OXFORD

New Trends in the Physics and Mechanics of Biological Systems

M. Ben Amar A. Goriely M. M. Müller L. F. Cugliandolo

Editors

New Trends in the Physics and Mechanics of Biological Systems

This page intentionally left blank

École de Physique des Houches Session XCII, 6–31 July 2009

New Trends in the Physics and Mechanics of Biological Systems

Edited by

Martine Ben Amar, Alain Goriely, Martin Michael Müller, Leticia F. Cugliandolo

OXFORD

Great Clarendon Street, Oxford ox2 6DP

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

> Published in the United States by Oxford University Press Inc., New York

> > © Oxford University Press 2011

The moral rights of the authors have been asserted Database right Oxford University Press (maker)

First published 2011

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer

> British Library Cataloguing in Publication Data Data available

Library of Congress Cataloging in Publication Data Data available

Typeset by SPI Publisher Services, Pondicherry, India Printed in Great Britain on acid-free paper by CPI Antony Rowe, Chippenham, Wiltshire

ISBN 978-0-19-960583-5

 $1 \ 3 \ 5 \ 7 \ 9 \ 10 \ 8 \ 6 \ 4 \ 2$

École de Physique des Houches Service inter-universitaire commun à l'Université Joseph Fourier de Grenoble et à l'Institut National Polytechnique de Grenoble

> Subventionné par l'Université Joseph Fourier de Grenoble, le Centre National de la Recherche Scientifique, le Commissariat à l'Énergie Atomique

Directeur: Leticia Cugliandolo, Université Pierre at Marie Curie – Paris VI, France

Directeurs scientifiques de la session XCII: Martine Ben Amar, LPS-ENS, Paris, France Alain Goriely, OCCAM, Mathematical Institute, Oxford Martin Michael Müller, Equipe BioPhysStat, Metz, France

Previous sessions

Ι	1951	Quantum mechanics. Quantum field theory
II	1952	Quantum mechanics. Statistical mechanics. Nuclear physics
III	1953	Quantum mechanics. Solid state physics. Statistical mechanics.
		Elementary particle physics
IV	1954	Quantum mechanics. Collision theory. Nucleon-nucleon interac-
		tion. Quantum electrodynamics
V	1955	Quantum mechanics. Non equilibrium phenomena. Nuclear reac-
		tions. Interaction of a nucleus with atomic and molecular fields
VI	1956	Quantum perturbation theory. Low temperature physics. Quan-
		tum theory of solids. Ferromagnetism
VII	1957	Scattering theory. Recent developments in field theory. Nuclear
		and strong interactions. Experiments in high energy physics
VIII	1958	The many body problem
IX	1959	The theory of neutral and ionized gases
Х	1960	Elementary particles and dispersion relations
XI	1961	Low temperature physics
XII	1962	Geophysics; the earths environment
XIII	1963	Relativity groups and topology
XIV	1964	Quantum optics and electronics
XV	1965	High energy physics
XVI	1966	High energy astrophysics
XVII	1967	Many body physics
XVIII	1968	Nuclear physics
XIX	1969	Physical problems in biological systems
XX	1970	Statistical mechanics and quantum field theory
XXI	1971	Particle physics
XXII	1972	Plasma physics
XXIII	1972	Black holes
XXIV	1973	Fluids dynamics
XXV	1973	Molecular fluids
XXVI	1974	Atomic and molecular physics and the interstellar matter
XXVII	1975	Frontiers in laser spectroscopy
XXVIII	1975	Methods in field theory
XXIX	1976	Weak and electromagnetic interactions at high energy
XXX	1977	Nuclear physics with heavy ions and mesons
XXXI	1978	Ill condensed matter
XXXII	1979	Membranes and intercellular communication
XXXIII	1979	Physical cosmology

XXXIV	1980	Laser plasma interaction		
XXXV	1980	Physics of defects		
XXXVI	1981	Chaotic behavior of deterministic systems		
XXXVII	1981	Gauge theories in high energy physics		
XXXVIII	1982	New trends in atomic physics		
XXXIX	1982	Recent advances in field theory and statistical mechanics		
XL	1983	Relativity, groups and topology		
XLI	1983	Birth and infancy of stars		
XLII	1984	Cellular and molecular aspects of developmental biology		
XLIII	1984	Critical phenomena, random systems, gauge theories		
XLIV	1985	Architecture of fundamental interactions at short distances		
XLV	1985	Signal processing		
XLVI	1986	Chance and matter		
XLVII	1986	Astrophysical fluid dynamics		
XLVIII	1988	Liquids at interfaces		
XLIX	1988	Fields, strings and critical phenomena		
L	1988	Oceanographic and geophysical tomography		
LI	1989	Liquids, freezing and glass transition		
LII	1989	Chaos and quantum physics		
LIII	1990	Fundamental systems in quantum optics		
LIV	1990	Supernovae		
LV	1991	Particles in the nineties		
LVI	1991	Strongly interacting fermions and high Tc superconductivity		
LVII	1992	Gravitation and quantizations		
LVIII	1992	Progress in picture processing		
LIX	1993	Computational fluid dynamics		
LX	1993	Cosmology and large scale structure		
LXI	1994	Mesoscopic quantum physics		
LXII	1994	Fluctuating geometries in statistical mechanics and quantum field		
		theory		
LXIII	1995	Quantum fluctuations		
LXIV	1995	Quantum symmetries		
LXV	1996	From cell to brain		
LXVI	1996	Trends in nuclear physics, 100 years later		
LXVII	1997	Modeling the earths climate and its variability		
LXVIII	1997	Probing the Standard Model of particle interactions		
LXIX	1998	Topological aspects of low dimensional systems		
LXX	1998	Infrared space astronomy, today and tomorrow		
LXXI	1999	The primordial universe		
LXXII	1999	Coherent atomic matter waves		
LXXIII	2000	Atomic clusters and nanoparticles		
LXXIV	2000	New trends in turbulence		
LXXV	2001	Physics of bio-molecules and cells		
LXXVI	2001	Unity from duality: Gravity, gauge theory and strings		

viii Previous sessions

LXXVII	2002	Slow relaxations and nonequilibrium dynamics in condensed mat-	
		ter	
LXXVIII	2002	Accretion discs, jets and high energy phenomena in astrophysics	
LXXIX	2003	Quantum entanglement and information processing	
LXXX	2003	Methods and models in neurophysics	
LXXXI	2004	Nanophysics: Coherence and transport	
LXXXII	2004	Multiple aspects of DNA and RNA	
LXXXIII	2005	Mathematical statistical physics	
LXXXIV	2005	Particle physics beyond the Standard Model	
LXXXV	2006	Complex systems	
LXXXVI	2006	Particle physics and cosmology: the fabric of spacetime	
LXXXVII	2007	String theory and the real world: from particle physics to astro-	
		physics	
LXXXVIII	2007	Dynamos	
LXXXIX	2008	Exact methods in low-dimensional statistical physics and quan-	
		tum computing	
XC	2008	Long-range interacting systems	
XCI	2009	Ultracold gases and quantum information	
XCII	2009	New trends in the physics and mechanics of biological systems	
XCIII	2009	Modern perspectives in lattice QCD: quantum field theory and	
		high performance computing	

