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Preface

Crystal-structure analysis has become one of the most essential tools in chem-
istry and related disciplines. Several hundreds of thousands of crystal struc-
tures have been determined in the course of the years. The results obtained
from 1931 to 1990 were published year by year in Strukturbericht [1], later
Structure Reports [2]. Nowadays, crystal structures are deposited in several
large databases [3–8]. However, the mere accumulation of data is only of re-
stricted value if it lacks a systematic order and if the scientific interpretation of
the data leaves much to be desired.

Shortly after the discovery of X-ray diffraction from crystals by MAX VON

LAUE, WALTHER FRIEDRICH, and PAUL KNIPPING (1912) and the subse-
quent pioneering work by father WILLIAM HENRY BRAGG and son WILLIAM

LAWRENCE BRAGG, efforts set in to order the crystal structures found. By
1926 the number of crystal structures was already large enough for VIKTOR

MORITZ GOLDSCHMIDT to formulate the basic principles of packing of atoms
and ions in inorganic solids [9]. In 1928 LINUS PAULING set forth a number
of structural principles, essentially for ionic crystals, which he later repeated in
his famous book The Nature of the Chemical Bond, first published in 1938 [10].
Quite a few other approaches to show relationships between crystal structures
and to bring order into the constantly increasing amount of data were presented
and developed quite successfully over time. Most of these approaches, how-
ever, have one peculiarity in common: they make no or nearly no use of the
symmetry of the crystal structures.

The importance of symmetry relations in phase transitions in the solid state
was realized in 1937 by LEW LANDAU [11]. Around 1968 HARTMUT BÄR-
NIGHAUSEN developed a procedure to work out relationships between crys-
tal structures with the aid of symmetry relations [12]. Since then, chemists
have become more and more aware of the value of these symmetry relations.
Symmetry relations can be formulated mathematically. This offers a secure
foundation for their application and makes it possible to develop algorithms to
make use of computers.

The symmetry of crystals is presented in International Tables for Crystal-
lography, Volume A [13], by diagrams and with the aid of analytical geometry.
The methods of analytical geometry can be applied universally; they are based
on the techniques of matrix calculus and make use of the results of elementary
group theory. Since 2004, the supplementary volume A1 of International Ta-
bles for Crystallography has been available [14]. For the first time they contain
a complete listing of the subgroups of the space groups. This book shows how
to make use of these tables.



viii Preface

Part I of this book presents the necessary mathematical tools: the fundamen-
tals of crystallography, especially of symmetry, the theory of crystallographic
groups, and the formalisms for the necessary crystallographic calculations. As
often in the natural sciences, these tools may appear difficult as long as one
is not accustomed to their use. However, the presented calculation techniques
are nothing more than applications of simple theorems of algebra and group
theory.

Group theory has profound foundations. For its application, however, the
profoundness is not needed. The mathematical foundations are contained in the
presented formalisms. Calculations can be performed and consequences can be
drawn with these formalisms, without the need to duplicate their mathematical
background.

Those who have some familiarity with the symmetry of crystals, i.e. who
have worked with space groups, are acquainted with Hermann–Mauguin sym-
bols, know how to handle atomic coordinates, etc., may take a first look at Part
II to obtain an impression of the results that follow from the mathematical re-
lations. However, it is not recommended to skip the chapters of Part I. Don’t
be mistaken: crystallographic group theory and symbolism does have pitfalls,
and calculations are susceptible to errors if they are not performed strictly in
accordance with the rules.

Part II of the book gives an insight into the application to problems in crys-
tal chemistry. Numerous examples show how crystallographic group theory
can be used to disclose relations between crystal structures, to maintain order
among the enormous number of crystal structures, to predict possible crystal-
structure types, to analyse phase transitions, to understand the phenomenon
of domain formation and twinning in crystals, and to avoid errors in crystal-
structure determinations.

Appendix A deals with peculiarities of a certain kind of subgroup of the
space groups, the isomorphic subgroups, and discloses cross-connections to
number theory. Another appendix gives some insight into a few physico-
chemical aspects referring to phase transitions and to the theory of phase tran-
sitions.

A broad range of end-of-chapter exercises offers the possibility to apply
the learned material. Worked-out solutions to the exercises can be found in
Appendix D.

In the Glossary one can look up the meanings of special terms used in the
field.

One topic of group theory is not addressed in this book: representation the-
ory. Crystallographic symmetry does not deal with time. Representation the-
ory is needed to cover the symmetry properties of time-dependent phenomena
(such as vibrations). This is dealt with in numerous books and articles; we
could only repeat their content (see, e.g. [15–22]). However, some remarks
can be found in Chapter 15 and in Appendix C.

The book has many predecessors. It is based on earlier lectures and on
courses that were taught repeatedly since 1975 in Germany, Italy, France,
Czechia, Bulgaria, Russia, and South Africa. Lecturers of these courses were
first of all H. BÄRNIGHAUSEN (Karlsruhe), TH. HAHN (Aachen), and H.
WONDRATSCHEK (Karlsruhe), and, in addition, M. AROYO (Sofia, later Bil-



Preface ix

bao), G. CHAPUIS (Lausanne), W. E. KLEE (Karlsruhe), R. PÖTTGEN (Mün-
ster), and myself.

