
[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.i

The LaTEX Companion
Third Edition – Part I & Part II

This eBook is a compilation of Part I and Part II of The LATEX
Companion, Third Edition. To navigate to a specific page, click the
links in the text or enter the part number, a hyphen, and the page

number — e.g., II-39 for page 39 in the second part.

Detailed information about the production of this eBook is
given in the Production Notes on page →II 983.

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.ii

Addison-Wesley Series on
Tools and Techniques for Computer Typesetting

This series focuses on tools and techniques needed for computer typesetting and informa-
tion processing with traditional and new media. Books in the series address the practical
needs of both users and system developers. Initial titles comprise handy references for
LaTEX users; forthcoming works will expand that core. Ultimately, the series will cover
other typesetting and information processing systems, as well, especially insofar as those
systems offer unique value to the scientific and technical community. The series goal is to
enhance your ability to produce, maintain, manipulate, or reuse articles, papers, reports,
proposals, books, and other documents with professional quality.

Ideas for this series should be directed to frank.mittelbach@latex-project.org.
Send all other feedback to the publisher at informit.com/about/contact_us or via
email to community@informit.com.

Series Editor

Frank Mittelbach
Technical Lead, LATEX Project, Germany

Editorial Board

Jacques André
Irisa/Inria-Rennes,

France (Ret.)

Barbara Beeton
Editor, TUGboat, USA

David Brailsford
University of Nottingham, UK

Peter Flynn
University College, Cork,

Ireland (Ret.)

Matthew Hardy
Adobe, USA

Leslie Lamport
Microsoft, USA

Chris Rowley
Open University, UK (Ret.)

William Robertson
The University of Adelaide,

Australia

Steven Simske
Colorado State University, USA

Series Titles

Guide to LATEX, Fourth Edition by Helmut Kopka and Patrick W. Daly

The LATEX Companion, Third Edition by Frank Mittelbach, with Ulrike Fischer and contributions
by Javier Bezos, Johannes Braams, and Joseph Wright

The LATEX Graphics Companion, Second Edition by Michel Goossens, Frank Mittelbach,
Sebastian Rahtz, Denis Roegel, and Herbert Voß

Reprinted 2022 by Lehmanns Media, Berlin

The LATEX Web Companion by Michel Goossens and Sebastian Rahtz

Also from Addison-Wesley and New Riders:

LATEX: A Document Preparation System, Second Edition by Leslie Lamport

Computers & Typesetting, Volumes A–E by Donald E. Knuth

The Type Project Book: Typographic projects to sharpen your creative skills & diversify your portfolio
by Nigel French and Hugh D’Andrade

frank.mittelbach@latex-project.org
informit.com/about/contact_us
community@informit.com

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.iii

The LaTEX Companion
Third Edition – Part I

Frank Mittelbach
LATEX Project, Mainz, Germany

Ulrike Fischer
LATEX Project, Bonn, Germany

With contributions by Joseph Wright

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.iv

Cover illustration by Lonny Garris/Shutterstock
Photos of Sebastian Rahtz courtesy of the TEX Users Group

Book design by Frank Mittelbach
Typeset with LaTEX in Lucida Bright at 8.47pt/11.72pt

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities,
please contact our corporate sales department at corpsales@pearsoned.com or
(800)382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com. For
questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022947208

Copyright © 2023 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

The foregoing notwithstanding, the examples contained in this book are made
available under the LaTEX Project Public License (for information on the LPPL, see
https://www.latex-project.org/lppl).

The examples can be downloaded from https://ctan.org/pkg/tlc3-examples.

Part I: Print ISBN-13: 978-0-13-465894-0

Part II: Print ISBN-13: 978-0-201-36300-5

Part I+II (bundled):

Print ISBN-13: 978-0-13-816648-9

Part I+II (combined) digital:

ePub ISBN-13: 978-0-13-816652-6
uPDF ISBN-13: 978-0-13-816657-1

Release date of the digital edition: September 1, 2023

informit.com/aw
www.pearson.com/permissions/
https://www.latex-project.org/lppl
https://ctan.org/pkg/tlc3-examples

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.v

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential
to deliver opportunities that improve lives and enable economic mobility. As we work
with authors to create content for every product and service, we acknowledge our
responsibility to demonstrate inclusivity and incorporate diverse scholarship so that
everyone can achieve their potential through learning. As the world’s leading learning
company, we have a duty to help drive change and live up to our purpose to help
more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich
diversity of learners.

• Our educational content accurately reflects the histories and experiences of the
learners we serve.

• Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address
them.

• Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.vi

This page intentionally left blank

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.vii

A TeX Haiku

\expandafter\def
\csname def\endcsname
{\message{farewell}}\bye

SPQR
at the poetry competition

TUG conference,
Vancouver, 1999

I dedicate this edition to all my friends in the TEX world and in particular
to the memory of my good friend Sebastian P. Q. Rahtz (1955–2016),
with whom I spent many happy hours discussing parenting, literature,
LaTEX and other important aspects of life [146].

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.viii

This page intentionally left blank

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.ix

Contents

Part I

List of Figures xxviii

List of Tables xxxi

Foreword xxxvii

Preface xxxix

Chapter 1 Introduction 1

1.1 A brief history (of nearly half a century) . 1

1.2 Today’s systems . 8

1.3 Working with this book . 13
1.3.1 What’s where . 13
1.3.2 Typographic conventions . 15
1.3.3 Using the examples. 18

Chapter 2 The Structure of a LATEX Document 21

2.1 The overall structure of a source file. 22
2.1.1 Spoiler alert — The \DocumentMetadata command 23
2.1.2 Processing of options of the document class and packages . . 24
2.1.3 Front, main, and back matter 26
2.1.4 Splitting the source document into several files 28
2.1.5 askinclude — Managing your inclusions. 30
2.1.6 tagging — Providing variants in the document source. 30

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.x

CONTENTS OF PART I

2.2 Sectioning commands . 32
2.2.1 Numbering headings . 34
2.2.2 Changing fixed heading texts 36
2.2.3 Introduction to heading design 37
2.2.4 quotchap, epigraph — Mottos on chapters and sections 38
2.2.5 indentfirst — Indent the first paragraph after a heading 39
2.2.6 nonumonpart — No page numbers on parts 40
2.2.7 titlesec — A package approach to heading design 40
2.2.8 Formatting headings — LATEX’s internal low-level methods. . . . 51

2.3 Table of contents structures . 54
2.3.1 tocdata — Providing extra data for the TOC. 56
2.3.2 titletoc — A high-level approach to contents list design 59
2.3.3 multitoc — Setting contents lists in multiple columns. 70
2.3.4 LATEX’s low-level interfaces 70

2.4 Managing references . 75
2.4.1 varioref — More flexible cross-references 79
2.4.2 cleveref — Cleverly formatted references 86
2.4.3 nameref — Non-numerical references 93
2.4.4 showkeys, refcheck — Displaying & checking reference keys . . 93
2.4.5 xr — References to external documents. 95
2.4.6 hyperref — Active references 96

2.5 Document source management. 108
2.5.1 Combining several files. 109
2.5.2 Document archival information 110
2.5.3 snapshot, bundledoc — Document archival and verification. . . 111
2.5.4 mkjobtexmf — Providing a minimal TEX file tree 113
2.5.5 The rollback concept for LATEX and individual packages 114

Chapter 3 Basic Formatting Tools — Paragraph Level 119

3.1 Shaping your paragraphs . 120
3.1.1 ragged2e — Improving unjustified text 123
3.1.2 nolbreaks — Preventing line breaks in text fragments. 125
3.1.3 microtype — Enhancing justified text 126
3.1.4 parskip — Adjusting the look and feel of paragraphs 137
3.1.5 setspace — Changing interline spacing 139
3.1.6 lettrine — Dropping your capital 141
3.1.7 Alphabets for initials . 145
3.1.8 magaz — Special handling of the first line 146
3.1.9 fancypar — Fancy layouts for individual paragraphs. 147

3.2 Dealing with special characters . 147
3.2.1 ellipsis, lips — Marks of omission 148
3.2.2 extdash and amsmath — Dashes in text 149
3.2.3 underscore — Making that character more usable. 151
3.2.4 xspace — Gentle spacing after a macro 152

x

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xi

CONTENTS OF PART I

3.3 Generated or specially formatted text . 154
3.3.1 fmtcount — Ordinals and cardinals 154
3.3.2 acro — Managing your abbreviations and acronyms. 156
3.3.3 xfrac — Customizable text ⁄ fractions 164
3.3.4 siunitx — Scientific notation of units and quantities 167

3.4 Various ways of highlighting and quoting text. 177
3.4.1 Change case of text intelligently (formerly textcase) 178
3.4.2 csquotes — Context-sensitive quotation marks 179
3.4.3 embrac — Upright brackets and parentheses 188
3.4.4 ulem — Emphasize and copy-edit via underline 189
3.4.5 dashundergaps — Produce fill-in forms 190
3.4.6 microtype & soul — Letterspacing or stealing sheep 191
3.4.7 url — Typesetting URLs, path names, and the like. 198
3.4.8 uri — Typesetting various types of URIs 202

3.5 Footnotes, endnotes, and marginals. 204
3.5.1 Using standard footnotes. 205
3.5.2 Customizing standard footnotes 208
3.5.3 footmisc — Various footnotes styles 210
3.5.4 footnoterange — Referencing footnote ranges 216
3.5.5 fnpct — Managing footnote markers and punctuation. 216
3.5.6 perpage — Resetting counters on a “per-page” basis 218
3.5.7 manyfoot, bigfoot — Independent footnotes 220
3.5.8 parnotes — Present the notes inside the galley 226
3.5.9 ftnright — Right footnotes in a two-column environment 228
3.5.10 enotez — Endnotes, an alternative to footnotes 228
3.5.11 Marginal notes . 232
3.5.12 marginnote — An alternative to \marginpar 234
3.5.13 snotez — Numbered or otherwise marked side notes 235

3.6 Support for document development . 237
3.6.1 todonotes — Adding todos to your document. 237
3.6.2 fixme — A slightly different approach to todos 242
3.6.3 changes — A set of typical editorial commands 245
3.6.4 pdfcomment — Using PDF annotations and tool tips 250
3.6.5 vertbars — Adding bars to paragraphs 251

Chapter 4 Basic Formatting Tools — Larger Structures 253

4.1 Lists . 254
4.1.1 Using and modifying the standard lists 254
4.1.2 LATEX’s generic list environments 258
4.1.3 enumitem — Extended list environments 261
4.1.4 amsthm — Providing headed lists 281
4.1.5 thmtools — Advanced theorem declarations 284
4.1.6 tasks — Making horizontally oriented lists 289
4.1.7 typed-checklist — Developing and maintaining checklists 292

xi

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xii

CONTENTS OF PART I

4.2 Simulating typed text. 296
4.2.1 Displaying spaces in verbatim material 297
4.2.2 Simple verbatim extensions 298
4.2.3 upquote — Computer program style quoting 302
4.2.4 fancyvrb, fvextra — Verbatim environments on steroids 303
4.2.5 listings — Pretty-printing program code. 322

4.3 Lines and columns. 333
4.3.1 lineno — Numbering lines of text 334
4.3.2 paracol — Several text streams aligned 339
4.3.3 multicol — A flexible way to handle multiple columns 351
4.3.4 multicolrule — Custom rules for multicolumned pages 361

4.4 Generating sample texts. 361
4.4.1 lipsum and friends — Generating text samples 361
4.4.2 blindtext — More elaborate layout testing 363

Chapter 5 The Layout of the Page 365

5.1 Geometrical dimensions of the layout . 366

5.2 Changing the layout . 368
5.2.1 layouts — Displaying your layout 371
5.2.2 A collection of page layout packages 374
5.2.3 typearea — A traditional approach 375
5.2.4 geometry — Layout specification with auto-completion 377
5.2.5 lscape — Typesetting individual pages in landscape mode . . . 384
5.2.6 savetrees — Options to reduce the document length 384

5.3 Dynamic page data: page numbers and marks . 385
5.3.1 LATEX page numbers . 385
5.3.2 lastpage — A way to reference it 386
5.3.3 chappg — Page numbers by chapters 387
5.3.4 LATEX’s legacy mark commands 388
5.3.5 LATEX’s new mark mechanism 390

5.4 Page styles . 395
5.4.1 The low-level page style interface. 397
5.4.2 fancyhdr — Customizing page styles 398
5.4.3 truncate — Truncate text to a given length 405
5.4.4 continue — Help with turning pages 407

5.5 Page decorations and watermarks . 409
5.5.1 draftwatermark — Put a visible stamp on your document 409
5.5.2 crop — Producing trimming marks 411

5.6 Visual formatting . 414
5.6.1 Standard tools for page explicit page breaking 414
5.6.2 Running pages and columns short or long 415
5.6.3 addlines — Adjusting whole double spreads 416
5.6.4 nextpage — Extensions to \clearpage 418

xii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xiii

CONTENTS OF PART I

5.6.5 needspace — Conditionally start a new page 419
5.6.6 Avoiding widows and orphans 420
5.6.7 widows-and-orphans — Finding all widows and orphans 424
5.6.8 \looseness— Shortening or lengthening paragraphs 427

5.7 Doing layout with class . 429
5.7.1 KOMA-Script — A drop-in replacement for article et al. 429
5.7.2 memoir — Producing complex publications 430

Chapter 6 Tabular Material 431

6.1 Standard LATEX environments . 432
6.1.1 Using the tabbing environment 433
6.1.2 tabto — An alternative way to tab stops. 434
6.1.3 Using the tabular environment 436

6.2 array — Extending the tabular environments. 437
6.2.1 The behavior of the \\ command 437
6.2.2 Examples of preamble specifiers 438
6.2.3 Defining new column specifiers. 445

6.3 Calculating column widths. 446
6.3.1 tabularx — Automatic calculation of column widths. 448
6.3.2 tabulary — Column widths based on content 450
6.3.3 Differences between tabular*, tabularx, and tabulary . . 452
6.3.4 Managing tables with wide entries 453
6.3.5 widetable — An alternative to tabular* 453

6.4 Multipage tabular material. 456
6.4.1 supertabular — Making multipage tabulars 456
6.4.2 longtable — Alternative multipage tabulars 459
6.4.3 xltabular — Marriage of tabularx and longtable 463
6.4.4 Problems with multipage tables (all packages) 464

6.5 Color in tables . 466

6.6 Customizing table rules and spacing . 467
6.6.1 Colored table rules . 467
6.6.2 boldline — Bolder table rules 468
6.6.3 arydshln — Dashed rules . 469
6.6.4 hhline — Combining horizontal and vertical lines 470
6.6.5 booktabs — Formal ruled tables 471
6.6.6 bigstrut — Spreading individual table lines apart 473
6.6.7 cellspace — Ensure minimal clearance automatically 474

6.7 Other extensions . 476
6.7.1 multirow — Vertical alignment in tables. 476
6.7.2 diagbox — Making table cells with diagonal lines 479
6.7.3 dcolumn — Decimal column alignments 481
6.7.4 siunitx — Scientific numbers in tables. 484
6.7.5 fcolumn — Managing financial tables 487

xiii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xiv

CONTENTS OF PART I

6.8 Footnotes in tabular material . 491
6.8.1 Using minipage footnotes with tables 491
6.8.2 threeparttable — Setting table and notes together 492

6.9 keyvaltable — Separating table data and formatting . 494

6.10 tabularray — Late breaking news. 504

Chapter 7 Mastering Floats 505

7.1 An overview of LATEX’s float concepts. 506
7.1.1 LATEX float terminology . 506
7.1.2 Basic behavioral rules of LATEX’s float mechanism 508
7.1.3 Consequences of the algorithm. 512
7.1.4 fltrace — Tracing the float algorithm 518

7.2 Float placement control . 519
7.2.1 fewerfloatpages — Improving LATEX’s float algorithm 519
7.2.2 placeins — Preventing floats from crossing a barrier 524
7.2.3 afterpage — Taking control at the page boundary 525
7.2.4 endfloat — Placing figures and tables at the end 525

7.3 Extensions to LATEX’s float concept . 528
7.3.1 float — Creating new float types 529
7.3.2 Captions for nonfloating figures and tables 532
7.3.3 rotating, rotfloat — Rotating floats 533
7.3.4 wrapfig — Inline floats, wrapping text around a figure 535

7.4 Controlling the float caption. 538
7.4.1 caption — Customizing your captions. 540
7.4.2 subcaption — Substructuring floats 551

7.5 Key/value approaches for floats and subfloats. 560
7.5.1 hvfloat — Sophisticated caption placement control and more . . 560
7.5.2 keyfloat — Bringing most packages under one roof 567

Chapter 8 Graphics Generation and Manipulation 575

8.1 LATEX’s image loading support. 576
8.1.1 Options for graphics and graphicx 577
8.1.2 The \includegraphics syntax in the graphics package . . . 578
8.1.3 The \includegraphics syntax in the graphicx package . . . 580
8.1.4 Setting default key values for the graphicx package 585
8.1.5 Declarations guiding the inclusion of images 586

8.2 Manipulating graphical objects in LATEX . 587
8.2.1 Image and box manipulations with graphics and graphicx . . . 587
8.2.2 overpic — Graphic annotation made easy 593
8.2.3 adjustbox — Box manipulation with a key/value interface . . . 595

8.3 Producing (fairly) portable line graphics . 602
8.3.1 A kernel picture environment enhancement 602
8.3.2 pict2e — An extension of LATEX’s picture environment. 602

xiv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xv

CONTENTS OF PART I

8.3.3 bxeepic — A differently enhanced picture environment 608
8.3.4 Special-purpose languages 612
8.3.5 qrcode — Generating Quick Response codes 612

8.4 Flexible boxes for multiple purposes . 614
8.4.1 tcolorbox — The basic usage 614
8.4.2 Extending tcolorbox through libraries 619
8.4.3 Defining new tcolorbox environments and commands 626
8.4.4 Special tcolorbox applications 628

8.5 tikz — A general-purpose graphics system. 631
8.5.1 Basic objects . 633
8.5.2 Transformations and other operations 642
8.5.3 Going further . 646

Chapter 9 Font Selection and Encodings 647

9.1 Introduction . 648
9.1.1 The history of LATEX’s font selection scheme (NFSS) 648
9.1.2 Input and output handling in TEX systems over the years 649

9.2 Understanding font characteristics . 652
9.2.1 Monospaced and proportional fonts 652
9.2.2 Serifed and sans serif fonts. 653
9.2.3 Font families and their attributes 653
9.2.4 Font encodings . 657

9.3 Using fonts in text. 658
9.3.1 Standard LATEX font commands 659
9.3.2 Font commands versus declarations 666
9.3.3 Combining standard font commands 668
9.3.4 Accessing all characters of a font. 669
9.3.5 LATEX 2.09 font support — Compatibility for really ancient

documents . 670
9.3.6 Changing the default text fonts 670
9.3.7 relsize, scalefnt — Relative changes to the font size 675

9.4 Using fonts in math. 676
9.4.1 Special math alphabet identifiers 677
9.4.2 Text font commands in math 682
9.4.3 Mathematical formula versions 682

9.5 Standard LATEX font support . 683
9.5.1 Computer Modern, Latin Modern — The LATEX standard fonts . . 684
9.5.2 PSNFSS and TEX Gyre — Core PostScript fonts for LATEX 688
9.5.3 A note on baselines and leading 691
9.5.4 inputenc — Explicitly selecting the input encoding 692
9.5.5 fontenc — Selecting font encodings 693
9.5.6 Additional text symbols not part of OT1 or T1 encodings . . . 694
9.5.7 exscale — Scaling large Computer Modern math operators . . . 704

xv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xvi

CONTENTS OF PART I

9.5.8 tracefnt — Tracing the font selection 704
9.5.9 nfssfont.tex — Displaying 8-bit font tables and samples 705

9.6 fontspec — Font selection for Unicode engines . 705
9.6.1 Setting up the main document font families 706
9.6.2 Setting up additional font families 711
9.6.3 Setting up a single font face 711
9.6.4 Interfacing with core NFSS commands 712
9.6.5 Altering the look and feel of fonts 713
9.6.6 General configuration options 727
9.6.7 unicodefonttable — Displaying font tables for larger fonts . . . 728

9.7 The low-level NFSS interface . 730
9.7.1 Setting individual font attributes 731
9.7.2 Setting several font attributes 738
9.7.3 Automatic substitution of fonts. 738
9.7.4 Substituting the font family if unavailable in an encoding . . . 739
9.7.5 Using low-level commands in the document 740

9.8 Setting up new fonts for NFSS . 740
9.8.1 Declaring new font families and font shape groups. 741
9.8.2 Modifying font families and font shape groups 746
9.8.3 Declaring new font encoding schemes 747
9.8.4 Internal file organization . 748
9.8.5 Declaring new fonts and symbols for use in math 749

9.9 LATEX’s encoding models . 754
9.9.1 Character data within the LATEX system 754
9.9.2 LATEX’s internal character representation (LICR) 757
9.9.3 Input encodings . 758
9.9.4 Output encodings . 760

Part II

Foreword, Part II II v

Preface, Part II II vii

Chapter 10 Text and Symbol Fonts II 1

10.1 Overview. II 2
10.1.1 Notes on the font samples II 4
10.1.2 Notes on the font family tables II 5
10.1.3 Font support packages . II 7
10.1.4 Direct use of the fonts (without a package) II 10

10.2 Samples of larger font families. II 11
10.2.1 Alegreya . II 11
10.2.2 CM Bright — A design based on Computer Modern Sans . . . II 12

xvi

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xvii

CONTENTS OF PART II

10.2.3 DejaVu — A fork of Bitstream Vera II 12
10.2.4 Fira fonts . II 14
10.2.5 Gandhi fonts . II 15
10.2.6 Go fonts. II 15
10.2.7 Inria fonts . II 16
10.2.8 Kp (Johannes Kepler) fonts II 17
10.2.9 Libertinus — A fork of Linux Libertine and Biolinum II 19
10.2.10 Lucida fonts. II 21
10.2.11 Merriweather fonts . II 25
10.2.12 Google’s Noto and Droid fonts II 26
10.2.13 IBM Plex. II 30
10.2.14 PT fonts . II 31
10.2.15 Quattrocento . II 33
10.2.16 Google Roboto families . II 34
10.2.17 Adobe Source Pro . II 35

10.3 Humanist (Oldstyle) serif fonts. II 36
10.3.1 Alegreya . II 37
10.3.2 Coelacanth . II 37
10.3.3 fbb — A version of Cardo II 37

10.4 Garalde (Oldstyle) serif fonts. II 38
10.4.1 Accanthis . II 39
10.4.2 GFS Artemisia . II 39
10.4.3 Crimson, Crimson Pro, and Cochineal II 40
10.4.4 Cormorant Garamond . II 41
10.4.5 EB Garamond . II 41
10.4.6 Garamond Libre . II 42
10.4.7 URW Garamond No. 8 . II 43
10.4.8 Gentium Plus . II 45
10.4.9 Kp (Johannes Kepler) Roman II 45
10.4.10 Palatino (TEX Gyre Pagella) II 46

10.5 Transitional/Neoclassical serif fonts . II 46
10.5.1 Antykwa Poltawskiego . II 46
10.5.2 BaskervilleF and Libre Baskerville II 47
10.5.3 Baskervald (Baskervaldx) II 48
10.5.4 ITC Bookman (TEX Gyre Bonum) II 48
10.5.5 Cambria. II 49
10.5.6 Bitstream Charter . II 50
10.5.7 Charis SIL — A design based on Bitstream Charter. II 51
10.5.8 Caslon — Reinterpreted as Libre Caslon II 51
10.5.9 Gandhi Serif . II 52
10.5.10 Inria Serif . II 52
10.5.11 Libertinus Serif . II 52
10.5.12 Literaturnaya — A favorite in the days of the USSR. II 53
10.5.13 Lucida Bright . II 53

xvii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xviii

CONTENTS OF PART II

10.5.14 Lucida Fax . II 54
10.5.15 Merriweather . II 54
10.5.16 New Century Schoolbook (TEX Gyre Schola) II 54
10.5.17 Plex Serif . II 55
10.5.18 PT Serif . II 55
10.5.19 Quattrocento . II 55
10.5.20 Times Roman (TEX Gyre Termes and Tempora) II 55
10.5.21 Tinos . II 57
10.5.22 STIX 2 . II 57
10.5.23 Utopia (Heuristica, Erewhon, and Linguistics Pro) II 58

10.6 Didone (Modern) serif fonts. II 60
10.6.1 Computer Modern Roman / Latin Modern Roman II 60
10.6.2 GFS Bodoni . II 61
10.6.3 Libre Bodoni . II 61
10.6.4 GFS Didot . II 62
10.6.5 Theano Didot . II 62
10.6.6 Noto Serif . II 63
10.6.7 Old Standard . II 63
10.6.8 Playfair Display . II 64

10.7 Slab serif (Egyptian) fonts . II 64
10.7.1 Bitter . II 65
10.7.2 Concrete Roman . II 65
10.7.3 DejaVu Serif . II 67
10.7.4 Roboto Slab Serif . II 67
10.7.5 Source Serif Pro . II 67

10.8 Sans serif fonts . II 67
10.8.1 Alegreya Sans . II 68
10.8.2 Arimo . II 68
10.8.3 ITC Avant Garde Gothic (TEX Gyre Adventor) II 69
10.8.4 Cabin . II 70
10.8.5 Chivo . II 70
10.8.6 Classico — A design based on Optima. II 71
10.8.7 Clear Sans. II 72
10.8.8 CM Bright . II 72
10.8.9 Cuprum . II 73
10.8.10 Cyklop . II 73
10.8.11 DejaVu Sans. II 74
10.8.12 Fira Sans . II 74
10.8.13 Gandhi Sans. II 74
10.8.14 GFS Neo-Hellenic . II 75
10.8.15 Gillius . II 75
10.8.16 Helvetica (TEX Gyre Heros). II 76
10.8.17 Inria Sans . II 77
10.8.18 Iwona . II 77

xviii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xix

CONTENTS OF PART II

10.8.19 Kp (Johannes Kepler) Sans. II 79
10.8.20 Kurier . II 79
10.8.21 Latin Modern Sans . II 80
10.8.22 Lato . II 80
10.8.23 Libertinus Sans . II 81
10.8.24 Libre Franklin . II 81
10.8.25 Lucida Sans . II 82
10.8.26 Merriweather Sans . II 82
10.8.27 Mint Spirit . II 82
10.8.28 Montserrat . II 83
10.8.29 Noto Sans . II 84
10.8.30 Overlock . II 84
10.8.31 Plex Sans . II 85
10.8.32 PT Sans . II 85
10.8.33 Quattrocento Sans . II 85
10.8.34 Raleway . II 86
10.8.35 Roboto Sans. II 86
10.8.36 Rosario . II 86
10.8.37 Source Sans Pro . II 87
10.8.38 Universalis . II 87

