

In the position basis, using (2.117) and (2.118), the two-particle operator becomes

O2 =
∫

d3r1 d3r′
1 d3r2 d3r′

2 ψ†(r1)ψ
†(r′

1)〈r1, r′
1|O(2)|r2, r′

2〉ψ(r′
2)ψ(r2). (2.163)

Note that, as a consequence of the earlier ordering of the creation and annihilation
operators in the general two-particle operator (2.162), the sequence of positions in the
quantum field operators is r1, r′

1, r′
2, r2.

If O(2) is diagonal in the position space basis, using (2.117) and (2.118), this
expression further reduces further to

O2 =
∫

d3r d3r′ ψ†(r)ψ†(r′)O(2)(r, r′)ψ(r′)ψ(r). (2.164)
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An important special case of this last expression is obtained if

O(2)(r, r′) = O(2)(r − r′) (2.165)

as is, for instance, the case for many pairwise interaction potentials between particles. In
order to exploit it, we start again from the general expression (2.162) for the two-particle
operator O2 but choose as two-particle basis states {|1i1j〉} the momentum eigenstates
{|k1k2〉}

O2 =
∑

k1k2k′
1k′

2

〈k1k2|O(2)|k′
1k′

2〉a†
k1

a†
k2

ak′
2
ak′

1
. (2.166)

Evaluating the matrix element in this expression in the plane wave representation when
(2.165) holds, we finally obtain

O2 =
∑

k1k2q

O(2)(q)a†
k1

a†
k2

ak2+qak1−q =
∑

k1k2q

O(2)(q)a†
k1+qa†

k2−qak2ak1 , (2.167)

where O(2)(q) is the Fourier transform of O(2)(r)

O(2)(q) =
∫

d3r O(2)(r)e−iq·r. (2.168)

.....................................................................................................................................

EXERCISE 2.10 Two-particle operator in momentum representation Complete
the steps leading from (2.166) to (2.167).

EXERCISE 2.11 Fourier transform of the 1/r-interaction in three, two, and one
dimension Calculate the Fourier transform of the interaction potential 1/r for three

V (q) =
∫ ∞

−∞
dz e−iqzz

∫ ∞

−∞
dy e−iqyy

∫ ∞

−∞
dx

e−iqxx√
x2 + y2 + z2

, (2.169)

two

V (q) =
∫ ∞

−∞
dy e−iqyy

∫ ∞

−∞
dx

e−iqxx√
x2 + y2

, (2.170)

and one dimension

V (q) =
∫ ∞

−∞
dx

e−iqx

x
. (2.171)

For the first integral, we can use spherical coordinates instead of Cartesian ones. In this
approach we must regularize the integral by introducing a convergence factor which, in
the final result, can be set to an appropriate value.
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This approach becomes more difficult in two and one dimensions. In two dimensions,
the introduction of polar coordinates leads to the appearance of a special function, the
Bessel function J0, with an appropriate argument.

An interesting approach to calculate the integral in any number of dimensions is to
stay with Cartesian coordinates and evaluate the integrals ‘from the inside out’, i.e. start
with the integration over x. A careful perusal of Gradshteyn and Ryzhik (1980) shows
that the requisite integrals are all tabulated there, providing, en passant, the result for two
dimensions.

However, the one-dimensional case presents a difficulty because the integral diverges.
That being said, we can introduce on physical grounds a regularization starting with the
innermost integral of the three-dimensional case and setting a = √

y2 + z2 as the width
of the quasi-one-dimensional system. Moreover, it is possible to obtain an expression for
the regularized integral in the limit q = |qx| → 0.
.....................................................................................................................................

2.8 Second quantization of the Schrödinger equation:
Bosonic case

In elementary quantum mechanics, the time-dependent Schrödinger equation for a
particle in a potential V (r) is

i
∂ψ

∂t
= − 1

2m
∇2ψ + V (r)ψ (2.172)

where ψ(r, t) is the Schrödinger wave function or the Schrödinger field. The stationary
eigenvalue equation

− 1
2m

∇2ψn + V (r)ψn = Enψn (2.173)

has solutions ψn(r), which are eigenfunctions with energy eigenvalues En. The general
solution of the time-dependent Schrödinger equation is thus

ψ(r, t) =
∑

n

an(t)ψn(r) (2.174)

where the an(t) satisfy

ȧn(t) = −iEnan(t). (2.175)

The energy, or, more precisely, the expectation value of the Hamilton operator, can now
be written as

E = 〈H〉 = 〈ψ |H |ψ〉 =
∫

d3r ψ∗(r, t)
[
− 1

2m
∇2 + V (r)

]
ψ(r, t) (2.176)
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=
∑

n

Ena∗
nan =

∑
n

ωna∗
nan. (2.177)

This is the energy of a system of harmonic oscillators with eigenfrequencies ωn = En.
Thus, it is consistent to interpret these result in terms of a second quantized

Hamiltonian

H =
∑

n

Ena†
nan, (2.178)

where the creation and annihilation operators satisfy the commutation relations (2.74).
The equation of motion for the creation operators an, its Heisenberg equation of

motion, is

dan

dt
= i [H , an] = −iEnan. (2.179)

In section 2.10, we briefly review the second quantization of the Schrödinger for the case
of Fermions.