Publishers

- Session VIII: Dunod, Wiley, Methuen
- Sessions IX and X: Herman, Wiley
- Session XI: Gordon and Breach, Presses Universitaires
- Sessions XII–XXV: Gordon and Breach
- Sessions XXVI–LXVIII: North Holland
- Session LXIX-LXXVIII: EDP Sciences, Springer
- Session LXXIX–LXXXVIII: Elsevier
- Session LXXXIX- : Oxford University Press

Preface

Over the last few decades, the life sciences have experienced a quiet but radical revolution. This revolution has transformed biology from a mostly observational and qualitative discipline into a fully quantitative science at all scales, ranging from the DNA code to proteins, cells, tissues, and organs. In the process, biology has become one of the ultimate scientific frontiers and exploded into many diverging sub-disciplines, all requiring the integration of mathematical, computational, and physical sciences. As such, biophysics and biomechanics is now an ever-growing branch of traditional physics. In particular, with the ability to measure forces, velocities, and displacements at the cellular and tissue levels, there is a clear need for mathematical theories and models that integrate the mechanical, chemical, and biological environments. For instance, it has now been understood that biological growth and development have an important mechanical component, playing a role in genetic programming, morphogenesis, and the regulation of physiological processes such as heart and artery remodeling. However, a unified theory of the growth of elastic tissues that addresses the fundamental coupling between geometric quantities and physical and chemical fields is still lacking. Theoretical progress on this problem will be needed both to answer basic scientific questions and to tackle fundamental challenges such as tumor growth. Similarly, the motion of biological organisms such as bacteria, sperm, and insects through fluids requires an understanding of fluid-solid interactions between self-propelled organisms and fluids that can have a gel-like or active response. With their training in mechanics, mathematics, and modeling, physicists have a unique opportunity to play a central role in the development of such modern biological theories. However, the classical training in the physical sciences does not introduce students to such problems, and fails to give them the proper state-of-the-art tools to address these challenges.

In July 2009, many experts in mathematical modeling in the biological sciences gathered in Les Houches for a four-week summer school on the mechanics and physics of biological systems. The goal of the school was to present to students and researchers an integrated view of the new trends and challenges in the physical and mathematical aspects of biomechanics. Although the scope of such a topic is very wide, we focused on problems where solid and fluid mechanics plays a central role. The school covered both the general mathematical theory of mechanical biology in the context of continuum mechanics and the specific modeling of particular systems in the biology of cells, plants, and microbes, and in physiology. The school was organized around five different main topics, all connected by the common theme of continuum modeling for biological systems. These collected lecture notes reflect the same organization, namely biofluidics, biogels, biomechanics, biomembranes, and morphogenesis. These lecture notes are not meant as a journal review of the topic but rather as a gentle tutorial introduction to

x Preface

readers who want to understand the basic problems of modeling biological systems from a mechanical perspective.

It is with great pleasure that we acknowledge the financial support of various organizations: the Centre Nationale de la Recherche Scientifique through its Formation Permanente program; the newly established Fondation Pierre-Gilles de Gennes; the Réseau des Systèmes Complexes (Paris Fédération); the Université Pierre et Marie Curie; the École Doctorale systèmes complexes (Paris); and the European Union through its Marie Curie Intra-European Fellowship (EIF) grant 042069, CancerBio-Mechanics, under the 6th Framework Programme. It is also our pleasure to thank the staff of the École for their support.

Martine Ben Amar (Laboratoire de Physique Statistique, École Normale Supérieure) Alain Goriely (Mathematical Institute, University of Oxford)

Martin Michael Müller (Equipe BioPhysStat, Université Paul-Verlaine, Metz)

Leticia Cugliandolo (Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, Paris)

Contents

Li	st of participants	XV
	PART I BIOFLUIDICS	
1	Locomotion at low Reynolds numbers	
	Anette E. HOSOI	3
	1.1 Introduction	4
	1.2 Lecture 1: Swimming	4
	1.3 Lecture 2: Crawling	13
	1.4 Lecture 3: Burrowing	18
	References	25
2	Surface tension	
	John W. M. BUSH	27
	2.1 Introduction	28
	2.2 The definition and scaling of surface tension	28
	2.3 Stress conditions at a fluid–fluid interface	31
	2.4 Fluid statics	34
	2.5 Marangoni flows	42
	2.6 Fluid jets	47
	2.7 Fluid sheets	55
	2.8 Appendix A	61
	2.9 Appendix B: The Frenet–Serret equations	62
	2.10 Appendix C: Computing curvatures	62
	References	63
3	Dynamics of complex biofluids	
	Christel HOHENEGGER and Michael J. SHELLEY	65
	3.1 Introduction	66
	3.2 Basics of non-Newtonian fluid mechanics	67
	3.3 Viscoelastic fluid	72
	3.4 Applications	77
	3.5 Conclusions	91
	Acknowledgments	92
	References	92

PART I	I B	IOGE	LS
		10 GE	

4	Active fluids and gels	07
	frank JULICHER	97
	4.1 Introduction 4.2 Active poler role	90 104
	4.2 Active polar gets 4.3 Examples of active role	104
	4.5 Examples of active gets 4.4 Discussion	100
	Acknowledgments	114
	References	114
5	Elasticity and dynamics of cytoskeletal filaments and	
	networks of them	
	Fred C. MACKINTOSH	117
	5.1 Cytoskeletal networks	118
	5.2 Appendix: Thermal fluctuations and linear responses	141
	References	149
	PART III BIOMECHANICS	
6	Morphoelasticity: A theory of elastic growth	
	Alain GORIELY and Derek MOULTON	153
	6.1 Introduction	154
	6.2 1D growth	154
	6.3 3D growth	159
	6.4 Sample problem: A growing cylindrical tube	166
	6.5 Conclusions	173
	Acknowledgments	174
	References	174
7	Mechanics of tumor growth: Multiphase models,	
	adnesion, and evolving configurations	177
	Zuigi PREZIOSI and Guido VIIALE 7.1	170
	7.1 Introduction	170
	7.2 Mass balance for a multicomponent system	1/0
	7.5 Force balance for a multicomponent system	102
	7.4 Liquid–solid interactions in a saturated mixture	104
	7.5 Modeling addression forces	187
	7.0 Modeling the cell-ECM interaction force	194
	7.9 The tumor cell constituent as a inquid	190
	7.0 Crowth coll to experientian and strong tanger	200
	7.10 Decrements to show tests	210
	7.11 Universial compression tests	212
	C.11 Uniaxiai compression tests	217
	References	221