10.9 Monospaced (typewriter) fonts. II 88
10.9.1 Algol . II 89
10.9.2 Anonymous Pro . II 90
10.9.3 CM Bright Typewriter Light II 90
10.9.4 Courier . II 91
10.9.5 DejaVu Sans Mono . II 91
10.9.6 Fira Mono . II 92
10.9.7 Go Mono . II 92
10.9.8 Inconsolata . II 92
10.9.9 Kp (Johannes Kepler) Typewriter II 93
10.9.10 Latin Modern Typewriter II 93
10.9.11 Libertinus Mono. II 94
10.9.12 Lucida’s monospaced families II 94
10.9.13 Luximono . II 95
10.9.14 Noto Sans Mono. II 96
10.9.15 Plex Mono. II 96
10.9.16 PT Mono . II 96
10.9.17 Roboto Mono . II 97
10.9.18 Source Code Pro . II 97

10.10 Historical and other fonts . II 97
10.10.1 Cinzel . II 98
10.10.2 Marcellus . II 99
10.10.3 The Fell Types. II 99
10.10.4 Almendra . II 100

xix

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xx

CONTENTS OF PART II

10.10.5 Antykwa Toruńska . II 100
10.10.6 Lucida Casual, Calligraphy, and Handwriting II 102
10.10.7 Zapf Chancery (TEX Gyre Chorus) II 102
10.10.8 Miama Nueva . II 103
10.10.9 Lucida Blackletter . II 104
10.10.10 Blackletter — Yannis Gothic, Schwabacher, and Fraktur. . . . II 104

10.11 Fonts supporting Latin and polytonic Greek . II 106
10.11.1 Serif designs . II 107
10.11.2 Sans Serif designs. II 109
10.11.3 Monospaced fonts . II 109
10.11.4 Handwriting fonts . II 110

10.12 Fonts supporting Latin and Cyrillic. II 110
10.12.1 Serif designs . II 110
10.12.2 Sans Serif designs. II 111
10.12.3 Monospaced fonts . II 112
10.12.4 Handwriting fonts . II 113

10.13 The LATEX world of symbols. II 113
10.13.1 pifont — Accessing Pi and Symbol fonts II 113
10.13.2 wasysym — Waldi’s symbol font II 116
10.13.3 marvosym — Interface to the MarVoSym font II 117
10.13.4 adforn — Adding ornaments to your document II 118
10.13.5 fourier-orns — GUTenberg-Fourier’s ornaments II 119
10.13.6 Web-O-Mints — Another collection of ornaments and borders . II 119
10.13.7 fontawesome5 — Accessing Font Awesome icons II 120
10.13.8 tipa — International Phonetic Alphabet symbols II 125

Chapter 11 Higher Mathematics II 127

11.1 Introduction to amsmath and mathtools . II 128

11.2 Display and alignment structures for equations. II 131
11.2.1 Comparison of amsmath/mathtools with standard LATEX. . . . II 132
11.2.2 A single equation on one line II 133
11.2.3 A single equation on several lines: no alignment II 134
11.2.4 A single equation on several lines: with alignment II 135
11.2.5 Equation groups without alignment II 137
11.2.6 Equation groups with simple alignment II 138
11.2.7 Multiple alignments: align, flalign, and alignat II 138
11.2.8 Display environments as mini-pages II 140
11.2.9 Interrupting displays with short text II 143
11.2.10 Vertical space in and around displays II 143
11.2.11 Page breaks in and around displays II 145
11.2.12 breqn — Automatic line breaking in math displays II 146
11.2.13 Equation numbering and tags II 149
11.2.14 Fine-tuning tag placement II 150
11.2.15 Subordinate numbering sequences II 152
11.2.16 Resetting the equation counter II 153

xx

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxi

CONTENTS OF PART II

11.3 Matrix-like environments . II 153
11.3.1 amsmath, mathtools — The matrix environments II 154
11.3.2 amsmath, mathtools, cases — Some case environments II 156
11.3.3 delarray — Delimiters surrounding an array II 157
11.3.4 bigdelim — Delimiters around and inside arrays. II 158
11.3.5 Commutative diagrams with standard LATEX II 159
11.3.6 amscd — Commutative diagrams a là AMS II 160
11.3.7 tikz-cd — Commutative diagrams based on tikz II 161

11.4 Compound structures and decorations . II 163
11.4.1 amsmath, mathtools, extarrows — Decorated arrows II 163
11.4.2 Fractions and their generalizations II 164
11.4.3 Continued fractions . II 166
11.4.4 Limiting positions . II 166
11.4.5 Stacking in subscripts and superscripts II 167
11.4.6 amsmath, esint, wasysym — Multiple integral signs II 168
11.4.7 diffcoeff — Handling derivatives of arbitrary order. II 170
11.4.8 Modular relations . II 171
11.4.9 mathtools, interval — Properly spaced intervals II 171
11.4.10 braket — Dirac bra–ket and set notation. II 173
11.4.11 amsmath, mathtools, empheq — Boxed formulas II 174
11.4.12 amsmath, accents, mathdots — Various accents. II 176
11.4.13 mattens — Commands to typeset tensors II 178
11.4.14 Extra decorations for symbols II 179

11.5 Variable symbol commands. II 180
11.5.1 Ellipsis and other kinds of . II 180
11.5.2 Horizontal extensions in standard LATEX II 182
11.5.3 Further horizontal extensions II 183
11.5.4 abraces — Customizable over and under braces. II 185
11.5.5 underoverlap — Partly overlapping horizontal braces II 189
11.5.6 Vertical extensions . II 191

11.6 Words in mathematics . II 191
11.6.1 The \text command . II 192
11.6.2 Operator and function names II 192

11.7 Fine-tuning the mathematical layout . II 194
11.7.1 Controlling the automatic sizing and spacing II 195
11.7.2 Subformulas . II 197
11.7.3 Line breaking in inline formulas. II 197
11.7.4 Big-g delimiters . II 199
11.7.5 Radical movements . II 199
11.7.6 Ghostbusters™ . II 200
11.7.7 Horizontal spaces . II 204
11.7.8 resizegather — Downscaling an equation II 206
11.7.9 subdepth — Normalizing subscript positions II 206
11.7.10 Color in formulas . II 207

xxi

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxii

CONTENTS OF PART II

11.8 Symbols in formulas . II 208
11.8.1 Mathematical symbol classes II 209
11.8.2 Letters, numerals, and other Ordinary symbols II 211
11.8.3 Mathematical accents . II 214
11.8.4 Binary operator symbols II 214
11.8.5 Relation symbols . II 216
11.8.6 Operator symbols . II 222
11.8.7 Punctuation . II 222
11.8.8 Opening and Closing symbols II 223

Chapter 12 Fonts in Formulas II 225

12.1 The world of (Latin) math alphabets . II 226
12.1.1 mathalpha — Simplified setup for math alphabets II 230

12.2 Making it bold . II 235
12.2.1 bm — Making bold . II 235

12.3 Traditional math font setup through packages. II 238
12.3.1 ccfonts — The Concrete fonts for text and math. II 238
12.3.2 cmbright — The Computer Modern Bright fonts II 239
12.3.3 euler, eulervm — Accessing Zapf’s Euler fonts. II 240
12.3.4 newtxmath — A Swiss knife for math font support II 243
12.3.5 newpxmath — Using the PX fonts for math II 248
12.3.6 mathpazo — Another Palatino-based approach for math . . . II 251
12.3.7 notomath — Setting up Noto fonts for math and text II 252

12.4 unicode-math — Using Unicode math fonts . II 253
12.4.1 Math alphabets revisited II 254
12.4.2 Adjusting the formula style II 257
12.4.3 Setting up Unicode math fonts II 259

12.5 A visual comparison of different math setups. II 261
12.5.1 Garalde (Oldstyle) serif fonts with math support II 263
12.5.2 Transitional serif fonts with math support II 271
12.5.3 Didone serif fonts with math support II 284
12.5.4 Slab serif fonts with math support II 288
12.5.5 Sans serif fonts with math support II 290
12.5.6 Historical fonts with math support II 295

Chapter 13 Localizing Documents II 297

13.1 TEX and non–English languages . II 297
13.1.1 Language-related aspects of typesetting II 299
13.1.2 Culture-related aspects of typesetting. II 300
13.1.3 babel — LATEX speaks multiple languages II 300

13.2 The babel user interface . II 301
13.2.1 Setting or getting the current language II 302
13.2.2 Handling shorthands . II 304
13.2.3 Language attributes. II 307

xxii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxiii

CONTENTS OF PART II

13.2.4 BCP 47 tags . II 308

13.3 User commands provided by language options . II 308
13.3.1 Translations of fixed texts II 309
13.3.2 Available shorthands . II 310
13.3.3 Language-specific commands II 315
13.3.4 Layout considerations. II 320
13.3.5 Languages and font encoding. II 322

13.4 Support for Cyrillic and Greek . II 324
13.4.1 The Cyrillic alphabet . II 324
13.4.2 The Greek alphabet . II 328

13.5 Complex scripts . II 330

13.6 Tailoring babel. II 332
13.6.1 User level . II 333
13.6.2 Package level . II 336
13.6.3 The package file . II 339

13.7 Other approaches. II 341
13.7.1 Complex languages with 8-bit engines II 341
13.7.2 Polyglossia . II 342

Chapter 14 Index Generation II 343

14.1 Syntax of the index entries . II 345
14.1.1 Simple index entries . II 346
14.1.2 Generating subentries. II 347
14.1.3 Page ranges and cross-references II 347
14.1.4 Controlling the presentation form. II 347
14.1.5 Printing special characters II 348
14.1.6 Creating a glossary . II 349
14.1.7 Defining your own index commands II 349
14.1.8 Special considerations . II 350

14.2 MakeIndex — A program to sort and format indexes . II 350
14.2.1 Generating the formatted index. II 351
14.2.2 Detailed options of the MakeIndex program II 351
14.2.3 Error and warning messages II 355
14.2.4 Customizing the index . II 356
14.2.5 Pitfalls to watch out for . II 362

14.3 upmendex — A Unicode-aware indexing program . II 364
14.3.1 Options, warnings, and errors of the program II 364
14.3.2 Customizing the index with upmendex II 366

14.4 xindy, xindex — Two other indexing programs . II 370

14.5 Enhancing the index with LATEX features . II 371
14.5.1 Modifying the layout . II 371
14.5.2 showidx, repeatindex, tocbibind, indxcite — Little helpers . . II 372
14.5.3 index — Producing multiple indexes. II 372

xxiii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxiv

CONTENTS OF PART II

Chapter 15 Bibliography Generation II 375

15.1 The standard LATEX bibliography environment . II 376

15.2 The biber and BIBTEX programs. II 378
15.2.1 bibtex8 — An 8-bit reimplementation of BIBTEX II 379
15.2.2 biber — A Unicode-aware bibliography processor II 379

15.3 The BIBTEX database format . II 380
15.3.1 Entry types and fields . II 384
15.3.2 Additional fields . II 390
15.3.3 The text part of a field explained II 393
15.3.4 Abbreviations in BIBTEX . II 401
15.3.5 Extended data references with biber: the xdata entry type . . II 403
15.3.6 The BIBTEXdatabase preamble command. II 405
15.3.7 Cross-referencing entries II 406
15.3.8 Managing the BIBTEX and biber differences II 408

15.4 Using BIBTEX or biber to produce the bibliography. II 409

15.5 On-line bibliographies . II 413

15.6 Bibliography database management tools . II 414
15.6.1 checkcites — Which citations are used, unused, or missing?. . II 414
15.6.2 biblist — Printing BIBTEX database files II 415
15.6.3 bibclean, etc. — A set of command-line tools II 415
15.6.4 Using biber as a tool . II 417

15.7 Formatting the bibliography with styles. II 418
15.7.1 A collection of BIBTEX style files II 419
15.7.2 custom-bib — Generate BIBTEX styles with ease II 426
15.7.3 An overview of biblatex styles. II 432
15.7.4 Generic styles . II 435
15.7.5 Implementations of style guides II 439
15.7.6 Implementations of university and institution styles II 445
15.7.7 Implementations of journal styles II 455
15.7.8 Styles that extend the data model. II 461
15.7.9 Styles not fitting in the other categories II 464

Chapter 16 Managing Citations II 469

16.1 Introduction . II 469
16.1.1 Bibliographical reference schemes II 470

16.2 The number-only system. II 473
16.2.1 Standard LATEX — Reference by number II 475
16.2.2 cite — Enhanced references by number II 478
16.2.3 notoccite — Solving a problem with unsorted citations II 483
16.2.4 natbib’s approach to number-only references II 484
16.2.5 biblatex’s approach to number-only references II 484

16.3 The author-date system. II 487
16.3.1 Early attempts. II 489
16.3.2 natbib — Customizable author-date references II 490

xxiv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxv

CONTENTS OF PART II

16.3.3 biblatex’s approach to author-date references II 500

16.4 The author-number system . II 502
16.4.1 natbib — Revisited. II 503
16.4.2 biblatex’s approach to author-number references. II 506

16.5 The author-title system . II 507
16.5.1 jurabib — Customizable short-title references II 507
16.5.2 biblatex’s approach to author-title references. II 534

16.6 The verbose system. II 537
16.6.1 bibentry — Full bibliographic entries in running text II 537
16.6.2 biblatex’s approach to verbose citations II 538

16.7 biblatex — One ring to rule them all . II 541
16.7.1 Basic biblatex setup. II 543
16.7.2 Package options. II 543
16.7.3 Citing with biblatex . II 544
16.7.4 Indexing citations automatically II 546
16.7.5 Back references and links II 547
16.7.6 Bibliography entries with multiple authors II 547
16.7.7 Unambiguous citations . II 548
16.7.8 Printing the bibliography II 550
16.7.9 The sorting of the bibliography II 554
16.7.10 Document divisions . II 556
16.7.11 Annotated bibliographies II 557
16.7.12 Bibliography lists . II 558
16.7.13 Language support. II 559
16.7.14 Distinguishing the author’s gender II 560
16.7.15 Sentence casing . II 561
16.7.16 Customizing . II 562

16.8 Multiple bibliographies in one document . II 569
16.8.1 chapterbib — Bibliographies per included file II 571
16.8.2 bibunits — Bibliographies for arbitrary units. II 574
16.8.3 bibtopic — Combining references by topic II 578
16.8.4 multibib — Separate global bibliographies. II 580

Chapter 17 LATEX Package Documentation Tools II 583

17.1 doc — Documenting LATEX and other code . II 584
17.1.1 General conventions for the source file II 585
17.1.2 Describing new macros and environments II 585
17.1.3 Cross-referencing all macros used II 588
17.1.4 The documentation driver. II 589
17.1.5 Conditional code in the source II 590
17.1.6 Providing additional documentation elements II 592
17.1.7 Producing the actual index entries II 593
17.1.8 Overview about all doc commands II 594
17.1.9 ltxdoc — A simple LATEX documentation class II 597

xxv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxvi

CONTENTS OF PART II

17.2 docstrip.tex — Producing ready-to-run code. II 599
17.2.1 Invocation of the docstrip utility II 600
17.2.2 docstrip script commands II 601
17.2.3 Using docstrip with L3 programming layer code II 605
17.2.4 Using docstrip with other languages II 605

17.3 l3build — A versatile development environment. II 606
17.3.1 The basic interface . II 607
17.3.2 Creating tests . II 608
17.3.3 Releasing to CTAN . II 611
17.3.4 Common configurations II 613

17.4 Making use of version control tools. II 615
17.4.1 gitinfo2 — Accessing metadata from Git. II 616
17.4.2 svn-multi — Accessing Subversion keywords II 617
17.4.3 filemod — Printing or checking file modification dates II 619

Appendix A LATEX Overview for Preamble, Package, and Class Writers II 621

A.1 Linking markup and formatting . II 622
A.1.1 Command and environment names II 622
A.1.2 Defining simple commands II 624
A.1.3 Defining simple environments II 629
A.1.4 Defining more complex commands and environments II 632
A.1.5 Changing arguments to command names. II 644

A.2 Counters and length expressions . II 646
A.2.1 Defining and changing counters II 646
A.2.2 fmtcount — Specially formatted counters and numbers II 650
A.2.3 sillypage — Page and other counting à la Monty Python II 651
A.2.4 Defining and changing space parameters II 651
A.2.5 The L3 programming layer — Computation support II 657

A.3 Page markup — Boxes and rules . II 660
A.3.1 LR boxes . II 661
A.3.2 Paragraph boxes . II 663
A.3.3 Rule boxes . II 667
A.3.4 Manipulating boxed material II 669
A.3.5 Box commands and color II 670

A.4 LATEX’s hook management . II 671
A.4.1 Working with existing hooks II 671
A.4.2 Declaring hooks and using them in code II 681

A.5 Control structure extensions. II 685
A.5.1 iftex — On which TEX engine are we running on? II 685
A.5.2 calc — Arithmetic calculations II 687
A.5.3 ifthen — Advanced control structures II 689

A.6 Package and class file structure. II 693
A.6.1 The rollback part . II 693
A.6.2 The identification part . II 696

xxvi

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxvii

CONTENTS OF PART II

A.6.3 The initial code part. II 697
A.6.4 The declaration of options II 697
A.6.5 The execution of options II 699
A.6.6 Declaring and using options with a key/value syntax II 700
A.6.7 The package loading part II 703
A.6.8 The main code part . II 704
A.6.9 Special commands for package and class files II 704
A.6.10 Special commands for class files II 708
A.6.11 A minimal class file . II 710

Appendix B Tracing and Resolving Problems II 711

B.1 Error messages . II 712

B.2 Dying with memory exceeded. II 744

B.3 Warnings and informational messages. II 749

B.4 TEX and LATEX commands for tracing. II 765
B.4.1 Displaying command definitions and register values II 766
B.4.2 Diagnosing page-breaking problems II 769
B.4.3 Diagnosing and solving paragraph-breaking problems II 773
B.4.4 Other low-level tracing tools II 779
B.4.5 trace — Selectively tracing command execution II 781

Appendix C Going Beyond II 783

C.1 Learn LATEX — A LATEX online course for beginners . II 784

C.2 Finding information available on your computer . II 785
C.2.1 kpsewhich — Find files the way TEX does II 785
C.2.2 texdoc — A command-line interface to local TEX information . II 786

C.3 Accessing online information and getting help . II 787
C.3.1 texdoc.org— searchable documentation on the Web II 787
C.3.2 Frequently Asked Questions (FAQ) resources II 787
C.3.3 Using news groups and forums II 788
C.3.4 The LATEX Project’s web presence II 789

C.4 Getting all those TEX files . II 789
C.4.1 CTAN — The Comprehensive TEX Archive Network. II 789
C.4.2 TEX distributions — past and present II 790

C.5 Giving back to the community . II 792

Bibliography II 795

Index of Commands and Concepts II 817

People II 967

Biographies II 973

Production Notes II 977

xxvii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxviii

List of Figures

Part I

1.1 Data flow in the LaTEX system . 9

2.1 The layout for display and run-in headings 52
2.2 Parameters defining the layout of a contents file 73
2.3 The outline view of a PDF . 104

3.1 Tracking in action . 192
3.2 Schematic layout of footnotes . 209
3.3 The placement of text and footnotes with the ftnright package 229

4.1 Parameters used by the list environment 259

5.1 Page layout parameters and visualization 367
5.2 Schematic overview of how LaTEX’s legacy mark mechanism works . . . 389
5.3 A paragraph from Alice under different \looseness settings 428

8.1 A LaTEX box and possible origin reference points. 593

9.1 Major font characteristics (mono/proportional spaced) 652
9.2 Comparison of serifed and sans serif letters 653
9.3 Comparison between upright and italic shapes 654
9.4 Comparison between capitals and small capitals. 655
9.5 Outline and shaded shapes . 656
9.6 Scaled and designed fonts (Latin Modern) 657

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxix

LIST OF FIGURES

Part II

12.1 Sample page typeset with Computer Modern text + math fonts II 262
12.2 Sample page typeset with Cochineal text + math fonts II 263
12.3 Sample page typeset with EB Garamond text + math fonts II 264
12.4 Sample page typeset with Garamondx text + math fonts II 264
12.5 Sample page typeset with Garamond Libre + Garamond Math fonts . . II 265
12.6 Sample page typeset with Kp Roman Light text + math fonts II 266
12.7 Sample page typeset with Kp Roman text + math fonts II 266
12.8 Sample page typeset with KpRoman + Kp Math fonts. II 267
12.9 Sample page typeset with Palatino text + Pazo Math fonts II 268
12.10 Sample page typeset with Pagella text + New PX math fonts II 269
12.11 Sample page typeset with Pagella text + Kp math fonts II 269
12.12 Sample page typeset with Pagella + Pagella Math fonts. II 270
12.13 Sample page typeset with Pagella + Asana Math fonts II 270
12.14 Sample page typeset with BaskervilleF text + math fonts II 271
12.15 Sample page typeset with Baskervaldx text + math fonts II 272
12.16 Sample page typeset with Baskervaldx text + Times math fonts. II 272
12.17 Sample page typeset with Bonum + Bonum Math fonts. II 273
12.18 Sample page typeset with Cambria text and math fonts II 274
12.19 Sample page typeset with XCharter text + math fonts II 275
12.20 Sample page typeset with New Century Schoolbook text + math fonts II 276
12.21 Sample page typeset with Schola + Schola Math fonts II 276
12.22 Sample page typeset with Libertinus text + Libertine math fonts II 277
12.23 Sample page typeset with Libertinus + Libertinus Math fonts II 277
12.24 Sample page typeset with Lucida Bright text + Lucida Math fonts . . . II 278
12.25 Sample page typeset with Lucida Bright + Math fonts. II 279
12.26 Sample page typeset with Lucida Bright Demibold + Math fonts II 279
12.27 Sample page typeset with Times text (Termes) + TX math fonts. II 280
12.28 Sample page typeset with Termes + Termes Math fonts II 281
12.29 Sample page typeset with XITS + XITS Math fonts II 281
12.30 Sample page typeset with STIX 2 using package stickstootext II 282
12.31 Sample page typeset with STIX 2 text + math fonts II 282
12.32 Sample page typeset with Erewhon text + math fonts II 283
12.33 Sample page typeset with Computer Modern text + math fonts II 284
12.34 Sample page typeset with Latin Modern text + math fonts II 285
12.35 Sample page typeset with Latin Modern + Latin Modern Math fonts . . II 285
12.36 Sample page typeset with NewComputerModern + Math fonts. II 286
12.37 Sample page typeset with NewComputerModern Book + Math fonts . . II 286
12.38 Sample page typeset with Noto text + math fonts II 287
12.39 Sample page typeset with Concrete text + math fonts II 288
12.40 Sample page typeset with Concrete text + Euler math fonts II 289
12.41 Sample page typeset with DejaVu + DejaVu Math fonts II 289
12.42 Sample page typeset with CM Bright text + math fonts. II 290

xxix

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxx

LIST OF FIGURES

12.43 Sample page typeset with Fira Sans + Fira Math fonts II 291
12.44 Sample page typeset with GFS Neo-Hellenic text + math fonts II 291
12.45 Sample page typeset with Iwona text + math fonts II 292
12.46 Sample page typeset with Iwona text + math fonts II 292
12.47 Sample page typeset with Kp Sans text + math fonts II 293
12.48 Sample page typeset with Kurier text + math fonts II 294
12.49 Sample page typeset with Kurier text + math fonts (light). II 294
12.50 Sample page typeset with Noto Sans text + math fonts. II 295
12.51 Sample page typeset with Antykwa Toruńska text + math fonts II 296
12.52 Sample page typeset with Antykwa Toruńska text + math fonts

(light, condensed). II 296

14.1 The sequential flow of index processing . II 344
14.2 Stepwise development of index processing II 345
14.3 Example of \index commands and the showidx package II 352
14.4 Printing the index and the output of the showidx option. II 353

15.1 Sample BIBTEX database (tlc.bib) . II 382
15.2 A second sample BIBTEX database (tlc-ex.bib) II 391
15.3 Data flow when running BIBTEX or biber and LaTEX II 410

A.1 An example of a class file extending article II 709

xxx

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxi

List of Tables

Part I

1.1 Major file types used by LaTEX . 11

2.1 LaTEX’s standard sectioning commands. 32
2.2 Language-dependent strings for headings 37

3.1 Parameters used by ragged2e . 124
3.2 Effective \baselinestretch values for different font sizes 141
3.3 SI base units . 170
3.4 Coherent derived units in the SI with special names and symbols . . . 170
3.5 Non-SI units accepted for use with the International System of Units . 171
3.6 SI prefixes. 172
3.7 Footnote symbol lists predefined by footmisc 211

4.1 Commands controlling an itemize list environment 255
4.2 Commands controlling an enumerate list environment. 256
4.3 Status values for different types of checklists. 294
4.4 Languages supported by listings (spring 2022) 323
4.5 Length parameters used by multicols . 356
4.6 Counters used by multicols . 357

5.1 Standard paper size options in LaTEX . 368
5.2 Default values for the page layout parameters (letterpaper) 369
5.3 Page style defining commands in LaTEX. 397

6.1 The preamble specifiers in the standard LaTEX tabular environment . 436
6.2 Preamble specifiers in the array package . 439
6.3 The preamble options in the tabulary package 451

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxii

LIST OF TABLES

7.1 Keys supported by the \hvFloat command 561
7.2 Keys supported by the keyfloat commands 569

8.1 Examples of coordinate systems. 633
8.2 Common path operations (overview) . 636
8.3 Path actions and their abbreviation commands 638

9.1 Standard size-changing commands . 666
9.2 Standard font-changing commands and declarations 667
9.3 Font attribute defaults . 671
9.4 Predefined math alphabet identifiers in LaTEX 678
9.5 Classification of the Computer Modern font families 684
9.6 Classification of the Latin Modern font families 687
9.7 TEX Gyre packages for setting up fonts . 689
9.8 PSNFSS packages for setting up fonts . 691
9.9 Commands made available with the TS1 encoding 696
9.10 Values accepted by the Numbers key . 716
9.11 Values accepted by the Letters key . 717
9.12 Values accepted by the VerticalPosition key 719
9.13 Values accepted by the Ligatures key. 720
9.14 Values accepted by the Kerning key . 722
9.15 Values accepted by the Style key . 725
9.16 Weight and width classification of fonts . 732
9.17 Shape classification of fonts . 734
9.18 Standard font encodings used with LaTEX . 737
9.19 Glyph chart for msbm10 produced by the nfssfont.tex program. 750
9.20 Math symbol type classification . 751
9.21 LICR objects represented with single characters 755
9.22 Glyph chart for a T1-encoded font (ec-lmr10). 763
9.23 Standard LICR objects. 768

