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Preface

I started to write this book in autumn 2005 when I presented a course of
lectures on nanoelectronics at Helsinki University of Technology. I had
presented the course once before with three other people, and could not
find a book with which I would have been satisfied. Initially, I intended
to write only lecture notes, but after running the course again in 2007
and 2009 I thought that the 250 pages of lecture material could easily
be published as a book. Little did I know. After being late for my
initial deadline by two years, I now finally dare to submit the text to
the publisher.

There are other books on electron transport and nanoelectronics. Nev-
ertheless, I found them too narrow in their topic, outdated, too deep for
a textbook, containing too much formalism, or having other deficiencies.
In other words, I wanted to write my own book that would contain a
wide selection of topics and explain them without too difficult mathe-
matics or formalism, and which would tell both about experiments and
theory. So here it is.

Because of my aim of avoiding too heavy formalism I have chosen not
to describe non-equilibrium Green’s function approaches to transport
phenomena. Courses detailing these approaches usually spend half the
time on the formalism, finding the poles of the various Green’s functions,
and figuring out analytic continuations and so on. Whereas this is a nec-
essary tool for theorists in the field, most of the transport phenomena
as such can be explained without using these tools. Because of this my
book concentrates on different types of transport phenomena, without
forgetting about the main theoretical approaches (but at a lower level
than non-equilibrium Green’s functions) to describe them: Boltzmann
equations, scattering theory, master equations and so on. On the other
hand, I also do not discuss the different fabrication or measurement
techniques that are the bread and butter of nanoelectronics experimen-
talists. However, I try to tell what and how things are measured on a
general level. Whereas many of the basic theories presented in the book
date back to the 1980s or 1990s (or even before), I have tried to include
references and especially pictures of more recent experiments.

Some may complain about the selection of phenomena discussed in
this book. Nanoelectronics is a vast field and I could have made different
choices. In particular, I have decided to omit the quantum Hall effect
altogether. Neither do I discuss, for example, Luttinger liquids or other
strongly correlated phenomena, or topological insulators. Spintronics is
only a section in the chapter on semiclassical theory, whereas a whole
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book could be written about the topic. My choice is obviously strongly
affected by my own background. Because of this, I have subtitled the
book ‘Transport and fluctuation phenomena at low temperatures’. Low
temperatures are not a necessity for everything I describe, but many
of the effects are in practice accessible only at cryogenic temperatures
(below a few Kelvin). That is where the interesting physics lies.

Use as a textbook

This book is intended for advanced undergraduate and starting graduate
students who have passed courses on quantum mechanics, solid state
physics and some statistical physics. In Appendix A I summarize some
of the main technical tools needed when reading the book, but I assume
that the reader has already encountered most of them before.

I have tried to arrange the book such that as a rule of thumb every
chapter could be lectured in one two-hour lecture. The exception to this
is Ch. 6, which requires two lectures. It is probable that not all aspects
of every chapter can be discussed during such lectures, so the lecturer
should decide which details to omit. This pace means that the whole
book could be lectured on a course containing 12–14 lectures, which
is, at least in my university, quite a typical length of a single-semester
course having one lecture each week. Many of the chapters have been
written such that they form almost independent entities, so that some
of them can be bypassed without too big problems. I would not advise
skipping Chs. 2, 3 and 7, which are needed in many other chapters
as well, although Secs. 2.7, 2.8, 3.6 and 7.6 are not entirely necessary.
Moreover, the concepts of noise and the fluctuation–dissipation theorem
discussed in Sec. 6.1 are also needed in other chapters. Chapter 5 is
a precursor to Ch. 9, but it can be skipped if the students know the
basics of the theory of superconductivity. Part of the text has also been
organized as examples and complements, which aim to give some deeper
insight on the topic at hand. The difference between the two is that
the examples are intended for all readers, whereas the complements are
more for the advanced students. The appendices contain first a set of
technical tools that students usually learn in basic courses on quantum
mechanics or solid state theory, but which can be used as reminders.
Also, some of the long derivations are presented in the appendices to
improve the flow of the main text.

Each chapter contains several exercises, that are directly related to
the text or offer ideas for further development. A solutions manual will
be available upon request once the book is published. In addition, every
chapter contains one or two questions on recent scientific papers, by
which the students are expected to take a particular recent experimental
paper and to understand what was measured.

While every effort has been made to carefully check and edit this book,
corrections to any errors that may have crept in will be posted on the
book website at http://www.thephysicsofnanoelectronics.info.

Happy reading!

http://www.thephysicsofnanoelectronics.info
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List of symbols

λF Fermi wavelength
�el elastic scattering length

� = vF τ,
√
Dτ relation of a scattering length to a scattering time in

the ballistic, diffusive limit
τϕ, �ϕ dephasing time, length
τe−ph, �e−ph electron–phonon scattering time, length
τe−e, �e−e electron–electron scattering time, length
τsf , �sf spin-flip scattering time, length

�m =
√
Φ0/B length scale related to the magnetic field B

NF density of states at the Fermi level
pF , pF Fermi momentum (magnitude and the vector)
vF , vF Fermi velocity (magnitude and the vector)
EF Fermi energy
μL/R, TL/R chemical potential (Fermi level) and temperature for

left/right leads
f(E), f0(E) electron energy distribution function, Fermi function
n(E), n0(E) boson (phonon, photon) distribution function, Bose

function
D = v2τ/d diffusion constant for dimensionality d
Tn transmission coefficient for channel n
T̄ (E), R̄(E),M(E);
T̄ (E) + R̄(E) = M(E)

total transmission probability (summed over modes),
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sαβnm scattering matrix or its element connecting mode m in
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F (	r) = 〈ψ↑(	r)ψ↓(	r)〉 pairing amplitude
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λ interaction constant in the theory of superconductivity
λp magnetic field penetration depth into a superconductor
S(ω) noise power spectral density (Fourier transform of a

two-operator correlator)
P (E) (in the dynamical Coulomb blockade theory) probabil-

ity for an environment to absorb energy E
∂x = ∂

∂x short-hand for derivative
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1.2 Classical vs. quantum trans-
port 9