PART IV BIOMEMBRANES AND BIOSHELLS

8	Microbial mechanics: The growth and form of filamentary	
	microorganisms	
	Michael TABOR	229
	8.1 Introduction	230
	8.2 The size and nature of things	230
	8.3 Hyphal growth	232
	8.4 Geometrical models	235
	8.5 Nonlinear elastic models of hyphal growth	239
	8.6 Results	249
	8.7 Conclusions	252
	Acknowledgments	254
	References	255
9	The physics of the cell membrane	
	Martin Michael MÜLLER and Martine BEN AMAR	257
	9.1 Biological membranes	258
	9.2 Membrane energy and the shape equation	265
	9.3 Measurements of elastic properties	271
	9.4 Budding and fission of model membrane systems	278
	9.5 Conclusions	293
	Acknowledgments	294
	References	294
	PART V MORPHOGENESIS	
10	Modeling plant morphogenesis and growth	
	Richard S. SMITH	301
	10.1 Modeling morphogenesis and growth	302
	10.2 Descriptive models of growing surfaces	305
	10.3 A physically based model of the shoot apex	310
	10.4 Patterning in the shoot apex: Phyllotaxis	315
	10.5 Leaf venation patterning	327
	10.6 Conclusions	335
	Acknowledgments	335
	References	336
11	How cell mechanics shapes embryos	
	Michel LABOUESSE	339
	Summary	340
	11.1 Introduction	340
	11.2 Epithelial cells and the main forces exerted on them	341
	11.3 Methods used to investigate cell mechanics in embryos	342
	11.4 Cell adhesion versus tension	343
	11.5 Tension at compartment boundaries	346

11.6 Two elementary cell shape changes	347
11.7 Integration of internal and external forces	349
11.8 Conclusions	353
Acknowledgments	353
References	354

List of participants

Organizers

BEN AMAR MARTINE LPS-ENS 24 Rue Lhomond, 75005 Paris, France GORIELY ALAIN OCCAM, Mathematical Institute, 24–29 St Giles', Oxford OX1 3LB, UK MÜLLER MARTIN MICHAEL Equipe BioPhysStat, 1 boulevard Arago, 57070 Metz, France

LECTURERS

BUSH JOHN W. M. Massachusetts Institute of Technology, Department of Mathematics, 77 Massachusetts Avenue, Room 2–392, Cambridge, MA 02139-4307, USA CIARLETTA PASQUALE Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France GOLDSTEIN RAYMOND E. University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Combridge CB3 0WA, UK HOSOI ANETTE Massachusetts Institute of Technology, Room 3-262, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA JÜLICHER FRANK Max Planck Institute for the Physics of Complex Systems, Nöthnitzestr. 38, 01187 Dresden, Germany LABOUESSE MICHEL Institut de Générique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch Cedex, France MACKINTOSH FRED Faculty of Sciences, Vrije University, 1081 HV, Amsterdam, Netherlands MADDOCKS JOHN

IMB, Faculté des Sciences de Base, EPFL, Station 8, 1015 Lausanne, Switzerland

OGDEN RAY W. University of Glasgow, Department of Mathematics, 15 University Gardens, Glasgow G12 8QW, UK PREZIOSI LUIGI Politecnico di Torino, Department of Mathematics, Corso Duca degli Abruzzi 24, 10129 Torino, Italy SACCOMANDI GIUSEPPE University of Perugia, Dipartimento Ingegneria Industriale, via G. Duranti, 06125 Perugia, Italy SHELLEY MICHAEL J. The Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA SMITH RICHARD University of Bern, Hochschulstrasse, CH-3012 Bern, Switzerland TABOR MICHAEL J. Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA

PARTICIPANTS

ALIEE MARYAM Max Planck Institute for the Physics of Complex Systems, Nothnitzestr. 38, 01187 Dresden, Germany ALVARADO José Institute AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands AMUASI HENRI EMMANUEL Technische University of Eindhoven, Department of Applied Physics, Jeroen Boschlaan 142, 5613 GC Eindhoven, Netherlands BLANCH MERCADER CARLES Avenida Catalunya No 5 Atico 1er 43700 El Vendrell (Tarragona), Spain CHATELAIN CLÉMENT LPS, 24 Rue Lhomond, F-75005 Paris, France COMER JEFFREY University of Illinois, 1110 W. Green Street, Urbana-Champaign, IL 61801, USA DE PASCALIS RICCARDO University of Salento, Mathematics Department, Palazzo Fiorini, Via per Arnesano, 73100 Lecce, Italy DERVAUX JULIEN LPS, 24 Rue Lhomond, F-75005 Paris, France DMITRIEFF SERGE ESPCI, Laboratoire Gulliver, 10 Rue Vauquelin, F-75005 Paris, France

DUNSTAN JOCELYN University of Chile, Department of Physics, Avenue Blanco Encalada 2008, Santiago, Chile EBERT MARON KAI Johannes Gutenberg University Mainz, FB Physik 08, Komet 331, Germany EVANS ARTHUR University of San Diego, 3476 Armstrong Street, San Diego, CA 92111, USA GADELHA HERMES Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford 0X1 3LB, UK GALY OLIVIER Laboratoire Physico-Chimie Curie, UMR 168, Institut Curie, 11 rue Pierre et Marie Curie, F-75005 Paris, France GOMEZ-ORLANDI JAVIER University of Barcelona, Department of ECM, C/Marti I Franques 1-Office 606, E-08028 Barcelona, Spain **GREULICH PHILIP** University of Köln, Institut für theoretische Physik, Zülpicher str. 77, 50937 Köln, Germany GREVESSE THOMAS University of Mons Hainaut, 20 place du Parc, 7000 Mons, Belgium **GUERIN** THOMAS Laboratoire Physico-Chimie Curie, UMR 168, 11 rue Pierre et Marie Curie, F-75005 Paris, France HABIBI MEHDI Institute for Advanced Studies in Basic Sciences, Department of Physics, Gavazang Street, Zanjan 45195, Iran HAMEDANI RADJA NIMA Lorentz Institute for Theoretical Physics, University of Leiden, Nielsbohrweg 2, Leiden, 2333 CA, Netherlands HERSCHLAG GREGORY University of North Carolina, Department of Mathematics, UNC, Phillipes Hall, CB# 3250, Chapel Hill, NC 27599, USA HOHENEGGER CHRISTEL University of Utah, Mathematics Department, 155 S 1400 E Room 233, Salt Lake City, UT 84112-0090, USA KOURILOVA HANA Charles University in Prague, MFF, Department of Macromolecular Physics, V Holesovickach 2, Praha 8, 180 00, Czech Republic LAVRENTOVICH MAXIM Harvard University, Physics Department, 17 Oxford Street, Cambridge, MA 02138, USA

