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Preface

The familiar essayist didn’t speak to the millions; he spoke to one reader, as if the
two of them were sitting side by side in front of a crackling fire with their cravats
loosened, their favorite stimulants at hand, and a long evening of conversation
stretching before them. His viewpoint was subjective, his frame of reference
concrete, his style digressive, his eccentricities conspicuous, and his laughter
usually at his own expense. And though he wrote about himself, he also wrote
about a subject, something with which he was so familiar, and about which he
was often so enthusiastic, that his words were suffused with a lover’s intimacy.

Anne Fadiman, At Large and At Small

It is not incumbent upon you to finish the work,
yet neither are you free to desist from it.

Rabbi Tarfon

The sciences that awe and inspire us deal with fundamentals. Biology tries to understand the nature of
life, from its cellular machinery to the gorgeous variety of organisms. Physics seeks the laws of nature on
every scale from the subatomic to the cosmic. These questions are among the things that make life worth
living. Pursuing them is one of the best things humans do.

The theory of computation is no less fundamental. It tries to understand why, and how, some prob-
lems are easy while others are hard. This isn’t a question of how fast our computers are, any more than
astronomy is the study of telescopes. It is a question about the mathematical structures of problems, and
how these structures help us solve problems or frustrate our attempts to do so. This leads us, in turn, to
questions about the nature of mathematical proof, and even of intelligence and creativity.

Computer science can trace its roots back to Euclid. It emerged through the struggle to build a foun-
dation for mathematics in the early 20th century, and flowered with the advent of electronic computers,
driven partly by the cryptographic efforts of World War II. Since then, it has grown into a rich field, full of
deep ideas and compelling questions. Today it stands beside other sciences as one of the lenses we use
to look at the world. Anyone who truly wants to understand how the world works can no more ignore
computation than they can ignore relativity or evolution.

Computer science is also one of the most flexible and dynamic sciences. New subfields like quantum
computation and phase transitions have produced exciting collaborations between computer scientists,
physicists, and mathematicians. When physicists ask what rules govern a quantum system, computer
scientists ask what it can compute. When physicists describe the phase transition that turns water to ice,
computer scientists ask whether a similar transition turns problems from easy to hard.

xv



xvi PREFACE

This book was born in 2005 when one of us was approached by a publisher to write a book explain-
ing computational complexity to physicists. The tale grew in the telling, until we decided—with some
hubris—to explain it to everyone, including computer scientists. A large part of our motivation was to
write the book we would have liked to read. We fell in love with the theory of computation because of the
beauty and power of its ideas, but many textbooks bury these ideas under a mountain of formalism. We
have not hesitated to present material that is technically difficult when it’s appropriate. But at every turn
we have tried to draw a clear distinction between deep ideas on the one hand and technical details on the
other—just as you would when talking to a friend.

Overall, we have endeavored to write our book with the accessibility of Martin Gardner, the playful-
ness of Douglas Hofstadter, and the lyricism of Vladimir Nabokov. We have almost certainly failed on all
three counts. Nevertheless, we hope that the reader will share with us some of the joy and passion we
feel for our adopted field. If we have reflected, however dimly, some of the radiance that drew us to this
subject, we are content.

We are grateful to many people for their feedback and guidance: Scott Aaronson, Heiko Bauke, Paul
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Lance Williams, Damien Woods, Jon Yard, Danny Yee, Lenka Zdeborová, Yaojia Zhu, and Katharina Zweig.

We are also grateful to Lee Altenberg, László Babai, Nick Baxter, Nirdosh Bhatnagar, Marcus Calhoun-
Lopez, Timothy Chow, Nathan Collins, Alex Conley, Will Courtney, Zheng Cui, Wim van Dam, Tom Dan-
gniam, Aaron Denney, Hang Dinh, David Doty, Taylor Dupuy, Bryan Eastin, Charles Efferson, Veit Elser,
Leigh Fanning, Steve Flammia, Matthew Fricke, Michel Goemans, Benjamin Gordon, Stephen Guerin,
Samuel Gutierrez, Russell Hanson, Jacob Hobbs, Neal Holtschulte, Peter Høyer, Luan Jun, Valentine Ka-
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PREFACE xvii

How to read this book

Outside a dog a book is a man’s best friend.
Inside a dog it’s too dark to read.

Groucho Marx

We recommend reading Chapters 1–7 in linear order, and then picking and choosing from later chapters
and sections as you like. Even the advanced chapters have sections that are accessible to nearly everyone.

For the most part, the only mathematics we assume is linear algebra and some occasional calculus.
We use Fourier analysis and complex numbers in several places, especially Chapter 11 for the PCP Theo-
rem and Chapter 15 on quantum computing. Mathematical techniques that we use throughout the book,
such as asymptotic notation and discrete probability, are discussed in the Appendix. We assume some
minimal familiarity with programming, such as the meaning of for and while loops.

Scattered throughout the text you will find Exercises. These are meant to be easy, and to help you
check whether you are following the discussion at that point. The Problems at the end of each chapter
delve more deeply into the subject, providing examples and fleshing out arguments that we sketch in the
main text. We have been generous with hints and guideposts in order to make even the more demanding
problems doable.

Every once in a while, you will see a quill symbol in the margin—yes, like that one there. This refers
to a note in the Notes section at the end of the chapter, where you can find details, historical discussion,
and references to the literature.

Since theoretical computer science is a rapidly evolving field, we invite the reader to check periodically
for updates and addenda at www.nature-of-computation.org. There we will include new problems and
exercises, and notes and references for new results.

A note to the instructor

We have found that Chapters 1–8, with selections from Chapters 9–11, form a good text for an introductory
graduate course on computational complexity. We and others have successfully used later chapters as
texts or supplementary material for more specialized courses, such as Chapters 12 and 13 for a course
on Markov chains, Chapter 14 for phase transitions, and Chapter 15 for quantum computing. Some old-
fashioned topics, like formal languages and automata, are missing from our book, and this is by design.

The Turing machine has a special place in the history of computation, and we discuss it along with
λ-calculus and partial recursive functions in Chapter 7. But we decided early on to write about computa-
tion as if the Church-Turing thesis were true—in other words, that we are free to use whatever model of
computation makes it easiest to convey the key ideas. Accordingly, we describe algorithms at a “software”
level, as programs written in the reader’s favorite programming language. This lets us draw on the reader’s
experience and intuition that programs need time and memory to run. Where necessary, such as in our
discussion of LOGSPACE in Chapter 8, we drill down into the hardware and discuss details such as our
model of memory access.

Please share with us your experiences with the book, as well as any mistakes or deficiencies you find.
We maintain errata at www.nature-of-computation.org. We can also provide a solution manual on re-
quest, which currently contains solutions for over half of the problems.

http://www.nature-of-computation.org
http://www.nature-of-computation.org
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Note on the 2018 printing

This printing corrects a large number of typos throughout the book, fixes a number of aesthetic typeset-
ting issues, and updates many of the Notes to take recent advances into account. With the help of our
dedicated readers, we have also improved the discussion and readability of the book and corrected some
mathematical errors, for instance in the proof that quadratic Diophantine equations are NP-complete
(Section 5.4.4 and Problems 5.24 and 5.25). There are a number of new problems, added at the end of the
Problems sections so as not to disturb the numbering of previous ones. In particular, readers interested
in pseudorandomness and derandomization will be pleased to learn that Nisan’s generator for fooling
space-bounded computation now appears, with many hints to guide the reader, as Problem 11.18.



Chapter 1

Prologue

Some citizens of Königsberg
Were walking on the strand
Beside the river Pregel
With its seven bridges spanned.

“O Euler, come and walk with us,”
Those burghers did beseech.
“We’ll roam the seven bridges o’er,
And pass but once by each.”

“It can’t be done,” thus Euler cried.
“Here comes the Q.E.D.
Your islands are but vertices
And four have odd degree.”

William T. Tutte

1.1 Crossing Bridges

We begin our journey into the nature of computation with a walk through 18th-century Königsberg (now
Kaliningrad). As you can see from Figure 1.1, the town of Königsberg straddles the river Pregel with seven
bridges, which connect the two banks of the river with two islands. A popular puzzle of the time asked if
one could walk through the city in a way that crosses each bridge exactly once. We do not know how hard
the burghers of Königsberg tried to solve this puzzle on their Sunday afternoon walks, but we do know
that they never succeeded.

It was Leonhard Euler who solved this puzzle in 1736. As a mathematician, Euler preferred to address
the problem by pure thought rather than by experiment. He recognized that the problem depends only
on the set of connections between the riverbanks and islands—a graph in modern terms. The graph

1.1corresponding to Königsberg has four vertices representing the two riverbanks and the two islands, and
seven edges for the bridges, as shown in Figure 1.2. Today, we say that a walk through a graph that crosses

1
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FIGURE 1.1: Königsberg in the 17th century.
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FIGURE 1.2: The seven bridges of Königsberg. Left, as drawn in Euler’s 1736 paper, and right, as repre-
sented as a graph in which each riverbank or island is a vertex and each bridge an edge.

each edge once is an Eulerian path, or an Eulerian cycle if it returns to its starting point. We say that a
graph is Eulerian if it possesses an Eulerian cycle.

Now that we have reduced the problem to a graph that we can doodle on a sheet of paper, it is easy
to explore various walks by trial and error. Euler realized, though, that trying all possible walks this way
would take some time. As he noted in his paper (translated from the Latin):

As far as the problem of the seven bridges of Königsberg is concerned, it can be solved by
making an exhaustive list of possible routes, and then finding whether or not any route sat-
isfies the conditions of the problem. Because of the number of possibilities, this method of
solutions would be too difficult and laborious, and in other problems with more bridges, it
would be impossible.

Let’s be more quantitative about this. Assume for simplicity that each time we arrive on an island or
a riverbank there are two different ways we could leave. Then if there are n bridges to cross, a rough
estimate for the number of possible walks would be 2n . In the Königsberg puzzle we have n = 7, and
while 27 or 128 routes would take quite a while to generate and check by hand, a modern computer could
do so in the blink of an eye.

But Euler’s remark is not just about the bridges of Königsberg. It is about the entire family of problems
of this kind, and how their difficulty grows, or scales, as a function of the number of bridges. If we consider
the bridges of Venice instead, where n = 420—or Pittsburgh, where n = 446—even the fastest computer
imaginable would take longer than the age of the universe to do an exhaustive search. Thus, if searching
through the space of all possible solutions were the only way to solve these problems, even moderately
large cities would be beyond our computational powers.

Euler had a clever insight which allows us to avoid this search completely. He noticed that in order
to cross each edge once, any time we arrive at a vertex along one edge, we have to depart on a different
edge. Thus the edges of each vertex must come in pairs, with a “departure” edge for each “arrival” edge.
It follows that the degree of each vertex—that is, the number of edges that touch it—must be even. This
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FIGURE 1.3: A classic children’s puzzle. Can you draw these graphs without lifting the pen from the paper,
or drawing the same edge twice? Equivalently, do they have Eulerian paths?

holds for all vertices except the vertices where the path starts and ends, which must have odd degree
unless they coincide and the path is a cycle.

This argument shows that a necessary condition for a graph to be Eulerian is for all its vertices to have
even degree. Euler claimed that this condition is also sufficient, and stated the following theorem:

Theorem 1.1 A connected graph contains an Eulerian cycle if and only if every vertex has even degree. If
exactly two vertices have odd degree, it contains an Eulerian path but not an Eulerian cycle.

This theorem allows us to solve the bridges of Königsberg very quickly. As the poem at the head of this
chapter points out, all four vertices have odd degree, so there is no Eulerian path through the old town of
Königsberg.

Beyond solving this one puzzle, Euler’s insight makes an enormous difference in how the complex-
ity of this problem scales. An exhaustive search in a city with n bridges takes an amount of time that
grows exponentially with n . But we can check that every vertex has even degree in an amount of time pro-
portional to the number of vertices, assuming that we are given the map of the city in some convenient
format. Thus Euler’s method lets us solve this problem in linear time, rather than the exponential time of
a brute-force search. Now the bridges of Venice, and even larger cities, are easily within our reach.

Exercise 1.1 Which of the graphs in Figure 1.3 have Eulerian paths?

In addition to the tremendous speedup from exponential to linear time, Euler’s insight transforms this
problem in another way. What does it take to prove the existence, or nonexistence, of an Eulerian path?
If one exists, we can easily prove this fact simply by exhibiting it. But if no path exists, how can we prove
that? How can we convince the people of Königsberg that their efforts are futile?

Imagine what would have happened if Euler had used the brute-force approach, presenting the bur-
ghers with a long list of all possible paths and pointing out that none of them work. Angry at Euler for
spoiling their favorite Sunday afternoon pastime, they would have been understandably skeptical. Many
would have refused to go through the tedious process of checking the entire list, and would have held out
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FIGURE 1.4: Hamilton’s Icosian game.

the hope that Euler had missed some possibility. Moreover, such an ungainly proof is rather unsatisfying,
even if it is logically airtight. It offers no sense of why no path exists.

1.2 In contrast, even the most determined skeptic can follow the argument of Euler’s theorem. This allows
Euler to present a proof that is simple, compact, and irresistible: he simply needs to exhibit three vertices
with odd degree. Thus, by showing that the existence of a path is equivalent to a much simpler property,
Euler radically changed the logical structure of the problem, and the type of proof or disproof it requires.

1.2 Intractable Itineraries

The next step in our journey brings us to 19th-century Ireland and the Astronomer Royal, Sir William
Rowan Hamilton, known to every physicist through his contributions to classical mechanics. In 1859,
Hamilton put a new puzzle on the market, called the “Icosian game,” shown in Figure 1.4. The game was
a commercial failure, but it led to one of the iconic problems in computer science today.

The object of the game is to walk around the edges of a dodecahedron while visiting each vertex once
and only once. Actually, it was a two-player game in which one player chooses the first five vertices, and
the other tries to complete the path—but for now, let’s just think about the solitaire version. While such
walks had been considered in other contexts before, we call them Hamiltonian paths or cycles today, and

1.3
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FIGURE 1.5: Left, the dodecahedron; right, a flattened version of the graph formed by its edges. One
Hamiltonian cycle, which visits each vertex once and returns to its starting point, is shown in bold.

we say that a graph is Hamiltonian if it possesses a Hamiltonian cycle. One such cycle for the dodecahe-
dron is shown in Figure 1.5.

At first Hamilton’s puzzle seems very similar to the bridges of Königsberg. Eulerian paths cross each
edge once, and Hamiltonian paths visit each vertex once. Surely these problems are not very different?
However, while Euler’s theorem allows us to avoid a laborious search for Eulerian paths or cycles, we have
no such insight into Hamiltonian ones. As far as we know, there is no simple property—analogous to
having vertices of even degree—to which Hamiltonianness is equivalent.

As a consequence, we know of no way of avoiding, essentially, an exhaustive search for Hamiltonian
paths. We can visualize this search as a tree as shown in Figure 1.6. Each node of the tree corresponds to
a partial path, and branches into child nodes corresponding to the various ways we can extend the path.
In general, the number of nodes in this search tree grows exponentially with the number of vertices of
the underlying graph, so traversing the entire tree—either finding a leaf with a complete path, or learning
that every possible path gets stuck—takes exponential time.

To phrase this computationally, we believe that there is no program, or algorithm, that tells whether
a graph with n vertices is Hamiltonian or not in an amount of time proportional to n , or n 2, or any poly-
nomial function of n . We believe, instead, that the best possible algorithm takes exponential time, 2c n for
some constant c > 0. Note that this is not a belief about how fast we can make our computers. Rather, it
is a belief that finding Hamiltonian paths is fundamentally harder than finding Eulerian ones. It says that
these two problems differ in a deep and qualitative way.

While finding a Hamiltonian path seems to be hard, checking whether a given path is Hamiltonian
is easy. Simply follow the path vertex by vertex, and check that it visits each vertex once. So if a compu-
tationally powerful friend claims that a graph has a Hamiltonian path, you can challenge him or her to
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FIGURE 1.6: The first two levels of the search tree for a Hamiltonian path.
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prove that fact by showing it to you, and you can then quickly confirm or refute their claim. Problems like
these are rather like finding a needle in a haystack: if I show you a needle you can confirm that it is one,
but it’s hard to find a needle—at least without a magnetic insight like Euler’s.

On the other hand, if I claim that a haystack has no needles in it, the only way to prove this is to
sift carefully through all the hay. Similarly, we know of no way to prove that no Hamiltonian cycle exists
without a massive search. Unlike Eulerian cycles, where there is a simple proof in either case, the logical
structure of Hamiltonianness seems to be fundamentally asymmetric—proving the nonexistence of a
Hamiltonian cycle seems to be much harder than proving its existence.

Of course one might think that there is a more efficient method for determining whether a graph is
Hamiltonian, and that we have simply not been clever enough to find it. But as we will see in this book,
there are very good reasons to believe that no such method exists. Even more amazingly, if we are wrong
about this—if Hamilton’s problem can be solved in time that only grows polynomially—then so can thou-
sands of other problems, all of which are currently believed to be exponentially hard. These problems
range from such classic search and optimization problems as the Traveling Salesman problem, to the
problem of finding short proofs of the grand unsolved questions in mathematics. In a very real sense,
the hardness of Hamilton’s problem is related to our deepest beliefs about mathematical and scientific
creativity. Actually proving that it is hard remains one of the holy grails of theoretical computer science.

1.3 Playing Chess With God

It’s a sort of Chess that has nothing to do with Chess, a Chess that we could never
have imagined without computers. The Stiller moves are awesome, almost scary,
because you know they are the truth, God’s Algorithm—it’s like being revealed
the Meaning of Life, but you don’t understand one word.

Tim Krabbé

As we saw in the previous section, the problem of telling whether a Hamiltonian cycle exists has the
property that finding solutions is hard—or so we believe—but checking them is easy. Another example of
this phenomenon is factoring integers. As far as we know, there is no efficient way to factor a large integer
N into its divisors—at least without a quantum computer—and we base the modern cryptosystems used
by intelligence agents and Internet merchants on this belief. On the other hand, given two numbers p

1.4 and q it is easy to multiply them, and check whether pq =N .
This fact was illustrated beautifully at a meeting of the American Mathematical Society in 1903. The

mathematician Frank Nelson Cole gave a “lecture without words,” silently performing the multiplication

193 707 721×761 838 257 287= 147 573 952 588 676 412 927

on the blackboard. The number on the right-hand side is 267 − 1, which the 17th-century French math-
ematician Marin Mersenne conjectured is prime. In 1876, Édouard Lucas managed to prove that it is
composite, but gave no indication of what numbers would divide it. The audience, knowing full well
how hard it is to factor 21-digit numbers, greeted Cole’s presentation with a standing ovation. Cole later
admitted that it had taken him “three years of Sundays” to find the factors.

On the other hand, there are problems for which even checking a solution is extremely hard. Consider
the Chess problems shown in Figure 1.7. Each claims that White has a winning strategy, which will lead
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Sam Loyd (1903)

80Z0ZrZbZ
7ZpZ0Z0A0
6pM0ZpS0Z
5SBZ0j0Z0
40O0ZNZ0o
3Z0o0Z0a0
2nZ0O0o0s
1Z0Z0ZKZn

a b c d e f g h

Mate in 3

Lewis Stiller (1995)

80Z0Z0ZNZ
7Z0Z0ZKS0
60ZnZ0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20ZnZ0Z0Z
1ZkZ0Z0Z0

a b c d e f g h

Mate in 262

FIGURE 1.7: Chess problems are hard to solve—and hard to check.

inexorably to checkmate after n moves. On the left, n = 3, and seeing how to corner Black—after a very
surprising first move—is the work of a pleasant afternoon. On the right, we have a somewhat larger value
of n : we claim that White can force Black into checkmate after 262 moves.

But how, dear reader, can we prove this claim to you? Unlike the problems of the previous two sections,
we are no longer playing solitaire: we have an opponent who will do their best to win. This means that
it’s not enough to prove the existence of a simple object like a Hamiltonian path. We have to show that
there exists a move for White, such that no matter how Black replies, there exists a move for White, such
that no matter how Black replies, and so on. . . until, at most 262 moves later, every possible game ends
in checkmate for Black. As we go forward in time, our opponent’s moves cause the game to branch into
a exponential tree of possibilities, and we have to show that a checkmate awaits at every leaf. Thus a
strategy is a much larger object, with a much deeper logical structure, than a path.

There is indeed a proof, consisting of a massive database of endgames generated by a computer
search, that White can mate Black in 262 moves in the position of Figure 1.7. But verifying this proof
far exceeds the capabilities of human beings, since it requires us to check every possible line of play. The
best we can do is look at the program that performed the search, and convince ourselves that it will run
correctly. As of 2007, an even larger search has confirmed the long-standing opinion of human players
that Checkers is a draw under perfect play. For humans with our finite abilities, however, Chess and
Checkers will always keep their secrets.

1.5
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1.4 What Lies Ahead

As we have seen with our three examples, different problems require fundamentally different kinds of
search, and different types of proof, to find or verify their solutions. Understanding how to solve prob-
lems as efficiently as possible—and understanding how, and why, some problems are extremely hard—is
the subject of our book. In the chapters ahead, we will ask, and sometimes answer, questions like the
following:

• Some problems have insights like Euler’s, and others seem to require an exhaustive search. What
makes the difference? What kinds of strategies can we use to skip or simplify this search, and for
which problems do they work?

• A host of problems—finding Hamiltonian paths, coloring graphs, satisfying formulas, and balanc-
ing numbers—are all equally hard. If we could solve any of them efficiently, we could solve all of
them. What do these problems have in common? How can we transform one of them into the
other?

• If we could find Hamiltonian paths efficiently, we could also easily find short proofs—if they exist—
of the great unsolved problems in mathematics, such as the Riemann Hypothesis. We believe that
doing mathematics is harder than this, and that it requires all our creativity and intuition. But does
it really? Can we prove that finding proofs is hard?

• Can one programming language, or kind of computer, solve problems that another can’t? Or are all
sufficiently powerful computers equivalent? Are even simple systems, made of counters, tiles, and
billiard balls, capable of universal computation?

• Are there problems that no computer can solve, no matter how much time we give them? Are there
mathematical truths that no axiomatic system can prove?

• If exact solutions are hard to find, can we find approximate ones? Are there problems where even
approximate solutions are hard to find? Are there others that are hard to solve perfectly, but where
we can find solutions that are as close as we like to the best possible one?

• What happens if we focus on the amount of memory a computation needs, rather than the time it
takes? How much memory do we need to find our way through a maze, or find a winning strategy
in a two-player game?

• If we commit ourselves to one problem-solving strategy, a clever adversary can come up with the
hardest possible example. Can we defeat the adversary by acting unpredictably, and flipping coins
to decide what to do?

