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Preface to the 2016 Reprint

The 2016 reprint of this book is a “bug-fix” release — changes are limited
to corrections of small errors and typos, and occasional (always very
small) added explanatory material. While there have been numerous
requests to add a chapter on this-or-that subject, there has not been
much concensus on what subjects need to be added, so I concluded that
it is probably best not to add any new material in hopes of keeping
the book as streamlined as possible. (That said, I did add one short
paragraph in chapter 18 about light emitting diodes in honor of the
2014 Nobel prize).
A large number of the errors in the book were in exercises that were

not properly vetted before being released into the wild. Hopefully most
of the problems with these exercises are fixed in this reprint. A few
additional exercises are added as well. Those that are new or have been
substantially changed have been marked with the symbol “&” to indicate
where things differ from the original printing.
Thanks are due to a number of people. First, to those who have chosen

to use this book for teaching. Second, to those who have read this book
and have posted positive reviews on the web or otherwise recommended
its use to others. Third, to those who have contacted me and pointed
out typos or other problems to be fixed. Finally, to those who have
generally supported me and made my efforts possible. I apologize for
not mentioning all of you by name — you know who you are.

Oxford, United Kingdom
January 2016
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Preface after Teaching this Course

Although things were a bit bumpy the first few times I taught this course,
I learned a lot from the experience, and hopefully I have now managed
to smooth out many of the rough parts. The good news is that the
course has been viewed mostly as a success, even by the tough measure
of student reviews. I would particularly like to thank the student who
wrote on his or her review that I deserve a raise—and I would like to
encourage my department chair to post this review on his wall and refer
to it frequently.
If you can think of ways that this book could be further improved

(correction of errors or whatnot) please let me know. The next genera-
tion of students will certainly appreciate it and that will improve your
Karma. �

Oxford, United Kingdom
April 2013
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Preface

When I was an undergraduate I thought solid state physics (a sub-genre
of condensed matter physics) was perhaps the worst subject that any
undergraduate could be forced to learn—boring and tedious, “squalid
state” as it was commonly called.1 How much would I really learn about1This gibe against solid state physics

can be traced back to the Nobel Lau-
reate Murray Gell-Mann, discoverer of
the quark, who famously believed that
there was nothing interesting in any
endeavor but particle physics. Inter-
estingly he now studies complexity—a
field that mostly arose from condensed
matter.

the universe by studying the properties of crystals? I managed to avoid
taking this course altogether. My opinion at the time was not a reflection
of the subject matter, but rather was a reflection of how solid state
physics was taught.
Given my opinion as an undergraduate, it is a bit ironic that I have

become a condensed matter physicist. But once I was introduced to the
subject properly, I found that condensed matter was my favorite subject
in all of physics—full of variety, excitement, and deep ideas. Sadly, a
first introduction to the topic can barely scratch the surface of what
constitutes the broad field of condensed matter.
Last year, when I was told that a new course was being prepared to

teach condensed matter physics to third year Oxford undergraduates, I
jumped at the opportunity to teach it. I felt that it must be possible
to teach a condensed matter physics course that is just as interesting
and exciting as any other course that an undergraduate will ever take.
It must be possible to convey the excitement of real condensed matter
physics to the undergraduate audience. I hope I will succeed in this task.
You can judge for yourself.
The topics I was asked to cover are not atypical for a solid state

physics course. Some of these topics are covered well in standard solid
state physics references that one might find online, or in other books.
The reason I am writing this book (and not just telling students to go
read a standard reference) is because condensed matter/solid state is
an enormous subject—worth many years of lectures—and one needs a
guide to decide what subset of topics are most important (at least in the
eyes of an Oxford examination committee). The material contained here
gives depth in some topics, and glosses over other topics, so as to reflect
the particular topics that are deemed important at Oxford as well as to
reflect the subjects mandated by the UK Institute of Physics.
I cannot emphasize enough that there are many many extremely good

books on solid state and condensed matter physics already in exis-
tence. There are also many good resources online (including the rather
infamous “Britney Spears’ guide to semiconductor physics”—which is
tongue-in-cheek about Britney Spears, but is actually a very good refer-
ence about semiconductors). Throughout this book, I will try to point
you to other good references appropriately.
So now we begin our journey through condensed matter. Let us go

then, you and I...

