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Preface

A short analysis of the historical evolution of phasing methods may be a useful
introduction to this book because it will allow us to better understand efforts
and results, the birth and death of scientific paradigms, and it will also explain
the general organization of this volume. This analysis is very personal, and
arises through the author’s direct interactions with colleagues active in the
field; readers interested in such aspects may find a more extensive exposition
in Rend. Fis. Acc. Lincei (2013), 24(1), pp. 71–76.

In a historical sense, crystallographic phasing methods may be subdivided
into two main streams: the small and medium-sized molecule stream, and the
macro-molecule stream; these were substantially independent from each other
up until the 1990s. Let us briefly consider their achievements and the results of
their subsequent confluence.

Small and medium-sized molecule stream
The Patterson (1934) function was the first general phasing tool, particularly
effective for heavy-atom structures (e.g. this property met the requirements
of the earth sciences, the first users of early crystallography). Even though
subsequently computerized, it was soon relegated to a niche by direct methods,
since these were also able to solve light-atom structures (a relevant property
towards the development of organic chemistry).

Direct methods were introduced, in their modern probabilistic guise, by
Hauptman and Karle (1953) and Cochran (1955); corresponding phasing pro-
cedures were automated by Woolfson and co-workers, making the crystal
structure solution of small molecules more straightforward. Efforts were car-
ried out exclusively in reciprocal space (first paradigm of direct methods);
the paradigm was systematized by the neighbourhood (Hauptman, 1975) and
representation theories (Giacovazzo, 1977, 1980). Structures up to 150 non-
hydrogen (non-H) atoms in the asymmetric unit were routinely able to be
solved.

The complete success of this stream may be deduced from the huge num-
bers of structures deposited in appropriate data banks. Consequently, western
national research agencies no longer supported any further research in the
small to medium-sized molecule area (the work was done!); research groups
working on methods moved instead to powder crystallography, electron crys-
tallography, or to proteins, all areas of technological interest for which phasing
was still a challenge. Direct space approaches were soon developed, which
enhanced our capacity to solve structures, even from low quality diffraction
data.
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The macromolecule stream
Since the 1950s, efforts were confined to isomorphous replacement (SIR, MIR;
Green et al., 1954), molecular replacement (MR; Rossmann and Blow, 1962),
and anomalous dispersion techniques (SAD-MAD; Okaya and Pepinsky,
1956; Hoppe and Jakubowski, 1975). Ab initio approaches, the main tech-
niques of interest for the small and medium-sized molecule streams, were
neglected as being unrealistic; indeed, they are less demanding in terms of
prior information but are very demanding in terms of data resolution.

The popularity of protein phasing techniques changed dramatically over the
years. At the very beginning, SIR-MIR was the most popular method, but soon
MR started to play a more major role as good structural models became pro-
gressively more readily available. About 75% of structures today are solved
using MR. The simultaneous technological progress in synchrotron radiation
and its wide availability have increased the appeal of SAD-MAD techniques.

The achievements obtained within the macromolecular stream have been
impressive. A huge number of protein structures has been deposited in the
Protein Data Bank, and the solution of protein structures is no longer confined
to just an elite group of scientists, it is performed in many laboratories spread
over four continents, often by young scientists. Crucial to this has been the role
of the CCP4 project, for the coordination of new methods and new computer
programs.

The synergy of the two streams
It is the opinion of the author that synergy between the two streams ori-
ginated due to a common interest in EDM (electron density modification)
techniques. This approach, first proposed by Hoppe and Gassman (1968) for
small molecules, was later extensively modified to be useful for both streams.
Confluence of the two streams began in the 1990s (even if contacts were begun
in the 1980s), when EDM techniques were used to improve the efficiency of
direct methods. That was the beautiful innovation of shake and bake (Weeks
et al., 1994); both direct and reciprocal space were explored to increase phas-
ing efficiency (this was the second paradigm of direct methods). It was soon
possible to solve ab initio structures with up to 2000 non-hydrogen atoms in the
asymmetric unit, provided data at atomic or quasi-atomic resolution are avail-
able. As a consequence, the ab initio approach for proteins started to attract
greater attention. A secondary effect of the EDM procedures was the recent
discovery of new ab initio techniques, such as charge flipping and VLD (vive
la difference), and the newly formulated Patterson techniques.

The real revolution in the macromolecular area occurred when probabilistic
methods, already widely used in small and medium-sized molecules, erupted
into the protein field. Joint probability distributions and maximum likelihood
approaches were tailored to deal with large structures, imperfect isomorphism,
and errors in experimental data; and they were applied to SAD-MAD, MR, and
SIR-MIR cases. For example, protein substructures with around 200 atoms in
the asymmetric unit, an impossible challenge for traditional techniques, could
easily be solved by the new approaches.
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High-throughput crystallography is now a reality: protein structures,
50 years ago solvable only over months or years, can now be solved in hours
or days; also due to technological advances in computer sciences.

The above considerations have been the basic reason for reconsidering the
material and the general guidelines given in my textbook Direct Phasing in
Crystallography, originally published in 1998. This was essentially a descrip-
tion of the mathematical bases of direct methods and of their historical
evolution, with some references to applicative aspects and ancillary techniques.

The above described explosion in new phasing techniques and the improved
efficiency of the revisited old methods made impellent the need for a new text-
book, mainly addressing the phasing approaches which are alive today, that
is those which are applicable to today’s routine work. On the other hand,
the wide variety of new methods and their intricate relationship with the old
methods requires a new rational classification: methods similar regarding the
type of prior information exploited, mathematical technique, or simply their
mission, are didactically correlated, in such a way as to offer an organized
overview of the current and of the old approaches. This is the main aim of
this volume, which should not therefore simply be considered as the second
edition of Direct Phasing in Crystallography, but as a new book with different
guidelines, different treated material, and a different purpose.

Attention will be focused on both the theoretical and the applicative aspects,
in order to provide a friendly companion for our daily work. To emphasize
the new design the title has been changed to Phasing in Crystallography, with
the subtitle, A Modern Perspective. In order to make the volume more useful,
historical developments of phasing approaches that are not in use today, are
simply skipped, and readers interested in these are referred to Direct Phasing
in Crystallography.

This volume also aims at being a tool to inspire new approaches. On the
one hand, we have tried to give, in the main text, descriptions of the various
methods that are as simple as possible, so that undergraduate and graduate
students may understand their general purpose and their applicative aspects.
On the other hand, we did not shrink from providing the interested reader with
mathematical details and/or demonstrations (these are necessary for any book
dealing specifically with methods). These are confined in suitable appendices
to the various chapters, and aimed at the trained crystallographer. At the end
of the book, we have collected together mathematical appendices of a general
character, appendices denoted by the letter M for mathematics and devoted to
the bases of the methods (e.g. probability theory, basic crystallography, con-
cepts of analysis and linear algebra, specific mathematical techniques, etc.),
thus offering material of interest for professional crystallographers.

A necessary condition for an understanding of the content of the book is a
knowledge of the fundamentals of crystallography. Thus, in Chapter 1 we have
synthesized the essential elements of the general crystallography and we have
also formulated the basic postulate of structural crystallography; the entire
book is based on its validity.

In Chapter 2, the statistics of structure factors is described simply: it will be
the elementary basis of most of the methods described throughout the volume.
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Chapter 3 is a simplified description of the concepts of structure invariant
and seminvariant, and of the related origin problem.

In Chapter 4, we have synthesized the methods of joint probability dis-
tributions and neighbourhoods–representation theories. The application of
these methods to three-phase and four-phase structure invariants are described
in Chapter 5. The probabilistic estimation of structure seminvariants has
been skipped owing to their marginal role in modern phasing techniques.
In Chapter 6, we discuss direct methods and the most traditional phasing
approaches.

Chapter 7 is dedicated to joint probability distribution functions when a
model is available, with specific attention to two- and to three-phase invariants.
The most popular Fourier syntheses are described in the same chapter and their
potential discussed in relation with the above probability distributions.

Chapter 8 is dedicated to phase improvement and extension via electron
density modification techniques, Chapter 9 to two new phasing approaches,
charge flipping and VLD (vive la difference), and Chapter 10, to Patterson
techniques. Their recent revision has made them one of the most powerful
techniques for ab initio phasing and particularly useful for proteins.

X-rays are not always the most suitable radiation for performing a dif-
fraction experiment. Indeed, neutron diffraction may provide information
complementary to that provided by X-ray data, electron diffraction becom-
ing necessary when only nanocrystals are available. In Chapter 11 phasing
procedures useful for this new scenario are described.