LOISEAU ETIENNE Laboratoire des Colloïdes, Verres et Nanomatériaux, University of Montpellier 2, Batiment 11, C,C 026, Place Eugène Bataillon, F-34095 Montpellier, France MAGGIONI FRANCESCA Department of Mathematics, Statistics, Computer Sciences & Applications, University of Bergamo, Via dei Camiana no 2, 24127 Bergamo, Italy MARKOVA OLGA IBDML, Parc Scientifique de Luminy, F-13009 Marseille, France MIAO BING Max Planck Intitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany MOULTON DEREK OCCAM, Mathematical Institute, 24–29 St Giles', Oxford OX1 3LB, UK NICHOLAS MATTHEW P. Albert Einstein College of Medicine, Department of Anatomy & Structural Biology, Forchheimer 610, 1300 Morris Park Avenue, Bronx, NY 10461, USA NOUBISSIE SAMUEL LPTA, Université de Montpellier II, Case Courrier 070, Batiment 13, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France PETITJEAN LAURENCE Laboratoire Physico-Chimie Curie, UMR 168, Institut Curie, 11 Rue Pierre et Marie Curie, F-75005 Paris, France PUROHIT PRASHANT Mechanical Engineering & Applied Mechanics, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104, USA QUINT DAVID Department of Physics, Syracuse University, University Avenue, Syracuse, NY 13244, USA **RANFT** JONAS Laboratoire Physico-Chimie Curie, UMR 168, Institut Curie, 11 Rue Pierre et Marie Curie, F-75005 Paris, France **RIGOZZI** MICHELLE KYONE BSS, Cavendish Laboratory, Madingley Road, University of Cambridge, Cambridge, UK RODRIGUES FERREIRA ELIZABETE Université Libre de Bruxelles, Boulevard du Triomphe, Campus Plaine, CP 218/1, Dept. Mathématique, Service mécanique et math appliquées, 1050 Ixelles, Brussels, Belgium SILVA SUSANA Center of Computational Physics, University of Coimbra, Rua Larja, 3004-516 Coimbra, Portugal SPAGNOLIE SAVERIO Department of Mechanical & Aerospace Engineering, 9500 Gilman Drive, La Jolla, CA 92093, USA

SPORER SUSAN

Institute of Theoretical Physics 1, Uni Erlangen, Staudtstr. 7, 91058 Erlangen, Germany

STOOP NORBERT

Institute of Building Materials, ETH Zurich, HIF E20, Schafmattstrasse 6, 8093 Zurich, Switzerland

SVOBODOVA Miroslava

University of West Bohemia, Department of Mechanics, FAV, Univerzitni 22, 306 14 Pilsen, Czech Republic

TKACIK GASPER

Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

TRAVASSO RUI

Center of Physics, University of Coimbra, Department of Physics, Rua Larga, 3004-516 Coimbra, Portugal

VAZQUEZ MONTEJO PABLO AGUSTIN

Nuclear Sciences Institute, National Autonomous University of Mexico, Apartado Postal 70-543, Office Number 67, Circuito Interior, 04510, D.F.; Mexico

VINCENT OLIVIER

Laboratoire de Spectrométrie Physique, Equipe DYFCOM, 140 Avenue de la Physique, F-38402 Saint-Martin d'Hères, France

VITALE GUIDO

Mathematics Department, Politecnic of Torino, CSO Duca degli Abruzzi, 24 Turin, Italy

YOLCU CEM

Department of Physics, 5000 Forbes Avenue, Carnegie Mellon University, Pittsburgh, PA 15213, USA

ZASTROW LENA REBECCA

Department of Studies of Structures, University Roma Tre, Via Corrado Segre4/6,00146 Roma, Italy

OTHERS

MONSIEUR LE PRÉSIDENT Université Joseph Fourier, Bâtiment Administratif Sciences BP 53X, F-38041 Grenoble Cedex, France

BLAIZOT JEAN-PAUL

CEA Saclay, Institut de physique théorique, Direction des Sciences de la matière, F-91191 Gif-sur-Yvette, France

CARDIN PHILIPPE

Laboratoire de Géophysique Interne et Tectonophysique, Université Joseph Fourier (Grenoble I), Oberservatoire de Grenoble, BP 53, F-380741 Grenoble Cedex 9, France

COMBES FRANÇOISE LERMA, 61 Avenue de l'Oberservatoire, F-75014 Paris, France CUGLIANDOLO LETICIA LPTHE, Tour 24-5ème étage, 4 place Jussieu, F-75232 Paris Cedex 05, France DEWITT CÉCILE Department of Physics, University of Texas, Austin, TX 78712, USA FOURCADE BERTRAND Institut Albert Bonniot, Centre de Recherche INSERM/UJF U 823-Equipe DYSAD, Site Santé, La Tronche, BP 170, F-38042 Grenoble Cedex 9, France FRAPPAT LUC LAPTH, Chemin de Bellevue, F-74941 Annecy-le-Vieux, France GARDETTE MURIELLE Ecole de Physique des Houches, La Côte des Chavants, F-74310 Les Houches, France GIAMARCHI THIERRY Département de Physique, Université de Genève, 24 Quai E. Ansermet, 1211 Genève, Switzerland GUERY-ODELIN DAVID Université Paul Sabatier, Laboratoire de Collisions-Agrégats-Réactivité, 118 Route de Narbonne (Bât. 3R1b4), F31062 Toulouse Cedex 9, France HIPPERT FRANCOISE LMGP-Laboratoire de Matériaux et Génie physique, INP Grenoble Minatec, BP 257, 3 parvis Louis Néel, F-38016 Grenoble, France JOLICOEUR THIERRY LPMC/ENS, 24 Rue Lhomond, F-75231 Paris Cedex 5, France JULIEN MARC-HENRI LNCMI-G CNRS 25 rue des Martyrs, BP166, F-38042 Grenoble Cedex 9, France KARYOTAKIS YANNIS Laboratoire d'Annecy-le-Vieux de Physique des Particules, Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux, France LEBOEUF PATRICIO LPTMS, Bâtiment 100, Rue G. Clémenceau, F-91405 Orsay Cedex, France PEBAY-PEYROULA EVA IBS, 41 Avenue des Martyrs, F-38042 Grenoble Cedex, France PEYRARD MICHEL Laboratoire de Physique, ENS, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France PINTON JEAN-FRANCOIS Laboratoire de Physique de l'ENS-Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France PROTASSOV KONSTANTIN Université Joseph Fourier, Bâtiment Administratif Sciences, BP 53X, F-38041 Grenoble Cedex, France