Oxford, United Kingdom
January 2011
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About this Book

This book is meant to be a first introduction to solid state and con-
densed matter physics for advanced undergraduate students. There are
several main prerequisites for this course. First, the students should
be familiar with basic quantum mechanics (we will sometimes use bra
and ket notation). Secondly, the students should know something about
thermodynamics and statistical mechanics. Basic mechanics and basic
electromagnetism are also assumed. A very strong student might be ca-
pable of handling the material without all of the prerequisites, but the
student would have to be willing to do some extra work on the side.
At the end of each chapter I give useful references to other books. A

full list of all the books cited, along with proper reference and commen-
tary, is provided in Appendix B.
Most chapters also have exercises included at the end. The exercises

are marked with ∗ if they are harder (with multiple ∗s if they are much
harder). Exercises marked with ‡ are considered to be fundamental to
the core syllabus (at least at Oxford).
A sample exam is provided (with solutions) in Appendix A. The

current Oxford syllabus covers this entire book with the exception of
Chapter 18 on device physics and Chapter 23 on the Hubbard model
(interactions and magnetism).
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About Condensed Matter
Physics 1
This chapter is my personal take on why this topic is interesting. You
might want to read it to figure out why you should think this book is
interesting if that isn’t otherwise obvious.

1.1 What Is Condensed Matter Physics

Quoting Wikipedia:

Condensed matter physics is the field of physics that deals
with the macroscopic and microscopic physical properties
of matter. In particular, it is concerned with the “con-
densed” phases that appear whenever the number of con-
stituents in a system is extremely large and the interactions
between the constituents are strong. The most familiar ex-
amples of condensed phases are solids and liquids, which
arise from the electromagnetic forces between atoms.

The use of the term “condensed matter”, being more general than just
the study of solids, was coined and promoted by Nobel laureate Philip
W. Anderson.
Condensed matter physics is by far the largest single subfield of physics.

The annual meeting of condensed matter physicists in the United States
attracts over 6000 physicists each year! Topics included in this field
range from the very practical to the absurdly abstract, from down-to-
earth engineering to mathematical topics that border on string theory.
The commonality is that all of these topics relate to the fundamental
properties of matter.

1.2 Why Do We Study Condensed Matter
Physics?

There are several very good answers to this question

(1) Because it is the world around us
Almost all of the physical world that we see is in fact condensed
matter. We might ask questions such as

• why are metals shiny and why do they feel cold?
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• why is glass transparent?

• why is water a fluid, and why does fluid feel wet?

• why is rubber soft and stretchy?

These questions are all in the domain of condensed matter physics.
In fact almost every question you might ask about the world around
you, short of asking about the sun or stars, is probably related to
condensed matter physics in some way.

(2) Because it is useful
Over the last century our command of condensed matter physics
has enabled us humans to do remarkable things. We have used
our knowledge of physics to engineer new materials and exploit
their properties to change our world and our society completely.
Perhaps the most remarkable example is how our understanding of
solids enabled new inventions exploiting semiconductor technology,
which enabled the electronics industry, which enabled computers,
iPhones, and everything else we now take for granted.

(3) Because it is deep
The questions that arise in condensed matter physics are as deep
as those you might find anywhere. In fact, many of the ideas that
are now used in other fields of physics can trace their origins to
condensed matter physics.
A few examples for fun:

• The famous Higgs boson, which was recently observed at
CERN, is no different from a phenomenon that occurs in su-
perconductors (the domain of condensed matter physicists).
The Higgs mechanism, which gives mass to elementary par-
ticles is frequently called the “Anderson–Higgs” mechanism,
after the condensed matter physicist Phil Anderson1 who de-1The same guy who coined the term

“condensed matter”. scribed much of the same physics before Peter Higgs, the
high-energy theorist.

• The ideas of the renormalization group (Nobel Prize to Ken-
neth Wilson in 1982) was developed simultaneously in both
high-energy and condensed matter physics.

• The ideas of topological quantum field theories, while in-
vented by string theorists as theories of quantum gravity, have
been discovered in the laboratory by condensed matter physi-
cists!

• In the last few years there has been a mass exodus of string
theorists applying black-hole physics (in N -dimensions!) to
phase transitions in real materials. The very same structures
exist in the lab that are (maybe!) somewhere out in the
cosmos!

That this type of physics is deep is not just my opinion. The Nobel
committee agrees with me. During this course we will discuss the
work of no fewer than fifty Nobel laureates! (See the index of
scientists at the end of this book.)
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(4) Because reductionism doesn’t work

begin{rant} People frequently have the feeling that if you con-
tinually ask “what is it made of” you learn more about something.
This approach to knowledge is known as reductionism. For ex-
ample, asking what water is made of, someone may tell you it is
made from molecules, then molecules are made of atoms, atoms of
electrons and protons, protons of quarks, and quarks are made of
who-knows-what. But none of this information tells you anything
about why water is wet, about why protons and neutrons bind to
form nuclei, why the atoms bind to form water, and so forth. Un-
derstanding physics inevitably involves understanding how many
objects all interact with each other. And this is where things get
difficult very quickly. We understand the Schroedinger equation
extremely well for one particle, but the Schroedinger equations for
four or more particles, while in principle solvable, in practice are
never solved because they are too difficult—even for the world’s
biggest computers. Physics involves figuring out what to do then.
How are we to understand how quarks form a nucleus, or how
electrons and protons form an atom if we cannot solve the many
particle Schroedinger equation?