Further reading 13

Exercises 14

This book describes electron transport phenomena in small, mesoscopic
systems. The word mesoscopic comes from the Greek word mesos, which
means middle, indicating that the mesoscopic world resides between the
microscopic and the macroscopic. Typically this means that the phe-
nomena take place in systems consisting of a large number of atoms and
electrons, but they only occur if the system is small enough, i.e., the
size of the system is smaller than some length scale characterizing the
transition from the microscopic to the macroscopic world.

Let us take a few examples that are discussed in the remainder of the
book. In a perfect metallic crystal, electron transport is essentially dis-
sipationless, i.e., the conductivity is infinite. But there are no everyday-
scale perfect crystals. The dislocations, vacancies and other impurities
distort the crystal periodicity and lead to a finite conductivity. Also,
the presence of lattice vibrations, phonons, induce scattering that fur-
ther decreases conductivity. These processes come with a length scale, a
mean free path, that characterizes the average distance between the im-
purities, or between subsequent scatterings of conduction electrons from
them, or from the phonons. A metallic wire which is smaller than this
mean free path is said to be ballistic. In a ballistic wire, the resistance
does not depend on the length of the wire, and therefore the conduc-
tivity can be said to be infinite. As explained in Ch. 3 of this book,
however, even with this infinite conductivity, the measured resistance
of such a wire is non-zero, as the finite number of quantum channels
in the wire leads to a finite resistance. In this example the crossover
from mesoscopic (where a macroscopic observable such as resistance is
well defined, but it is determined by the quantum nature of the wire)
to macroscopic (where resistance scales with the length of the wire) is
characterized by the mean free path.

Another example concerns the definition of the electron temperature.
From statistical physics we learn that temperature characterizes the
width of the electron energy distribution function turning from one be-
low the chemical potential μ to zero above μ. This temperature is a pa-
rameter in the Fermi-Dirac distribution function. In a non-equilibrium
setting, an applied voltage V giving rise to a current I leads to the
power P = V I applied to the sample, and the sample heats up. But as
discussed in Ch. 2, the resultant distribution function may not always
be of the Fermi-Dirac form, and one can have many different types of
definition for the electron temperature. This non-equilibrium form per-
sists in the wire until after some distance the electrons relax into the
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Length Symbol order of magnitude
Fermi wavelength (metals) λF 0.1 . . . 1 nm
Fermi wavelength (2DEG) λF 10 . . . 100 nm

Elastic scattering length (metals) �el 10 . . . 100 nm
Elastic scattering length (2DEG) �el . . . hundreds μm

Energy relaxation length at T = 1 K �en 1 . . . few tens μm
Dephasing length at T = 1 K �ϕ 0.1 . . . 10 μm

Table 1.1 Orders of magnitude for some length scales in typically studied mesoscopic
systems. These should be compared to the structure sizes with dimensions some tens
of nanometres, fabricated with standard lithography techniques (at minimum, larger
conductors can obviously also be made), which also set the scale for the potential
profiles in two-dimensional electron gas (2DEG) systems. With more advanced tech-
niques, such as mechanically controllable break junctions, electromigration, atomic
layer deposition, manipulations with atomic force microscopes, etc., one may reach
wires with atomic widths and thicknesses. Moreover, such ultra-thin conductors may
be reached with ‘bottom to top’ approaches, e.g., from carbon nanotubes.

usual equilibrium shape. Such a relaxation is characterized by a relax-
ation length, and this again describes a crossover between mesoscopic
and macroscopic regimes.

Especially the length scales concerning energy relaxation are strongly
temperature dependent. For example, for a typical copper wire,1 the re-1See details in Sec. II.C.2 of the

review on thermal effects (Giazotto
et al., 2006); in this particular case
the electron–phonon scattering length
is proportional to T−3/2.

laxation length at room temperature is of the order of a few nanometres,
at T =10 K it is close to a micrometre, at T =1 K it already reaches
a few tens of micrometres, and for the minimum typically achievable
electron temperature, T =10 mK, it is a ‘macroscopic’ length, of the
order of centimetres. This shows that mesoscopic effects are best seen
at low temperatures. Reaching temperatures below 1 K is nowadays
an everyday task in many physics laboratories. As many of the effects
discussed in this book require a large enough wire so that level quanti-
zation effects are small within the phase breaking or energy relaxation
lengths, finding some of those effects really requires cooling the sample
to low temperatures. This also shows up in the assumptions made of
the operating temperatures in the remainder of this book.

Other typical length scales relevant for mesoscopic conductors are
summarized in Table 1.1.

The opposite end of mesoscopic effects, i.e., turning of microscopics
into mesoscopics, is a matter of convention. Molecular electronics—
measuring charge transport through single molecules—is rarely included
in the strict definition of mesoscopic physics, but apart from the energy
scales many of the observed effects are quite similar to those seen in
quantum dot systems consisting of millions of atoms and electrons. One
characteristic feature of mesoscopics is that the systems are open: the
small system under interest is coupled to a larger system, and this cou-
pling may modify the properties of the small system, for example, in-
ducing finite lifetimes of the electronic states. For these reasons, the def-
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inition of the mesoscopic realm can be extended down to the molecular
level, when concentrating on those effects where the materials-dependent
features affect only quantitative details.