2.9 Creation and annihilation operators for Fermions

As shown in section 2.1.3, for Fermions, i.e. particles that obey the Pauli exclusion
principle, the wave function is totally antisymmetric, i.e. exchange of particles leads
to a change of sign of the wave function. To achieve this, we have introduced an
antisymmetrization operator A.

Section 2.1.3 also showed that the only possible states in an occupation number
representation for Fermions are given by

|φ〉 = |N1, N2, . . . , Nl , . . .〉 = |{N}〉, (2.180)

with either Nl = 1 or Nl = 0, l = 1, 2, . . ., which expresses the exclusion principle and
a fixed number of particles

∑∞
l=1 Nl = N .

The definition of creation and annihilation operators acting on the occupation number
states |{N}〉 is somewhat more delicate than in the Bose case. The Fermionic creation and
annihilation operators are more abstract entities than their Bosonic counterparts. They
cannot be introduced in any way with recourse to position and momentum operators.
This is a consequence of the fact that Fermions are genuinely quantum mechanical
objects. Using the notation ci and c†

i to distinguish from the Bose case, we define

ci|{N}〉 = �i
√

Ni| . . . (1 − Ni) . . .〉 (2.181)

c†
i |{N}〉 = �i

√
1 − Ni| . . . (1 − Ni) . . .〉 (2.182)
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with phase factors �i . We could have also introduced phase factors for the definition
of the Bose creation and annihilation operators, but choosing them as unity would have
been consistently possible. In the Fermi case, however, the phase factors are of crucial
importance and cannot be chosen as unity.

A consistent choice is the following. First, order the sequence of occupation number
levels l in |φ〉 in a fixed way that cannot be changed any more. In the definition of the
creation and annihilation operators ci and ci

†, if the number νi of levels that are occupied
by a Fermion is even for the levels which are predecessors of the level i, then the phase
is �i = +1, and if it is odd, then put � = −1. Obviously, we can write

�i = (−1)
∑i−1

j=1 ≡ (−1)νi . (2.183)

From the definitions (2.181) and (2.182) of the creation and annihilation operators, we
see that

(ci)
2|{N}〉 = (c†

i )
2|{N}〉 = 0, (2.184)

which again expresses the Pauli exclusion principle.
For, without limiting generality, i < j, the definitions (2.181) and (2.182) of the

creation and annihilation operators imply the anti-commutation relations

{ci , cj} = cicj + cjci = 0, (2.185)

{c†
i , c†

j } = c†
i c†

j + c†
j c†

i = 0, (2.186)

and

{ci , c†
j } = cic

†
j + c†

j ci = δij . (2.187)

.....................................................................................................................................

EXERCISE 2.12 Fermion anti-commutation relations Derive the Fermion anti-
commutation relations using the definitions (2.181) and (2.182) of the creation and
annihilation operators.
.....................................................................................................................................

With the help of the creation and annihilation operators for Fermions ci and c†
i and

the definition for vacuum state

|vac〉 = |0, 0, . . . , 0, . . .〉, (2.188)
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a general N-particle Fermi state can be now be written as

|{N}〉 =
(

c†
1

)N1
(

c†
2

)N2
. . . |vac〉. (2.189)

The creation and annihilation operators for Fermions satisfy

c†
i ci|{N}〉 = Ni|{N}〉 (2.190)

and

cic
†
i |{N}〉 = (1 − Ni)|{N}〉, (2.191)

which again allows the interpretation of

ni = c†
i ci (2.192)

as the particle number operator and

N =
∞∑

i=1

ni =
∞∑

i=1

c†
i ci (2.193)

as the operator of total particle number.
If proper care is taken concerning the order of creation and annihilation operators, all

results for Bosons remain valid for Fermions.

.....................................................................................................................................

EXERCISE 2.13 Bogoliubov transformation for Fermions Consider a system
consisting of two Fermions, c1 and c2. Which condition must the complex parameters u
and v satisfy such that the Bogoliubov transformation

c1 = uc1 + vc†
2, (2.194)

c†
2 = −vc1 + uc†

2, (2.195)

preserves the canonical Fermi anti-commutation relations?

EXERCISE 2.14 Band splitting A system of N electrons in one dimension, disre-
garding the spin of the electrons, in a periodic potential is described by the Hamilton
operator

H =
N∑

j=1

(
− 1

2m
d2

dx2
j

+ V0 cos
(

2π

a
xj

))
=

N∑
j=1

Hj =
N∑

j=1

H(xj). (2.196)
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Assume V 0 to be a small perturbation to the Hamiltonian of free, i.e. non-interacting,
electrons.

a) Express H in the occupation number representation. Which are the appropriate
one-particle basis and one-particle wave functions for this problem?

b) Restrict the Hamiltonian Ĥ in occupation number representation to a small
interval

I =
(

K
2

− δ,
K
2

+ δ

)
(2.197)

with K = 2π
a and δ � K, i.e.