Even more interesting is the possibility that we understand very
well the microscopic theory of a system, but then we discover that
macroscopic properties emerge from the system that we did not
expect. My personal favorite example is when one puts together
many electrons (each with charge −e) one can sometimes find
new particles emerging, each having one third the charge of an
electron!2 Reductionism would never uncover this—it misses the 2Yes, this really happens. The Nobel

Prize in 1998 was awarded to Dan Tsui,
Horst Stormer, and Bob Laughlin, for
discovery of this phenomenon known as
the fractional quantum Hall effect.

point completely. end{rant}
(5) Because it is a laboratory

Condensed matter physics is perhaps the best laboratory we have
for studying quantum physics and statistical physics. Those of
us who are fascinated by what quantum mechanics and statistical
mechanics can do often end up studying condensed matter physics
which is deeply grounded in both of these topics. Condensed mat-
ter is an infinitely varied playground for physicists to test strange
quantum and statistical effects.

I view this entire book as an extension of what you have already
learned in quantum and statistical physics. If you enjoyed those
courses, you will likely enjoy this as well. If you did not do well in
those courses, you might want to go back and study them again,
because many of the same ideas will arise here.

1.3 Why Solid State Physics?

Being that condensed matter physics is so huge, we cannot possibly
study all of it in one book. Instead we will focus on just one particular
subfield, known as “solid state physics”. As the name suggests, this is the
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study of matter in its solid state (as compared to being in a liquid state,
a gas state, a superfluid state, or some other state of matter). There
are several reasons why we choose to focus on the solid state. First of
all, solid state physics is by far the biggest single subfield of condensed
matter physics.3 Secondly, solid state physics is the most successful and3Perhaps this is not surprising consid-

ering how many solid objects there are
in the world.

most technologically useful subfield of condensed matter physics. Not
only do we know far more about solids than we know about other types
of matter, but also solids are far more useful than other types of matter.
Almost all materials that have found their way to industrial application
are in their solid state. Paramount among these materials are the solids
known as semiconductors which are the basis of the entire electronics
industry. Indeed, frequently the electronics industry is even called the
“solid state” industry.4 More importantly, however, the physics of solids4This stems from the term “solid state

electronics” which describes any elec-
tronic device where electrons travel
within a solid. This is in compari-
son to the old vacuum tube-based elec-
tronic systems where the electrons ac-
tually traveled in vacuo. The old-style
tubes have been replaced in almost ev-
ery application—with very few excep-
tions. One interesting exception is that
many audiophiles and musicians prefer
sound amplification using tubes rather
than solid state electronics. What they
prefer is that the tubes amplify sound
with a characteristic distortion that the
musicians somehow find appealing. For
a pure amplification without distortion,
solid state devices are far better.

provides a paradigm for learning other topics in physics. The things we
learn in our study of solids will form a foundation for study of other
topics both inside the field of condensed matter, and outside of it.



Part I

Physics of Solids without
Considering Microscopic
Structure: The Early
Days of Solid State





Specific Heat of Solids:
Boltzmann, Einstein, and
Debye 2

Our story of condensed matter physics starts around the turn of the
last century. It was well known (and you should remember from your
prior study of statistical physics) that the heat capacity1 of a monatomic
(ideal) gas is Cv = 3kB/2 per atom, with kB being Boltzmann’s con-
stant. The statistical theory of gases described why this is so.
As far back as 1819, however, it had also been known that for many

solids the heat capacity is given by2

2Here I do not distinguish between Cp

(at constant pressure) and Cv (at con-
stant volume) because they are very
close to the same. Recall that Cp −
Cv = V Tα2/βT , where βT is the
isothermal compressibility and α is the
coefficient of thermal expansion. For a
solid, α is relatively small.

C = 3kB per atom

or C = 3R

which is known as the law of Dulong–Petit,3 where R is the ideal gas

3Both Pierre Dulong and Alexis Petit
were French chemists. Neither is re-
membered for much else besides this
law.

constant. While this law is not always correct, it frequently is close to
true. For example, see Table 2.1 of heat capacities at room tempera-
ture and pressure. With the exception of diamond, the law C/R = 3
seems to hold extremely well at room temperature, although at lower
temperatures all materials start to deviate from this law, and typically
C drops rapidly below some temperature (and for diamond when the
temperature is raised, the heat capacity increases towards 3R as well,
see Fig. 2.2).