Often single crystals of sufficient size and quality are not available, but
microcrystals can be grown. In this case powder data are collected; diffraction
techniques imply a loss of experimental information, and therefore phasing via
such data requires significant modifications to the standard methods. These are
described in Chapter 12.

Chapters 13 to 15 are dedicated to the most effective and popular methods
used in macromolecular crystallography: the non-ab initio methods, Molecular
Replacement (MR), Isomorphous Replacement (SIR-MIR), and Anomalous
Dispersion (SAD-MAD) techniques.

The reader should not think that the book has been partitioned into two
parts, the first devoted to small and medium-sized molecules, the second to
macromolecules. Indeed in the first twelve chapters, most of the mathematical
tools necessary to face the challenges of macromolecular crystallography are
described, together with the main algorithms used in this area and the funda-
mentals of the probabilistic approaches employed in macromolecular phasing.
This design allows us to provide, in the last three chapters, simpler descriptions
of MR, SIR-MIR, and SAD-MAD approaches.
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Symbols and notation

The following symbols and conventions will be used throughout the full text.
The bold character is used for denoting vectors and matrices.

h·r the dot indicates the scalar product of the two vectors h and r
a ∧ b cross-product of the two vectors a and b
Ā the bar indicates the transpose of the matrix A
s.f. structure factor
n.s.f. normalized structure factor
s.i. structure invariant
s.s. structure seminvariant
cs. centrosymmetric
n.cs. non-centrosymmetric
RES experimental data resolution (in Å)
CORR correlation between the electron density map of the target

structure (the one we want to solve) and that of a model map

Rcryst =
∑

h ||Fobs|−|Fcalc||∑
h |Fobs| crystallographic residual

SIR-MIR single–multiple isomorphous replacement
SAD-MAD single–multiple anomalous dispersion
MR molecular replacement





Fundamentals
of crystallography 1
1.1 Introduction
In this chapter we summarize the basic concepts, formulas and tables which
constitute the essence of general crystallography. In Sections 1.2 to 1.5 we
recall, without examples, definitions for unit cells, lattices, crystals, space
groups, diffraction conditions, etc. and their main properties: reading these
may constitute a useful reminder and support for daily work. In Section 1.6
we establish and discuss the basic postulate of structural crystallography: this
was never formulated, but during any practical phasing process it is simply
assumed to be true by default. We will also consider the consequences of such
a postulate and the caution necessary in its use.

1.2 Crystals and crystallographic symmetry
in direct space

We recall the main concepts and definitions concerning crystals and crystallo-
graphic symmetry.
Crystal. This is the periodic repetition of a motif (e.g. a collection of molecules,
see Fig. 1.1). An equivalent mathematical definition is: the crystal is the con-
volution between a lattice and the unit cell content (for this definition see
(1.4) below in this section).
Unit cell. This is the parallelepiped containing the motif periodically repeated
in the crystal. It is defined by the unit vectors a, b, c, or, by the six scalar
parameters a, b, c, α,β, γ (see Fig. 1.1). The generic point into the unit cell is
defined by the vector

r = x a + y b + z c,

where x, y, z are fractional coordinates (dimensionless and lying between
0 and 1). The volume of the unit cell is given by (see Fig. 1.2)

V = a ∧ b · c = b ∧ c · a = c ∧ a · b. (1.1)
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molecule unit cell crystal

B

C

a

b

c

β
α

γ

A

Fig. 1.1
The motif, the unit cell, the crystal.

Dirac delta function. In a three-dimensional space the Dirac delta function
δ(r − r0) is defined by the following properties:

δ = 0 for (r �= r0), δ = ∞ for (r = r0),
∫

S
δ(r − r0)dr = 1,

where S is the full r space. The function δ is highly discontinuous and is
qualitatively represented in Fig. 1.3 as a straight line.

Crystal lattice. This describes the repetition geometry of the unit cell (see
Fig. 1.4). An equivalent mathematical definition is the following: a crystal
lattice is represented by the lattice function L(r), where

L(r) =
∑+∞

u,v,w=−∞ ∂(r − ru,v,w); (1.2)

where ∂(r − ru,v,w) is the Dirac delta function centred on ru,v,w = ua + vb + wc
and u,v,w are integer numbers.

h

c

a Ù b

b

a
γ

Fig. 1.2
The vector a ∧ b is perpendicular to the
plane (a, b): its modulus |ab sin γ | is
equal to the shaded area on the base. The
volume of the unit cell is the product of
the base area and h, the projection of
c over the direction perpendicular to the
plane (a, b). Accordingly, V = (a ∧ b) · c.

Convolution. The convolution of two functions ρ(r) and g(r) (this will be
denoted as ρ(r) ⊗ g(r)) is the integral

C(u) = ρ(r) ⊗ g(r) =
∫

S
ρ(r)g(u − r)dr. (1.3)

The reader will notice that the function g is translated by the vector u and
inverted before being integrated.

xxo

δ

Fig. 1.3
Schematic representation of the Dirac
function δ(x − xo).

The convolution of the function ρ(r), describing the unit cell content, with
a lattice function centred in r0, is equivalent to shifting ρ(r) by the vector r0.
Indeed

δ(r − r0) ⊗ ρ(r) = ρ(r − r0).

Accordingly, the convolution of ρ(r) with the lattice function L(r) describes the
periodic repetition of the unit cell content, and therefore describes the crystal
(see Fig. 1.5):

L(r) ⊗ ρ(r) =
∑+∞

u,v,w=−∞ ∂(r − ru,v,w) ⊗ ρ(r) =
∑+∞

u,v,w=−∞ ρ(r − ru,v,w).

(1.4)
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Primitive and centred cells. A cell is primitive if it contains only one lat-
tice point and centered if it contains more lattice points. The cells useful in
crystallography are listed in Table 1.1: for each cell the multiplicity, that is
the number of lattice points belonging to the unit cell, and their positions are
emphasized.

Fig. 1.4
The unit cell (bold lines) and the corres-
ponding lattice.

Symmetry operators. These relate symmetry equivalent positions. Two posi-
tions r and r′ are symmetry equivalent if they are related by the symmetry
operator C = (R, T), where R is the rotational component and T the transla-
tional component. More explicitly,
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∣

, (1.5)

g(x)f(x)

f(x,y)

f(x)Äg(x)

x a

O a O a

x a x

Fig. 1.5
The convolution of the motif f with a
delta function is represented in the first
line. In the second line f is still the motif,
g is a one-dimensional lattice, f (x) ⊗ g(x)
is a one-dimensional crystal. In the third
line, a two-dimensional motif and lattice
are used.

Table 1.1 The conventional types of unit cell and corresponding lattice multiplicity

Symbol Type Positions of additional
lattice points

Number of lattice
points per cell

P Primitive — 1
I body-centred (1/2, 1/2, 1,2) 2
A A-face centred (0, 1/2, 1/2) 2
B B-face centred (1/2, 0, 1/2) 2
C C-face centred (1/2, 1/2, 0) 2
F All faces centred (1/2, 1/2, 0), (1/2, 0, 1/2)

(0, 1/2, 1/2)
4

R Rhombohedrally centred
(description with
‘hexagonal axes’)

(1/3, 2/3, 2/3),
(2/3, 1/3, 1/3)

3
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where (x′,y′,z′) and (x,y,z) are the coordinates of r′ and r respectively. In a
vectorial form,

r′ = Rr + T.

If the determinant |R| = 1 the symmetry operator is proper and refers to objects
directly congruent; if |R| = −1 the symmetry operator is improper and refers
to enantiomorph objects. The type of symmetry operator may be identified
according to Table 1.2:

Table 1.2 Trace and determinant of the rotation matrix for crystallographic symmetry
operators

Element 1 2 3 4 6 1̄ 2̄ 3̄ 4̄ 6̄
trace 3 1̄ 0 1 2 3̄ 1 0 1̄ 2̄
determinant 1 1 1 1 1 1̄ 1̄ 1̄ 1̄ 1̄

Point group symmetry. This is a compatible combination of symmetry operat-
ors, proper or improper, without translational components, and intersecting at
one point. The number of crystallographic point groups is 32 and their sym-
bols are shown in Table 1.3. Most of the physical properties depend on the
point group symmetry of the crystal (they show a symmetry equal to or larger
than the point group symmetry: Neumann principle).
Crystal systems. Crystals belonging to point groups with common features
can be described by unit cells of the same type. For example, crystals with
only three twofold axes, no matter if proper or improper, can be described
by an orthogonal cell. These crystals then belong to the same crystal system,
the orthorhombic system. The relations between crystal system-point groups
are shown in Table 1.4. For each system the allowed Bravais lattices, the
characterizing symmetry, and the type of unit cell parameters are reported.