Part II

10.1 Structure of the font family classification tables II 5
10.2 Classification of the Alegreya font families II 11
10.3 Classification of the Computer Modern Bright font families II 12
10.4 Classification of the DejaVu (Vera) font families II 13
10.5 Classification of the Fira font families . II 14
10.6 Classification of the Gandhi font families. II 15
10.7 Classification of the Go font families. II 16
10.8 Classification of the Inria font families . II 17
10.9 Classification of the Kp font families. II 18
10.10 Classification of the Libertinus font families II 20
10.11 Classification of the Lucida font families . II 22
10.12 Classification of the Merriweather font families II 25

xxxii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxiii

LIST OF TABLES

10.13 Classification of the Google Droid font families II 26
10.14 Classification of the Google Noto font families II 28
10.15 Classification of the Google Noto font families (cont.) II 29
10.16 Classification of the IBM Plex font families II 31
10.17 Classification of the Paratype PT font families II 32
10.18 Classification of the Quattrocento font families II 33
10.19 Classification of the Roboto font families. II 35
10.20 Classification of the Adobe SourceCode font families II 36
10.21 Classification of the Coelacanth font family II 37
10.22 Classification of fbb (Cardo) font family . II 38
10.23 Classification of the Accanthis Font family. II 39
10.24 Classification of the GFS Artemisia font family II 40
10.25 Classification of the Crimson Pro/Cochineal font families II 40
10.26 Classification of the Cormorant Garamond font family II 41
10.27 Classification of the EBGaramond font family II 42
10.28 Classification of the Garamond Libre fonts. II 43
10.29 Classification of the URW Garamond No. 8 font family. II 44
10.30 Classification of the Gentium Plus font family II 45
10.31 Classification of the Pagella (Palatino) family II 46
10.32 Classification of the Antykwa Poltawskiego font family II 47
10.33 Classification of the Libre Baskerville and BaskervilleF font families. . II 48
10.34 Classification of the Baskervaldx font family II 49
10.35 Classification of the Bonum (Bookman) family II 49
10.36 Classification of the Cambria family . II 50
10.37 Classification of the Charter family . II 51
10.38 Classification of the Charis SIL family . II 51
10.39 Classification of the Libre Caslon font family II 52
10.40 Classification of the Literaturnaya font family II 53
10.41 Classification of the Schola (New Century Schoolbook) family II 54
10.42 Classification of the Termes (Times) family (TEX Gyre distribution) . . II 56
10.43 Classification of the Termes (Times) family (New TX distribution) . . . II 56
10.44 Classification of the Tempora font family II 57
10.45 Classification of the Tinos font family . II 57
10.46 Classification of the STIX 2 font family . II 58
10.47 Classification of the Utopia family and its forks II 59
10.48 Classification of the GFS Bodoni font family II 61
10.49 Classification of the Libre Bodoni font family II 61
10.50 Classification of the GFS Didot font family II 62
10.51 Classification of the Theano Didot font family II 62
10.52 Classification of the Old Standard font family II 63
10.53 Classification of the Playfair Display font family II 64
10.54 Classification of the Bitter font family . II 65
10.55 Classification of the Concrete font family II 66
10.56 Classification of the Arimo family. II 69
10.57 Classification of the Adventor (Avant Garde) family. II 69

xxxiii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxiv

LIST OF TABLES

10.58 Classification of the Cabin font family. II 70
10.59 Classification of the Chivo font family. II 71
10.60 Classification of the URW Classico font family II 72
10.61 Classification of the Clear Sans family . II 72
10.62 Classification of the Cuprum font family . II 73
10.63 Classification of the Cyklop font family . II 74
10.64 Classification of the GFS Neo-Hellenic font family II 75
10.65 Classification of the Gillius and Gillius No2 font families II 76
10.66 Classification of the Heros (Helvetica) family II 77
10.67 Classification of the Iwona font family . II 78
10.68 Classification of the Kurier font family . II 80
10.69 Classification of the Lato font family. II 81
10.70 Classification of the Libre Franklin font family II 82
10.71 Classification of the Mint Spirit and Mint Spirit No2 font families . . . II 83
10.72 Classification of the Montserrat font families II 83
10.73 Classification of the Overlock font family II 85
10.74 Classification of the Raleway font family . II 86
10.75 Classification of the Rosario font family . II 87
10.76 Classification of the Universalis font family II 88
10.77 Classification of the AlgolRevived font family. II 89
10.78 Classification of the Anonymous Pro font family. II 90
10.79 Classification of the Cursor (Courier) family II 91
10.80 Classification of the Inconsolata font family. II 92
10.81 Classification of the LuxiMono font family II 95
10.82 Classification of the Cinzel font family . II 98
10.83 Classification of the Marcellus font family II 98
10.84 Classification of the Fell Types . II 99
10.85 Classification of the Almendra font family II 100
10.86 Classification of the Antykwa Toruńska font family. II 101
10.87 Classification of the Chorus (Zapf Chancery) family. II 103
10.88 Classification of the Miama Nueva family . II 103
10.89 Glyphs in the PostScript font Zapf Dingbats II 114
10.90 Glyphs in the AnonymousPro Symbol font II 115
10.91 Glyphs in Waldi’s symbol font (wasy) . II 116
10.92 Glyphs in the MarVoSym font (mvs) . II 117
10.93 Glyphs in the Ornements ADF font (OrnementsADF). II 118
10.94 Glyphs in the Fourier Ornaments font (futs) II 119
10.95 Glyphs in the webomints font (webo) . II 120
10.96 Glyphs in fontawesomefree0 solid . II 121
10.97 Glyphs in fontawesomefree0 regular . II 121
10.98 Glyphs in fontawesomefree1 solid . II 122
10.99 Glyphs in fontawesomefree1 regular . II 122
10.100 Glyphs in fontawesomefree2 solid . II 123
10.101 Glyphs in fontawesomefree2 regular . II 123
10.102 Glyphs in fontawesomefree3 solid only II 124

xxxiv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxv

LIST OF TABLES

10.103 Brand logos in fontawesomebrands0 . II 124
10.104 Brand logos in fontawesomebrands1 . II 125
10.105 TIPA shortcut characters . II 126

11.1 Display environments in the amsmath/mathtools packages II 132
11.2 Default rule thickness in different math styles II 165
11.3 List of matrix tensor input commands. II 178
11.4 Pattern elements to construct braces and brackets II 185
11.5 Vertically extensible symbols . II 190
11.6 Predefined operators and functions . II 193
11.7 Mathematical styles in subformulas . II 195
11.8 Mathematical spacing commands . II 205
11.9 Space between symbols. II 210
11.10 Latin letters and arabic numerals . II 212
11.11 Symbols of class \mathord (Greek) . II 212
11.12 Symbols of class \mathord (letter-shaped) II 213
11.13 Symbols of class \mathord (miscellaneous). II 213
11.14 Mathematical accents, giving subformulas of class \mathord. II 214
11.15 Symbols of class \mathbin (miscellaneous). II 215
11.16 Symbols of class \mathbin (boxes) . II 215
11.17 Symbols of class \mathbin (circles) . II 216
11.18 Symbols of class \mathrel (equality and order). II 217
11.19 Symbols of class \mathrel (equality and order — negated) II 217
11.20 Symbols of class \mathrel (sets and inclusion) II 218
11.21 Symbols of class \mathrel (sets and inclusion — negated). II 218
11.22 Symbols of class \mathrel (arrows). II 219
11.23 Symbols of class \mathrel (arrows — negated) II 220
11.24 Symbol parts of class \mathrel (negation and arrow extensions) . . . II 220
11.25 Symbols of class \mathrel (various colons) II 221
11.26 Symbols of class \mathrel (miscellaneous). II 221
11.27 Symbols of class \mathop. II 222
11.28 Symbols of class \mathpunct , \mathinner , \mathord

(punctuation). II 223
11.29 Symbol pairs of class \mathopen and \mathclose (extensible) II 223
11.30 Symbol pairs of class \mathopen and \mathclose (nonextensible) . II 224

12.1 Behavior and argument scope of \sym... commands II 257
12.2 Effects of math-style and bold-style II 258

13.1 Selective list of language options supported by the babel system . . . II 301
13.2 Language-dependent strings in babel (English defaults) II 305
13.3 Language-dependent strings in babel (French, Greek, Polish, Russian) II 309
13.4 Different methods for representing numbers by letters II 317
13.5 Alternative mathematical operators for Eastern European languages . II 321
13.6 Glyph chart for a T2A-encoded font (larm1000). II 325

xxxv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxvi

LIST OF TABLES

13.7 Glyph chart for an LGR-encoded font (grmn1000) II 329
13.8 Greek transliteration with Latin letters for the LGR encoding II 330
13.9 LGR ligatures producing single-accented glyphs II 330
13.10 Available composite spiritus and accent combinations. II 331

14.1 Input style parameters for MakeIndex and upmendex II 357
14.2 Output style parameters for MakeIndex and upmendex II 358
14.3 Group headings style parameters for MakeIndex and upmendex II 359
14.4 Additional output style parameters for upmendex II 367
14.5 Supported ICU locale settings for icu_locale II 369
14.6 ICU attributes supported by upmendex . II 369

15.1 BIBTEX’s entry types as defined in most styles II 386
15.2 Additional standard entry types provided by biblatex II 387
15.3 BIBTEX’s standard entry fields (A–K) . II 388
15.4 BIBTEX’s standard entry fields (L–Z) . II 389
15.5 Examples of biblatex date inputs . II 400
15.6 Predefined journal strings in BIBTEX styles II 403
15.7 Selected BIBTEX style files (A–B) . II 420
15.8 Selected BIBTEX style files (C–J) . II 421
15.9 Selected BIBTEX style files (K–N). II 423
15.10 Selected BIBTEX style files (P–U) . II 424
15.11 Requirements for formatting names . II 426
15.12 Language support in custom-bib . II 429

16.1 Comparison of different bibliographical support packages II 474
16.2 Gender specification in jurabib . II 526
16.3 Comparison of packages for multiple bibliographies II 570

17.1 doc — Preamble and input commands . II 595
17.2 doc — Document structure commands. II 595
17.3 doc — Index commands. II 596
17.4 doc — History information . II 596
17.5 doc — Layout and typesetting parameters II 597

A.1 LaTEX’s units of length . II 652
A.2 Predefined horizontal spaces . II 653
A.3 Predefined vertical spaces . II 654
A.4 Default values for TEX’s rule primitives . II 668
A.5 LaTEX’s internal \boolean switches . II 691
A.6 Commands for package and class files . II 694
A.7 Special commands for package and class files II 705

xxxvi

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxvii

Foreword

Before my retirement, I had the distinct privilege to work with leading authors in
computing and related, technical fields. In many cases, my job as editor was simply to
be an encouraging and sympathetic presence, as well as a welcome dining companion,
while trying to make the publishing process as painless for them (and for in-house
staff) as I could. As in childbirth, of course, eliminating all pain was virtually
impossible; over unexpectedly long periods, authors yielded much too much time for
family, pleasure, and sleep, all in the pursuit of a newborn book. I sometimes felt like
an able midwife; other times, I could do nothing more than boil water and hope for
the best. In the end, I was always proud of what these creative men and women
could produce.

At no time during my lengthy tenure was my pride greater than it was for the
authors who gave the world two, now three, editions of The LATEX Companion.
Building on the original inventions of Don Knuth and Leslie Lamport — speaking of
my privilege to have worked with the best! — and led in each case by Frank Mittelbach,
they have reached deeply into the work of selfless contributors, including themselves,
to define the current state of LaTEX typesetting, and then to organize and document, in
one authoritative and comprehensive publication, the tools now available for both
beginning and advanced users.

My pride, I should say, has its origins in the book’s publisher itself. Addison-
Wesley (A-W), now an imprint of Pearson, had been founded by a printer, Melbourne
Cummings, and Mel’s values for production quality, particularly for textbooks with
heavy mathematical content, were engrained in the company from the start
(Thomas’s Calculus and Analytical Geometry was his first book). Indeed, some
notable authors with concern for the physical look of their books selected A-W
precisely because of those values, even when they thought they might get a bigger

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxviii

FOREWORD

sales bang elsewhere (they ultimately were pleased to get both)! Don, by the way,
having just developed TEX, was the author Mel most strongly insisted to me on
meeting in person, wishing to speak, as it were, typesetter to typesetter.

I have to leave it for the Preface to describe the book’s contents more specifically.
I have been away from LaTEX too long to be able to add much anyway. I have no idea,
for example, whether newer versions of the system incorporate AI, so that a user
might hear a HAL-like voice in the computer say something like, “Are you sure you
want such narrow margins, Dave?” Nor do I know if the system now has 3D options,
so that an important discovery literally jumps out from the page. Never mind. See
the Preface.

What I can add from experience, and I am sure this much has not changed, is that
LaTEX authors and users are an intense and serious bunch when it comes to making
their writing look good. I admire their attention to detail, to getting precisely the right
format to present their ideas. I once was dining out with one such person, and
watched as he studied the menu for quite some time. A very picky eater, I thought.
But when he finally put the menu down, he tapped it with his pointed finger and told
me, as the best appetizer for him, which letter didn’t go well with the balance of the
font. I, by contrast, soon became more concerned with a mushroom that didn’t seem
to go well with the rest of my meal.

From experience, too, I can tell you that there are LaTEX users all over the world,
and not just in those places you would expect to find them. The land of Gutenberg,
sure, but how about a user in South America typesetting his book while bullets from
a civil war literally flew by his university window (talk about intensity!)? I once also
received user survey feedback from a urologist in Kenya. I frankly forget what his
comment or question was — it was long ago — but I do remember being impressed
how far LaTEX use had spread, and into what surprising fields. Without doubt, an
extensive literature search would turn up beautifully typeset works on the broadest
range of topics, maybe even a book on digital rectal examinations.

Putting my own finger to the wind, as even former editors are wont to do, the
need and demand for this revision are clear. Wherever you are, whatever your subject
area, you will surely find in the pages (and pages) that follow the most helpful LaTEX
typesetting support a user could ever hope for. That certainly was my experience
with the first two editions, and I now invite you to make it yours with the third.

Peter S. Gordon
Publishing Partner (Ret.)

To be continued in Part II . . .

xxxviii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xxxix

Preface

With LaTEX being a voluntary effort,
it seems quite appropriate that

TLC also stands for “tender, loving care”
(Concise Oxford Dictionary)!

David Rhead, 1994

I have now been involved in computer based typesetting for nearly four decades, three
of them as the technical lead for the development of LaTEX. During that long period
there have been impressive technical advances in many different areas.

When I started there was no Internet to speak of — there were no browsers and
there was no World Wide Web as we know it today. To book a hotel on my first trip to
California to meet with Leslie Lamport, I had to resort to a travel agency that used
fax machines to arrange the trip; on the flight I was served free alcoholic drinks (bad
idea); and my computer at home was an Atari with two floppy drives (younger people
probably only know these as the strange “save icon” in many software programs and
perhaps have wondered what that represents) and an impressive external hard disc
with 100mb of storage (that cost me a fortune at that time).

However, already back then LaTEX had existed for some time and worked fine,
though a lot of today’s functionality was unavailable or, even if available, impossible
to use, because computer processing speed was simply too slow.1 As explained in
more detail in the history section in Chapter 1, most of our enthusiastic ideas back
then for a new and improved LaTEX were simply two decades too early, and while we
had a fully working first version of the L3 programming layer in the early nineties our

1The first simple TEX documents I produced on a large university mainframe took about half a
minute per page — you could literately watch the progress as [, wait, 1, wait,], long wait, . . . — and
we still thought it was great and fast.

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xl

PREFACE

users would have died of caffeine consumption waiting for the results of processing
their documents if we had dared to inflict it on them.

This all has changed since that time and today my smartphone is faster than the
mainframe power available in the nineties. As a result, many new packages appeared
over time and a lot of our dormant ideas and concepts envisioned in 1990 were finally
integrated into LaTEX on the memorable day of February 2, 2020.

Since then, this programming environment has been used by the LaTEX Team to
offer new functionality and also by many package authors developing new packages.
All these developments — the recent as well as the older — are covered in this book.

D r d

When Michel, Alexander, and I wrote the first edition of The LATEX Companion [56] in
The Companion

editions — setting the
standard for a

dozen years each

1993, we intended to describe what is usefully available in the LaTEX world (though
ultimately we ended up describing the then-new LaTEX2ε standard and what was useful
and available at CERN in those days). As an unintended side effect, this first edition
defined for most readers what should be available in a then-modern LaTEX distribution.
Fortunately, most of the choices we made at that time proved to be reasonable, and
the majority (albeit not all) of the packages described in the first edition are still in
common use today.

During the following decade the Companion (nicknamed the “doggie book” be-
cause of its cover) became a core resource for many LaTEX users, with several reprints
and translations into German, Japanese, and Russian.

Our approach was to provide comprehensive coverage for typical LaTEX documents
so that for most users the Companion would serve as the only reference needed to get
“the job” done. More esoteric package features or features still under development
were not described. Instead, pointers to the package documentation were given if
we thought such a feature was worth mentioning. This approach worked well, so at
the turn of the millennium one reviewer wrote, “while the book shows its age, it still
remains a solid reference in most parts”.

Nevertheless, much had changed and a lot of new and exciting functionality had
The second edition

in the new
millennium . . .

been added to LaTEX during that decade and it became clear that a revised edition was
necessary. This second edition [145], published in 2004, saw a major change in the
authorship: I took over as principal author (so from then on I am to blame for all
the faults in the Companion editions) and several members of the LaTEX Project Team
joined in the book’s preparation, enriching it with their knowledge and experience in
individual subject areas.

We ended up rewriting 90% of the original content and adding about 600 addi-
tional pages describing impressive and useful new developments. As a result, the
second edition was essentially a new book — a book that we hoped preserved the
positive aspects of the first edition even as it greatly enhanced them, while at the
same time avoiding the mistakes we made back then, both in content and presenta-
tion (though, of course, we made some new ones). From the reception in the user
community, I think it is fair to say that we largely succeeded — in fact, that book
served even longer as a useful resource.

xl

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xli

PREFACE

However, a decade or more is an awfully long time for a technical book, even
. . . and nearly
two decades later,
the third

given the longevity and stability of LaTEX and the Companion’s approach of describing
a coherent and well-established set of packages. So in 2017 I started discussing
with Kim Spenceley (my new editor at Addison-Wesley/Pearson after Peter Gordon’s
retirement) plans for a third edition of The LATEX Companion. One question to solve up
front was that of authorship. Initially, it looked as if I would have to do any necessary
work all by myself this time, because none of the previous co-authors was available to
help for one reason or another, making it a very daunting task indeed.

Fortunately, this impression was wrong! In the end I got great help from Ulrike
Fischer, who wrote Chapters 15 and 16, the sections on hyperref and tikz, and helped
with numerous tasks during the production of this edition.

Javier Bezos and Johannes Braams took on the task of revising Chapter 13 on
localizing documents, and Joseph Wright helped with describing siunitx and the
section on source control support. Thanks to all of them — without their help the
book would have been be much more difficult to finish.

Furthermore, Nelson Beebe kindly offered to read all chapters, checking them
Big thanks to our
volunteer copy
editor Nelson!

for accuracy as well as doing a first pass on copyediting. He provided numerous
suggestions for improvements and I cannot thank him enough for undertaking that
enormous task! The professional copy editor and the two proofreaders found addi-
tional boo-boos of mine, and I then found a few they missed while entering their
corrections. I am sure our readers will find even more — it is a never-ending task, but
we all did our best and, on the whole, I think we delivered a solid result.

The new edition

Initially, when I discussed plans for a third edition of The LATEX Companion, I expected
the need for a large number of updates to the existing material, but not many additions.
Thus, my naive estimate was that the book would perhaps grow by 10–15%.

However, after researching in depth the new material that had been developed
~What’s in it

for you?
since 2004, it became crystal clear that to remain faithful to the core promise of the
Companion — to be a solid reference for the majority of LaTEX users to get their work
done — we had to include a much larger amount of new material:

• Descriptions of highly useful, large-scale packages that appeared in the meantime
or were substantially updated in the last decade, e.g., biblatex, fontspec, hyperref,
mathtools, siunitx, tcolorbox, unicode-math, and tikz, to name a few.

• A larger number of smaller packages that cover new ground and are useful for
day-to-day work or for specialized (but not too esoteric) tasks.1

• Two new chapters on the exciting possibilities offered by using high-quality fonts
for text and math — yes, LaTEX is no longer restricted to Computer Modern fonts
or a few PostScript fonts that were set up for use with LaTEX in the nineties.

You can now choose from a large number of high-quality, free fonts for both
text and math; the only serious remaining problem is finding the ones you like.
These chapters help with that, by showing samples of more than one hundred

1Give or take the odd exception, e.g., sillywalk, which I found just too lovely to bypass.

xli

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xlii

PREFACE

text fonts and more than forty alternative math font setups. I am very grateful forBig thanks to Adam,
helping me with
my two favorite

“coffee table book”
chapters

the help I received from Adam Twardoch (president of GUST, the Polish TEX users
group, and the designer of the Lato fonts) on this, who spent many hours with
me during two BachoTEX conferences, guiding me through the fonts available
today and helping to select those of high quality for inclusion in the book.

• We also had to cover newer engine developments, e.g., the use of Unicode engines
with LaTEX, across all chapters of the book. There are often subtle differences that
you need to be aware of if you use these engines.

• Finally, there have been very important changes to LaTEX itself, which is undergoing
a transformation that started in 2018, to keep it relevant in the years to come.
Examples are the new hook management system for LaTEX, the extended document
command syntax, and the inclusion of the L3 programming layer into the LaTEX
format. All this is covered in the appropriate places — just take a peek at the
term “L3 programming layer” in the index to see how much of the new material
is already based on it.

In that sense the third edition is like the first: both have been written just
after LaTEX itself had seen major changes and these exciting changes and additions
are covered.

All this relevant information is now part of the new edition, but as a result we ended
up with 1700 pages, not including the index — clearly too much to be printed as a
single book that you can reasonably use as a day-to-day reference on your desk.

For that reason the decision was made to split the book into two parts of roughly
Two parts — one

(virtual) book
equal size and market them as a unit.1 The chapter progression follows more or less
the successful order of the earlier editions, starting with elements and concepts that
you need quite often in nearly all documents (the first few chapters in Part I) followed
by topics you also usually need in most documents but not necessarily all the time
(remainder of Part I and most of Part II).

Of course, if you are a mathematician you might end up keeping Chapter 11 open
all the time, but if your interest is typesetting novels or company reports, it might be
the chapter least often touched.

Part II also contains three important appendices on core LaTEX commands for
defining your own little commands or applications, one on resolving errors (not that
you would make any, would you?), and one on getting further help if this edition is
not answering your questions — unlikely I’m sure, but then who knows?

D r d

As David Rhead observed in the quotation at the beginning of the preface, TLC is not
only an acronym for The LATEX Companion but also stands for “tender, loving care”
and this is most certainly an accurate description of the efforts and lifeblood poured
into the works described on the pages of this book.

1For technical and accounting reasons that still means three separate ISBNs, one for each part and
one for the bundle. From my perspective this is far from perfect, but it is how the world of publishing
and logistics works. It means that while it is theoretically possible to buy only one part, there is little
sense in that — unless you have used it so much that it is worn out and you want a fresh copy.

xlii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xliii

PREFACE

There are millions of LaTEX users out there (the online service Overleaf alone
reported ten million accounts in 2022) and most of them use LaTEX because they love
its typesetting capabilities and its superior quality. With LaTEX being easily extensible,
users often adapt LaTEX to their needs in new fields and for new applications, and
some of them go one step further, packaging their solution and making it available to
others — usually supporting it long after they have a private need for it.

This is why we now have close to 5000 packages for use with LaTEX on the A standing salute
to all these dedicated
developers in the
LATEX world!

Comprehensive TEX Archive Network (CTAN) and why its catalogue lists nearly 3000
contributors. It is because of their dedication and “tender, loving care” that TEX and
LaTEX stayed relevant for nearly four decades, offering unsurpassed quality and, likely,
continuing to do so for several decades to come.

D r d

Looking back, it took roughly five years and several thousand hours to write this book,
which sounds like an awfully long time and a huge effort — both of which are true —
but the effort was rooted in the complexity and size of the task.

The first phase of the production was reading through the documentation of
Research

nearly 5000 packages available in today’s LaTEX distributions, classifying them ac-
cording to functionality, usability, and correctness. This included testing all packages
initially considered as candidates for inclusion, to see if their documentation actually
matched reality (often it did not — mine included-) and to come up with relevant
use cases and examples. Often, alternative solutions provided by different packages
existed, in which case a more in-depth analysis was necessary to decide which
packages to recommend. That phase took somewhat more than a year.

After this initial survey I started with documenting the selected packages or,
Describe

in the case of packages already in the previous edition, revising and updating the
existing material, describing new functionality, or rearranging the documentation to
provide better access.

Frequently, while thinking up useful examples, I found some errors in a package
or in its documentation or identified valuable but missing functionality, in which
case a discussion with the package author started. As a side effect, this process
more than once messed up the text that I had already written about the package,
because afterwards I had to account for the new or changed functionality that I had
requested. Thus, in several cases I rewrote whole sections or provided new, improved
examples when further features became available. However, a real headache proved to
be the larger, complex packages that sometimes come with several hundred pages of
documentation. The task in such a case is to work through all this material and figure
out what from it is needed by the majority of our readers, describe it adequately, and
point out which areas I had left out or only skimmed over.

Of course, in many other cases the situation was reversed; i.e., the package
functionality was good, but the documentation difficult to understand or incomplete,
so here the task was to provide a different, possibly expanded, and hopefully better
description. In either case, a strong focus was on providing useful, ready-to-apply
examples, of which this edition has more than 1550. They have all been handcrafted to
cover the typical use cases and support the accompanying documentation in the book.

xliii

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.xliv

PREFACE

This phase took close to three years, which means roughly writing two pages per day
if working without break — going at it each and every day, including weekends (and
for large periods it was like this).

The final phase, which started in spring 2022, was to pass all the work, chapter by
Produce

chapter, to the professional copy editors engaged by Pearson, enter their corrections,
and then do the layout of the chapters.1 Once a chapter was in its final form I
passed it back to a proofreader, who verified that the corrections had been correctly
entered (not always), followed by a final pass by another proofreader who checked
the final version once more. In parallel, Keith Harrison and I worked through all
chapters to compile a useful concept index. The overall process took nine months,
and I completely underestimated the amount of work necessary for this, even though
I should have known better from previous books.

My sincere thanks to Kim Spenceley, my editor at Pearson, and Julie Nahil, my
Many thanks to Kim
and Julie for making

the book a reality

senior content producer, who steered me patiently through the whole process, putting
up with my idosyncrasies while keeping me on track, and at the same time making
sure that my quest for quality was supported as much as possible.

D r d

Maybe you are asking yourself was that worth it, in the days of the Internet, where you
�Was it worth

the effort?
can search for almost anything in a matter of seconds or watch a video that explains
how to do something?

My personal answer to that question is a clear yes, because while there is a huge
amount of information out there, it is of very varying quality, from extremely good to
horrendously bad, misleading, or even plain wrong. This makes it very difficult for a
user to sort the wheat from the chaff and, as a result, this overflow of information is
not helpful unless you get good guidance.