Table 2.1 Heat capacities of some solids
at room temperature and pressure.

Material C/R

Aluminum (Al) 2.91
Antimony (Sb) 3.03
Copper (Cu) 2.94
Gold (Au) 3.05
Silver (Ag) 2.99
Diamond (C) 0.735

In 1896 Boltzmann constructed a model that accounted for this law
fairly well. In his model, each atom in the solid is bound to neighboring
atoms. Focusing on a single particular atom, we imagine that atom as

1We will almost always be concerned with the heat capacity C per atom of a material. Multiplying by Avogadro’s number
gives the molar heat capacity or heat capacity per mole. The specific heat (denoted often as c rather than C) is the heat
capacity per unit mass. However, the phrase “specific heat” is also used loosely to describe the molar heat capacity, since they
are both intensive quantities (as compared to the total heat capacity which is extensive—i.e., proportional to the amount of
mass in the system). We will try to be precise with our language, but one should be aware that frequently things are written
in non-precise ways and you are left to figure out what is meant. For example, really we should say Cv per atom = 3kB/2
rather than Cv = 3kB/2 per atom, and similarly we should say C per mole = 3R. To be more precise I really would have liked
to title this chapter “Heat Capacity per Atom of Solids” rather than “Specific Heat of Solids”. However, for over a century
people have talked about the “Einstein Theory of Specific Heat” and “Debye Theory of Specific Heat”, and it would have been
almost scandalous to not use this wording.
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being in a harmonic well formed by the interaction with its neighbors.
In such a classical statistical mechanical model, the heat capacity of the
vibration of the atom is 3kB per atom, in agreement with Dulong–Petit.
(You should be able to show this with your knowledge of statistical
mechanics and/or the equipartition theorem; see Exercise 2.1).
Several years later in 1907, Einstein started wondering about why this

law does not hold at low temperatures (for diamond, “low” temperature
appears to be room temperature!). What he realized is that quantum
mechanics is important!
Einstein’s assumption was similar to that of Boltzmann. He assumed

that every atom is in a harmonic well created by the interaction with its
neighbors. Further, he assumed that every atom is in an identical har-
monic well and has an oscillation frequency ω (known as the “Einstein”
frequency).
The quantum-mechanical problem of a simple harmonic oscillator is

one whose solution we know. We will now use that knowledge to deter-
mine the heat capacity of a single one-dimensional harmonic oscillator.
This entire calculation should look familiar from your statistical physics
course.

2.1 Einstein’s Calculation

In one dimension, the energies of the eigenstates of a single harmonic
oscillator are

En = �ω(n+ 1/2) (2.1)

with ω the frequency of the harmonic oscillator (the “Einstein frequency”).
The partition function is then44We will very frequently use the stan-

dard notation β = 1/(kBT ).
Z1D =

∑
n�0

e−β�ω(n+1/2)

=
e−β�ω/2

1− e−β�ω
=

1

2 sinh(β�ω/2) .

The expectation of energy is then (compare to Eq. 2.1)

〈E〉 = − 1

Z1D

∂Z1D

∂β
=

�ω

2
coth

(
β�ω

2

)
= �ω

(
nB(β�ω) +

1

2

)
(2.2)

where nB is the Bose5 occupation factor5Satyendra Bose worked out the idea of
Bose statistics in 1924, but could not
get it published until Einstein lent his
support to the idea.

nB(x) =
1

ex − 1 .

This result is easy to interpret. The mode ω is an excitation that is
excited on average up to the nth

B level, or equivalently there is a “boson”
orbital which is “occupied” by nB bosons.
Differentiating the expression for energy we obtain the heat capacity

for a single oscillator,

C =
∂〈E〉
∂T

= kB(β�ω)
2 eβ�ω

(eβ�ω − 1)2 .
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Note that the high-temperature limit of this expression gives C = kB
(check this if it is not obvious!).
Generalizing to the three-dimensional case,

Enx,ny,nz
= �ω[(nx + 1/2) + (ny + 1/2) + (nz + 1/2)]

and

Z3D =
∑

nx,ny,nz�0

e−βEnx,ny,nz = [Z1D]3

resulting in 〈E3D〉 = 3〈E1D〉, so correspondingly we obtain

C = 3kB(β�ω)
2 eβ�ω

(eβ�ω − 1)2 .

Plotted, this looks like Fig. 2.1.
0 1 20

0.25

0.5

0.75

1

C
3kB

kBT/�ω

Fig. 2.1 Einstein heat capacity per
atom in three dimensions.