• Suppose that Merlin has computational power beyond our wildest dreams, but that Arthur is a
mere mortal. If Merlin knows that White has a winning strategy in Chess, can he convince Arthur
of that fact, without playing a single game? How much can Arthur learn by asking Merlin random
questions? What happens if Merlin tries to deceive Arthur, or if Arthur tries to “cheat” and learn
more than he was supposed to?
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• If flipping random coins helps us solve problems, do we need truly random coins? Are there strong
pseudorandom generators—fast algorithms that produce strings of coin flips deterministically, but
with no pattern that other fast algorithms can discover?

• Long proofs can have small mistakes hidden in them. But are there “holographic” proofs, which we
can confirm are almost certainly correct by checking them in just a few places?

• Finding a solution to a problem is one thing. What happens if we want to generate a random so-
lution, or count the number of solutions? If we take a random walk in the space of all possible
solutions, how long will it take to reach an equilibrium where all solutions are equally likely?

• How rare are the truly hard examples of hard problems? If we make up random examples of a hard
problem, are they hard or easy? When we add more and more constraints to a problem in a random
way, do they make a sudden jump from solvable to unsolvable?

• Finally, how will quantum computers change the landscape of complexity? What problems can
they solve faster than classical computers?

Problems

A great discovery solves a great problem, but there is a grain of discovery in the
solution of any problem. Your problem may be modest, but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

George Pólya, How To Solve It

1.1 Handshakes. Prove that in any finite graph, the number of vertices with odd degree is even.

1.2 Pigeons and holes. Properly speaking, we should call our representation of Königsberg a multigraph, since some
pairs of vertices are connected to each other by more than one edge. A simple graph is one in which there are no
multiple edges, and no self-loops.

Show that in any finite simple graph with more than one vertex, there is at least one pair of vertices that have the
same degree. Hint: if n pigeons try to nest in n − 1 holes, at least one hole will contain more than one pigeon. This
simple but important observation is called the pigeonhole principle.

1.3 Proving Euler’s claim. Euler didn’t actually prove that having vertices with even degree is sufficient for a con-
nected graph to be Eulerian—he simply stated that it is obvious. This lack of rigor was common among 18th century
mathematicians. The first real proof was given by Carl Hierholzer more than 100 years later. To reconstruct it, first
show that if every vertex has even degree, we can cover the graph with a set of cycles such that every edge appears
exactly once. Then consider combining cycles with moves like those in Figure 1.8.

1.4 Finding an Eulerian path. Let’s turn the proof of the previous problem into a simple algorithm that constructs
an Eulerian path. If removing an edge will cause a connected graph to fall apart into two pieces, we call that edge
a bridge. Now consider the following simple rule, known as Fleury’s algorithm: at each step, consider the graph G ′

formed by the edges you have not yet crossed, and only cross a bridge of G ′ if you have to. Show that if a connected
graph has two vertices of odd degree and we start at one of them, this algorithm will produce an Eulerian path, and
that if all vertices have even degree, it will produce an Eulerian cycle no matter where we start.
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⇒

FIGURE 1.8: Combining cycles at a crossing.

FIGURE 1.9: Two graphs that have Hamiltonian paths, but not Hamiltonian cycles.

1.5 One-way bridges. A directed graph is one where each edge has an arrow on it. Thus there can be an edge from
u to v without one from v to u , and a given vertex can have both incoming and outgoing edges. An Eulerian path
would be one that crosses each edge once, moving in the direction allowed by the arrow. Generalize Euler’s theorem
by stating under what circumstances a directed graph is Eulerian.

1.6 Plato and Hamilton. Inspired by Hamilton’s choice of the dodecahedron, consider the other four Platonic solids,
and the graphs consisting of their corners and edges: the tetrahedron, cube, octahedron, and icosahedron. Which
ones are Hamiltonian? Which are Eulerian?

1.7 A rook’s tour. Let G be an m×n grid—that is, a graph with m n vertices arranged in an m×n rectangle, with each
vertex connected to its nearest neighbors. Assume that m , n > 1. Prove that G is Hamiltonian if either m or n is even,
but not if both m and n are odd.

1.8 Symmetry and parity. Show that each graph in Figure 1.9 has a Hamiltonian path, but no Hamiltonian cycle. Hint:
use the colors for the one on the left. For the one on the right, called the Petersen graph, exploit its symmetry.

1.9 The Chinese postman. The Chinese postman problem, named in honor of the Chinese mathematician Mei-Ko
Kwan, asks for the shortest cyclic tour of a graph that crosses every edge at least once. If the graph is not Eulerian,
the postman has to repeat some edges. Show that the shortest postman’s tour crosses each edge at most twice, and
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that this worst case only occurs if the graph is a tree. Show, moreover, that the repeated edges form a set of paths
that connect pairs of vertices of odd degree, creating a matching where each odd-degree vertex has another one as a
partner. It turns out (see Note 5.6) that there is a polynomial-time algorithm that finds the matching that minimizes
the total length of these paths, and hence the shortest postman’s tour.

1.10 Existence, search, and the oracle. We can consider two rather different problems regarding Hamiltonian cycles.
One is the decision problem, the yes-or-no question of whether such a cycle exists. The other is the search problem or
function problem, in which we want to actually find the cycle.

Suppose that there is an oracle in a nearby cave. She will tell us, for the price of one drachma per question,
whether a graph has a Hamiltonian cycle. If it does, show that by asking her a series of questions, perhaps involving
modified versions of the original graph, we can find the Hamiltonian cycle after spending a number of drachmas that
grows polynomially as a function of the number of vertices. Thus if we can solve the decision problem in polynomial
time, we can solve the search problem as well.

Notes

1.1 Graph theory. Euler’s paper on the Königsberg bridges [272] can be regarded as the birth of graph theory, the
mathematics of connectivity. The translation we use here appears in [111], which contains many of the key early
papers in this field. Today graph theory is a very lively branch of discrete mathematics with many applications in
chemistry, engineering, physics, and computer science.

We will introduce concepts from graph theory “on the fly,” as we need them. For an intuitive introduction, we
recommend Trudeau’s little treatise [796]. For a more standard textbooks, see Bollobás [119] or the Handbook on

Graph Theory [354]. Hierholzer’s proof, which we ask you to reconstruct in Problem 1.3, appeared in [400]. The
Chinese Postman of Problem 1.9 was studied by Mei-Ko Kwan in 1962 [512].

The river Pregel still crosses the city of Kaliningrad, but the number of bridges and their topology changed con-
siderably during World War II. See also [614].

1.2 Persuasive proofs. According to the great Hungarian mathematician Paul Erdős, God has a book that contains
short and insightful proofs of every theorem, and sometimes humans can catch a glimpse of a few of its pages. One
of the highest forms of praise that one mathematician can give another is to say “Ah, you have found the proof from
the book.” [26].

In a sense, this is the difference between Eulerian and Hamiltonian paths. If a large graph G lacks an Eulerian
path, Euler’s argument gives a “book proof” of that fact. In contrast, as far as we know, the only way to prove that G

lacks a Hamiltonian path is an ugly exhaustive search.
This dichotomy exists in other areas of mathematics as well. A famous example is Thomas Hales’ proof of the

Kepler conjecture [362], a 400-year-old claim about the densest packings of spheres in three-dimensional space. Af-
ter four years of work, a group of twelve referees concluded that they were “99% certain” of the correctness of the
proof. Hales’ proof relies on exhaustive case checking by a computer, a technique first used in the proof of the Four
Color Theorem. Such a proof may confirm that a fact is true, but it offers very little illumination about why it is true.
See [220] for a thought-provoking discussion of the complexity of mathematical proofs, and how computer-assisted
proofs will change the nature of mathematics.

1.3 A knight’s tour. One instance of the Hamiltonian path problem is far older than the Icosian game. Around
the year 840 A.D., a Chess player named al-Adli ar-Rumi constructed a knight’s tour of the chessboard, shown in
Figure 1.10. We can think of this as a Hamiltonian path on the graph whose vertices are squares, and where two
vertices are adjacent if a knight could move from one to the other. Another early devotee of knight’s tours was the
Kashmiri poet Rudrata (circa 900 A.D.). In their lovely book Algorithms [215], Dasgupta, Papadimitriou and Vazirani
suggest that Hamiltonian paths be called Rudrata paths in his honor.
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FIGURE 1.10: On the left, the graph corresponding to the squares of the chessboard with knight’s moves between them.
On the right, Al-Adli’s Hamiltonian tour, or knight’s tour, of this graph. Note that with one more move it becomes a
Hamiltonian cycle.

1.4 Cryptic factors. As we will see in Chapter 15, it is not quite right to say that cryptosystems like RSA public-key
encryption are based on the hardness of factoring: they are based on other number-theoretic problems, which might
be easier than factoring. However, if we can factor large integers efficiently, we can solve these problems too.

1.5 Endgame. The endgame tablebase is a computerized database of all endgame positions in Chess with a given
number of pieces, that reveals the value (win, loss or draw) of each position and and how many moves it will take
to achieve that result with perfect play [789]. The 262-move problem in Figure 1.7 was found by Stiller [774], who
extended the tablebase to six-piece endgames. Of all positions with the given material that are a win, it has the
longest “distance to mate.”

The proof that Checkers is a draw [729] uses a similar endgame database that contains the value of all Checkers
positions with ten pieces or fewer. There are 3.9×1013 of these positions, compressed into 237 gigabytes of diskspace.
The proof traces all relevant lines of play from the starting position to one of the positions in this database. This proof
constitutes what game theorists call a weak solution of a game. For a strong solution, we would have to compute the
optimal move for every legal position on the board, not just the opening position. We will discuss the enormous
difficulty of this problem in Chapter 8.

Can we hope for a weak solution of Chess? The six-piece endgame database for Chess is more than five times
bigger than the ten-piece database for Checkers. This is no surprise since Checkers uses only half of the squares of
the 8× 8 board and has only two types of pieces (man and king). In addition, the rules of Checkers, in which pieces
can only move forwards and captures are forced, keep the tree from branching too quickly. For Chess, even a weak
solution seems out of reach for the foreseeable future.



Chapter 2

The Basics

An algorithm is a finite answer to an infinite
number of questions.

Stephen Kleene

As we saw in the Prologue, there seems to be some mysterious difference between Eulerian and Hamilton-
ian paths that makes one of them much harder to find than the other. To put this differently, Hamiltoni-
anness seems to be a qualitatively more subtle property than Eulerianness. Why is one of these problems
easy, while the other is like searching for a needle in a haystack?

If we want to understand the nature of these problems, we need to go beyond particular puzzles like
the bridges of Königsberg or the edges of the dodecahedron. We need to ask how hard these problems are
in general—for cities with any number of bridges, or graphs of any size—and ask how their complexity
grows with the size of the city or the graph. To a computer scientist, the “complexity” of a problem is
characterized by the amount of computational resources required to solve it, such as how much time or
memory we need, and how these requirements grow as the problem gets larger.

In order to measure the complexity of a problem, we will think about the best possible algorithm, or
computer program, that solves it. However, as we will see, computational complexity theory is not about
how to write better programs, any more than physics is about building better spaceships. It is about
understanding the underlying structure of different problems, and asking fundamental questions about
them—for instance, whether they can be broken into smaller pieces that can be solved independently of
each other.

2.1 Problems and Solutions

Let’s start this chapter by saying precisely what we mean by a “problem,” and what constitutes a “so-
lution.” If you have never thought about computational complexity before, our definitions may seem
slightly counterintuitive. But as we will see, they give us a framework in which we can clearly state, and
begin to answer, the questions posed in the Prologue.

15
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2.1.1 What’s the Problem?

Any particular instance of a problem, such as the Königsberg bridges, is just a finite puzzle. Once we have
solved it, there is no more computation to do. On the other hand, Euler’s generalization of this puzzle,

EULERIAN PATH

Input: A graph G

Question: Does there exist an Eulerian path on G ?

is a worthy object of study in computational complexity theory—and we honor it as such by writing its
name in elegant small capitals. We can think of this as an infinite family of problems, one for each graph
G . Alternately, we can think of it as a function that takes a graph as its input, and returns the output “yes”
or “no.”

To drive this point home, let’s consider a somewhat comical example. How computationally complex
is Chess? Well, if you mean the standard game played on an 8× 8 board, hardly at all. There are only a
finite number of possible positions, so we can write a book describing the best possible move in every
situation. This book will be somewhat ungainly—it has about 1050 pages, making it difficult to fit on the

2.1 shelf—but once it is written, there is nothing left to do.
Now that we have disposed of Chess, let’s consider a more interesting problem:

GENERALIZED CHESS

Input: A position on an n ×n board, with an arbitrary number of pieces

Question: Does White have a winning strategy?

Now you’re talking! By generalizing to boards of any size, and generalizing the rules appropriately, we
have made it impossible for any finite book, no matter how large, to contain a complete solution. To solve
this problem, we have to be able to solve Chess problems, not just look things up in books. Moreover,
generalizing the problem in this way allows us to consider how quickly the game tree grows, and how
much time it takes to explore it, as a function of the board size n .

Another important fact to note is that, when we define a problem, we need to be precise about what
input we are given, and what question we are being asked. From this point of view, cities, graphs, games,
and so on are neither complex nor simple—specific questions about them are.

These questions are often closely related. For instance, yes-or-no questions like whether or not a
Hamiltonian cycle exists are called decision problems, while we call the problem of actually finding such a
cycle a search problem or function problem. Problem 1.10 showed that if we can solve the decision version
of HAMILTONIAN CYCLE, then we can also solve the search version. But there are also cases where it is easy
to show that something exists, but hard to actually find it.

2.1.2 Solutions and Algorithms

Now that we’ve defined what we mean by a problem, what do we mean by a solution? Since there are an
infinite number of possible graphs G , a solution to EULERIAN PATH can’t consist of a finite list of answers
we can just look up. We need a general method, or algorithm, which takes a graph as input and returns

2.2 the correct answer as output.
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While the notion of an algorithm can be defined precisely, for the time being we will settle for an
intuitive definition: namely, a series of elementary computation steps which, if carried out, will produce
the desired output. For all intents and purposes, you can think of an algorithm as a computer program
written in your favorite programming language: C++, JAVA, HASKELL, or even (ugh) FORTRAN. However,
in order to talk about algorithms at a high level, we will express them in “pseudocode.” This is a sort of
informal programming language, which makes the flow of steps clear without worrying too much about
the syntax.

As our first example, let us consider one of the oldest algorithms known. Given two integers a and b ,
we would like to know their greatest common divisor gcd(a ,b ). In particular, we would like to know if a
and b are mutually prime, meaning that gcd(a ,b ) = 1.

We can solve this problem using Euclid’s algorithm, which appears in his Elements and dates at least
to 300 B.C. It relies on the following fact: d is a common divisor of a and b if and only if it is a common
divisor of b and a mod b . Therefore,

gcd(a ,b ) = gcd(b , a mod b ) . (2.1)

This gives us an algorithm in which we repeatedly replace the pair (a ,b ) with the pair (b , a mod b ). Since
the numbers get smaller each time we do this, after a finite number of steps the second number of the
pair will be zero. At that point, the gcd is equal to the current value of the first number, since 0 is divisible
by anything.

2.3We can express this as a recursive algorithm. When called upon to solve the problem gcd(a ,b ), it calls
itself to solve the simpler subproblem gcd(b , a mod b ), until it reaches the base case b = 0 which is trivial
to solve. Note that if a <b in the original input, the first application of this function will switch their order
and call gcd(b , a ). Here is its pseudocode:

Euclid (a ,b )
begin

if b = 0 then return a ;
return Euclid (b , a mod b );

end

Calling this algorithm on the pair (120, 33), for instance, gives

Euclid (120, 33)

=Euclid (33, 21)

=Euclid (21, 12)

=Euclid (12, 9)

=Euclid (9, 3)

=Euclid (3, 0)

= 3 .

Is this a good algorithm? Is it fast or slow? Before we discuss this question, we bring an important charac-
ter to the stage.
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2.1.3 Meet the Adversary

The Creator determines and conceals the aim of the game, and it is never clear
whether the purpose of the Adversary is to defeat or assist him in his
unfathomable project. . . But he is concerned, it would seem, in preventing the
development of any reasoned scheme in the game.

H. G. Wells, The Undying Fire

Computer scientists live in a cruel world, in which a malicious adversary (see Figure 2.1) constructs in-
stances that are as hard as possible, for whatever algorithm we are trying to use. You may have a lovely
algorithm that works well in many cases, but beware! If there is any instance that causes it to fail, or to
run for a very long time, you can rely on the adversary to find it.

The adversary is there to keep us honest, and force us to make ironclad promises about our algorithms’
performance. If we want to promise, for instance, that an algorithm always succeeds within a certain
amount of time, this promise holds in every case if and only if it holds in the worst case—no matter what
instance the adversary throws at us.

This is not the only way to think about a problem’s hardness. As we will see in Chapter 14, for some
problems we can ask how well algorithms work on average, when the instance is chosen randomly rather
than by an adversary. But for the most part, computational complexity theorists think of problems as
represented by their worst cases. A problem is hard if there exist hard instances—it is easy only if all its
instances are easy.

2.4 So, is finding the gcd more like EULERIAN PATH or HAMILTONIAN PATH? Euclid’s algorithm stops after a
finite number of steps, but how long does it take? We answer this question in the next section. But first,
we describe how to ask it in the most meaningful possible way.

2.2 Time, Space, and Scaling

It is convenient to have a measure of the amount of work involved in a
computing process, even though it be a very crude one. . . We might, for instance,
count the number of additions, subtractions, multiplications, divisions,
recordings of numbers, and extractions of figures from tables.

Alan M. Turing, 1947

Time and space—the running time of an algorithm and the amount of memory it uses—are two basic
computational resources. Others include the number of times we evaluate a complicated function, the
number of bits that two people need to send each other, or the number of coins we need to flip. For each
of these resources, we can ask how the amount we need scales with the size of our problem.

2.2.1 From Physics to Computer Science

The notion of scaling is becoming increasingly important in many sciences. Let’s look at a classic example
from physics. In 1619, the German astronomer and mathematician Johannes Kepler formulated his “har-
monic law” of planetary motion, known today as Kepler’s third law. Each planet has a “year” or orbital
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FIGURE 2.1: The adversary bringing us a really stinky instance.
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FIGURE 2.2: Scaling in physics: Kepler’s harmonic law.

period T , and a distance R from the sun, defined as its semimajor axis since orbits are ellipses. Based on
extensive observations, Kepler found that the ratio between T 2 and R3 is the same for all planets in the
solar system. We can write this as

T =C ·R3/2 , (2.2)

for some constant C . If we plot T vs. R on a log–log plot as in Figure 2.2, this becomes

log T =C ′+
3
2

log R ,

where C ′ = logC is another constant. Thus all the planets—including Pluto, for tradition’s sake—fall
nicely on a straight line with slope 3/2.

What happens if we plot T vs. R for other systems, such as the four Galilean moons of Jupiter? The
constant C in (2.2) depends on the central body’s mass, so it varies from system to system. But the ex-
ponent 3/2, and therefore the slope on the log–log plot, remains the same. The scaling relationship (2.2)
holds for any planetary system in the universe. It represents a fundamental property of celestial dynam-
ics, which turns out to be Isaac Newton’s celebrated law of gravitation. The constants don’t matter—what
matters is the way that T scales as a function of R .

In the same way, when we ask how the running time of an algorithm scales with the problem size n ,
we are not interested in whether your computer is twice as fast as mine. This changes the constant in
front of the running time, but what we are interested in is how your running time, or mine, changes when
n changes.
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What do we mean by the “size” n of a problem? For problems like EULERIAN PATH, we can think of n
as the number of vertices or edges in the input graph—for instance, the number of bridges or riverbanks
in the city. For problems that involve integers, such as computing the greatest common divisor, n is the
number of bits or digits it takes to express these integers. In general, the size of a problem instance is the
amount of information I need to give you—say, the length of the email I would need to send—in order to
describe it to you.

2.2.2 Euclidean Scaling

Let’s look at a concrete example. How does the running time of Euclid’s algorithm scale with n? Here n is
the total number of digits of the inputs a and b . Ignoring the factor of 2, let’s assume that both a and b
are n-digit numbers.

The time it takes to calculate a mod b depends on what method we use to divide a by b . Let’s avoid
this detail for now, and simply ask how many of these divisions we need, i.e., how many times Euclid’s
algorithm will call itself recursively before reaching the base case b = 0 and returning the result. The
following exercise shows that we need at most a linear number of divisions.

Exercise 2.1 Show that if a ≥ b , then a mod b < a/2. Conclude from this that the number of divisions that
Euclid’s algorithm performs is at most 2 log2 a .

If a has n digits, then 2 log2 a ≤C n for some constant C . Measuring n in bits instead of digits, or defining
n as the total number of digits of a and b , just changes C to a different constant. But the number of
divisions is always linear in n .

Following Kepler, we can check this linear scaling by making observations. In Figure 2.3 we plot the
worst-case and average number of divisions as a function of n , and the relationship is clearly linear. If you
are mathematically inclined, you may enjoy Problems 2.6, 2.7, and 2.8, where we calculate the slopes of
these lines analytically. In particular, it turns out that the worst case occurs when a and b are successive
Fibonacci numbers, which as Problem 2.4 discusses are well-known in the field of rabbit breeding.

Now that we know that the number of divisions in Euclid’s algorithm is linear in n , what is its total
running time? In a single step, a computer can perform arithmetic operations on integers of some fixed
size, such as 64 bits. But if n is larger than this, the time it takes to divide one n-digit number by another
grows with n . As Problem 2.11 shows, if we use the classic technique of long division, the total running
time of Euclid’s algorithm scales as n 2, growing polynomially as a function of n .

Let’s dwell for a moment on the fact that the size n of a problem involving an integer a is the number
of bits or digits of a , which is roughly log a , rather than a itself. For instance, as the following exercise
shows, the problem FACTORING would be easy if the size of the input were the number itself:

Exercise 2.2 Write down an algorithm that finds the prime factorization of an integer a , whose running
time is polynomial as a function of a (as opposed to the number of digits in a ).

However, we believe that FACTORING cannot be solved in an amount of time that is polynomial as a func-
tion of n = log a , unless you have a quantum computer.
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2.2.3 Asymptotics

In order to speak clearly about scaling, we will use asymptotic notation. This notation lets us focus on the
qualitative growth of a function of n , and ignores the constant in front of it.

For instance, if the running time f (n ) of an algorithm grows quadratically, we say that f (n ) = Θ (n 2).
If it grows at most quadratically, but it might grow more slowly, we say that f (n ) =O(n 2). If it definitely
grows less than quadratically, such as n c for some c < 2, we say that f (n ) = o(n 2). Buying a faster com-
puter reduces the constant hidden in Θ or O, but it doesn’t change how f (n ) grows when n increases.