Table 1.3 List of the 32 crystal point groups, Laue groups, and lattice point groups

Crystal
systems

Point groups Laue classes Lattice point groups

Non-centrosymmetric Centrosymmetric

Triclinic 1 1̄ 1̄ 1̄

Monoclinic 2 m 2/m 2/m 2/m

Orthorhombic 222 mm2 mmm mmm mmm

Tetragonal

[
4

422
4̄
4mm, 4̄2m

4/m
4/mmm

4/m
4/mmm

]

4/mmm

Trigonal

[
3

32 3m
3̄
3̄m

3̄
3̄m

]

3̄m

Hexagonal

[
6

622
6̄
6mm, 6̄2m

6/m
6/mmm

6/m
6/mmm

]

6/mmm

Cubic

[
23

432 4̄3m
m3̄
m3̄m

m3̄
m3̄m

]

m3̄m
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Table 1.4 Crystal systems, characterizing symmetry and unit cell parameters

Crystal system Bravais
type(s)

Characterizing symmetry Unit cell properties

Triclinic P None a, b, c, α, β, γ
Monoclinic P, C Only one 2-fold axis a, b, c, 90◦, β, 90◦
Orthorhombic P, I, F Only three perpendicular 2-fold axes a, b, c, 90◦, 90◦, 90◦
Tetragonal P, I Only one 4-fold axis a, a, c, 90◦, 90◦, 90◦
Trigonal P, R Only one 3-fold axis a, a, c, 90◦, 90◦, 120◦
Hexagonal P Only one 6-fold axis a, a, c, 90◦, 90◦, 120◦
Cubic P, F, I Four 3-fold axes a, a, a, 90◦, 90◦, 90◦

Space groups. Three-dimensional crystals show a symmetry belonging to one
of the 230 space groups reported in Table 1.5. The space group is a set of
symmetry operators which take a three- dimensional periodic object (say a
crystal) into itself. In other words, the crystal is invariant under the symmetry
operators of the space group.

The space group symmetry defines the asymmetric unit: this is the smallest
part of the unit cell applying to which the symmetry operators, the full con-
tent of the unit cell, and then the full crystal, are obtained. This last statement
implies that the space group also contains the information on the repetition
geometry (this is the first letter in the space group symbol, and describes the
type of unit cell).

1.3 The reciprocal space
We recall the main concepts and definitions concerning crystal reciprocal
space.
Reciprocal space. In a scattering experiment, the amplitude of the wave (say
F(r∗), in Thomson units) scattered by an object represented by the function
ρ(r), is the Fourier transform of ρ(r):

F(r∗) = T[ρ(r)] =
∫

S
ρ(r) exp(2π ir∗ · r)dr, (1.6)

where T is the symbol of the Fourier transform, S is the full space where the
scattering object is immersed, r∗ = s − s0 is the difference between the unit
vector s, oriented along the direction in which we observe the radiation, and the
unit vector s0 along which the incident radiation comes (see Fig. 1.6). We recall
that |r∗| = 2 sin θ/λ, where 2θ is the angle between the direction of incident
radiation and the direction along which the scattered radiation is observed, and
λ is the wavelength. We will refer to r∗ as to the generic point of the reciprocal
space S∗, the space of the Fourier transform.

F(r∗) is a complex function, say F(r∗) = A(r∗) + iB(r∗). It may be shown
that, for two enantiomorphous objects, the corresponding F(r∗) are the com-
plex conjugates of each other: they therefore have the same modulus |F(r∗)|.
As a consequence, for a centrosymmetrical object, F(r∗) is real.
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Table 1.5 The 230 three-dimensional space groups arranged by crystal systems and point
groups. Point groups not containing improper symmetry operators are in a square box (the cor-
responding space groups are the only ones in which proteins may crystallize). Space groups
(and enantiomorphous pairs) that are uniquely determinable from the symmetry of the diffraction
pattern and from systematic absences (see Section 1.5) are shown in bold type

Crystal system Point group Space groups

Triclinic 1 P1
1̄ P1̄

Monoclinic 2 P2, P21, C2
m Pm, Pc, Cm, Cc
2/m P2/m, P21/m, C2/m, P2/c, P21/c, C2/c

Orthorhombic 222 P222, P2221, P21212, P212121, C2221, C222, F222,
I222, I212121

mm2 Pmm2, Pmc21, Pcc2, Pma21, Pca21, Pnc21, Pmn21,
Pba2, Pna21, Pnn2, Cmm2, Cmc21, Ccc2, Amm2,
Abm2, Ama2, Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2

mmm Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca,
Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma,
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm,
Fddd, Immm, Ibam, Ibca, Imma

Tetragonal 4 P4, P41, P42, P43, I4, I41

4̄ P4̄, I4̄
4/m P4/m, P42/m, P4/n, P42/n, I4/m, I41/a
422 P422, P4212, P4122, P41212, P4222, P42212, P4322,

P43212, I422, I4122
4mm P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc,

P42bc, I4mm, I4cm, I41md, I41cd
4̄m P4̄2m, P4̄2c, P4̄21m, P4̄21c, P4̄m2, P4̄c2, P4̄b2, P4̄n2,

I4̄m2, I4̄c2, I4̄2m, I4̄2d
4/mmm P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc,

P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc,
P42/nnm, P42/mbc, P42mnm, P42/nmc, P42/ncm,
I4/mmm, I4/mcm, I41/amd, I41/acd

Trigonal–hexagonal 3 P3, P31, P32, R3
3̄ P3̄, R3̄
32 P312, P321, P3112, P3121, P3212, P3221, R32
3m P3m1, P31m, P3c1, P31c, R3m, R3c
3̄m P3̄1m, P3̄1c, P3̄m1, P3̄c1, R3̄m, R3̄c
6 P6, P61, P65, P63, P62, P64

6̄ P6̄
6/m P6/m, P63/m
622 P622, P6122, P6522, P6222, P6422, P6322
6mm P6mm, P6cc, P63cm, P63mc
6̄m P6̄m2, P6̄c2, P6̄2m, P6̄2c
6/mmm P6/mmm, P6/mcc, P63/mcm, P63/mmc

Cubic 23 P23, F23, I23, P213, I213
m3̄ Pm3̄, Pn3̄, Fm3̄, Fd3̄, Im3̄, Pa3̄, Ia3̄
432 P432, P4232, F432, F4132, I432, P4332, P4132, I4132
4̄3m P4̄3m, F43m, I4̄3m, P43n, F4̄3c, I4̄3d
m3̄m Pm3̄m, Pn3̄n, Pm3̄n, Pn3̄m, Fm3̄m, Fm3̄c, Fd3̄m, Fd3̄c,

Im3̄m, Ia3̄d
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B

r*

C

AsO/λ

s/λ

2J

O

s

sO

Fig. 1.6
The scatterer is at O, so and s are unit
vectors, the first along the incident X-ray
radiation, the second along the direc-
tion in which the scattered intensity is
observed. To calculate |r∗| it is sufficient
to notice that the triangle AOB is iso-
sceles and that point C divides AB into
two equal parts.

ρ(r) may be recovered via the inverse Fourier transform of F(r∗):

ρ(r) = T−1[F(r∗)] =
∫

S∗
F(r∗) exp(−2π ir∗ · r)dr∗. (1.7)

The reciprocal lattice. It is usual in crystallography to take, as a reference sys-
tem for the reciprocal space, the reciprocal vectors a∗, b∗, c∗, defined below.
Given a direct lattice, with unit vectors a, b, c, its reciprocal lattice is identified
by the vectors a∗, b∗, c∗ satisfying the following two conditions:

1. a∗ ∧ b = a∗ ∧ c = b∗ ∧ a = b∗ ∧ c = c∗ ∧ a = c∗ ∧ b = 0
2. a∗ · a = b∗ · b = c∗ · c = 1

Condition 1 defines the orientation of the reciprocal basis vectors (e.g. a∗ is
perpendicular to b and c, etc.), whereas condition 2 fixes their modulus. From
the above conditions the following relations arise:

(i) a∗ = 1

V
b ∧ c, b∗ = 1

V
c ∧ a, c∗ = 1

V
a ∧ b, V∗ = V−1, (1.8)

(ii) the scalar product of the two vectors r = xa + yb + zc and r∗ = x∗a∗ +
y∗b∗ + z∗c∗, one defined in direct and the other in reciprocal space,
reduces to the sum of the products of the corresponding coordinates:

r · r∗ = x∗x + y∗y + z∗z = X̄
∗
X = ∣

∣x∗y∗z∗ |
∣
∣
∣
∣
∣
∣

x
y
z

∣
∣
∣
∣
∣
∣
; (1.9)

(iii) the generic reciprocal lattice point is defined by the vector r∗
hkl = ha∗ +

kb∗ + lc∗, with integer values of h, k, l. We will also denote it by r∗
H or r∗

h,
where H or h represent the triple h,k,l.