The text of Chapters 2–7 is due to H. WONDRATSCHEK, who allowed me
to use his material; he also revised these chapters after I had appended figures,
examples, exercises, and a few paragraphs. These chapters partly reflect lecture
notes by W. E. KLEE. Chapters 1, 10, 11, 15, and 16 essentially go back to
H. BÄRNIGHAUSEN and contain text by him; he also critically checked drafts
of these chapters. Parts of a script by R. PÖTTGEN, R.-D. HOFFMANN, and
U. RODEWALD were included in Chapter 17. I am especially grateful to all of
them. Without their manuscripts and without their consent to make use of their
texts this book could not have come into being.

Indirect contributors are G. NEBE (mathematician, Aachen), J. NEUBÜSER

(mathematician, Aachen), and V. JANOVEC (physicist, Liberec) by their sug-
gestions, and numerous discussions with H. WONDRATSCHEK. In addition, I
am grateful to further unnamed colleagues for suggestions and discussions.

Ulrich Müller
Marburg, Germany, November 2012
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Introduction 1

1.1 The symmetry principle in crystal
chemistry 2

1.2 Introductory examples 4

Crystallography is the science of crystals. The inner (atomic and electronic)
structure of crystalline solids as well as their physical properties are of central
interest. This includes the methods of structure determination and of mea-
surement of properties. A well-founded theoretical treatment is of special im-
portance to understand the connections and to find applications. In part, the
theories are strongly influenced by mathematics. Due to its strong interre-
lation with mathematics, physics, chemistry, mineralogy, materials sciences,
biochemistry, molecular biology, pharmaceutics, and metrology, crystallogra-
phy is more multidisciplinary than hardly any other field of science.

The theory of symmetry is of special importance among the theories in crys-
tallography. The symmetry of crystals, which also has influence on the physi-
cal properties, is specified with the aid of space groups.

Crystal chemistry is the branch of chemistry that deals with the structures,
properties, and other chemical aspects of crystalline solids. Geometric consid-
erations relating to the structures attract much attention in this discipline. In
this context it is a main objective to disclose relationships between different
crystal structures and to document the corresponding results in a concise but
also informative way. To this end, different approaches were presented over
time, which demonstrate the similarities and the differences of distinct struc-
tures from different points of view. For example, the main attention can be
directed to the coordination polyhedra and the joining of these polyhedra, or
to the relative size of ions, or to the kind of chemical bonding, or to similar
physical or chemical properties.

Symmetry has received attention for a long time in the description of sin-
gle structures—this is familiar to anyone who has been engaged in work with
crystal structures. However, concerning the comparison of structures, symme-
try considerations have for a long time been the exception. For certain, there
exist diverse reasons for this astonishing unbalanced development of crystal
chemistry. The main reason is likely to be that related crystal structures often
have different space groups so that their relationship becomes apparent only
by consideration of the group–subgroup relations between their space groups.
An essential part of the necessary group-theoretical material, namely a listing
of the subgroups of the space groups, became available in a useful form rather
late.

Aspects of space-group theory important to crystal chemistry were indeed
solved around 1930 by C. HERMANN and H. HEESCH and were included in
the 1935 edition of International Tables for the Determination of Crystal Struc-
tures [23]; this comprised lists of the subgroups of the space groups. However,
in the following edition of 1952 [24] they were excluded. In addition, in the
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edition of 1935 only a certain kind of subgroup was mentioned, namely the
translationengleiche subgroups, called zellengleiche subgroups at that time. A
broad application was thus hardly possible. For crystal-chemical applications
another kind of subgroup, the klassengleiche subgroups, are at least as impor-
tant. A compilation of the klassengleiche subgroups of the space groups was
presented by J. NEUBÜSER and H. WONDRATSCHEK as much as 53 years
after the discovery of X-ray diffraction [25], and the isomorphic subgroups,
which are a special category of klassengleiche subgroups, were then derived
by E. BERTAUT and Y. BILLIET [26].

For 18 years this material existed only as a collection of copied sheets of
paper and was distributed this way among interested scientists. Finally, the
subgroups of the space groups were included in the 1983 edition of Volume
A of International Tables for Crystallography [13]. And yet, the listing of the
subgroups in the 1st to the 5th edition of Volume A (1983–2005) has been
incomplete. Beginning with the 6th edition (approx. 2013) the subgroups of
the space groups will no longer be included in Volume A.

Instead, a finally complete listing of all subgroups of the space groups has
existed since 2004 in the supplementary Volume A1 of International Tables
for Crystallography [14]. This includes the corresponding axes and coordinate
transformations as well as the relations that exist between the Wyckoff posi-
tions of a space group and the Wyckoff positions of its subgroups. This infor-
mation, which is essential for group-theoretical considerations, can indeed also
be derived from the data of Volume A; that, however, is cumbersome and prone
to errors. In addition, since 1999 the Bilbao Crystallographic Server has been
in operation; it is accessible free of charge by internet, �www.cryst.ehu.es�. It
offers access to computer programs that display the subgroups and supergroups
of space groups as well as the corresponding Wyckoff-position relations and
other things [27–29].