RENEVIER HUBERT

Laboratoire des matériaux et du génie physique, UMR 5628, Grenoble INP-Minatec, 3 parvis Louis Néel, BP 257, F-38016 Grenoble Cedex I, France

ROUSSET BRIGITTE

Ecole de Physique des Houches, La Côte des Chavants, F-74310 Les Houches, France

VANNIMENUS JEAN

LPS/ENS, 24 Rue Lhomond, F-75231 Paris Cedex 05, France

VIAL CLAUDE

Cadist De Physique, SICD1, Bibliothèque Universitaire de Sciences, BP66, F-38402 Saint Martin d'Hères, France

ZINN-JUSTIN JEAN

S.Ph.T, CE Saclay, F-91191 Gif-sur-Yvette, France

Part I Biofluidics

This page intentionally left blank

1 Locomotion at low Reynolds numbers

Anette E. Hosoi

Department of Mechanical Engineering, MIT

1.1 Introduction

The following three lectures are intended as an introduction to locomotion at low Reynolds numbers rather than as a comprehensive review. For students who desire a more in-depth treatment, I have included references throughout the text. These notes are written in an informal tone to match the lectures, which included a mix of chalk talks and PowerPoint presentations. Many of the PowerPoint slides have been reproduced here, although some copyrighted images have been omitted (deleted images have been replaced by references directing the reader to the original sources).

1.2 Lecture 1: Swimming

Over the three days of these lectures, we discussed various forms of low-Reynoldsnumber locomotion, including:

Day 1: overview & swimming;

Day 2: crawling (snails);

Day 3: burrowing (clams).

However, before we consider these specific forms of locomotion, it is useful to consider what types of biological organisms, generally speaking, operate in a low-Reynoldsnumber regime.

1.2.1 Reynolds numbers in biology

The Reynolds number is a dimensionless group that characterizes the ratio of inertial to viscous forces. It is defined as

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu},$$

where ρ is the density of the medium the organism is moving through, μ is the dynamic viscosity of the medium, ν is the kinematic viscosity, U is a characteristic velocity of the organism, and L is a characteristic length scale. When we discuss swimming *biological* organisms, we are usually referring to creatures that are moving through water (or through a fluid with material properties very close to those of water). This means that the material properties μ and ρ are fixed¹ and the Reynolds number is roughly determined by the *size* of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are related. As a rule of thumb, the characteristic locomotion velocity U in biological organisms is related to L by $U \sim L$ /second; for example for people, $L \sim 1$ m and we move at $U \sim 1$ m/s; bugs are about $L \sim 1$ mm, and they move at about $U \sim 1$ mm/s; for microorganisms, $L \sim 100 \ \mu\text{m}$ and $U \sim 100 \ \mu\text{m}$ /s. Obviously, this is a very, very, very, very rough estimate, and one does not have to think very hard to come up with exceptions (as is always the case in biology!). However, it serves as a good starting point for estimating the Reynolds numbers for various biological organisms

```
<sup>1</sup>For water, \nu \approx 10^{-2} \,\mathrm{cm}^2/\mathrm{s} and \rho \approx 1 \,\mathrm{g/cm^3}.
```


Fig. 1.1 Typical Reynolds numbers for various biological organisms. Reynolds numbers are estimated using the length scales indicated, the "rule of thumb" in the text, and material properties of water.

as illustrated in the sketch in Fig. 1.1. Note that even for organisms as small as ants, the Reynolds number is still on the order of 1 (which is not very low). In this lecture, we will focus on $Re \ll 1$, which is relevant to single-cell organisms and bacteria.

At this point it is worth mentioning a few biological details about single-celled organisms. A good place to start is the well-known image sketched by the fluid dynamist James Lighthill (made in the days before PowerPoint). I haven't included the image here, for fear of copyright infringement, but it is worth looking up and readily available in Lighthill (1976). Lighthill's figure represents a fluid dynamicist's view of biology as he has classified the organisms first and foremost not by any biological metric, but by how they swim. Organisms within the central circle all consist of a head (which is generally modeled as a sphere) propelled by N tails, where N is a small number (generally 1, 2, or 3). Organisms outside the circle use some other mechanism or don't locomote at all.

On top of this division, there is a second (more traditional) biological classification. The semicircle dividing the top of the image from the bottom marks the dividing line between eukaryotic cells and prokaryotic cells. Roughly speaking, prokaryotic cells are bacteria and eukaryotic cells are everything else (people, fungi, grasshoppers, elephants, algae, ...). This distinction between eukaryotic and prokaryotic swimmers is quite important, because the structure of the tails (which determines the mechanics of swimming) is different in the two groups. For eukaryotes, the tail is made of flagellin and has a characteristic 9+2 microtubule structure. This has two important consequences:

1. By sliding the microtubules relative to one another, the organism can exert a local bending moment anywhere along the length of the tail, which means that eukaryotic organisms can *select the shape of the tail as a function of time* (i.e. they can control the kinematics). This is in contrast to prokaryotic organisms, which have a single motor that connects the tail to the head and hence can only apply a localized torque at the base of the tail.

Eukaryotes	Prokaryotes
Flagellin	Tubulin
Distributed torque	Concentrated torque
9+2 microtubule structure	
Diameter of tail $\sim 300 \text{ nm}$	

 Table 1.1 The structure of tails

2. Since all eukaryotic tails have the same 9+2 microtubule structure, they all have roughly the same cross-sectional diameter. The length of the tail may vary from organism to organism, but the diameter is approximately 250–400 nm for all species (this includes the cilia in our lungs, the tails of green algae, the tails of spermatozoa, etc.).