1.1 Studied systems

This book concentrates on electron transport phenomena in small con-
ducting structures, rather than the detailed (often materials-dependent)
characteristics of those structures themselves. But in order to acquire
the correct mindset on where these phenomena are found, let us shortly
discuss those structures and their main characteristics as well.

Mesoscopic phenomena are studied in four different types of conduct-
ing system depending on the main materials used for their construction:
metallic wires, semiconductor structures, molecules and graphene.2 In

2Recently, quite a lot of attention
has also been paid to a fifth class
of mesoscopic systems, fabricated on
systems called topological insulators,
which have a conducting surface be-
cause of the surface states formed at
the interface between a topological in-
sulator and a conventional insulator or
vacuum. For a recent review, see (Qi
and Zhang, 2011).

addition, different kinds of nanowires typically fall within all of these
categories, but often have properties characteristic to those nanowires
rather than the bulk material of which they are made. These systems
are described in some detail in the following.

Fig. 1.1 Photograph of a GaAs chip
used for measurements of spin qubits
(see Sec. 8.5.4). The chip (in the

centre) is about 5 mm × 5 mm. It is
bonded to the external measurement
equipment via the many aluminium
wires, which supply the control

voltages to the qubit. The
(sub-nanosecond) qubit driving is
carried out via the two coaxial

transmission lines at the left, and the
readout via the surface mount copper

inductor (in the background).
Courtesy of F. Kuemmeth, Marcus

Lab, Harvard University.

Common to the studies of any nanostructure, one also has to fabricate
the contact from this structure to the macroscopic measuring devices (see
the large-scale picture in Fig. 1.1). Typically this is done by structuring
much wider electrodes than the studied wires in contact with them (see
Figs. 1.2, 1.6, 1.8 and 1.9 for examples). Such an electrode ideally works
as a reservoir (heat and particle bath) of electrons: once the electrons
enter the electrode, they quickly thermalize with the lattice. In practice,
this means that their energy distribution function obtains the Fermi–
Dirac form3

3Below, when I want to emphasize that
the distribution function has this form,
I use the superscript 0.

f0(E) =
1

exp[(E − μ)/(kBT )] + 1
, (1.1)

where μ is the chemical potential and T the lattice temperature of the
reservoir. In the ideal case, the reservoir is then unperturbed by what
happens in the nanostructure. These wide electrodes continue for some
hundreds of microns and connect to contact pads, the latter with dimen-
sion of the order of a millimetre. To these the experimentalist connects
the external wires, which then connect the sample to the measurement
apparatus. At this point there are often a few signal amplification stages.
As the mesoscopic nanoelectronics experiments are often carried out at
low temperatures, the thermal noise in the measurement apparatus (re-
siding at room temperature) and the electronic heat current through the
wires typically heat up the electrons in the sample. Therefore, one typi-
cally needs a good thermal contact of the wires with the low-temperature
equipment, and several electronic filters for the noise between the sample
and the room-temperature equipment. All this is of extreme importance
when measuring the mesoscopic effects in small conductors. However,
this is a book concentrating on phenomena, so I do not dwell on the
detailed problems faced when fabricating and measuring nanoelectronic
samples.
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1.1.1 Metallic wires and metal-to-metal contacts

Perhaps the simplest studied systems in nanoelectronics are small metal-
lic wires and metal-to-metal contacts fabricated with the help of a litho-
graphically patterned mask through which the metals are evaporated.
Typically used metallic materials are based on aluminum, copper, gold,
niobium, silver, platinum or palladium, but also other metals are used.
As aluminum and niobium become superconducting at sub-Kelvin tem-
peratures (the critical temperature of Al is 1.1 K and for Nb it is
9.3 K), a combination of superconducting and normal-metallic (non-
superconducting) effects can be studied using them (see Chs. 5 and 9).
Most single-electron transistors (Ch. 7) and superconducting Josephson
junctions (Ch. 9) are fabricated with metals. For an example of an ultra-
small system consisting of metallic wires and many tunnel contacts, see
Figs. 1.2, and for one not so small but containing many different metals,
see Fig. 1.3.

Fig. 1.2 Scanning electron
micrograph (SEM) of a single-junction
thermometer structure, consisting of
aluminium wires attached to each
other via aluminium oxide tunnel

contacts. This sample can be used for
a very precise measurement of the
temperature via the Coulomb

blockade, as discussed in Ch. 7, see
(Pekola et al., 2008). This structure

was fabricated in NEC
Nanoelectronics Research Laboratories
in Japan, and measured in the Low
Temperature Laboratory of the Aalto

University, Finland. Courtesy of
Jukka Pekola and Matthias Meschke.

In the following I discuss very briefly the simplest approach to the
electronic structure of metals. For most purposes this is a sufficient de-
scription. Besides being needed for describing the transport phenomena
in metals, it is also needed for understanding the electronic transport
through other types of material, as the samples made from them are
eventually always contacted to metal electrodes for the measurements.

Fig. 1.3 SEM figure of a
normal-metal (Au)–superconductor

(W) loop attached to a
superconducting resonator (made of
Nb, only a small part shown). This

structure was fabricated in the
University of Paris Sud for the

measurements of the high-frequency
impedance of a superconductor–

normal-metal–superconductor junction
(Chiodi et al., 2011). Courtesy of F.