And this guidance, we trust, is what the Companion is offering you, by providing
you with a curated set of packages covering all areas of document production, showing
you suitable solutions to various problems, and explaining the limitations when using
one or the other approach.

We hope that this new edition will become a good companion for you for many
years to come — just like the previous editions in the last decades. If it turns out that
we achieved that, it will certainly be something to be proud of.

Frank Mittelbach

November 2022

1The nightmarish but also oddly satisfying task to lay out a book like this is described in the
Production Notes at the very end of Part II.

xliv

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.1

C H A P T E R 1

Introduction

1.1 A brief history (of nearly half a century) . 1

1.2 Today’s systems . 8

1.3 Working with this book . 13

LaTEX is not just a system for typesetting mathematics. Its applications span one-page
memoranda, business and personal letters, newsletters, articles, and books covering
the whole range of the sciences and humanities . . . right up to full-scale expository
texts and reference works on all topics. Versions of LaTEX now exist for practically every
type of computer and operating system. This book provides a wealth of information
about its many present-day uses but first provides some background information.

The first section of this chapter looks back at the origins and subsequent devel-
opment of LaTEX.1 The second section gives an overview of the file types used by a
typical current LaTEX system and the rôle played by each. Finally, the chapter offers
some guidance on how to use the book.

1.1 A brief history (of nearly half a century)
In May 1977, Donald Knuth of Stanford University [95] started work on the text-

In the Beginning . . .
processing system that is now known as “TEX and METAFONT” [84–88]. In the
foreword of The TEXbook [84], Knuth writes: “TEX [is] a new typesetting system
intended for the creation of beautiful books — and especially for books that contain
a lot of mathematics. By preparing a manuscript in TEX format, you are telling
a computer exactly how the manuscript is to be transformed into pages whose
typographic quality is comparable to that of the world’s finest printers.”

1A more personal account can be found in The LATEX legacy: 2.09 and all that [176].

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.2

1 INTRODUCTION

In 1979, Gordon Bell wrote in a foreword to an earlier book, TEX and METAFONT,
New Directions in Typesetting [82]: “Don Knuth’s Tau Epsilon Chi (TEX) is potentially
the most significant invention in typesetting in this century. It introduces a standard
language in computer typography and in terms of importance could rank near the
introduction of the Gutenberg press.”

In the early 1990s, Donald Knuth produced an updated version and also officially
announced that TEX would not undergo any further development [96, 97] in the
interest of stability. Perhaps unsurprisingly, the 1990s saw a flowering of experimental
projects that extended TEX in various directions; many of these are coming to fruition
in the early 21st century, making it an exciting time to be involved in automated
typography.

The development of TEX from its birth as one of Don’s “personal productivity
tools” (created simply to ensure the rapid completion and typographic quality of his
then-current work on The Art of Computer Programming) [90] was largely influenced
and nourished by the American Mathematical Society on behalf of U.S. research
mathematicians.

While Don was developing TEX, in the early 1980s, Leslie Lamport started work
. . . and Lamport saw

that it was Good.
on the document preparation system now called LaTEX, which used TEX’s typesetting
engine and macro system to implement a declarative document description language
based on that of a system called Scribe by Brian Reid [168]. The appeal of such a
system is that a few high-level LaTEX declarations, or commands, allow the user to
easily compose a large range of documents without having to worry much about their
typographical appearance. In principle at least, the details of the layout can be left for
the document designer to specify elsewhere.

The second edition of LATEX: A Document Preparation System [106] begins as
follows: “LaTEX is a system for typesetting documents. Its first widely available version,
mysteriously numbered 2.09, appeared in 1985.” This release of a stable and well-
documented LaTEX led directly to the rapid spread of TEX-based document processing
beyond the community of North American mathematicians.

LaTEX was the first widely used language for describing the logical structure of
a large range of documents and hence introducing the philosophy of logical design,
as used in Scribe. The central tenet of “logical design” is that the author should
be concerned only with the logical content of his or her work and not its visual
appearance. Back then, LaTEX was described variously as “TEX for the masses” and
“Scribe liberated from inflexible formatting control”. Its use spread very rapidly during
the next decade. By 1994 Leslie could write, “LaTEX is now extremely popular in the
scientific and academic communities, and it is used extensively in industry”. But that
level of ubiquity looks quite small when compared with the present day when it has
become, for many professionals on every continent, a workhorse whose presence is
as unremarkable and essential as the workstation on which it is used.

The worldwide availability of LaTEX quickly increased international interest in
Going global

TEX and in its use for typesetting a range of languages. LaTEX 2.09 was (deliberately)
not globalized, but it was globalizable; moreover, it came with documentation worth
translating because of its clear structure and straightforward style. Two pivotal
conferences (Exeter UK, 1988, and Karlsruhe Germany, 1989) established clearly the
widespread adoption of LaTEX in Europe and led directly to International LaTEX [180]

2

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.3

1.1 A brief history (of nearly half a century)

and to work led by Johannes Braams [23] on more general support for using a wide
variety of languages and switching between them (see Chapter 13).

Note that in the context of typography, the word language does not refer exclu-
sively to the variety of natural languages and dialects across the universe; it also has
a wider meaning. For typography, “language” covers a lot more than just the choice of
“characters that make up words”, as many important distinctions derive from other
cultural differences that affect traditions of written communication. Thus, important
typographic differences are not necessarily in line with national groupings but rather
arise from different types of documents and distinct publishing communities.

Another important contribution to the reach of LaTEX was the pioneering work of
The Next Generation

Frank Mittelbach and Rainer Schöpf on a complete replacement for LaTEX’s interface
to font resources, the New Font Selection Scheme (NFSS) (see Chapter 9). They were
also heavily involved in the production of theAMS-LaTEX system that added advanced
mathematical typesetting capabilities to LaTEX (see Chapter 11).

As a reward1 for all their efforts, which included a steady stream of bug reports
(and fixes) for Leslie, by 1989 Frank and Rainer “were allowed” to take over the main-
tenance and further development of LaTEX. One of their first acts was to consolidate
International LaTEX as part of the kernel2 of the system, “according to the standard
developed in Europe”. Very soon version 2.09 was formally frozen, and although the
change-log entries continued for a few months into 1992, plans for its demise as a
supported system were already far advanced as something new was badly needed.
The worldwide success of LaTEX had by the early 1990s led in a sense to too much

Too much of a
Good ThingTMdevelopment activity: under the hood of Leslie’s “family sedan” many TEXnicians had

been laboring to add such goodies as super-charged, turbo-injection, multivalved
engines and much “look-no-thought” automation. Thus, the announcement in 1994 of
the new standard LaTEX, christened LaTEX2ε , explains its existence in the following way:

Over the years many extensions have been developed for LaTEX. This
is, of course, a sure sign of its continuing popularity but it has had one
unfortunate result: incompatible LaTEX formats came into use at different
sites. Thus, to process documents from various places, a site maintainer was
forced to keep LaTEX (with and without NFSS), SLITEX,AMS-LaTEX, and so on.
In addition, when looking at a source file it was not always clear for which
format the document was written.

To put an end to this unsatisfactory situation a new release of LaTEX was
produced. It brings all such extensions back under a single format and thus
prevents the proliferation of mutually incompatible dialects of LaTEX 2.09.

The development of this “New Standard LaTEX” and its maintenance system was
Standard LATEX
(LATEX2ε)

started in 1993 by the LaTEX Project Team [148], which soon comprised the author
of this book, Rainer Schöpf, Chris Rowley, Johannes Braams, Michael Downes (1958–
2003), David Carlisle, Alan Jeffrey, and Denys Duchier, with some encouragement and
gentle bullying from Leslie. Although the major changes to the basic LaTEX system
(the kernel) and the standard document classes (styles in 2.09) were completed by

1Pronounced “punishment”.
2Kernel here means the core, or center, of the system.

3

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.4

1 INTRODUCTION

1994, substantial extra support for colored typography, generic graphics, and fine
positioning control were added later, largely by David Carlisle. Access to fonts for
the new system incorporated work by Mark Purtill on extensions of NFSS to better
support variable font encodings and scalable fonts [30–32].

At this point in the story the first edition of the LATEX Companion was written,
1994 — The first

edition of the LATEX
Companion

which helped a lot in making many important packages known to a wide audience
and as a side effect helped shape a standard corpus of LaTEX packages expected to be
available on any installation across the world.

Although the original goal for this LaTEX2ε was consolidation of the wide range of
Towards the 21st

century
incompatible models carrying the LaTEX marquee, what emerged was a substantially
more powerful system with both a robust mechanism (via LaTEX packages) for extension
and, importantly, a solid technical support and maintenance system. This provides
robustness via standardization and maintainability of both the code base and the
support systems. The core of this system remains the current standard LaTEX system
that is described in this book. It has fulfilled most of the goals for “a new LaTEX for the
21st Century”, as they were envisaged back in 1989 [151, 153].

The specific claims of the current system are “. . . better support for fonts, graph-
ics and color; actively maintained by the LaTEX Project Team”. The details of how
these goals were achieved, and the resulting subsystems that enabled the claims to
be substantially attained, form a revealing study in distributed software support:
the core work was done in at least five countries and, as is illustrated by the bugs
database [108], the total number of active contributors to the technical support effort
remains high.

Although the LaTEX kernel suffered a little from feature creep in the late 1990s,
The package system

the package system together with the clear development guidelines and the legal
framework of the LaTEX Project Public License (LPPL) [111, 132] have enabled LaTEX to
remain almost completely stable while supporting a wide range of extensions. These
have largely been provided by a similarly wide range of people who have, as the
project team are happy to acknowledge and the online catalogue [197] bears witness,
enhanced the available functionality in a vast panoply of areas.

All major developments of the base system have been listed in the regular issues
Development work

of LATEX News [107]. At the turn of the century, development work by the LaTEX Project
Team focused on the following areas: supporting multi-language documents [130]; a
“Designer Interface for LaTEX” [141]; major enhancements to the output routine [131];
improved handling of inter-paragraph formatting; and the complex front-matter
requirements of journal articles. Back then prototype code had been made available
(see [140]), but the work has otherwise been kept separate from LaTEX — partly because
it was executing simply too slowly on the available hardware.

One thing the project team steadfastly refused to do at that time was to unnec-
No new features at
the kernel level . . .

essarily “enhance” the kernel by providing additional features as part of it, thereby
avoiding the trap into which LaTEX 2.09 fell in the early 1990s: the disintegration into
incompatible dialects where documents written at one site could not be successfully
processed at another site. In this discussion it should not be forgotten that LaTEX
serves not only to produce high-quality documents but also to enable collaboration
and exchange by providing a lingua franca for various research communities.

4

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.5

1.1 A brief history (of nearly half a century)

With LaTEX2ε , documents written in 19961 can still be run with today’s LaTEX. In
the opposite direction, new documents run on older kernel releases if the additional
packages used are brought up-to-date — a task that, in contrast to updating the
LaTEX kernel software, is easily manageable even for users working in a multiuser
environment (e.g., in a university or company setting).

But a stable kernel is not identical to a standstill in software development; of
. . . but no standstill

equally crucial importance to the continuing relevance and popularity of LaTEX is the
diverse collection of contributed packages building on this stable base. The success
of the package system for nonkernel extensions is demonstrated by the enthusiasm
of these contributors — many thanks to all of them! As can be easily appreciated by
visiting the highly accessible and stable Comprehensive TEX Archive Network (see
Appendix C) or by reading this book (where more than 250 of these “Good Guys”2

are listed on page →II 967), this has supported the existence of an enormous treasure
trove of LaTEX packages and related software.

The provision of services, tools, and systems-level support for such a highly
The back office

distributed maintenance and development system was itself a major intellectual
challenge, because many standard working methods and software tools for these
tasks assume that your colleagues are in the next room, not the next continent (and
in the early days of the development, e-mail and FTP were the only reliable means
of communication). The technical inventiveness and the personalities of everyone
involved were both essential to creating this example of the friendly face of open
software maintenance, but Alan Jeffrey and Rainer Schöpf deserve special mention
for “fixing everything”.

A vital part of this system that is barely visible to most people is the regression
testing system with its vast suite of test files [129]. It was initially devised and set
up by Frank and Rainer with Daniel Flipo; it has proved its worth countless times in
the never-ending battle with the bugs. Over the years it has seen many refinements,
cumulating in a complete rewrite as part of l3build [147], which we describe in
Section 17.3 on page →II 606.

In 2004, i.e., roughly a decade after its first edition, the second edition of the LATEX
2004 — The second
edition of the LATEX
Companion

Companion was published. Due to the popularity of LaTEX2ε and its extended features
for developers, new important packages had emerged, and LaTEX had reached out into
new domains. While the advice given in the first edition remained largely valid (last
but not least because of the long-term backward compatibility paradigm of LaTEX), we
ended up rewriting 90% of the original content and added about 600 pages to account
for new developments. As before, the second edition helped a lot in standardizing the
use, and this way the interoperability, of LaTEX across the world.

Some members of the LaTEX Project Team have built on the team’s experience to
Research

extend their individual research work in document science beyond the current LaTEX
structures and paradigms. Some examples of their work up to now can be found

1The time between 1994 and 1996 was a consolidation time for LaTEX2ε , with major fixes and
enhancements being made until the system was thoroughly stable. In fact, with some minor alterations
in pagination or font usage, it is usually possible to reprocess even documents from the eighties (i.e.,
written for LaTEX 2.09) or make them reusable with little effort.

2Unfortunately, this is nearly the literal truth: you need a keen eye to spot the few ladies listed.

5

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.6

1 INTRODUCTION

in the following references: [33, 35–37, 133–135, 138, 149, 175, 177]. An important
spin-off from the research work was the provision of some interfaces and extensions
that are immediately usable with standard LaTEX.

The decision to keep the core of the standard LaTEX system stable and essentially
. . . and into the

future
unchanging had two major advantages over any other approach to support fully
automated document processing. First, the system already efficiently provided high-
quality formatting of a large range of elements in very complex documents of arbitrary
size. Second, it was robust in both use and maintenance and hence offered the
potential to remain in widespread use for at least a further 15 years.1 In the second
edition of this book we wrote on this topic:

As more such functionality is added, it will become necessary to assess
the likelihood that merely extending LaTEX in this way will provide a more
powerful, yet still robust and maintainable, system. This is not the place
to speculate further about the future of LaTEX but we can be sure that it
will continue to develop and to expand its areas of influence whether in
traditional publishing or in electronic systems for education and commerce.

This reassessment became necessary in the second decade of the new century, when it
Reassessment time

became obvious that this position was gradually getting unsustainable, because more
and more areas in which people were looking for solutions could not be adequately
addressed with a model of a fixed kernel and all developments outsourced to the
package level. Examples are the move to Unicode in basically all operating systems and
the growing pressure to produce “accessible” documents that conform to standards
such as PDF/UA (Portable Document Format/Universal Accessibility).

Thus, in 2015, the LaTEX Project Team changed its policy and restarted kernel
�An important

policy change
development. To retain the best of both worlds this was accompanied by developing a
rollback/roll-forward functionality for the kernel and packages (that care to implement
it). This allows a current LaTEX format to roll back to an earlier point in time in order
to process old documents that rely on interfaces that have been changed since then
or to process documents that explicitly worked around bugs (and so expect them to
be there) that have been fixed in the meantime.

The first action of the team was to retire the fixltx2e package and instead include
the accumulated fixes it contained directly in the format and to officially support LaTEX
when using the Unicode engines X ETEX and LuaTEX. A big step forward happened in
2018 when LaTEX switched its default input encoding to UTF-8. This change proved
that the policy change was the right thing to do and that the preparatory work (e.g.,
providing rollback) allows executing even major changes without disruption in its user
base in order to keep LaTEX relevant and useful. A good indicator for the renewed and
increased activity are the regular LaTEX newsletters [107] accompanying each release,
which grew bulkier and again appeared semi-annually.

1One of the authors of the second edition had publicly staked a modest amount of beer on TEX
remaining in general use (at least by mathematicians) until at least 2010. He should have made a
larger bet, given that this is now 2022 and LaTEX is healthy and in fact growing its user base due to its
many unsurpassed qualities.

6

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.7

1.1 A brief history (of nearly half a century)

The event of providing the mythical LaTEX3 had long become a standing joke as
And where is the
mythical LATEX3?

“two years from ‘now’ — with ‘now’ a moving target”. The reason was that the concepts
and ideas for LaTEX3 have been simply a decade or more too early, and while the team
implemented a fully working version already in 1990, it was simply too slow to be
usable with the then available computing power. Thus, we gave up pursuing it and
instead concentrated on offering LaTEX2ε , which then went public in 1994.

But ideas and concepts were never forgotten by the team, and especially its newer
members (who joined in this century) pushed them back to the forefront and improved
them dramatically. As a result, the code was eventually publicly made available as the
expl3 package. It was then picked up by a number of enthusiastic package developers
and used as the basis for their new packages. For example, if you use acro , breqn ,
fontspec , siunitx , unicode-math , or xparse , to name a few, you use “LaTEX3” under the
hood; a recent count shows more than 200 such packages or classes as part of TEX Live.

So in 2019 the LaTEX Project Team made two wide-ranging decisions: there will
not be a separate LaTEX3 that is being developed alongside LaTEX2ε (as was originally
planned). Instead, we will modernize the current LaTEX gradually from the inside, using
the new rollback mechanism and “development” formats as a safety net to ensure that
there is no disruption of service for our user base. As a first step on this journey, the

. . . well it got merged
into the kernel in
2020L3 programming layer and the LaTEX3 document-level command declarations (formerly

known as expl3 and xparse) were made an integral part of LaTEX on February 2, 2020.
Thus, more or less exactly 30 years after its conception, LaTEX3 became a reality for
every LaTEX user — even though few will have immediately noticed.

The importance of this step is that it allows the team to modernize other parts of
The foundation layer
for modernization

the kernel and develop new functionality entirely based on the L3 programming layer,
which offers many features not available with legacy LaTEX programming constructs.
For example, the new Hook Management System for LaTEX, which is a cornerstone for
modernizing and transforming the existing LaTEX, is entirely written using the new L3
programming layer, and other parts will follow suit.

As already mentioned, there is a steadily increasing interest in the production
Today’s challenge:
structured and
accessible output is
needed

of “tagged” PDF documents that are “accessible”, in the sense that they contain infor-
mation to assist screen reading software, etc., and, more formally, that they adhere
to the PDF/UA (Portable Document Format/Universal Accessibility) standard [190],
explained further in [47]. In many disciplines this is starting to become a requirement
when applying for grants or when publishing results.

At the moment, all methods of producing such “accessible PDFs”, including
the use of LaTEX, require extensive manual labor in preparing the source or in post-
processing the PDF (maybe even at both stages); and these labors often have to be
repeated after making even minimal changes to the (LaTEX or other) source. This
is a huge pity, because LaTEX should in theory be well positioned to do this work
automatically, given that its source is already well-structured.

The production of tagged (i.e., structured) PDF documents is not only important
in order to comply to accessibility standards. It also opens possibilities to reuse data
from such PDFs, because it allows other applications to correctly identify the structure
inside the output document and this way extract or manipulate parts of the content —
workflows that become increasingly important in the digital world.

7

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.8

1 INTRODUCTION

The LaTEX Project Team has for some years been well aware that these new usages
are not adequately supported by the current system architecture of LaTEX2ε and that
major work in this area is therefore urgently needed to ensure that LaTEX remains
an important and relevant document source format. However, the amount of work
required to make such major changes to the LaTEX system architecture is enormous
and definitely way beyond the limited resources of a small team of volunteers working
in their spare time (or maybe just about possible, but only given a very long — and
most likely too long — period of time).

At the TEX Users Group conference 2019 in Palo Alto the team’s previously pes-
�A multi-year

project to shape
the future of LATEX

simistic outlook on this subject became cautiously optimistic, because of discussions
with senior executives from Adobe about the possibility of producing structured PDF
from LaTEX source without the need for the usual requirement of considerable manual
post-processing. As a result of these discussions, towards the end of 2019 the team
produced an extended feasibility study for the project, aimed primarily at Adobe
engineers and decision-makers. This study [144] describes in some detail the various
tasks that constitute the project and their interdependencies. It also contains a project
plan covering how, and in what order, these tasks should be tackled both to achieve
the final goal and, at the same time, to provide intermediate concrete results that are
relevant to user communities (both LaTEX and PDF); these intermediate results will help
in obtaining feedback that is essential to the successful completion of later tasks.

This multi-year project found the approval of Adobe, which then committed to
financially and otherwise supporting this endeavor [150]. Unfortunately — thanks
to the COVID-19 pandemic — the start got delayed, but since the end of 2020, this
exciting project is now well under way. First results from this project that are already
in existence (such as the new hook management system and the alignment of the
hyperref package with the LaTEX kernel) are already described in this book. Other parts
are obviously still vaporware at this point. Fortunately, none is expected to render
any documentation or suggestion made in this book obsolete — after all, the project
goal is to enable tagging of existing documents, simply by reprocessing with minor
configuration changes as outlined in the “Spoiler alert” Section 2.1.1 on page 23.

1.2 Today’s systems
When we wrote the second edition of The LATEX Companion (i.e., 2003–2004), standard
LaTEX was (officially) supported only on 8-bit engines, e.g., pdfTEX. Around the same
time, the first version of the Unicode engine X ETEX and (somewhat later, in 2007) the
first beta version of LuaTEX appeared, and there were soon unofficial support files
that helped people running LaTEX on these Unicode engines as well.

When LuaTEX reached version 1.0, the LaTEX Project Team used the opportunity
and officially took on LaTEX support for all three engines that included, for example,
running the release regression test suite with its roughly 1000 tests against all three
engines. Besides these three engines (which are covered in this book), there are further
ones, such as pTEX and upTEX for Japanese, where the LaTEX adjustments for the engine
are maintained by the respective user groups.

8

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.9

1.2 Today’s systems

kernel code (latex.ltx)
hyphen patterns (language.dat)

. . . other components

TEX engine
processing a

LaTEX document

LaTEX format (.fmt)

Structure, packages, language (.cls , .sty , .ldf)

Fonts and metrics (.pfb , .otf , .ttf)

Font metrics and definitions (.tfm , .fd , .fontspec)

Input encoding definitions (.def , .dfu)

Formatted output (.dvi , .pdf)

Document input (.tex)

Transcript (.log)

Internal files

.bbl

.ind

...

PostScript (.ps) Screen Printer Online

Related
applications

...

.lof

.toc

.aux

Figure 1.1: Data flow in the LaTEX system

What is described in this book should work with all of these engine — in cases
where there are differences between 8-bit and Unicode engines, then they are explicitly
described (see page 18 for a description how).

However, each of the engines also has one or the other specialty compared
~Engine specifics

not covered in
this book

to the original TEX program, which is available only with that particular engine;
e.g., LuaTEX supports code written in Lua, or upTEX offers special commands for
Japanese typography, etc. Standard LaTEX either abstracts such features (when support
is available in all engines and only the methods differ) or does not make use of the
features — and for that reason such engine-specific commands are not discussed in
the LATEX Companion. If you are interested in that level of coding, please refer to the
engine documentation, e.g., for pdfTEX [65], for X ETEX [173], and for LuaTEX [122].

In the remainder of the current section we present an overview of the vast array
Files used in the
LATEX universe

of files used by a typical LaTEX system with its many components. This overview also
involves some descriptions of how the various program components interact. Most
users will never need to know the exact details of this software environment that
supports their work, but this section will be a useful general reference and an aid to
understanding some of the more technical parts of this book.

Although modern LaTEX systems are most often embedded in project-oriented,
menu-driven interfaces, behind the scenes little has changed from the file-based
description given here. Figure 1.1 shows schematically the flow of information.

9

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.10

1 INTRODUCTION

The following description assumes familiarity with a standard computer file
system in which a “file extension” is used to denote the “type of a file”. In processing a
document, the LaTEX program reads and writes several files, some of which are further
processed by other applications. The most important ones are listed in Table 1.1 on
the next page. The book covers a total of 64 file types, but those not described in the
current section are rather specialized and used only by individual packages.

The most obviously important files in any LaTEX-based documentation project are
Document

input
the input source files. Typically, there will be a main file that uses other subsidiary files
(see Section 2.1). These files most often have the extension .tex (code documentation
for LaTEX typically carries the extension .dtx ; see Chapter 17). They are commonly
known as “plain text files”, because they can be prepared with a basic text editor.
Often, external graphical images are included in the typeset document utilizing the
graphics interface described in Section 8.1.

LaTEX also needs several files containing structure and layout definitions: class
Structure
and style

files with the extension .cls ; option files with the extension .clo ; package files
with the extension .sty (see Appendix A). Many of these are provided by the basic
system setup, but others may be supplied by other developers. LaTEX is distributed
with five standard document classes: article, report, book, slides, and letter. These
document classes can be customized by the contents of other files specified either
by class options or by loading additional packages as described in Section 2.1. In
addition, many LaTEX documents automatically input language definition files of the
babel system with the extension .ldf (see Chapter 13) and encoding definition files
of the inputenc/fontenc packages with the extension .def (see Chapter 9).

The information that LaTEX needs about the glyphs to be typeset is found in TEX
Font resources

font metric files (extension .tfm). This does not include information about the shapes
of glyphs, only about their dimensions. Information about which font files are needed
by LaTEX is stored in font definition files (extension .fd), or in case of Unicode engines
sometimes in .fontspec files. Both types are loaded automatically when necessary.
See Chapter 9 for further information about font resources.

A few other files need to be available to TEX, but you are even less likely to
The LATEX format

come across them directly. An example includes the LaTEX format file pdflatex.fmt
that contains the core LaTEX instructions, precompiled for processing by the pdfTEX
formatter. There are some situations in which this format needs to be recompiled —
for example, when changing the set of hyphenation rules available to LaTEX (configured
in language.dat ; see Section 13.6.2) and, of course, when a new LaTEX kernel is made
available. The details regarding how such formats are generated differ from one TEX
implementation to the next, so they are not described in this book, but usually this all
happens behind the scenes with the tools of the distribution you use.

The output from LaTEX itself is a collection of internal files (see below), plus one
very important file that contains all the information produced by TEX about the typeset
form of the document.

TEX’s own particular representation of the formatted document is that of a device-
Formatted output

independent file (extension .dvi). TEX positions glyphs and rules with a precision far
better than 0.01µm (1/4,000,000 inch). Therefore, the output generated by TEX can
be effectively considered to be independent of the abilities of any physical rendering
device — hence the name. These days all major TEX engines can alternatively produce

10

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.11

1.2 Today’s systems

File Type Common File Extension(s)

Document Input text .tex .ltx
bibliography .bbl
index / glossary .ind / .gnd

Graphics internal .tex
external .ps .eps .tif .png .jpeg .jpg .gif .pdf

Other Input layout and structure .clo .cls .sty
encoding definitions .def .dfu
language definitions .ldf .ini
font access definitions .fd .fontspec
configuration data .cfg

Internal Communication auxiliary .aux
(Input and Output) table of contents / partial .toc / .ptc

list of figures / tables .lof / .lot
Low-Level TEX Input format .fmt

font image files .pfb .otf .ttf .pk
font metrics .tfm

Output formatted result .dvi .pdf
raw index / raw glossary .idx / .glo
transcript .log

Bibliography (BIBTEX) input / output .aux / .bbl
database / style / transcript .bib / .bst / .blg

(biblatex) style / citation / model / config .bbx / .cbx / .dbx / .bcf
Index input / output .idx / .ind

style / transcript .ist / .ilg
Documentation & Testing documentation / unpacking .dtx .fdd / .ins

test input / test output .lvt / .tlg
Archive dependencies / file usage .dep / .fls

Table 1.1: Major file types used by LATEX

PDF output (extension .pdf), and over time this has become the standard output for-
mat largely replacing .dvi .1 The .dvi file format specifies only the names/locations
of fonts and their glyphs — it does not contain any rendering information for those
glyphs. The .pdf file format can and usually does contain such rendering information.