Ĥ =
∑
k∈I

Hk (2.198)

where

Hk = εkc†
kck + εqc†

qcq + V0

2
c†
kcq + V0

2
c†
qck (2.199)

with q = k − K.
Diagonalize Hk using the appropriate choice of parameters λk in the transfor-
mation

bk = ck cos λk + cq sin λk, (2.200)

bq = −ck sin λk + cq cos λk. (2.201)

Which eigenvalues does Hk thus have?
c) The one-particle eigenvalue spectrum εk of free electrons has a parabolic form.

The periodic perturbation potential in (2.196) leads to a deviation from this
parabolic form, which is called a band splitting. Calculate this band splitting at
k = K

2 . In order to do this, expand the eigenvalues of Hk up to and including
second order in δ.

.....................................................................................................................................

Similar to the case of Bosonic creation and annihilation operators, we now summarize
useful formulas for calculations involving Fermionic creation and annihilation operators
as exercises. As we shall see, these formulas have a form simpler than their Bosonic coun-
terparts. The reason for this is that for Fermionic creation and annihilation operators, we
have
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cn =
(

c†
)n = 0 for n ≥ 2. (2.202)

Using this fact, we can furthermore restrict the functions of Fermionic operators to the
two cases

f (c) = f (0) + f ′(0)c, (2.203)

f (c†) = f (0) + f ′(0)c†, (2.204)

which yields as immediate consequence the special cases

eαc = 1 + αc, (2.205)

eαc† = 1 + αc† (2.206)

for any complex number α.

.....................................................................................................................................

EXERCISE 2.15 Functions of Fermionic creation and annihilation operators As
a consequence of (2.203) and (2.204), there are only two non-trivial cases to show

e−αc†
ceαc† = c − α2c† − 2αs, (2.207)

e−αcc†eαc = c† − α2c + 2αs (2.208)

with the operator

s = c†c − 1
2

. (2.209)

However, the exponential eαc†c gives rise to interesting relations that are analogous to the
ones in the Bosonic case and can be derived in an completely analogous way. They are

eαc†cce−αc†c = e−αc, (2.210)

eαc†cc†e−αc†c = eαc†. (2.211)

.....................................................................................................................................

2.10 Second quantization of the Schrödinger equation:
Fermionic case

The same line of argument as in section 2.8, although via using the anti-commutation
relations (2.185–2.187), leads to the formally same results.
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In particular, a second quantized Hamiltonian can be identified

H =
∑

n

Enc†
ncn (2.212)

where the creation and annihilation operators satisfy the anti-commutation relations
(2.185–2.187).

The equation of motion for the annihilation operators cn, its Heisenberg equation of
motion, again turns out to be

dcn

dt
= i [H , cn] = −iEncn. (2.213)

.....................................................................................................................................

EXERCISE 2.16 Repeat explicitly the steps in section 2.8 for the case of Fermions.
Especially ascertain the validity of the Heisenberg equation of motion (2.213) in the
Fermionic case.
.....................................................................................................................................

2.11 Second quantization formalism and the many-particle
wave function

In this penultimate section of part I, we demonstrate that the second quantization
formalism is indeed equivalent to the Schrödinger equation of a many-particle system.
In order to keep the equations manageable, we restrict this demonstration to the case
of two particles. The considerations are valid for both the Bosonic and the Fermionic
cases. In order to express this notationally, we use b† and b for creation and annihilation
operators. The general two-particle state is created from the vacuum state by applying
two creation operators

|φ2〉 =
∑
i,j

ci,jb
†
i b†

j |0〉. (2.214)

We rewrite this state in terms of quantum field operators

b†
i =

∫
d3r φi(r)ψ†(r), (2.215)

bi =
∫

d3r φi(r)ψ(r) (2.216)
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to obtain

|φ2〉 =
∑
i, j

ci, j

∫
d3r φi(r)ψ†(r)

∫
d3r′ φj(r′)ψ†(r′)|0〉. (2.217)

Introducing the function

f (r, r′) =
∑
i, j

ci, jφi(r)φj(r′), (2.218)

the two-particle state becomes

|φ2〉 =
∫

d3r
∫

d3r′ f (r, r′)ψ†(r)ψ†(r′)|0〉 (2.219)

=
∫

d3r
∫

d3r′ f (r′, r)ψ†(r′)ψ†(r)|0〉 (2.220)

=
∫

d3r
∫

d3r′ f (r′, r)
(
±ψ†(r)ψ†(r′)

)
|0〉, (2.221)

where, going from the first line to the second, we have exchanged the variables r
and r′, and then, going from the second line to the third, we used the Bose (upper
sign) and Fermi (lower sign) commutation and anti-commutation relations, respectively.
Comparing the first and last lines, we find

f (r, r′) = ± f (r′, r) (2.222)

for Bosons (upper sign) and Fermions (lower sign), respectively.
As we have seen, in sections 2.6 and 2.7 respectively, the second quantized Hamilto-

nian in the position basis of a many-particle system in an external potential U(r) and
with two-particle interactions V (r, r′) can be written as

H =
∫

d3r ψ†(r)
(

− 1
2m

∇2 + U (r)
)

ψ(r)

+ 1
2

∫
d3r

∫
d3r′ ψ†(r)ψ†(r′)V (r, r′)ψ(r′)ψ(r) (2.223)