International Tables for Crystallography, Volumes A and A1, will be hence-
forth referred to as International Tables A and International Tables A1. Inter-
national Tables are available in printed and in electronic form, �http://it.iucr.org�.

In this book it is shown that symmetry relations between the space groups
are a useful tool for the clear derivation and the concise presentation of facts
in the field of crystal chemistry. The presented examples will speak for them-
selves. However, it should be mentioned why the abstract framework of group
theory is so successful: it is due to the so-called symmetry principle in crystal
chemistry.

1.1 The symmetry principle in crystal chemistry

The symmetry principle is an old principle based on experience that has been
worded during its long history in rather different ways, such that a common
root is hardly discernible at first glance (see Chapter 19 for the historical de-
velopment). In view of crystal chemistry, BÄRNIGHAUSEN summarized the
symmetry principle in the following way, pointing out three important partial
aspects [12]:

www.cryst.ehu.es
http://it.iucr.org


1.1 The symmetry principle in crystal chemistry 3

(1) In crystal structures the arrangement of atoms reveals a pronounced
tendency towards the highest possible symmetry.

(2) Counteracting factors due to special properties of the atoms or atom
aggregates may prevent the attainment of the highest possible sym-
metry. However, in many cases the deviations from ideal symmetry
are only small (key word: pseudosymmetry).

(3) During phase transitions and solid-state reactions which result in
products of lower symmetry, the higher symmetry of the starting
material is often indirectly preserved by the formation of oriented
domains.

Aspect 1 is due to the tendency of atoms of the same kind to occupy equiv-
alent positions in a crystal, as stated by BRUNNER [30]. This has physical
reasons:

Depending on the given conditions, such as chemical composition, the kind
of chemical bonding, electron configurations of the atoms, relative size of the
atoms, pressure, temperature, etc., there exists one energetically most favour-
able surrounding for atoms of a given species that all of these atoms strive to
attain. The same surrounding of atoms in a crystal is ensured only if they are
symmetry equivalent.

Aspect 2 of the symmetry principle is exploited extensively in Part II of this
book. Factors that counteract the attainment of the highest symmetry include:

• stereochemically active lone electron pairs;

• distortions caused by the Jahn–Teller effect;

• Peierls distortions;

• covalent bonds, hydrogen bonds and other bonding interactions between
atoms;

• electronic effects between atoms, such as spin interactions;

• ordering of atoms in a disordered structure;

• freezing (condensation) of lattice vibrations (soft modes) giving rise to
phase transitions;

• ordered occupancy of originally equivalent sites by different kinds of
atoms (substitution derivatives);

• partial vacation of atomic positions;

• partial occupancy of voids in a packing of atoms.

Aspect 3 of the symmetry principle has its origin in an observation by J.
D. BERNAL. He noted that in the solid-state reaction Mn(OH)2 → MnOOH
→ MnO2 the initial and the product crystal had the same orientation [31].
Such reactions are called topotactic reactions after F. K. LOTGERING [32]
(for a more exact definition see [33]). In a paper by J. D. BERNAL and A. L.
MACKAY we find the sentences [34]:

‘One of the controlling factors of topotactic reactions is, of course,
symmetry. This can be treated at various levels of sophistication,
ranging from Lyubarskii’s to ours, where we find that the simple
concept of Buridan’s ass illumines most cases.’
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According to the metaphor ascribed to the French philosopher JEAN BURIDAN

(died circa 1358), the ass starves to death between two equal and equidistant
piles of hay because it cannot decide between them. Referred to crystals, such
asinine behaviour would correspond to an absence of phase transitions or solid-
state reactions if there are two or more energetically equivalent orientations of
the domains of the product. Crystals, of course, do not behave like the ass;
they take both.

1.2 Introductory examples

To get an impression for the kind of considerations that will be treated in more
detail in later chapters, we present a few simple examples. Many crystal struc-
tures can be related to a few simple, highly symmetrical crystal-structure types.
Zinc blende (sphalerite, ZnS) has the same structural principle as diamond; al-
ternating zinc and sulfur atoms take the positions of the carbon atoms. Both
structures have the same kind of cubic unit cell, the atoms in the cell occupy
the same positions, and they are bonded with one another in the same way.
Whereas all atoms in diamond are symmetrically equivalent, there must be
two symmetrically independent atomic positions in zinc blende, one for zinc
and one for sulfur. Zinc blende cannot have the same symmetry as diamond;
its space group is a subgroup of the space group of diamond. The relation is
depicted in Fig. 1.1 in a way that we will make use of in later chapters and
which is explained more exactly in Chapter 10.

In Fig. 1.1 a small ‘family tree’ is shown to the left; at its top the symmetry of
diamond is mentioned, marked by the symbol of its space group F 41/d 32/m.
An arrow pointing downwards indicates the symmetry reduction to a subgroup.
The subgroup has the space-group symbol F 43m; it has a reduced number of
symmetry operations. In particular, no symmetry operation of diamond may be

Fig. 1.1 The relation between diamond and
zinc blende. The numbers in the boxes are
the atomic coordinates.