These differences between prokaryotic and eukaryotic tails are summarized in Tabel 1.1

1.2.2 The physics of low-Re swimming

At this point we need to introduce our next reference, Purcell (1977). This is one of the most well-known papers on swimming at low Reynolds numbers and I highly recommend it for anyone who is looking for a gentle introduction to the topic. For the purposes of this lecture, we will define swimming as follows:

Swimming: To undergo cyclic deformations that result
in a net translation and/or rotation (with no externally
applied forces or torques).

The governing equations for low-Reynolds-number flow around an organism undergoing such deformations are the Stokes equations:

$$\nabla p = \mu \, \nabla^2 \mathbf{u}, \nabla \cdot \mathbf{u} = 0.$$

In addition, the forces and torques on the organism must balance (since we are considering an inertialess world, there is no acceleration, and hence $m\mathbf{a} = 0$):

$$\mathbf{F} = \mathbf{0}, \mathbf{M} = \mathbf{0}.$$

A few features of swimming at low Reynolds number are readily apparent from these equations:

1. Usually when we balance forces in locomotion studies, we balance some propulsive force against drag (e.g. vortex shedding or inertia). However, at low Reynolds numbers the only thing that can balance drag is ... drag! Hence propulsion comes from the *anisotropy* in the drag force. At low Reynolds numbers, the drag force on an object moving through a fluid is linearly proportional to the velocity: $\mathbf{F} \propto \mathbf{U}$, or

Fig. 1.2 Net propulsive force generated by a deforming tail.

$$F_{\perp} = C_{\mathrm{D}\perp} u_{\perp}, \qquad \qquad F_{\parallel} = C_{\mathrm{D}\parallel} u_{\parallel},$$

where the subscripts indicate directions parallel to and perpendicular to the surface of the object (as shown in Fig 1.2), and $C_{\rm D}$ is the drag coefficient. For a slender object, $C_{\rm D\perp} \approx 2C_{\rm D\parallel}$. This difference in the magnitude of the parallel and perpendicular drag coefficients can result in a net propulsive force as illustrated in the figure.

- **Challenge to students:** Can you think of "objects" for which $C_{D\perp}/C_{D\parallel} > 2$? Or examples of slender objects for which the drag coefficient in the "thin" direction is greater than the drag coefficient in the "thick" direction? (For a sphere, $C_{D\perp}/C_{D\parallel} = 1$.)
- 2. Time does not appear explicitly in the Stokes equations (which are linear), and, consequently, they are time-reversible. This reversibility is beautifully demonstrated in G. I. Taylor's movie on low-Reynolds-number flows, which is now available online at

web.mit.edu/fluids/ww.shapiro/ncfmf.html.

(The demonstration of reversibility begins approximately 27 minutes into the film). Reversibility implies that a swimmer that undergoes a reciprocal deformation (i.e. a sequence of deformations that is symmetric when time is reversed) can never generate a net translation. This inability of reciprocal "swimmers" to swim at low Reynolds number is commonly known as the *Scallop Theorem* (since, as in Purcell's paper, scallops are often used as the canonical example of a swimmer that can only undergo reciprocal deformations). In "Life at low Reynolds number," Purcell (1977) suggests a number of ways to beat the Scallop Theorem that are *intrinsic* to the swimmer (e.g. by introducing chirality into the swimmer or by additional degrees of freedom).

Challenge to students (originally posed by Purcell): A three-link swimmer consists of three rigid pieces (two "arms" and a "body") connected by hinges; time-varying torques can be independently applied at each of the hinges.

Imagine that the swimmer is activated in the following sequence (starting with both arms up): (1) arm 1 moves down, (2) arm 2 moves down, (3) arm 1 moves up, (4) arm 2 moves up. Which direction does this three-link swimmer go? (See Purcell (1977) for an illustration of the swimmer; see Becker *et al.* (2003) for the solution.)

However, in addition to *intrinsic* solutions, there has been a recent surge in interest in developing strategies to beat the Scallop Theorem that are *extrinsic* to the swimmer. The key idea here is to make things *soft*. For example, one can:

- (a) Put the swimmer near a "soft" interface (e.g. a free surface, membrane, or elastic solid). The flow around the swimmer induces deformations in the interface, and the resulting change in geometry introduces a source of nonlinearity that can break the symmetry (Trouilloud *et al.* 2008).
- (b) Give the surrounding fluid a "soft microstructure" which leads to a viscoelastic constitutive relationship. (Other people will talk about this at this summer school, so I will not discuss swimming in viscoelastic fluids here.)

In addition to making things soft, one can also beat the Scallop Theorem by *swimming with friends*. See, for example, Lauga and Bartolo (2008).

- 3. In optimization calculations, we need to choose a metric to quantify what is being optimized. Common goals in locomotion studies include:
 - (a) maximize speed for a given power ("sprinter") or
 - (b) maximize efficiency for a given speed ("endurance").

Since time does not appear explicitly in the Stokes equations (which are linear), speed and efficiency are equivalent measures of performance at low Reynolds numbers The efficiency is generally defined as

$$\eta = \frac{\text{Rate of useful work}}{\text{Rate of viscous dissipation}} = \frac{\text{Force} \cdot \text{Velocity}}{\Phi} = \frac{\alpha V^2}{\Phi}.$$

The second criterion, maximizing efficiency for a given speed, corresponds to maximizing η . Likewise, maximizing the speed for a given power (fix Φ and maximize V) also corresponds to maximizing η . These two criteria, associated with speed and endurance, are equivalent at low Reynolds numbers because time can be scaled out of the equations and the performance of the stroke is determined purely by geometric considerations. Typical efficiencies for low-Reynolds-number swimmers are 1–2%; I would consider 10% to be a fantastically good efficiency for a low-Reynolds-number swimmer. In general, if authors cite numbers that are as high as (or higher than) 10%, they have used a different definition of η .

As an aside, Purcell worried about these low efficiencies (why would nature select organisms that are so inefficient?). To understand this, he calculated the power *per unit mass* for microorganisms, which he found to be on the order of 0.5 W/kg, which is lowish relative to larger organisms. Purcell likened this to "driving a Datsun in Saudi Arabia": it's not a great car, but it's cheap to fill up the tank.

1.2.3 Simple swimmers

In the next part of the lecture we will review a simple model for a specific low-Reynolds-number swimmer, the 2D swimming sheet as analyzed by Taylor (1951).