(iv) r∗
hkl represents the family (in direct space) of lattice planes with Miller

indices (hkl). Indeed r∗
hkl is perpendicular to the planes of the family (hkl)

and its modulus is equal to the spacing of the planes (hkl): i.e.

r∗
hkl⊥(hkl), and |r∗

hkl| = 1/dhkl. (1.10)

(v) the reciprocal lattice may be represented by the reciprocal lattice function

L(r∗) = 1

V

∑+∞
h,k,l=−∞ ∂

(
r∗ − r∗

H

)
; (1.11)
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L(r∗) is the Fourier transform of the direct lattice:

L(r∗) = T[L(r)] = T
[∑+∞

u,v,w=−∞ ∂(r − ru,v,w)
]

= 1

V

∑

H
∂(r∗ − r∗

H). (1.12)

Atomic scattering factor f (r∗). This is the amplitude, in Thomson units, of the
wave scattered by the atom and observed at the reciprocal space point r∗. f (r∗)
is the Fourier transform of the atomic electron density ρa:

f (r∗) = T[ρa(r)] =
∫

S
ρa(r) exp(2π ir∗ · r)dr. (1.13)

Usually ρa(r) includes thermal displacement: accordingly, under the isotropic
scattering assumption,

f (r∗) = f0(r∗) exp
(−Br∗2/4) = f0(r∗) exp(−B sin2 θ/λ2

)
, (1.14)

where f0(r∗) is the scattering factor of the atom at rest, and B is the isotropic
temperature factor. At r∗ = 0, f (r∗) is maximum (then f (r∗) = Z, where Z
is the atomic number). The decay with r∗ is sharper for high B values (see
Fig. 1.7).
Molecular scattering factor FM(r∗). This is the amplitude, in Thomson units,
of the wave scattered by a molecule, observed at the reciprocal space point r∗.
It is the Fourier transform of the electron density of the molecule:

FM(r∗) = T[ρM(r)] =
∫

S

∑N

j=1
ρaj(r − rj) exp(2π ir∗ · r)dr

=
∑N

j=1
fj exp(2π ir∗ · rj),

(1.15)

where ρM(r) is the electron density of the molecule and N is the corresponding
number of atoms. FM(r∗) is a continuous function of r∗.
Structure factor FM(r∗) of a unit cell. This is the amplitude, in Thomson
units, of the wave scattered by all the molecules contained in the unit cell and
observed at the reciprocal space point r∗. FM(r∗) is the Fourier transform of
the electron density of the unit cell:

FM(r∗) = T[ρM(r)] =
∫

S

∑N

j=1
ρaj(r − rj) exp

(
2π ir∗ · r

)
dr

=
∑N

j=1
fj exp

(
2π ir∗ · rj

)
.

(1.16)

16fs
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0
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B = 0
B = 2
B = 5

sin θ/λ

Fig. 1.7
Scattering factor of sulphur for different
values of the temperature factor.
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ρM(r) is now the electron density in the unit cell, N is the corresponding
number of atoms, and FM(r∗) is a continuous function of r∗. The reader will
certainly have noted that we have used for the unit cell the same notation
employed for describing the scattering from a molecule: indeed, from a phys-
ical point of view, the unit cell content may be considered to be a collection of
molecules.
Structure factor F(r∗) for a crystal. This is the amplitude, in Thomson units, of
the wave scattered by the crystal as observed at the reciprocal space point r∗.
It is the Fourier transform of the electron density of the crystal. In accordance
with equation 1.4

F(r∗) = T[ρcr(r)] = T[ρM(r) ⊗ L(r)]

and, owing to the convolution theorem,

F(r∗) = T[ρM(r)] · T[L(r)] = FM(r∗) · 1

V

∑

H
∂(r∗ − r∗

H). (1.17)

F(r∗) is now a highly discontinuous function which is different from zero only
at the reciprocal lattice points defined by the vectors r∗

H. From now on, FM(r∗
H)

will be written as FH and will simply be called the structure factor. The study
of FH and of its statistical properties is basic for phasing methods.
Limits of a diffraction experiment. Diffraction occurs when r∗

H meet the Ewald
sphere (see Fig. 1.8). A diffraction experiment only allows measurement of
reflections with r∗

H contained within the limiting sphere (again, see Fig. 1.8).
Data resolution is usually described in terms of the maximum measurable
value of |r∗

H| (say |r∗
H|max): in this case the resolution is expressed in Å−1.

More frequently, because of equation (1.10), in terms of the minimum meas-
urable value of dH (say (dH)min): in this case data resolution is expressed in
Å. Accordingly, stating that data resolution is 2 Å is equivalent to saying that
only reflections with dH > 2 Å were measured. Severe resolution limits are
frequent for proteins: often reflections inside and close to the limiting sphere
cannot be measured because of the poor quality of the crystal. Usually, better

Ewald sphere

Limiting sphere

(2/λ)

1/λ O

r*-
14

Fig. 1.8
Ewald and limiting spheres.
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data can be collected, not by diminishing λ, but by performing the experi-
ment in cryo-conditions, to fight decay of the scattering factor due to thermal
displacement.
Electron density calculations. According to equation (1.17), the electron dens-
ity in a point r having fractional coordinates (x,y,z) may be estimated via the
Fourier series

ρ(r) = 1

V

∑∞
h=−∞

∑∞
k=−∞

∑∞
l=−∞ Fhkl exp[−2π i(hx + ky + lz)]

= 2

V

∑∞
h=0

∑∞
k=−∞

∑∞
l=−∞ |Fhkl| cos[φhkl − 2π (hx + ky + lz)].

(1.18)

The last term is obtained by applying the Friedel law, and shows that the elec-
tron density is a real function. As previously recalled, there are limitations
to the number of measurable reflections: accordingly, series (1.18) will show
truncation effects which are more and more severe as soon as the resolution
becomes worse (see Fig. 1.9 and Section 7.3.1).
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Fig. 1.9
Electron density maps of a (non-realistic) four-atom one-dimensional structure. Data up to: (a) 0.9 Å; (b) 1.5 Å; (c) 2 Å; (d) 3 Å. In all cases true
phases have been used: the differences between the maps are only due to truncation effects. Changes in peak intensity and positions are clearly
visible.



The structure factor 11

1.4 The structure factor
The structure factor Fh plays a central role in phasing methods: its simple geo-
metrical interpretation is therefore mandatory. Let N be the number of atoms
in the unit cell, fj the scattering factor of the jth atom, and xj, yj, zj its fractional
coordinates: then

Fh =
∑N

j=1
fj exp

(
2π i h · rj

) =
∑N

j=1
fj exp

[
2π i(hxj + kyj + lzj)

]
. (1.19)

fj includes the thermal displacement and must be calculated at the sin θ/λ cor-
responding to the reflection h: to do that, firstly, the modulus of the vector
r∗

hkl = ha∗ + kb∗ + lc∗ should be calculated and then, by using the equation
|r∗| = 2 sin θ/λ, the searched f value may be obtained.

Let us rewrite (1.19) in the form

Fh =
∑N

j=1
fj exp(iαj) = |Fh| exp(iφh) = Ah + iBh, (1.20)

where

αj = 2πh · rj, Ah =
∑N

j=1
fj cos(2πh · rj),

Bh =
∑N

j=1
fj sin(2πh · rj).

On representing Fh in an Argand diagram (Fig. 1.10), we obtain a vectorial
diagram with N vectors each characterized by a modulus fj and an angle αj

with the real axis: the value

φh = tan−1(Bh/Ah) (1.21)

depends on the moduli and on the mutual orientation of the vectors fj and is
said to be the phase of Fh.

In a space group with symmetry higher than P1, with point group symmetry
of order m, for each atomic position rj, located in the asymmetric unit, there
are m symmetry equivalent positions

rjs = Rsrj + Ts.

f5

f6

f7
f4

f3

f2
f1

α5

α6

α7α4

α1 α2

φh

Fh

α3

im
ag

. a
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s

real axis

Fig. 1.10
The structure factor Fh is represented
in the Argand plane as the sum of
N = 7 fj vectors, with modulus fj and
phase angle αj.
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Then the structure factor takes the form

Fh =
∑t

j=1
fj
∑m

s=1
exp 2π ih(Rsrj + Ts)

where t is the number of atoms in the asymmetric unit.