F 41/d 3 2/m

diamond

C:8a
43m

0
0
0

F 4 3 m

zinc blende

S: 4a Zn:4c
43m 43m

0 1
4

0 1
4

0 1
4

t2

➤

➤ ➤

C

S

Zn
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retained that would convert a zinc position to a sulfur position. The multiplicity
of the C atoms in diamond is 8, i.e. the unit cell of diamond contains eight
symmetrically equivalent C atoms. Their position is expressed by the Wyckoff
symbol 8a. The 8 marks this multiplicity, and the a is an alphabetical label
according to which the positions are numbered in International Tables A [13].
Due to the symmetry reduction this position 8a splits into two independent
positions 4a and 4c in the subgroup. The point symmetry of the mentioned
atomic positions remains tetrahedral, symbol 43m.

The ‘family tree’ in Fig. 1.1 is rather small; it comprises only one ‘mother’
and one ‘daughter’. As will be shown later, larger ‘family trees’ can be used
to depict relations among numerous crystal structures, with many ‘daughters’
and ‘grandchildren’. This notion harmonizes with the term family of struc-
tures in the rather strict sense according to H. D. MEGAW [35]. For the most
symmetrical structure in the family of structures MEGAW coined the term aris-
totype.1 The derived structures are called, again after MEGAW, hettotypes.2 1greek aristos = the best, the highest

2greek hetto = weaker, inferior
These terms correspond to the terms basic structure and derivative structure
after BUERGER [36, 37].

Trees of group–subgroup relations as shown in Fig. 1.1 are called Bärnig-
hausen trees.

In reality it is impossible to substitute Zn and S atoms for C atoms in a
diamond crystal. The substitution takes place only in one’s imagination. Nev-
ertheless, this kind of approach is very helpful to trace back the large number
of known structures to a few simple and well-known structure types and to thus
obtain a general view.

On the other hand, the case that the symmetry reduction actually takes place
in a sample does occur, namely in phase transitions as well as in chemical reac-
tions in the solid state. An example is the phase transition of CaCl2 that takes
place at 217 ◦C [38–40]. It involves a mutual rotation of the coordination octa-
hedra about c, which is expressed by slightly altered atomic coordinates of the
Cl atoms (Fig. 1.2). Contrary to the diamond–zinc blende relation, the calcium
as well as the chlorine atoms remain symmetry equivalent; no atomic position
splits into several independent positions. Instead, their point symmetries are
reduced. Phase transitions of this kind are linked to changes of the physical
properties that depend on crystal symmetry. For example, CaCl2 is ferroelastic
at temperatures below 217 ◦C.3 3Ferroelastic: The domains in a crystal differ

in spontaneous strain and can be shifted by a
mechanical force.

In the literature in physics the aristotype is often called the prototype or par-
ent phase, and the hettotype the daughter phase or distorted structure. These
terms are only applicable to phase transitions, i.e. to processes in which one
solid phase is converted to another one with the same chemical composition,
with a change of symmetry.

Calcium chloride forms twinned crystals in the course of the phase transi-
tion from the high- to the low-temperature modification. The reason for this
can be perceived in the images of the structures in Fig. 1.2. If the octahedron
in the middle of the cell is rotated clockwise (as depicted), the tetragonal high-
temperature form (a = b) transforms to the orthorhombic low-temperature form
with decreased a and increased b axis. The same structure is obtained by
counter-clockwise rotation, but with an increased a and a decreased b axis
(Fig. 1.3). In the initial tetragonal crystal the formation of the orthorhombic
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Fig. 1.2 The relation between the modifica-
tions of calcium chloride. The coordination
octahedron is rotated about the direction of
view (c axis), and the reflection planes run-
ning diagonally through the cell of the rutile
type vanish.

P 42/m 21/n 2/m

CaCl2, > 490 K
(rutile type)

Ca:2a Cl:4 f
mmm m2m

0 0.304
0 0.304
0 0

P 21/n 21/n 2/m

CaCl2, < 490 K
(CaCl2 type)

Ca:2a Cl:4g
. .2/m . .m

0 0.279
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0 0

t2

➤

➤ ➤
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b

a = b = 637.9 pm
c = 419.3 pm
at 520 K

a = 625.7 pm
b = 643.8 pm
c = 416.8 pm
at 298 K

Ca

Cl

Fig. 1.3 The orientation of the coordina-
tion octahedra in the modifications of CaCl2
and the relative orientation of the unit cells
of the twin domains of the low-temperature
modification. The marked fourfold axes of
the tetragonal modification are converted to
twofold axes in the orthorhombic modifica-
tion.
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a = b

twinsP 21/n 21/n 2/ma < b P 21/n 21/n 2/m a > b

crystals sets in in different regions, statistically with the one or the other ori-
entation. At the end the whole crystal consists of intergrown twin domains.
The symmetry elements being lost during the phase transition, for example the
reflection planes running diagonally through the cell of the high-temperature
form, are indirectly preserved by the relative orientation of the twin domains.
More details concerning this phase transition are dealt with in Chapter 15;
there it is also explained that the kind of group–subgroup relation immediately
shows that the formation of twinned crystals is to be expected in this case.