Note that in the high-temperature limit kBT � �ω we recover the
law of Dulong–Petit: 3kB heat capacity per atom. However, at low tem-
perature (T � �ω/kB) the degrees of freedom “freeze out”, the system
gets stuck in only the ground-state eigenstate, and the heat capacity
vanishes rapidly.
Einstein’s theory reasonably accurately explained the behavior of the

heat capacity as a function of temperature with only a single fitting
parameter, the Einstein frequency ω (sometimes this frequency is quoted
in terms of the Einstein temperature �ω = kBTEinstein). In Fig. 2.2 we
show Einstein’s original comparison to the heat capacity of diamond. C

kBT/�ω

Fig. 2.2 Plot of molar heat capacity
of diamond from Einstein’s original pa-
per. The fit is to the Einstein the-
ory. The y axis is C in units of cal/(K-
mol). In these units, 3R ≈ 5.96. The
fitting parameter TEinstein = �ω/kB
is roughly 1320K. Figure from A. Ein-
stein, Ann. Phys., 22, 180, (1907),
Copyright Wiley-VCH Verlag GmbH &
Co. KGaA. Reproduced with permis-
sion.

For most materials, the Einstein frequency ω is low compared to room
temperature, so the Dulong–Petit law holds fairly well (being relatively
high temperature compared to the Einstein frequency). However, for
diamond, ω is high compared to room temperature, so the heat capacity
is lower than 3R at room temperature. The reason diamond has such a
high Einstein frequency is that the bonding between atoms in diamond
is very strong and the atomic mass of the carbon atoms that comprise
diamond is relatively low, hence a high ω =

√
κ/m oscillation frequency,

with κ a spring constant and m the mass. These strong bonds also result
in diamond being an exceptionally hard material.
Einstein’s result was remarkable, not only in that it explained the

temperature dependence of the heat capacity, but more importantly it
told us something fundamental about quantum mechanics. Keep in mind
that Einstein obtained this result 19 years before the Schroedinger equa-
tion was discovered!6

6Einstein was a pretty smart guy.

2.2 Debye’s Calculation

Einstein’s theory of specific heat was extremely successful, but still there
were clear deviations from the predicted equation. Even in the plot in
his first paper (Fig. 2.2) one can see that at low temperature the ex-
perimental data lie above the theoretical curve.7 This result turns out

7Although perhaps not obvious, this
deviation turns out to be real, and not
just experimental error.

to be rather important! In fact, it was known that at low temperatures
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most materials have a heat capacity that is proportional to T 3. See
for example, Fig. 2.3. (Metals also have a very small additional term
proportional to T which we will discuss later in Section 4.2. Magnetic

0.02

0.04

12.8 K

59 K

10
5

2 x 10
50

C
p
(J
/m

ol
-K

)

T 3 (K3)

Fig. 2.3 Heat capacity of diamond is
proportional to T 3 at low temperature.
Note that the temperatures shown in
this plot are far far below the Ein-
stein temperature and therefore corre-
spond to the very bottom left corner
of Fig. 2.2. Data from Desnoyehs and
Morrison, Phil. Mag., 3, 42 (1958).

materials may have other additional terms as well.8 Non-magnetic in-

8We will discuss magnetism in part VII.

sulators have only the T 3 behavior). At any rate, Einstein’s formula at
low temperature is exponentially small in T , not agreeing at all with the
actual experiments.
In 1912 Peter Debye9 discovered how to better treat the quantum

9Peter Debye later won a Nobel Prize
in chemistry for something completely
different.

mechanics of oscillations of atoms, and managed to explain the T 3 de-
pendance of the specific heat. Debye realized that oscillation of atoms is
the same thing as sound, and sound is a wave, so it should be quantized
the same way as Planck10 had quantized light waves in 1900. Besides

10Max Planck did not like his own cal-
culation of the quantization of light. He
later referred to it as “an act of des-
peration”. It seems that he viewed it
mostly as a way to fudge the calcula-
tion to get an answer in agreement with
experiment rather than being the revo-
lutionary beginning of the new field of
quantum physics.

the fact that the speed of light is much faster than that of sound, there
is only one minor difference between light and sound: for light, there
are two polarizations for each wavevector k, whereas for sound there
are three modes for each k (a longitudinal mode, where the atomic mo-
tion is in the same direction as k and two transverse modes where the
motion is perpendicular to k; light has only the transverse modes11).

11Sound in fluids is longitudinal only.

For simplicity of presentation here we will assume that the transverse
and longitudinal modes have the same velocity, although in truth the
longitudinal velocity is usually somewhat greater than the transverse
velocity.12

12It is not too hard to keep track of the
fact that the transverse and longitudi-
nal velocities are different. Note also
that we assume the sound velocity to
be the same in every direction, which
need not be true in real materials. It is
not too hard to include such anisotropy
in Debye’s theory as well. See Exercise
2.6.

