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Preface

Over the last few decades, the life sciences have experienced a quiet but radical
revolution. This revolution has transformed biology from a mostly observational and
qualitative discipline into a fully quantitative science at all scales, ranging from the
DNA code to proteins, cells, tissues, and organs. In the process, biology has become one
of the ultimate scientific frontiers and exploded into many diverging sub-disciplines,
all requiring the integration of mathematical, computational, and physical sciences.
As such, biophysics and biomechanics is now an ever-growing branch of traditional
physics. In particular, with the ability to measure forces, velocities, and displacements
at the cellular and tissue levels, there is a clear need for mathematical theories
and models that integrate the mechanical, chemical, and biological environments.
For instance, it has now been understood that biological growth and development
have an important mechanical component, playing a role in genetic programming,
morphogenesis, and the regulation of physiological processes such as heart and artery
remodeling. However, a unified theory of the growth of elastic tissues that addresses
the fundamental coupling between geometric quantities and physical and chemical
fields is still lacking. Theoretical progress on this problem will be needed both to
answer basic scientific questions and to tackle fundamental challenges such as tumor
growth. Similarly, the motion of biological organisms such as bacteria, sperm, and
insects through fluids requires an understanding of fluid–solid interactions between
self-propelled organisms and fluids that can have a gel-like or active response. With
their training in mechanics, mathematics, and modeling, physicists have a unique
opportunity to play a central role in the development of such modern biological
theories. However, the classical training in the physical sciences does not introduce
students to such problems, and fails to give them the proper state-of-the-art tools to
address these challenges.

In July 2009, many experts in mathematical modeling in the biological sciences
gathered in Les Houches for a four-week summer school on the mechanics and physics
of biological systems. The goal of the school was to present to students and researchers
an integrated view of the new trends and challenges in the physical and mathematical
aspects of biomechanics. Although the scope of such a topic is very wide, we focused on
problems where solid and fluid mechanics plays a central role. The school covered both
the general mathematical theory of mechanical biology in the context of continuum
mechanics and the specific modeling of particular systems in the biology of cells,
plants, and microbes, and in physiology. The school was organized around five different
main topics, all connected by the common theme of continuum modeling for biological
systems. These collected lecture notes reflect the same organization, namely biofluidics,
biogels, biomechanics, biomembranes, and morphogenesis. These lecture notes are not
meant as a journal review of the topic but rather as a gentle tutorial introduction to
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readers who want to understand the basic problems of modeling biological systems
from a mechanical perspective.
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Site Santé, La Tronche, BP 170, F-38042 Grenoble Cedex 9, France
FRAPPAT Luc

LAPTH, Chemin de Bellevue, F-74941 Annecy-le-Vieux, France
GARDETTE Murielle
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3 parvis Louis Néel, BP 257, F-38016 Grenoble Cedex I, France
ROUSSET Brigitte
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Biofluidics



This page intentionally left blank 



1

Locomotion at low Reynolds
numbers

Anette E. Hosoi

Department of Mechanical Engineering, MIT



4 Locomotion at low Reynolds numbers

1.1 Introduction

The following three lectures are intended as an introduction to locomotion at low
Reynolds numbers rather than as a comprehensive review. For students who desire
a more in-depth treatment, I have included references throughout the text. These
notes are written in an informal tone to match the lectures, which included a mix of
chalk talks and PowerPoint presentations. Many of the PowerPoint slides have been
reproduced here, although some copyrighted images have been omitted (deleted images
have been replaced by references directing the reader to the original sources).

1.2 Lecture 1: Swimming

Over the three days of these lectures, we discussed various forms of low-Reynolds-
number locomotion, including:
Day 1: overview & swimming;
Day 2: crawling (snails);
Day 3: burrowing (clams).
However, before we consider these specific forms of locomotion, it is useful to consider
what types of biological organisms, generally speaking, operate in a low-Reynolds-
number regime.