Chiodi and H. Bouchiat.

‘Free’ fermions in metals

Electrons interact strongly via the Coulomb interaction. However, it
turns out that the low-energy properties of the conduction electrons in
metals or doped semiconductors can be well described within an inde-
pendent electron description. This means that for most bulk properties
we need to consider the Schrödinger equation for a single particle wave
function ψ,

i�
∂ψ(	r)

∂t
=

(
− �

2

2m∗∇2 + U(	r)

)
ψ(	r), (1.2)

where U(	r) describes the possibly random local variations of a mean-
field potential felt by the electron. That such a description is possible
is explained by Landau’s Fermi liquid theory.4 We do not dwell on
this theory here, and it suffices to state that this theory is valid only
at excitation energies much smaller than the Fermi energy, and in this
case the effect of electron–electron interactions is captured mostly in
the effective mass m∗. In fact, the first term on the right-hand side of
eqn (1.2) is the lowest-order term in the expansion of the bulk electron
energy vs. the momentum around the Fermi level.

There is one remaining effect of the electron–electron interactions even
in this case: the collisions between the electrons serve as a route for
relaxation towards an equilibrium state. This effect is described in Ch. 2.

4See, e.g., Ch. 17 in (Ashcroft and Mermin, 1976) or Sec. 11.2.1 in (Mahan, 2000). In fact, the free electrons in this theory are
replaced by Landau quasiparticles, which are elementary excitations of the interacting electron system. These quasiparticles
are the single electrons ‘dressed’ with the interactions.
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In restricted geometries the electron–electron interactions may again
become more relevant, and a mean-field type of a description is no
longer sufficient. For transport through zero-dimensional islands, this
shows up in the Coulomb blockade phenomenon (see Chs. 7 and 8). In
one-dimensional wires the (sufficiently weak) interactions result in the
formation of a Luttinger liquid.5 Finally, if the effective interaction be- 5Luttinger liquids are outside the scope

of this book. For an introduction, see,
for example, Sec. 19.4 in (Bruus and
Flensberg, 2004).

tween electron pairs is attractive, the electronic system may turn into a
superconducting state. The consequences of this are discussed in further
detail in Chs. 5 and 9.

Besides the neglect of electron–electron interactions, there is another
relevant approximation usually applicable when describing the trans-
port properties of metals. Namely, typical Fermi energies of metals are
in the range of electron volts, or in temperature units, tens of thousands
of Kelvin. Typical excitation energies in transport studies and the op-
erating temperatures of the devices are much lower than this scale. In
other words, the relevant electron momenta lie within δp from the Fermi
momentum pF . In this case the electron dispersion relation (relation
between the momentum and the kinetic energy of an electron) for the
relevant excitations can be often approximated via

εp =
p2

2m∗ =
(pF + δp)2

2m∗ =
p2F
2m∗+

pF
m∗ ·δp+o(δp2) ≈ EF+vF ·δp, (1.3)

where pF = p̂pF , pF =
√
2m∗EF = m∗vF is the Fermi momentum and

vF is the Fermi velocity. This is called the semiclassical approximation,
and it implies that for many purposes electrons can be viewed as classical
particles moving with the Fermi velocity. Such an approach is employed
in Ch. 2 to study the semiclassical limit of transport, widely applicable
for metals.

Linearizing the dispersion relation around the Fermi energy has also
another important consequence: it makes the density of states constant.
Assume we want to calculate the value of some energy-dependent ob-
servable F (εp) given as an integral over the momentum states, i.e.,∫

d3p

4π3�3
F (εp) =

∫ ∞

0

p2dp

�3π2
F (εp) =

∫ ∞

0

dεN(ε)F (ε). (1.4)

On transforming from the momentum integral to the energy integral we
introduced the density of states

N(ε) =
1

π2�3

p2dp

dεp
≈ 2m∗EF

π2�3vF
=

m∗pF
π2�3

≡ NF , (1.5)

where the last three forms are independent of energy. This approxima-
tion is used throughout the text when dealing with metals. Moreover,
for typical observables related with electron transport, F (ε) is non-zero
only within a small energy window around the Fermi energy EF much
larger than this energy window.6 Therefore the integral over the energies

6This applies for all ‘transport’ observ-
ables, such as average current, which
vanish in the absence of a bias (volt-
age), or thermal noise, which vanishes
at T = 0.in eqn (1.4) can be extended to start from ε = −∞.
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1.1.2 Semiconductor systems

Fabricating semiconducting materials requires more massive and ex-
pensive techniques than with metals, but the resultant systems are
also generally more controllable. Besides replacing metals with heavily
doped semiconductor materials, for mesoscopic transport studies semi-
conductors are most often used in two distinct flavors: metal-gated
two-dimensional electron gases (2DEGs) formed between semiconduc-
tors with different levels of doping, or nanowires grown out of different
types of semiconductor material.

++++
+

+
+
+
+

metal

�

�

eVG ���
2DEG

EF

EC

EV

AlxGa1−xAs GaAs

�
z

Fig. 1.4 Band-bending diagram of
modulation doped GaAs/AlxGa1−xAs
heterostructure. A 2DEG is formed in
the undoped GaAs at the interface
with the p-type doped AlGaAs.