1.5 Symmetry in reciprocal space
A diffraction experiment allows us to see the reciprocal space: it is then very
important to understand which symmetry relations can be discovered there as
a consequence of the symmetry present in direct space. Here we summarize
the main effects.

1.5.1 Friedel law

In accordance with equation (1.20) we write Fh = Ah + iBh. Then it will follow
that F–h = Ah − iBh, and consequently

φ−h = −φh. (1.22)

The value of φ–h is the opposite of the value of φh, see Fig. 1.11. Since

Ih = (Ah − iBh)(Ah + iBh) = A2
h + B2

h,

I−h = (Ah + iBh)(Ah − iBh) = A2
h + B2

h,

we deduce the Friedel law, according to which the diffraction intensities asso-
ciated with the vectors h and –h of reciprocal space are equal. Since these
intensities appear to be related by a centre of symmetry, usually, although
imperfectly, it is said that the diffraction by itself introduces a centre of
symmetry.

real axis

Fh

F–h

φh

–φh

im
ag

. a
xi

s

Fig. 1.11
The Friedel law. 1.5.2 Effects of symmetry operators in reciprocal space

Let us suppose that the symmetry operator C = (R, T) exists in direct space.
We wonder what kind of relationships the presence of the operator C brings in
reciprocal space.

Since

Fh̄R exp
(
2π ih̄T

) =
N∑

j=1
fj exp

(
2π ih̄RXj

) · exp
(
2π ih̄T

)

=
N∑

j=1
fj exp

[
2π ih̄(RXj + T)

] = Fh,

we can write

Fh̄R = Fh exp(−2π ih̄T). (1.23)

Sometimes it is convenient to split equation (1.23) into two relations, the first
involving moduli and the second the phases

|Fh̄R| = |Fh|, (1.24)

φh̄R = φh − 2π h̄T. (1.25)
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From (1.23) it is concluded that intensities Ih and Ih̄R are equal, while their
phases are related by equation (1.25).

Reflections related by (1.24) and by the Friedel law are said to be sym-
metry equivalent reflections. For example, in P2 the set of symmetry equivalent
reflections is

|Fhkl| = |Fh̄kl̄| = |Fh̄k̄l̄| = |Fhk̄l|. (1.26)

The reader will easily verify that space groups P4, P4̄, and P4/m show the
following set of symmetry equivalent reflections:

|Fhkl| = |F
h̄k̄l

| = |Fk̄hl| = |Fkh̄l| = |F
h̄k̄ l̄

| = |Fhkl̄|, = |Fkh̄ l̄| = |Fk̄hl̄|.

1.5.3 Determination of reflections with restricted phase values

Let us suppose that for a given set of reflections the relationship h̄R = −h̄
is satisfied. If we apply (1.25) to this set we will obtain 2φh = 2π h̄T + 2nπ ,
from which

φh = π h̄T + nπ . (1.27)

Equation (1.27) restricts the phase φh to two values, π h̄T or π (h̄T + 1). These
reflections are called reflections with restricted phase values, or less correctly,
‘centrosymmetric’.

If the space group is centrosymmetric (cs.) the inversion operator

R =

∣
∣
∣
∣
∣
∣
∣

1̄ 0 0

0 1̄ 0

0 0 1̄

∣
∣
∣
∣
∣
∣
∣

, T =
∣
∣
∣
∣
∣
∣

T1

T2

T3

∣
∣
∣
∣
∣
∣

will exist. In this case every reflection is a restricted phase reflection and will
assume the values π h̄T or π (h̄T + 1). If the origin is assumed to be the centre
of symmetry then T = 0 and the permitted phase values are 0 and π . Then Fh

will be a real positive number when φh is equal to 0, and a negative one when
φh is equal to π . For this reason we usually talk in cs. space groups about the
sign of the structure factor rather than about the phase.

In Fig. 1.12, Fh is represented as an Argand diagram for a centrosymmetric
structure of six atoms. Since for each atom at rj another symmetry equivalent
atom exists at –rj, the contribution of every couple to Fh. will have to be real.

im
ag

. a
xi

s

real axis

f3f3

f1f1

f2 f2

Fh

α3
α1

α2 –α2–α1
–α3

Fig. 1.12
Fh is represented in the Argand plane for
a cs. crystal structure with N = 6. It is
αj = 2πH̄Xj.
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Table 1.6 Restricted phase reflections for the 32 point groups

Point group Sets of restricted phase reflections

1 None
1̄ All
m (0, k, 0)
2 (h, 0, l)
2/m All
mm2 [(h, k, 0) masks (h, 0, 0), (0, k, 0)]
222 Three principal zones only
mmm All
4 (h, k, 0)
4̄ (h, k, 0); (0, 0, l)
4/m All
422 (h, k, 0); {h, 0, l}; {h, h, l}
4̄2m [(h, k, 0), {h, h, 0}]; [{h, 0, l}, (0, 0, l)]
4mm [(h, k, 0), {h, 0, 0}, {h, h, 0}]
4/mmm All
3 None
3̄ All
3m {h, 0, h̄, 0}
32 {h, 0, h̄, l}
3̄m All
6 (h, k, 0)
6̄ (0, 0, l)
6/m All
6̄m2 [{h, h, l}, {h, h, 0}, (0, 0, l)]
6mm [(h, k, 0), {h, h, 0}, {h, 0, 0}]
62 (h, k, 0); (h, 0, l); (h, h, l)
6/mmm All
23 {h, k, 0}
m3̄ All
4̄3m [{h, k, 0}, {h, h, 0}]
432 {h, k, 0}; {h, h, l}
m3̄m All

As an example of a non-centrosymmetric (n.cs.) space group let us examine
P212121,

[
(x, y, z),

(
1
2 − x, ȳ, 1

2 + z
)
,
(

1
2 + x, 1

2 − y, z̄
)
,
(
x̄, 1

2 + y, 1
2 − z

)]
, where

the reflections (hk0), (0kl), (h0l) satisfy the relation h̄R = −h for R =
R2, R3, R4 respectively. By introducing T = T2 in equation (1.27) we obtain
φhk0 = (πh/2) + nπ. Thus φhk0 will have phase 0 or π if h is even and phase
±π /2 if h is odd. By introducing T = T3 in equation (1.27) we obtain
φ0kl = (πk/2) + nπ : i.e. φ0kl will have phase 0 or π if k is even and ±π /2
if k is odd. In the same way, by introducing T = T4 in equation (1.27) we
obtain φh0l = (π l/2) + nπ : i.e. φh0l will have phase 0 or π if l is even and
±π /2 if l is odd. In Table 1.6 the sets of restricted phase reflections are given
for the 32 point groups.

Table 1.7 If hR = −h the allowed
phase values φa of Fh are πhT and
πhT + π . Allowed phases are multiples
of 15◦ and are associated, in direct
methods programs, with a symmetry
code (SCODE). For general reflections
SCODE = 1

φ
(0)
a SCODE

Any 1
(30,210) 3
(45,225) 4
(60,240) 5
(90,270) 7
(120,300) 9
(135,315) 10
(150,330) 11
(180,360) 13

The allowed values of restricted phases depend on the translational
component of the symmetry element and on its location with respect
to the cell origin. For conventional three-dimensional space groups the
allowed phase values are multiples of 15◦. In Table 1.7 the different types
of phase restriction are shown: in the second column the characteristic
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codes associated in direct methods programs with the various restrictions
are quoted. It should not be forgotten that symmetry equivalent reflections
can have different allowed phase values. For example, in the space group
P41212

[
(x, y, z) ;

(
x̄, ȳ, z + 1

2

)
;
(

ȳ + 1
2 , x + 1

2 , z + 1
4

)
;
(

y + 1
2 , x̄ + 1

2 , z + 3
4

)
;

(
x̄ + 1

2 , y + 1
2 , z̄ + 1

4

)
;
(
x + 1

2 , ȳ + 1
2 , z̄ + 3

4

)
; ( y, x, z̄);

(
ȳ, x̄, z̄ + 1

2

)]
, the reflec-

tion (061) has phase values restricted to (–(π /4), 3π /4). Its equivalent
reflections are also symmetry restricted, but the allowed phase values may
be different from (–(π /4), 3π /4). On the assumption that φ061 = 3π /4, the
reader will find for the equivalent reflections the phase restrictions shown in
Fig. 1.13. φ

061
, φ

601
- - -φ

601
, φ

061
- --

φ
061

, φ
601

- φ
601

, φ
061

-

Fig. 1.13
Phase restrictions for the reflection
(061) and its symmetry equivalents.