1.2.1 Reynolds numbers in biology

The Reynolds number is a dimensionless group that characterizes the ratio of inertial
to viscous forces. It is defined as

Re =
ρUL

μ
=

UL

ν
,

where ρ is the density of the medium the organism is moving through, μ is the dynamic
viscosity of the medium, ν is the kinematic viscosity, U is a characteristic velocity of the
organism, and L is a characteristic length scale. When we discuss swimming biological
organisms, we are usually referring to creatures that are moving through water (or
through a fluid with material properties very close to those of water). This means
that the material properties μ and ρ are fixed1 and the Reynolds number is roughly
determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming
velocity are related. As a rule of thumb, the characteristic locomotion velocity U in
biological organisms is related to L by U ∼ L/second; for example for people, L ∼ 1 m
and we move at U ∼ 1 m/s; bugs are about L ∼ 1 mm, and they move at about U ∼ 1
mm/s; for microorganisms, L ∼ 100 μm and U ∼ 100 μm/s. Obviously, this is a very,
very, very, very rough estimate, and one does not have to think very hard to come
up with exceptions (as is always the case in biology!). However, it serves as a good
starting point for estimating the Reynolds numbers for various biological organisms

1For water, ν ≈ 10−2 cm2/s and ρ ≈ 1 g/cm3.
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Fig. 1.1 Typical Reynolds numbers for various biological organisms. Reynolds numbers are
estimated using the length scales indicated, the “rule of thumb” in the text, and material
properties of water.

as illustrated in the sketch in Fig. 1.1. Note that even for organisms as small as ants,
the Reynolds number is still on the order of 1 (which is not very low). In this lecture,
we will focus on Re � 1, which is relevant to single-cell organisms and bacteria.

At this point it is worth mentioning a few biological details about single-celled
organisms. A good place to start is the well-known image sketched by the fluid
dynamist James Lighthill (made in the days before PowerPoint). I haven’t included the
image here, for fear of copyright infringement, but it is worth looking up and readily
available in Lighthill (1976). Lighthill’s figure represents a fluid dynamicist’s view of
biology as he has classified the organisms first and foremost not by any biological
metric, but by how they swim. Organisms within the central circle all consist of a
head (which is generally modeled as a sphere) propelled by N tails, where N is a small
number (generally 1, 2, or 3). Organisms outside the circle use some other mechanism
or don’t locomote at all.

On top of this division, there is a second (more traditional) biological classification.
The semicircle dividing the top of the image from the bottom marks the dividing line
between eukaryotic cells and prokaryotic cells. Roughly speaking, prokaryotic cells
are bacteria and eukaryotic cells are everything else (people, fungi, grasshoppers,
elephants, algae, . . . ). This distinction between eukaryotic and prokaryotic swimmers
is quite important, because the structure of the tails (which determines the mechanics
of swimming) is different in the two groups. For eukaryotes, the tail is made of
flagellin and has a characteristic 9+2 microtubule structure. This has two important
consequences:

1. By sliding the microtubules relative to one another, the organism can exert a
local bending moment anywhere along the length of the tail, which means that
eukaryotic organisms can select the shape of the tail as a function of time (i.e. they
can control the kinematics). This is in contrast to prokaryotic organisms, which
have a single motor that connects the tail to the head and hence can only apply
a localized torque at the base of the tail.
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Table 1.1 The structure of tails

Eukaryotes Prokaryotes

Flagellin Tubulin
Distributed torque Concentrated torque
9+2 microtubule structure
Diameter of tail ∼ 300 nm

2. Since all eukaryotic tails have the same 9+2 microtubule structure, they all have
roughly the same cross-sectional diameter. The length of the tail may vary from
organism to organism, but the diameter is approximately 250–400 nm for all
species (this includes the cilia in our lungs, the tails of green algae, the tails of
spermatozoa, etc.).

These differences between prokaryotic and eukaryotic tails are summarized in Tabel 1.1

1.2.2 The physics of low-Re swimming

At this point we need to introduce our next reference, Purcell (1977). This is one
of the most well-known papers on swimming at low Reynolds numbers and I highly
recommend it for anyone who is looking for a gentle introduction to the topic. For the
purposes of this lecture, we will define swimming as follows:

Swimming: To undergo cyclic deformations that result
in a net translation and/or rotation (with no externally
applied forces or torques).

The governing equations for low-Reynolds-number flow around an organism under-
going such deformations are the Stokes equations:

∇p = μ∇2u,∇ · u = 0.

In addition, the forces and torques on the organism must balance (since we are
considering an inertialess world, there is no acceleration, and hence ma = 0):

F = 0,M = 0.

A few features of swimming at low Reynolds number are readily apparent from
these equations:

1. Usually when we balance forces in locomotion studies, we balance some propulsive
force against drag (e.g. vortex shedding or inertia). However, at low Reynolds
numbers the only thing that can balance drag is . . . drag! Hence propulsion comes
from the anisotropy in the drag force. At low Reynolds numbers, the drag force
on an object moving through a fluid is linearly proportional to the velocity:
F ∝ U, or
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Fig. 1.2 Net propulsive force generated by a deforming tail.