Figure 1.4 shows the energy diagram of a 2DEG forming at the in-
terface between non-doped GaAs and Al-doped GaAs. To adjust to the
variation in the doping, there is charge transfer at the interface. As a
result, the band energies are bent as shown in the figure. With suitable
doping, the conduction band drops to just below the Fermi level within
a small region near the interface. As a result, excitations to higher-order
states in the perpendicular direction to the interface require a large en-
ergy, whereas in the direction parallel to the interface electrons can move
almost freely. The electron gas is thus effectively two-dimensional, and
the electron density can further be controlled in situ by attaching metal
gates on top of the heterostructure. Moreover, patterning these gates
suitably, one can locally change the electron density (also to zero) and
thereby produce different types of confining potential for the electrons.
With such a scheme one can realize even lower- (than two-)dimensional
objects, such as one-dimensional wires, quantum point contacts, or zero-
dimensional quantum dots (see Fig. 1.6 for an example).7 These systems
are described in this book.

Fig. 1.5 Single electron transistor
fabricated starting from InAs/InP
nanowires deposited on a SiO2/Si

substrate. Devices are contacted by a
Ti/Au metallization and local

nanogates at the sides of the wire can
be used to tune the spectrum and
filling of electron orbitals. Device
fabricated in Scuola Normale

Superiore, Pisa, Italy. Courtesy of
Stefano Roddaro and Francesco

Giazotto.

Different types of semiconductor can nowadays be quite controllably
grown into thin nanowires (see an example in Fig. 1.5). Typical mate-
rials used for these wires are Si and different III-V semiconductor com-
pounds, such as InAs, InP and GaAs. The thickness of these wires is
typically a few tens of electron wavelengths, i.e., they contain a few tens
of electron modes contributing to the charge transport. In effect, semi-
conductor nanowires have many similar properties as (multi-wall) carbon
nanotubes, but their different materials parameters allow for studying
a wider range of topics. Especially, some of them have interesting mag-
netic properties, such as strong spin-orbit scattering and large effective
electron g-factor for Zeeman splitting, which may make them interesting
for spintronics applications.

Depending on the particular semiconductor concerned, on the magni-
tude of the excitation energies and the observable studied, doped semi-

7Nearly all systems in condensed-matter physics are strictly speaking three-dimensional. However, often systems can be
described by being effectively lower-dimensional: in this case one or more of the dimensions (width, thickness, length) is
smaller than some characteristic length scale describing certain type of physics. For example, 2DEGs are thin in the z-direction
compared to the Fermi wavelength, and therefore excitation to higher states in that direction are costly. In some cases there are
also other relevant length scales, such as those related to screening of interactions, dephasing of interference effects (see Ch. 4)
and energy relaxation. Therefore, a given conductor may be three-dimensional in one respect and, for example, one-dimensional
in another. Moreover, often systems showing gradients of variables in only one (or two) directions are called quasi-one-(or
two-)dimensional, even though otherwise they would be three-dimensional.
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Fig. 1.6 Atomic force microscope
(AFM) image of a double quantum
dot fabricated on a GaAs/AlGaAs het-
erostructure by a local oxidation. The
double quantum dot (QD1 and QD2)
is formed in the centre of the structure.
The radius of the QD1–QD2 system is
of the order of 100 nm. The two quan-
tum point contacts (QPC1 and QPC2)
can be used to monitor the charge state
of the quantum dots, and the whole
system can be controlled by applying
voltages to the two gates (G1 and G2)
and between source S and drain D.
This structure was used to measure the
charge dynamics of the quantum dot,
see (Gustavsson et al., 2007). Cour-
tesy of Klaus Ensslin, Swiss Federal
Institute of Technology, ETH, Zürich,
Switzerland.

Fig. 1.7 Two techniques used for mak-
ing molecular break junctions: mechan-
ically (b) and electronically (c) bro-
ken junctions. These techniques al-
low reaching ultra-narrow gaps between
the electrodes, so that molecules can
be deposited in the free space between
them as illustrated in (a). In real-
ity, the molecules are typically in a
solution everywhere near the junction,
and only a transport measurement re-
veals whether one of them links the two
electrodes. In this setup, usually the
transport takes place dominantly only
through one molecule. (van der Molen
and Liljeroth, J. Phys. Condens. Mat-
ter 22, 133001 (2010), Fig. 6.)

conductors and low-dimensional structures based on them may often still
be described with the free-electron picture similar to that of metals—at
least when constrained in the relevant number of dimensions. However,
semiconductors have typically a more complicated Fermi surface than
metals, and this often shows up in the applications. Besides the pos-
sibility of realizing low-dimensional structures, such materials-specific
features of semiconductor nanostructures are not discussed in this book.

1.1.3 Carbon nanotubes and molecules

There are techniques to contact molecules between metallic leads and
study transport through them. Two commonly used techniques are de-
picted in Fig. 1.7 showing a schematic way of making extremely small
break junctions into which molecules can be placed; a third alterna-
tive is to use scanning tunnelling microscopy.8 Many different types of

8For a review of these techniques, see
(van der Molen and Liljeroth, 2010).
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molecule have been studied, for example the electric current through a
single Hydrogen molecule has been measured (Smit et al., 2002). The
transport through the molecules show behaviour reminiscent of quan-
tum wires (Ch. 3) or quantum dots (Ch. 8). In this respect the most
notable difference to semiconductor quantum dots is that the energy
level spacing in molecules tends to be larger.99Note that the viewpoint in molecular

electronics is often different from the
one in this book: there the aim is often,
besides the generic picture of the trans-
port process, to connect the chemical
valence to the charge transport char-
acteristics. That means that the ex-
act positions of the energy levels mat-
ters rather than the consequences of the
mere level quantization.