= H1 + H2 ≡ H1 + V (2.224)

where the factor 1/2 avoids double counting of the interactions and the two-particle
interaction potential could, e.g. be the Coulomb potential
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V (r, r′) = V (r − r′) = e2

|r − r′| . (2.225)

The Schrödinger equation

H|φ2〉 = E|φ2〉 (2.226)

for the two-particle state can now be rewritten as the Schrödinger equation for the two-
particle wave function f (r1, r2)

(
− 1

2m
∇2

1 + U (r1) − 1
2m

∇2
2 + U (r2) + V (r1, r2)

)
f (r1, r2) = Ef (r1, r2). (2.227)

In order to verify this result, we have to use the commutation or anti-commutation
relations for quantum field operators of Bosons and Fermions, respectively. Moreover,
we need a twofold partial integration in the integrals containing the single–particle
Hamiltonian H1.

2.12 Normal ordering

In section 2.11 and in section 2.7 on two-particle operators, we have always written
the field and particle creation and annihilation operators in such a way that all creation
operators appeared to the left of the annihilation operators. This convention is called
normal ordering. Adopting this convention ensures that the vacuum expectation value
vanishes

〈0|V|0〉 = 0 (2.228)

with V given in (2.224) and (2.223) where we have also observed the convention
r, r′, r′, r for the order of arguments of the quantum field creation and annihilation
operators.

.....................................................................................................................................

EXERCISE 2.17 Normal ordering of two-particle potential operator: wrong
choice Show that the apparently obvious choice for the second quantized form of a
two-particle potential operator

V = 1
2

∫
d3r d3r′ V (r, r′)ρ(r)ρ(r′) (2.229)

where

ρ(r) = ψ†(r)ψ(r) (2.230)
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leads to an unwanted self-energy term

1
2

∫
d3r V (r, r)ψ†(r)ψ(r). (2.231)

Therefore, observing normal ordering of the creation and annihilation operators from
the start avoids unnecessary arguments about why certain terms are to be disregarded
later on.

The following exercise confirms this lesson from the positive side.

EXERCISE 2.18 Correct normal ordering Show that the normal ordered two-
particle potential operator

V = 1
2

∫
d3r d3r′ ψ†(r)ψ†(r′)V (r, r′)ψ(r′)ψ(r) (2.232)

for a symmetric two-particle potential V (r, r′) = V (r′, r) applied to a many-particle
state

|r1, r2, . . . , rN 〉 = ψ†(r1), ψ†(r2), . . . , ψ†(rN )|0〉 (2.233)

reproduces the correct (first quantized) expression

V|r1, r2, . . . , rN 〉 = 1
2

∑
n�=m

V (rn, rm)|r1, r2, . . . , rN 〉. (2.234)

Furthermore, show that the two-particle potential operator of the previous exercise does
not reproduce this result.
.....................................................................................................................................

This chapter has introduced and reviewed the basics of the theory of quantum many-
particle systems, especially the method of second quantization. We will use these concepts
and results throughout the book.

Of course, the theory of quantum many-particle systems contains much more than the
method of second quantization. The books mentioned at the beginning of this chapter
provide more comprehensive expositions of this theory.
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Angular Momentum

No, it’s quite impossible for the electron to have a spin. I have thought of that myself,
and if the electron did have a spin, the speed of the surface of the electron would be
greater than the velocity of light. So, it’s quite impossible.

Hendrik Antoon Lorentz (1853–1928) to Uhlenbeck and Goudsmit (fortunately
Ehrenfest had already submitted their paper)

The first model solved by Bethe ansatz, by Hans Bethe himself in 1931, is a model
of atoms arranged in a one-dimensional lattice whose magnetic moments or, for short,
quantum spins, interact—the so-called Heisenberg model for magnetism.

Therefore, this chapter briefly reviews the concept of angular momentum in quantum
mechanics, especially the coupling of spin- 1

2 operators for several quantum spins.
We shall be needing this when we discuss the properties of quantum many–particle
Hamiltonians, for example, the Heisenberg quantum spin chain Hamiltonian in parts
II and III.

Section 3.1 briefly develops the theory of angular momentum for a single quantum
particle, first discussing its general theory, then specialized to case of spin- 1

2 , which has no
classical counterpart but is a special case of an internal property of quantum particles.
Section 3.2 is devoted to a discussion of the angular momentum of several quantum
particles.

3.1 Angular momentum of a single quantum particle

3.1.1 General theory

The operator1 L for angular momentum in quantum mechanics is defined in analogy to
the corresponding relation of classical mechanics

L = r × p (3.1)

1 Again we shall not distinguish, for instance by using hats ( ˆ), between quantum mechanical operators and
classical dynamical variables except in cases where such a distinction reduces the chances of possible confusion.