F⊥ = CD⊥u⊥, F‖ = CD‖u‖,

where the subscripts indicate directions parallel to and perpendicular to the
surface of the object (as shown in Fig 1.2), and CD is the drag coefficient. For a
slender object, CD⊥ ≈ 2CD‖. This difference in the magnitude of the parallel and
perpendicular drag coefficients can result in a net propulsive force as illustrated
in the figure.
Challenge to students: Can you think of “objects” for which CD⊥/CD‖ > 2?

Or examples of slender objects for which the drag coefficient in the “thin”
direction is greater than the drag coefficient in the “thick” direction? (For a
sphere, CD⊥/CD‖ = 1.)

2. Time does not appear explicitly in the Stokes equations (which are linear), and,
consequently, they are time-reversible. This reversibility is beautifully demon-
strated in G. I. Taylor’s movie on low-Reynolds-number flows, which is now
available online at

web.mit.edu/fluids/ww.shapiro/ncfmf.html.

(The demonstration of reversibility begins approximately 27 minutes into the
film). Reversibility implies that a swimmer that undergoes a reciprocal deforma-
tion (i.e. a sequence of deformations that is symmetric when time is reversed)
can never generate a net translation. This inability of reciprocal “swimmers”
to swim at low Reynolds number is commonly known as the Scallop Theorem
(since, as in Purcell’s paper, scallops are often used as the canonical example
of a swimmer that can only undergo reciprocal deformations). In “Life at low
Reynolds number,” Purcell (1977) suggests a number of ways to beat the Scallop
Theorem that are intrinsic to the swimmer (e.g. by introducing chirality into the
swimmer or by additional degrees of freedom).
Challenge to students (originally posed by Purcell): A three-link swimmer

consists of three rigid pieces (two “arms” and a “body”) connected by hinges;
time-varying torques can be independently applied at each of the hinges.
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Imagine that the swimmer is activated in the following sequence (starting with
both arms up): (1) arm 1 moves down, (2) arm 2 moves down, (3) arm 1 moves
up, (4) arm 2 moves up. Which direction does this three-link swimmer go? (See
Purcell (1977) for an illustration of the swimmer; see Becker et al. (2003) for
the solution.)

However, in addition to intrinsic solutions, there has been a recent surge in
interest in developing strategies to beat the Scallop Theorem that are extrinsic
to the swimmer. The key idea here is to make things soft. For example, one can:
(a) Put the swimmer near a “soft” interface (e.g. a free surface, membrane,

or elastic solid). The flow around the swimmer induces deformations in
the interface, and the resulting change in geometry introduces a source of
nonlinearity that can break the symmetry (Trouilloud et al. 2008).

(b) Give the surrounding fluid a “soft microstructure” which leads to a viscoelas-
tic constitutive relationship. (Other people will talk about this at this summer
school, so I will not discuss swimming in viscoelastic fluids here.)

In addition to making things soft, one can also beat the Scallop Theorem by
swimming with friends. See, for example, Lauga and Bartolo (2008).

3. In optimization calculations, we need to choose a metric to quantify what is being
optimized. Common goals in locomotion studies include:
(a) maximize speed for a given power (“sprinter”) or
(b) maximize efficiency for a given speed (“endurance”).
Since time does not appear explicitly in the Stokes equations (which are linear),
speed and efficiency are equivalent measures of performance at low Reynolds
numbers The efficiency is generally defined as

η =
Rate of useful work

Rate of viscous dissipation
=

Force · Velocity
Φ

=
αV 2

Φ
.

The second criterion, maximizing efficiency for a given speed, corresponds to
maximizing η. Likewise, maximizing the speed for a given power (fix Φ and
maximize V ) also corresponds to maximizing η. These two criteria, associated
with speed and endurance, are equivalent at low Reynolds numbers because time
can be scaled out of the equations and the performance of the stroke is determined
purely by geometric considerations. Typical efficiencies for low-Reynolds-number
swimmers are 1–2%; I would consider 10% to be a fantastically good efficiency
for a low-Reynolds-number swimmer. In general, if authors cite numbers that are
as high as (or higher than) 10%, they have used a different definition of η.

As an aside, Purcell worried about these low efficiencies (why would nature
select organisms that are so inefficient?). To understand this, he calculated the
power per unit mass for microorganisms, which he found to be on the order of 0.5
W/kg, which is lowish relative to larger organisms. Purcell likened this to “driving
a Datsun in Saudi Arabia”: it’s not a great car, but it’s cheap to fill up the
tank.
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1.2.3 Simple swimmers

In the next part of the lecture we will review a simple model for a specific low-
Reynolds-number swimmer, the 2D swimming sheet as analyzed by Taylor (1951).