For ordinary molecules, the bulk band structure is no longer an ap-
plicable concept. Rather, typically the relevant topic of study is the
discrete electronic spectrum on the molecule, and the dependence of
this spectrum on the number of electrons. Therefore, the energy scales
encountered in molecular electronics are closely related to the chemical
properties of these molecules.

Fig. 1.8 Double-gated suspended
ultra-clean single-wall carbon

nanotube (SWNT) between two metal
electrodes. This type of a sample was
used for the measurements of the

coupling of the spin and orbital motion
of electrons in SWNTs (Kuemmeth

et al., 2008). Courtesy of Shahal Ilani,
Weizmann Institute of Science, Israel.

In terms of transport studies, carbon nanotubes (CNTs) are quite
different from ordinary molecules. They are typically long enough so
that their studies generally do not require break-junction techniques,
and they are long enough so that a description as a bulky object is
often justified.10 In them the nature of the extended electron states de-

10However, CNTs are often also used
to make quantum dots.

pends strongly on how the nanotubes are wound into the tubes. There-
fore, some nanotubes are insulating whereas some are metallic, depend-
ing on the exact microscopic structure. Because of this, the transport
properties of different carbon nanotubes vary considerably.11 Moreover,

11I do not dwell on the electronic struc-
ture of the carbon nanotubes here. For
those interested, there are books writ-
ten on them; see for example (Ando,
2005).

nanotubes exist in multiple forms: Perhaps the best understood are
the single-wall nanotubes (SWNTs), which contain only a single carbon
sheet rolled into a tube. What makes the SWNTs special is that they
contain two degenerate orbital states at the Fermi energy,12 correspond-

12When adding spin, the total degen-
eracy is thus four.

ing to the possible two directions of the chiral orbits around and along
the tubes. In contrast, multi-wall tubes (MWNTs) contain many more
states, and in some cases they can be likened to thin metal wires. In
some cases the tubes form bundles through which the transport can also
be studied, but the properties of the bundles are less controllable than
those of the individual tubes.

1.1.4 Graphene

In 2004, physicists at the University of Manchester attached scotch tape
to a piece of graphite, then removed it and placed it on top of a Si
substrate. After peeling off the tape, they discovered that some flakes
of graphite were left on the substrate. They also found that the optical
response of these flakes depends on the number of carbon layers in the
flakes. Closer inspection showed that some of these flakes had only
a few carbon layers, and some only one. Such single-layer graphene
had been studied since the 1940s (Wallace, 1947) as a mathematical
model electronic system with properties very different from ordinary
conductors or insulators. Namely, besides being the thinnest-known
two-dimensional material, the electrons in graphene seem to behave like
massless Dirac fermions. As discussed shortly below and with more
detail in Ch. 10, this property is related to the graphene honeycomb
lattice structure.
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Since its initial finding, many laboratories have been able to start
fabricating graphene samples (see examples in Figs. 1.9 and 1.10). Be-
sides the curious behaviour of the electrons, there are many properties
of graphene that are attractive for the electronics industry: for example,
graphene samples can be made extremely clean, the transport can be
tuned via gate voltages, the charge and heat conductivities in graphene
are large and optical properties qualitatively different from other mate-
rials.

Fig. 1.9 Atomic force microscope
(AFM) image of a suspended graphene
sheet between four metal electrodes
residing at the corners of the image,
fabricated in the Low Temperature

Laboratory, Aalto University, Finland.
Courtesy of Jayanta Sarkar and Peter

Liljeroth.

Massless Dirac fermions in graphene

Graphene is a two-dimensional layer of graphite. It is formed from car-
bon atoms that are arranged in a honeycomb lattice, shown in Fig. 1.10.
The fact that the unit cell contains two similar atoms has an important
consequence for the electronic structure: each electron is described by
a Dirac spinor wave function, with components describing the ampli-
tude of occupying one of the two atoms in the unit cell. The electronic
dispersion relation in graphene is derived in Ch. 10. According to this
derivation, one gets at low energies an effective Hamiltonian

Hg ≈ �vF

(
0 ±kx − iky

±kx + iky 0

)
= �vF (±kxσx + kyσy) . (1.6)

The two signs are for two non-equivalent valleys in the reciprocal space.
This Hamiltonian has the form of the Dirac Hamiltonian for massless13

13Masslessness here refers to the pic-
ture of general relativity: the disper-
sion relation does not contain the usual
mass term mc2, which would corre-
spond to an energy gap in the disper-
sion relation.

particles, but the speed of light has been replaced by vF ≈ 106 m/s.

Fig. 1.10 High-resolution scanning
tunnelling micrograph of graphene.

The carbon atoms form a single layer
honeycomb lattice, residing at the
edges of the honeycomb as shown in
the schematic figure. The unit cell

encloses two neighbouring atoms of the
honeycomb. (Stolyarova et al., PNAS
104, 9209 (2007), Fig. 2.) c© 2007

National Academy of Sciences, USA.

Besides the single-layer graphene, bilayer graphene has also been stud-
ied actively. In the bilayer case, the electrons are still described by
two-component spinors, but the Hamiltonian has the form

H = − �
2

2m∗

(
0 (kx ∓ iky)

2

(kx ± iky)
2 0

)
. (1.7)

Hence, the excitations of bilayer graphene are still spinors with two
indices for the atoms in the unit cell, but contrary to the case in single-
layer graphene, they have a finite mass m∗, which is roughly 5% of
the electron mass. However, the particular Hamiltonian of the bilayer
depends on the orientation of the two layers with respect to each other,
and in some cases it is possible to induce a finite gap in the bilayer
density of states. This is discussed in more detail in Ch. 10.