Models of Quantum Matter: A First Course on Integrability and the Bethe Ansatz. Hans-Peter Eckle,
Oxford University Press (2019). © Hans-Peter Eckle. DOI: 10.1093/oso/9780199678839.001.0001
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where position2 and (linear) momentum

r = (x, y, z)T = (r1, r2, r3)
T , p = (

px, py, pz
)T = (p1, p2, p3)

T (3.2)

are now identified with operators r and p with non-vanishing commutators which, in
components, are given by

[rj , pk] = iδjk. (3.3)

From these commutators follow the commutators for the components L1, L2, and L3 of
the angular momentum operator L

[
Lj , Lk

] = iεjklLl , (3.4)

where εjkl are the components of the totally antisymmetric Levi–Civita tensor

ε123 = 1, εjkl = −εkjl = −εjlk = −εlkj . (3.5)

.....................................................................................................................................

EXERCISE 3.1 Angular momentum commutator It is a good exercise to verify
(3.4) with the help of the commutation relations (3.3).
.....................................................................................................................................

It follows from (3.4) and the corresponding Heisenberg uncertainty relation that
the components Lj of the angular momentum operator L cannot be sharply measured
simultaneously. However, for the square of the angular momentum

L · L = L2 = L2
1 + L2

2 + L2
3 (3.6)

we find that all its commutators with the components of L vanish

[
L2, Lj

]
= 0, j = 1, 2, 3, (3.7)

which means that the square L2, and one component Lj of the angular momentum L, can
be measured simultaneously with arbitrary precision. This component is conventionally
chosen to be L3. Moreover, we can always find simultaneous eigenstates of L2 and L3.
In order to show (3.7), it is helpful to use the general relation for commutators involving
three operators A, B, and C

2 In this chapter, we use several conventions since all of them are appropriate in certain situations. We label
quantities at times by their Cartesian component, e.g. px for the x-component of momentum, at other times
by a numerical label i with i = 1, 2, 3, e.g. σ3 for the 3–component instead of σ z for the z-component of the
vector of Pauli matrices. Moreover, it will sometimes be convenient to resort to upper indices, like in σ z

i where
there is also a lower index i to distinguish between the spin of different particles.
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[AB, C] = A [B, C] + [A, C] B. (3.8)

In order to investigate the eigenvalues and eigenfunctions of the angular momentum
operators further, it will prove useful to introduce two operators with the help of the
components of the angular momentum operator L

L+ = L1 + iL2, (3.9)

and

L− = L1 − iL2, (3.10)

which, together with L3, satisfy the commutation relations

[
L3, L+] = L+, (3.11)

[
L3, L−] = −L−, (3.12)

and

[
L+, L−] = 2L3. (3.13)

The operators L± are constructed in analogy to the harmonic oscillator creation and
annihilation operators. It is instructive to demonstrate how the operators L± can be
motivated by the following consideration. Assume we have an eigenstate |m〉 of the
operator L3

L3|m〉 = m|m〉. (3.14)

We now want to find an operator LS which produces a state |λ〉 = LS|m〉 with a shifted
eigenvalue, i.e.

L3|λ〉 = L3 (LS|m〉) = (m + λ) (LS|m〉) . (3.15)

Multiplying (3.14) by LS and subtracting it from (3.15) gives

[L3, LS] |m〉 = λLS|m〉 (3.16)

or, as an operator equation

[L3, LS] = λLS. (3.17)
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In order to satisfy (3.17), it suffices to construct the shift operator LS as a linear
combination of the operators L1 and L2

LS = L1 + aL2. (3.18)

so that from (3.17)

[L3, L1] + a [L3, L2] = iL2 − iaL1 = λL1 + λaL2 (3.19)

or

i = aλ and − ia = λ (3.20)

must hold. The latter two equations are only compatible if λ = ±1. The shift operator
can thus be identified with the operators L+ and L− of (3.9) and (3.10), creating states
where the eigenvalue m of an eigenstate |m〉 of L3 is shifted by ± 1.

In terms of the operators L+, L−, and L3, the square of the angular momentum
operator can be expressed in three ways, which will prove useful for the following
considerations

L2 =
(

L2
3 + 1

2

(
L+L− + L−L+))

(3.21)

=
(

L2
3 + L3 + L−L+)

(3.22)

=
(

L2
3 − L3 + L+L−)

. (3.23)

We consider a simultaneous eigenstate |�〉 of L2 and L3 with eigenvalues C2 and m,
respectively, i.e.

L2|�〉 = C2|�〉, (3.24)

and

L3|�〉 = m|�〉, (3.25)

which, as we have seen, is always possible. But what happens if we act with L± on this
state? Let us thus consider the states

|�±〉 = L±|�〉. (3.26)

We already know that the eigenvalue of L3 gets shifted

L3|�±〉 = (m ± 1)|�±〉. (3.27)
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Furthermore, since L2 commutes with all component of L, we obtain

L2|�±〉 = L2L±|�〉 = L±L2|�〉 = C2 (
L±|�〉) = C2|�±〉. (3.28)

In summary, the operator L+ thus increases and the operator L− decreases the eigenvalue
of the third component L3 of the angular momentum by one, while leaving the eigenvalue
of the square of the angular momentum L2 unchanged. Because of the properties just
discussed, the angular momentum operators L+ and L− are also called ladder operators,
with L+ being the raising, and L− the lowering, operator.

More generally, we have, by iteration,

L3
((

L±)n |�〉) = (m ± n)
((

L±)n |�〉) . (3.29)

The square of the third component of the angular momentum cannot exceed the square
of the angular momentum, i.e.