For his swimmer, Taylor considered an infinite, inextensible sheet undergoing small-
amplitude sinusoidal deformations. The vertical displacement of the sheet is prescribed
by a traveling wave y0 = b sin(kx − σt) (Fig.1.3) moving with a wave speed c = σ/k.
Recall that the Stokes equations can be rewritten using the stream function as

∇4ψ = 0, (1.1)

where ψ is the stream function and is related to the velocity field u = (u, v) by u =
−∂ψ/∂y, v = ∂ψ/∂x. This equation must be solved subject to the following boundary
conditions:

• no slip at the sheet: u = usheet at y0 = b sin(kx − σt); and
• u = 0 as x → ∞ or u = (−V, 0) in a frame moving with the sheet, where V is the

swimming velocity.

The general solution to eqn (1.1) is given by

1
σ

ψ =
α∑

n odd

(Any + Bn)e−ny sinnz +
α∑

n even

(Cny + Dn)e−ny cos nz − V y

σ
,

where z ≡ kx − σt. (Note that in addition to An, Bn, Cn, and Dn, V is also unknown
and must be found by applying the boundary conditions.) Taylor then assumed bk � 1,
expanded in powers of bk, and, half a page of algebra later, found V = 0 at lowest
order (i.e. no swimming). The next-order correction is found many, many, many pages
of algebra later (which I will not write out here) to be

V

C
=

2π2b2

λ2

(
1 − 19

4
π2b2

λ2

)
.

Thus the sheet travels ≈λ/84 in one cycle (which is consistent with what is observed
in live microorganisms).

λ

y0 = b sin(kx – s t)

Fig. 1.3 2D swimming sheet.
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1.2.4 Slightly less simple swimmers

In the final part of this lecture, I will discuss recent work from our group (primarily
done by Daniel Tam) on slightly more realistic microswimmers. This part of the lecture
was given in PowerPoint format and the slides have been included here as figures. We
consider a swimmer that consists of a spherical head attached to a slender tail. The
swimmer is allowed to select the kinematics of the tail (as is the case with eukaryotic
flagella), and we seek the optimal curvature of the tail as a function of s, the distance
along the flagellum, and of t, the time. The tail is modeled using slender-body theory
and the head is modeled as a singularity distribution (for details, see the references in
the slide shown in Fig. 1.4).

To test the model, we first consider an organism with no head. The optimal wave
form is found numerically to be a sawtooth, consistent with the analytic optimal
solution found by Lighthill for an infinitely long swimming snake (see the table in
Fig. 1.4 for a quantitative comparison).

Next we consider an organism with a spherical head, and find that the optimal
strokes have several characteristics that are consistent with what is observed in nature:

• The optimal strokes contain approximately one wavelength.
• The optimal wave shapes are not sinusoidal; rather, they consist of localized regions

of high curvature connected by segments of low (approximately zero) curvature.
• The optimal curvature gradually decreases from head to tail.

Swimmer model

• Flagellum: Slender-body theory - find
  Stokeslet distribution (Keller and Rubinow
  1976)
• Head: Exact singularity distribution
  (Chwang and Wu 1975)
• Head–flagellum interaction: Faxen’s laws
  (Happel and Brenner 1973)
• Find optimal curvature along the tail

No head:

• Large N ® snake
• Analytic solution (Lighthill 1975)
• 41 degree angle

Analytical solution
y

x

s = 0

s = 2l

2rR(s)

U(s)

f(s)

L(s)

40�

Y e
0.29
U/V

Computed solution ~41�
0.0857
~0.08 ~0.25

Fig. 1.4 Single-tail swimmer model.
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• Traveling wave (~ one wavelength)
• Localized regions of high curvature 
  connected by segments of ~ zero 
  curvature
• Curvature decreases from head to tail

(i)(f)

(e)

Uniflagellate Kinematics

(h)

(g)

(a)

(d)

(c)

(b)

Fig. 1.5 Initial guesses for the optimal stroke pattern. All initial conditions converge to (i).

These optimal strokes, along with sample initial guesses used in the optimization
routine, are shown in Fig 1.5. While this qualitative comparison with live organisms
is promising, it is difficult to make quantitative comparisons with biological data,
as finding high-resolution kinematic data is challenging. However, although detailed
kinematic data is lacking, there is quite a bit of data available on morphology.