The particular dispersion relations and the presence of the ‘pseu-
dospin’ (corresponding to the two similar atoms in the unit cell) result
in many exotic electronic properties seen only in graphene.14 This is why

14For a short review see (Geim and
Novoselov, 2007), and for a more thor-
ough one (Castro Neto et al., 2009).

the successful fabrication and measurements of single graphene sheets
have resulted in massive activity in the detailed study of its properties.

1.2 Classical vs. quantum transport

The forthcoming chapters discuss quantum-mechanical transport prop-
erties of nanostructures. These show deviations from the classical Ohm’s
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law I = U/R, stating that the current I through a given sample is a
linear function of the voltage U , the coefficient R being the resistance.
In the classical case, this resistance scales linearly with the wire length,

R =
L

σA
, (1.8)

A being the cross-section of the wire and σ its conductivity. In Ch. 2 we
derive this law using semiclassical arguments: ignoring the interference
effects (Ch. 4), which often are weak, and single-electron effects (Ch. 7),
which arise in strongly interacting systems.

1.2.1 Drude formula

The Boltzmann-equation analysis of Ch. 2 yields for the conductivity in
the semiclassical limit

σ = e2NFD = e2NF vF �el/d, (1.9)

where e is the electric charge, NF is the density of states at the Fermi
level, D is the diffusion constant, vF is the Fermi velocity, �el is the
elastic mean free path and d is the dimensionality of the wire.
Besides the semiclassical derivation of eqn (1.9), quite a similar result

was found by (Drude, 1900a; Drude, 1900b), before the microscopic
theories of solid state. Drude’s derivation goes as follows. Let us consider
an electron in a solid where one has applied an electric field 	E. The
electric field produces a Lorentz force −e 	E, accelerating the electron.
Assume that a time t has passed since the electron last collided with the
lattice. The velocity of the electron has increased to 	v0 − e 	Et/m due
to the Lorentz force, 	v0 being the initial velocity after the last collision.
If that electron collides in random directions from the impurities, the
initial velocity has no contribution to the average velocity of the electron,
which must therefore be given as the average of −e 	Et/m. Denote the
average time between collisions as 2τ .15 This implies the average electron15The factor 2 does not matter much,

but is included here to get the original
Drude result in eqn (1.11).

velocity given by

	va = −e 	Eτ

m
. (1.10)

The average current carried by the electrons is given by 	j = −en	va,
where n is the electron density. Therefore, we get 	j = σD

	E with the
Drude conductivity

σD =
ne2τ

m
. (1.11)

This is the same as eqn (1.9) (up to a prefactor of order unity) after we
identify n ∼ NF v

2
Fm/2 = NFEF . This is why also the result (1.9) is

often referred as the Drude conductivity.

1.2.2 Quantum effects

Typical quantum effects encountered in nanoelectronic systems arise due
to the energy and/or charge quantization effects, tunnelling, and inter-
ference effects. A large-scale quantum phenomenon is the transition to
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the superconducting state taking place in many materials at low tem-
peratures. This transition is not a mesoscopic effect, but also in nano-
electronic circuits it gives rise to many types of phenomena which would
not be present in simple normal-metallic systems.

There are many possible reasons for violating Ohm’s law, i.e., either
linearity between current and voltage or the scaling of the resistance
with the length of the wire. Often in these cases both of them are
simultaneously violated, but there are exceptions to this. Such non-
classical effects are, for example:

• Tunnelling through a thin insulating region or a vacuum gap be-
tween two metals. Such tunnel junctions are an important part
of mesoscopic electronics, and they can be used to realize many
types of structure. A single tunnel junction fabricated between
two normal (non-superconducting) metals is typically a linear ob-
ject, i.e., its resistance is independent of voltage up to very large
voltages of the order of the work function difference between the
tunnel barrier and the metals. However, the scaling of the resis-
tance with the thickness of the tunnel junction is exponential, not
linear. Calculating the current due to tunnelling through a single
insulating barrier is illustrated in Example 1.1 below.

• In low-dimensional systems, such as quantum dots, electron en-
ergy level quantization within the system shows up in the cur-
rent through the system. This is discussed in detail in Ch. 8.

• Single-electron effects. When tunnel barriers have a small ca-
pacitance C, the energy required for charging the capacitance with
the charge of a single electron, EC = e2/(2C), may become rel-
evant. In this case, to get a finite current through the tunnel
contact, the external circuit must provide this charging energy EC

to the electrons crossing the barrier. It turns out that in a double-
junction system (‘single-electron transistor’ SET, see Ch. 7), this
energy has to be provided by the bias voltage or the temperature.
Otherwise no current can flow, and the system is in the state of a
Coulomb blockade.

• In metal or semiconductor wires, carbon nanotube or graphene
structures whose size is smaller than the phase relaxation length
�ϕ, interference effects between different electron paths within
the wire may alter the conductivity. Such effects are Aharonov–
Bohm effects and persistent currents in multiply connected systems
under an applied magnetic field, and localization and universal
conductance fluctuations in disordered systems. These effects are
discussed in Ch. 4.

• In ballistic wires, i.e., conductors whose size is smaller than the
mean free path, the resistance no longer scales with the length of
the wire, but it becomes quantized, depending on the ratio between
the width of the wire and the Fermi wavelength λF of electrons
(see Ch. 3).
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• At a high magnetic field, Landau levels are formed within the con-
ductor, and the resistance through the system is strongly field de-
pendent. The resultant quantum Hall effects are not discussed
in this book, but for a general introduction see for example (Imry,
2002) or (Datta, 1995).