Some of the internal files contain code needed to pass information from one
Cross-references

LaTEX run to the next, such as for cross-references (the auxiliary file, extension .aux ;
see Section 2.3) and for typesetting particular elements of the document such as
the table of contents (extension .toc) and the lists of figures (extension .lof) and

1There are established workflows based on .dvi usually post-processed further to PostScript and
from there often to PDF. For that reason the original format will remain a viable option.

11

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.12

1 INTRODUCTION

of tables (extension .lot). Others are specific to particular packages (such as acro,
Section 3.3.2, or enotez, Section 3.5.10) or to other parts of the system (see below).

Finally, TEX generates a transcript file of its activities with the extension .log .
Errors, warnings,
and information

This file contains a lot of information, such as the names of the files read, the page
numbers (in brackets) of the pages processed, warning and error messages, and other
pertinent data that is especially useful when debugging errors (see Appendix B). When
you use an editor with integrated TEX support, this .log file is sometimes hidden
from you and its data only selectively presented. If that is the case, it might be
worth looking for it on the file system level, because it is likely to contain important
information in case of problems that puzzle you.

A file with the extension .idx contains individual unsorted items to be indexed.
Indexing

These items need to be sorted, collated, and unified by a program like MakeIndex,
upmendex, or xindy (see Chapter 14). The sorted version is typically placed into a
file (extension .ind) that is itself input to LaTEX. For MakeIndex or upmendex, the
index style information file has an extension of .ist , and the transcript file has an
extension of .ilg ; in contrast, xindy appears not to use any predefined file types.

Information about bibliographic citations (see Chapter 16) in a document is nor-
Citations and
bibliography

mally output by LaTEX to the auxiliary file or to the biber control file (extension .bcf).
This information is used first to extract the necessary information from a biblio-
graphic database and then to sort it; the sorted version is put into a bibliography file
(extension .bbl) that is itself input to LaTEX. If the system uses BIBTEX or biber (see
Chapter 15) for this task, then the bibliographic database files will have an extension
of .bib , and the transcript file will have the extension .blg . With BIBTEX, additional
information about the process will be in a bibliography style file (extension .bst);
biber does not use styles — this is handled by biblatex in that case.

Because of the limitations of TEX, especially its failure to natively handle graphics
Using \specials in
the .dvi workflow

or color, it is often necessary to complete the formatting of some elements of the
typeset document after TEX has positioned everything and written this information to
the .dvi file in some post-processing step. This is normally done by attaching extra
information and handling instructions at the correct “geometrical position in the
typeset document”, using TEX’s \special primitive that simply puts this information
at the correct place in the .dvi file (see Chapter 8). This information may be simply
the name of a graphics file to be input; or it may be instructions in a graphics language.
This is then post-processed when the .dvi file is converted by a separate program,
such as dvips, for printing or displaying. If TEX is directly generating PDF, there is

Using \specials in
the .pdf workflow

conceptually not much difference, except that the post-processing happens directly
in the extended TEX engine (e.g., pdftex, X ETEX, or LuaTEX) at the point where TEX
has finished a page and passes the result to a component that translates it to a PDF
page. This component then plays the rôle that external programs play in the .dvi
workflow: it also uses either \specials to communicate or additional primitives of
the particular engine that do a similar job.

In either case, LaTEX abstracts from the underlying workflow peculiarities so that
you can always just specify \color or \includegraphics . LaTEX translates that into
the right \special commands based on your workflow and the chosen TEX engine.

Once the document has been successfully processed by TEX (and possibly trans-
Seeing is believing

formed into PostScript or PDF), you probably want to take a look at the formatted text.

12

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.13

1.3 Working with this book

This is commonly done on screen, but detailed inspection of printed output should
always be performed via printing on paper at the highest available resolution. The
applications available for viewing documents on screen vary quite a lot depending on
your chosen workflow and your operating system. If you generate PDF, then various
free and commercial tools exist that differ mainly in their features to post-process the
document, but not in the actual representation, because the PDF normally includes
all resources used by the document. If, on the other hand, you want to view a .dvi
file, you need a viewer that can find and display the fonts or graphics referenced in
the .dvi , because they are not part of the file itself. Occasionally you therefore find
that some applications produce far superior screen output than others; this is due to
limitations of the different technologies and the availability of suitable font resources.

1.3 Working with this book
This final section of Chapter 1 gives an overview of the structure of this edition, the
typographic conventions used, and ways to use the examples given. Because of its
size, this edition is typeset as two separate physical volumes (Part I and Part II), which
has some implications on the presentation.

Chapters are numbered consecutively across both volumes, but we restart the
page numbers in Part II to keep the numbers readable. As a consequence, cross-
references to pages come in two forms: if they are to a page in the same volume, they
read “see page 253”, but if they refer to a page in the other volume, they look like
“see page →II 127” or similar.

The main index, which contains entries for the whole edition, is replicated at
the end of each physical volume to improve its usability and make it easier to work
with. To identify the volume each page number in an entry refers to, the start of each
volume sequence is identified by →I and →II , respectively.

1.3.1 What’s where
Following is a summary of the subject areas covered by each chapter and appendix. In
principle, all chapters can be read independently because, when necessary, pointers
are given to where necessary supplementary information can be found in other parts
of the edition.

Part I —

Chapter 1 gives a short introduction to the LaTEX system and this book.

Chapter 2 discusses document structure markup, including sectioning commands
and cross-references as well as document source management.

Chapter 3 describes LaTEX’s basic typesetting commands for the paragraph level.
It also contains a section on packages offering document development
support.

Chapter 4 looks at the typesetting of larger structures, such as lists and code
displays, and shows how to work with multiple columns.

13

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.14

1 INTRODUCTION

Chapter 5 explains how to influence the visual layout of the pages in various ways.

Chapter 6 shows how to lay out material tables, on single and multiple pages.

Chapter 7 surveys floating material and caption formatting.

Chapter 8 covers image loading and manipulation and the generation of portable
graphics. It also offers an extensive overview on the tcolorbox package
and an introduction to the world of tikz.

Chapter 9 discusses in detail LaTEX’s Font Selection Scheme and shows how to
access new fonts in 8-bit and Unicode TEX engines.

Part II —

Chapter 10 gives a comprehensive list with examples of high-quality text and sym-
bol fonts available out of the box to LaTEX users today.

Chapter 11 reviews mathematical typesetting, particularly the packages supported
by the American Mathematical Society.

Chapter 12 describes aspects of font usage in math formulas and offers a compari-
son between available font setups with 8-bit and Unicode TEX engines.

Chapter 13 discusses the support for using LaTEX with multiple languages, particu-
larly the babel system.

Chapter 14 discusses the preparation and typesetting of an index with a focus on
the programs MakeIndex and upmendex.

Chapter 15 explains how to create and use bibliographical databases in conjunction
with LaTEX, and how to generate typeset bibliographies according to
publishers’ or style guide expectations.

Chapter 16 describes LaTEX’s support for the different citation systems for bibli-
ographical references in common use and how to produce multiple
bibliographies by chapter and topic.

Chapter 17 shows how to document LaTEX packages and classes and how to use such
files provided by others. It also covers setting up a development and
testing environment and working with version control, which is useful
for essentially every project.

Appendix A reviews how to handle and manipulate the basic LaTEX programming
structures and how to produce class and package files.

Appendix B discusses how to trace and resolve problems and explains common
error and warning messages and their likely causes.

Appendix C shows where to go beyond this book if that is ever needed, e.g., how to
obtain the packages and systems described, how to access help or take
an online course, and much more.

14

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.15

1.3 Working with this book

Some of the material covered in the book may be considered “low-level” TEX
that has no place in a book about LaTEX. However, to the authors’ knowledge, much
of this information has never been described in the “LaTEX” context even though it
is important. Moreover, we do not think that it would be helpful simply to direct
readers to books like The TEXbook, because most of the advice given in books about
“plain TEX” either is not directly applicable to LaTEX or, worse, produces subtle errors if
used with LaTEX. In some sections we have, therefore, tried to make the treatment as
self-contained as possible by providing all the information about the underlying TEX
engine that is relevant and useful within the LaTEX context.

1.3.2 Typographic conventions
It is essential that the presentation of the material immediately conveys its function in
the framework of the text. Therefore, we present below the typographic conventions
used in this book.

Throughout the text, LaTEX command and environment names are set in mono-
Commands,
environments,
packages, . . .

spaced type (e.g., \caption , enumerate , \begin{tabular}), while names of pack-
ages, class files, and programs are in sans serif type (e.g., article). Commands to be
typed by the user on a computer terminal are shown in monospaced type and are un-
derlined, e.g., showing how to call the LaTEX development format on the command line:

pdflatex-dev ⟨file⟩

The syntax of the more complex LaTEX commands is presented inside a rectangular Syntax
descriptionsbox. Command arguments are shown in italic type:

\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}[right-sep]

In LaTEX, optional arguments are denoted with square brackets, and the star indicates a
variant form (i.e., is also optional), so the above box means that the \titlespacing
command can come in four different incarnations:

\titlespacing{cmd}{left-sep}{before-sep}{after-sep}
\titlespacing{cmd}{left-sep}{before-sep}{after-sep}[right-sep]
\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}
\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}[right-sep]

For some commands, not all combinations of optional arguments and/or star forms
are valid. In that case the valid alternatives either are explained in the text or are
explicitly shown together, as, for example, in the case of LaTEX’s sectioning commands:

\section*{title} \section[toc-entry]{title}

Here the optional toc-entry argument can be present only in the unstarred form; thus,
we get the following valid possibilities:

\section{title} \section*{title} \section[toc-entry]{title}

15

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.16

1 INTRODUCTION

Lines containing examples with LaTEX commands are indented and are typeset in
Code examples . . .

a monospaced type at a size somewhat smaller than that of the main text:

\addtocontents{lof}{\protect\addvspace{10pt}}
\addtocontents{lot}{\protect\addvspace{10pt}}

However, in the majority of cases we provide complete examples together with the
. . . with output . . .

output they produce side by side:

The right column shows the input text
to be treated by LATEX with preamble ma-
terial shown in blue. In the left column
one sees the result after typesetting.

\usepackage{ragged2e}
The right column shows the input text to be treated
by \LaTeX{} with preamble material shown in blue.
In the left column one sees the result after
typesetting. 1-3-1

Note that all preamble commands are always shown in blue in the example source.
In case several pages need to be shown to prove a particular point, (partial) “page

. . . with several
pages . . .

spreads” are displayed and usually framed to indicate that we are showing material
from several pages.

1 A TEST

1 A test
Some text for our page
that might get reused
over and over again.

Some text for our

Page 6 of 7

1 A TEST

page that might get
reused over and over
again.

Page 7 of 7

\usepackage{fancyhdr,lastpage}
\pagestyle{fancy}
\fancyhf{} % --- clear all fields
\fancyhead[RO,LE]{\leftmark}
\fancyfoot[C]{Page \thepage\

of \pageref{LastPage}}
% \sample defined as before

\section{A test}
\sample \par \sample 1-3-2

A number of points should be noted here:

• We usually arrange the examples to show pages 6 and 7 so that a double spread
is displayed.

• We often use the command \sample to hold a short piece of text to keep the
example code short: the definition for this command is either given as part of the
example or, as indicated here, repeated from a previous example — which in this
case is simply a lie because \sample was not defined earlier. In other examples
we make use of lipsum or kantlipsum to generate sample text.

• The output may or may not show a header and footer. In the above case it shows
both. Because the “pages” are very small but show the real output from the given
input on the right, there are often deficiencies in line breaking, etc.

16

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.17

1.3 Working with this book

For large examples, where the input and output cannot be shown conveniently . . . with large
output . . .alongside each other, the following layout is used:

\usepackage{ragged2e,kantlipsum} \RaggedRight
This is a wide line, whose input commands and output result cannot
be shown nicely in two columns. \kant[1][1-3]

Depending on the example content, some additional explanation might appear be-
tween input and output (as in this case). Then the output is displayed:

1-3-3

This is a wide line, whose input commands and output result cannot be
shown nicely in two columns. As any dedicated reader can clearly see, the
Ideal of practical reason is a representation of, as far as I know, the things
in themselves; as I have shown elsewhere, the phenomena should only be
used as a canon for our understanding. The paralogisms of practical rea-
son are what first give rise to the architectonic of practical reason. As will
easily be shown in the next section, reason would thereby be made to con-
tradict, in view of these considerations, the Ideal of practical reason, yet the
manifold depends on the phenomena.

Chapter 11 shows yet another example format, where the margins of the example . . . or with lines
indicating the
margins

are explicitly indicated with thin blue vertical rules. This is done to better show the
precise placement of displayed formulas and their tags in relation to the text margins.

1-3-4 (1) (a+ b)2 = a2 + 2ab+ b2
\usepackage[leqno]{amsmath}
\begin{equation} (a+b)^2 = a^2+2ab+b^2 \end{equation}

Some examples make use of color commands, e.g., \color or \textcolor , but
~Color usage

in this book
because the book is printed only with two colors, it is not possible to do them justice.
The approach we took is that all colors appear as shades of gray except for blue ,
which we changed to produce the “lightblue” that is used as a second color in the book.
Thus, all examples actually deploy the declarations as shown in the next example if
they use color, but to save space none of them is shown elsewhere.

1-3-5

Black blue
red green
yellow blue
bluish

\usepackage{xcolor}
\definecolor{blue}{cmyk}{1,0.56,0,0} % what we call ‘blue’ in this book
\definecolor{red}{gray}{.7} \definecolor{green}{gray}{.8}
\definecolor{yellow}{gray}{.9}
Black \textcolor{blue}{blue} \textcolor{red}{red} {\color{green} green}
\textcolor{yellow}{yellow} \colorbox{black!30}{\color{blue} blue}
\fcolorbox{blue}{blue!8}{\color{blue}bluish}

The notation blue!8 is a short form for writing blue!8!white. It is xcolor’s way to
specify simple color mixes and means that we mix 8% blue with 92% white.

17

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.18

1 INTRODUCTION

All of these examples are “complete” if you mentally add a \documentclass line
(with the article class1 as an argument) and surround the body of the example with
a document environment. In fact, this is how all of the examples in this book were
produced. When processing the book, special LaTEX commands take the source lines
for an example and write them to an external file, thereby automatically adding the
\documentclass and the document environment lines. This turns each example into
a small but complete LaTEX document. These documents are then externally processed
(using a mechanism that runs each example as often as necessary, including the
generation of a bibliography through BIBTEX). The resulting PDF (Portable Document
Format) is then cropped to the smallest size that shows all output, using the program
pdfcrop and if necessary separated into individual pages using pdfseparate. The
resulting graphic files are then loaded in the appropriate place the next time LaTEX is
run on the whole book. More details on the actual implementation of this scheme can
be found in Section 4.2.4 on page 315.

Throughout the book, blue notes are sprinkled in the margin to help you easily
�Watch

out for these
find certain information that would otherwise be hard to locate. In a few cases these
notes exhibit a warning sign, indicating that you should probably read this information
even if you are otherwise only skimming through the particular section.

Most of the material presented in this book is applicable to all TEX engine flavors,
Information relevant
only to Unicode TEX

engines

e.g., pdfTEX, X ETEX, or LuaTEX. However, some aspects are applicable only to Unicode
engines, and to help you identify this at a glance we have placed such information
into boxes like this:

Unicode engines

This is information that applies only to Unicode engines, e.g., X ETEX or LuaTEX.

The only exceptions are Section 9.6 on fontspec and Section 12.4 on unicode-math,
both of which would have ended up completely within such boxes — which would be
rather hard to read.

A similar approach is used to highlight any differences between a workflow that
Information specific

to biblatex/biber
uses BIBTEX and traditional citation methods and one that uses the biblatex package
and the biber program. As both methods have a large overlap, they are described
together, and specific considerations are placed into boxes like this:

biber/biblatex

This is information specific to biblatex/biber and often gives tips how to
ensure compatibility between the biber/biblatex and the BIBTEX workflow.

This convention is used in Chapter 15.

1.3.3 Using the examples
Our aim when producing this book was to make it as useful as possible for our readers.
For this reason the book contains more than 1500 complete, self-contained examples
of all aspects of typesetting covered in the book.

1Except for examples involving the \chapter command, which need the report or book class.

18

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.19

1.3 Working with this book

All examples are made available in source format on CTAN at https://ctan.
org/pkg/tlc3-examples . The examples are numbered per section, and each num-
ber is shown in a small box in the inner margin (e.g., 1-3-6 below). These numbers are
also used for the external file names by appending .ltx (single-page examples) or
.ltx2 (double-page examples).

To reuse any of the examples it is usually sufficient to copy the preamble code
(typeset in blue) into the preamble of your document and, if necessary, adjust the
document text as shown. In some cases it might be more convenient to place the
preamble code into your own package (or class file), thus allowing you to load this
package in multiple documents using \usepackage . If you want to do the latter,
there are two points to observe:

• Any use of \usepackage in the preamble code needs to be replaced by a
\RequirePackage declaration, which is the equivalent command for use in
package and class files (see Section A.6.7).

• Any occurrence of \makeatletter and \makeatother must be removed from
the preamble code. This is very important because the \makeatother would
stop correct reading of such a file.

So let us assume you wish to reuse the code from the following example:

1-3-6

A line of text1 with some2 footnotes.

1. The first
2. The second

\makeatletter
\renewcommand\@makefntext[1]%

{\noindent\makebox[0pt][r]{\@thefnmark.\,}#1}
\makeatother
A line of text\footnote{The first}
with some\footnote{The second} footnotes.

You have two alternatives: you can copy the preamble code (i.e., the code colored
blue) into your own document preamble or you can place that code — but without
the \makeatletter and \makeatother— in a package file (e.g., lowfnnum.sty)
and afterwards load this “package” in the preamble of your own documents with
\usepackage{lowfnnum} .

19

https://ctan.org/pkg/tlc3-examples
https://ctan.org/pkg/tlc3-examples

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.20

This page intentionally left blank

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.21

C H A P T E R 2

The Structure of a LATEX
Document

2.1 The overall structure of a source file . 22

2.2 Sectioning commands . 32

2.3 Table of contents structures . 54

2.4 Managing references . 75

2.5 Document source management. 108

One of the ideas behind LaTEX is the separation between layout and structure (as far
as possible), which allows the user to concentrate on content rather than having to
worry about layout issues [106]. This chapter explains how this general principle is
implemented in LaTEX.

The first section of this chapter shows how document class files, packages,
options, and preamble commands can affect the structure and layout of a document.

The logical subdivisions of a document are then discussed in general, before
explaining in more detail how sectioning commands and their arguments define a
hierarchical structure, how they generate numbers for titles, and how they produce
running heads and feet. This is followed by discussing a few useful packages that
allow you to customize different aspects of the layout of sectional units or to provide
your own definitions.

In Section 2.3 we take a closer look at the design of table of contents structures
and how it can be influenced or extended.

This is followed by a section discussing important packages that support you
in providing cross-references that remain correct, even if you change parts of your
document. These packages can automatically insert appropriate phrases (varioref,
cleveref, nameref), can help you manage your label keys (showkeys and refcheck),
or support you in providing references to external documents (xr) or hyperlinks in
general (hyperref).

The final section introduces packages and programs that support you in archiving
documents or managing them when you work jointly with others on some document.

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.22

2 THE STRUCTURE OF A LATEX DOCUMENT

2.1 The overall structure of a source file
You can use LaTEX for several purposes, such as writing an article or a book or pro-
ducing presentations. Clearly, documents for different purposes may need different
logical structures, i.e., different commands and environments. We say that a document
belongs to a class of documents having the same general structure (but not necessarily
the same typographical appearance). You specify the class to which your document
belongs by starting your LaTEX file with a \documentclass command, where the
mandatory parameter specifies the name of the document class. The document class
defines the available logical commands and environments (for example, \chapter
in the report class) as well as a default formatting for those elements. An optional
argument allows you to modify the formatting of those elements by supplying a list
of class options. For example, 11pt is an option recognized by most document classes
that instructs LaTEX to choose eleven point as the basic document type size.

Many LaTEX commands described in this book are not specific to a single class but
can be used with several classes. A collection of such commands is called a package,
and you inform LaTEX about your use of certain packages in the document by placing
one or more \usepackage commands after \documentclass .

Just like the \documentclass declaration, \usepackage has a mandatory ar-
gument consisting of the name of the package and an optional argument that can
contain a list of package options that modify the behavior of the package.1

The document classes and the packages reside in external files with the extensions
.cls and .sty , respectively. Code for options is sometimes stored in external files
(in the case of class files with the extension .clo) but is normally directly specified
in the class or package file (see Appendix A for information on declaring options in
classes and packages). However, in the case of options, the file name can differ from
the option name. For example, the option 11pt is related to size11.clo when used
in the article class and to bk11.clo inside the book class.

Commands placed between \documentclass and \begin{document} are in
The document

preamble
the so-called document preamble. All style parameters must be defined in this
preamble, either in package or class files or directly in the document before the
\begin{document} command, which sets the values for some of the global parame-
ters. A typical document preamble could look similar to the following:

\documentclass[twocolumn,a4paper]{article}
\usepackage{multicol}
\usepackage[ngerman,french]{babel}
\addtolength\textheight{3\baselineskip}
\begin{document}

This document preamble defines that the class of the document is article and that the
layout is influenced by the formatting request twocolumn (typeset in two columns)
and the option a4paper (print on A4 paper). The first \usepackage declaration

1These commands also have a second optional argument that is intended for cases where a specific
release of a package or a document class is required. This is discussed in Section 2.5.5 on page 114.

22

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.23

2.1 The overall structure of a source file

informs LaTEX that this document contains commands and structures provided by the
package multicol. In addition, the babel package with the options ngerman (support
for German language) and french (support for French language) is loaded. Finally,
the default height of the text body was enlarged by three lines for this document.

Generally, nonstandard LaTEX package files contain modifications, extensions, or
improvements1 with respect to standard LaTEX, while commands in the preamble
define changes for the current document. Thus, to modify the layout of a document,
you have several possibilities:

• Change the standard settings for parameters in a class file with options defined
for that class.

• Add one or more packages to your document and make use of them.

• Change the standard settings for parameters in a package file with options defined
for that package.

• Write your own local packages containing special parameter settings and load
them with \usepackage after the package or class they are supposed to modify
(as explained in the next section).

• Make final adjustments inside the preamble.

If you want to get deeper into LaTEX’s internals, you can, of course, define your own
general-purpose packages that can be manipulated with options. You find additional
information on this topic in Appendix A.

2.1.1 Spoiler alert — The \DocumentMetadata command
When LaTEX changed from LaTEX2.09 to LaTEX2ε around 1994, the overall document
structure was slightly changed to automatically distinguish old from new docu-
ments (to switch to compatibility mode, if necessary). LaTEX2ε documents start with
\documentclass as described above, while LaTEX2.09 documents started with the
command \documentstyle , and \usepackage was unavailable.

Now, roughly a quarter century later, there is another major shift under way
during which LaTEX is being modernized to support accessible PDF/UA (Portable
Document Format/Universal Accessibility) and other functionality that is important
for it to remain useful; see the discussion in Section 1.1 on page 7. This time around,
the functionality change is essentially upward compatible, and old documents can be
easily reprocessed using the new features. Thus, instead of dividing documents into
two classes (old and new) by changing the first command, you can now indicate that
you want to use the new functionality by adding a \DocumentMetadata declaration
in front of \documentclass while leaving the rest of the document unchanged.

1Many of these packages have become de facto standards and are described in this book. This
does not mean, however, that packages that are not described here are necessarily less important
or useful, of inferior quality, or should not be used. We merely concentrated on a few of the more
established ones; for others, we chose to explain what functionality is possible in a given area.

23

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.24

2 THE STRUCTURE OF A LATEX DOCUMENT

\DocumentMetadata{key/value list}

This declaration should be the first command in a document; i.e., if present, it should
come before \documentclass . It expects a key/value list as its argument in which
you specify “metadata” about the document that guides the production of the final
output, e.g., should it adhere to a certain standard, should it be a tagged PDF, what
is its author, title, and keywords that are shown in the metadata of the resulting PDF,
etc. All these “metadata” are stored so that packages and users can access the data
in a consistent way.

For example, the key pdfversion allows you to set the PDF version. With the key
pdfstandard it is possible to require a standard such as A-2b . If that is specified,
it directs LaTEX to embed an appropriate color profile and set up verification tests
that packages like hyperref can use to suppress actions not allowed in this standard.
A further example is the backend key that allows you to specify a backend, e.g.,
dvipdfmx or dvisvg , which is useful in cases where the correct backend cannot be
detected automatically.

At the time of writing this book the details about which other keys are going to
be supported are still open (the whole exercise is a multi-year project [150] after all),
but what we can say is that already now you can use this future interface to enable
some new functionality. For example, just adding

\DocumentMetadata{}
\documentclass{article} % (or any other class)
... % with preamble as previously
\begin{document}

is enough to load the new support code for managing PDF output, and this en-
ables packages, such as hyperref, to provide features otherwise not available; see
Section 2.4.6 on page 96 for details.

2.1.2 Processing of options of the document class and packages
You can think of options to the document class or to packages as a simple way to ad-
just some of the properties of the whole document (when used in \documentclass)
or of properties of individual packages (if specified in \usepackage). More fine-grain
control is usually also possible through declarations and setup commands that are
defined by a class or package file and are available for use once that file is loaded.

You can specify options in a \usepackage command only if these options are
explicitly declared by the package. Otherwise, you receive an error message, informing
you that your specified option is unknown to the package in question. Options to
the \documentclass are handled slightly differently. If a specified option is not
declared by the class, it is assumed to be a “global option”.

All options given to \documentclass (whether declared or global) are automat-
ically passed as class options to all \usepackage declarations. Thus, if a package
file loaded with a \usepackage declaration recognizes (i.e., declares) some of the
class options, it can take appropriate actions. If not, the class options are ignored
while processing that package. Because all options have to be defined inside the class
or package file, their actions are under the control of the class or package (an action

24

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.25

2.1 The overall structure of a source file

can be anything from setting internal switches to reading an external file). For this
reason their order in the optional argument of \documentclass or \usepackage
is (usually) irrelevant.