1.5.4 Systematic absences

Let us look for the class of reflections for which h̄R = h̄ and apply equation
(1.23) to them. This relation would be violated for those reflections for which
h̄T is not an integer number unless |Fh| = 0. From this fact the rule follows:
reflections for which h̄R = h̄ and h̄T is not an integer will have diffraction
intensity zero or, as is usually stated, will be systematically absent or extinct.
Let us give a few examples.

In the space group P21
[
(x, y, z) ,

(
x̄, y + 1

2 , z̄
)]

, the reflections (0k0) satisfy
the condition h̄R2 = h̄. If k is odd, h̄T2 is semi-integer. Thus, the reflections
(0k0) with k �= 2n are systematically absent.

In the space group P41
[
(x, y, z) ,

(
x̄, ȳ, 1

2 + z
)
,
(
ȳ, x, 1

4 + z
)
,
(
y, x̄, 3

4 + z
)]

,
only the reflections (00l) satisfy the condition hRj = h for j = 2,3,4. Since
h̄T2 = l/2, h̄T3 = l/4, h̄T4 = 3l/4, the only condition for systematic absence
is l �= 4n, with n integer.

In the space group Pc
[
(x, y, z),

(
x, ȳ, z + 1

2

)]
, the reflections (h0l) satisfy the

condition h̄R2 = h̄. Since h̄R2 = l/2, the reflections (h0l) with l �= 2n will be
systematically absent.

Note that the presence of a slide plane imposes conditions for systematic
absences to bidimensional reflections. In particular, slide planes opposite to
a, b, and c impose conditions to classes (0kl), (h0l), and (hk0) respectively.
The condition will be h = 2n, k = 2n, l = 2n for the slide planes of type a, b,
or c respectively.

Let us now apply the same considerations to the symmetry operators cent-
ring the cell. If the cell is of type A, B, C, I, symmetry operators will exist
whose rotational matrix is always the identity, while the translational matrices
are

TA =

⎡

⎢
⎢
⎢
⎢
⎣

0
1

2
1

2

⎤

⎥
⎥
⎥
⎥
⎦

TB =

⎡

⎢
⎢
⎢
⎢
⎣

1

2
0
1

2

⎤

⎥
⎥
⎥
⎥
⎦

TC =

⎡

⎢
⎢
⎢
⎢
⎣

1

2
1

2
0

⎤

⎥
⎥
⎥
⎥
⎦

TI =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2
1

2
1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

respectively. If we use these operators in equation (1.24) , we find that (1) the
relation h̄R = h̄ is satisfied for any reflection and (2) the systematic absences,
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of three-dimensional type, are k + l = 2n, h + l = 2n, h + k = 2n, h + k + l = 2n,
respectively.

A cell of type F is simultaneously A-, B-, and C-centred, so the
respective conditions for systematic absences must be simultaneously valid.
Consequently, only the reflections for which h, k, and l are all even or all odd
will be present.

The same criteria lead us to establish the conditions for systematic absences
for rhombohedral lattices (−h + k + l �= 3n for obverse setting and
h − k + l �= 3n for reverse setting). The list of systematic absences for any
symmetry element is given in Table 1.8.

Table 1.8 Systematic absences

Symmetry elements Set of reflections Conditions

Lattice P hkl None
I h + k + l = 2n
C h + k = 2n
A k + l = 2n
B h + l = 2n

F

⎧
⎨

⎩

h + k = 2n
k + l = 2n
h + l = 2n

Robv –h + k + l = 3n
Rrev h – k + l = 3n

Glide plane || (001) a hk0 h = 2n
b k = 2n
n h + k = 2n
d h + k = 4n

Glide plane || (100) b 0kl k = 2n
c l = 2n
n k + l = 2n
d k + l = 4n

Glide plane || (010) a h0l h = 2n
c l = 2n
n h + l = 2n
d h + l = 4n

Glide plane || (110) c hhl l = 2n
b h = 2n
n h + l = 2n
d 2h + l = 4n

Screw axis || c 21, 42, 63 00l l = 2n
31, 32, 62, 64 l = 3n
41, 43 l = 4n
61, 65 l = 6n

Screw axis || a 21, 42 h00 h = 2n
41, 43 h = 4n

Screw axis || b 21, 42 0k0 k = 2n
41, 43 k = 4n

Screw axis || [110] 21 hh0 h = 2n
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1.6 The basic postulate of structural
crystallography

In the preceding paragraphs we have summarized the basic relations of general
crystallography: these can be found in more extended forms in any standard
textbook. The reader is now ready to learn about the topic of phasing, one of
the most intriguing problems in the history of crystallography. We will start by
illustrating its logical aspects (rather than its mathematics) via a short list of
questions.

Given a model structure, can we calculate the corresponding set (say {|Fh|} )
of structure factor moduli? The answer is trivial; indeed we have only to intro-
duce the atomic positions and the corresponding scattering factors (including
temperature displacements) into equation 1.19. As a result of these calcu-
lations, moduli and phases of the structure factors can be obtained. It may
therefore be concluded that there is no logical or mathematical obstacle to the
symbolic operation

ρ(r) ⇒ {|Fh|} .

A second question is: given only the structure factor moduli, can we entertain
the hope of recovering the crystal structure, or, on the contrary, is there some
logical impediment to this (for example, an irrecoverable loss of information)?
In symbols, this question deals with the operation

{|Fh|} ⇒ ρ(r). (1.28)

As an example, let us suppose that the diffraction experiment has provided
30 000 structure factor moduli and lost 30 000 phases. Can we recover the
30 000 phases given the moduli, and consequently determine the structure, or
are the phases irretrievably lost?

A first superficial answer may be provided by our daily experience. To give
a simple example, if we are looking for a friend in New York but we have lost
his address, it would be very difficult to find him. This allegorical example is
appropriate as in New York there are millions of addresses, similarly, millions
of structural models may be conceived that are compatible with the exper-
imental unit cell. The search for our friend would be much easier if some
valuable information were still in our hands: e.g. he lives in a flat on the
130th floor. In this case we could discard most of the houses in New York.
But where, in the diffraction experiment, is the information hidden which
can allow us to discard millions of structural models and recover the full
structure?

A considered answer to the problem of phase recovery should follow refer-
ence to modern structural databases (see Section 1.7). In Fig. 1.14 statistics are
shown from the Cambridge Structural Database, where the growth in numbers
of deposited structures per year is shown. Hundreds of thousands of crystal
structures have been deposited, the large majority of these having been solved
starting from the diffraction moduli only. In Fig. 1.15, similar statistics are
shown for the Protein Data Bank (PDB).
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Fig. 1.14
Cumulative growth per year of the
structures deposited in the Cambridge
Structural Database (CSD).
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Fig. 1.15
Growth per year of the structures depos-
ited in the Protein Data Bank (PDB).

Such huge numbers of structures could not have been solved without valu-
able information provided by experiment and since X-ray experiments only
provide diffraction amplitudes we have to conclude that the phase information
is hidden in the amplitudes. But at the moment we do not know how this is
codified.

Before dealing with the code problem, we should answer a preliminary
question: how can we decide (and accept) that such huge numbers of crys-
tal structures are really (and correctly) solved? Each deposited structure is
usually accompanied by a cif file, where the main experimental conditions,
the list of the collected experimental data, their treatment by crystallographic
programs, and the structural model are all described. Usually residuals such as
(Booth, 1945)

Rcryst =
∑

h ||Fobs − |Fcalc||
∑

h |Fobs| (1.29)
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are mentioned as mathematical proof of the correctness of a model: if Rcryst

is smaller than a given threshold and no crystal chemical rule is violated by
the proposed model, then the model is assumed to be correct. This assumption
is universally accepted, and is the basic guideline for any structural crystal-
lographer, even though it is not explicitly formulated and not demonstrated
mathematically. But, how can we exclude two or more crystal structures which
may exist, which do not violate well-established chemical rules, and fit the
same experimental data? A postulate should therefore be evoked and legitim-
ized, in order to allow us to accept that a crystal structure is definitively solved:
this is what we call the basic postulate of structural crystallography.

The basic postulate of structural crystallography: only one chemically
sound crystal structure exists that is compatible with the experimental diffrac-
tion data.

Before legitimizing such a postulate mathematically a premise is neces-
sary: the postulate is valid for crystal structures, that is, for structures for
which chemical (i.e. the basic chemical rules) and physical constraints hold.
Among physical constraints we will mention atomicity (the electrons are not
dispersed in the unit cell, but lie around the nucleus) and positivity (i.e. the
electron density is non-negative everywhere). The latter two conditions are
satisfied if X-ray data and, by extension, electron data (electrons are sensible
to the potential field) are collected: the positivity condition does not hold for
neutron diffraction, but we will see that the postulate may also be applied to
neutron data.

