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Preface

This book is based on lectures given by the authors at an instruc-
tional conference on integrable systems held at the Mathematical In-
stitute in Oxford in September 1997. Most of the participants were
graduate students from the United Kingdom and other European
countries. The lectures emphasized geometric aspects of the theory
of integrable systems, particularly connections with algebraic geo-
metry, twistor theory, loop groups, and the Grassmannian picture.

We are grateful for support for the conference from the London
Mathematical Society, the Engineering and Physical Sciences Re-
search Council (contract No. 00985SCI96), the University of Oxford
Mathematical Prizes Fund, the Mathematical Institute, Wadham
College, and Oxford University Press.

N. M. J. Woodhouse
Oxford, February 1998
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1

Introduction

Nigel Hitchin

Integrable systems, what are they? It's not easy to answer precisely.
The question can occupy a whole book (Zakharov 1991), or be dis-
missed as Louis Armstrong is reputed to have done once when asked
what jazz was — 'If you gotta ask, you'll never know!'

If we steer a course between these two extremes, we can say that
integrability of a system of differential equations should manifest
itself through some generally recognizable features:

• the existence of many conserved quantities;
• the presence of algebraic geometry;
• the ability to give explicit solutions.

These guidelines should be interpreted in a very broad sense: the
algebraic geometry is often transcendental in nature, and explicitness
doesn't mean solvability in terms of sines, exponentials or rational
functions.

The most classical example of integrable systems shows all these
properties: the motion of a rigid body about its centre of mass. If fi
is the angular velocity vector in the body and /i,/2,/3 the principal
moments of inertia, then these equations take the form

To analyse them it is easier to rescale and obtain the simpler equa-
tions
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So what do we look for first? Conserved quantities. Note that
differentiating and so
is constant. We similarly get

So A and B are two conserved quantities as (ui, ^2,^3) evolves.

What about algebraic geometry! Take the first equation ii\ =
^2^3 and substitute for u% and u% given by the expressions above,
then we obtain

Putting y = u\ and x = u\ , we can rewrite this as

which is the equation of an algebraic curve, in fact an elliptic curve,
and

is a regular differential form on the curve.

Finally how about explicit solutions'? Any elliptic curve can be
written in a standard form

and there is a meromorphic function, the Weierstrass p-function,
which is doubly periodic:

and satisfies

Using the p-function, the solution becomes

This means not only that if we are prepared to use elliptic functions,
we can solve the equation, but also that time in the original equation
is linear in the natural parameter u: we have achieved in some sense
a linearization of the non-linear differential equation for the rigid
body.
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The study of integrable systems is not just about cunning meth-
ods of solving isolated special equations. Each equation is slightly
different, and indeed there are many of them: a trawl through a
couple of standard books on the subject gives at least the follow-
ing list of equations which are seriously considered to be related to
integr ability:

Calogero-Moser system, Calogero-Sutherland system, Euler-Arnold
rigid body, Clebsch rigid body, Euler-Poinsot top, Gamier system,
Gaudin system, Goryachev-Chaplyagin top, Henon-Heiles system,
Kepler problem, Kirchoff rigid body, Kowalewski top, Lagrange top,
Neumann problem, Toda lattice, Ruijsenaars system, Steklov rigid
body, Nahm's equation, Boussinesq equation, Burger's equation,
Davey-Stewartson equation, Drinfeld-Sokolov construction, Ernst
equation, Painleve equation, Euler-Arnold-Manakov equation,
Gelfand-Levitan-Marchenko equation, Heisenberg ferromagnet equa-
tion, Korteweg-de Vries equation, Kadomtsev-Pietviashvili equation,
Krichever construction, Landau-Lifschitz equation, Hasimoto equa-
tion, Lax equation, Liouville equation, Manakov-Zakharov model,
modified KdV equation, nonlinear Schrodinger equation, Riccati
equation, Schlesinger equation, sine-Gordon equation, Zakharov-
Shabat equation, Benjamin-Ono equation, Calogero-Degasperis-
Fokas equation, Harry-Dym equation, Fermi-Pasta-Ulam problem,
massive Thirring model, Melnikov equation, Benjamin-Bona-
Mahoney equation, Maxwell-Bloch equation . . . ,

Another task of the mathematician, apart from solving individual
equations, is to put some order into a universe like this. Is there
some overarching structure of which all these are special cases which
explains integrability?

The point where most discussions of integrability begin is with
the idea of a system of differential equations which can be put in Lax
pair form. Let's begin with a finite-dimensional system

where



so all the coefficients of the polynomials tr A(z)p for all p are con-
served quantities. Since the components of the characteristic polyno-
mial are expressible in terms of these traces, it is the whole spectrum
of A(z) which is preserved. Clearly equations of Lax pair type sat-
isfy the first criterion for integrability that there should be many
conserved quantities. In fact, algebraic geometry appears again very
naturally.

The characteristic equation

defines an algebraic curve, called the spectral curve, which is pre-
served by the flow. For each point (y, z) on this curve we have a
one-dimensional space

and this varies with time—it forms a line bundle over the spectral
curve. To study equations of this type, then one must study the
algebraic geometry of algebraic curves and line bundles over them.

It is a well-known fact that the space of line bundles is a complex
torus—the quotient space of a vector space C9 by a lattice subgroup,
and it is here that the final criterion of explicitness of solutions is
fulfilled. We regard the equation as integrable if the line bundle L
moves in a linear fashion with t in this vector space. Under these
circumstances the solutions can in principle be written down in terms
of theta-functions. It requires a specific form for the matrix B(z) to
be able to do this, however. An arbitrary matrix B would give a
non-linear isospectral deformation of A(z).

are polynomials of k x k matrices. Because of the differential equa-
tion, we have

4 N. J. Hitchin