(m + n)2 ≤ C2, (3.30)

which can also be seen from the expectation values in the state |�〉

〈L2〉 ≡ 〈�|L2|�〉 = 〈L2
1〉 + 〈L2

2〉 + 〈L2
3〉, (3.31)

i.e.

C2 = 〈L2
1〉 + 〈L2

2〉 + m2 ≥ m2. (3.32)

Thus, m must be bounded from above and below, i.e. there must be a largest value mmax
and a smallest value mmax with

mmax ≤ m ≤ mmin (3.33)

such that

L3|mmax〉 = mmax|mmax〉 and L+|mmax〉 = 0, (3.34)

L3|mmin〉 = mmin|mmin〉 and L−|mmin〉 = 0. (3.35)

Choosing |mmax〉 and |mmin〉 as simultaneous eigenstates of L2, we find with the help of
(3.22) and (3.23)

L2|mmax〉 = C2|mmax〉 =
(

L−L+ + L2
3 + L3

)
|mmax〉 (3.36)

= mmax (mmax + 1) |mmax〉 (3.37)
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and

L2|mmin〉 = C2|mmin〉 =
(

L+L− + L2
3 − L3

)
|mmin〉 (3.38)

= mmin (mmin − 1) |mmin〉, (3.39)

which are only compatible if mmin = −mmax.
It is conventional to denote mmax by the letter l and the corresponding simultaneous

eigenstate of the square L2 and the third component L3 of the angular momentum
operator by |l, l〉.

This state thus satisfies

L+|l, l〉 = 0, (3.40)

L3|l, l〉 = l|l, l〉. (3.41)

and

L2|l, l〉 = C2|l, l〉 = l(l + 1)|l, l〉, (3.42)

i.e. the eigenvalue of the square L2 of the angular momentum is C2 = l(l + 1). Moreover,
we can conclude from the action of L± (cf. (3.29)) that the possible values of m extend
from − l to l in integer steps and that l can only take integer or half-odd integer values.

We conclude that the states of the system are labelled, for any fixed value of l, by

|l, m〉, 2l = 0, 1, 2, . . . , −l ≤ m ≤ l. (3.43)

The corresponding state space, denoted by Vl , has dimension dim Vl = 2l + 1. Another
name for the eigenvalue of L3 of a state |�〉, often used in connection with quantum
groups, is the weight of |�〉. We call any state |�〉 satisfying

L−|�〉 = 0 (3.44)

a lowest weight state.
For the states |l, m〉 we have just constructed, the weight is given by m, also called the

azimuthal quantum number, and the lowest weight state is |l, −l〉.
So far, the states |l, m〉 have not been normalized. Normalizing them, we find the

eigenvalues of the operators L+ and L− as well. If we write

L±|l, m〉 = N±
l,m|l, m ± 1〉, (3.45)

now assuming that both states |l, m〉 and |l, m ± 1〉 are normalized, we find with the help
of the relations (3.21–3.23) that
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N±
l,m = [l(l + 1) − m(m ± 1)]

1
2 . (3.46)

Our results can be interpreted in terms the Heisenberg uncertainty relation. The
maximally possible eigenvalue of L3 is l and, hence, the maximally possible value of
L2

3 is l2. However, the eigenvalue of L2 is l(l + 1), larger than l2. This implies that the
angular momentum operator L can never align with certainty with L3 and the uncertainty
principle is satisfied. If L could be aligned with L3, then L1 = L2 = 0 and we would have
simultaneously sharp values of all three components of the angular momentum operator,
in contradiction to Heisenberg’s uncertainty relations, which follow from (3.4).

3.1.2 Spin

The half-odd integer values of angular momentum of the form l = 2n+1
2 , with n a non-

negative integer, which we have found as a possibility in quantum mechanics in the
previous section, have no correspondence in terms of classical angular momentum of
the orbital form (3.1) given at the beginning of the previous section. However, they are
realized in nature and correspond to the internal structure of the quantum particle and
are referred to as spin. In this connection, the symbol S is used instead of L.

As also discussed extensively in chapter 2, there is a fundamental distinction between
particles with half-odd integer spin, called Fermions, which obey the Pauli exclusion
principle, and those with integer spin,3 called Bosons, which do not obey the Pauli
exclusion principle. This distinction is rather deep and manifests itself also in different
thermodynamic behaviour of Bosons and Fermions. Where the former have a many-
particle wave function that is symmetric with respect to the exchange of particles, and
they obey Bose–Einstein statistics, the latter have an antisymmetric many-particle wave
function with respect to particle exchange and they obey Fermi–Dirac statistics. Some
of the many-particle aspects of this distinction have been discussed in chapter 2, and the
corresponding aspects of statistical mechanics and thermodynamics will be discussed in
chapter 4. This chapter, focuses on the angular momentum, especially of Fermions with
spin- 1

2 .
For the special case l ≡ s = 1

2 , on which we focus from now on, we introduce the
operator S whose components satisfy (3.4), i.e.