We define each of these symbols in terms of the limit as n → ∞ of the ratio f (n )/g (n ) where g (n )
is whatever function we are comparing f (n ) with. Thus f (n ) = o(n 2) means that limn→∞ f (n )/n 2 = 0,
while f (n ) = Θ (n 2)means that f (n )/n 2 tends neither to zero nor to infinity—typically, that it converges
to some constant C . We summarize all this in Table 2.1. In Appendix A.1 you can find formal definitions
and exercises involving these symbols.

Exercise 2.3 When we say that f (n ) =O(logn ), why don’t we have to specify the base of the logarithm?

These definitions focus on the behavior of f (n ) in the limit n →∞. This is for good reason. We don’t
really care how hard HAMILTONIAN PATH, say, is for small graphs. What matters to us is whether there is an
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symbol C = lim
n→∞

f (n )

g (n )
roughly speaking. . .

f (n ) =O(g (n )) C <∞ “ f ≤ g ”
f (n ) =Ω (g (n )) C > 0 “ f ≥ g ”
f (n ) =Θ (g (n )) 0<C <∞ “ f = g ”
f (n ) =o(g (n )) C = 0 “ f < g ”
f (n ) =ω(g (n )) C =∞ “ f > g ”

TABLE 2.1: A summary of asymptotic notation.

efficient algorithm that works for all n , and the difference between such an algorithm and an exhaustive
search shows up when n is large. Even Kepler’s law, which we can write as T = Θ (R3/2), only holds when
R is large enough, since at small distances there are corrections due to the curvature of spacetime.

Armed with this notation, we can say that Euclid’s algorithm performs Θ(n ) divisions, and that its
total running time is O(n 2). Thus we can calculate the greatest common divisor of two n-digit numbers
in polynomial time, i.e., in time O(n c ) for a constant c . But what if Euclid’s algorithm isn’t the fastest
method? What can we say about a problem’s intrinsic complexity, as opposed to the running time of a
particular algorithm? The next section will address this question with a problem, and an algorithm, that
we all learned in grade school.

2.3 Intrinsic Complexity

For whichever resource we are interested in bounding—time, memory, and so on—we define the intrinsic
complexity of a problem as the complexity of the most efficient algorithm that solves it. If we have an
algorithm in hand, its existence provides an upper bound on the problem’s complexity—but it is usually
very hard to know whether we have the most efficient algorithm. One of the reasons computer science is
such an exciting field is that, every once in a while, someone achieves an algorithmic breakthrough, and
the intrinsic complexity of a problem turns out to be much less than we thought it was.

To illustrate this point, let’s discuss the complexity of multiplying integers. Let T (n ) denote the time
required to multiply two integers x and y which have n digits each. As Figure 2.4 shows, the algorithm we
learned in grade school takes time T (n ) =Θ (n 2), growing quadratically as a function of n .

This algorithm is so natural that it is hard to believe that one can do better, but in fact one can. One of
the most classic ideas in algorithms is to divide and conquer—to break a problem into pieces, solve each
piece recursively, and combine their answers to get the answer to the entire problem. In this case, we can
break the n-digit integers x and y into pairs of n/2-digit integers as follows:

x = 10n/2a +b and y = 10n/2c +d .

Here a and b are the high-order and low-order parts of x , i.e., the first and second halves of x ’s digit
sequence, and c and d are similarly the parts of y . Then

x y = 10n a c +10n/2(a d +b c )+b d . (2.3)

Of course, on a digital computer we would operate in binary instead of decimal, writing x = 2n/2a+b and
so on, but the principle remains the same.



24 THE BASICS

3 9 4 8 3

3 6 9

2 4 6

1 2 3

× 3 2 1

1 2 3

n

n

n 2

FIGURE 2.4: The grade-school algorithm for multiplication, which takes Θ(n 2) time to multiply n-digit
integers.

This approach lets us reduce the problem of multiplying n-digit integers to that of multiplying several
pairs of n/2-digit integers. We then reduce this problem to that of multiplying n/4-digit integers, and so
on, until we get to integers so small that we can look up their products in a table. We assume for simplicity
that n is even at each stage, but rounding n/2 up or down makes no difference when n is large.

What running time does this approach give us? If we use (2.3) as our strategy, we calculate four prod-
ucts, namely a c , a d , b c , and b d . Adding these products together is much easier, since the grade-school
method of adding two n-digit integers takes just O(n ) time. Multiplying an integer by 10n or 10n/2 is also
easy, since all we have to do is shift its digits to the left and add n or n/2 zeros. The running time T (n )
then obeys the equation

T (n ) = 4T (n/2)+O(n ) . (2.4)

If T (n ) scales faster than linearly, then for large n we can ignore the O(n ) term. Then the running time
is dominated by the four multiplications, and it essentially quadruples whenever n doubles. But as Prob-
lem 2.13 shows, this means that it grows quadratically, T (n ) = Θ (n2), just like the grade-school method.
So we need another idea.

The key observation is that we don’t actually need to do four multiplications. Specifically, we don’t
need a d and b c separately—we only need their sum. Now note that

(a +b )(c +d )−a c −b d = a d +b c . (2.5)

Therefore, if we calculate (a + b )(c + d ) along with a c and b d , which we need anyway, we can obtain
a d +b c by subtraction, which like addition takes just Θ(n ) time. Using this trick changes (2.4) to

T (n ) = 3T (n/2)+O(n ) . (2.6)

Now the running time only triples when n doubles, and using Problem 2.13 gives

T (n ) =Θ (nα)where α= log2 3≈ 1.585 .

So, we have tightened our upper bound on the complexity of multiplication from O(n 2) to O(n 1.585).
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Is this the best we can do? To be more precise, what is the smallest α for which we can multiply
n-digit integers in O(nα) time? It turns out that α can be arbitrarily close to 1. In other words, there are
algorithms whose running time is less than O(n 1+ε) for any constant ε > 0. On the other hand, we have
a lower bound of T (n ) = Ω (n ) for the trivial reason that it takes that long just to read the inputs x and
y . These upper and lower bounds almost match, showing that the intrinsic complexity of multiplication
is essentially linear in n . Thus multiplication turns out to be much less complex than the grade-school
algorithm would suggest.

2.5

2.4 The Importance of Being Polynomial

For practical purposes the difference between polynomial and exponential order
is often more crucial than the difference between finite and non-finite.

Jack Edmonds, 1965

Finding an algorithm that multiplies n-digit integers in O(n 1.585) time, instead of O(n 2), reveals some-
thing about the complexity of multiplication. It is also of practical interest. If n = 106, for instance, this
improves the running time by a factor of about 300 if the constants in the Os are the same.

However, the most basic distinction we will draw in computational complexity is between polynomial
functions of n—that is, n raised to some constant—and exponential ones. In this section, we will discuss
why this distinction is so important, and why it is so robust with respect to changes in our definition of
computation.

2.4.1 Until the End of the World

One way to illustrate the difference between polynomials and exponentials is to think about how the
size of the problems we can handle increases as our computing technology improves. Moore’s Law (no
relation) is the empirical observation that basic measures of computing technology, such as the density
of transistors on a chip, are improving exponentially with the passage of time.

2.7A common form of this law—although not Moore’s original claim—is that processing speed doubles
every two years. If the running time of my algorithm is Θ(n ), doubling my speed also doubles the size n
of problems I can solve in, say, one week. But if the running time grows as Θ(2n ), the doubling the speed
just increases n by 1.

Thus whether the running time is polynomial or exponential makes an enormous difference in the
size of problems we can solve, now and for the foreseeable future. We illustrate this in Figure 2.5, where
we compare various polynomials with 2n and n !. In the latter two cases, solving instances of size n = 100
or even n = 20 would take longer than the age of the universe. A running time that scales exponentially
implies a harsh bound on the problems we can ever solve—even if our project deadline is as far away in
the future as the Big Bang is in the past.

Exercise 2.4 Suppose we can currently solve a problem of size n in a week. If the speed of our computer
doubles every two years, what size problem will we be able to solve in a week four years from now, if the
running time of our algorithm scales as log2 n,

)
n, n, n 2, 2n , or 4n ?
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Euler

input: a graph G = (V, E )
output: “yes” if G is Eulerian, and “no” otherwise
begin

y := 0 ;
for all v ∈V do

if deg(v ) is odd then y := y +1;
if y > 2 then return “no”;

end
return “yes”

end

FIGURE 2.6: Euler’s algorithm for EULERIAN PATH. The variable y counts the number of odd-degree vertices.

2.4.2 Details, and Why they don’t Matter

In the Prologue we saw that Euler’s approach to EULERIAN PATH is much more efficient than exhaustive
search. But how does the running time of the resulting algorithm scale with the size of the graph? It turns
out that a precise answer to this question depends on many details. We will discuss just enough of these
details to convince you that we can and should ignore them in our quest for a fundamental understanding
of computational complexity.
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In Figure 2.6 we translate Euler’s Theorem into an algorithm, and express it in pseudocode. Quantify-
ing the running time of this algorithm is not quite as trivial as it seems. To get us started, how many times
will the for loop run? In the worst case, all vertices—or all but the last two—have even degree. Thus the
for loop will, in general, run O(|V |) times.

Next we need to specify how we measure the running time. The physical time, measured in seconds,
will vary wildly from computer to computer. So instead, we measure time as the number of elementary
steps that our algorithm performs. There is some ambiguity in what we consider “elementary,” but let
us assume for now that assignments like y := 0, arithmetical operations like y + 1, and evaluations of
inequalities like y > 2 are all elementary and take constant time.

The next question is how long it takes to determine the degree of a vertex, which we denote deg(v ).
Clearly this is not very hard—we just have to count the number of neighbors v has. But analyzing it
precisely depends on the format in which we are given the input graph G .

One common format is the adjacency matrix. This the |V |× |V |matrix A such that

Aij =

!
1 if (i , j )∈ E , i.e., there is an edge from vertex i to vertex j

0 otherwise .

We could give this matrix directly as a |V |× |V | array of 0s and 1s. However, if G is a sparse graph that only
has a few edges, then there are just a few pairs i , j such that Aij = 1. As Problem 2.18 shows, we can then
describe G more efficiently by giving a list of these pairs, or equivalently a list of edges.

Determining deg(v ) takes different numbers of steps depending on which of these formats we use.
Given the entire adjacency matrix, we would use a for loop with i ranging from 1 to |V |, and increment
a counter each time Av i = 1. Given a list of edges (i , j ), we could scan the entire list and increment a
counter each time either i = v or j = v , and so on.

However, it is not even obvious that we can carry out instructions like “check if Aij = 1” in a single
elementary step. If the input is stored on a magnetic tape—an ancient memory technology which our
reader is surely too young to remember—it might take a long time to roll the tape to the location of the
data we wish to read. Among theoretical models of computation, a Turing machine, which we will discuss
in Chapter 7, takes t steps to move to the t th location on its tape, while a machine with random access
memory (RAM) can access any location in its memory in a single step. Thus moving from one of these
models to another could change our running time considerably.

Finally, we need to agree how we specify the size of an instance. In general, this is the number n of
bits it takes to describe it—if you like, the length of the email I would have to send you to tell you about
it. This depends on our choice of input format, and n can be smaller or larger depending on whether this
format is efficient or inefficient.

All these considerations make it difficult to quantify the running time precisely, and how it scales
with the input size, without going into a great deal of detail about our input format, the particular imple-
mentation of our algorithm, and the type of machine on which we run our program. These are worthy
engineering questions, but the goal of computational complexity theory is to take a larger view, and draw
deep qualitative distinctions between problems. So, rather than studying the art of grinding lenses and
mirrors, let us turn our attention to the stars.
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2.4.3 Complexity Classes

As we saw in the previous section, one of the most basic questions we can ask about a problem is whether
it can be solved in polynomial time as a function of its size. Let’s consider the set of all problems with this
property:

P is the class of problems for which an algorithm exists that solves instances of
size n in time O(n c ) for some constant c .

Conversely, a problem is outside P if no algorithm exists that solves it in polynomial time—for instance, if
the most efficient algorithm takes exponential time 2εn for some ε > 0.

P is our first example of a complexity class—a class of problems for which a certain kind of algorithm
exists. We have defined it here so that it includes both decision problems, such as “does there exist an
Eulerian path,” and function problems, such as “construct an Eulerian path.” Later on, many of our
complexity classes will consist just of decision problems, which demand a yes-or-no answer.

More generally, for any function f (n )we can define TIME( f (n )) as follows:

TIME( f (n )) is the class of problems for which an algorithm exists that solves
instances of size n in time O( f (n )).

In particular, P contains TIME(n ), TIME(n 2), and so on, as well as noninteger exponents like TIME(n log2 3)

which we met in Section 2.3. Formally,

P=
⋃

c>0

TIME(n c ) .

The essential point is that we allow any exponent that is constant with respect to n . Exponents that grow
as n grows, like n log n , are excluded from P. Throughout the book, we will use poly(n ) as a shorthand for
“O(n c ) for some constant c ,” or equivalently for nO(1). In that case, we can write

P= TIME(poly(n )) .

If we wish to entertain running times that are exponentially large or even greater, we can define EXP=

TIME(2poly(n )), EXPEXP= TIME(22poly(n )
), and so on. This gives us a hierarchy of complexity classes, in which

2.8 the amount of computation we can do becomes increasingly astronomical:

P⊆ EXP⊆ EXPEXP⊆ · · ·

But back down to earth. Why is the question of whether a problem can be solved in polynomial time
or not so fundamental? The beauty of the definition of P is that it is extremely robust to changes in how
we measure running time, and what model of computation we use. For instance, suppose we change our
definition of “elementary step” so that we think of multiplying two integers as elementary. As long as they
have only a polynomial number of digits, each multiplication takes polynomial time anyway, so this at
most changes our running time from a polynomial to a smaller polynomial.

2.9 Similarly, going from a Turing machine to a RAM, or even a massively parallel computer—as long
as it has only a polynomial number of processors—saves at most polynomial time. The one model of
computation that seems to break this rule is a quantum computer, which we discuss in Chapter 15. So, to
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be clear, we define P as the class of problems that classical computers, like the ones we have on our desks
and in our laps today, can solve in polynomial time.

The class P is also robust with respect to most input formats. Any reasonable format for a graph, for
example, has size n which is polynomial in the number of vertices, as long as it isn’t a multigraph where
some pairs of vertices have many edges between them. Therefore, we can say that a graph problem is in
P if the running time is polynomial in |V |, and we will often simply identify n with |V |.

However, if we change our input format so drastically that n becomes exponentially larger or smaller,
the computational complexity of a problem can change quite a bit. For instance, we will occasionally
represent an integer a in unary instead of binary—that is, as a string of a ones. In that case, the size of the
input is n = a instead of n = log2 a . Exercise 2.2 shows that if we encode the input in this way, FACTORING

can be solved in polynomial time.
Of course, this is just a consequence of the fact that we measure complexity as a function of the input

size. If we make the input larger by encoding it inefficiently, the problem becomes “easier” in an artificial
way. We will occasionally define problems with unary notation when we want some input parameter to
be polynomial in n . But for the most part, if we want to understand the true complexity of a problem, it
makes sense to provide the input as efficiently as possible.

Finally, P is robust with respect to most details of how we implement an algorithm. Using clever data
structures, such as storing an ordered list in a binary tree instead of in an array, typically reduces the
running time by a factor of n or n 2. This is an enormous practical improvement, but it still just changes
one polynomial to another with a smaller power of n .

The fact that P remains unchanged even if we alter the details of our computer, our input format,
or how we implement our algorithm, suggests that being in P is a fundamental property of a problem,
rather than a property of how we humans go about solving it. In other words, the question of whether
HAMILTONIAN PATH is in P or not is a mathematical question about the nature of Hamiltonian paths, not a
subjective question about our own abilities to compute. There is no reason why computational complex-
ity theory couldn’t have been invented and studied thousands of years ago, and indeed there are glimmers
of it here and there throughout history.

2.10

2.5 Tractability and Mathematical Insight

It is often said that P is the set of tractable problems, namely those which can be solved in a reasonable
amount of time. While a running time of, say, O(n 10) is impractical for any interesting value of n , we
encounter such large powers of n very rarely. The first theoretical results proving that a problem is in P

sometimes give an algorithm of this sort, but within a few years these algorithms are usually improved to
O(n 3) or O(n 4) at most.

Of course, even a running time of O(n 3) is impractical if n = 106—for instance, if we are trying to ana-
lyze an online social network with 106 nodes. Now that fields like genomics and astrophysics collect vast
amounts of data, stored on stacks of optical disks, containing far more information than your computer
can hold at one time, some argue that even linear-time algorithms are too slow. This has given rise to a
new field of sublinear algorithms, which examine only a small fraction of their input.

But for us, and for computational complexity theorists, P is not so much about tractability as it is
about mathematical insight into a problem’s structure. Both EULERIAN PATH and HAMILTONIAN PATH can
be solved in exponential time by exhaustive search, but there is something different about EULERIAN PATH
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that yields a polynomial-time algorithm. Similarly, when we learned in 2004 that the problem of telling
whether an n-digit number is prime is in P, we gained a fundamental insight into the nature of PRIMALITY,
even though the resulting algorithm (which we describe in Chapter 10) is not very practical.

The difference between polynomial and exponential time is one of kind, not of degree. When we ask
whether a problem is in P or not, we are no longer just computer users who want to know whether we can
finish a calculation in time to meet a deadline. We are theorists who seek a deep understanding of why
some problems are qualitatively easier, or harder, than others.

2.11

Problems

If there is a problem you can’t solve, then there is an easier
problem you can solve: find it.

George Pólya, How to Solve It

2.1 Upgrades. The research lab of Prof. Flush is well-funded, and they regularly upgrade their equipment. Brilliant
Pebble, a graduate student, has to run a rather large simulation. Given that the speed of her computer doubles every
two years, if the running time of this simulation exceeds a certain T , she will actually graduate earlier if she waits for
the next upgrade to start her program. What is T ?

2.2 Euclid extended. Euclid’s algorithm finds the greatest common divisor gcd(a ,b ) of integers a and b . Show that
with a little extra bookkeeping it can also find (possibly negative) integers x and y such that

a x +by = gcd(a ,b ) . (2.7)

Now assume that b < a and that they are mutually prime. Show how to calculate the multiplicative inverse of b

modulo a , i.e., the y such that 1≤ y <b and by ≡ 1 mod a .
Hint: the standard algorithm computes the remainder r = a mod b . The extended version also computes the

quotient q in a =qb + r . Keep track of the quotients at the various levels of recursion.

2.3 Geometrical subtraction. Euclid’s original algorithm calculated a mod b by repeatedly subtracting b from a (by
marking a line of length b off a line of length a ) until the remainder is less than b . If a and b have n or fewer digits,
show that this method can take exponential time as a function of n .

2.4 Fibonacci’s rabbits. Suppose that I start my first year as a rabbit farmer with one baby rabbit. It takes a year for a
baby rabbit to mature, and mature rabbits produce one baby per year. (Note that rabbits are immortal and reproduce
asexually; elsewhere on the farm there are spherical cows.) If F% is the rabbit population in the %th year, show that the
first few values of F% are 1, 1, 2, 3, 5, 8, . . . and that in general, these obey the equation

F% = F%−1+ F%−2 , (2.8)

with the initial values F1 = F2 = 1. These are called the Fibonacci numbers. Show that they grow exponentially, as
rabbits are known to do. Specifically, show that

F% =Θ (ϕ
%)

where ϕ is the “golden ratio,”

ϕ =
1+
)

5
2

= 1.618...
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In other words, find constants A and B for which you can prove by induction on % that for all %≥ 1,

Aϕ% ≤ F% ≤ Bϕ% .

Hint: ϕ is the largest root of the quadratic equationϕ2−ϕ−1= 0. Equivalently, it is the unique positive number such
that

ϕ

1
=

1+ϕ
ϕ

.

2.5 Exponential growth, polynomial time. Using Problem 2.4, show that the problem of telling whether an n-digit
number x is a Fibonacci number is in P. Hint: how many Fibonacci numbers are there between 1 and 10n ?

2.6 Euclid at his worst. Let’s derive the worst-case running time of Euclid’s algorithm. First, prove that the number
of divisions is maximized when a and b are two adjacent Fibonacci numbers. Hint: using the fact that the smallest a

such that a mod b = c is b +c , work backwards from the base case and show that, if b ≤ a and finding gcd(a ,b ) takes
% divisions, then a ≥ F%+1 and b ≥ F%.

Now suppose that a and b each have n digits. Use Problem 2.4 to show that the number of divisions that Euclid’s
algorithm performs is at most logϕ a =Cworstn +O(1)where

Cworst =
1

log10ϕ
≈ 4.785 .

This is the slope of the upper line in Figure 2.3.

2.7 Euclid and Gauss. Now let’s derive the average-case running time of Euclid’s algorithm. First, let x denote the
ratio b/a . Show that each step of the algorithm updates x as follows,

x = g (x ) where g (x ) =
1
x

mod 1 . (2.9)

Here by a number mod 1, we mean its fractional part. For instance, πmod 1= 0.14159... This function g (x ) is called
the Gauss map, and its graph is shown in Figure 2.7. It also plays an important role in the theory of continued
fractions: as we iterate (2.9), the integers -1/x .= (1/x )− (1/x mod 1) label the different “branches” of g (x )we land on,
and give the continued fraction series of x .

If we start with a random value of x and apply the Gauss map many times, we would expect x to be distributed
according to some probability distribution P(x ). This distribution must be stationary: that is, it must remain the same
when x is updated according to (2.9). This means that P(x )must equal a sum of probabilities from all the values that
x could have had on the previous step, adjusted to take the derivative of g into account:

P(x ) =
∑

y :g (y )=x

P(y )

|g ′(y )|
.

Show that one such distribution—which turns out to be essentially unique—is

P(x ) =
1

ln 2

$
1

x +1

%
.

Of course, we haven’t shown that the probability distribution of x converges to this stationary distribution. Proving
this requires much more sophisticated arguments.
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FIGURE 2.7: The Gauss map g (x ) = (1/x )mod 1.

2.8 Euclid on average. Continuing from the previous problem, argue that the average number of divisions Euclid’s
algorithm does when given n-digit numbers grows as Cavgn where

Cavg =−
1

![log10 x ]
.

Here ![·] denotes the expectation given the distribution P(x ),

![log10 x ] =

∫ 1

0

P(x ) log10 x dx .

Evaluate this integral to obtain

Cavg =
12 · ln 2 · ln 10

π2
≈ 1.941 .

This is the slope of the lower line in Figure 2.3. Clearly it fits the data very well.

2.9 The golden ratio again. To connect Problems 2.6 and 2.7, show that 1/ϕ = 0.618... is the largest fixed point of the
Gauss map. In other words, it is the largest x such that g (x ) = x . This corresponds to the fact that if a and b are
successive Fibonacci numbers, the ratio x = b/a stays roughly constant as Euclid’s algorithm proceeds. Then show
that, since -ϕ.= 1, the golden ratio’s continued fraction expansion is

ϕ = 1+
1

1+
1

1+
1

...
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FIGURE 2.8: Using long division to calculate a mod b . In this case a = 35 500, b = 113, -a/b .= 314, and a mod b = 18.