If you want to use several packages, all taking the same set of options (for
example, none), it is possible to load them all with a single \usepackage command by
specifying the package names as a comma-separated list in the mandatory argument.
For example,

\usepackage[ngerman]{babel} \usepackage[ngerman]{varioref}
\usepackage{array} \usepackage{multicol}

is equivalent to

\usepackage[ngerman]{babel,varioref} \usepackage{array,multicol}

By specifying ngerman as a global option to the class we can further shorten the
\usepackage declaration as ngerman is passed to all loaded packages and thus will
be processed by those packages that declare it.

\documentclass[ngerman]{book}
\usepackage{babel,varioref,array,multicol}

Of course, this assumes that neither array nor multicol changes its behavior when
ngerman is passed as a class option.

Finally, when the \begin{document} is reached, all global options are checked
to see whether each has been used by at least one package; if not, a warning message
is displayed. It is usually a spelling mistake if your option name is never used; another
possibility is the removal of a \usepackage command loading a package that used
this option previously.

When the option concept was originally developed, it was based on the idea that
~Key/value

options and their
limitations

options are simple strings separated by commas without further structure. Spaces
in that option list are explicitly ignored, because people often split such option lists
over several lines and inadvertently introduced spaces before or after the commas.
After a while some package developers started to use a key/value concept for options
or setup commands; e.g., geometry allows you to write paper=a4,margin=1in with
the meaning that the option paper gets the value a4 and margin is set to one inch.
That works if neither the option name nor the intended value requires spaces because
those get stripped away if used in a class or package option list.1

This limitation is not easy to overcome for existing implementations without
huge backward compatibility issues, which means that it is usually best to use a setup
command (if provided by a package) rather than the option list with such packages,
because in a setup command spaces are honored except those next to commas and
equal signs. With the new key/value methods directly supported by the LaTEX format,
spaces are trimmed only at either end (where one would expect it). For new packages
or package reimplementations we therefore recommend using LaTEX’s mechanism,
which is described in Appendix A.6.6 on page →II 700.

If you want to make some modifications to a document class or a package (for
Configuration after
loading a package

example, changing parameter values or redefining some commands), you can put the
relevant code into a separate file with the extension .sty . Then load this file with a

1This restriction is lifted in very new packages using the L3 programming layer methods.

25

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.26

2 THE STRUCTURE OF A LATEX DOCUMENT

\usepackage command after the package whose behavior you wish to modify (or
the document class, if your modifications concern class issues).

Alternatively, you can insert the modifications directly into the preamble of your
document. In that case, you may have to bracket them with \makeatletter and
\makeatother if they contain internal LaTEX2ε commands (i.e., those with an @ sign
in their names) or use \ExplSyntaxOn and \ExplSyntaxOff if they are LaTEX3
commands (i.e., with _ and : in their names). For more details see the discussion on
page →II 623 concerning internal commands in the preamble.

2.1.3 Front, main, and back matter
In a longer document, such as a book or a longer article, we usually can identify three
distinct areas: the front matter, the main matter (or body matter), and the back matter.

As the name indicates the main matter holds the main text, while the two other
parts provide supplementary information before and after. The front matter typically
consists of the title page or pages, the table of contents and similar lists, an abstract,
and a foreword or preface (though the latter may already be thought of belonging to
the main matter). To the back matter you typically count any appendices, bibliography,
index, and afterword, colophon, etc.

Typographically these three regions are often handled in different ways to make
them easily identifiable, for example, by using different page numbering systems for
front and main matter1, not numbering headings in the front matter, and often using
different heading number styles in main and back matter.

In shorter works this distinction becomes somewhat blurry: the front matter may
just consist of the title (and not even on a page of its own) in which case it makes
more sense to think of it as belonging to the main matter. Similarly, even in longer
works there may not be any back matter.

In LaTEX’s book class these three regions can be explicitly marked up using the
commands \frontmatter , \mainmatter , and \backmatter . In other classes you
often find only the command \appendix , which is used to separate the body matter
from the back matter — the assumption being that in articles and similar documents
the front matter due to its length does not require special typographical treatment.

Front matter elements

The standard LaTEX classes provide \title , \author (with \and and \thanks)
and \date to set up the title information and \maketitle to produce the actual
document title. For more elaborate title pages they offer the environment titlepage ,
which basically gives you an empty page in which you have to draw and position your
title yourself.2

1If you prefer the front and main matter to use the same page numbering system, check out the
little package arabicfront by Javier Bezos. It works with most document classes and results in the
front and main matter being numbered with arabic numerals in a continuing sequence.

2Please note that in many classes the titlepage environment sets the page number explicitly to
one and then issues a \thispagestyle{empty} to hide it. The downside is that this looks internally
to LaTEX always like a recto page, which in a twoside setting might cause problems. Thus, even though

26

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.27

2.1 The overall structure of a source file

If you design your own title page, it might be worth taking a look at the collection
Producing title pages

of title page examples by Peter Wilson [199], which contains forty examples together
with the (sometimes low-level) code to produce them. Another possibly helpful re-
source is the package titling by the same author, which provides methods for restyling
the material produced by \title , \author , \thanks , \date , and \maketitle .

The support offered by the standard classes (article , report , or book) is not really
sufficient for anything other than preprints, which is why classes for specific journals
or classes targeting book production often offer additional commands for specifying
data relevant for the title or even provide some totally different commands altogether.
This is an area where, due to the lack of decent support in the standard classes, the
document syntax unfortunately varies from class to class, so you have to consult the
appropriate documentation to see what is necessary for a particular class.

A possible alternative is the little package authblk by Patrick Daly that provides
Complex author
information

an extended syntax for the \author command and can typeset affiliation information
either in blocks (below each group of authors) or as footnotes as shown in the next
example. By using an optional argument to \author and/or to \affil , it is even
possible to have author and affiliations ordered in different ways. The package offers
a number of customization possibilities, two of which are shown in the example;
consult the documentation for further details. It should work with most document
classes even if they provide their own author management.

2-1-1

Author Management

Immanuel Kant1, Moses Mendelssohn2,
Friedrich Schiller3, Leonhard Euler4, and

Friedrich der Große∗2

1Königsberg
2Berlin

3Jena
4St. Petersburg

June, 1770

As any dedicated reader can clearly see, the Ideal of practi-
cal reason is a representation of, as far as I know, the things in
themselves; as I have shown elsewhere, the phenomena should

∗Sponsor

\usepackage[auth-sc,affil-it]
{authblk}

\usepackage{kantlipsum}

\title{Author Management}

\author{Immanuel Kant}
\affil{Königsberg}

\author{Moses Mendelssohn}
\affil{Berlin}

\author{Friedrich Schiller}
\affil{Jena}

\author{Leonhard Euler}
\affil{St.\ Petersburg}

\author[2]{Friedrich der
Große\thanks{Sponsor}}

\date{June, 1770}

\maketitle
\kant[1] % only partly shown

the page number is suppressed, you may have to adjust the page number to a different number inside
(and again afterwards) if the page is meant to be a verso page.

27

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.28

2 THE STRUCTURE OF A LATEX DOCUMENT

For the typical lists found in the front matter, such as the table of contents,
Various content lists

the standard classes support the commands \tableofcontents , \listoftables ,
and \listoffigures . Additional lists can be defined as explained in Section 2.3.4
on page 74. Typically such lists produce unnumbered headings. If your front matter
requires further sectional units, such as a foreword or a preface, produce them with
the star form of a suitable heading command, e.g., \chapter* or \section*.

Another important element, in particular for articles, is the abstract environ-
Abstracts

ment. Note that unfortunately the correct placement of this environment may depend
on the chosen document class. In the standard classes and many others it is typeset
where specified in the source, but there are classes in which it is formatted and placed
by the \maketitle command and therefore has to appear before it. Its default for-
matting is usually adequate, and if you are typesetting an article for some particular
journal, you should probably not alter it. However, if you do not like the outcome and
you are free to make changes, take a look at the abstract package by Peter Wilson that
offers a large arsenal of bells and whistles for adjusting most aspects of the abstract
layout.

There are other important frontmatter elements, such as a keyword list in journal
Other nonstandard

elements
articles, or bibliographic and copyright information in books, but none of these is
provided for by the standard classes. However, in document classes for specific
journals or book series from publishers, you usually find additional commands and
environments that cater for these elements. Typically they differ from class to class
so that one has to redo this part of the frontmatter if the document class is changed.

Main matter elements

The top-level structural elements of the body text are various levels of heading
commands that are discussed in detail in Section 2.2 on page 32 and of course lists
and other elements discussed in Chapter 4.

Back matter elements

Probably the most often used back matter elements are a bibliography and an index,
which are supported through the environments theindex and thebibliography
discussed in more detail in Chapters 14 and 15.

If you have several other appendices, use heading commands of the appropriate
level to introduce them. The numbering scheme for such headings is automatically
adjusted by the \appendix or \backmatter declaration that separates the back
matter material from the main text. However, if there is only a single appendix, it may
look odd if that gets numbered. Thus, in that case, you may explicitly want to use the
star form of the heading command.

2.1.4 Splitting the source document into several files
LaTEX source documents can be conveniently split into several files by using \input
or \include commands. The \input command unconditionally includes the file
specified as its argument at the current point. This is useful if you want to split your

28

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.29

2.1 The overall structure of a source file

document into reasonably sized chunks or you want to reuse some parts for one or
the other reason and therefore want to keep them in separate files.1

The \include command, however, is different in that it automatically starts a
~\include used

without extension
new page before and after the included file. For each \include file a separate .aux
file is produced, which is why in contrast to \input such files should be specified
without extension and on the operating system level always have the extension .tex .

The reason for \include is that documents can be reformatted piecewise by
Partial processing

specifying as arguments of an \includeonly declaration only those \include files
LaTEX has to reprocess. For the other files that are loaded with \include commands,
the counter information (page, chapter, table, figure, equation, . . .) is then read
from the corresponding .aux files generated during a previous run. In the following
example, the user wants to reprocess only the files chap1.tex and appen1.tex :

\documentclass{book} % the document class ‘‘book’’
\includeonly{chap1,appen1} % only include chap1 and appen1
\begin{document}
\include{chap1} % input chap1.tex
\include{chap2} % input chap2.tex

... % ... further chapters
\include{appen1} % input appen1.tex
\include{appen2} % input appen2.tex
\end{document}

Be aware that LaTEX issues only a warning message like "No file xxx.tex" and
not an error message when it cannot find a file specified in an \include statement
and then continues processing.

If the information in the .aux files is up-to-date, it is possible to process only
part of a document and have all counters, cross-references, and pages be correct in
the reformatted part. However, if one of the counters (including the page number for
cross-references) changes in the reprocessed part, then the complete document might
have to be rerun to get the index, table of contents, and bibliographic references
consistently correct.

Note that each document part loaded via \include starts on a new page and
finishes by calling \clearpage ; thus, floats contained therein do not move outside
the pages produced by this part. Natural candidates for \include are therefore
whole chapters of a book but not necessarily small fractions of text.

While it is certainly an advantage to split a larger document into smaller parts
~Avoid using

partial
processing when
preparing the final
version of your
document

and to work on more manageable files with a text editor, partial reformatting should
be used only with great care and when still in the developing stage for one or more
chapters. When a final and completely correct copy is needed, the only really safe
procedure is to reprocess the complete document. However, if the document is too
large to process in a single run, make sure that for the final version the pieces are
processed in the correct sequence (if necessary several times) to ensure that the
cross-references and page numbers are correct.

1Not everything can be placed into separate \input files, though. For example, it is not possible to
put only a part of a tabular environment in a file; it has to go in completely.

29

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.30

2 THE STRUCTURE OF A LATEX DOCUMENT

It is very important to note that some packages can not be used reliably with the
�Some packages

are incompatible
with the \include

mechanism

\include mechanism. Likely candidates are those that write their own support files
to store data between runs as they often do not realize that parts of the document
are not processed. A premier example from this book is the acro package. It always
considers the first acronym it sees as being the acronym that is showing the full form;
thus, if you apply \includeonly , it may see different instances as being the first,
thereby altering the line breaking and pagination compared to always processing the
full document.

2.1.5 askinclude — Managing your inclusions
If you intend to work with \include commands, consider using the small package

Interactive inclusion
askinclude created by Pablo Straub and Heiko Oberdiek. It interactively asks you
which files to include. You can then specify the files as a comma-separated list (i.e.,
what you would put into the \includeonly argument) or use * to indicate all files,
- to include no files or ? in which case it asks you for each include file separately.
Alternatively, if the Enter button is pressed in response, then your answer from the
previous run is used again. This way you do not have to modify your master source to
process different parts of your document (a very useful feature during the production
of this book). All this works by storing the answer given in the .aux file so that it
is available again on the next run. Thus, if that file is removed for some reason, you
have make your selection again and cannot simply hit Enter.

The package also offers some pattern matching facilities if enabled with the
option makematch . In this case * matches zero or more arbitrary characters, and a !
at the start of a pattern negates its effect (i.e., excludes matching names). For example,
chap*,!chap1 would include all files starting with chap except chap1 .

2.1.6 tagging — Providing variants in the document source
Sometimes it is useful to keep several versions of a document together in a single
source, especially if most of the text is shared between versions. This functionality is
provided by the tagging package1 created by Brent Longborough (1944–2021).

\tagged{label-list}{text} \usetag{label-list} \droptag{label-list}

The variant text parts are specially marked in the source using the command \tagged ,
and during formatting some of them are selected. The command takes two arguments:
a label (or a comma-separated list of labels) that describes to which variant the
optional text belongs, and the text to be conditionally printed.

With the command \usetag in the document preamble you can select which
label (or labels) is active at the beginning of the document. Alternatively, you can
specify the labels as package options to activate them. Inside the document body you

1A number of other packages provide similar functionality with slightly different interfaces, e.g.,
comment by Victor Eijkhout, xcomment by Timothy Van Zandt, and optional and version by Donald
Arseneau. There is also multiaudience by Boris Veytsman, which uses a quite different approach that
might be more suitable in complex situations.

30

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.31

2.1 The overall structure of a source file

can use further \usetag commands to activate additional labels, and you can use
\droptag to inactivate some of them.

\untagged{label-list}{text} \iftagged{label-list}{yes-test}{no-text}

For convenience there is also \untagged , which typesets its second argument if none
of its labels is currently active. Finally, there is \iftagged with three arguments that
print the second or third argument depending on the given labels in the first.

All five commands are shown in the following example:

2-1-2

Typeset this if tag doc is used.
Typeset this if tag code is not used.
Not to be! Which is it?

Typeset this for either doc or
code. Typeset this always!

Now neither of the variants are
typeset!

\usepackage[doc]{tagging}
\tagged{doc} {Typeset this if tag doc is used.}
\untagged{code}{Typeset this if tag code is not used.}
\iftagged{be} {To be or}{Not to be!} Which is it? \par
\tagged{doc,code}{Typeset this for either doc or code.}
Typeset this \untagged{}{always}\tagged{}{never}! \par
\usetag{code} \droptag{doc}
Now neither of the variants are typeset!
\tagged{doc} {Typeset this if tag doc is used.}
\untagged{code}{Typeset this if tag code is not used.}

This approach works well enough for shorter texts but has the limitation that it
cannot contain \verb commands and must have balanced braces because the text is
provided as an argument. With longer parts to be optionally printed, however, it is
usually best to either store them in an external file and conditionally load this file in a
\tagged command or use the environments shown in the next example.

2-1-3

Environments can contain ver-
batim material e.g., #&.

Note the placement of the pe-
riod and the spacing! Careful:

\usepackage[doc]{tagging}
Environments can contain verbatim material
\begin{taggedblock}{doc} e.g., \verb=#&=\end{taggedblock}
. \par Note the placement of the period and the spacing!
Careful: \begin{untaggedblock}{doc}

Not \end{untaggedblock} shown!

Please note the surprising placement of the period. You should never place
anything after the \end{taggedblock} or \end{untaggedblock} , because it gets
discarded if the environment body is not typeset. This can be seen by the missing
word “shown!” in the result. This may not be immediately apparent, because as long
as the optional material is typeset, everything appears to be fine, but the moment the
material is ignored, the rest of the last line vanishes too. Best practice is therefore to
place the \begin and \end commands on lines by themselves.

The handling of space is also a bit peculiar: inside the environment body spaces
are honored, except for spaces immediately following the \begin command. This
is why we do not see two spaces in the output but only one, even though there is a
space before and after \begin . If we had added a space before the \end command,
it would have resulted in “# .” in the output.

31

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.32

2 THE STRUCTURE OF A LATEX DOCUMENT

\part top-level (level −1 in book and report; level 0 in article)

\chapter level 0 (only defined by book and report)

\section level 1

\subsection level 2 \paragraph level 4

\subsubsection level 3 \subparagraph level 5

Table 2.1: LATEX’s standard sectioning commands

The tagging package selects the variants to process during the LaTEX formatting.
Depending on the application, it might be better to use a different approach involving
a preprocessor that extracts individual variants from the master source. For example,
the docstrip program can be successfully used for this purpose; in contrast to other
preprocessors, it has the advantage that it is usable at every site that has an installed
LaTEX system (see Section 17.2 for details).

2.2 Sectioning commands
In the previous section we discussed the top-level division into front, main, and back
matter. Within these regions further division is done through sectional units that are
typically substructured. These we discuss in this section.

The standard LaTEX document classes (i.e., article , report , and book) contain
commands to define the different hierarchical structural units of a document (e.g.,
chapters, sections, subsections, etc.). Each such command defines a nesting level
inside a hierarchy, and each structural unit belongs to some level. The commands
should be correctly nested. For example, a \subsection command should be issued
only after a previous \section .

Standard LaTEX provides the set of sectioning commands1 shown in Table 2.1. The
\chapter command defines level zero of the hierarchical structure of a document,
\section defines level one, and so on, whereas the optional \part command defines
the level minus one (or zero in classes that do not define \chapter). Not all of
these commands are defined in all document classes. The article class does not have
\chapter , and the letter class does not support sectioning commands at all. It is
also possible for a package to define other sectioning commands, allowing either
additional levels or variants for already supported levels.

The standard names are admittedly somewhat strange; e.g., \paragraph does
not mean as one might expect “start a new text paragraph” but instead “here is the
heading for the next subsubsubsection”. So if you prefer a different name for such
units in your documents, a definition such as

\newcommand\subsubsubsection{\paragraph}

1Using commands instead of environments to indicate the sectional units has the effect that these
heading commands do not define a scope; e.g., parameter changes stay in force across different
sectional units.

32

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.33

2.2 Sectioning commands

would easily fix that (though is that name really better?). Note that it only means
your document uses a different command: the actual work is still carried out by
\paragraph , and the counter associated with the unit is still called paragraph and
printed with \theparagraph and so on.

\section[toc-entry]{title} \section*{title}

All standard sectioning commands — i.e., \part , \chapter (only in the book and
report classes), \section , \subsection , \subsubsection , \paragraph , and
\subparagraph— have a common syntax as exemplified here by the \section
command. Generally, the sectioning commands automatically perform one or more of
the following typesetting actions:

• produce the heading number reflecting the hierarchical level;

• store the heading as an entry for a table of contents (into the .toc file);

• save the contents of the heading to be (perhaps) used in a running header/footer;

• format the heading.

The first form performs all of the above actions. If the optional argument toc-entry is
present, it is used as the text string for the table of content and the running header
and/or footer; otherwise, the title is also used for those places. In particular this
means that you cannot specify different texts for the table of content and for the
running header through this interface. The numbering depends on the current value
of the counter secnumdepth (discussed in the next section).

If you try to advise TEX on how to split the heading over a few lines using the “~”
Problems with
explicit formatting

symbol or the \\ command, then side effects may result when formatting the table
of contents or generating the running head. In this case the simplest solution is to
repeat the heading text without the specific markup in the optional parameter of the
sectioning command.

The starred form (e.g., \section*{...}) suppresses the numbering for a title
and does not produce an entry in the table of contents or the running head. This is
usually used inside the front matter and sometimes in the back matter but can, of
course, be used anywhere within the document. In the standard classes, the commands
\tableofcontents , \listoftables , and \listoffigures , and the theindex
and thebibliography environments internally invoke the command (\section or
\chapter) using their starred form.

The remainder of this section discusses how the appearance of headings can be
adjusted to your needs. First we explain how heading numbers work and how they
can be manipulated. We then take a quick look at the various fixed texts produced
by some headings and how they can be altered. In Sections 2.2.3 to 2.2.7 we describe
several packages for heading design, mainly focusing on the titlesec package, as that
is a good toolbox for most heading design requirements. Finally, we conclude with a
discussion of LaTEX’s low-level interfaces for this area — a section largely meant for
reference only (which is why it is set in a smaller font to save space).

33

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.34

2 THE STRUCTURE OF A LATEX DOCUMENT

2.2.1 Numbering headings
To support numbering, LaTEX uses a counter for each sectional unit and composes the
heading number from these counters.

Perhaps the change desired most often concerning the numbering of titles is to
alter the nesting level up to which a number should be produced. This is controlled by
a counter named secnumdepth , which holds the highest level with numbered head-
ings. For example, some documents have none of their headings numbered. Instead

Numbering no
headings

of always using the starred form of the sectioning commands, it is more convenient
to set the counter secnumdepth to -2 in the document preamble. The advantages
of this method are that an entry in the table of contents can still be produced and
that arguments from the sectioning commands can produce information in running
headings. As discussed, these features are suppressed in the starred form.

To number all headings down to \subparagraph or whatever the deepest sec-
Numbering all

headings
tioning level for the given class is called, setting the counter to a high enough value
(e.g., a declaration such as \setcounter{secnumdepth}{5} would be sufficient for
the standard classes).

Finally, the \addtocounter command provides an easy way of numbering more
Numbering more or

less heading levels
or fewer heading levels without worrying about the level numbers of the corresponding
sectioning commands. For example, if you need one more level with numbers, you
can place \addtocounter{secnumdepth}{1} in the preamble of your document
without having to look up the right value. In some cases this might even be useful
within the document; see also the package tocvsec2 by Peter Wilson that provides
further support for such occasions.

Every sectioning command has an associated counter, which by convention has
the same name as the sectioning command (e.g., the command \subsection has a
corresponding counter subsection). This counter stores the current number of sec-
tional units of the level, but its print representation (that you get with \thecounter)
holds the full formatted number for the given sectioning command. Thus, in the report
class, the commands \chapter , \section , \subsection , and so on, represent the
hierarchical structure of the document, and a counter like subsection keeps track
of the number of \subsections used inside the current \section , e.g., holds the
value 1 at this point in the book, while \thesubsection would generate 2.2.1 .

Normally, when a counter at a given hierarchical level is incremented, then the
next lower-level counter (i.e., that with the next higher-level number) is reset. For
example, the report class file contains the following declarations:

\newcounter{part} % (-1) parts
\newcounter{chapter} % (0) chapters
\newcounter{section}[chapter] % (1) sections
\newcounter{subsection}[section] % (2) subsections
\newcounter{subsubsection}[subsection]% (3) subsubsections
\newcounter{paragraph}[subsubsection] % (4) paragraphs
\newcounter{subparagraph}[paragraph] % (5) subparagraphs

These commands declare the various counters. The level one (section) counter

34

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.35

2.2 Sectioning commands

is reset when the level zero (chapter) counter is stepped. Similarly, the level two
(subsection) counter is reset whenever the level one (section) counter is stepped.
The same mechanism is used down to the \subparagraph command. Note that in
the standard classes the part counter is decoupled from the other counters and has
no influence on the lower-level sectioning commands. As a consequence, \chapters
in the book or report class or \sections in article are numbered consecutively even
if a \part command intervenes. Changing this inside a class is simple — you just
replace the corresponding declaration of the chapter counter with:

\newcounter{chapter}[part]

The behavior of an already existing counter can be changed with the commands
\counterwithin or \counterwithout (see Appendix A.2.1); for example, to alter
the behavior for just a single document, you can use

\counterwithin{chapter}{part}

Every counter in LaTEX, including the sectioning counters, has an associated
command constructed by prefixing the counter name with \the , which generates
a typeset representation of the counter in question. In the case of the sectioning
commands, this representation form is used to produce the full number associated
with the commands, as in the following definitions:

\renewcommand\thechapter{\arabic{chapter}}
\renewcommand\thesection{\thechapter.\arabic{section}}
\renewcommand\thesubsection{\thesection.\arabic{subsection}}

In this example, \thesubsection produces an Arabic number representation of the
subsection counter prefixed by the command \thesection and a dot. This kind
of recursive definition facilitates modifications to the counter representations because
changes do not need to be made in more than one place. If, for example, you want to
number sections using capital letters, you can redefine the command \thesection :

2-2-1

A Different-looking section
A.1 Different-looking subsection
Due to the default definitions not only the numbers
on sections change, but lower-level sectioning com-
mands also show this representation of the section
number.

\renewcommand\thesection{\Alph{section}}
\section{Different-looking section}
\subsection{Different-looking subsection}

Due to the default definitions not only the
numbers on sections change, but lower-level
sectioning commands also show this
representation of the section number.

Thus, by changing the counter representation commands, it is possible to change
the number displayed by a sectioning command. However, the representation of the
number cannot be changed arbitrarily by this method. Suppose you want to produce a

35

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.36

2 THE STRUCTURE OF A LATEX DOCUMENT

subsection heading with the number surrounded by a box. Given the above examples,
one straightforward approach would be to redefine \thesubsection ; e.g.,

\renewcommand\thesubsection{\fbox{\thesection.\arabic{subsection}}}

But this is not a good approach, as one sees when trying to reference such a section.

3.1 A mistake
Referencing a subsection in this format pro-
duces a funny result as we can see looking
at subsection 3.1 . We get a boxed refer-
ence.

\renewcommand\thesubsection
{\fbox{\thesection.\arabic{subsection}}}

\setcounter{section}{3}
\subsection{A mistake}\label{wrong}
Referencing a subsection in this format produces
a funny result as we can see looking at
subsection~\ref{wrong}. We get a boxed reference. 2-2-2

In other words, the counter representation commands are also used by LaTEX’s
cross-referencing mechanism (the \label and \ref commands; see Section 2.4).
Therefore, we can make only small changes to the counter representation commands
so that their use in the \ref command still makes sense. To produce the box around
the heading number without spoiling the output of a \ref , we would have to redefine
LaTEX’s internal command \@seccntformat , which is responsible for typesetting the
counter part of a section title. As this is rather messy, it is better to use the interface
provided by the titlesec package for this, which is what we do in the next example.

1 This is correct
Referencing a section using this definition
generates the correct result for the section
reference 1.

\usepackage{titlesec}
\titlelabel{\fbox{\thetitle}\hspace{0.5em}}
\section{This is correct}\label{sec:OK}
Referencing a section using this definition
generates the correct result for the section
reference~\ref{sec:OK}. 2-2-3

The framed box around the number in the section heading is now typeset only
as part of the heading, and hence the reference labels come out correctly. Within
\titlelabel the command \thetitle refers to the section counter representation;
e.g., it evaluates to \thesection in this case. Also note that we reduced the space
between the box and the text to 0.5em (instead of the default 1em). Another often
asked for use case for \titlelabel is adding a period after the heading number
(but not when referencing it). This is shown in Example 2-2-8 on page 41.