The occurrence of twinned crystals is a widespread phenomenon. They can
severely hamper crystal-structure determination. Their existence cannot al-
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ways be detected on X-ray diffraction diagrams, and systematic superposition
of X-ray reflections can cause the deduction of a false space group and even
a false unit cell. In spite of the false space group, often a seemingly plau-
sible structural model can be obtained, which may even be refined. Unfor-
tunately, faulty crystal-structure determinations are not uncommon, and un-
detected twins are one of the causes. The most common consequences are
slight to severe errors of interatomic distances; but even wrong coordination
numbers and polyhedra up to a false chemical composition may be the result.
Applications that rely on certain physical properties such as the piezoelectric
effect can be impeded if twinned crystals are employed. Knowledge of the
group-theoretical relations can help to avoid such errors.

Another kind of phase transformation occurs when statistically distributed
atoms become ordered. This is a common observation among intermetallic
compounds, but it is not restricted to this class of substances. Cu3Au offers an
example. Above 390 ◦C the copper and gold atoms are statistically distributed
among all atomic positions of a face-centred cubic packing of spheres (space
group F 4/m32/m; Fig. 1.4). Upon cooling an ordering process sets in; the
Au atoms now take the vertices of the unit cell whereas the Cu atoms take the
centres of the faces. This is a symmetry reduction because the unit cell is no
longer centred. The F of the space group symbol, meaning face-centred, is
replaced by a P for primitive (space group P4/m32/m).

F 4/m 3 2/m

HT -Cu3Au
> 663 K

Cu,Au:4a
m3m

0
0
0

P 4/m 3 2/m

LT -Cu3Au
< 663 K

Au:1a Cu:3c
m3m 4/mmm

0 1
2

0 1
2

0 0

k4

➤

➤ ➤

Cu, Au

Au

Cu Fig. 1.4 The relation between misordered and
ordered Cu3Au. See margin note No. 2 in
Section 15.1.2 (page 199) for a remark refer-
ring to the term ‘misorder’.
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2.1 Introductory remarks

Matter consists of atoms of diverse elements. These atoms do not occur as iso-
lated particles, but in organized arrays: Finite arrays of interest are molecules
(N2, H2O, CH4, NH3, C6H6, . . .); large arrays are crystals that consist of equal
parts that are periodically repeated in (nearly) any number.

Molecules and crystals are two kinds of appearance of matter. Molecules
can assemble to crystals. However, crystals do not necessarily consist of mole-
cules; the crystal components may be simple ions like Na+ and Cl−, complex
ions like CO2−

3 and NH+
4 , and many others. Henceforth, molecules and other

such components will be called building blocks if they are components of crys-
tals.

Other forms of appearance of matter, such as gases, liquids, glasses, partially
ordered structures, modulated structures, or quasicrystals will not be consid-
ered.

2.2 Crystals and lattices

Crystals are distinguished by the property that a shift called translation results
in a perfect superposition of all building blocks of the crystal.

Naturally occurring crystals (quartz, rock salt, garnet, . . . ) and synthetically
produced crystals (sugar, SrTiO3, silicon, . . . ) can be regarded as finite blocks
from infinite periodic structures. Replacement of the finite real crystal by the
corresponding periodic, infinite array usually allows an excellent description
of the real conditions and, therefore, is of great value, even though the infi-
nitely extended ideal crystal does not exist. The crystal structure is the spatial
distribution of the atoms in a crystal; usually, it is described with the model of
the infinite crystal pattern. Hereafter, when we address a crystal structure, we
always assume this kind of description.

Definition 2.1 The infinite, three-dimensional periodic array corresponding
to a crystal is called the crystal pattern (or infinite ideal crystal). The lengths
of the periodicities of this array may not be arbitrarily small.

The periodicity of a crystal structure implies that it comes to coincidence
with itself after having been shifted in certain directions by certain distances.
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The dimension d = 3 can be generalized to d = 1,2,3, . . .. This way, planar
arrangements (d = 2) can be included: periodic patterns of wall paper, tilings,
brick walls, tiled roofs,1 cross-sections and projections of three-dimensional1Only the patterns are two dimensional;

tilings, brick walls, etc. themselves are three-
dimensional bodies; their symmetries are
layer groups (Section 7.4).

crystals, etc. Dimensions d = 4,5,6, . . . serve to formally describe incom-
mensurate crystal structures and quasicrystals in higher-dimensional spaces
(‘superspaces’).

The condition that periodicity lengths may not be arbitrarily small excludes
homogeneous continua among crystal structures. Due to the finite size of the
building blocks in real crystals there always exists a lower limit of the period-
icity distances (>0.1 nanometres).

The building blocks of the crystal structure may not only be points, figures,
tiles, atoms, molecules, ions, etc., but also continuous functions such as elec-
tron density.