We now repeat essentially what was Planck’s calculation for light.
This calculation should also look familiar from your statistical physics
course. First, however, we need some preliminary information about
waves:

2.2.1 Periodic (Born–von Karman) Boundary
Conditions

Many times in this course we will consider waves with periodic or “Born–
von Karman” boundary conditions. It is easiest to describe this first in
one dimension. Here, instead of having a one-dimensional sample of
length L with actual ends, we imagine that the two ends are connected
together making the sample into a circle. The periodic boundary con-
dition means that, any wave in this sample eikr is required to have the
same value for a position r as it has for r+L (we have gone all the way
around the circle). This then restricts the possible values of k to be

k =
2πn

L

for n an integer. If we are ever required to sum over all possible values of
k, for large enough L we can replace the sum with an integral obtaining∑

k

→ L

2π

∫ ∞

−∞

dk.

A way to understand this mapping is to note that the spacing between
allowed points in k space is 2π/L, so the integral

∫
dk can be replaced

by a sum over k points times the spacing between the points.13
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In three dimensions, the story is extremely similar. For a sample of
size L3, we identify opposite ends of the sample (wrapping the sample 13In your previous courses you may

have used particle-in-a-box boundary
conditions where instead of plane waves
ei2πnr/L you used particle in a box
wavefunctions of the form sin(nπr/L).
This gives you instead∑

k

→ L

π

∫ ∞

0
dk

which will inevitably result in the same
physical answers as for the periodic
boundary condition case. All calcula-
tions can be done either way, but peri-
odic Born–von Karman boundary con-
ditions are almost always simpler.

up into a hypertorus!) so that if you go a distance L in the x, y or z
direction, you get back to where you started.14 As a result, our k values

14Such boundary conditions are very
popular in video games, such as the
classic time-wasting game of my youth,
Asteroids (you can find it online). It
may also be possible that our universe
has such boundary conditions—a no-
tion known as the doughnut universe.
Data collected by Cosmic Microwave
Background Explorer (led by Nobel
Laureates John Mather and George
Smoot) and its successor the Wilkin-
son Microwave Anisotropy Probe ap-
pear consistent with this structure.

can only take values

k =
2π

L
(n1, n2, n3)

for integer values of ni, so here each k point now occupies a volume of
(2π/L)3. Because of this discretization of values of k, whenever we have
a sum over all possible k values we obtain∑

k

→ L3

(2π)3

∫
dk

with the integral over all three dimensions of k-space (this is what we
mean by the bold dk). One might think that wrapping the sample up
into a hypertorus is very unnatural compared to considering a system
with real boundary conditions. However, these boundary conditions
tend to simplify calculations quite a bit, and most physical quantities
you might measure could be measured far from the boundaries of the
sample anyway and would then be independent of what you do with the
boundary conditions.

2.2.2 Debye’s Calculation Following Planck

Debye decided that the oscillation modes of a solid were waves with
frequencies ω(k) = v|k| with v the sound velocity—and for each k there
should be three possible oscillation modes, one for each direction of
motion. Thus he wrote an expression entirely analogous to Einstein’s
expression (compare to Eq. 2.2)

〈E〉 = 3
∑
k

�ω(k)

(
nB(β�ω(k)) +

1

2

)
= 3

L3

(2π)3

∫
dk �ω(k)

(
nB(β�ω(k)) +

1

2

)
.

Each excitation mode is a boson of frequency ω(k) and is occupied on
average nB(β�ω(k)) times.
By spherical symmetry, we may convert the three-dimensional integral

to a one-dimensional integral∫
dk → 4π

∫ ∞

0

k2dk

(recall that 4πk2 is the area of the surface of a sphere15 of radius k) and 15Or to be pedantic,
∫
dk →∫ 2π

0
dφ

∫ π
0

dθ sin θ
∫∞
0

k2dk and per-
forming the angular integrals gives
4π.

we also use k = ω/v to obtain

〈E〉 = 3
4πL3

(2π)3

∫ ∞

0

ω2dω(1/v3)(�ω)

(
nB(β�ω) +

1

2

)
.

(2.3)
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It is convenient to replace nL3 = N where n is the density of atoms. We
then obtain

〈E〉 =
∫ ∞

0

dω g(ω)(�ω)

(
nB(β�ω) +

1

2

)
(2.4)

where the density of states is given by16

16Although it now appears that the
number of atoms N and the atomic
density n are relevant parameters of the
problem, in fact, these two factors can-
cel and only the original L3 matters for
our results in this section! The reason
we have introduced such canceling fac-
tors here is because writing our results
this way prepares us for the next sec-
tion (Sec. 2.2.3) where N becomes an
important physical parameter different
from L3!

g(ω) = L3

[
12πω2

(2π)3v3

]
= N

[
12πω2

(2π)3nv3

]
= N

9ω2

ω3
d

(2.5)

where
ω3
d = 6π2nv3. (2.6)