Finally, show that cutting off this expansion after % steps gives an approximation for ϕ as the ratio between two
successive Fibonacci numbers,

ϕ ≈
F%+1

F%
.

2.10 Euclid and Fibonacci. Use Euclid’s algorithm to show that any two successive Fibonacci numbers are mutually
prime. Then, generalize this to the following beautiful formula:

gcd(Fa , Fb ) = Fgcd(a ,b ) .

Note that we use the convention that F1 = F2 = 1, so F0 = 0. Hint: you might want to look ahead at Problem 3.19.

2.11 Long division. Show that if a has n digits, b ≤ a , and the integer part -a/b . of their ratio has m digits, then we
can obtain a mod b in O(nm ) time. Hint: consider the example of long division shown in Figure 2.8, where n = 5 and
m = 3. If you are too young to have been taught long division in school, humble yourself and ask your elders to teach
you this ancient and beautiful art.

Now consider the series of divisions that Euclid’s algorithm does, and show that the total time taken by these
divisions is O(n 2).

2.12 Divide and conquer. Show that for any constants a ,b > 0, the recursive equation

T (n ) = a T (n/b ) (2.10)

has the exact solution
T (n ) =C n logb a ,

where C = T (1) is given by the base case.

2.13 Divide and a little more conquering. Now show that if a >b > 1 and we add a linear term to the right-hand side,
giving

T (n ) = a T (n/b )+C n ,

then T (n ) is still T (n ) =Θ (n logb a ). In other words, prove by induction on n that there are constants A and B , depend-
ing on C and the initial conditions T (1), such that

An logb a ≤ T (n )≤ Bn logb a

for all n ≥ 1. Feel free to assume that n is a power of b .
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2.14 Toom’s algorithm, part 1. After reading the divide-and-conquer algorithm for multiplying n-digit integers in
Section 2.3, the reader might well ask whether dividing these integers into more than two pieces might yield an even
better algorithm. Indeed it does!

To design a more general divide-and-conquer algorithm, let’s begin by thinking of integers as polynomials. If x is
an n-digit integer written in base b , and we wish to divide it into r pieces, we will think of it as a polynomial P(z ) of
degree r −1, where z =b n/r . For instance, if x = 314 159 265 and r = 3, then x = P(103)where

P(z ) = 314z 2+159z +265 .

Now, if x = P(z ) and y =Q(z ), their product x y is R(z ), where R(z ) = P(z )Q(z ) is a polynomial of degree 2r −2. In
order to find R ’s coefficients, it suffices to sample it at 2r − 1 values of z , say at integers ranging from −r + 1 to r − 1.
The coefficients of R are then linear combinations of these samples.

As a concrete example, suppose that r = 2, and that P(z ) = a z +b and Q(z ) = c z +d . Then R(z ) = Az 2+ Bz +C

is quadratic, and we can find A, B , and C from three samples, R(−1), R(0) and R(1). Write the 3× 3 matrix that turns
(R(−1), R(0), R(+1)) into (A, B ,C ), and show that the resulting algorithm is essentially identical to the one described
in the text.

2.15 Toom’s algorithm, part 2. Now let’s generalize the approach of the previous problem to larger values of r . Each
sample of R(z ) requires us to multiply two numbers, P(z ) and Q(z ), which have essentially n/r digits each. If we
ignore the time it takes to multiply by M , the running time of this algorithm is

T (n ) = (2r +1)T (n/r )

which by Problem 2.12 has the solution

T (n ) =Θ (nα) whereα=
log2r −1

logr
. (2.11)

Show that α tends to 1 as r tends to infinity, so by taking r large enough we can achieve a running time of O(n 1+ε) for
arbitrarily small ε.

2.16 Toom’s algorithm, part 3. Let’s continue from the previous problem. As r grows, the constant hidden in the Θ
of (2.11) grows too, since we have to multiply the vector of samples by a matrix M of size O(r 2). This suggests that the
optimal value of r is some function of n . Show that, in the absence of any information about M ’s structure, a nearly
optimal choice of r is

r = 2
)

log n .

Then show that the running time of the resulting algorithm is

T (n ) = n 2O(
)

log n )

which is less than n 1+ε for any ε > 0.

2.17 Fast matrix multiplication. Suppose we need to compute the product C of two n × n matrices A, B . Show
that the naive algorithm for this takes θ (n 3) individual multiplications. However, we can do better, by again using a
divide-and-conquer approach. Write

A =

'
A1,1 A1,2

A2,1 A2,2

(
, B =

'
B1,1 B1,2

B2,1 B2,2

(
, and C =

'
C1,1 C1,2

C2,1 C2,2

(
,
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where A1,1 and so on are n/2×n/2 matrices. Now define the following seven n/2×n/2 matrices,

M 1 = (A1,1+A2,2) (B1,1+ B2,2)

M 2 = (A2,1+A2,2)B1,1

M 3 = A1,1(B1,2− B2,2)

M 4 = A2,2(B2,1− B1,1)

M 5 = (A1,1+A1,2)B2,2

M 6 = (A2,1−A1,1) (B1,1+ B1,2)

M 7 = (A1,2−A2,2) (B2,1+ B2,2) .

Then show that C is given by

C1,1 =M 1+M 4−M 5+M 7

C1,2 =M 3+M 5

C2,1 =M 2+M 4

C2,2 =M 1−M 2+M 3+M 6 .

Again using the fact that the cost of addition is negligible, show that this gives an algorithm whose running time is
Θ(nα)where α= log2 7≈ 2.807. The optimal value of the exponent α is still not known.

2.6

2.18 How to mail a matrix. Given a graph G = (V, E ) with |V | = n vertices and |E | =m edges, how many bits do we
need to specify the adjacency matrix, and how many do we need to specify a list of edges? Keep in mind that it takes
logn bits to specify an integer between 1 and n . When are each of these two formats preferable?

In particular, compare sparse graphs where m =O(n )with dense graphs where m =Θ (n 2). How do things change
if we consider a multigraph, like the graph of the Königsberg bridges, where there can be more than one edge between
a pair of points?

2.19 We all live in a yellow subroutine. Another sense in which P is robust is that if one polynomial-time program
uses another as a subroutine, then the total running time is still polynomial—at least if we’re careful.

Suppose an algorithm B runs in polynomial time, and computes a function, e.g., a string or integer. Now suppose
an algorithm A performs a polynomial number of steps, one of which calls B as a subroutine. Show that A also runs
in polynomial time. Note that the input A sends to B might not be A’s original input, but rather some other input
that A is interested in. Hint: show that the set of polynomial functions is closed under composition. In other words,
if f (n ) and g (n ) are both poly(n ), so is their composition f (g (n )).

On the other hand, give an example where calling a polynomial-time algorithm B as a subroutine a polynomial
number of times can give a total running time which is exponential. Hint: B ’s output might be bigger than its input.
Can you think of other types of subroutine use where we can, or can’t, guarantee polynomial time?

2.20 A little bit more than polynomial time. A quasipolynomial is a function of the form f (n ) = 2Θ(logk n ) for some
constant k > 0, where logk n denotes (logn )k . Let us define QuasiP as the class of problems that can be solved in
quasipolynomial time. First show that any quasipolynomial f (n ) with k > 1 is ω(g (n )) for any polynomial function
g (n ), and that f (n ) =o(h(n )) for any exponential function h(n ) = 2Θ(nc ) for any c > 0. Thus P⊆QuasiP⊆ EXPTIME.

Then show that the set of quasipolynomial functions is closed under composition. Therefore, QuasiP programs
can use each other as subroutines in the same sense that P programs can (see Problem 2.19) even if the main program
gives an instance to the subroutine whose size is a quasipolynomial function of the original input size.
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Notes

2.1 The Book of Chess. Schaeffer et al. [730] estimated that the number of legal positions in Checkers is 1018. For
Chess, the number of possible positions in a game 40 moves long was estimated at 1043 by Claude Shannon [746] in
1950. In 1994, Victor Allis [36] proved an upper bound of 5× 1052 for the number of Chess positions and estimated
the true number to be 1050.

2.2 Dixit Algorizmi. The word algorithm goes back to the Persian Astronomer Muhammad ibn Musa al-Khwarizmi,
born about 780 A.D. in Khwarezm (now Khiva in Uzbekistan). He worked in Baghdad, serving the caliph Abd-Allah al
Mamun, son of the caliph Harun al-Rashid of 1001 Arabian Nights fame. Al-Khwarizmi brought the Hindu number
system to the Arab world, from where it spread to Europe, allowing us to write 31×27= 837 instead of XXXI×XXVII=
DCCCXXXVII.

In medieval times, arithmetic was identified with al-Khwarizmi’s name, and the formula dixit Algorizmi (thus
spake al-Khwarizmi) was a hallmark of clarity and authority. Al-Khwarizmi’s legacy is also found in the Spanish
word guarismo (digit) and in the word algebra, which can be traced back to al-Khwarizmi’s book on the solution of
equations, the Kitab al-muhtasar fi hisab al-gabr w’al-muqabalah. A good reference on al-Khwarizmi, and the role
of algorithms in Mathematics and Computer Science, is Knuth [493].

2.3 Euclid’s algorithm. Euclid’s algorithm appeared in his Elements in the 3rd century B.C. in Proposition 2 of Book
VII. However, there is some evidence that it was known to Aristarchus and Archimedes [149]. The first proof that it
finds the gcd of two n-digit numbers in O(n ) steps was given by Pierre-Joseph-Étienne Finck in 1841, who used the
argument of Exercise 2.1 to get an upper bound of 2 log2 a = (2 log2 10)n on the number of divisions. This is probably
the first nontrivial mathematical analysis of the running time of an algorithm. Three years later, Gabriel Lamé gave
the bound of 5 log10 a = 5n using Fibonacci numbers, and the first part of Problem 2.6 is called Lamé’s theorem. For a
history of these results, see Shallit [741]. For a history of the average running time, discussed in Problems 2.7 and 2.8,
see Knuth [495].

2.4 The adversary. Why should we focus on worst cases? Certainly other sciences, like physics, assume that problems
are posed, not by a malicious adversary, but by Nature. Norbert Wiener draws a distinction between two kinds of devil,
one that works cleverly against us, and another that simply represents our own ignorance [823, pp. 34–36]. Nature,
we hope, is in the second category:

The scientist is always working to discover the order and organization of the universe, and is thus play-
ing a game against the arch-enemy, disorganization. Is this devil Manichaean or Augustinian? Is it a
contrary force opposed to order or is it the very absence of order itself?

. . . This distinction between the passive resistance of nature and the active resistance of an opponent
suggests a distinction between the research scientist and the warrior or the game player. The research
physicist has all the time in the world to carry out his experiments, and he need not fear that nature
will in time discover his tricks and method and change her policy. Therefore, his work is governed by
his best moments, whereas a chess player cannot make one mistake without finding an alert adversary
ready to take advantage of it and to defeat him. Thus the chess player is governed more by his worst
moments than by his best moments.

There are actually three kinds of instance we might be interested in: worst-case ones, random ones, and real ones.
In Problem 2.8 we derived the performance of Euclid’s algorithm on random numbers, and in Chapter 14 we will
consider problems based on random graphs and random Boolean formulas. But for many problems, there doesn’t
seem to be any natural way to define a random instance. Real-world problems are the most interesting to an engineer,
but they typically have complicated structural properties that are difficult to capture mathematically. Perhaps the
best way to study them is empirically, by going out and measuring them instead of trying to prove theorems.
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Finally, one important reason why computer science focuses on the adversary is historical. Modern computer
science got its start in the codebreaking efforts of World War II, when Alan Turing and his collaborators at Bletchley
Park broke the Nazis’ Enigma code. In cryptography, there really is an adversary, doing his or her best to break your
codes and evade your algorithms.

2.5 Fast multiplication: Babbage, Gauss, and Fourier. The idea of multiplying two numbers recursively by dividing
them into high- and low-order parts, and the fact that its running time is quadratic, was known to Charles Babbage—
the 19th-century inventor of the Differential and Analytical Engines, whom we will meet in Chapter 7. He wanted to
make sure that his Analytical Engine could handle numbers with any number of digits. He wrote [69, p. 125]:

Thus if a ·1050+b and a ′ ·1050+b ′ are two numbers each of less than a hundred places of figures, then
each can be expressed upon two columns of fifty figures, and a ,b , a ′,b ′ are each less than fifty places of
figures. . . The product of two such numbers is

a a ′10100+(ab ′+a ′b )1050+bb ′ .

This expression contains four pairs of factors, a a ′, ab ′, a ′b ,bb ′, each factor of which has less than fifty
places of figures. Each multiplication can therefore be executed in the Engine. The time, however, of
multiplying two numbers, each consisting of any number of digits between fifty and one hundred, will
be nearly four times as long as that of two such numbers of less than fifty places of figures. . .

Thus it appears that whatever may be the number of digits the Analytical Engine is capable of holding,
if it is required to make all the computations with k times that number of digits, then it can be executed
by the same Engine, but in an amount of time equal to k 2 times the former.

The trick of reducing the number of multiplications from four to three, and the resulting improvement in how the
running time scales with the number of digits, is the sort of thing that Babbage would have loved. We will spend
more time with Mr. Babbage in Chapter 7.

The first O(n log2 3) algorithm for multiplying n-digit integers was found in 1962 by Karatsuba and Ofman [455].
However, the fact that we can reduce the number of multiplications from four to three goes back to Gauss! He noticed
that in order to calculate the product of two complex numbers (where ı =

)
−1)

(a +b ı )(c +d ı ) = (a c −b d )+ (a d +b c )ı

we only need three real multiplications, such as a c , b d , and (a + c )(b +d ), since we can get the real and imaginary
parts by adding and subtracting these products. The idea of [455] is then to replace ı with 10n/2, and to apply this
trick recursively.

Toom [794] recognized that we can think of multiplication as interpolating a product of polynomials as described
in Problems 2.14–2.16, and thus achieved a running time of O(n 1+ε) for arbitrarily small ε. This is generally called the
Toom–Cook algorithm, since Stephen Cook also studied it in his Ph.D. thesis.

In 1971, Schönhage and Strassen [733] gave an O(n · logn · log logn ) algorithm. The idea is to think of an integer
x as a function, where x (i ) is its i th digit. Then, except for carrying, the product x y is the convolution of the corre-
sponding functions, and the Fourier transform of their convolution is the product of their Fourier transforms. They
then use the Fast Fourier Transform algorithm, which as we will discuss in Section 3.2.3 takes O(n logn ) time. We
outline this algorithm in Problems 3.15 and 3.16; we can also think of it as a special case of the Toom–Cook algorithm,
where we sample the product of the two polynomials at the 2r th roots of unity in the complex plane. An excellent
description of this algorithm can be found in Dasgupta, Papadimitriou and Vazirani [215].

In 2007, Fürer [306] improved this algorithm still further, obtaining a running time of n · logn · 2O(log∗ n ). Here
log∗n is the number of times we need to iterate the logarithm to bring n below 2; for instance, log∗ 65536 = 4 and
log∗ 1010000 < 5. Since log∗n is “nearly constant,” it seems likely that the true complexity of multiplication isΘ(n logn ).
And in fact, this has been announced by Havey and Van Der Hoeven at the time we write this [374].
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2.6 Matrix multiplication. The problem of calculating matrix products also has a long and interesting history. Mul-
tiplying two n ×n matrices requires n 3 multiplications if we use the textbook method, but algorithms that work in
time O(nα) have been achieved for various α< 3. In 1969, Strassen obtained the algorithm of Problem 2.17, for which
α = log2 7 ≈ 2.807. Coppersmith and Winograd [202] presented an algorithm with α ≈ 2.376. Their algorithm has
recently been improved [826, 219, 522] and as of 2017, the fastest variant has α≈ 2.3728639.

While clearly α ≥ 2 since we need Ω(n 2) time just to read the input, it is not known what the optimal value of α
is. However, there is some very promising recent work on algebraic approaches by Cohn and Umans [190] and Cohn,
Kleinberg, Szegedy and Umans [188]. These include reasonable conjectures which would imply that α = 2, or more
precisely, that we can multiply matrices in time O(n 2+ε) for any ε > 0.

2.7 Moore’s Law. Gordon Moore, a co-founder of Intel, originally claimed in 1965 that the number of transistors in
an integrated circuit roughly doubled each year. He later changed the doubling time to two years, and “Moore’s Law”
came to mean a similar claim about speed, memory per dollar, and so on. While clock speeds have recently leveled
off, the real speed of computation measured in instructions per second continues to rise due to improvements in
our computers’ architecture, such has having multiple processors on a single chip, speeding up memory access by
cleverly predicting what data the program will need next, and so on.

It could be argued that, at this point, Moore’s Law has become a self-fulfilling prophecy driven by consumer
expectations—now that we are used to seeing multiplicative improvements in our computers every few years, this is
what we demand when we buy new ones.

Some technologists also believe that improvements in computing technology are even better described by Wright’s
Law. This states that as manufacturers and engineers gain more experience, technology improves polynomially as a
function of the number of units produced. In this case, the exponential improvements we see are due to the expo-
nential growth in the number of computers produced so far.

However, these improvements cannot continue forever without running up against fundamental physical con-
straints. If the current exponential growth in chip density continues, by around 2015 or 2020 our computers will use
one elementary particle for each bit of memory. At these scales, we cannot avoid dealing with quantum effects, such
as electron “tunneling” through potential barriers and jumping from one location to another. These effects will either
be a source of noise and inconvenience—or, as we discuss in Chapter 15, of new computational power.

2.8 Exponentials. Some readers may find it jarring that functions of the form 2nc for any constant c are called simply
“exponential.” However, allowing the exponent to be polynomial in n , rather than simply linear, gives the class EXP

the same robustness to the input format that P possesses.

2.9 Elementary steps. We need to be somewhat careful about how liberally we define the notion of an “elementary
step.” For instance, Schönhage [732] showed that machines that can multiply and divide integers of arbitrary size in
a single step can solve PSPACE-complete problems in polynomial time (we will meet the class PSPACE in Chapter 8).
Hartmanis and Simon [371] found that the same is true of machines that can perform bitwise operations on strings
of arbitrary length in a single step. Finally, Bertoni, Mauri, and Sabadini [108] showed that such machines can solve
#P-complete problems, which we will meet in Chapter 13. A review can be found in van Emde Boas [806].

Both PSPACE and #P are far above P in the complexity hierarchy. Thus if we assume that arithmetic operations
can be performed in constant time regardless of the size of the numbers involved, we lose our ability to draw dis-
tinctions between hard problems and easy ones. We get a more meaningful picture of complexity if we assume that
the cost of arithmetic operations is logarithmic in the size and accuracy of the numbers, i.e., linear in the number
of digits or bits that are being manipulated. And this assumption is certainly more realistic, at least where digital
computers are concerned.

2.10 The history of polynomial time. Computational complexity theory as we know it began with the 1965 paper
of Juris Hartmanis and Richard Stearns [372], for which they received the Turing Award in 1993. Their paper defines
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classes of functions by how much time it takes to compute them, proves by diagonalization (as we will discuss in
Chapter 6) that increasing the computation time yields an infinite hierarchy of more and more powerful classes, and
notes that changing the type of machine can alter the running time from, say, Θ(n ) to Θ(n 2). They also make what
has turned out to be a rather impressive understatement:

It is our conviction that numbers and functions have an intrinsic computational nature according to
which they can be classified. . . and that there is a good opportunity here for further research.

At around the same time, the idea that polynomial time represents a good definition of tractable computation
appeared in the work of Cobham [181] and Edmonds [260]. Cobham says:

The subject of my talk is perhaps most directly indicated by simply asking two questions: first, is it
harder to multiply than to add? and second, why? . . . There seems to be no substantial problem in
showing that using the standard algorithm it is in general harder—in the sense that it takes more time
or more scratch paper—to multiply two decimal numbers than to add them. But this does not answer
the question, which is concerned with . . . properties intrinsic to the functions themselves and not with
properties of particular related algorithms.

He goes on to define a class0 of functions that can be computed in polynomial time as a function of the number of
digits of their input, and recognizes that changing from one type of machine to another typically changes the power
of the polynomial but preserves0 overall.

Edmonds studied a polynomial-time algorithm for MAX MATCHING, an optimization problem that asks how to
form as many partnerships as possible between neighboring vertices in a graph. He presents his result by calling it a
good algorithm, and says:

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the
size of the graph. It is by no means obvious whether or not there exists an algorithm whose difficulty
increases only algebraically [i.e., polynomially] with the size of the graph. The mathematical signifi-
cance of this paper rests largely on the assumption that the two preceding sentences have mathematical
meaning. . .

He then proposes that any algorithm can be broken down into a series of elementary steps, and that once we agree
on what types of steps are allowed, the question of whether an algorithm exists with a given running time becomes
mathematically well-defined.

For an even earlier discussion of whether mathematical proofs can be found in polynomial time, see the 1956
letter of Gödel to von Neumann discussed in Section 6.1.

2.11 The Robertson–Seymour Theorem. There are strange circumstances in which we can know that a problem is in
P, while knowing essentially nothing about how to solve it. To see how this could be the case, let’s start with a simple
graph property.

A graph is planar if it can be drawn in the plane without any edges crossing each other. Kuratowski [511] and
Wagner [816] showed that G is planar if and only if it does not contain either of the graphs K5 or K3,3 shown in
Figure 2.9 as a minor, where a minor is a graph we can obtain from G by removing vertices or edges, or by shrinking
edges and merging their endpoints. With some work, we can check for both these minors in polynomial time. While
this is far from the most efficient algorithm, it shows that PLANARITY is in P.

Planarity is an example of a minor-closed property. That is, if G is planar then so are all its minors. Other examples
of minor-closed properties include whether G can be drawn on a torus with no edge crossings, or whether it can be
embedded in three-dimensional space in such a way that none of its cycles are knotted, or that no two cycles are
linked. For any fixed k , the property that G has a vertex cover of size k or less (see Section 4.2.4) is also minor-closed.

Wagner conjectured that for every minor-closed property, there is a finite list {K1, K2, . . .} of excluded minors such
that G has that property if and only if it does not contain any of them. After a series of 20 papers, Neil Robertson and
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FIGURE 2.9: A graph is planar if and only if it does not contain either of these graphs as a minor.

Paul Seymour proved this conjecture in 2004 [705]. Along the way, they proved that for any fixed K , we can check in
O(n 3) time whether a graph with n vertices contains K as a minor.