• In superconducting wires and junctions, and superconductor–
normal metal heterostructures, quantum-mechanical phase coher-
ent effects show up, and Ohm’s law ceases to be valid. Some of
these phenomena are discussed in Chs. 5 and 9.

Before embarking on the multitude of transport phenomena I would
like to point the reader to Appendix A, which contains a set of necessary
theoretical tools, concepts and formulas employed in the book. An ad-
vanced or impatient reader may skip these appendices, and if necessary
return to them when they are needed.

Example 1.1 Current through a tunnel junction
As an example of calculating the current through a low-dimensional object,
consider the case of a tunnel junction depicted in Fig. 1.11. The proper micro-
scopic calculation of the current in this case is carried out in Ch. 7, but the

Fig. 1.11 Schematic model of a
tunnel junction with transparency τ .

formula for the current can also be argued based on a simple picture. With
an applied voltage V through the junction, the Fermi levels of the electron
systems on the two sides of the junctions are shifted by eV , i.e., they are μL

and μR = μL − eV . Assume that the average transmission probability for an
electron on the left side of the junction to enter the right side is τ (taken for
simplicity independent of energy). According to elementary quantum mechan-
ics, this depends on the junction parameters as τ ∼ exp(−2d

√
2mU/�), where

d is the width and U is the height (work function difference between the metal
and the tunnel barrier) of the tunnel barrier, and m is the electron mass. At
a vanishing temperature, the current from the left to the right at energy E
is then eAcτNL(E − μL)NR(E − μR), where A is the area of the junction,
NL/R(E) is the density of states in the left/right side of the junction and c
is a constant fixing the dimensions of this expression to (current/energy). In
what follows, we identify the prefactor as the resistance, and eliminate c. At
non-zero temperature we have to include the occupation numbers (distribu-
tion functions) fi(E) of electrons in reservoir i: the initial state has to be filled
and the final state has to be empty. Therefore, the total current (current from
the left to the right minus that from the right to the left) is

I = ecAτ

∫ ∞

−∞
dENL(E − μL)NR(E − μR){fL(E)[1− fR(E)]

−fR(E)[1− fL(E)]} (1.12)

= ecAτ

∫ ∞

−∞
dENL(E − μL)NR(E − μR)[fL(E)− fR(E)], (1.13)

where μR = μL − eV . When the two sides of the tunnel junction are at a
local equilibrium, fL/R(E) = f0(E;μL/R, T ), where f0(E;μ, T ) is the Fermi–
Dirac distribution function, eqn (1.1). The integrand is non-vanishing within
the window of width ∼ max(kBT, eV ) around μL and μR, i.e., around the
Fermi energies EF of the two leads.16 If one of the reservoirs, say the one

16In the limit kBT � EF , EF is the
same as the chemical potential; see Ap-
pendix A.5.

on the right, is made of a normal metal and the voltage is much smaller
than EF /e, its density of states is almost constant within this window (see
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the discussion in Sec. 1.3). It can therefore be replaced by its value at EF ,
NR(E) ≈ NR(EF ) ≡ NR

F . In this case, assuming Fermi–Dirac distributions
and equal temperatures on both sides of the tunnel junction, and taking the
voltage derivative of the current yields

dI

dV
= e2cAτNR

F

∫
dE

NL(E − μL − eV )

4T cosh2
(
ε−μL
2T

) T→0→ e2cAτNR
F NL(−eV ). (1.14)

The latter part of the equation was taken in the limit of a low temperature.
The differential conductance of the junction at a given voltage is directly
proportional to the density of states at energy E = −eV . This way the
tunnelling current can be used for measuring the energy dependence of the
local density of states on one side of the tunnel junction. An example of such
a measurement is presented in Fig. 5.8.

If both reservoirs are normal metals, the current is given by

I = ecAτNL
F NR

F

∫ ∞

−∞
dE[f0(E;μL, TL)− f0(E;μR, TR)]

= ecAτNL
F NR

F (μL − μR) = e2cAτNL
F NR

F V ≡ V/RT .

(1.15)

Here we used the integral given in eqn (A.64a). The resistance RT of a tunnel
junction, defined in this formula, is thus independent of temperature and
voltage.

Current through a tunnel junction can also be used to actually measure the
distribution function or (in the equilibrium case) the temperature, provided
the densities of states are energy dependent and their form is known. Such
measurements are explained in Example 2.4 and in Sec. 9.2.

We may also write for the heat current carried by the electrons from the
left reservoir

Q̇L =
1

e2RT

∫ ∞

−∞
dE(E − μL)[f

0(E;μL, TL)− f0(E;μR, TR)] (1.16)

and from the right reservoir

Q̇R =
1

e2RT

∫ ∞

−∞
dE(E − μR)[f

0(E;μR, TR)− f0(E;μL, TL)]. (1.17)

In the absence of a bias voltage, μL = μR, these heat currents are opposite,
i.e., Q̇L = −Q̇R. In the presence of a voltage, the sum Q̇L + Q̇R = IV results
from the Joule power dissipated into the reservoirs.

Further reading

There are a few other books detailing some of the topics
discussed in this book. For example:

• (Imry, 2002) contains a discussion on many basic
mesoscopic effects, such as quantized conductance,
many of the interference effects, noise and meso-

scopic superconductivity. It also includes the quan-
tum Hall effect, which is not discussed here.

• (Nazarov and Blanter, 2009) is a recently published
book on quantum transport in mesoscopic systems
for advanced readers.