A declaration done with \titlelabel applies to all headings. Therefore, if you
wish to use different definitions for different headings, you must put the appropriate
code into every heading definition instead (which requires the extended interface of
titlesec; see page 42).

2.2.2 Changing fixed heading texts
Some of the standard heading commands produce predefined texts. For example,
\chapter produces the string “Chapter” in front of the user-supplied text. Similarly,

36

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.37

2.2 Sectioning commands

Command Default String Command Default String

\abstractname Abstract \indexname Index

\appendixname Appendix \listfigurename List of Figures

\bibname Bibliography \listtablename List of Tables

\chaptername Chapter \partname Part

\contentsname Contents \refname References

\refname is used by article class; \bibname by report and book .

Table 2.2: Language-dependent strings for headings

some environments generate headings with predefined texts. For example, by default
the abstract environment displays the word “Abstract” above the text of the abstract
supplied by the user. LaTEX defines these strings as command sequences (see Table 2.2)
so that you can easily customize them to obtain your favorite names. This is shown in
the example below, where the default name “Abstract”, as defined in the article class,
is replaced by the word “Summary”.

2-2-4

Summary

This book describes how to modify the
appearance of LATEX documents.

\renewcommand\abstractname{Summary}
\begin{abstract}
This book describes how to modify the
appearance of \LaTeX{} documents.
\end{abstract}

The standard LaTEX class files define a few more strings. See Section 13.1.3, and
especially Table 13.2 on page →II 305, for a full list and a discussion of the babel
system, which provides translations of these strings in more than sixty languages.

2.2.3 Introduction to heading design
Headings can be loosely subdivided into two major groups: display and run-in head-
ings. A display heading is separated by a vertical space from the preceding and the
following text — most headings in this book are of this type.

A run-in heading is characterized by a vertical separation from the preceding
text, but the text following the title continues on the same line as the heading itself,
only separated from the latter by a horizontal space. In many classes the lower-level
headings such as \paragraph are formatted as run-in headings. Note that an empty
line after the heading command is ignored.

2-2-5

Run-in headings. This example shows how
a run-in heading looks like. Paragraph text fol-
lowing the heading continues on the same line
as the heading.

\paragraph{Run-in headings.}

This example shows how a run-in heading looks
like. Paragraph text following the heading
continues on the same line as the heading.

37

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.38

2 THE STRUCTURE OF A LATEX DOCUMENT

In the remainder of this section we are now going to look at how display and
run-in headings can be designed and how one can adjust a given design. We start by
looking at two packages that offer a somewhat special feature: they add quotations to
display headings.

We then discuss all other design aspects that are supported through the high-level
interfaces of the titlesec package. At the very end we also briefly look at the low-level
support offered by LaTEX because this is helpful in understanding the code found in
older document class files.

2.2.4 quotchap, epigraph — Mottos on chapters and sections
An interesting way to enhance \chapter headings is provided by the quotchap
package created by Karsten Tinnefeld with later updates by Jan Klever. It allows the
user to specify quotation(s) that will appear on the top left of the chapter title area.

The quotation(s) for the next chapter are specified in a savequote environment;
the width of the quotation area can be given as an optional argument defaulting to
10cm . Each quotation should finish with a \qauthor command to denote its source,
though it would be possible to provide your own formatting manually.

The default layout produced by the package can be described as follows: the
quotations are typeset in \slshape , placed flush left, followed by vertical material
stored in the command \chapterheadstartvskip . It is followed by a very large
chapter number, typeset flush right in 60% gray, followed by the chapter title text,
also typeset flush right. After a further vertical separation, taken from the com-
mand \chapterheadendvskip , the first paragraph of the chapter is started without
indentation.

The number can be printed in black by specifying the option nogrey to the
package. To print the chapter number in one of the many freely available fonts, you
can choose among a dozen of options, such as charter for Bitstream’s Charter BT or
times for Adobe’s Times. By default, Adobe’s Bookman is chosen. Alternatively, you
can explicitly specify a font family (basically any of those listed in the tables in Chap-
ter 10) as an argument to \qsetcnfont . Or you could redefine the \chapnumfont
command, which is ultimately responsible for selecting the font and font size for the
chapter number.

The \quotefont command defines the font used for the quote, and with the help
of \qauthorfont you can alter the font for the author name (which is why we still
get a sans serif font in the example even though only \scshape was specified). Finally,
the font for the chapter title font can be influenced by redefining the \sectfont
command as shown in the example.

This, together with the possibilities offered by redefining the commands
\chapterheadstartvskip and \chapterheadendvskip , allows you to produce
a number of interesting layouts even though a lot remains hardwired.1 The following
example uses a negative vertical skip to move the quotation on the same level as the
number (in Avantgarde) and set the title and quotation in Helvetica (or more exactly
in TEX Gyre Heros).

1If you require more customization, you have to define your own variation of the command
\@makechapterhead starting from the code found in the package.

38

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.39

2.2 Sectioning commands

2-2-6

Cookies! Give me some cookies!
Cookie Monster 1

A Package Test

Adding this package changes the chapter heading dra-
matically.

\usepackage[avantgarde]{quotchap}
\renewcommand\chapterheadstartvskip

{\vspace*{-5\baselineskip}}
% select TeX Gyre Heros for title and quote:
\usepackage{tgheros}
\renewcommand\sectfont{\sffamily\bfseries}
\renewcommand\quotefont{\sffamily\slshape}
\renewcommand\qauthorfont{\scshape}

\begin{savequote}[10pc]
Cookies! Give me some cookies!
\qauthor{Cookie Monster}
\end{savequote}
\chapter{A Package Test}
Adding this package changes the chapter
heading dramatically.

With the quotchap package the quotation is directly integrated into the design of
the chapter heading. The epigraph package by Peter Wilson has a different approach;
here the quotation is typeset after the heading (using the command \epigraph or
the environment epigraphs), and the heading command itself has no knowledge of
it. On one hand this is more versatile; on the other it clearly means that designs that
properly interact with the heading text are not possible.

The package offers a lot of configuration possibilities, typically by redefining
some command or setting a dimension. A few of them are shown in the next example
(but actually using the default values, so none of the redefinitions has any effect). For
others you have to consult the package documentation.

2-2-7

1 A Package Test

Cookies! Give me
some cookies!

Cookie Monster

When adding a quote, the paragraph following it
comes out indented. If you do not like this, you have
to use \noindent at the beginning of this paragraph.

\usepackage{epigraph}
\setlength\epigraphwidth{.4\textwidth}
\renewcommand\epigraphsize {\small}
\renewcommand\epigraphflush{flushright}
\renewcommand\sourceflush {flushright}

\section{A Package Test}
\epigraph{Cookies! Give me some cookies!}

{Cookie Monster}
When adding a quote, the paragraph following
it comes out indented. If you do not like
this, you have to use \verb=\noindent= at
the beginning of this paragraph.

There are also mechanisms to place an epigraph onto a chapter or part heading
using the command \epigraphhead ; see the package documentation for details.

2.2.5 indentfirst — Indent the first paragraph after a heading
Standard LaTEX document classes and many others, following (American) English
typographic tradition, suppress the indentation of the first paragraph after a display

39

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.40

2 THE STRUCTURE OF A LATEX DOCUMENT

heading. While this can be changed with an option to titlesec (see below), it can also be
done through the little1 package indentfirst by David Carlisle, regardless of whether
or not the titlesec package is loaded.

2.2.6 nonumonpart — No page numbers on parts
Another often asked for adjustment is to drop page numbers on part titles. On chapter
headings this can be easily manually achieved using \thispagestyle{empty} , but
because \parts in many classes occupy a whole page, there is no possibility to place
such a declaration.2 To solve this without any manual work someone suggested a few
lines of code, and Yvon Henel took the effort to put them into the little nonumonpart
package. It works for the standard classes report and book and any other class that is
derived from them. All you have to do is load the package; there are no options or
other customization possibilities.

2.2.7 titlesec — A package approach to heading design
The titlesec package created by Javier Bezos provides a flexible and fairly compre-
hensive reimplementation of the basic heading tools offered by Standard LaTEX and
is therefore a good choice if adjustments are wanted or new document classes are
to be designed. It works together with most document classes in existence; notable
exceptions are memoir and the KOMA-Script classes, both of which have their own
tools for setting up heading structures that need to be used.

Javier’s approach overcomes some of the limitations inherent in the original LaTEX
tools and provides a cleaner and more generic interface. The package supports two
interfaces: a simple one for smaller adjustments, which is realized mainly by options
to the package, and an extended interface to make more elaborate modifications.

The basic interface

The basic interface lets you modify the font characteristics of all headings by spec-
ifying one or more options to set a font family (rm , sf , tt), a font series (md , bf),
or a font shape (up , it , sl , sc). The title size can be influenced by selecting one
of the following options: big (same sizes as for standard LaTEX classes), tiny (all
headings except for chapters in text size), medium , or small , which are layouts
between the two extremes. The alignment is controlled by raggedleft , center , or
raggedright , while the vertical spacing can be reduced by specifying the option
compact as shown later.

To modify the format of the number accompanying a heading, the command
\titlelabel is available. Within it \thetitle refers to the current sectioning

1This package probably holds the record of “the shortest package in the LaTEX world”: besides 40
lines of comments it consists of two lines of code.

2Well, you could try to put it into the heading title, but you will soon find that this not a good
place for a number of reasons (though one can make it work with the help of the optional argument
to the \part command).

40

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.41

2.2 Sectioning commands

number, such as \thesection or \thesubsection . The declaration applies to all
headings, as can be seen in the next example:

2-2-8

1. A section

1.1. A subsection

1.1.1. A subsubsection

Three headings following each other, a
situation you will not see very often . . .

\usepackage[sf,bf,tiny,center]{titlesec}
\titlelabel{\thetitle.\enspace}
\section{A section}
\subsection{A subsection}
\subsubsection{A subsubsection}
Three headings following each other, a situation you
will not see very often \ldots

\titleformat*{cmd}{format}

The basic interface offers one more command, \titleformat* , that takes two
arguments. The first argument (cmd) is a sectioning command that we intend to
modify. The second argument (format) contains the formatting instruction that
should be applied to this particular heading. This declaration works on individual
sectioning commands, and its use overwrites all font or alignment specifications given
as options to the package (i.e., the options rm , it , and raggedleft in the following
example). The last command used in the second argument can be a command with
one argument — it receives the title text if present. In the next example we use this
feature to set the \subsubsection title in small capitals (though this looks rather
ugly with full-sized numbers).

2-2-9

1 A section
1.1 A subsection

1.1.1 a subsubsection
Three headings following each other, a
situation you will not see very often . . .

\usepackage[rm,it,raggedleft,tiny,compact]{titlesec}
\titleformat*{\subsubsection}{\scshape\MakeLowercase}
\section{A section}
\subsection{A subsection}
\subsubsection{A subsubsection}
Three headings following each other, a situation you
will not see very often \ldots

In many LaTEX document classes (with or without loading titlesec), words in long
Hyphenation
and line breaks
in headings

headings are justified and, if necessary, hyphenated as can be seen in the next example.
If this is not wanted, line breaks can be manually adjusted using \\ , but then one has
to repeat the heading title, without the extra formatting instruction, in the optional
argument. Otherwise, the line breaks also show up in the table of contents.

2-2-10

1 A very long heading that shows the
default behavior of LATEX’s section-
ing commands

Nulla malesuada porttitor diam. Donec felis erat, congue
non, volutpat at, tincidunt tristique, libero.

\usepackage{lipsum,titlesec}

\section{A very long heading that
shows the default behavior of
\LaTeX’s sectioning commands}

\lipsum[3][1-2]

41

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.42

2 THE STRUCTURE OF A LATEX DOCUMENT

Alternatively, one can use the option raggedright from the simple interface,
which then applies to all heading, or use the extended interface to make a dedicated
decision for each heading level separately.

1 A very long heading that shows
the default behavior of LATEX’s
sectioning commands

Nulla malesuada porttitor diam. Donec felis erat, congue
non, volutpat at, tincidunt tristique, libero. Vivamus vi-
verra fermentum felis.

\usepackage[raggedright]{titlesec}
\usepackage{lipsum}

\section{A very long heading that
shows the default behavior of
\LaTeX’s sectioning commands}

\lipsum[3][1-3] 2-2-11

Two other options may offer some extra help for such cases: if you specify
Interpretation of

heading command
arguments

newlinetospace , then any \\ or * in the heading text is replaced by a space
before the text is passed on to the table of contents or into the running header so
that it is not necessary to use the optional argument to the heading command, just
because the text has explicit line breaks. The option toctitles changes the use of
the optional argument so that it is only specifying the text for the running header
while the TOC always receives the full text.

The paragraph indentation for the first paragraph following the headings can
Indentation after

heading
be globally specified using the package options indentafter or noindentafter .
With the extended interface this can be done for individual heading levels.

If chapter headings always appear on recto pages (by internally issuing a
Adjusting “empty”

pages
\cleardoublepage command), then this often generates an empty verso page —
except that this page may still contain a page number or a running header. To force
such pages to be totally empty you can specify the option clearempty . See also the
nextpage package discussed in Section 5.6.4 on page 418 for alternative approaches.

For some reason the default for \part* used by titlesec is that these headings
\part* in the TOC

show up in the table of contents. If that is not wanted, use the option notocpart* .
The \part heading is otherwise not influenced by settings for the basic interface. If
you want to modify it, you must use the extended interface described below.

Another option specific to \part commands is newparttoc . This changes the
Fixing a TOC

problem with \part entries generated in the TOC so that they can be manipulated by the titletoc package,
which is normally not the case as they have a nonstandard definition in most LaTEX
classes. See the discussion on page 72 for details.

The extended interface

The extended interface consists of two major commands, \titleformat and
\titlespacing . They allow you to declare the “inner” format (i.e., fonts, label,
alignment, . . .) and the “outer” format (i.e., spacing, indentation, etc.), respectively.
This scheme was adopted because people often wish to alter only one or the other
aspect of the layout.

42

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.43

2.2 Sectioning commands

\titleformat{cmd}[shape]{format}{label}{sep}{before-code}[after-code]

The first argument (cmd) is the heading command name (e.g., \section) whose
format is to be modified. In contrast to LaTEX’s \@startsection (see Section 2.2.8
on page 51) this argument requires the command name — that is, with the backslash
in front. The remaining arguments have the following meaning:

shape The basic shape for the heading. A number of predefined shapes are available:
hang , the default, produces a hanging label (like \section in standard classes);
display puts label and heading text on separate lines (like standard \chapter);
while runin produces a run-in title (like standard \paragraph).
In addition, the following shapes, which have no equivalents in standard LaTEX, are
provided: frame is similar to display but frames the title; leftmargin puts
the title into the left margin, while rightmargin places it into the right margin.
The last two shapes might conflict with \marginpar commands; that is, they
may overlap.
A general-purpose shape is block , which typesets the heading as a single block.
It should be preferred to hang for centered layouts.
Both drop and wrap wrap the first paragraph around the title, with drop using
a fixed width for the title and wrap using the width of the widest title line
(automatically breaking the title within the limit forced by the left-sep argument
of \titlespacing).

format The declarations that are applied to the whole title — label and text. They
may include only vertical material, which is typeset following the space above
the heading. If you need horizontal material, it should be entered in the label or
before-code argument.

label The formatting of the label, that is, the heading number. To refer to the number
itself, use \thesection or whatever is appropriate. For defining \chapter head-
ings the package offers \chaptertitlename , which produces \chaptername
or \appendixname , depending on the position of the heading in the document.

sep Length whose value determines the distance between the label and title text.
Depending on the shape argument, it might be a vertical or horizontal separation.
For example, with the frame shape, it specifies the distance between the frame
and heading text.

before-code Code executed immediately preceding the heading text. Its last command
can take one argument, which will pick up the heading text and thus permits
more complicated manipulations (see Example 2-2-15).
Since version 2.7, it is possible to load the package with the option explicit
in which case the heading text must be given explicitly as #1 inside before-code.
This makes the declaration somewhat clearer, and you can do any manipulations
directly instead of defining a command with one argument to do the job.

after-code Optional code to be executed after formatting the heading text (still within
the scope of the declarations given in format). For hang , block , and display ,

43

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.44

2 THE STRUCTURE OF A LATEX DOCUMENT

it is executed in vertical mode; with runin , it is executed in horizontal mode. For
other shapes, it has no effect.

If the starred form of a heading is used, the label and sep arguments are ignored
because no number is produced.

The next example shows a more old-fashioned run-in heading, for which we
define only the format, not the spacing around the heading. The latter is manipulated
with the \titlespacing command.

§ 1. The Title. The heading is sepa-
rated from the section text by a dot and a
space of one quad.

\usepackage{titlesec}
\titleformat{\section}[runin]{\normalfont\scshape}

{\S\,\oldstylenums{\thesection}.}{.5em}{}[.]
\section{The Title}
The heading is separated from the section text by
a dot and a space of one quad. 2-2-12

By default, LaTEX’s \section headings are not indented (they are usually of shape
hang). If you prefer a normal paragraph indentation with such a heading, you could
add \indent before the \S sign or specify the indentation with the \titlespacing
declaration, described next.

\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}[right-sep]

The starred form of the command suppresses the paragraph indentation for the
paragraph following the title, except with shapes where the heading and paragraph are
combined, such as runin and drop . The cmd argument holds the heading command
name to be manipulated. The remaining arguments are as follows:

left-sep Length specifying the increase of the left margin for headings with the
block , display , hang , or frame shape. With ...margin or drop shapes it
specifies the width of the heading title, with wrap it specifies the maximum width
for the title, and with runin it specifies the indentation before the title (negative
values would make the title hang into the left margin).

before-sep Length specifying the vertical space added above the heading.

after-sep Length specifying the separation between the heading and the following
paragraph. It can be a vertical or horizontal space depending on the shape
deployed.

right-sep Optional length specifying an increase of the right margin, which is sup-
ported for the shapes block , display , hang , and frame .

In the case of a run-in heading, after-sep is the horizontal space after the heading that
by default is usually noticeably wider than a normal word space. This is reasonable
for headings such as the one in Example 2-2-12 but not if the heading and following
text are forming a sentence in which case we want a normal word space. For this you

44

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.45

2.2 Sectioning commands

can use \wordsep in after-sep, which refers to the interword space (including stretch
and shrink) of the current font.

2-2-13

. . . some text above.

The man started to run away
from the truck. He saw that he was
followed by the . . .

\usepackage{titlesec}
\titleformat {\paragraph}[runin]{\normalfont\scshape}{}{0pt}{}
\titlespacing{\paragraph}{\parindent}{\medskipamount}{\wordsep}
\noindent \ldots\ some text above.
\paragraph{The man} started to run away from the truck.
He saw that he was followed by the \ldots

The before-sep and after-sep arguments usually receive rubber length values
to allow some flexibility in the design. To simplify the declaration you can alterna-
tively specify *f (where f is a decimal factor). This is equivalent to f ex with some
stretchability as well as a small shrinkability inside before-sep, and an even smaller
stretchability and no shrinkability inside after-sep.

2-2-14

. . . some text before . . .

SECTION 1
A Title Test

Some text to prove that this paragraph is
not indented and that the title has a mar-
gin of 1pc on either side.

\usepackage{titlesec}
\titleformat{\section}[frame]{\normalfont}

{\footnotesize \enspace SECTION \thesection
\enspace}{6pt}{\large\bfseries\filcenter}

\titlespacing*{\section}{1pc}{*4}{*2.3}[1pc]
\noindent \ldots some text before \ldots
\section{A Title Test}
Some text to prove that this paragraph is not indented
and that the title has a margin of 1pc on either side.

The previous example introduced \filcenter , but there are also \filleft ,
Spacing tools for
headings

\filright , and \fillast— the latter produces an adjusted paragraph but cen-
ters the last line. These commands should be preferred to \raggedleft or
\raggedright inside \titleformat , as the latter would cancel left-sep or right-sep
set up by the \titlespacing command. Alternatively, you can use \filinner or
\filouter , which resolve to \filleft or \filright , depending on the current
page. However, due to TEX’s asynchronous page makeup algorithm, they are supported
only for headings that start a new page — for example, \chapter in most designs.
See Example 2-2-17 on page 49 for a solution to this problem for other headings.
Another useful spacing command we already used in Example 2-2-13 is \wordsep ,
which refers to the current interword space.

By default, the spacing between two consecutive headings is defined to be the Spacing between
consecutive
headings

after-sep of the first one. If this result is not desired, you can change it by specifying
the option largestsep , which puts the spacing to the maximum of after-sep from
the first heading and before-sep of the second.

Normally the vertical space occupied by a display heading is the sum of before-
Space reserved for
chapter headings

sep, the size of the actual heading text, and the after-sep; i.e., it varies depending on
the number of lines in the heading. However, in some designs the text following the
chapter heading should always start at the same point regardless. This can be achieved

45

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.46

2 THE STRUCTURE OF A LATEX DOCUMENT

by specifying the option rigidchapters . If used, after-sep no longer specifies the
space below the heading but always measured from the top of the heading text; i.e.,
the sum of before-sep and after-sep defines the space reserved for the heading. Despite
its name, the option applies to any heading of class top ; see page 50.

After a heading LaTEX tries to ensure that at least two lines from the following
Headings at page

bottom
paragraph appear on the same page as the heading title. If this proves impossible,
the heading is moved to the next page. If you think that two lines are not enough,
try the option nobottomtitles or nobottomtitles* , which move headings to a
new page whenever the remaining space on the page is less than the current value
of \bottomtitlespace . (Its default is .2\textheight ; to change its value, use
\renewcommand rather than \setlength .) The starred version is preferred, as it
computes the remaining space with more accuracy, unless you use headings with
drop , margin , or wrap shapes, which may get badly placed when deploying the
starred option.

In most heading layouts the number appears either on top or to the left
Handling unusual

layouts
of the heading text. If this placement is not appropriate, the label argument of
\titleformat cannot be used. Instead, one has to exploit the fact that the before-
code can pick up the heading text. In the next example, the command \secformat
has one argument that defines the formatting for the heading text and number; we
then call this command in the before-code argument of \titleformat . Note that the
font change for the number is kept local by surrounding it with braces. Without them
the changed font size might influence the title spacing in some circumstances.

A Title
on Two Lines 1

In this example the heading number appears to
the right of the heading text.

\usepackage{titlesec}
\newcommand\secformat[1]{%
\parbox[b]{.5\textwidth}{\filleft\bfseries #1}%
\quad\rule[-12pt]{2pt}{70pt}\quad
{\fontsize{60}{60}\selectfont\thesection}}

\titleformat{\section}[block]
{\filleft\normalfont\sffamily}{}{0pt}{\secformat}

\titlespacing*{\section}{0pt}{*3}{*2}[1pc]
\section{A Title\\ on Two Lines}
In this example the heading number appears to
the right of the heading text. 2-2-15

The same technique can be applied to change the heading text in other ways. For
example, if we want a period after the heading text, we could define

\newcommand\secformat[1]{#1.}

and then call \secformat in the last mandatory argument of the \titleformat
declaration as shown in the previous example. Alternatively, we could have used the
option explicit in which case such manipulations could have been done inline with
#1 referencing the heading text inside that argument.

The wrap shape has the capability to measure the lines in the title text and returnMeasuring the width
of the title the width of the widest line in \titlewidth . This capability can be extended to three

46

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.47

2.2 Sectioning commands

other shapes (block , display , and hang) by loading the package with the option
calcwidth and then using \titlewidth within the arguments of \titleformat ,
as needed.

Measuring the title means trial typesetting it, and thus it is typeset twice. In
some cases that can have undesirable side effects. For special requirements, the
package therefore offers the command \iftitlemeasuring . It takes two arguments:
the first is executed during the trial and the second when the heading is finally
typeset.

For rules and leaders the package offers the \titlerule command. Used without
Rules and leaders

any arguments it produces a rule of height .4pt spanning the full width of the column
(but taking into account changes to the margins as specified with the \titlespacing
declaration). An optional argument lets you specify a height for the produced rule.
The starred form of \titlerule is used to produce leaders (i.e., repeated objects)
instead of rules. It takes an optional width argument and a mandatory text argument.
The text is repeatedly typeset in boxes with its natural width, unless a different width
is specified in the optional argument. In that case, only the first and last boxes retain
their natural widths to allow for proper alignment on either side.

The command \titleline lets you add horizontal material to arguments of
\titleformat that expect vertical material. It takes an optional argument specifying
the alignment and a mandatory argument containing the material to typeset. It
produces a box of fixed width taking into account the marginal changes due to the
\titlespacing declaration. Thus, either the material needs to contain some rubber
space, or you must specify an alignment through the optional argument (allowed
values are l , r , and c).

The \titleline* variant first typesets the material from its mandatory argu-
ment in a box of width \titlewidth (so you may have to add rubber space to this
argument) and then uses this box as input to \titleline (i.e., aligns it according to
the optional argument). Remember that you may have to use the option calcwidth
to ensure that \titlewidth contains a sensible value.

In the next somewhat artificial example, which is worth studying though better
not used in real life, all of these tools are applied together:

2-2-16

Section 1
Rules and Leaders
LATEXLATEXLATEXLATEXLATEXLATEXLATEX

Note that the last \titleline* is surrounded
by braces. Without them its optional argument
would prematurely end the outer optional ar-
gument of \titleformat.

\usepackage[noindentafter,calcwidth]{titlesec}
\titleformat{\section}[display]
{\filright\normalfont\bfseries\sffamily}
{\titleline[r]{Section \Huge\thesection}}{1ex}
{\titleline*[l]{\titlerule[1pt]}\vspace{1pt}%
\titleline*[l]{\titlerule[2pt]}\vspace{2pt}}

[{\titleline*[l]{\titlerule*{\tiny\LaTeX}}}]
\titlespacing{\section}{1pc}{*3}{*2}

\section{Rules and Leaders}
Note that the last \verb=\titleline*= is
surrounded by braces. Without them its
optional argument would prematurely end the
outer optional argument of \verb=\titleformat=.

47

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.48

2 THE STRUCTURE OF A LATEX DOCUMENT

Standard LaTEX considers the space before a heading to be a good place to break the
Breaking before a

heading
page unless the heading immediately follows another heading. The penalty to break
at this point is stored in the internal counter \@secpenalty , and in many classes it
holds the value -300 (negative values are bonus places for breaking). Because only one
penalty value is available for all heading levels, there is seldom any point in modifying
its setting. With titlesec, however, you can exert finer control: whenever a command
\namebreak is defined (where \name is the name of a sectioning command, such as
\sectionbreak), the latter will be used instead of adding the default penalty. For
example,

\newcommand\sectionbreak{\clearpage}

would result in sections always appearing on top of a page with all pending floats
being typeset first. This interface also exists for headings of class top . For example,
you can force parts to always start on a recto page, while chapters could be set to
just start a new page by using \cleardoublepage and \clearpage , respectively.
However, you have to first change their class to page or top , because this is not
automatically done. Heading classes are explained on page 50.