As a result, we know that for any minor-closed property, the problem of telling whether a graph has it or not is in
P. But Robertson and Seymour’s proof is nonconstructive: it tells us nothing about these excluded minors, or how big
they are. Moreover, while their algorithm runs in O(n 3) time, the constant hidden in O depends in a truly horrendous
way on the number of vertices in the excluded minors Ki (see [441] for a review). We are thus in the odd position
of knowing that an entire family of problems is in P, without knowing polynomial-time algorithms for them, or how
long they will take.



Chapter 3

Insights and Algorithms

It has often been said that a person does not really understand something until he teaches it to someone
else. Actually a person does not really understand something until he can teach it to a computer, i.e.,
express it as an algorithm. . . The attempt to formalize things as algorithms leads to a much deeper
understanding than if we simply try to comprehend things in the traditional way.

Donald E. Knuth

To the townspeople of Königsberg, the set of possible paths across the seven bridges seemed like a vast,
formless mist. How could they find a path, or tell whether one exists, without an arduous search? Euler’s
insight parted this mist, and let them see straight to the heart of the problem.

Moreover, his insight is not just a sterile mathematical fact. It is a living, breathing algorithm, which
solves the Bridges of Königsberg, or even of Venice, quickly and easily. As far as we know, whether a
problem is in P or not depends on whether an analogous insight exists for it: some way we can guide our
search, so that we are not doomed to wander in the space of all possible solutions.

But while mathematical insights come in many forms, we know of just a few major strategies for con-
structing polynomial-time algorithms. These include divide and conquer, where we break problems into
easier subproblems; dynamic programming, where we save time by remembering subproblems we solved
before; greedy algorithms, which start with a bad solution or none at all, and make small changes until it
becomes the best possible one; duality, where two seemingly different optimization problems turn out
to have the same solution, even though they approach it from opposite directions; and reductions, which
transform one problem into another that we already know how to solve.

Why do these strategies work for some problems but not for others? How can we break a problem
into subproblems that are small enough, and few enough, to solve quickly? If we start with a bad solution,
can we easily feel our way towards a better one? When is one problem really just another one in disguise?
This chapter explores these questions, and helps us understand why some problems are easier than they
first appear. Along the way, we will see how to sort a pack of cards, hear the music of the spheres, typeset
beautiful books, align genomes, find short paths, build efficient networks, route the flow of traffic, and
run a dating service.

3.1

41
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3.1 Recursion

We have already seen two examples of recursion in Chapter 2: Euclid’s algorithm for the greatest common
divisor, and the divide-and-conquer algorithm for multiplying n-digit integers. These algorithms work
by creating “children”—new incarnations of themselves—and asking them to solve smaller versions of
the same problem. These children create their own children in turn, asking them to solve even smaller
problems, until we reach a base case where the problem is trivial.

We start this chapter with another classic example of recursion: the Towers of Hanoi, introduced by
the mathematician Edouard Lucas under the pseudonym of “N. Claus de Siam.” While this is really just
a puzzle, and not a “problem” in the sense we defined in Chapter 2, it is still an instructive case of how a
problem can be broken into subproblems. The story goes like this:

In the great temple at Benares, beneath the dome that marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the
body of a bee. On one of these needles, at the creation, God placed sixty-four disks of pure
gold, the largest disk resting on the brass plate, and the others getting smaller and smaller up
to the top one. . .

Day and night, unceasingly, the priests transfer the disks from one diamond needle to an-
other according to the fixed and immutable laws of Brahma, which require that the priest on
duty must not move more than one disk at a time and that he must place this disk on a nee-
dle so that there is no smaller disk below it. When the sixty-four disks shall have been thus
transferred from the needle which at creation God placed them to one of the other needles,
tower, temple, and Brahmins alike will crumble into dust and with a thunderclap the world
will vanish.

This appears to be a product of the French colonial imagination, with Hanoi and Benares chosen as suit-
ably exotic locations. Presumably, if a Vietnamese mathematician had invented the puzzle, it would be
called the Towers of Eiffel.

A little reflection reveals that one way to move all n disks from the first peg to the second is to first
move n − 1 disks to the third peg, then move the largest disk from the first to the second, and then move
the n −1 disks from the third peg to the second. But how do we move these n −1 disks? Using exactly the
same method. This gives the algorithm shown in Figure 3.1.

We can think of running a recursive algorithm as traversing a tree. The root corresponds to the original
problem, each child node corresponds to a subproblem, and the individual moves correspond to the
leaves. Figure 3.2 shows the tree for n = 3, with the solution running from top to bottom.

If the number of disks is n , what is the total number of moves we need? Let’s denote this f (n ). Since
our algorithm solves this problem twice for n − 1 disks and makes one additional move, f (n ) obeys the
equation

f (n ) = 2 f (n −1)+1 . (3.1)

The base case is f (0) = 0, since it takes zero moves to move zero disks. The solution is given by the
following exercise.

Exercise 3.1 Prove by induction on n that the solution to (3.1) with the base case f (0) = 0 is

f (n ) = 2n −1 .
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Hanoi(n , i , j ) //move n disks from peg i to peg j
begin

if n = 0 then return;
Hanoi(n −1, i , k ) ;
move a disk from peg i to peg j ;
Hanoi(n −1, k , j ) ;

end

FIGURE 3.1: The recursive algorithm for solving the Towers of Hanoi. Here k denotes the third peg, other
than i and j . Note that i , j , and k are “local variables,” whose values change from one incarnation of the
algorithm to the next. Note also that in the base case n = 0, the algorithm simply returns, since there is
nothing to be done.

In fact, as Problem 3.1 asks you to show, this algorithm is the best possible, and 2n − 1 is the smallest
possible number of moves. Thus the priests in the story need to perform 264−1≈ 1.8×1019 moves, and it
seems that our existence is secure for now. If the number of moves were only, say, 9 billion, we might be
in trouble if the priests gain access to modern computing machinery.

3.2

3.2 Divide and Conquer

Like the solution to the Towers of Hanoi, many recursive algorithms work by breaking a problem into
several pieces, finding the answer to each piece, and then combining these answers to obtain the answer
to the entire problem. We saw this in Section 2.3, where we multiplied n-digit numbers by breaking them
into pairs of n/2-digit numbers.

Perhaps the simplest example of this approach is binary search. If I want to look up a word w in a
dictionary, I can compare w to the word in the middle, and then focus my search on the first or second
half of the dictionary. Using the same approach lets me focus on one-quarter of the dictionary, and so on.
Since each step divides the dictionary in half, I can find w in a dictionary of N words in just log2 N steps.

In this section, we will see several important problems where a divide-and-conquer strategy works.
These include sorting large lists, raising numbers to high powers, and finding the Fourier transform of an
audio signal. In each case, we solve a problem recursively by breaking it into independent subproblems,
solving each one, and then combining their results in some way.

3.2.1 Set This House in Order: Sorting

We start with the smallest. Then what do we do?
We line them all up. Back to back. Two by two.
Taller and taller. And, when we are through,
We finally will find one who’s taller than who.

Dr. Seuss, Happy Birthday To You!

Suppose I wish to sort a pack of cards using the divide-and-conquer strategy. I start by splitting the pack
into two halves, and sorting each one separately. I then merge the two sorted halves together, so that the
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Hanoi(3, 1, 2)

Hanoi(1, 1, 2)

Hanoi(1, 1, 2)

Hanoi(1, 3, 1)

Hanoi(1, 2, 3)

Hanoi(2, 1, 3)

Hanoi(2, 3, 2)

1⇒ 2

1⇒ 3

2⇒ 3

3→ 1

3→ 2

1→ 2

1⇒ 2

FIGURE 3.2: The tree corresponding to the recursive algorithm for the Towers of Hanoi with n = 3. Each
node Hanoi(n , i , j ) corresponds to the subproblem of moving n disks from peg i to peg j . The root
node, corresponding to the original problem, is at the left. The actual moves appear on the leaf nodes
(the ellipses), and the solution goes from top to bottom.
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Mergesort(%)
input: a list % of n elements
output: a sorted version of %
begin

if |%|≤ 1 then return;
%1 := the first half of % ;
%2 := the second half of % ;
%1 :=Mergesort(%1) ;
%2 :=Mergesort(%2) ;
return merge (%1,%2) ;

end

FIGURE 3.3: The Mergesort algorithm.

4 3 6 2 7 5 8 1

4 3 6 2 7 5 8 1

2 3 4 6 1 5 7 8

1 2 3 4 5 6 7 8

!1 !2

!

FIGURE 3.4: Mergesort splits the list % into two halves, and sorts each one recursively. It then merges
the two sorted halves, taking elements from %1 or %2, whichever is smaller.

entire pack is sorted: think of a careful riffle shuffle, where I let a card fall from either my left hand or my
right, depending on which of the two cards should come first. This gives a recursive algorithm shown in
Figure 3.3, which we illustrate in Figure 3.4.

To quantify the running time of this algorithm, let’s count the number of times it compares one ele-
ment to another. Let T (n ) be the number of comparisons it takes to sort an element of length n . Assuming
for simplicity that n is even, sorting the two halves of the list recursively takes 2T (n/2) comparisons. How
many comparisons does the merge operation take? We start by comparing the elements at the heads of
%1 and %2, moving whichever one is smaller to the final sorted list, and continuing until %1 or %2 is empty.
This takes at most n−1 comparisons, but for simplicity we’ll assume that it takes n . Then the total number
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4 3 6 2 7 5 8 1

3 2 1 6 7 5 8

3 7

4

21 86 5

65

!

!left !rightp

FIGURE 3.5: The recursive tree of Quicksort. At each step we choose a pivot p , and partition % into sublists
%left and %right depending on whether each element is smaller or larger than p . The leaves of the tree
correspond to lists of size 1, for which no further sorting is necessary.

of comparisons is

T (n ) = 2T (n/2)+n . (3.2)

Since it takes zero comparisons to sort a list of size 1, the base case is T (1) = 0. As Problem 3.7 asks you to
show, if we assume for simplicity that n is a power of two, the solution to (3.2) is

T (n ) = n log2 n =Θ (n logn ) .

Now let’s look at Quicksort. Like Mergesort, it is a divide-and-conquer algorithm, but now we
break the list up in a different way. Instead of simply breaking it into halves, we choose a pivot element p ,
compare all the other elements to it, and put them in the left or right sublist according to whether they are
smaller or larger than p . We then recursively sort these sublists as in Figure 3.5, subdividing the original
list until we are left with lists of size 0 or 1. This gives the pseudocode shown in Figure 3.6.

Quicksort is interesting to us mainly in that it offers a contrast between worst-case and average-
case running time. The number T (n ) of comparisons it takes to sort a list of size n depends on where
the pivot p falls in the list. Let’s say that p is the r th smallest element. Then there are r − 1 elements
smaller than p , and n − r elements larger than p , and these elements end up in the left and right sub-
lists respectively. Counting the n − 1 comparisons it takes to compare p to everyone else, this gives the
equation

T (n ) = T (r −1)+T (n − r )+n −1 . (3.3)

If we are very lucky and the pivot is always the median of the list, we have r = n/2. Ignoring the difference
between n and n −1, this gives

T (n ) = 2T (n/2)+n

just as we had for Mergesort, and T (n ) = n log2 n .
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Quicksort(%)
input: a list % of n elements
output: a sorted version of %
begin

if n ≤ 1 then return;
choose a pivot p ∈ % ;
forall the x ∈ % do

if x < p then put x in %left ;
else put x in %right ;

end
return {Quicksort(%left), p ,Quicksort(%right)} ;

end

FIGURE 3.6: The Quicksort algorithm.

On the other hand, if we are very unlucky, the pivot is always the smallest or largest in the list, with
r = 1 or r = n . In this case, we have succeeded only in whittling down a list of size n to one of size n − 1,
and the running time is

T (n ) = T (n −1)+n −1 .

With the base case T (1) = 0, this gives the arithmetic series

T (n ) = 1+2+3+ · · ·+n −1=
n (n −1)

2
=Θ (n 2) .

Since there is a large difference between the best case and the worst case, let’s consider the average
case, where r is uniformly random—that is, where it is equally likely to take any value between 1 and n .
Averaging (3.3) over r gives us the following equation, where now T (n ) is the average number of compar-
isons:

T (n ) = n −1+
1
n

n∑

r=1

)
T (r −1)+T (n − r )

*

= n −1+
2
n

n∑

r=1

T (r −1) . (3.4)

While the average case is presumably not as good as the best case, we might still hope that T (n ) scales
as Θ(n log n ), since most of the time the pivot is neither the largest nor the smallest element. Indeed, as
Problem 3.9 shows—and, using another method, Problem 10.3—when n is large the solution to (3.4) is

T (n )≈ 2n ln n .

Since
2n lnn

n log2 n
= 2 ln2≈ 1.386 ,

the average number of comparisons is only 39% greater than it would be if the pivot were always precisely
the median.
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Now, why might r be uniformly random? There are two reasons why this could be. One is if we choose
the pivot deterministically, say by using the first element as in Figure 3.5, but if the input list is in random
order, where all n ! permutations are equally likely. This is all well and good, but in the world of computer
science assuming that the input is random is overly optimistic. If our friend the adversary knows how
we choose the pivot, he can give us an instance where the pivot will always be the smallest or largest
element—in this case, a list that is already sorted, or which is sorted in reverse order. Thus he can saddle
us with the worst-case running time ofΘ(n 2).

However, the other reason r might be random is if we choose the pivot randomly, rather than deter-
ministically. If p is chosen uniformly from the list then r is uniformly random, no matter what order the
input is in. Instead of averaging over inputs, we average over the algorithm’s choices, and achieve an av-
erage running time of 2n ln n no matter what instance the adversary gives us. We will return to this idea
in Chapter 10, where we explore the power of randomized algorithms.

Having seen both these algorithms, the reader might wonder whether it is possible to sort qualita-
tively faster than Mergesort or Quicksort. We will see in Section 6.2 that if we use comparisons,
sorting n elements requires at least log2 n ! ≈ n log2 n steps. Therefore, the number of comparisons that
Mergesort performs is essentially optimal. This is one of the few cases where we can determine the
optimal algorithm.

3.3

3.2.2 Higher Powers

That sweet joy may arise from such contemplations cannot be denied. Numbers
and lines have many charms, unseen by vulgar eyes, and only discovered to the
unwearied and respectful sons of Art. In features the serpentine line (who starts
not at the name) produces beauty and love; and in numbers, high powers, and
humble roots, give soft delight.

E. De Joncourt, as quoted by Charles Babbage

Let’s look at another example of the divide-and-conquer strategy. Given x and y as inputs, how hard is it
to calculate x y ?

If x and y each have n digits, x y could be as large as 10n10n and have n10n digits. It would take an
exponential amount of time just to write this number down, regardless of how long it takes to calculate it.
So, in order to keep the result to at most n digits, we define the following problem:

MODULAR EXPONENTIATION

Input: n-digit integers x , y , and p

Output: x y mod p

As we will see later, this problem is important in cryptography and algorithms for PRIMALITY. Is it in P?
An obvious approach is to start with x 0 = 1 and do y multiplications, increasing the power of x by one

and taking the result mod p each time. But since y is exponentially large, this would take exponential
time. A much better approach is to start with x , square it, square its square, and so on. This gives the
powers

x ,x 2,x 4,x 8, . . .
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Power (x , y , p )
input: integers x , y , p
output: x y mod p
begin

if y = 0 then return 1;
t :=Power (x , -y /2., p ) ;
if y is even then return t 2 mod p ;
else return x t 2 mod p ;

end

FIGURE 3.7: The repeated-squaring algorithm for MODULAR EXPONENTIATION.

where we take the result mod p at each step. If y is a power of 2, we get x y after just log2 y = O(n )
squarings. If y is not a power of 2, we can first derive x 2k for all powers of 2 up to y , and then combine
these according to y ’s binary digit sequence: for instance,

x 999 = x ·x 2 ·x 4 ·x 32 ·x 64 ·x 128 ·x 256 ·x 512 .

Since this product involves O(n ) powers, the total number of multiplications we need to do is still O(n ).
Since we know how to multiply n-digit numbers in polynomial time, the total time we need is polynomial
as a function of n . Therefore, MODULAR EXPONENTIATION is in P.

We can view this as a divide-and-conquer algorithm. Let -y /2. denote y /2 rounded down to the near-
est integer. Then we calculate x y recursively by calculating x -y /2. and squaring it, with an extra factor of x
thrown in if y is odd. This gives the algorithm shown in Figure 3.7.

The fact that we can get exponentially high powers by squaring repeatedly will come up several times
in this book. For instance, by applying the same idea to matrix powers, we can find paths in graphs even
when these graphs are exponentially large.

Modular exponentiation is also interesting because, as a function, it seems to be much harder to do
backwards than forwards. Consider the following problem:

DISCRETE LOG

Input: n-digit integers x , z , and p

Output: An integer y , if there is one, such that z = x y mod p

We call this problem DISCRETE LOG since we can think of y as logx z in the world of integers mod p .
Our current belief is that, unlike MODULAR EXPONENTIATION, DISCRETE LOG is outside P. In other words,

if we fix x and p , we believe that f (y ) = x y mod p is a one-way function: a function in P, whose inverse
is not. We will discuss pseudorandom numbers and cryptosystems based on this problem, and quantum
algorithms that would break them, in Chapters 10 and 15.

3.2.3 The Fast Fourier Transform

We end this section with one more divide-and-conquer algorithm—one which is used today through-
out digital signal processing, from speech recognition and crystallography to medical imaging and audio
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FIGURE 3.8: Fourier analysis through the ages. Left, Ibn al-Shāt.ir’s model of the motion of Mercury using
six epicycles. Right, adjusting a coefficient in a tide-predicting machine.

compression. Readers who are unfamiliar with complex numbers should feel free to skip this section for
now, but you’ll need to understand it before we study quantum computing. First, some history.

Early Greek astronomers, much like modern physicists, were very fond of mathematical elegance.
They regarded circles and spheres as the most perfect shapes, and postulated that the heavenly bodies
move around the Earth in perfect circular orbits. Unfortunately, this theory doesn’t fit the data very well.
In particular, planets undergo retrograde motion, in which they move across the sky in the reverse of the
usual direction.

To fix this problem while remaining faithful to the idea of circular motion, Ptolemy proposed that the
planets move in epicycles, circles whose centers move around other circles. The position of each planet
is thus a sum of two vectors, each of which rotates in time with a particular frequency. By adding more
and more epicycles, we can fit the data better and better. By the 14th century, Islamic astronomers had
produced Ptolemaic systems with as many as six epicycles (see Figure 3.8).

3.4 In a more terrestrial setting—but still with astronomical overtones—in 1876 Sir William Thomson,
later Lord Kelvin, built a machine for predicting tides. It had a series of adjustable wheels, correspond-
ing to combinations of the daily, lunar, and solar cycles. A system of pulleys, driven by turning a crank,
summed these contributions and drew the resulting graph on a piece of paper. Tide-predicting machines
like the one shown in Figure 3.8 were used as late as 1965.
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The art of writing functions as a sum of oscillating terms is called Fourier analysis, in honor of Joseph
Fourier, who studied it extensively in the early 19th century. We can do this using sums of sines and
cosines, but a more elegant way is to use Euler’s formula,

eıθ = cosθ + ı sinθ .

Then we can write any smooth function f (t ) as

f (t ) =
∑

α

f̃ (α)eıαt ,

where the sum ranges over some set of frequencies α. The function f̃ , which gives the coefficient for each
α, is called the Fourier transform of f .

If rather than a continuous function, we have a discrete set of n samples f (t )where t = 0, 1, . . . , n−1, it
suffices to consider frequencies that are multiples of 2π/n . Letωn denote the nth root of 1 in the complex
plane,

ωn = e2ıπ/n .

Then this discrete set of frequencies 2πk/n gives us the discrete Fourier transform,

f (t ) =
1
)

n

n−1∑

k=0

f̃ (k )ωk t
n . (3.5)

The reason for the normalization factor 1/
)

n will become clear in a moment.
Now suppose we have a set of samples, and we want to find the Fourier transform. For instance,

we have a series of observations of the tides, and we want to set the parameters of our tide-predicting
machine. How can we invert the sum (3.5), and calculate f̃ (k ) from f (t )?

The thing to notice is that if we think of f and f̃ as n-dimensional vectors, then (3.5) is just a matrix
multiplication: 



f (0)
f (1)
f (2)

...



=

1
)

n




1 1 1
1 ωn ω2

n . . .
1 ω2

n ω4
n

...
...



·




f̃ (0)
f̃ (1)
f̃ (2)

...




,

or

f =Q · f̃ where Qtk =
1
)

n
ωk t

n .

Thus we can calculate f̃ from f by multiplying by the inverse of Q ,

f̃ =Q−1 · f .

As the following exercise shows, Q−1 is simply Q’s complex conjugate Q∗, i.e., the matrix where we take
the complex conjugate of each entry:

Exercise 3.2 Prove that Q ·Q∗ =1 where 1 denotes the identity matrix.
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Since Q is symmetric, we can also say that Q−1 is the transpose of its complex conjugate. Such matrices
are called unitary, and we will see in Chapter 15 that they play a crucial role in quantum computation.

We can now write
f̃ =Q∗ · f

or, as an explicit sum,

f̃ (k ) =
1
)

n

n−1∑

t=0

f (t )ω−k t
n . (3.6)

Turning now to algorithms, what is the most efficient way to evaluate the sum (3.6), or its twin (3.5)?
We can multiply an n-dimensional vector by an n × n matrix with n 2 multiplications. Assuming that
we do our arithmetic to some constant precision, each multiplication takes constant time. Thus we can
obtain f̃ from f , or vice versa, in O(n 2) time. Can we do better?

Indeed we can. After all, Q is not just any n ×n matrix. It is highly structured, and we can break the
product Q∗ · f down in a recursive way. We again divide and conquer, by dividing the list of samples f (t )
into two sublists of size n/2: those where t is even, and those where it is odd. Assume n is even, and
define

f even(s ) = f (2s ) and f odd(s ) = f (2s +1) ,

where s ranges from 0 to n/2−1. Also, write

k = (n/2)k0+k ′ ,

where k0 = 0 or 1 and k ′ ranges from 0 to n/2− 1. In particular, if n is a power of 2 and we write k in
binary, then b is the most significant bit of k , and k ′ is k with this bit removed.