A macroscopic (ideal) crystal is a finite block out of a crystal pattern. Macro-
scopic crystals do not really exist. A real crystal not only has, like the macro-
scopic (ideal) crystal, a finite size, but is also defective. In addition, the atoms
are not located at the exact positions like in the macroscopic crystal, but per-
form vibrational motions about these positions. The periodic pattern of atoms
of the macroscopic crystal is fulfilled only by the positions of equilibrium of
the vibrations.

Definition 2.2 A shift which brings a crystal structure to superposition with
itself is called a symmetry translation (or simply translation) of this crystal
structure. The corresponding shift vector is a translation vector.

Due to the periodicity, all integral multiples of a translation vector are also
translation vectors. With two non-parallel translation vectors t1 and t2 all inte-
gral linear combinations are translation vectors:

t = qt1 + rt2 q,r = integers

Definition 2.3 The infinite set of all translation vectors ti of a crystal pattern
is its vector lattice T. The translation vectors are called lattice vectors.

The vector lattice is often simply called the lattice. In chemistry (not in
crystallography) the expression ‘crystal lattice’ is common. Frequently, the
term ‘lattice’ has been used as a synonym for ‘structure’ (e.g. diamond lat-
tice instead of diamond structure). Here we distinguish, as in International
Tables, between ‘lattice’ and ‘structure’, and ‘lattice’ is something different
from ‘point lattice’ and ‘particle lattice’, as defined in the next paragraph.22The terms ‘lattice’ and ‘structure’ should

not be mixed up either. Do not say ‘lattice
structure’ when you mean a framework struc-
ture consisting of atoms linked in three di-
mensions.

Two-dimensional lattices are sometimes called nets in crystallography (not in
chemistry).

The vector lattice T of a crystal structure is an infinite set of vectors ti. With
the aid of the vector lattice T it is possible to construct other more expressive
lattices. Choose a starting point Xo with the positional vector xo (vector point-
ing from a selected origin to Xo). The endpoints Xi of all vectors xi = xo + ti

make up the point lattice belonging to Xo and T. The points of the point lattice
have a periodic order, they are all equal and they all have the same surround-
ings. If the centres of gravity of particles are situated at the points of a point
lattice, this is a particle lattice. All particles of the particle lattice are of the
same kind.
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An infinity of point lattices exists for every (vector) lattice, because any
arbitrary starting point Xo can be combined with the lattice vectors ti. The
lattice vectors may not be arbitrarily short according to Definition 2.1.

Definition 2.4 Points or particles that are transferred one to the other by a
translation of the crystal structure are called translation equivalent.

Avoid terms like ‘identical points’, which can often be found in the litera-
ture, when ‘translation-equivalent points’ are meant. Identical means ‘the very
same’. Two translation-equivalent points are equal, but they are not the very
same point.

2.3 Appropriate coordinate systems, crystal
coordinates

To describe the geometric facts in space analytically, one introduces a coordi-
nate system, consisting of an origin and a basis of three linearly independent,
i.e. not coplanar basis vectors a,b,c or a1,a2,a3. Referred to this coordinate
system, each point in space can be specified by three coordinates (a coordi-
nate triplet). The origin has the coordinates 0,0,0. An arbitrary point P has

coordinates x,y,z or x1,x2,x3, the vector
→

OP (the position vector) being:
→

OP= x = xa+ yb+ zc = x1a1 + x2a2 + x3a3

In the plane, points P have coordinates x,y or x1,x2 referred to an origin (0,
0) and the basis a,b or a1,a2.

Often a Cartesian coordinate system is suitable, in which the basis vectors
are mutually perpendicular and have the length of 1 (orthonormal basis). Com-
monly, the angles between a,b, and c are denominated by α (between b and c),
β (between c and a), and γ (between a and b) or correspondingly by α1,α2,α3.
With an orthonormal basis we then have

a = |a | = b = |b | = c = |c | = 1; α = β = γ = 90◦

or |ai | = 1 and angles (ai,ak) = 90◦ for i,k = 1,2,3 and i 	= k.
Generally, as far as the description of crystals is concerned, Cartesian coor-

dinate systems are not the most convenient. For crystallographic purposes, it
is more convenient to use a coordinate system that is adapted to the periodic
structure of a crystal. Therefore, lattice vectors are chosen as basis vectors.
With any other basis the description of the lattice of a crystal structure would
be more complicated.

Definition 2.5 A basis which consists of three lattice vectors of a crystal
pattern is called a crystallographic basis or a lattice basis of this crystal
structure.3 3The term ‘basis’ was used erstwhile with an-

other meaning, namely in the sense of ‘cell
contents’.Referred to a crystallographic basis, each lattice vector t = t1a1 +t2a2 +t3a3

is a linear combination of the basis vectors with rational coefficients ti. Every
vector with integral ti is a lattice vector. One can even select bases such that
the coefficients of all lattice vectors are integers.
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Among the infinity of crystallographic bases of a crystal structure, some
permit a particularly simple description and thus have turned out to be the
most convenient. Such bases are the foundation for the description of the space
groups in International Tables A. These bases are selected whenever there is
no special reason for another choice.

Definition 2.6 The crystallographic bases used in International Tables A are
called conventional bases.