[
Sx, Sy

] = iSz,
[
Sy, Sz

] = iSx, [Sz, Sx] = iSy. (3.47)

The weight of a state |χ〉, as previously introduced, measures the eigenvalue of the spin
operator of the state, e.g. in the 3– or z–direction, of the quantum particle

S3|χ〉 = mS|χ〉 = ±1
2
|χ〉 (3.48)

3 Nevertheless, there is no interpretation of quantum particles with integer spin in terms of L = r ×p!
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and

S2|χ〉 = s(s + 1)|χ〉 = 3
4
|χ〉 (3.49)

with

−s ≤ ms ≤ s, i.e. mS = ±1
2

, (3.50)

where s (which is s = 1
2 in this case) is often simply denoted as the spin of the quantum

particle.
Corresponding to mS = ±1

2 , we introduce a two-dimensional basis for a spin- 1
2

particle. The general element of the space spawned by this basis is called a spinor and
can be formally written as

|χ〉 =
( |χ+〉

|χ−〉
)

, (3.51)

and whose components are in general complex numbers and which is in general a
function of position and time |χ〉 = |χ(r, t)〉. Moreover, ||χ±〉|2 is interpreted as the
probability to find that the particle in the state |χ〉 has mS = ±1

2 .
Fixing the coordinate system, we have two possible states: the spin state with mS = 1

2

∣∣∣∣ 1
2

,
1
2

〉
= | ↑〉 =

(
1
0

)
, (3.52)

and the spin state with mS = −1
2

∣∣∣∣ 1
2

, −1
2

〉
= | ↓〉 =

(
0
1

)
, (3.53)

which we can choose as basis states. The different notations depend on the context we
want to emphasize.

In order to find realizations for the spin operators Si , we introduce first an operator

S+ ≡ S1 + iS2, (3.54)

a special case of (3.9), which increases mS by one. In analogy to the general case, this
operator satisfies

S+| ↑〉 = 0 and S+| ↓〉 = S+
(

0
1

)
= | ↑〉 =

(
1
0

)
. (3.55)
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In the same way, the operator S−, a special case of (3.10), decreases mS by one

S− = S1 − iS2 (3.56)

i.e.

S−| ↑〉 = S−
(

1
0

)
= | ↓〉 =

(
0
1

)
and S−| ↓〉 = 0. (3.57)

In the expressions above, we have used that (3.46) in these cases gives

N+
1
2 , 1

2
= N−

1
2 ,− 1

2
= 0 and N+

1
2 ,− 1

2
= N−

1
2 , 1

2
= 1. (3.58)

From these results, we deduce that

(
S+ + S−) (

1
0

)
= 2S1

(
1
0

)
=

(
0
1

)
(3.59)

and

(
S+ + S−) (

0
1

)
= 2S1

(
0
1

)
=

(
1
0

)
. (3.60)

Both of these equations can be realized by S1 in the form of the 2 × 2 matrix

S1 = 1
2

(
0 1
1 0

)
. (3.61)

Repeating the arguments above for S+ − S− = 2iS2, we find

S2 = 1
2

(
0 −i
i 0

)
. (3.62)

Finally, the matrix for S3 produces the eigenvalues mS = ±1
2

S3 = 1
2

(
1 0
0 −1

)
, S3

∣∣∣∣ 1
2

, ±1
2

〉
= ±1

2

∣∣∣∣ 1
2

, ±1
2

〉
. (3.63)

Here are some elementary exercises to get acquainted with spin matrices and spinors.
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.....................................................................................................................................

EXERCISE 3.2 Spin operators in matrix form Verify that the spin operators in
matrix form that we just derived satisfy the commutation relations (3.47).

Show that they also satisfy the relations

S1S2 = −S2S1 = i
2

S3, S3S1 = −S1S3 = i
2

S2, S2S3 = −S3S2 = i
2

S1 (3.64)

and that hence the anti-commutators of the spin matrices vanish.
Moreover, show that the squares of the spin matrices are proportional to the 2 × 2

unit matrix.
.....................................................................................................................................

Summarizing the matrix realizations of the spin operator S we introduce the vector
of the Pauli spin matrices σ

S = 1
2
σ (3.65)

or, in components

S1 = 1
2

(
0 1
1 0

)
= 1

2
σ1, S2 = 1

2

(
0 −i
i 0

)
= 1

2
σ2, S3 = 1

2

(
1 0
0 −1

)
= 1

2
σ3,

(3.66)

which satisfy the relations (3.4) and (3.47), respectively.

.....................................................................................................................................

EXERCISE 3.3 A useful relation Prove that for two vectors a and b

(a · σ ) (b · σ ) = a · b + i (a × b) · σ (3.67)

EXERCISE 3.4 Unit vector corresponding to a spinor We define a unit vector e in
the spinor state |χ〉 by

e = 〈σ 〉χ = 〈χ |σ |χ〉. (3.68)

Calculate e for the spinor

|ζ 〉 = 1√
2

(
1
1

)
(3.69)

and show how, once you have the unit vector e, you can recover the spinor |ζ 〉.
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EXERCISE 3.5 A simple spin Hamiltonian Calculate the energy eigenvalues and
the eigenstates of the Hamiltonian

H = B cos θ · σx + B sin θ · σy. (3.70)

EXERCISE 3.6 Two-level system A two-level system can be described by the
Hamiltonian

H0 = σx. (3.71)

Add a term

V = Bσz (3.72)

and calculate the energy eigenvalues of H = H0 + V by direct diagonalization.
For small field B 
 1 you may consider V as a perturbation. Calculate the corrections

to the energy eigenvalues of H0 up to second order in perturbation theory and compare
with the exact result.