Now we can separate the sum (3.6) into two parts as follows:

f̃ (k ) =
1
)

n

1 ∑

t even

f (t )ω−k t
n +

∑

t odd

f (t )ω−k t
n

2

=
1
)

n

1
n/2−1∑

s=0

f even(s )ω
−2k s
n +ω−k

n

n/2−1∑

s=0

f odd(s )ω
−2k s
n

2

=
1
)

2

13
n/2

1
n/2−1∑

s=0

f even(s )ω
−k ′s
n/2 +(−1)k0ω−k ′

n

n/2−1∑

s=0

f odd(s )ω
−k ′s
n/2

2

=
1
)

2

4
f̃ even(k

′)+ (−1)k0ω−k ′

n f̃ odd(k
′)
5

. (3.7)

We used the following facts in the third line,

ω2
n =ωn/2

ω−k
n/2 = e−2ıπk0ω−k ′

n/2 =ω
−k ′

n/2

ω−k
n = e−ıπk0ω−k ′

n/2 = (−1)k0ω−k ′

n/2 .
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Equation (3.7) gives us our divide-and-conquer algorithm. First, we recursively calculate the Fourier
transforms f̃ even and f̃ odd. For each of the n values of k , we multiply f̃ odd(k ′) by the “twiddle factor”ω−k ′

n .
Finally, depending on whether k0 is 0 or 1, we add or subtract the result from f̃ even(k ′) to obtain f̃ (k ).

Let T (n ) denote the time it takes to do all this. Assuming again that we do our arithmetic to fixed
precision, T (n ) is the time 2T (n/2) it takes to calculate f̃ even and f̃ odd, plus O(1) for each application
of (3.7). This gives

T (n ) = 2T (n/2)+Θ (n ) .

If we assume that n is a power of 2 so that it is even throughout the recursion, then T (n ) has the same
kind of scaling as Mergesort,

T (n ) =Θ (n logn ) .

This is known as the Fast Fourier Transform, or FFT for short.
What if n is not a power of 2? If n is composite, the divide-and-conquer idea still works, since if n has

a factor p , we can divide the list into p sublists of size n/p . As Problem 3.14 shows, this gives a running
time ofΘ(n log n )whenever n is a so-called “smooth” number, one whose largest prime factor is bounded
by some constant. Another type of FFT, described in Problem 3.17, works when n is prime. Thus we can
achieve a running time ofΘ(n log n ) for any n .

3.5The FFT plays an important role in astronomy today, but in ways that Ptolemy could never have
imagined—searching for extrasolar planets, finding irregularities in the cosmic microwave background,
and listening for gravitational waves. And as we will see in Chapter 15, a quantum version of the FFT is at
the heart of Shor’s quantum algorithm for FACTORING.

3.3 Dynamic Programming

Turning to the succor of modern computing
machines, let us renounce all analytic tools.

Richard Bellman, Dynamic Programming

Most problems are hard because their parts interact—each choice we make about one part of the problem
has wide-ranging and unpredictable consequences in the other parts. Anyone who has tried to pack their
luggage in the trunk of their car knows just what we mean.

This makes it hard to apply a divide-and-conquer approach, since there is no obvious way to break
the problem into subproblems that can be solved independently. If we try to solve the problem a little at
a time, making a sequence of choices, then each such sequence creates a different subproblem that we
have to solve, forcing us to explore an exponentially branching tree of possible choices.

However, for some problems these interactions are limited in an interesting way. Rather than each
part of the problem affecting every other part in a global fashion, there is a relatively narrow channel
through which these interactions flow. For instance, if we solve part of the problem, the remaining sub-
problem might be a function, not of the entire sequence of choices we have made up to this point, but
only of the most recent one. As a consequence, many sequences of choices lead to the same subproblem.
Once we solve this subproblem, we can reuse its solution elsewhere in the search tree. This lets us “fold
up” the search tree, collapsing it from exponential to polynomial size.

This may all seem a bit abstract at this point, so let’s look at two examples: typesetting books and
aligning genomes.
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3.3.1 Moveable Type

Anyone who would letterspace lower case would steal sheep.

Frederic Goudy

The book you hold in your hands owes much of its beauty to the TEX typesetting system. One of the main
tasks of such a system is to decide how to break a paragraph into lines. Once it chooses where the line
breaks go, it “justifies” each line, stretching the spaces between words so that the left and right margins
are straight. Another option is to stretch out the spaces between the letters of each word, a practice called
letterspacing, but we agree with the great font designer Mr. Goudy that this is an abomination.

Our goal is to place the line breaks in a way that is as aesthetic as possible, causing a minimum of
stretching. For simplicity, we will ignore hyphenation, so that each line break comes between two words.
Thus given a sequence of words w1, . . . , wn , we want to choose locations for the line breaks. If there are
%+1 lines, we denote the line breaks j1, . . . , j%, meaning that there is a line break after w j1 , after w j2 , and so
on. Thus the first line consists of the words w1, . . . , w j1 , the second line consists of the words w j1+1, . . . , w j2 ,
and so on.

Justifying each of these lines has an aesthetic cost. Let c (i , j ) denote the cost of putting the words
wi , . . . , w j together on a single line. Then for a given set of line breaks, the total cost is

c (1, j1)+ c (j1+1, j2)+ · · ·+ c (j%+1, n ) . (3.8)

How might c (i , j ) be defined? If it is impossible to fit wi , . . . , w j on a single line, because their total width
plus the j −i spaces between them exceeds the width of a line, we define c (i , j ) =∞. If, on the other hand,
we can fit them one a line with some room to spare, we define c (i , j ) as some increasing function of the
amount E of extra room. Let L be the width of a line, and suppose that a space has width 1. Then

E = L−
6
|wi |+1+ |wi+1|+1+ · · ·+1+ |w j |

7

= L− (j − i )−
j∑

t=i

|wt | ,

where |wi | denotes the width of wi . A typical cost function, which is not too different from that used in
TEX, is

c (i , j ) =

$
E

j − i

%3

.

Here E/(j − i ) is the factor by which we have to stretch each of the j − i spaces to fill the line, and the
exponent 3 is just an arbitrary way of preferring smaller stretch factors. This formula is undefined if i = j ,
i.e., if the line contains just a single word, and it also ignores the fact that we don’t justify the last line of
the paragraph. However, it is good enough to illustrate our algorithm.

With this definition of c (i , j ), or any other reasonable definition, our goal is to choose the line breaks
so that the total cost (3.8) is minimized:

TYPESETTING

Input: A sequence of words w1, . . . , wn

Output: A sequence of line break locations j1, . . . , j% that minimizes the total cost
of the paragraph
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How can we solve this problem in polynomial time?
We could try a greedy algorithm, in which we fill each line with as many words as possible before

moving on to the next. However, this is not always the right thing to do. Consider the following paragraph,
which we have typeset greedily:

Daddy, please buy me a
little baby
humuhumunukunukuāpua‘a!

Arguably, this looks better if we stretch the first line more in order to reduce the space on the second line,

Daddy, please buy
me a little baby
humuhumunukunukuāpua‘a!

This is precisely the kind of sacrifice that a greedy algorithm would refuse to make. The difficulty is that
the different parts of the problem interact—the presence of a word on the last line can change how we
should typeset the first line.

So, what kind of algorithm might work? The number of possible solutions is 2n , since we could in
theory put a line break, or not, after every word. Of course, this includes absurd solutions such as putting
every word on its own line, or putting the entire paragraph on a single line. But even if we already know
that there are % line breaks and %+ 1 lines, finding the optimal locations j1, . . . , j% is an %-dimensional
optimization problem. If %= n/10, say, corresponding to an average of 10 words per line, there are

6 n
n/10

7
=

2Ω(n ) possible solutions. Thus, a priori, this problem seems exponentially hard.
The key insight is that each line break cuts the paragraph into two parts, which can then be optimized

independently. In other words, each line break blocks the interaction between the words before it and
those after it. This doesn’t tell us where to put a line break, but it tells us that once we make this choice, it
cuts the problem into separate subproblems.

So, where should the first line break go? The cost of the entire paragraph is the cost of the first line,
plus the cost of everything that comes after it. We want to minimize this total cost by putting the first line
break in the right place. Let f (i ) denote the minimum cost of typesetting the words wi , . . . , wn , so that
f (1) is the minimum cost of the entire paragraph. Then

f (1) =min
j

6
c (1, j )+ f (j +1)

7
.

The same argument applies to the optimal position of the next line break, and so on. In general, if we
have decided to put a line break just before the i th word, the minimum cost of the rest of the paragraph
is

f (i ) = min
j :i≤j<n

6
c (i , j )+ f (j +1)

7
, (3.9)

and the optimal position of the next line break is whichever j minimizes this expression. The base case is
f (n +1) = 0, since at that point there’s nothing left to typeset. This gives us a recursive algorithm for f (i ),
which we show in Figure 3.9.

Exercise 3.3 Modify this algorithm so that it returns the best location j of the next line break.
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f (i ) // the minimum cost of the paragraph starting with the i th word
begin

if i = n +1 then return 0 ;
f min :=+∞ ;
for j = i to n do

f min :=min
6

f min, c (i , j )+ f (j +1)
7

;
return f min ;

end

FIGURE 3.9: The recursive algorithm for computing the minimum cost f (i ) of typesetting the part of the
paragraph starting with the i th word.

f (1)

f (2)

f (1)

f (2)

f (3) f (3) f (3)

f (4) f (4) f (4) f (4) f (4)

f (5) f (5)f (5) f (5)f (5)f (5)f (5)f (5)f (5)

FIGURE 3.10: Calculating the optimal cost f (1) using the recursive algorithm for TYPESETTING causes us
to solve the same subproblems many times, taking exponential time. But if we memorize our previous
results, we solve each subproblem only once. Here n = 5.

This is all well and good. However, if we’re not careful, this algorithm will take exponential time. The
reason is that it recalculates the same values of f many times. For instance, it calculates f (4)whenever it
calculates f (1), f (2), or f (3); it calculates f (3)whenever it calculates f (1) or f (2); and so on.

Exercise 3.4 Show that the recursive algorithm for f (1)will calculate f (n ) a total of 2n−2 times.

To avoid this, we memorize values of the function we have already calculated, by placing each one in a
table. Then, when we call the function for f (i ), we first check the table to see if we have already calculated
it, and we only launch our recursive scheme if we haven’t. By storing our previous results, we only have
to calculate each f (i ) once (see Figure 3.10). Since there are n different values of i and the for loop runs
through O(n ) values of j for each one, the total running time is O(n 2).

This combination of recursion and memorization implements the algorithm from the top down. An-
other approach is to work from the bottom up—solving the simplest subproblems first, then the sub-
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problems that depend on these, and so on. In this case, we would work backwards, first calculating f (n ),
then f (n − 1), and so on until we reach the cost f (1) of the entire paragraph. Programs based on these
two implementations look rather different from each other, but the actual work done by the computer is
essentially the same.

To summarize, the parts of the paragraph in TYPESETTING interact, but each line break blocks this
interaction, and cuts the problem into independent subproblems. If we have chosen how to typeset
part of the paragraph, then the subproblem we have left, namely typesetting the rest of the paragraph
wi , . . . , wn , depends only on our last choice of line break j = i − 1, and not on the entire sequence of
choices before that. The total number of different subproblems we have to deal with is poly(n ), one for
each possible value of i , and it takes poly(n ) time to combine these subproblems at each stage of the
recursion. Thus if we save our previous results, solving each subproblem only once and reusing it when
it appears again in the tree, the total running time is poly(n ), and TYPESETTING is in P.

3.6

3.3.2 Genome Alignment

Let’s use dynamic programming to solve another problem, which is important in genomics, spell check-
ing, and catching term-paper plagiarism. Given two strings s and t , the edit distance d (s , t ) between
them is the minimum number of insertions, deletions, or mutations needed to change s to t , where each
mutation changes a single symbol. For instance, consider the following two important professions:

P A S T R Y C O O K

A S T R O N O M E R

Such an arrangement of the two strings, showing which symbols correspond to each other and which are
inserted or deleted, is called an alignment. Since this alignment involves deleting P, Y, and C, inserting
N, E, and R, and mutating K to M, it shows that the edit distance between these two strings is at most 7.
But how can we tell whether this is optimal?

Let’s call EDIT DISTANCE and ALIGNMENT the problems of finding the edit distance and the optimal
alignment respectively. Just as in TYPESETTING, the number of possible alignments grows exponentially in
the length of the strings:

Exercise 3.5 Suppose that s and t each have length n. Show that the number of possible alignments between
them is at least 2n . If you enjoy combinatorics, show that it is

n∑

j=0

$
n

j

%2

=

$
2n

n

%
.

Hint: each alignment specifies a subset of the symbols of s , and a corresponding subset of the symbols of t .

So, a priori, it is not obvious that we can solve these problems in polynomial time.
However, we can again use dynamic programming for the following reason. Suppose we cut s into

two parts, s left and sright. In the optimal alignment, this corresponds to cutting t somewhere, into t left and
tright. Once we decide where the corresponding cut is, we can then find the optimal alignment of s left with
t left, and, independently, the optimal alignment of sright with tright. Just as placing a line break separates
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a paragraph into two independent parts, making an initial choice about the alignment cuts it into two
independent subproblems.

In particular, if we decide how to align the very beginning of the two strings, we can find the alignment
between their remainders separately. So let s1 denote the first symbol of s , let s ′ be the remainder of s with
s1 removed, and define t1 and t ′ similarly. Now there are three possibilities. Either the optimal alignment
consists of deleting s1 and aligning s ′ with t ; or it inserts t1 and aligns s with t ′; or it matches s1 and t1,
mutating one into the other if they are different, and aligns s ′ with t ′. The edit distance in the first two
cases is d (s ′, t ) + 1 or d (s , t ′) + 1 respectively. In the last case, it is d (s ′, t ′) if s1 and t1 are the same, and
d (s ′, t ′)+1 if they are different.

Since the edit distance is the minimum of these three possibilities, this gives us a recursive equation,

d (s , t ) =min

'
d (s ′, t )+1, d (s , t ′)+1,

8
d (s ′, t ′) if s1 = t1

d (s ′, t ′)+1 if s1 1= t1

(
. (3.10)

Evaluating (3.10) gives us a recursive algorithm, which calculates the edit distance d (s , t ) in terms of
the edit distance of various substrings. Just as for our TYPESETTING algorithm, we need to memorize the
results of subproblems we have already solved. As the following exercise shows, the number of different
subproblems is again polynomial, so dynamic programming yields polynomial-time algorithms for EDIT

DISTANCE and ALIGNMENT.

Exercise 3.6 Show that if s and t are each of length n, there are only O(n 2) different subproblems that we
could encounter when recursively calculating d (s , t ).

Exercise 3.7 Write a recursive algorithm with memorization that outputs the optimal alignment of s and
t , using an algorithm for the edit distance d (s , t ) as a subroutine.

Both TYPESETTING and ALIGNMENT have a one-dimensional character, in which we solve a problem
from left to right. The subproblem we have left to solve only “feels” our rightmost, or most recent, choices.
Thus, while there are an exponential number of ways we could typeset the first half of a paragraph, or
align the first halves of two strings, many of these lead to exactly the same remaining subproblem, and
the number of different subproblems we ever need to consider is only polynomial.

To state this a little more abstractly, let’s visualize the interactions between the parts of a problem as a
graph. If this graph consists of a one-dimensional string, cutting it anywhere separates it into two pieces.
Moreover, there are n places to cut a string of length n , and there are a polynomial number of substrings
that can result from these cuts. For this reason, many problems involving strings or sequences can be
solved by dynamic programming.

Strings are not the only graphs that can be cut efficiently in this way. As Problems 3.25, 3.26, and 3.28
show, dynamic programming can also be used to solve problems on trees and even on certain fractals.
However, if the network of interactions between parts of a problem is too rich, it is too hard to cut into
subproblems, and dynamic programming fails to give a polynomial-time algorithm.

3.7
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3.4 Getting There From Here

Go often to the house of thy friend, for weeds
soon choke up the unused path.

Scandinavian Proverb

Imagine that we are living on a graph. We start at one vertex, and we want to reach another. We ask a
friendly farmer the classic question: can we get there from here?

REACHABILITY

Input: A (possibly directed) graph G and two vertices s , t

Question: Is there a path from s to t ?

Now suppose the graph is weighted, so that for each pair of vertices i and j , the edge between them has a
length wij . Then what is the shortest path from s to t ?

SHORTEST PATH

Input: A weighted graph G and two vertices s , t

Question: How long is the shortest path from s to t ?

Note that “shortest” here could also mean cheapest or fastest, if wij is measured in dollars or hours rather
than in miles.

There are many ways to solve these two problems, including some of the algorithmic strategies we
have already seen. However, so many other problems can be expressed in terms of REACHABILITY and
SHORTEST PATH that they deserve to be considered algorithmic strategies in and of themselves. In this
section we look at them from several points of view.

3.4.1 Exploration

Perhaps the simplest way to solve REACHABILITY is to start at the source s and explore outward, marking
every vertex we can reach, until we have exhausted every possible path. This naive approach gives the
algorithm Explore shown in Figure 3.11. At each step, we have a set Q of vertices waiting to be ex-
plored. We take a vertex u from Q , mark it, and add its unmarked neighbors to Q . When Q is empty, our
exploration is complete, and we can check to see if t is marked.

The order in which Explore explores the graph depends on which vertex u we remove from Q , and
this depends on what kind of data structure Q is. If Q is a stack, like a stack of plates, then it acts in a
last-in, first-out way. When we ask it for a vertex u , it returns the one at the top, which is the one that was
added most recently. In this case, Explore performs a depth-first search, pursuing each path as deeply
as possible, following it until it runs out of unmarked vertices. It then backtracks to the last place where it
had a choice, pursues the next path as far as possible, and so on.

Depth-first searches are easy to express recursively. As the program in Figure 3.12 calls itself, its chil-
dren explore u ’s neighbors, its grandchildren explore u ’s neighbors’ neighbors, and so on.
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Explore (G , s , t )
input: a graph G and a vertex s
begin

Q := {s } ;
while Q is nonempty do

remove a vertex u from Q ;
mark u ;
for all unmarked neighbors v of u do add v to Q

end

end

FIGURE 3.11: This algorithm explores the graph and marks every vertex we can reach from s .

Explore (G , u )
begin

mark u ;
for all unmarked neighbors v of u do Explore(G , v )

end

FIGURE 3.12: A depth-first search exploration of the graph, written recursively.

On the other hand, Q could be a queue, like a line of people waiting to enter a theater. A queue
operates in a first-in, first-out fashion, so the next u in line is the vertex that has been waiting in Q the
longest. In that case, Explore performs a breadth-first search. It explores all of s ’s neighbors first, then
s ’s neighbors’ neighbors, and so on, expanding the set of marked vertices outward one layer at a time. If
G is an unweighted graph, in which every edge has weight 1, the paths that Explore follows are among
the shortest paths from s as shown in Figure 3.13.

3.4.2 Middle-First Search

Let’s look at a rather different kind of algorithm for REACHABILITY. Recall from Section 2.4.2 that the adja-
cency matrix of a graph with n vertices is an n ×n matrix A, where Aij = 1 if there is an edge from i to j
and 0 otherwise. Now consider the following useful fact, where At = A ·A · · ·A (t times) denotes the t th
matrix power of A:

(At )ij is the number of paths of length t from i to j .

For example,

(A3)ij =
∑

k ,%

Aik Ak%A%j

is the number of pairs k ,% such that there are edges from i to k , from k to %, and from % to j . Equivalently,
it is the number of paths of the form i → k → %→ j . Consider the graph in Figure 3.14. The powers of its
adjacency matrix are

A =

'
0 1
1 1

(
, A2 =

'
1 1
1 2

(
, A3 =

'
1 2
2 3

(
.
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FIGURE 3.13: Left, a depth-first search which follows a path as deeply as possible, and then backtracks to
its last choice. Right, a breadth-first search which builds outward from the source one layer at a time. The
neighbors of each vertex are ordered north, east, south, west, and vertices are numbered in the order in
which they are removed from the stack or queue.

1 2

FIGURE 3.14: A little directed graph.

For instance, there are 3 paths of length 3 that begin and end at vertex 2.
If the graph does not already have self-loops—that is, edges from each vertex to itself, giving us the

option of staying put on a given step—we can create them by adding the identity matrix 1 to A. Now
consider the following exercise:

Exercise 3.8 Given a graph G with n vertices and adjacency matrix A, show that there is a path from s to t
if and only if (1+A)n−1

s t is nonzero.

This offers us a nice way to solve REACHABILITY on all pairs of vertices s , t at once: simply raise the matrix
1+A to the n −1st power. For simplicity, we might as well raise it to the nth power instead.

What is the most efficient way to compute (1+A)n ? We could start with B = 1 and then repeat the
following n times,

B → B (1+A) .

This is a bit like breadth-first search, since each update extends the set of reachable vertices by another
step. However, this will involve n matrix multiplications. A smarter approach is to start with B = 1+A
and square the matrix repeatedly:

B → B 2 ,

or more explicitly,

Bij →
∑

k

Bik Bkj . (3.11)
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Just as in our divide-and-conquer algorithm for exponentiation in Section 3.2.2, we only need to repeat
this update log2 n times to reach the nth power, rounding up if n is not a power of 2.

What if we just want a Boolean matrix, where Bij = 1 or 0 depending on whether there is a path from i
to j or not, rather than counting paths of various lengths? We can do this in the style of (3.11), by replacing
multiplication with AND and addition with OR. This gives

Bij →
∨

k

(Bik ∧ Bkj ) . (3.12)

Here
∨

k means the OR over all k , just as
∑

k means the sum. This equation says, recursively, that we can
get from i to j if there is a k such that we can get from i to k and from k to j . The base case of this
recursion is the initial value B =1∨A—that is, j is reachable from i if i = j or i and j are adjacent.

Since this strategy tries to find a vertex in between i and j , it is often called middle-first search. While
it is not the most efficient in terms of time, the fact that it only needs log2 n levels of recursion makes it
very efficient in its use of memory. In Chapter 8, we will apply middle-first search to graphs of exponential
size, whose vertices correspond to every possible state of a computer.

3.4.3 Weighty Edges

Now let’s put a cost or length wij on each edge, and ask for a matrix B whose entries Bij are the lengths of
the shortest paths. This variant of the problem deserves a name:

ALL-PAIRS SHORTEST PATHS

Input: A weighted graph G with weights wij on each edge (i , j )

Output: A matrix where Bij is the length of the shortest path from i to j

We start by defining wij for all pairs i , j , instead of just those connected by an edge of G . If i 1= j and there
is no edge from i to j , we set wij =∞. Similarly, we set wii = 0 since it costs nothing to stay put. This
gives us an n ×n matrix W .

Now, in analogy to our matrix-product algorithm for REACHABILITY, we initially set Bij = wij for all
i , j , and then “square” B repeatedly. But this time, we replace multiplication with addition, and replace
addition with minimization:

Bij →min
k
(Bik + Bkj ) . (3.13)

In other words, the length Bij of the shortest path from i to j is the minimum, over all k , of the sum of the
lengths of the shortest paths from i to k and from k to j . We claim that, as before, we just need to update
B according to (3.13) log2 n times in order to get the correct value of Bij for every pair.