For his swimmer, Taylor considered an infinite, inextensible sheet undergoing smallamplitude sinusoidal deformations. The vertical displacement of the sheet is prescribed by a traveling wave $y_0 = b \sin(kx - \sigma t)$ (Fig.1.3) moving with a wave speed $c = \sigma/k$. Recall that the Stokes equations can be rewritten using the stream function as

$$\nabla^4 \psi = 0, \tag{1.1}$$

where ψ is the stream function and is related to the velocity field $\mathbf{u} = (u, v)$ by $u = -\partial \psi / \partial y$, $v = \partial \psi / \partial x$. This equation must be solved subject to the following boundary conditions:

- no slip at the sheet: $\mathbf{u} = \mathbf{u}_{\text{sheet}}$ at $y_0 = b \sin(kx \sigma t)$; and
- $\mathbf{u} = \mathbf{0}$ as $x \to \infty$ or $\mathbf{u} = (-V, 0)$ in a frame moving with the sheet, where V is the swimming velocity.

The general solution to eqn (1.1) is given by

$$\frac{1}{\sigma}\psi = \sum_{n \text{ odd}}^{\alpha} (A_n y + B_n)e^{-ny}\sin nz + \sum_{n \text{ even}}^{\alpha} (C_n y + D_n)e^{-ny}\cos nz - \frac{Vy}{\sigma},$$

where $z \equiv kx - \sigma t$. (Note that in addition to A_n , B_n , C_n , and D_n , V is also unknown and must be found by applying the boundary conditions.) Taylor then assumed $bk \ll 1$, expanded in powers of bk, and, half a page of algebra later, found V = 0 at lowest order (i.e. no swimming). The next-order correction is found many, many many pages of algebra later (which I will not write out here) to be

$$\frac{V}{C} = \frac{2\pi^2 b^2}{\lambda^2} \left(1 - \frac{19}{4} \frac{\pi^2 b^2}{\lambda^2}\right).$$

Thus the sheet travels $\approx \lambda/84$ in one cycle (which is consistent with what is observed in live microorganisms).

Fig. 1.3 2D swimming sheet.

1.2.4Slightly less simple swimmers

In the final part of this lecture, I will discuss recent work from our group (primarily done by Daniel Tam) on slightly more realistic microswimmers. This part of the lecture was given in PowerPoint format and the slides have been included here as figures. We consider a swimmer that consists of a spherical head attached to a slender tail. The swimmer is allowed to select the kinematics of the tail (as is the case with eukaryotic flagella), and we seek the optimal curvature of the tail as a function of s, the distance along the flagellum, and of t, the time. The tail is modeled using slender-body theory and the head is modeled as a singularity distribution (for details, see the references in the slide shown in Fig. 1.4).

To test the model, we first consider an organism with no head. The optimal wave form is found numerically to be a sawtooth, consistent with the analytic optimal solution found by Lighthill for an infinitely long swimming snake (see the table in Fig. 1.4 for a quantitative comparison).

Next we consider an organism with a spherical head, and find that the optimal strokes have several characteristics that are consistent with what is observed in nature:

- The optimal strokes contain approximately one wavelength.
- The optimal wave shapes are *not* sinusoidal; rather, they consist of localized regions of high curvature connected by segments of low (approximately zero) curvature.
- The optimal curvature gradually decreases from head to tail.

Swimmer model

Fig. 1.4 Single-tail swimmer model.

Fig. 1.5 Initial guesses for the optimal stroke pattern. All initial conditions converge to (i).

These optimal strokes, along with sample initial guesses used in the optimization routine, are shown in Fig 1.5. While this qualitative comparison with live organisms is promising, it is difficult to make quantitative comparisons with biological data, as finding high-resolution kinematic data is challenging. However, although detailed kinematic data is lacking, there is quite a bit of data available on *morphology*.

To determine whether optimal morphologies for swimming have evolved in nature, we consider a specific microorganism with a well-defined objective function, the spermatozoon. It can be argued that spermatozoa have one primary objective: to deliver a package of genetic material to the egg. Hence we consider the following question: For a given head size (containing the genetic cargo), what is the optimal length of the tail for propulsion? One can argue that such an optimal length should exist by considering two extreme tail lengths L. As $L \to 0$, the organism cannot move and the swimming efficiency goes to zero. As $L \to \infty$, all of the energy goes into moving the infinitely long tail rather than the precious genetic payload, and again the efficiency goes to zero. Since there are tail lengths for which the efficiency is not zero (and the optimal efficiencies appear to vary smoothly with L), there must be at least one optimal value between these two extremes. Figure 1.6 shows computed optimal efficiencies for various values of head-to-tail length ratio. Note that every point on this curve corresponds to an optimization calculation, and the optimal kinematics for short tails may not be the same as the optimal kinematics for long tails. Our computations indicate that the optimal value of L/2R is approximately 12, which corresponds to the peak in the histogram, containing data from over 400 mammalian species! We can now postulate that the morphologies of spermatozoa have evolved into optimal geometries for low-Reynolds-number swimming.

Fig. 1.6 The data points show the optimal efficiency as a function of head-to-tail length ratio, L/2R; the histogram represents the number of mammalian species that exhibit a given value of L/2R.

However, one could argue that the most interesting data points in the histogram are the ones that are *far* from optimal, as those points represent species that either are suboptimal or have been subject to unique evolutionary pressures and constraints. In our data set, the organisms at the far right (long-tailed sperm) correspond to several species of bandicoot and other mammals where the sperm have unusually thick tails. These organisms violate our assumption that the radius of the tail is set by the 9+2 microtubule structure discussed earlier, as the flagellum is encased in a thick sheath, which adds mechanical toughness. At the other end of the spectrum (short tails), the outliers correspond to monotremes, the egg-laying mammals. In these species, the head of the sperm has a helical shape, far from our spherical approximation, so again it is not surprising that they fall far from the computed optimum.

The set of outliers that is more difficult to explain corresponds to the peak in the histogram for the even-toed ungulates (pigs, sheep, goats, cows, ...). These points deviate consistently from the optimal value of tail length by about a factor of two. We have been unable to rationalize this discrepancy, and we leave it as a puzzle for the students. For further details, see Tam and Hosoi (2010).

Fig. 1.7 Schematic illustration of snail and thin film. The characteristic velocities in the vertical and horizontal directions are denoted by V and U, respectively.

1.3 Lecture 2: Crawling

Our studies of crawling on fluid begin with snails. It is well known that snails crawl on top of a thin film of viscous fluid (pedal mucus), as shown in Fig. 1.7. The foot is not in direct contact with the substrate, and the only way that the snail's foot can interact with the substrate is by generating stresses within this thin film.