EXERCISE 3.7 Useful relations for spin- 1
2 operators The spin-1/2 raising and

lowering operators in terms of Pauli matrices are

σ± = 1
2

(
σ x ± iσ y) (3.73)

Calculate all products between pairs of these two operators and their commutation
and anti-commutation relations. Furthermore, calculate the commutation and anti-
commutation relations between the raising and lowering operators and the Pauli opera-
tors σ x, σ y, and σ z.

Show that a function f that can be expanded into a power series can, as an operator
function of the product of the spin- 1

2 raising and lowering operators, only have the form

f (σ+σ−) = f (0) + [ f (1) − f (0)] σ+σ−, (3.74)

f (σ−σ+) = f (0) + [ f (1) − f (0)] σ−σ+. (3.75)

Moreover, show that the following relations hold

e
ασz

2 σ+e
ασz

2 = eασ+, (3.76)

e
ασz

2 σ−e
ασz

2 = eασ−. (3.77)

.....................................................................................................................................

In order to conclude this section on the spin of one particle, we now demonstrate that
the spin- 1

2 degree of freedom has a most remarkable property. Consider a new coordinate
system where spin space has been rotated by an angle θ about the 2-axis. This rotation
transforms S3 into
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S′
3 = S3 cos θ + S1 sin θ = 1

2
cos θ

(
1 0
0 −1

)
+ 1

2
sin θ

(
0 1
1 0

)
(3.78)

= 1
2

(
cos θ sin θ

sin θ − cos θ

)
. (3.79)

The transformed spin operator S′
3 must have the same eigenvalues mS = ±1

2 in the
rotated system as the original spin operator S3 had in the unrotated system. In the rotated
coordinate system the eigenvector | ↑′〉 for eigenvalue

(+1
2

)
, i.e.

S′
3| ↑′〉 = +1

2
| ↑′〉 (3.80)

is

| ↑′〉 =
(

cos θ
2

sin θ
2

)
= cos

θ

2
| ↑〉 + sin

θ

2
| ↓〉 (3.81)

and for eigenvalue
(−1

2

)
, i.e.

S′
3| ↓′〉 = −1

2
| ↓′〉 (3.82)

we have

| ↓′〉 =
( − sin θ

2
cos θ

2

)
= − sin

θ

2
| ↑〉 + cos

θ

2
| ↓〉. (3.83)

Therefore, if we measure the spin to be in the spin up state in the rotated coordinate
system, we shall, upon measuring, find it in the original coordinate system in the spin up
state with probability cos2 θ

2 and in the spin down state with probability sin2 θ
2 .

Now, if we rotate through an angle of 2π , a remarkable situation arises. A particle we
measure to be in the spin up state in the rotated coordinate system will be with probability
1 in the down state with respect to the original coordinate system. In other words, a
rotation of the universe by 2π causes all spin- 1

2 particles to assume unitarily transformed
eigenstates, a distinguishing feature between intrinsic spin and the usual notion of angular
momentum.

3.2 Angular momentum of several quantum particles

We begin our discussion of the coupling of the angular momentum of several quantum
particles by first considering the case of spin s = l before we specialize to s = 1

2 , which
is the case most important for us. In order to gain a clear understanding, in this section



OUP CORRECTED PROOF – FINAL, 12/6/2019, SPi

Angular momentum of several quantum particles 57

we shall use a slightly cumbersome but precise notation that we will later abandon again
(in most cases), except when it may be rendered necessary by the demands of a special
situation.

The total spin vector of a system of N identical particles each of spin s = l is

S(N) =
N∑

i=1

Si (3.84)

where

Si = I ⊗ I ⊗ . . . ⊗ S︸︷︷︸
i

⊗ . . . ⊗ I (3.85)

acts non-trivially only on the spin state of particle i. The unit operators I in the tensor
product act on the spins of all particles except the spin of particle i. The total state space
is written as the N-fold tensor product4 of the state space Vl of a single particle’s spin
state space

V = Vl ⊗ Vl ⊗ . . .Vl︸ ︷︷ ︸
N

, (3.86)

which is the vector space whose basis states are N-fold product states of the single–
particle basis states |l, mi〉

|l, m〉 = |l, m1〉 ⊗ |l, m2〉 ⊗ . . . ⊗ |l, mN 〉. (3.87)

The components of the total spin operators Sα, α = 1, 2, 3 acting on the spin of particle
i5 are given by

Sα(N) =
N∑

i=1

⎛
⎝I ⊗ I ⊗ . . . ⊗ Sα︸︷︷︸

i

⊗ . . . ⊗ I

⎞
⎠ . (3.88)

Hence, Sα(N) can be realized by a (2l+1)N × (2l+1)N matrix. The many-particle spin
operators Sα(N) also obey the commutation relations (3.4).

4 For more on tensor products, see section 10.7.1.
5 Cf. footnote 2.