To determine whether optimal morphologies for swimming have evolved in nature,
we consider a specific microorganism with a well-defined objective function, the
spermatozoon. It can be argued that spermatozoa have one primary objective: to
deliver a package of genetic material to the egg. Hence we consider the following
question: For a given head size (containing the genetic cargo), what is the optimal
length of the tail for propulsion? One can argue that such an optimal length should
exist by considering two extreme tail lengths L. As L → 0, the organism cannot move
and the swimming efficiency goes to zero. As L → ∞, all of the energy goes into
moving the infinitely long tail rather than the precious genetic payload, and again the
efficiency goes to zero. Since there are tail lengths for which the efficiency is not zero
(and the optimal efficiencies appear to vary smoothly with L), there must be at least
one optimal value between these two extremes. Figure 1.6 shows computed optimal
efficiencies for various values of head-to-tail length ratio. Note that every point on this
curve corresponds to an optimization calculation, and the optimal kinematics for short
tails may not be the same as the optimal kinematics for long tails. Our computations
indicate that the optimal value of L/2R is approximately 12, which corresponds to the
peak in the histogram, containing data from over 400 mammalian species! We can now
postulate that the morphologies of spermatozoa have evolved into optimal geometries
for low-Reynolds-number swimming.
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Optimal Tail Length

Goal: To move genetic material

Q: For a given head size, what 
     is the optimal tail length?

Bandicoot

Order Artiodactyla
(even-toed ungulates)

Fig. 1.6 The data points show the optimal efficiency as a function of head-to-tail length ratio,
L/2R; the histogram represents the number of mammalian species that exhibit a given value
of L/2R.

However, one could argue that the most interesting data points in the histogram
are the ones that are far from optimal, as those points represent species that either
are suboptimal or have been subject to unique evolutionary pressures and constraints.
In our data set, the organisms at the far right (long-tailed sperm) correspond to
several species of bandicoot and other mammals where the sperm have unusually
thick tails. These organisms violate our assumption that the radius of the tail is set
by the 9+2 microtubule structure discussed earlier, as the flagellum is encased in a
thick sheath, which adds mechanical toughness. At the other end of the spectrum
(short tails), the outliers correspond to monotremes, the egg-laying mammals. In
these species, the head of the sperm has a helical shape, far from our spherical
approximation, so again it is not surprising that they fall far from the computed
optimum.

The set of outliers that is more difficult to explain corresponds to the peak in the
histogram for the even-toed ungulates (pigs, sheep, goats, cows, . . . ). These points
deviate consistently from the optimal value of tail length by about a factor of two. We
have been unable to rationalize this discrepancy, and we leave it as a puzzle for the
students. For further details, see Tam and Hosoi (2010).
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H

L

Fluid

Snail foot

UV
mucus

snail

substrate

Fig. 1.7 Schematic illustration of snail and thin film. The characteristic velocities in the
vertical and horizontal directions are denoted by V and U , respectively.

1.3 Lecture 2: Crawling

Our studies of crawling on fluid begin with snails. It is well known that snails crawl
on top of a thin film of viscous fluid (pedal mucus), as shown in Fig. 1.7. The foot is
not in direct contact with the substrate, and the only way that the snail’s foot can
interact with the substrate is by generating stresses within this thin film.

At this point we should ask: Does this qualify as low-Reynolds-number locomotion?
Recall that I told you last time that in order to qualify as a low-Reynolds-number-
swimmer, Lorganism � 1 mm, and most snails are bigger than that (some, such as the
giant African land snail, can grow to up to 30 cm in length!). However, we are saved
because there are two characteristic length scales in a thin film, H and L (see Fig. 1.7).
Comparing viscous and inertial forces, we find that we are allowed to neglect inertial
terms in the equations of motion provided

ρ
U2

L
� μ

U

H2
⇒ ρUH2

μL
� 1 ⇒

(
H

L

)2

ReL � 1.

In snails, H ∼ 10 − 20μm and L ∼ 1 mm, and hence (H/L)2 ∼ 10−4. Combining this
with the chart shown in Fig. 1.1, we find that even snails with sizes on the order of 10
cm still qualify as low-Reynolds-number locomotors.