This frequency will be known as the Debye frequency, and in the next
section we will see why we chose to define it this way with the factor of
9 removed.
The meaning of the density of states17 here is that the total number17We will encounter the concept of den-

sity of states many times, so it is a good
idea to become comfortable with it!

of oscillation modes with frequencies between ω and ω + dω is given by
g(ω)dω. Thus the interpretation of Eq. 2.4 is simply that we should
count how many modes there are per frequency (given by g), then mul-
tiply by the expected energy per mode (compare to Eq. 2.2), and finally
we integrate over all frequencies. This result, Eq. 2.3, for the quantum
energy of the sound waves is strikingly similar to Planck’s result for the
quantum energy of light waves, only we have replaced 2/c3 by 3/v3 (re-
placing the two light modes by three sound modes). The other change
from Planck’s classic result is the +1/2 that we obtain as the zero-point
energy of each oscillator.18 At any rate, this zero-point energy gives us

18Planck should have gotten this en-
ergy as well, but he didn’t know about
zero-point energy—in fact, since it was
long before quantum mechanics was
fully understood, Debye didn’t actually
have this term either. a contribution which is temperature independent.19 Since we are con-

19The contribution of the zero-point
energy is temperature independent and
also infinite. Handling infinities like
this is something that gives mathemati-
cians nightmares, but physicists do it
happily when they know that the infin-
ity is not really physical. We will see
in Section 2.2.3 how this infinity gets
properly cut off by the Debye frequency.

cerned with C = ∂〈E〉/∂T this term will not contribute and we will
separate it out. We thus obtain

〈E〉 = 9N�

ω3
d

∫ ∞

0

dω
ω3

eβ�ω − 1
+ T independent constant.

By defining a variable x = β�ω this becomes

〈E〉 = 9N�

ω3
d(β�)

4

∫ ∞

0

dx
x3

ex − 1
+ T independent constant.

The nasty integral just gives some number20—in fact the number is
π4/15. Thus we obtain

〈E〉 = 9N
(kBT )

4

(�ωd)3
π4

15
+ T independent constant.

20If you wanted to evaluate the nasty integral, the strategy is to reduce it to the famous Riemann zeta function. We start by
writing ∫ ∞

0
dx

x3

ex − 1
=

∫ ∞

0
dx

x3e−x

1− e−x
=

∫ ∞

0
dxx3e−x

∞∑
n=0

e−nx =
∞∑

n=1

∫ ∞

0
dx x3e−nx

The integral can be evaluated and the expression can then be written as 3!
∑∞

n=1 n
−4. The resultant sum is a special case of

the famous Riemann zeta function defined as ζ(p) =
∑∞

n=1 n
−p, where here we are concerned with the value of ζ(4). Since

the zeta function is one of the most important functions in all of mathematics (see margin note 24 of this chapter), one can
just look up its value on a table to find that ζ(4) = π4/90, thus giving us the stated result that the nasty integral is π4/15.
However, in the unlikely event that you were stranded on a desert island and did not have access to a table, you could even
evaluate this sum explicitly, which we do in the appendix to this chapter.
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Notice the similarity to Planck’s derivation of the T 4 energy of photons.
As a result, the heat capacity is

C =
∂〈E〉
∂T

= NkB
(kBT )

3

(�ωd)3
12π4

5
∼ T 3

.

This correctly obtains the desired T 3 specific heat. Furthermore, the
prefactor of T 3 can be calculated in terms of known quantities such as
the sound velocity. Note that the Debye frequency in this equation is
sometimes replaced by a temperature.

kBTDebye = �ωd

known as the Debye temperature (see Table 2.2), so that this equation
reads

C =
∂〈E〉
∂T

= NkB
(T )3

(TDebye)3
12π4

5 .

Table 2.2 Some Debye temperatures.

Material TDebye (K)

Diamond (C) 1850
Beryllium (Be) 1000
Silicon (Si) 625
Copper (Cu) 315
Silver (Ag) 215
Lead (Pb) 88

Note that hard materials like diamond
have high Debye temperatures, whereas
soft materials like lead have low De-
bye temperatures. These data are
measured at standard temperature and
pressure (meaning the speed of sound
and density are measured at this tem-
perature and pressure). Since real ma-
terials change depending on the en-
vironment (expand with temperature,
etc.) the Debye temperature is actually
a very weak function of ambient condi-
tions.