Definition 2.7 A crystallographic basis a1,a2,a3 of a vector lattice is called
a primitive (crystallographic) basis if its basis vectors are lattice vectors and
if every lattice vector t can be expressed as a linear combination with integral
coefficients ti:

t = t1a1 + t2a2 + t3a3 (2.1)

For any vector lattice there exist an infinite number of primitive bases.
One could always choose a primitive basis. However, this would not be

convenient for many applications. Therefore, the chosen conventional crys-
tallographic basis is often not primitive, but such that as many as possible of
the angles between the basis vectors amount to 90◦; the coefficients ti in eqn
(2.1) can then also be certain fractional numbers (mostly multiples of 1

2 ). Fre-
quently, the lattice is called primitive if the conventional basis of the lattice
is primitive; if it is not primitive, it is called a centred lattice, or one says ‘the
setting is centred’.4 Well-known examples are the face-centred cubic lattice cF4For the sake of precise terminology, the term

‘centred’ should not be misused with a differ-
ent meaning; do not call a cluster of atoms
a ‘centred cluster’ if you mean a cluster of
atoms with an embedded atom, nor say, ‘the
F6 octahedron of the PF−

6 ion is centred by
the P atom’.

as in the cubic-closest packing of spheres (copper type) and the body-centred
cubic lattice cI of the tungsten type. Lattice types are treated in Section 6.2.

After having selected a crystallographic basis and an origin, it is easy to
describe a crystal structure. To this end one defines:

Definition 2.8 The parallelepiped in which the coordinates of all points are

0 ≤ x, y, z < 1

is called a unit cell of the crystal structure.

The selection of a basis and an origin implies the selection of a unit cell.
Every point in this unit cell has three coordinates 0≤ x, y, z < 1. By addition or
subtraction of integral numbers to the coordinates one obtains the coordinates
of translation-equivalent points which are located in other cells. The transfor-
mation of numerical values to values 0 ≤ x, y, z < 1 is called standardization.
We can now construct a crystal structure in two different ways:

(1) One takes a unit cell and adds or subtracts integral numbers to the co-
ordinates of its contents. This corresponds to a shift of the unit cell by
lattice vectors. In this way the complete crystal structure is built up sys-
tematically by joining (an infinity of) blocks, all with the same contents.

(2) One takes the centre of gravity of a particle in the unit cell and adds equal
particles in the points of the corresponding (infinite) point lattice. If
there are more particles to be considered, one takes the centre of gravity
of one of the remaining particles together with its point lattice, etc. Due
to the minimum distances between particles in the finite size of the cell,
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the number of particles to be considered is finite. In this way one obtains
a finite number of interlaced particle lattices that make up the crystal
structure.

In the first case, the structure is composed of an infinity of finite cells. In
the second case, the structure is composed by interlacing a finite number of
particle lattices which have an infinite extension. Both kinds of composition
are useful. A third kind of composition is presented in Section 6.5 on page 82.

A crystal structure can now easily be described completely by specifying
the metrics of the unit cell (lengths of the basis vectors and the angles between
them) and the contents of the cell (kind of particles and their coordinates within
one unit cell).

In order to be able to compare different or similar structures, their descrip-
tions have to refer to equal or similar cells. The conditions for conventional cell
choices are often not sufficient to warrant this. Methods to obtain a uniquely
defined cell from an arbitrarily chosen cell are called reduction methods. Com-
mon methods are:

(1) derivation of the reduced cell, see Section 8.4 (page 110) and Interna-
tional Tables A, Chapter 9.2 [13];

(2) the Delaunay reduction, see Zeitschrift für Kristallographie 84 (1933)
page 109; International Tables for X-ray Crystallography, Volume I
(1952), pages 530–535 [24].

The cells obtained by these methods may or may not be identical. Therefore,
the method of reduction should be specified.

The geometric invariants of a crystal structure, for example, the distances
between particles and the bond angles, are independent of the chosen coor-
dinate system (basis and origin). How atoms are bonded with each other is
manifested in these quantities. In addition, these data are useful for the direct
comparison of different particles in the same crystal structure or of correspond-
ing particles in different crystal structures.

2.4 Lattice directions, net planes, and reciprocal
lattice

A lattice direction is the direction parallel to a lattice vector t. It is designated
by the symbol [uvw], u,v,w being the smallest integral coefficients of the lat-
tice vector in this direction; u,v, and w have no common divisor. [100], [010]
and [001] correspond to the directions of a1, a2, and a3, respectively; [110] is
the direction of the vector −a1 +a2.

A net plane running through points of a point lattice is one out of a set of
equidistant, parallel planes. The net plane is designated by the symbol (hk l) in
parentheses; h,k, l are the integral Miller indices. From the set of planes, that
one is selected which is closest to the origin without running itself through the
origin. It intersects the coordinate axes at distances of a1/h, a2/k, a3/l from
the origin (Fig. 2.1). A plane running parallel to a basis vector obtains a 0 for
this direction.
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Fig. 2.1 A set of planes running through a
point lattice. The third basis vector is perpen-
dicular to the plane of the paper.
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In order to facilitate the calculus with planes, it is convenient to represent
each set of net planes by a vector t∗hkl = ha∗1 +ka∗2 + la∗3 in the reciprocal lattice.
The reciprocal lattice T∗ is a vector lattice with the reciprocal basis vectors
a∗1,a

∗
2,a

∗
3 (or a∗,b∗,c∗). t∗hkl is perpendicular to the net plane (hkl) and has

the length 1/dhkl , dhkl being the interplanar distance between neighbouring net
planes. For more details see textbooks of crystal-structure analysis (e.g. [41–
44]).