1.3.1 Locomotion on thin films: Out-of-plane waves (see Chan et al. 2005)

In this lecture, we begin by considering a waving sheet near a wall (analogous to
Taylor’s sheet in the previous lecture). This is a naively simple model for a snail, but
we will later see that even though snails do not use this method for propulsion, we
can glean useful information from this simple approximation. Before we calculate
anything, we can argue that we expect this configuration to generate propulsion.
As fluid is squeezed beneath constrictions between the foot and the substrate, high-
pressure regions develop in front of the wave (See Fig. 1.9 later). This high pressure
acts on the tilted foot surface, resulting in a net propulsive force opposite to the
direction in which the wave travels. We model the sheet as inextensible and assume
that the wave amplitude is small, limited by the presence of the rigid substrate. Again,
the goal is to prescribe the kinematics, i.e. the shape of the foot as a function of time
h(x, t), and find the crawling velocity Vs associated with a given deformation. As
with Taylor’s sheet, we will work in a frame moving with the wave to eliminate the
time dependence in the problem. Rescaling the equations of motion using û = uV̂w,
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v̂ = v(Ĥ/L̂)V̂w, ŷ = yĤ, x̂ = xL̂, and p̂ = pμV̂ wL̂/Ĥ2, the dimensionless lubrication
equations become to lowest order

∂p

∂x
=

∂2u

∂y2
,

∂p

∂y
= 0.

Solving for the velocity with the boundary conditions given in Fig.1.8, we find

u =
∂p

∂x

1
2
y(y − h) + Vs

(y

h
− 1

)
+ 1. (1.2)

If we consider steady-state crawling, the volumetric flux Q in the x direction must be
a constant (i.e. not a function of x or t), and hence

Q =
∫ h

0

u dy = constant.

Combining this with the expression for u yields

∂p

∂x
=

12
h3

[
h

(
1 − Vs

2

)
− Q

]
. (1.3)

Next we assume periodic boundary conditions in x; in particular, p(0) = p(1). This
implies∫ 1

0

∂p

∂x
dx = 0 =

∫ 1

0

12
h3

[
h

(
1 − V s

2

)
− Q

]
dx =

(
1 − V s

2

)∫ 1

0

dx

h2︸ ︷︷ ︸
I2

−Q

∫ 1

0

dx

h3︸ ︷︷ ︸
I3

.

Solving for Q, we find

Q =
(

1 − V s

2

)
I2

I3
,

where we have defined the integrals In =
∫ 1

0
dx/hn.

So far we have invoked conservation of momentum, conservation of mass, and
periodicity. The last step is to enforce force balance. The traction acting on the bottom
of the foot of the snail is defined as

Lab Frame Wave Frame Wave Frame (dimensionless)

Snail

Fluidh(x,t) h(x)

Vs

V = 0

Vw

Vw - Vs
I - Vs

I

u=(u,v)

Fig. 1.8 Snail boundary conditions in stationary and moving frames.
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Force/length = traction = f = σ · n.

In the y-direction, the weight of the crawler is balanced by the pressure in the thin
film (which doesn’t tell us anything about the crawling velocity). Force balance in the
x-direction is more useful:

fx = p
dh

dx
+

∂u

∂y
.

Integrating over one wavelength, we find

Fx =
∫ 1

0

(
p
dh

dx
+

∂u

∂y

)∣∣∣∣
y=h

dx = 0 (1.4)

= ph|10 −
∫ 1

0

h
∂p

∂x

∣∣∣∣
y=h

+
∫ 1

0

∂u

∂y

∣∣∣∣
y=h

dx = 0. (1.5)

Solving for Vs, we find

Vs =
6(1 − A)
4 − 3A

,where A =
I2
2

I1I3
and In =

∫ 1

0

dx

In
n

, (1.6)

which tells us how to find the crawling speed given the shape of the foot. A demon-
stration of the effectiveness of this crawling strategy is illustrated in Fig. 1.10, which
shows a robotic crawler using out-of-plane waves.

We can now use eqn (1.6) to select optimal wave shapes for crawling. First, consider
the properties of the shape function A. Using the Cauchy–Schwartz inequality, we can
find upper and lower bounds for A:

I2
2 =

(∫
h−1/2h−2/3 dx

)2

≤
∫

h−3 dx

∫
h−1 dx = I3I1.

Hence 0 < A < 1. Combining this with eqn (1.2), we find that the maximum crawling
velocity (Fig. 1.9) is achieved when A → 0, which corresponds to “sharp” profiles. This

Snail

Fluid

high p

0
0

0.2

0.4

0.6

0.8V
s

1.0

1.2

1.4

1.6

0.1 0.2 0.3 0.4 0.5

A

0.6 0.7 0.8 0.9 1.0

Vw

low p

Fig. 1.9 Crawling velocity as a function of the shape function A.