This gives the algorithm shown in Figure 3.15 for ALL-PAIRS SHORTEST PATHS. For clarity, B (m ) denotes
the value of B after m iterations of (3.13), so B (0) =W and our final result is B (log2 n ). Assuming that min
and + take O(1) time, it is easy to see from these nested loops that this algorithm’s total running time is
Θ(n 3 logn ). Problem 3.34 shows how to improve this toΘ(n 3) by arranging these loops a little differently.

3.8 In a sense, this algorithm is an example of dynamic programming. Once we have chosen a midpoint
k , finding the shortest path from i to j breaks into two independent subproblems—finding the short-
est path from i to k and the shortest path from k to j . The pseudocode we give here is a “bottom-up”
implementation, in which we calculate B (m ) from the previously-calculated values B (m −1).
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All-Pairs Shortest Paths (W )
input: a matrix W of weights wij

output: a matrix B where Bij is the length of the shortest path from i to j
begin

forall the i , j do Bij (0) :=wij ;
for m = 1 to log2 n do

for i = 1 to n do
for j = 1 to n do

Bij (m ) := Bij (m −1) ;
for k = 1 to n do

Bij (m ) :=min
6

Bij (m ), Bik (m −1)+ Bkj (m −1)
7

;
return B (log2 n ) ;

end

FIGURE 3.15: A middle-first algorithm for ALL-PAIRS SHORTEST PATHS. To distinguish each value of B from
the previous one, we write B (m ) for the m th iteration of (3.13).

There is another reason that this algorithm deserves the name “dynamic.” Namely, we can think
of (3.13) as a dynamical system, which starts with the initial condition B = W and then iterates until it
reaches a fixed point.

Exercise 3.9 Show how to modify these algorithms for REACHABILITY and SHORTEST PATH so that they provide
the path in question, rather than just its existence or its length. Hint: consider an array that records, for each
i and j , the vertex k that determined the value of Bij in (3.12) or (3.13).

Exercise 3.10 Suppose some of the weights wij are negative. Can we still find the lengths of the shortest
paths—some of which may be negative—by iterating (3.13) until we reach a fixed point? What happens if
there is a cycle whose total length is negative?

3.4.4 But How do we Know it Works?

Up to now, the correctness of our algorithms—that is, the fact that they do what they are supposed to
do—has been fairly self-evident. As our algorithms get more complicated, it’s important to discuss how
to prove that they actually work.

Typically, these proofs work by induction on the number of layers of recursion, or the number of times
a loop has run. We would like to establish that, after the algorithm has reached a certain stage, it has made
some concrete type of progress—that it has solved some part of the problem, or reached a solution of a
certain quality. Such a partial guarantee is often called a loop invariant. The next exercise asks you to use
this approach to prove that our algorithm for ALL-PAIRS SHORTEST PATHS works.

Exercise 3.11 Prove that, during our algorithm for ALL-PAIRS SHORTEST PATHS, Bij (m ) is always an upper
bound on the length of the shortest path from i to j . Then, show by induction on m that this algorithm
satisfies the following loop invariant: after running the outermost loop m times, Bij (m ) equals the length
of the shortest path from i to j which takes 2m or fewer steps in the graph. Conclude that as soon as 2m ≥ n,
the algorithm is complete.
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We conclude this section by urging the reader to solve Problems 3.20 and 3.21. These problems show
that TYPESETTING and EDIT DISTANCE can both be recast in terms of SHORTEST PATH, demonstrating that
SHORTEST PATH is capable of expressing a wide variety of problems.

3.5 When Greed is Good

We turn now to our next algorithmic strategy: greed. Greedy algorithms solve problems step-by-step
by doing what seems best in the short term, and never backtracking or undoing their previous decisions.
For many problems, this is a terrible idea, as current economic and environmental policies amply demon-
strate, but sometimes it actually works. In this section, we look at a greedy algorithm for a classic problem
in network design, and place it in a general family of problems for which greedy algorithms succeed.

3.5.1 Minimum Spanning Trees

The trees that are slow to grow bear the best fruit.

Molière

In the 1920s, Jindřich Saxel contacted his friend, the Czech mathematician Otakar Borůvka, and asked
him how to design an efficient electrical network for South Moravia (an excellent wine-growing region).
This led Borůvka to the following problem: we have a graph where each vertex is a city, and each edge e
has a length or cost w (e ). We want to find a subgraph T that spans the graph, i.e., that connects all the
vertices together, with the smallest total length w (T ) =

∑
e∈T w (e ).

If the edge between two cities is part of a cycle, we can remove that edge and still get from one city
to the other by going around the other way—so the minimum spanning subgraph has no cycles. Since
a graph without cycles is a tree, what we are looking for is a minimum spanning tree. Thus Borůvka’s
problem is

MINIMUM SPANNING TREE

Input: A weighted connected graph G = (V, E )

Question: A spanning tree T with minimum total weight w (T )

We assume that G is connected, since otherwise asking for a spanning tree is a bit unfair.
How can we find the minimum spanning tree? Or, if there is more than one, one of the minimum

ones? Once again, the number of possible solutions is exponentially large. If G is the complete graph on
n vertices, in which all

6n
2

7
pairs of vertices have edges between them—as in Borůvka’s original problem,

since we could choose to lay an electrical cable between any pair of cities—then Problem 3.36 shows that
the number of possible spanning trees is n n−2. For n = 100 this is larger than the number of atoms in the
known universe, so we had better find some strategy other than exhaustive search.

Let’s try a greedy approach. We grow the network step-by-step, adding edges one at a time until all the
vertices are connected. We never add an edge between two vertices that are already connected to each
other—equivalently, we never complete a cycle. Finally, we start by adding the lightest edges, using the
heavier ones later if we have to. This gives Kruskal’s algorithm, shown in Figure 3.17.
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FIGURE 3.16: A weighted graph and a minimum spanning tree. Is it unique?

Kruskal(G )
input: a weighted graph G = (V, E )
output: a minimum spanning tree
begin

F := 4 ;
sort E in order from lightest to heaviest ;
for each edge e ∈ E do

if adding e to F would not complete a cycle then add e to F ;
return F ;

end

FIGURE 3.17: Kruskal’s algorithm for MINIMUM SPANNING TREE.

Let’s prove that this algorithm works. At each step, the network F is a disjoint union of trees, which we
call a forest. We start with no edges at all, i.e., with a forest of n trees, each of which is an isolated vertex.
As F grows, we merge two trees whenever we add an edge between them, until F consists of one big tree.
The following exercise shows that F spans the graph by the time we’re done:

Exercise 3.12 Show that if we complete the for loop and go through the entire list of edges, then F is a
spanning tree.

Alternatively, we can stop as soon as F contains n −1 edges:

Exercise 3.13 Show that a forest with n vertices is a spanning tree if and only if it has n −1 edges.

So, Kruskal’s algorithm finds a spanning tree. But how do we know it finds one of the best ones? We
would like to prove that adding the next-lightest edge is never a bad idea—that it’s never a good idea
to “sacrifice” by adding a heavier edge now in order to reduce the total weight later. We can prove this
inductively using the following lemma.



66 INSIGHTS AND ALGORITHMS

e
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FIGURE 3.18: The proof of Lemma 3.1. Edges already in F are shown in bold, and additional edges in the
spanning tree T are dashed. Adding e to T would complete a cycle, and we can obtain a new spanning
tree T ′ by removing e ′. If e is one of the lightest edges, T ′ is at least as light as T .

Lemma 3.1 Suppose that F is a forest defined on the vertices of G , and that F is contained in a minimum
spanning tree of G . Let e be one of the lightest edges outside F that does not complete a cycle, i.e., that
connects one of F ’s trees to another. Then the forest F ∪ {e } is also contained in a minimum spanning tree.

Proof Let T be a minimum spanning tree containing F , and assume that T does not contain e . Then
T provides some other route from one end of e to the other, so adding e to T would complete a cycle. As
shown in Figure 3.18, we could break this cycle by removing some other edge e ′ /∈ F . This would give us a
new spanning tree T ′ that also contains F , namely

T ′ = T ∪ {e }− {e ′} .

But we know that w (e )≤w (e ′) since by hypothesis e is one of the lightest edges we could have added to
F . So T ′ is at least as light as T ,

w (T ′) =w (T )+w (e )−w (e ′)≤w (T ) .

Either we were wrong to assume that T is a minimum spanning tree, or both T and T ′ are minimum
spanning trees. In either case the lemma is proved. "

Using Lemma 3.1 inductively, we see that at all times throughout Kruskal’s algorithm, the forest F is
a subgraph of some minimum spanning tree. In the terminology of Section 3.4.4, this is a loop invariant.
This invariant holds all the way until F is itself is a spanning tree, so it must be a minimum one.

What is the running time of Kruskal’s algorithm? Since adding e to F would complete a cycle if and
only if there already a path from one of e ’s endpoints to the other, we can use one of our polynomial-time
algorithms for REACHABILITY to check whether or not we should add e . This is far from the most efficient
method, but it does show that MINIMUM SPANNING TREE is in P.

3.9
Exercise 3.14 Run Kruskal’s algorithm on the graph of Figure 3.16.

Exercise 3.15 Show that if the weights of the edges are distinct from each other, then the MINIMUM SPANNING

TREE is unique.

Exercise 3.16 Find a polynomial-time algorithm that yields the maximum-weight spanning tree, and prove
that it works.
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3.5.2 Building a Basis

Lemma 3.1 tells us that the greedy strategy for MINIMUM SPANNING TREE never steers us wrong—adding
the next-lightest edge never takes us off the path leading to an optimal solution. However, this lemma
and its proof seem rather specific to this one problem. Can we explain, in more abstract terms, what it is
about the structure of MINIMUM SPANNING TREE that makes the greedy strategy work? Can we fit MINIMUM

SPANNING TREE into a more general family of problems, all of which can be solved greedily?
One such family is inspired by finding a basis for a vector space. Suppose I have a list S of n-dimensional

vectors. Suppose further that |S| ≥ n and that S has rank n , so that it spans the entire vector space. We
wish to find a subset F ⊆ S consisting of n linearly independent vectors that span the space as well. We
can do this with the following greedy algorithm: start with F = 4, go through all the vectors in S, and add
each one to F as long as the resulting set is still linearly independent. There is never any need to go back
and undo our previous decisions, and as soon as we have added n vectors to F , we’re done.

This algorithm works because the property that a subset of S is linearly independent—or “indepen-
dent” for short—obeys the following axioms. The first axiom allows us to start our algorithm, the second
gives us a path through the family of independent sets, and the third ensures that we can always add one
more vector to the set until it spans the space.

1. The empty set 4 is independent.

2. If X is independent and Y ⊆ X , then Y is independent.

3. If X and Y are independent and |X | < |Y |, there is some element v ∈ Y − X such that X ∪ {v } is
independent.

Exercise 3.17 Prove that these three axioms hold if S is a set of vectors and “independent” means linearly
independent.

A structure of this kind, where we have a set S and a family of “independent” subsets which obeys
these three axioms, is called a matroid. In honor of the vector space example, an independent set to
which nothing can be added without ceasing to be independent is called a basis.

What does this have to do with MINIMUM SPANNING TREE? Let S be the set E of edges of a graph, and
say a subset F ⊆ E is “independent” if it is a forest, i.e., if it has no cycles. Clearly the first two axioms
hold, since the empty set is a forest and any subgraph of a forest is a forest. Proving the third axiom is
trickier, but not too hard, and we ask you to do this in Problem 3.40. Thus, in any graph G the family of
forests forms a matroid. Finally, a “basis”—a forest to which no edges can be added without completing
a cycle—is a spanning tree.

Now suppose that each vector in S has some arbitrary weight, and that our goal is to find a basis
whose total weight is as small as possible. We can generalize Kruskal’s algorithm as follows: sort the
elements of S from lightest to heaviest, start with F = 4, and add each v ∈ S to F if the resulting set is
still independent. The following lemma, which generalizes Lemma 3.1 and which we ask you to prove in
Problem 3.41, proves that this greedy algorithm works.

Lemma 3.2 Let S be a set where the family of independent sets forms a matroid. Suppose an independent
set F is contained in a minimum-weight basis. Let v be one of the lightest elements of S such that F ∪ {v } is
also independent. Then F ∪ {v } is also contained in a minimum-weight basis.
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Therefore, for any matroid where we can check in polynomial time whether a given set is independent,
the problem of finding the minimum-weight basis is in P.

3.5.3 Viewing the Landscape

A greedy algorithm is like a ball rolling down a hill, trying to find a point of minimum height. It rolls down
as steeply as possible, until it comes to rest at a point where any small motion increases its altitude. The
question is whether this is the global minimum, i.e., the lowest point in the entire world, or merely a local
minimum where the ball has gotten stuck—whether jumping over a hill, or tunneling through one, could
get us to an even lower point.

For some problems, such as MINIMUM SPANNING TREE, the landscape of solutions has one big valley,
and a ball will roll straight to the bottom of it. Harder problems have a bumpy landscape, with an ex-
ponential number of valleys separated by forbidding mountain crags. In a landscape like this, greedy
algorithms yield local optima—solutions such that any small change makes things worse. But in order to
find the global optimum, we have to make large, complicated changes. In the absence of a good map of
the landscape, or a good insight into its structure, our only recourse is an exhaustive search.

3.10 Of course, for a maximization problem the valleys in this metaphor become mountain peaks. Climb-
ing uphill takes us to a local maximum, but the highest peak may be far off in the mist. Next, we will
explore a problem where a kind of greedy algorithm finds the global maximum, but only if we define the
landscape in the right way.

3.6 Finding a Better Flow

Wouldn’t it be wonderful if you could tell whether your current solution to life’s problems is the best possi-
ble? And, if it isn’t, if you could tell how to improve it? If you could answer these questions efficiently, you
could find the optimal solution with a kind of greedy algorithm: start with any solution, and repeatedly
improve it until you reach the best possible one. In this section, we will apply this strategy to an important
type of network flow problem.

My graduate students, my spouse, and I are looking forward to attending a glorious conference, where
we will discuss the latest and most beautiful advances in complexity theory and gorge ourselves on fine
food. Money is no object. But unfortunately, I have left the travel arrangements until rather late, and
there are only a few seats available on each airplane flight that can get us from our university, through
various intermediate cities, to the location of the conference. How many of my students can I get there by
one route or another?

We can formalize this problem as follows. I have a network G , namely a directed graph where each
edge e = (u , v ) has a nonnegative integer capacity c (e ). I am trying to arrange a flow from a source vertex
s to a destination t . This flow consists of assigning an integer f (e ) to each edge—the number of students
who will take that flight—such that 0≤ f (e )≤ c (e ). Just as for electric current, the total flow in and out of
any vertex other than s and t must be zero. After all, I don’t wish to leave any students or spouses, or pick
up new ones, at any of the intervening airports.

My goal is to maximize the total flow out of s and into t , which we call the value of the flow. This gives
the following problem:
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FIGURE 3.19: A network G and two possible flows on it, with edges shown dotted, solid or bold depending
on whether the flow on that edge is 0, 1 or 2. On the lower left, a flow f whose value is 3. On the lower
right, a better flow f ′ whose value is 4, which in this case is the maximum.
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FIGURE 3.20: We can improve the flow, changing f to f ′, by adding flow along a path δ from s to t . In this
case, one of the edges in this path is a reverse edge, and adding flow along it cancels f on the correspond-
ing forward edge.

MAX FLOW

Input: A network G where each edge e has a nonnegative integer capacity c (e ),
and two vertices s , t

Question: What is the maximum flow from s to t ?

As an example, Figure 3.19 shows a simple network, and two flows on it. The flow f shown on the lower
left has a value of 3, while the maximum flow f ′, shown on the lower right, has a value of 4.

Now suppose that our current flow is f . As Figure 3.20 shows, we can improve f by adding flow along
a path δ from s to t . When does such a path exist? We can only increase the flow along an edge e if
there is unused capacity there. So, given a flow f , let us define a residual network G f where each edge has
capacity c f (e ) = c (e )− f (e ). If there is a path from s to t along edges with nonzero capacity in G f , we can
increase the flow on those edges.



70 INSIGHTS AND ALGORITHMS

2

2

1

1

1

f

ts 1

2 2

22

G

ts

G f

0

0

0

1

1

1

FIGURE 3.21: The residual network G f for the flow f , showing the unused capacity c f (e ) = c (e )− f (e ) of
each edge, and a reverse edge e with capacity c f (e ) = f (e ). Other reverse edges are not shown.

However, in Figure 3.20, one of the edges of δ actually goes against the flow in f . By adding flow along
this edge, we can cancel some—in this case, all—of the flow on the corresponding edge of G . To allow for
this possibility in our residual graph G f , for each “forward” edge e = (u , v ) of G , we also include a “reverse”
edge e = (v, u ). Since we can cancel up to f (e ) of the flow along e without making the flow negative, we
give these reverse edges a capacity c f (e ) = f (e ) as shown in Figure 3.21.

Given a flow f , we will call a path from s to t along edges with nonzero capacity in the residual network
G f an augmenting path. Now consider the following theorem:

Theorem 3.3 A flow f is maximal if and only if there is no augmenting path. If there is an augmenting
path, increasing the flow along it (and decreasing the flow wherever δ follows reverse edges) produces a new
flow f ′ of greater value.

Proof First suppose that an augmenting path δ exists. Each edge of δ is either a forward edge e where
f (e )< c (e ) and f (e ) can be increased, or a reverse edge e where f (e )> 0 and f (e ) can be decreased. Thus
adding a unit of flow along δ gives a new flow f ′ with 0≤ f ′(e )≤ c (e ) along every edge, and whose value
is greater than that of f .

Conversely, suppose that there is a flow f ′ whose value is greater than that of f . We can define a flow
∆ on G f as follows:

∆(e ) =max
6

0, f ′(e )− f (e )
7

, ∆(e ) =max
6

0, f (e )− f ′(e )
7

.

In other words, we put flow on e if f ′(e )> f (e ), and on e if f ′(e )< f (e ).
It is easy to check that the total flow∆ in and out of any vertex other than s or t is zero. Moreover, the

flow∆ on each edge of G f is nonnegative and less than or equal to the capacity c f , since if f ′(e )> f (e )we
have

0 < ∆(e ) = f ′(e )− f (e ) ≤ c (e )− f (e ) ≤ c f (e ) ,

and if f ′(e )< f (e )we have

0 < ∆(e ) = f (e )− f ′(e ) ≤ f (e ) = c f (e ) .

Thus ∆ is a legal flow on G f . Moreover, ∆ has positive value, equal to the value of f ′ minus that of f . No
such flow can exist unless there is a path from s to t along edges with nonzero capacity in G f , and we are
done. "
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Theorem 3.3 gives us a simple method for telling whether a flow f is maximal, and to produce an
improved flow if it is not. All we have to do is construct the residual network G f and ask REACHABILITY

if there is a path δ from s to t . If there is such a path, we find one, and increase the flow along it as
much as possible, i.e., by the minimum of c f (e ) among all the edges e ∈ δ. We then recalculate the
residual capacities in G f , and continue until no augmenting paths remain. At that point, the current flow
is maximal. This is called the Ford–Fulkerson algorithm.

The astute reader will immediately ask how many times we need to perform this improvement. Since
the value of the flow increases by at least one each time, the number of iterations is at most the sum
of all the capacities. This gives us a polynomial-time algorithm if the capacities are only polynomially
large. However, in a problem of size n , i.e., described by n bits, the capacities could be n-bit numbers
and hence exponentially large as a function of n . As Problem 3.43 shows, in this case the Ford–Fulkerson
algorithm could take an exponentially large number of steps to find the maximum flow, if we choose our
augmenting paths badly.

Luckily, as Problems 3.44 and 3.45 show, there are several ways to ensure that the total number of
iterations is polynomial in n , even if the capacities are exponentially large. One is to use the shortest path
from s to t in G f , and another is to use the “fattest” path, i.e., the one with the largest capacity. Either of
these improvements proves that MAX FLOW is in P.

3.11A priori, one could imagine that the maximum flow is fractional—that at some vertices it splits the
flow into noninteger amounts. But the Ford–Fulkerson algorithm gives us the following bonus:

Exercise 3.18 Prove that if the capacities c (e ) are integers, there is a maximal flow f where f (e ) is an integer
for all e . Hint: use the fact that the Ford–Fulkerson algorithm works.

Exercise 3.19 Is the maximal flow always unique? If not, what kind of flow is the difference ∆(e ) between
two maximal flows?

It’s interesting to note that if we don’t allow reverse edges—if we only allow improvements that in-
crease the flow everywhere along some path in G from s to t —then we can easily get stuck in local op-
tima. In fact, the flow f of Figure 3.19 is a local optimum in this sense. In a sense, reverse edges let us
“backtrack” a little bit, and pull flow back out of an edge where we shouldn’t have put it.

To put this another way, recall the landscape analogy from Section 3.5.3, but with hills instead of
valleys, since this is a maximization problem. Each step of our algorithm climbs from the current flow
to a neighboring one, trying to get as high as possible. Without reverse edges, this landscape can be
bumpy, with multiple hilltops. By adopting a somewhat larger set of moves, we reorganize the landscape,
changing it to a single large mountain that we can climb straight up.

3.7 Flows, Cuts, and Duality

In our last episode, my students and I were trying to attend a conference. Now suppose that an evil
competitor of mine wishes to prevent us from presenting our results. He intends to buy up all the empty
seats on a variety of flights until there is no way at all to get to the conference, forcing us to seek letters of
transit from a jaded nightclub owner. How many seats does he need to buy?

Let’s define a cut in a weighted graph as a set C of edges which, if removed, make it impossible to get
from s to t . The weight of the cut is the sum of its edges’ weights. Alternately, we can say that a cut is a



72 INSIGHTS AND ALGORITHMS

FIGURE 3.22: A MIN CUT problem from the Cold War. A 1955 technical report for the United States Air
Force sought to find a “bottleneck” that would cut off rail transport from the Soviet Union to Europe.

partitioning of the vertices of G into two disjoint sets or “sides,” S and T , such that s ∈ S and t ∈ T . Then
C consists of the edges that cross from S to T , and its weight is the sum of their capacities.

My competitor wishes to solve the following problem:

MIN CUT (s -t version)

Input: A weighted graph G and two vertices s , t

Question: What is the weight of the minimum cut that separates s from t ?

In this section, we will see that MIN CUT and MAX FLOW have exactly the same answer—the weight of the
minimum cut is exactly the value of the maximum flow. Thus MIN CUT is really just MAX FLOW in disguise.
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To see this, we start by proving that

value(MAX FLOW)≤weight(MIN CUT) . (3.14)

Given a cut, the flow has to get from one side to the other, and the flow on any edge is at most its capacity.
Therefore, the value of any flow is less than or equal to the weight of any cut. In particular, the value of
the MAX FLOW is less than or equal to the weight of the MIN CUT.