Let us now check the postulate by using the non-realistic four-atom one-
dimensional structure shown in Fig. 1.9a: we will suppose that the chosen
interatomic distances comply with the chemistry (it is then a feasible model).
In Fig. 1.16a–c three electron densities are shown at 0.9 Å resolution, obtained
by using, as coefficients of the Fourier series (1.18), the amplitudes of the true
structure combined with random phases. All three models, by construction,
have the same diffraction amplitudes (Rcryst = 0 for such models), but only
one, that shown in Fig. 1.9a, satisfies chemistry and positivity–atomicity pos-
tulates. All of the random models show positive peaks (say potential atoms)
in random positions, there are always a number of negative peaks present, and
the number of positive peaks may not coincide with the original structure. Any
attempt to obtain other feasible models by changing the phases in a random
way will not succeed: this agrees well with the postulate.

A more realistic example is the following (structure code Teoh, space group
I-4, C42 H40 O6 Sn2). Let us suppose that the crystallographer has reques-
ted his phasing program to stop when a model structure is found for which
Rcryst< 0.18 and that the program stops, providing the model depicted in
Fig. 1.17a, for which Rcryst = 0.16. This model, even if it is further refin-
able up to smaller values of Rcryst, has to be rejected because it is chemically
invalid, even if the crystallographic residual is sufficiently small. If the crys-
tallographer asks the phasing program to stop only when a model is found for
which Rcryst< 0.10, then the model shown in Fig. 1.17b is obtained, for which
Rcryst = 0.09. This new model satisfies basic crystal chemical rules and may be
further refined.
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Fig. 1.16
For the four-atom one-dimensional structure shown in Fig. 1.9a, three models, obtained using random phases, are shown. Data resolution: 0.9 Å.

The above results lead to a practical consequence: even if experimental data
are of high quality, and even if there is very good agreement between exper-
iment and model (i.e. a small value of Rcryst), structure validation (i.e. the
control that the basic crystal chemical rules are satisfied by the model) is the
necessary final check of the structure determination process. Indeed it is an
obligatory step in modern crystallography, a tool for a posteriori confirmation
of the basic postulate of crystallography.

The basic postulate may be extended to neutron data, but now the positivity
condition does not hold: it has to be replaced by the chemical control and
validation of the model, but again, there should not exist two chemically sound
crystal structures which both fit high quality experimental data.

In order to legitimize the basic postulate of structural crystallography math-
ematically, we now describe how the phase information is codified in the
diffraction amplitudes. We observe that the modulus square of the structure
factor, say

|Fh|2 = Fh · F−h =
∑N

j=1
fj exp

(
2π i h · rj

) ·
∑N

j=1
fj exp

(−2π i h · rj
)

=
∑N

j 1, j 2=1
fj1fj 2 exp

[
2π i h · (rj1 − rj 2)

]

(1.30)
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depends on the interatomic distances: inversely, the set of interatomic distances
defines the diffraction moduli. If one assumes that only a crystal structure
exists with the given set of interatomic distances, the obvious conclusion
should be that only one structure exists (except for the enantiomorph structure)
which is compatible with the set of experimental data, and vice versa, only one
set of diffraction data is compatible with a given structure. In symbols

crystal structure ⇔ {
ri − rj

} ⇔ {|Fh|} . (1.31)

This coincides exactly with the previously defined basic postulate.
The conclusion (1.31), however, must be combined with structure valida-

tion, as stated in the basic postulate. Indeed Pauling and Shapell (1930) made
the observation that for the mineral bixbyite there are two different solutions,
not chemically equivalent, with the same set of interatomic vectors. Chemistry
(i.e. structure validation) was invoked to define the correct structure. Patterson
(1939, 1944) defined these kinds of structure as homometric and investig-
ated the likelihood of their occurrence. Hosemann and Bagchi (1954) gave
formal definitions of different types of homometric structures. Further con-
tributions were made by Buerger (1959, pp. 41–50), Bullough (1961, 1964),
and Hoppe (1962a,b). In spite of the above considerations it is common prac-
tice for crystallographers to postulate, for structures of normal complexity, a
biunique correspondence between the set of interatomic vectors and atomic
arrangement. Indeed for almost the entire range of the published structures,
two different feasible (this property being essential) structures with the same
set of observed moduli has never been found.

b)

a)

Fig. 1.17
Teoh: (a) false structural model with
Rcryst = 0.16; (b) correct structural model
with Rcryst = 0.08.

Some care, however, is necessary when the diffraction data are not of high
quality and/or some pseudosymmetry is present. Typical examples of structural
ambiguity are:

(a) The low quality of the crystal (e.g. high mosaicity), or the disordered
nature of the structure. In this case the quality of the diffraction data is
depleted, and therefore the precision of the proposed model may be lower.

(b) The structure shows a symmetry higher than the real one. For example,
the structure is very close to being centric but it is really acentric, or it
shows a strong pseudo tetragonal symmetry but it is really orthorhombic.
Deciding between the two alternatives may not be easy, particularly when
the pseudosymmetry is very close to crystal symmetry and data quality is
poor.

(c) Strong pseudotranslational symmetry is present. This occurs when a high
percentage of electron density satisfies a translational vector u smaller than
that allowed by the crystal periodicity: for example, if u = a/3 and 90% of
the electron density is invariant under the pseudotranslation. In this case
reflections with h = 3n are very strong, the others are very weak. If only
substructure reflections are measured, the substructure only is defined
(probably with a quite good Rcryst value), but the fine detail of the structure
is lost.

In all of the cases a–c the final decision depends on the chemistry and on the fit
between model and observations. To give a general view of what the fit means
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numerically today, we report in Table 1.9 statistics on the crystallographic
residual Rcryst performed over the structures deposited in the Cambridge
Structural Database up to January 2012. We see that the precision of the struc-
tural determination may vary over a wide range: indeed Rcryst values are found
between 0.01 and more than 0.1, and this wide range is often due to the differ-
ent quality of the crystals. For the large majority of structures, even those with a
relatively high value of Rcryst, the structure is uniquely fixed in all details, even-
tually with limited precision in unit cell regions where structural disorder is
present. These details, however, do not destroy the general validity of the basic
postulate.

Table 1.9 Statistics on Rcryst for
structures deposited in the Cambridge
Structural Database up to 1 January
2012. For each range �Rcryst in which
Rcryst lies, Nstr and % are the correspond-
ing number of structures and percentage,
respectively

�Rcryst Nstr %

0.01–0.03 62 774 10.5
0.03–0.04 122 706 20.6
0.04–0.05 135 525 22.7
0.05–0.07 163 269 27.4
0.07–0.09 60 651 10.2
0.09–0.10 13 370 2.2
0.10–0.15 18 353 3.1
0.15–. . . . 3835 0.6

The basic postulate of structural crystallography should be considered by
any rational crystallographer before initiating their daily structural work. This
may be further summarized as follows: in a diffraction experiment the phase
information is not lost, it is only hidden within the diffraction amplitudes.
Accordingly, any phasing approach is nothing else but a method for recovering
the hidden phases from the set of diffraction amplitudes.

Let us now suppose that the basic postulate is consciously considered by
our young crystallographer. A further problem then arises: is the amount of
information stored in the diffraction amplitudes sufficient to define the struc-
ture? For example, in the case of a low resolution diffraction experiment the
crystallographic data may not be sufficient to define the short interatomic dis-
tances, making it impossible, therefore, to uniquely define the structure. This
is a crucial problem for structural crystallography, since the crystal structure
solution may depend on the amount of information provided by the diffrac-
tion experiment. What then are the resolution limits for a useful diffraction
experiment?

Suppose we have a crystal with P1 symmetry: let N be the number of
non-hydrogen atoms in the unit cell, and Nsp = 4N the number of structural
parameters necessary for defining the structure (four parameters per atom, say
x, y, z and the corresponding isotropic thermal factor). For a small- or medium-
sized molecule, V = k N, where k is usually between 15.5 and 18.5; for a
protein, owing to the presence of the solvent, k may be significantly larger, up
to or even exceeding 40. According to equation (1.8), V∗ = V−1 = (kN)−1.

Let us suppose that a diffraction experiment provides data up to r∗
max, or,

equivalently, up to dmin. The number of measurable reflections (say Nref )
may be calculated as follows. The reciprocal space measured volume may be
parameterized as


∗
meas = 4

3
π
(
r∗

max

)3 = 4π

3d3
min

,

and

Nref = 
∗
meas

V∗ = 4π

3d3
min

kN.