At this point we should ask: Does this qualify as low-Reynolds-number locomotion? Recall that I told you last time that in order to qualify as a low-Reynolds-numberswimmer, $L_{\text{organism}} \leq 1$ mm, and most snails are bigger than that (some, such as the giant African land snail, can grow to up to 30 cm in length!). However, we are saved because there are *two* characteristic length scales in a thin film, H and L (see Fig. 1.7). Comparing viscous and inertial forces, we find that we are allowed to neglect inertial terms in the equations of motion provided

$$\rho \frac{U^2}{L} \ll \mu \frac{U}{H^2} \quad \Rightarrow \quad \frac{\rho U H^2}{\mu L} \ll 1 \quad \Rightarrow \quad \left(\frac{H}{L}\right)^2 Re_L \ll 1.$$

In snails, $H \sim 10 - 20 \,\mu\text{m}$ and $L \sim 1 \,\text{mm}$, and hence $(H/L)^2 \sim 10^{-4}$. Combining this with the chart shown in Fig. 1.1, we find that even snails with sizes on the order of 10 cm still qualify as low-Reynolds-number locomotors.

1.3.1 Locomotion on thin films: Out-of-plane waves (see Chan et al. 2005)

In this lecture, we begin by considering a waving sheet near a wall (analogous to Taylor's sheet in the previous lecture). This is a naively simple model for a snail, but we will later see that even though snails do not use this method for propulsion, we can glean useful information from this simple approximation. Before we calculate anything, we can argue that we expect this configuration to generate propulsion. As fluid is squeezed beneath constrictions between the foot and the substrate, high-pressure regions develop in front of the wave (See Fig. 1.9 later). This high pressure acts on the tilted foot surface, resulting in a net propulsive force opposite to the direction in which the wave travels. We model the sheet as inextensible and assume that the wave amplitude is small, limited by the presence of the rigid substrate. Again, the goal is to prescribe the kinematics, i.e. the shape of the foot as a function of time h(x,t), and find the crawling velocity V_s associated with a given deformation. As with Taylor's sheet, we will work in a frame moving with the wave to eliminate the time dependence in the problem. Rescaling the equations of motion using $\hat{u} = u\hat{V}_w$,

 $\hat{v} = v(\hat{H}/\hat{L})\hat{V}_w, \ \hat{y} = y\hat{H}, \ \hat{x} = x\hat{L}, \ \text{and} \ \hat{p} = p\mu\hat{V}w\hat{L}/\hat{H}^2, \ \text{the dimensionless lubrication}$ equations become to lowest order

$$\frac{\partial p}{\partial x} = \frac{\partial^2 u}{\partial y^2}, \quad \frac{\partial p}{\partial y} = 0.$$

Solving for the velocity with the boundary conditions given in Fig.1.8, we find

$$u = \frac{\partial p}{\partial x} \frac{1}{2} y(y-h) + V_s \left(\frac{y}{h} - 1\right) + 1.$$
(1.2)

If we consider steady-state crawling, the volumetric flux Q in the x direction must be a constant (i.e. not a function of x or t), and hence

$$Q = \int_0^h u \, dy = \text{constant.}$$

Combining this with the expression for u yields

$$\frac{\partial p}{\partial x} = \frac{12}{h^3} \left[h \left(1 - \frac{V_s}{2} \right) - Q \right]. \tag{1.3}$$

Next we assume periodic boundary conditions in x; in particular, p(0) = p(1). This implies

$$\int_{0}^{1} \frac{\partial p}{\partial x} dx = 0 = \int_{0}^{1} \frac{12}{h^{3}} \left[h \left(1 - \frac{Vs}{2} \right) - Q \right] dx = \left(1 - \frac{Vs}{2} \right) \underbrace{\int_{0}^{1} \frac{dx}{h^{2}}}_{I_{2}} - Q \underbrace{\int_{0}^{1} \frac{dx}{h^{3}}}_{I_{3}} + \frac{1}{I_{3}} \underbrace{\int_{0}^{1} \frac{dx}{h^{3}}}$$

Solving for Q, we find

$$Q = \left(1 - \frac{Vs}{2}\right)\frac{I_2}{I_3},$$

where we have defined the integrals $I_n = \int_0^1 dx / h^n$.

So far we have invoked *conservation of momentum*, *conservation of mass*, and *periodicity*. The last step is to enforce *force balance*. The traction acting on the bottom of the foot of the snail is defined as

Fig. 1.8 Snail boundary conditions in stationary and moving frames.

Force/length = traction = $\mathbf{f} = \sigma \cdot \mathbf{n}$.

In the y-direction, the weight of the crawler is balanced by the pressure in the thin film (which doesn't tell us anything about the crawling velocity). Force balance in the x-direction is more useful:

$$f_x = p\frac{dh}{dx} + \frac{\partial u}{\partial y}$$

Integrating over one wavelength, we find

$$F_x = \int_0^1 \left(p \frac{dh}{dx} + \frac{\partial u}{\partial y} \right) \Big|_{y=h} dx = 0$$
(1.4)

$$= ph|_{0}^{1} - \int_{0}^{1} h \frac{\partial p}{\partial x}\Big|_{y=h} + \int_{0}^{1} \frac{\partial u}{\partial y}\Big|_{y=h} dx = 0.$$
(1.5)

Solving for V_s , we find

$$V_s = \frac{6(1-A)}{4-3A}, \text{ where } A = \frac{I_2^2}{I_1 I_3} \text{ and } I_n = \int_0^1 \frac{dx}{I_n^n}, \tag{1.6}$$

which tells us how to find the crawling speed given the shape of the foot. A demonstration of the effectiveness of this crawling strategy is illustrated in Fig. 1.10, which shows a robotic crawler using out-of-plane waves.

We can now use eqn (1.6) to select optimal wave shapes for crawling. First, consider the properties of the shape function A. Using the Cauchy–Schwartz inequality, we can find upper and lower bounds for A:

$$I_2^2 = \left(\int h^{-1/2} h^{-2/3} \, dx\right)^2 \le \int h^{-3} \, dx \int h^{-1} \, dx = I_3 I_1.$$

Hence 0 < A < 1. Combining this with eqn (1.2), we find that the maximum crawling velocity (Fig. 1.9) is achieved when $A \rightarrow 0$, which corresponds to "sharp" profiles. This

Fig. 1.9 Crawling velocity as a function of the shape function A.