2.2.3 Debye’s “Interpolation”

Unfortunately, now Debye has a problem. In the expression just derived,
the heat capacity is proportional to T 3 up to arbitrarily high tempera-
ture. We know however, that the heat capacity should level off to 3kBN
at high T . Debye understood that the problem with his approximation
is that it allowed an infinite number of sound wave modes—up to arbi-
trarily large k. This would imply more sound wave modes than there
are atoms in the entire system. Debye guessed (correctly) that really
there should be only as many modes as there are degrees of freedom in
the system. We will see in Chapters 9–13 that this is an important gen-
eral principle. To fix this problem, Debye decided to not consider sound
waves above some maximum frequency ωcutoff , with this frequency cho-
sen such that there are exactly 3N sound wave modes in the system
(three dimensions of motion times N particles). We thus define ωcutoff

via

3N =

∫ ωcutoff

0

dω g(ω). (2.7)

We correspondingly rewrite Eq. 2.4 for the energy (dropping the zero-
point contribution) as21 21Here, since the integral is now cut off,

had we kept the zero-point energy, its
contribution would now be finite (and
temperature independent still).〈E〉 =

∫ ωcutoff

0

dω g(ω) �ω nB(β�ω). (2.8)

Note that at very low temperature, this cutoff does not matter at all,
since for large β the Bose factor nB will very rapidly go to zero at
frequencies well below the cutoff frequency anyway.
Let us now check that this cutoff gives us the correct high-temperature

limit. For high temperature

nB(β�ω) =
1

eβ�ω − 1
→ kBT

�ω .



14 Specific Heat of Solids: Boltzmann, Einstein, and Debye

Thus in the high-temperature limit, invoking Eqs. 2.7 and 2.8 we obtain

〈E〉 = kBT

∫ ωcutoff

0

dωg(ω) = 3kBTN

yielding the Dulong–Petit high-temperature heat capacity C = ∂〈E〉/∂T
= 3kBN = 3kB per atom. For completeness, let us now evaluate our
cutoff frequency,

3N =

∫ ωcutoff

0

dωg(ω) = 9N

∫ ωcutoff

0

dω
ω2

ω3
d

= 3N
ω3
cutoff

ω3
d .

We thus see that the correct cutoff frequency is exactly the Debye fre-
quency ωd. Note that k = ωd/v = (6π2n)1/3 (from Eq. 2.6) is on the
order of the inverse interatomic spacing of the solid.
More generally (in the neither high- nor low-temperature limit) one

has to evaluate the integral (Eq. 2.8), which cannot be done analytically.
Nonetheless it can be done numerically and then can be compared to
actual experimental data as shown in Fig. 2.4. It should be emphasized
that the Debye theory makes predictions without any free parameters,
as compared to the Einstein theory which had the unknown Einstein
frequency ω as a free fitting parameter.
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Fig. 2.4 Heat capacity of silver com-
pared to the Debye and Einstein mod-
els. The high-temperature asymptote
is given by C = 3R = 24.945 J/(mol-
K). Over the entire experimental range,
the fit to the Debye theory is excellent.
At low T it correctly recovers the T 3

dependence, and at high T it converges
to the law of Dulong–Petit. The Ein-
stein theory clearly is incorrect at very
low temperatures. The Debye tempera-
ture is roughly 215 K, whereas the Ein-
stein temperature roughly 151 K. Data
is taken from C. Kittel, Solid State

Physics, 2ed Wiley (1956).

2.2.4 Some Shortcomings of the Debye Theory

While Debye’s theory is remarkably successful, it does have a few short-
comings.

• The introduction of the cutoff seems very ad hoc. This seems like
a successful cheat rather than real physics.

• We have assumed sound waves follow the law ω = vk even for very
very large values of k (on the order of the inverse lattice spacing),
whereas the entire idea of sound is a long-wavelength idea, which
doesn’t seem to make sense for high enough frequency and short
enough wavelength. At any rate, it is known that at high enough
frequency the law ω = vk no longer holds.

• Experimentally, the Debye theory is very accurate, but it is not
exact at intermediate temperatures.

• Metals also have a term in the heat capacity that is proportional to
T , so the overall heat capacity is C = γT +αT 3 and at low enough
T the linear term will dominate.22 You can’t see this contribution

22In magnetic materials there may be
still other contributions to the heat ca-
pacity reflecting the energy stored in
magnetic degrees of freedom. See Part
VII, and in particular Exercise 20.3, be-
low.

on the plot Fig. 2.4, but at very low T it becomes evident, as shown
in Fig. 2.5.

Of these shortcomings, the first three can be handled more properly
by treating the details of the crystal structure of materials accurately
(which we will do starting in Chapter 9). The final issue requires us to
carefully study the behavior of electrons in metals to discover the origin
of this linear T term (see Section 4.2).
Nonetheless, despite these problems, Debye’s theory was a substantial

improvement over Einstein’s.23
23Debye was pretty smart too... even
though he was a chemist.