Let us now estimate the index,

Rinf = ratio between the experimental information and the

structural complexity.
(1.32)
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When no prior supplemental information is available besides experimental
data, Rinf may be qualitatively approximated as follows:

Rinf = number of measured symmetry independent reflections/number

of structural parameters
(1.33)

To compute Rinf, the Friedel law should be taken into account: thus we divide
Nref by 2 and then write the resulting expression for Rinf :

Rinf ≈ π

6d3
min

k.

The numerical values of Rinf for specific values of k and dmin are shown in
Table 1.10: larger values of Rinf correspond with cases in which the structure is
overdetermined by the observations, while small values of Rinf do not uniquely
fix the structure. Let us suppose, just as a rule of thumb, that a structure may
be solved, from diffraction data only, if Rinf ≥ 3: Table 1.10 suggests that
dmin ≈1.4 Å is the resolution threshold below which a small molecule structure
cannot be solved ab initio. The threshold moves to ≈1.6 Å for a protein with a
small percentage of solvent, and to ≈1.8 Å for a protein with a larger solvent
percentage.

Table 1.10 Rinf in P1 is shown for
some values of dmin and k. k = 17 is rep-
resentative of the small- to medium-sized
structures, k = 25, 35, of the proteins

dmin k = 17 k = 25 k = 35

0.4 139 204 286
0.6 41 60.6 84.7
0.8 17.4 25.6 35.7
1.0 8.9 13.1 18.3
1.4 3.2 4.8 13.7
1.8 1.5 2.2 3.1
2.2 0.8 1.2 1.7
2.5 0.6 0.8 1.2
3.0 0.3 0.5 0.7
3.5 0.2 0.3 0.4
4.0 0.1 0.2 0.3

The conclusion is that the solvent is a valuable source of information: the
larger the solvent, the higher the threshold for the ab initio crystal structure
solution (modern solvent flattening techniques are able to efficiently exploit
this information). A special case occurs when one is interested in solving a
substructure, for example the heavy-atom substructure in SIR-MIR cases and
the anomalous scatterer substructure in SAD-MAD cases. If it is supposed
that the structure factor amplitudes of such substructures are estimated with
reasonable approximation, then the atoms belonging to the substructure are
dispersed in a big empty space (i.e. the unit cell of the structure). In this case
the estimated structure factor amplitudes of the substructure overdetermine
it, and the substructure could be solved even at very low resolution (worse
than 3.5 Å).

The above conclusions do not change significantly if the space group has
symmetry higher than triclinic. Indeed in this case Rinf is the ratio between
the number of unique reflections and the number of structural parameters
corresponding to the symmetry independent atoms.

Additional difficulties with the phasing process arise when experimental
data quality is poor. If there are errors in the diffraction amplitudes, since
information on the phases is hidden within the amplitudes, such errors will
inevitably cause a deterioration in the efficiency of any phasing procedure. This
is particularly important in the case of powder data (see Chapter 12) and also
electron data (see Chapter 11), but it is also important for proteins, because the
presence of the solvent implies disordered regions in the unit cell and therefore
limited data resolution.

So far we have answered the question: under what conditions is a struc-
ture univocally fixed from its diffraction data? We have skipped cases where
some previous additional information is available; here, the number of meas-
ured symmetry independent reflections in the numerator of Rinf is only part
of the total information available and therefore the conclusions drawn from



24 Fundamentals of crystallography

Table 1.10 must be corrected. In this book we will consider four cases in which
additional information is present:

1. Non-crystallographic symmetry. This is an important source of informa-
tion which permits a reduction in the number of structural parameters in
equation 1.33. It occurs when there are more identical molecules in the
asymmetric unit: in this case they may be defined in terms of one molecule
by applying the local symmetry operators. Non-crystallographic sym-
metry allows the structural solution of large biological assemblies such as
viruses.

2. Molecular replacement. A model molecule, similar geometrically to that
under investigation, is available.

3. Isomorphous derivatives. Diffraction data for the target and one or more
isomorphous structures are measured.

4. Anomalous dispersion data. Diffraction data with anomalous dispersion
effects are collected (we will see that this case is similar to case 3).

Because of the additional experimental information available, the value of Rinf

increases substantially which allows structure solution even at data resolutions
larger than 4 Å.

1.7 The legacy of crystallography
Human beings periodically visit museums to enjoy the artistic masterpieces
exhibited in witness of human sensitivity to beauty. Historical and technical
museums are often consulted in relation to their acquaintance with the evol-
ution of human civilization andwith man′s capacity for improving human
life through technical innovations. But, where can the products of crystallo-
graphy be consulted, in witness of its immense legacy to chemistry, physics,
mineralogy, and biology?

Over a period of about one century crystallographic phasing methods have
solved a huge number of crystal structures, so enriching our understanding of
the mineral world, of organic, metallorganic, and inorganic chemistry, and of
the bio-molecules. This enormous mine of information is stored in dedicated
databases, among which are the following.

1. The Cambridge Structural Database (CSD), <http://www.ccdc.cam.ac.
uk/products/csd/>, where chemical and crystallographic information for
organic molecules and metal–organic compounds determined by X-ray or
neutron diffraction: powder diffraction studies are deposited.

2. Inorganic Crystal Structure Database (ICSD), <http://www.fiz-karlsruhe.
de/icsd_content.html>, where structural data of pure elements, metals,
minerals and intermetallic compounds are deposited. By January 2012 it
contained more than 150 000 entries, 75.6% of them with a structure having
been assigned.

3. CRYSTMET , <http://www.tothcanada.com/>, where structural informa-
tion on metals and alloys are stored.
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Table 1.11 CSD entries on 1 January 2012: Nr is the number of entries,
% the corresponding percentage over the total

Nr %

Total number of structures 596 810 100
Number of compounds 544 565
Organic compounds 254 475 42.6
Transition metal present 319 188 53.5
Neutron studies 1534 0.3
Powder diffraction studies 2354 0.4

4. Protein Data Bank (PDB), <http://www.rcsb.org/pdb/>, with about
75 056 entries up to January 2012.

5. Nucleic Acid Database (NDB), <http://ndbserver.rutgers.edu/>, oligonuc-
leotide structures deposited up to April 2012.

Table 1.12 CSD: crystallographic sy-
stem statistics

System %

Triclinic 24.7
Monoclinic 52.5
Orthorhombic 18.0
Tetragonal 2.2
Trigonal 1.7
Hexagonal 0.5
Cubic 0.5

Table 1.13 CSD: the 10 most fre-
quent space groups

Space group %

P21/c 34.9
P-1 23.8
C2/c 8.2
P212121 7.6
P21 5.3
Pbca 3.5
Pna21 1.6
Pnma 1.2
Cc 1.1
P1 1.0

For each structure deposited, an archive typically contains details of the
structure solution, citation information, the list of atoms and their coordin-
ates; the structure can be visualized and displayed on the user’s com-
puter. In this section we report some statistics on the entries in two of
these databases, the CSD for small molecules and the PDB for macro-
molecules, in order to provide the reader with some essential information
on some of the parameters to which phasing methods are sensitive. For
example, which type of radiation is more useful in standard conditions,
which are the most frequent space groups or crystal systems, how data
resolution is distributed among the deposited structures, etc. This type of
information is shown in Tables 1.11 to 1.16. It should be noted that:

Table 1.15 PDB: distribution of data
resolution for the deposited structures,
in Å

Å Nr %

0.5–1 485 0.68
1.0–1.5 6134 8.63
1.5–2.0 27 385 38.53
2.0–2.5 22 144 31.16
2.5–3.0 11 210 15.77
3.0–3.5 2930 4.12
3.5–4.0 602 0.85

(a) Tables 1.11 and 1.14 provide the numbers of deposited structures for small
molecules and macromolecules, respectively. Also given is information on
the type of radiation used for their solution. The tables justify the special
attention we are giving to X-ray diffraction.

(b) Tables 1.13 to 1.16 suggest which are the most frequent space groups, for
both small and large molecules. The reader should remember that these are
expected to be very different for the two categories: indeed centric space
groups and, in general, groups with inversion axes, are not allowed for
proteins.

Table 1.14 PDB: entries for proteins, nucleic acids, and protein/NA complexes, according to
experimental technique

Proteins Nucleic acids Protein/NA complexes

Total 75056 2360 3609
X-ray 66381 1352 3298
NMR 8206 979 186
Electron microscopy 285 22 118