The tighter statement
value(MAX FLOW) =weight(MIN CUT) (3.15)

is less obvious. It certainly holds if G is simply a chain of edges from s to t , since then the MIN CUT

consists of an edge with the smallest capacity, and the capacity of this “bottleneck” edge is also the value
of the MAX FLOW. Does a similar argument work if there are many paths from s to t , and many vertices
where the flow can branch and merge?

Indeed it does, and this follows from the same observations that led to the Ford–Fulkerson algorithm.
Recall that Theorem 3.3 shows that if f is a maximal flow, there is no augmenting path. In other words, s
is cut off from t by a set of edges whose residual capacity c f is zero.

Now let S be the set of vertices reachable from s along edges with nonzero c f , and let T be the rest
of the vertices including t . Recall that c f (e ) = c (e )− f (e ). Since each edge that crosses from S to T has
c f (e ) = 0, we have f (e ) = c (e ). Thus each such edge is saturated by the flow f , i.e., used to its full capacity.
The weight of the cut between S and T is the total weight of all these edges, and this equals the value of f .

Thus there exists a cut whose weight equals the maximum flow. But since any cut has weight at least
this large, this cut is minimal, and (3.15) is proved. Since MAX FLOW is in P, this proves that MIN CUT is in
P as well.

Exercise 3.20 Solve MIN CUT in the graph G in Figure 3.19. Is the MIN CUT unique? If not, find them all.

The inequality (3.14) creates a nice interplay between these problems, in which each one acts as a
bound on the other. If I show you a cut of weight w , this is a proof, or “witness,” that the MAX FLOW has
a value at most w . For instance, the set of all edges radiating outward from s form a cut, and indeed no
flow can exceed the total capacity of these edges. Conversely, if I show you a flow with value f , this is a
proof that the MIN CUT has weight at least f .

From this point of view, (3.15) states that the MIN CUT is the best possible upper bound on the MAX

FLOW, and the MAX FLOW is the best possible lower bound on the MIN CUT. What is surprising is that
these bounds are tight, so that they meet in the middle. These two optimization problems have the same
solution, even though they are trying to push in opposite directions.

This relationship between MAX FLOW and MIN CUT is an example of a much deeper phenomenon
called duality. MAX FLOW is a constrained optimization problem, where we are trying to maximize some-
thing (the value of the flow) subject to a set of inequalities (the edge capacities). It turns out that a large
class of such problems have “mirror images,” which are minimization problems analogous to MIN CUT.
We will discuss duality in a more general way in Section 9.5.

Finally, it is natural to consider the problem which tries to maximize, rather than minimize, the weight
of the cut. Now that we know that MIN CUT is in P, the reader may enjoy pondering whether MAX CUT is
as well. We will resolve this question, to some extent, in Chapter 5.
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3.8 Transformations and Reductions

We close this chapter by introducing a fundamental idea in computational complexity—a transformation,
or reduction, of one problem to another.

Suppose I am running a dating service. Some pairs of my clients are compatible with each other,
and I wish to arrange as many relationships as possible between compatible people. Surprisingly, all my
clients are monogamous, and have no interest in ménages à trois. So, my job is to find a set of compatible
couples, such that no person participates in more than one couple.

I can represent my clients’ compatibilities as a graph G = (V, E ), where each client is a vertex and each
compatible couple is connected by an edge. I wish to find a matching, i.e., a subset M ⊆ E consisting of
disjoint edges, which covers as many vertices as possible. If I am especially lucky, there will be a perfect
matching—an M that covers every vertex in G so that everyone has a partner.

We focus here on the unusual case where all my clients are heterosexual, in which case G is bipartite.
This gives me the following problem,

PERFECT BIPARTITE MATCHING

Input: A bipartite graph G

Question: Does G have a perfect matching?

More generally, I want to maximize the number of happy couples by finding the matching M with the
largest number of edges:

MAX BIPARTITE MATCHING

Input: A bipartite graph G

Question: What is the maximum matching?

There are an exponential number of possible matchings, and it is not obvious how to find the maximal
one in polynomial time. The good news is that we already know how to do this. We just need to translate
this problem into another one that we have solved before.

As Figure 3.23 shows, we can transform an instance of MAX BIPARTITE MATCHING into an instance of
MAX FLOW. We turn each compatible couple (u , v ) into a directed edge u → v , pointing from left to right.
We then add two vertices s , t with edges s → u for each u on the left, and v → t for each t on the right.
Finally, we give every edge in this network a capacity 1.

We claim that the size of the maximum matching equals the value of the MAX FLOW on this network.
We express this in the following exercise:

Exercise 3.21 Show that there is a matching consisting of m edges if and only if this network has a flow of
value m . Hint: use the fact proved in Exercise 3.18 that at least one of the maximal flows is integer-valued.

Thus we can solve MAX BIPARTITE MATCHING by performing this transformation and then solving the re-
sulting instance of MAX FLOW. Since MAX FLOW is in P, and since the transformation itself is easy to do in
polynomial time, this proves that MAX BIPARTITE MATCHING and PERFECT BIPARTITE MATCHING are in P.

This type of transformation is called a reduction in computer science. On one level, it says that we can
solve MAX BIPARTITE MATCHING by calling our algorithm for MAX FLOW as a subroutine. But on another
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FIGURE 3.23: The reduction from MAX BIPARTITE MATCHING to MAX FLOW. The bipartite graph on the left
has a perfect matching, and this corresponds to a flow of value 4 in the directed graph on the right. All
edges have capacity 1.

level it says something much deeper—that MAX BIPARTITE MATCHING is no harder than MAX FLOW. We
write this as an inequality,

MAX BIPARTITE MATCHING≤MAX FLOW . (3.16)

Consider the fact that, before we saw the polynomial-time algorithm for MAX FLOW, it was not at all obvi-
ous that either of these problems are in P. This reduction tells us that if MAX FLOW is in P, then so is MAX

BIPARTITE MATCHING. In other words, as soon as we find a polynomial-time algorithm for MAX FLOW we
gain one for MAX BIPARTITE MATCHING as well.

Reductions have another important application in computational complexity. Just as a reduction
A ≤ B shows that A is at most as hard as B , it also shows that B is at least as hard as A. Thus we get a
conditional lower bound on B ’s complexity as well as a conditional upper bound on A’s. In particular,
just as B ∈ P implies A ∈ P, it is equally true that A /∈ P implies B /∈ P.

If the reader finds the word “reduction” confusing, we sympathize. Saying that A can be reduced to B
makes it sound as if B is smaller or simpler than A. In fact, it usually means the reverse: A can be viewed
as a special case of B , but B is more general, and therefore harder, than A. Later on, we will put this
another way—that B is expressive enough to describe the goals and constraints of A.

As we will discuss below, it is generally very hard to prove that a problem is outside P. However, for
many problems B we are in the following curious situation: thousands of different problems can be re-
duced to B , and after decades of effort we have failed to find polynomial-time algorithms for any of them.
This gives us very strong evidence that B is outside P. As we will see in the next two chapters, this is
exactly the situation for many of the search and optimization problems we care about.
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FIGURE 3.24: A Hamiltonian path on the 3-dimensional hypercube.

Problems

Problems worthy of attack
prove their worth by hitting back.

Piet Hein

3.1 Recursive priests are optimal. Prove that the recursive algorithm for the Towers of Hanoi produces the best
possible solution, and that this solution is unique: i.e., that it is impossible to solve the puzzle in less than 2n − 1
moves, and that there is only one way to do it with this many. Hint: prove this by induction on n . A recursive
algorithm deserves a recursive proof.

3.2

3.2 Hamilton visits Hanoi. Find a mapping between the recursive solution of the Towers of Hanoi and a Hamiltonian
path on an n-dimensional hypercube (see Figure 3.24). They both have length 2n − 1, but what do the vertices and
edges of the cube correspond to?

3.3 Hanoi, step by step. Find an iterative, rather than recursive, algorithm for the Towers of Hanoi. In other words,
find an algorithm that can look at the current position and decide what move to make next. If you like, the algorithm
can have a small amount of “memory,” such as remembering the most recent move, but it should not maintain a
stack of subproblems.

3.4 Our first taste of state space. The state space of the Towers of Hanoi puzzle with 2 disks can be viewed as as a
graph with 9 vertices, as shown in Figure 3.25. Describe the structure of this graph for general n , and explain what
path the optimal solution corresponds to.

3.5 Four towers. What if there are 4 pegs in the Towers of Hanoi, instead of 3? Here is one possible solution. We will
assume that n is a triangular number,

n k = 1+2+3+ · · ·+k = k (k +1)/2 .

Then to move n k disks, recursively move the n k−1 = n k −k smallest disks, i.e., all but the k largest, to one of the four
pegs; then, using the other 3 pegs, move the k largest disks using the solution to the 3-peg puzzle; then recursively
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FIGURE 3.25: The state space of all possible positions of the Towers of Hanoi with n = 2. Each vertex is a position, and
each edge is a legal move.

move the n k−1 smallest ones on top of the k largest, at which point we’re done. Show that the total number of moves
done by this algorithm obeys the equation

f (n k ) = 2 f (n k−1)+2k −1

and that, with the base case f (n 0) = 0, the solution is

f (n k ) = (k −1)2k +1=Θ
))

n 2
)

2n
*

.

Can you generalize this to 5 or more pegs?

3.6 Pick a card. You walk into a room, and see a row of n cards. Each one has a number xi written on it, where i

ranges from 1 to n . However, initially all the cards are face down. Your goal is to find a local minimum: that is, a card
i whose number is less than or equal to those of its neighbors, xi−1 ≥ xi ≤ xi+1. The first and last cards can also be
local minima, and they only have one neighbor to compare to. There can be many local minima, but you are only
responsible for finding one of them.

Obviously you can solve this problem by turning over all n cards, and scanning through them. However, show
that you can find such a minimum by turning over only O(logn ) cards.

3.7 The running time of Mergesort. Show that the equation for the number of comparisons that Mergesort
performs on a list of size n ,

T (n ) = 2T (n/2)+n ,

with the base case T (1) = 0, has the exact solution

T (n ) = n log2 n ,
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where we assume that n is a power of 2. Do this first simply by plugging this solution into the equation and checking
that it works. Then come up with a more satisfying explanation, based on the number of levels of recursion and the
number of comparisons at each level.

We can improve this slightly using the fact that the merge operation takes at most n −1 comparisons. Prove that
the exact solution to the equation

T (n ) = 2T (n/2)+n −1

is
T (n ) = n log2 n −n +1 ,

where as before we assume that n is a power of 2.

3.8 More pieces. Generalizing the previous problem, show that for any positive constants a ,b , the equation

T (n ) = a T (n/b )+n logb a ,

with the base case T (1) = 0, has the exact solution

T (n ) = n logb a logb n ,

where we assume that n is a power of b .

3.9 Integrating quicksort. Let’s solve the equation (3.4) for the average running time of Quicksort. First, show
that if n is large, we can replace the sum by an integral and obtain

T (n ) = n +
2
n

∫ n

0

T (x )dx . (3.17)

Since we expect the running time to be Θ(n logn ), let’s make a guess that

T (n ) = An lnn

for some constant A. Note that we use the natural logarithm since it is convenient for calculus. Substitute this guess
into (3.17) and show that A = 2, so that T (n )≈ 2n lnn as stated in the text.

3.10 Better pivots. In general, the running time T (n ) of Quicksort obeys the equation

T (n ) = n +

∫ n

0

P(r )(T (r )+T (n − r ))dr ,

where P(r ) is the probability that the pivot has rank r . For instance, (3.4) is the special case where the pivot is a
random element, so P(r ) = 1/n for all r .

One common improvement toQuicksort is to choose three random elements, and let the pivot be the median
of these three. Calculate the probability distribution P(r ) of the pivot’s rank in this case. Solve this equation in the
limit of large n by converting it to an integral as in Problem 3.9, and again try a solution of the form T (n ) = An lnn .
How much does this technique improve the constant A? What happens to A if the pivot is the median of 5 elements,
7 elements, and so on?

3.11 Partway to the median. Imagine that the pivot in Quicksort always divides the list into two sublists of size
γn and (1−γ)n , so that the number of comparisons obeys the equation

T (n ) = T (γn )+T ((1−γ)n )+n .

Show that T (n ) = A(γ)n lnn , and determine the constant A(γ). How does A(γ) behave when γ is close to 0 or to 1?
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3.12 Factoring with factorials. Consider the following problem:

MODULAR FACTORIAL

Input: Two n-digit integers x and y

Output: x ! mod y

This sounds a lot like MODULAR EXPONENTIATION, and it is tempting to think that MODULAR FACTORIAL is in P as well.
However, show that

FACTORING≤MODULAR FACTORIAL ,

in the sense that we can solve FACTORING by calling a subroutine for MODULAR FACTORIAL a polynomial number of
times. Thus if MODULAR FACTORIAL is in P, then FACTORING is in P as well. Hint: first note that y is prime if and only if
gcd(x !, y ) = 1 for all x < y .

3.13 Gamma function identities. (A follow-up to the previous problem.) There is a natural generalization of the
factorial to noninteger values, called the Gamma function:

Γ(x ) =

∫ ∞

0

t x−1 e−t dt . (3.18)

We have Γ(x +1) = xΓ(x ), and in particular Γ(x ) = (x −1) ! if x is an integer. But Γ(1/2), for instance, is
)
π.

Now consider the following formula, which almost gives a divide-and-conquer algorithm for Γ(x ):

Γ(x )Γ (x +1/2) = 21−2x
)
πΓ(2x ) . (3.19)

Suppose there were an identity of the form
Γ(2x ) = f (x )Γ (x )2

for some function f such that, when x is an integer, f (x )mod y can be computed in polynomial time for n-digit
integers x and y . Show that then MODULAR FACTORIAL, and therefore FACTORING, would be in P.

3.12

3.14 FFTs for smooth numbers. Let’s generalize the running time of the Fast Fourier Transform to values of n other
than powers of 2. If n has a factor p and we divide the list into p sublists of size n/p , argue that the running time
obeys

T (n ) = p T (n/p )+p n ,

where for the purposes of elegance we omit the Θ on the right-hand-side. Let {pi } be the prime factorization of n ,
with each prime repeated the appropriate number of times: i.e., n =

∏
i pi . Taking the base case T (p ) = p 2 for prime

p , show that the running time is

T (n ) = n
∑

i

pi .

Now, a number is called q-smooth if all of its prime factors are smaller than q . Show that if n is q-smooth for some
constant q , the running time is Θ(n logn ).

3.15 Convolutions and polynomials. Given two functions f , g , their convolution f + g is defined as

( f + g )(t ) =
∑

s

f (s ) g (t − s ) .
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Convolutions are useful in signal processing, random walks, and fast algorithms for multiplying integers and poly-
nomials. For instance, suppose that we have two polynomials whose t th coefficients are given by f (t ) and g (t )

respectively:
P(z ) =

∑

t

f (t )z t , Q(z ) =
∑

t

g (t )z t .

Then show that the coefficients of their product are given by the convolution of f and g ,

P(z )Q(z ) =
∑

t

( f + g )(t )z t .

Now, as in Problem 2.14, let’s represent integers as polynomials, whose coefficients are the integers’ digits. For in-
stance, we can write 729= P(10) where P(z ) = 7z 2+ 2z + 9. Show that, except for some carrying, the product of two
integers is given by the product of the corresponding polynomials, and so in turn by the convolution of the corre-
sponding functions.

3.16 Convolving in Fourier space. Continuing from the previous problem, suppose we have two functions f (t ), g (t )

defined on the integers mod n . Their convolution is

( f + g )(t ) =
n−1∑

s=0

f (s ) g (t − s ) ,

where t −s is now evaluated mod n . How long does it take to calculate f +g from f and g ? Evaluating the sum directly
for each t takes O(n 2) time, but we can do much better by using the Fourier transform.

Show that the Fourier transform of the convolution is the product of the Fourier transforms. More precisely, show
that for each frequency k from 0 to n −1,

=( f + g )(k ) = f̃ (k ) g̃ (k ) .

Thus we can find f + g by Fourier transforming f and g , multiplying them together, and then inverse Fourier trans-
forming the result.

Conclude that if we use the Fast Fourier Transform, we can convolve two functions defined on the integers mod
n in O(n logn ) time. If necessary, we can “pad” the two functions out, repeating one and adding zeros to the other,
so that n is a power of 2. This is the heart of the Schönhage–Strassen algorithm for integer multiplication discussed
in Note 2.5. It is also at the heart of virtually all modern signal processing.

3.17 FFTs for primes. The Fast Fourier Transform described in the text works well if n has many small factors. But
what do we do if n is prime?

First, note that when the frequency is zero, the Fourier transform is just proportional to the average, f̃ (0) =
(1/
)

n )
∑

t f (t ), which we can easily calculate in O(n ) time. So, we focus our attention on the case where k 1= 0, and
write (3.6) as follows:

f̃ (k ) =
1
)

n

n−1∑

t=0

f (t )e−2ıπk t /n =
1
)

n

6
f (0)+S(k )

7

where

S(k ) =
n−1∑

t=1

f (t )e−2ıπk t /n .

Now, for any prime n , there is an integer a whose powers 1, a , a 2, . . . , a n−2, taken mod n , range over every possible t

from 1 to n −1. Such an a is called a primitive root; algebraically, a is a generator of the multiplicative group #∗n (see
Appendix A.7). By writing k = a % and t = a m and rearranging, show that S is the convolution of two functions, each of
which is defined on the integers mod n−1. Since in the previous problem we showed how to convolve two functions
in time O(n logn ), this gives a Fast Fourier Transform even when n is prime.
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3.18 Dynamic Fibonacci. Suppose I wish to calculate the nth Fibonacci number recursively, using the equation F% =

F%−1 + F%−2 and the base case F1 = F2 = 1. Show that if I do this without remembering values of F% that I calculated
before, then the number of recursive function calls is exponentially large. In fact, it is essentially F% itself. Then show
that if I memorize previous values, calculating F% takes only O(%) function calls. (Of course, this is exponential in the
number of digits of %.)

3.19 Divide-and-conquer Fibonacci. Let F% denote the %th Fibonacci number. Starting from the equation F% = F%−1+

F%−2 and the base case F1 = F2 = 1, prove that for any % and any m ≥ 1 we have

F% = Fm+1 F%−m + Fm F%−m−1 . (3.20)

In particular, prove the following:
F2% = F 2

% +2F% F%−1

F2%+1 = F 2
%+1+ F 2

% .
(3.21)

Then show that if % and p are n-bit numbers, we can calculate F% mod p in poly(n ) time. Hint: using (3.21) naively
gives a running time that is polynomial in %, but not in n = log2 %.

3.20 Getting through the paragraph. Show that the TYPESETTING problem can be described as SHORTEST PATH on a
weighted graph with a polynomial number of vertices. What do the vertices of this graph represent, and what are the
weights of the edges between them?

3.21 Alignments are paths. At first, calculating the minimum edit distance d (s , t ) seems like finding a shortest path in
an exponentially large graph, namely the graph of all strings of length n =max(|s |, |t |)where two strings are neighbors
if they differ by a single insertion, deletion, or mutation. However, it can be reduced to SHORTEST PATH on a graph
of size O(n 2) in the following way. For each 0 ≤ i ≤ |s | and 0 ≤ j ≤ |t |, let vij be a vertex corresponding to a point in
the alignment that has already accounted for the first i symbols of s and the first j symbols of t . Show how to assign
weights to the edges between these vertices so that d (s , t ) is the length of the shortest path from v0,0 to v |s |,|t |.

3.22 Increasing subsequences. Given a sequence of integers s1, s2, . . . , sn , an increasing subsequence of length k is a
series of indices i 1 < i 2 < · · ·< i k such that si 1 < si 2 < · · ·< si k

. For instance, the sequence

6, 3, 4, 8, 1, 5, 7, 2, 9

has an increasing subsequence of length 5, namely

3, 4, 5, 7, 9 .

Even though there are an exponential number of possible subsequences, show that the problem of finding the longest
one can be solved in polynomial time.

3.23 A pigeon ascending. Now prove that any sequence s1, . . . , sn of distinct integers has either an increasing subse-
quence, or a decreasing subsequence, of length at least 6

)
n 7. Hint: for each i , let a i and bi , respectively, be the length

of the longest increasing and decreasing subsequence ending with si . Then show that for every i 1= j , either a i 1= a j

or bi 1=b j , and use the pigeonhole principle from Problem 1.2.
3.13

3.24 Multiplying matrices mellifluously. Suppose that I have a sequence of matrices, M (1), . . . , M (n ), where each M (t )

is an a t ×bt matrix and where bt = a t+1 for all 1≤ t < n . I wish to calculate their matrix product M =
∏n

t=1 M (t ), i.e.,
the matrix such that

M ij =

b1∑

%1=1

b2∑

%2=1

· · ·
bn−1∑

%n−1

M (1)
i ,%1

M (2)
%1,%2
· · ·M (n )

%n−1,j .
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3

4 1 5

1 2 2 1 1

FIGURE 3.26: A tree with vertex weights and its maximum-weight independent set.

However, the number of multiplications I need to do this depends on how I parenthesize this product. For instance,
if M (1) is a 1×k row vector, M (2) and M (3) are k ×k matrices, and M (4) is a k ×1 column vector, then

M =
4

M (1) ·M (2)
5
·
4

M (3) ·M (4)
5

takes k 2+k 2+k multiplications, while

M =M (1) ·
44

M (2) ·M (3)
5
·M (4)

5

takes k 3 + k 2 + k multiplications. Show how to find the optimal parenthesization, i.e., the one with the smallest
number of multiplications, in polynomial time.

3.25 Prune and conquer. Suppose I have a graph G = (V, E ) where each vertex v has a weight w (v ). An independent

set is a subset S of V such that no two vertices in S have an edge between them. Consider the following problem:

MAX-WEIGHT INDEPENDENT SET

Input: A graph G = (V, E )with vertex weights w (v )

Question: What is the independent set with the largest total weight?

Use dynamic programming to show that, in the special case where G is a tree, MAX-WEIGHT INDEPENDENT SET is in P.
Hint: once you decide whether or not to include the root of the tree in the set S, how does the remainder of the

problem break up into pieces? Consider the example in Figure 3.26. Note that a greedy strategy doesn’t work.
Many problems that are easy for trees seem to be very hard for general graphs, and we will see in Chapter 5 that

MAX-WEIGHT INDEPENDENT SET is one of these. Why does dynamic programming not work for general graphs?

3.26 Prune and conquer again. Suppose I have a graph G = (V, E )where each edge e has a weight w (e ). Recall that a
matching is a subset M ⊆ E such that no two edges in M share an endpoint. Consider the weighted version of MAX

MATCHING, illustrated in Figure 3.27:

MAX-WEIGHT MATCHING

Input: A graph G = (V, E )with edge weights w (e )

Question: What is the partial matching with the largest total weight?

Using dynamic programming, give a polynomial-time algorithm for this problem in the case where G is a tree, similar
to that for Problem 3.25.