2.5 Calculation of distances and angles

Crystallographic bases are convenient for a simple description of crystals. How-
ever, the formulae for the computation of distances and angles in the crystal
structure become less practical than with Cartesian coordinates.

Definition 2.9 The lengths a,b,c of the basis vectors and the angles α,β ,γ

between them are called the lattice constants or (better) the lattice parame-
ters of the lattice.

Let Q and R be two points in a crystal structure having the coordinates
xq,yq,zq and xr,yr,zr. Then the distance rqr between Q and R is equal to the

length of the vector xr − xq =
→

QR, where xq and xr are the position vectors
(vectors from the origin) of Q and R. The length rqr is the root of the scalar
product of xr −xq with itself:

r2
qr = (xr−xq)

2 = [(xr− xq)a+(yr− yq)b+(zr− zq)c]
2

= (xr− xq)
2a2 +(yr− yq)

2b2 +(zr− zq)
2c2 +2(xr− xq)(yr− yq)abcosγ

+2(zr− zq)(xr− xq)accosβ +2(yr− yq)(zr− zq)bccosα

The (bond) angle ψ at the apex P between the connecting lines PQ and
PR (Fig. 2.2) can be calculated with the following formula, using the scalar
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product of the vectors (xq −xp) and (xr −xp) (xp is the position vector of P):

(xq−xp) · (xr−xp) = rpqrpr cosψ

= (xq− xp)(xr− xp)a
2 +(yq− yp)(yr− yp)b

2 + (zq− zp)(zr− zp)c
2

+[(xq− xp)(yr− yp)+(yq− yp)(xr− xp)]abcosγ

+[(zq− zp)(xr− xp)+(xq− xp)(zr− zp)]accosβ

+[(yq− yp)(zr− zp)+(zq− zp)(yr− yp)]bccosα

Every angle α j = 90◦ strongly simplifies the formula. This is an advantage of
an orthonormal basis; for this reason it is commonly used in crystal physics.
The simplified formula then is (e = unit of length of the basis, e.g. e = 1 pm):

r2
qr =

[
(xr− xq)

2 +(yr− yq)
2 +(zr− zq)

2]e2

cosψ = r−1
pq r−1

pr [(xq− xp)(xr− xp)+(yq− yp)(yr− yp)+(zq− zp)(zr− zp)]e
2

➤

➤

➤ψ

P R

Q

→
PR

→
QR

→
PQ

Fig. 2.2 Triangle of the points P, Q, and R
with distances PQ, PR, and QR and angle ψ .

The volume V of the unit cell is obtained from the formula:

V 2 = a2b2c2(1+2cosα cosβ cosγ − cos2 α − cos2 β − cos2 γ)

The lattice parameters a,b,c,α,β ,γ appear in the combinations gii = a2
i or

gik = ai ·ak = aiak cosα j, i 	= j 	= k 	= i.
For calculations, the specification of the shape of the cell by the gik values is

more important than the usually quoted lattice parameters ai and α j, since the
gik are needed for all calculations. From the ai and α j one can calculate all gik,
conversely from the gik the ai and α j.

Definition 2.10 The complete set of the coefficients gik is called the metric
tensor, formulated in the following way:

G =

⎛⎝ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞⎠=

⎛⎝ a2 abcos γ accosβ

abcosγ b2 bccosα

accosβ bccosα c2

⎞⎠
gik = gki holds, since ai ·ak = ak ·ai.

With pi, qi, and ri, i = 1,2,3, as the coordinates of the points P, Q, and R one
obtains the formulae:

• Distance QR = rqr: r2
qr = ∑

i,k
gik(ri −qi)(rk −qk) (2.2)

• Distance from the origin O: OQ = rq; r2
q = ∑

i,k
gikqiqk

• Angle QPR (apex P):

cos(QPR) = (rpq)
−1(rpr)

−1 ∑
i,k

gik(qi − pi)(rk − pk) (2.3)

• Volume V of the unit cell: V 2 = det(G) (2.4)

Application of G with the independent quantities gik instead of the six lattice
parameters a,b,c,α,β ,γ has the advantage that the gik are more homogeneous;
for example, they all have the same unit Å2 or pm2.

The importance of the metric tensor G is not restricted to the calculation of
distances and angles:
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• With the aid of G one can decide whether a given affine mapping leaves
invariant all distances and angles, i.e. whether it is an isometry, see Sec-
tion 3.5.

• If T∗ is the reciprocal lattice of the lattice T, then G∗(T∗) = G−1(T) is
the inverse matrix of G: The metric tensors of the lattice and the recip-
rocal lattice are mutually inverse.