In some layouts the space above a heading must be preserved, even if the headingAlways keeping the
space above a

heading
appears on top of a page (by default, such spaces vanish at page breaks). This can be
accomplished using a definition like the following:

\newcommand\sectionbreak{\addpenalty{-300}\vspace*{0pt}}

The \addpenalty command indicates a (good) breakpoint, which is followed by a
zero space that cannot vanish. Thus, the “before” space from the heading will appear
as well at the top of the page if a break is taken at the penalty.

Headings that start a new page often require a special page style; e.g., \chapter
Special page styles

commands in the standard styles usually use plain even if for other pages a different
style has been set up. To accommodate adjustments titlesec offers the command
\assignpagestyle . For example,

\assignpagestyle{\chapter}{empty}

results in pages starting a new chapter to have neither a page number nor a running
header. This command works with any heading of class top or page ; see page 50.
There are, however, restrictions when the sectioning command was not defined with
titlesec ; e.g., when using the standard document classes, it works for \chapter but
not for \part . For the latter you first have to redeclare a format with \titleformat .

Conditional heading layouts

So far we have seen how to define fixed layouts for a heading command using
\titleformat and \titlespacing . The titlesec package also allows you to con-
ditionally change the layout on verso and recto pages and to use special layouts
for numberless headings (i.e., those produced by the starred form of the heading
command).

This is implemented through a keyword/value syntax in the first argument of
\titleformat and \titlespacing . The available keys are name , page (values

48

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.49

2.2 Sectioning commands

odd or even), and numberless (values true or false). In fact, the syntax we have
seen so far, \titleformat{\section}{..}... , is simply an abbreviation for the
general form \titleformat{name=\section}{..}... .

In contrast to the spacing commands \filinner and \filouter , which can
be used only with headings that start a new page, the page keyword enables you to
define layouts that depend on the current page without any restriction. To specify the
layout for a verso (left-hand) page, use the value even ; for a recto (right-hand) page,
use the value odd . Such settings only affect a document typeset in twoside mode.
Otherwise, all pages are considered to be recto in LaTEX. In the following example we
use a block shape and shift the heading to one side, depending on the current page.
In a similar fashion you could implement headings that are placed in the margin by
using the shapes leftmargin and rightmargin .

The example also shows that placing declarations into the format argument
affects both number and title, while placing them into before-code affects only the
title: both are in bold, but only the text is in bold italics.

2-2-17

1. A Head

Lorem ipsum dolor
sit amet, consectetuer
adipiscing elit. Ut
purus elit, vestibulum
ut, placerat ac, adi-
piscing vitae, felis.
Curabitur dictum

gravida mauris. Nam
arcu libero, nonummy
eget, consectetuer id,
vulputate a, magna.

2. Another

Lorem ipsum dolor
sit amet, consectetuer

\usepackage{lipsum,titlesec}
\titleformat{name=\section,page=odd}[block]

{\normalfont\bfseries}{\thesection.}{6pt}
{\itshape\filleft}

\titleformat{name=\section,page=even}[block]
{\normalfont\bfseries}{\thesection.}{6pt}
{\itshape\filright}

\section{A Head} \lipsum[1][1-4]
\section{Another} \lipsum[1][1-4]

Similarly, the numberless key is used to specify that a certain \titleformat or
\titlespacing declaration should apply only to headings without numbers (value
true) or to those with numbers (value false). By default, a heading declaration
applies to both cases, so in the example the second declaration actually overwrites
part of the first declaration. To illustrate what is possible the example uses quite
different designs for the two cases — do not mistake this for an attempt to show good
taste. It is important to realize that neither the label nor the sep argument is ignored
when numberless is set to true as seen in the example — in normal circumstances
you would probably use {}{0pt} as values.

2-2-18

1. A Head

Some text to fill the page. Some
text to fill the page.

— Another

Some text to fill this line.

\usepackage{titlesec}
\titleformat{name=\section}[block]
{\normalfont\bfseries}{\thesection.}{6pt}{\filright}

\titleformat{name=\section,numberless=true}[block]
{\normalfont}{---}{12pt}{\itshape\filcenter}

\section{A Head}
Some text to fill the page. Some text to fill the page.
\section*{Another}
Some text to fill this line.

49

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.50

2 THE STRUCTURE OF A LATEX DOCUMENT

Changing the heading hierarchy

The commands described so far are intended to adjust the formatting and spacing
of existing heading commands. With the \titleclass declaration it is possible to
define new headings.

\titleclass{cmd}{class}
\titleclass{cmd}{class}[parent-level-cmd]
\titleclass{cmd}[start-level]{class} (with loadonly option)

There are three classes of headings: the page class contains headings that fill a full
page (like \part in LaTEX’s report and book document classes); the top class contains
headings that start a new page and thus appear at the top of a page; and all other
headings are considered to be part of the straight class.

Used without any optional argument, the \titleclass declaration simply
changes the heading class of an existing heading cmd. For example,

\titleclass\section{top}

would result in sections always starting a new page. Note, however, that the existing
cmd should have been defined using titlesec or at least should have been given a
format with \titleformat in order to work. Otherwise you get an error message.

If this declaration is used with the optional parent-level-cmd argument, you
introduce a new heading level below parent-level-cmd. Any existing heading command
at this level is moved one level down in the hierarchy. For example,

\titleclass\subchapter{straight}[\chapter]

introduces the heading \subchapter between \chapter and \section . The decla-
ration does not define any layout for this heading (which needs to be defined by an
additional \titleformat and \titlespacing command), nor does it initialize the
necessary counter. Most likely you also want to update the counter representation for
\section :

\titleformat{\subchapter}{..}... \titlespacing{\subchapter}{..}...
\newcounter{subchapter}
\renewcommand\thesubchapter{\thechapter.\arabic{subchapter}}
\renewcommand\thesection{\thesubchapter.\arabic{section}}

The third variant of \titleclass is needed only when you want to build a
heading structure from scratch — for example, when you are designing a completely
new document class that is not based on one of the standard classes. In that case
load the package with the option loadonly so that the package will make no attempt
to interpret existing heading commands so as to extract their current layout. You can
then start building heading commands, as in the following example:

\titleclass\Ahead[0]{top}
\titleclass\Bhead{straight}[\Ahead]
\titleclass\Chead{straight}[\Bhead]

50

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.51

2.2 Sectioning commands

\newcounter{Ahead} \newcounter{Bhead} \newcounter{Chead}
\renewcommand\theBhead{\theAhead-\arabic{Bhead}}
\renewcommand\theChead{\theBhead-\arabic{Chead}}
\titleformat{name=\Ahead}{..}... \titlespacing{name=\Ahead}{..}...
\titleformat{name=\Bhead}{..}... ...

The start-level is usually 0 or -1 ; see the introduction in Section 2.2 for its meaning.
There should be precisely one \titleclass declaration that uses this particular
optional argument.

If you intend to build your own document classes in this way, take a look at the
documentation accompanying the titlesec package. It contains additional examples
and offers further tips and tricks.

2.2.8 Formatting headings — LATEX’s internal low-level methods
While it is recommended to use the higher-level interfaces provided by titlesec or those defined by
KOMA-Script or the memoir class, it is useful to have a basic understanding of the interfaces defined
in the LaTEX kernel, given that these interfaces are still in use in many document classes.1

LaTEX provides a generic command called \@startsection that can be used to define a wide
variety of heading layouts. If the desired layout is not achievable that way, then \secdef can be
used to produce sectioning formats with arbitrary layout. It is used by the standard classes to define
\chapter and \part headings.

The generic command \@startsection allows both types of headings to be defined. Its syntax
and argument description are as follows:

\@startsection{name}{level}{indent}{beforeskip}{afterskip}{style}

name The name used to refer to the heading counter2 for numbered headings and to define the
command that generates a running header or footer (see page 390). For example, name would
be the counter name, \thename would be the command to display the current heading number,
and \namemark would be the command for running headers. In most circumstances the name
will be identical to the name of the sectioning command being defined, without the preceding
backslash — but this is no requirement.

level A number denoting the depth level of the sectioning command. This level is used to decide
whether the sectioning command gets a number (if the level is less than or equal to secnumdepth ;
see Section 2.2.1 on page 34) or shows up in the table of contents (if the value is less or equal to
tocdepth ; see Section 2.3.4 on page 71). It should therefore reflect the position in the command
hierarchy of sectioning commands, where the outermost sectioning command has level zero.3

indent The indentation of the heading with respect to the left margin. By making the value negative,
the heading starts in the outer margin. Making it positive indents all lines of the heading by this
amount.

beforeskip The absolute value of this parameter defines the space to be left in front of the heading.
If the parameter is negative, then the indentation of the paragraph following the heading
is suppressed. This dimension is a rubber length; that is, it can take a stretch and shrink
component. Note that LaTEX starts a new paragraph before the heading so that additionally the
value of \parskip is added to the space in front.

1The whole section is set in a smaller font to indicate that is more a reference — helpful mainly
when studying existing code.

2This counter must exist; it is not defined automatically.
3In the book and report classes, the \part command actually has level −1 (see Table 2.1).

51

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.52

2 THE STRUCTURE OF A LATEX DOCUMENT

second line of text following the heading . . .
This is the start of the after-heading text, which continues on . . .

3.5 Heading Title

. . . end of last line of preceding text.

?

∥beforeskip∥ + \parskip (of text font) + \baselineskip (of heading font)

-indent

?

afterskip + \parskip (of heading font) + \baselineskip (of text font)

2-2-19 second line of text following the heading . . .
3.5 Heading Title Start of text . . .

. . . end of last line of preceding text.

?

∥beforeskip∥ + \parskip (of text font) + \baselineskip (of heading font)

-
indent

-
afterskip (< 0)

2-2-20

Figure 2.1: The layout for display and run-in headings (produced by layouts)

afterskip The space to be left following a heading. It is the vertical space after a display heading or
the horizontal space after a run-in heading. The sign of afterskip controls whether a display
heading (afterskip > 0) or a run-in heading (afterskip ≤ 0) is produced. In the first case
a new paragraph is started so that the value of \parskip is added to the space after the
heading. An unpleasant side effect of this parameter coupling is that it is impossible to define a
display heading with an effective “after space” of less than \parskip using the \@startsection
command. When you try to compensate for a positive \parskip value by using a negative
afterskip, you change the display heading into a run-in heading.

style The style of the heading text. This argument can take any instruction that influences the
typesetting of text, such as \raggedright , \Large , or \bfseries (see the examples below).

Figure 2.1 shows these parameters graphically for the case of display and run-in headings, respectively.
As an example we redefine \subsection to be set in normal-sized italic with the separation from the
preceding text being exactly one baseline. The separation from the text following is one-half baseline,
and this text is not indented.

. . . some text above.

4.1 Subsection Heading

The first paragraph following the
redefined subsection heading . . .

And a second one (indented).

\makeatletter
\renewcommand\subsection{\@startsection

{subsection}{2}{0mm}% % name, level, indent
{-\baselineskip}{0.5\baselineskip}% % beforeskip, afterskip
{\normalfont\normalsize\itshape}}% % style

\makeatother
\ldots\ some text above.
\subsection{Subsection Heading}
The first paragraph following the redefined subsection
heading \ldots \par And a second one (indented). 2-2-21

The first argument to \@startsection is the string subsection to denote that we use the
corresponding counter for heading numbers. In the sectional hierarchy we are at level two. The third
argument is 0mm because the heading should start at the left margin.

The absolute value of the fourth argument (beforeskip) specifies that a distance equal to one
baseline must be left in front of the heading and, because the parameter is negative, that the
indentation of the paragraph following the heading should be suppressed.

The absolute value of the fifth parameter (afterskip) specifies that a distance equal to one-half
baseline must be left following the heading and, because the parameter is positive, that a display
heading has to be produced. Finally, according to the sixth parameter, the heading should be typeset
in an italic font using a size equal to the normal document type size.

In fact, the redefinition is a bit too simplistic because, as mentioned earlier, on top of the
absolute value of beforeskip and afterskip, LaTEX always adds the current value of \parskip . Thus, in
layouts where this parameter is nonzero, we need to subtract it to achieve the desired separation.

Which commands can be used for setting the styles of the heading texts in the style argumentOther simple
heading style

changes

of the \@startsection command? Apart from the font-changing directives (see Chapter 9), few
instructions can be used here. A \centering command produces a centered display heading, and a

52

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.53

2.2 Sectioning commands

\raggedright declaration makes the text left justified. The use of \raggedleft is possible, but may
give somewhat strange results. You can also use \hrule , \medskip , \newpage , or similar commands
that introduce local changes.

In the standard LaTEX classes the highest-level sectioning commands \part and \chapter
Complex heading
layout definitions

produce their titles without using \@startsection because their layout cannot be produced with
that command. Similarly, you may also want to construct sectioning commands without limitations.
In this case you must follow a few conventions to allow LaTEX to take all the necessary typesetting
actions when executing them.

The command \secdef can help you when defining such commands by providing an easy
interface to the three possible forms of section headings. With the definition

\newcommand\myhead{\secdef\myheadA\myheadB}

the following actions take place:

\myhead{title} invokes \myheadA[title]{title}
\myhead[toc-entry]{title} invokes \myheadA[toc-entry]{title}
\myhead*{title} invokes \myheadB{title}

The commands you have to provide are a (re)definition1 of \myhead and a definition of the commands
named \myheadA or \myheadB , respectively. Note that \myheadA has an optional argument containing
the text to be entered in the table of contents .toc file, while the second (mandatory) argument, as
well as the single argument to \myheadB , specifies the heading text to be typeset. Thus, the definitions
must have the following structure:

\newcommand\myhead{ ... \secdef \myheadA \myheadB }
\newcommand\myheadA[2][default]{ ... }
\newcommand\myheadB[1]{ ... }

An explicit example is a simplified variant of \appendix . It redefines the \section command
to produce headings for appendices (by invoking either the command \Appendix or \sAppendix),
changing the presentation of the section counter and resetting it to zero. The modified \section
command also starts a new page (with all deferred floats placed), which is typeset with a special
page style (see Chapter 5) and with top floats suppressed. The indentation of the first paragraph in a
section is also suppressed by using the low-level kernel command \@afterheading and setting the
Boolean switch @afterindent to false . For details on the use of these commands, see the \chapter
implementation in the standard classes (file classes.dtx).

\makeatletter
\renewcommand\appendix{%

\renewcommand\section{% % Redefinition of \section...
\clearpage\thispagestyle{plain}% % new page, folio bottom
\suppressfloats[t]\@afterindentfalse % no top floats, no indent
\secdef\Appendix\sAppendix}% % call \Appendix or \sAppendix

\setcounter{section}{0}\renewcommand\thesection{\Alph{section}}}

In the definition below you can see how \Appendix advances the section counter using the
\refstepcounter command (the latter also resets all subsidiary counters and defines the “current
reference string”; see Section 2.4). It writes a line into the .toc file with the \addcontentsline
command, formats the heading title, and saves the title for running heads and/or feet by call-
ing \sectionmark . The \@afterheading command in the later part of the definition handles the
indentation of the paragraph following the heading.

\newcommand\Appendix[2][?]{% % Complex form:
\refstepcounter{section}% % step counter/ set label
\addcontentsline{toc}{appendix}% % generate toc entry

{\protect\numberline{\appendixname~\thesection}#1}%
{\raggedleft\large\bfseries \appendixname\ % typeset the title
\thesection\par \centering#2\par}% % and number

1Redefinition in case you change an existing heading command such as \part in the preamble of
your document.

53

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.54

2 THE STRUCTURE OF A LATEX DOCUMENT

\sectionmark{#1}% % add to running header
\@afterheading % prepare indentation handling
\addvspace{\baselineskip}} % space after heading

The \sAppendix command (starred form) performs only the formatting.

\newcommand\sAppendix[1]{% % Simplified (starred) form
{\raggedleft\large\bfseries\appendixname\par \centering#1\par}%
\@afterheading\addvspace{\baselineskip}}

\makeatother

Applying these definitions produces the following output:

Appendix A
The list of all commands

Then follows the text of the first section in the
appendix. Some more text in the appendix.

% Example needs commands introduced above!
\appendix
\section{The list of all commands}

Then follows the text of the first section in
the appendix. Some more text in the appendix. 2-2-22

Do not forget that the example shown above represents only a simplified version of a redefined
\section command. Among other things, we did not take into account the secnumdepth counter,
which contains the numbering threshold. You might also have to foresee code dealing with various
types of document formats, such as one- and two-column output or one- and two-sided printing.
Also missing is an appropriate definition for \l@appendix , which is called in the table of contents
because of the \addcontentsline . This is discussed at the beginning of Section 2.3.4 on page 70.

2.3 Table of contents structures
A table of contents (TOC) is a special list in which the titles of the section units are
listed, usually together with the page numbers indicating the start of the sections.
This list can be rather complicated if units from several nesting levels are included,
and it should be formatted carefully because it plays an important rôle as a navigation
aid for the reader.

Similar lists exist containing reference information about the floating elements in
a document — namely, the list of tables and the list of figures. The structure of these
lists is usually simpler, as their contents, the captions of the floating elements, are
normally all on the same level (but see subfloats in Section 7.5).

Standard LaTEX can automatically create these three contents lists. By default, LaTEX
enters text from one of the arguments of each sectioning command into the .toc file.
While information from all sectioning levels is added to the .toc file, not all of them
are used when producing the table of contents. The level down to which the heading
information is displayed is controlled by the counter tocdepth . It can be changed,
for example, with the following declaration:

\setcounter{tocdepth}{1}

In this case section heading information down to the first level (e.g., in the report
class part, chapter, and section) will be shown.

This counter globally defines which entries are typeset in the table of contents.Granular control is
possible Sometimes, however, more granular control is necessary; e.g., you may want to show

54

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.55

2.3 Table of contents structures

less or more heading levels in an appendix, etc. For such use cases, you may want to
try the package tocvsec2 by Peter Wilson. It provides commands to adjust the level
within the document.

Similarly, LaTEX maintains two more files, one for the list of figures (.lof) and
one for the list of tables (.lot), which contain the text specified as the argument of
the \caption command for figures and tables.

When using the \tableofcontents , \listoffigures , or \listoftables ,
the information written into these files during a previous LaTEX run is read and typeset
(normally at the beginning of a document), and at the end of the run newly collected
information is written back to the files.

To generate these cross-reference tables, it is therefore always necessary to run
~A TOC needs two,

sometimes even
three, LATEX runs

LaTEX at least twice — once to collect the relevant information, and a second time to
read back the information and typeset it in the correct place in the document. Because
of the additional material to be typeset in the second run, the cross-referencing
information may change, making a third LaTEX run necessary. This is one of the
reasons for the tradition of using different page-numbering systems for the front
matter and the main text: in the days of hand typesetting any additional iteration
made the final product much more expensive.

Normally the contents files are generated automatically by LaTEX by internally
using the commands \addcontentsline , \addtocontents , and \numberline ;
see Section 2.3.4 on page 70. With some care this interface can also be used to enter
information directly into these files to complement the actions of standard LaTEX.

For instance, in the case of the starred form of the section commands, no infor- Adding arbitrary
starred headings to
the TOC

mation is written to the .toc file. If you do not want a heading number (starred form)
but you do want an entry in the .toc file, you can use \addcontentsline with or
without \numberline as shown in the following example.

2-3-1

Contents

Foreword 1

1 Thoughts 2
1.1 Contact info 2

References 2

Foreword
A starred heading with the
TOC entry manually added.
Compare this to the form
used for the bibliography.

1

1 Thoughts
We find all in [1].
1.1 Contact info
E-mail Ben at [2].

References
[1] Ben User, Some day

will never come, 2010

[2] BUser@earth.info

2

\tableofcontents
\section*{Foreword}
\addcontentsline{toc}{section}

{\protect\numberline{}Foreword}
A starred heading with the TOC entry
manually added. Compare this to the
form used for the bibliography.

\section{Thoughts}
We find all in \cite{k1}.
\subsection{Contact info}
E-mail Ben at \cite{k2}.
\begin{thebibliography}{9}
\addcontentsline{toc}{section}

{\refname}
\bibitem{k1} Ben User, Some day will

never come, 2010
\bibitem{k2} BUser@earth.info
\end{thebibliography}

55

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.56

2 THE STRUCTURE OF A LATEX DOCUMENT

Using \numberline as in the “Foreword” produces an indented “section” entry
in the table of contents, leaving the space where the section number would go free.
The \protect in front is required in this case; see page 70 for more details. Omitting
the \numberline command (as was done for the bibliography entry) would typeset
the heading flush left instead. Adding a similar line after the start of the theindex
means that the “Index” will be listed in the table of contents. Unfortunately, this
approach cannot be used to get the list of figures or tables into the table of contents
because \listoffigures or \listoftables might generate a listing of several
pages, and consequently the page number picked up by \addcontentsline might
be wrong. And putting it before the command does not help either, because often
these list commands start a new page. One potential solution is to copy the command
definition from the class file and put \addcontentsline directly into it.

In the case of standard classes or close derivatives, you can use the tocbibind
Bibliography or

index in tables of
contents

package created by Peter Wilson to get the “List of. . . ”, “Index”, or “Bibliography”
section listed in the table of contents without further additions to the source. The
package offers a number of options such as notbib , notindex , nottoc , notlof ,
and notlot (do not add the corresponding entry to the table of contents).

There also exist the options numbib and numindex (number the correspondingNumbered headings
for bibliography or

index
heading), and with section you can ask for section instead of chapter headings in
document classes like report or book .

By default the “Contents” section is listed within the table of contents, which is�An oddity
better turned off seldom desirable — use the option nottoc to disable this behavior.

∗∗∗∗∗

There are a number of packages that extend or alter standard LaTEX’s table of
contents mechanism. The hyperref package changes the internals to support hyper-
link anchors; in particular, this changes the internal contents file structures. It is
briefly touched upon on page 72; an extensive coverage of that package is found in
Section 2.4.6 on page 96.

The tocdata package provides an interface for adding special data such as author
names to the contents files. It is discussed in the next section. We will then turn
to customizing the design of such lists with the help of the titletoc package. There
are alternative packages for this available, e.g., tocloft by Peter Wilson or tocstyle
by Markus Kohm, but titletoc provides a good general-purpose interface suitable for
most needs, so we concentrate on that.

The final section concerned with contents file data discusses the low-level inter-
face already provided by LaTEX and is included mainly for reference (in a smaller font)
because one often find its commands in older class files.

2.3.1 tocdata — Providing extra data for the TOC
In anthologies or other multi-author works it is quite common to list the different
authors in the table of contents next to their entries. The package tocdata by Brian
Dunn provides a framework for this that enables you to place such data into the

56

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.57

2.3 Table of contents structures

typeset TOC entry just before the page number. The package works well with most
document classes and supports TOC packages such as titletoc or tocloft.

In the next example we have added author names to the two subsections; the
section itself shows no extra data. The extra data is formatted with the help of the
command \tocdataformat , which by default sets the material in a small italic font.
Here we added color and an em-dash.

2-3-2

Contents

1 On Cookies 6
1.1 Preparing cookies — Ben User 6
1.2 Eating cookies . . . — Cookie Monster 6

1 On Cookies
1.1 Preparing cookies
Text of his recipes . . .
1.2 Eating cookies
How to do it . . .

\usepackage{color,tocdata}
\renewcommand\tocdataformat[1]{\textnormal{%

\textcolor{blue}{--- \small\itshape#1}}}
\tableofcontents

\section{On Cookies}
\tocdata{toc}{Ben User}
\subsection{Preparing cookies}
Text of his recipes \ldots

\tocdata{toc}{Cookie Monster}
\subsection{Eating cookies}
How to do it \ldots

In a similar fashion you can add to the list of figures or tables to indicate the
artist who made a certain picture or the source of the table data, etc. All you need to
do is to specify in the first argument to \tocdata the correct target destination file
extension, e.g., lof for the list of figures or lot for the list of tables.

The \tocdata command used in the previous example enables you to add data
to any “TOC-like” file, but often you also want to provide this information within your
document as well.

For such use cases the package offers a set of special commands that combine
\tocdata with a heading or a caption command. We show the syntax for the \part
heading, but corresponding commands exist for \chapter (if supported by the
document class), \section , and \subsection headings.

\partauthor[list-entry]{title}[prefix]{first}{last}[suffix]
\partauthor* {title}[prefix]{first}{last}[suffix]

The first form executes the following set of commands for you

\todata{toc}{first last}
\part[list-entry]{title\nopagebreak

\tocdatapartprint{prefix}{first}{last}{suffix}}
\index{last, first}

while the star form on the second line omits the \tocdata , since the heading is not
written to the table of contents. The \tocdatapartprint command formats the
name and adds it as part of the heading title. By redefining this command, various

57

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.58

2 THE STRUCTURE OF A LATEX DOCUMENT

layouts can be realized. Note that prefix and suffix are used only there — the \tocdata
and \index commands receive only first and last .

While first is a mandatory argument, it can be left empty if the author has no first
name. In this case, the comma in the \index is automatically dropped too as shown
in the example.

Contents

1 On Cookies 6
1.1 Preparing cookies Ben User 6
1.2 Eating cookies Cookie Monster 6

1 On Cookies
1.1 Preparing cookies

— Sir Ben User
Text of his recipes . . .
1.2 Eating cookies

— Cookie Monster!!
How to do it . . .

Index
Cookie Monster, 6
User, Ben, 6

\usepackage{makeidx}
\makeindex % enable indexing

% save some space in the index:
\renewcommand\indexspace{\par\vspace{2pt}}

\usepackage{tocdata}

\tableofcontents \smallskip

\section{On Cookies}
\subsectionauthor{Preparing cookies}

[Sir]{Ben}{User}
Text of his recipes \ldots

\subsectionauthor{Eating cookies}
{}{Cookie Monster}[!!]

How to do it \ldots

\printindex 2-3-3

For captions of figures (or tables) two commands exist with a syntax similar to
\partauthor , but with one further optional extra-text argument. They are intended
to be used instead of the normal \caption command:

\captionartist[list-entry]{title}[extra-text][prefix]{first}{last}[suffix]

The arguments list-entry and title correspond to the usual \caption arguments, and
first and last are used to add the artist name to the list of figures and produce an index
entry (if an index is made). Again, prefix and suffix are used only when displaying the
artist name as part of the float. Finally the extra-text allows you to place additional
information next to the caption title that does not show up in the list of figures.

Note that if you want to use the optional prefix but not the extra-text, you need to
supply an empty optional argument for the latter to identify for LaTEX which is which.

To influence justification of the name there are a number of declarations available
of the form \tdartist... where ... is either justify , left , center , or right ,
and for the additional text you have \tdartisttext... with the same possibilities.

To change the formatting in more drastic ways, you can alternatively redefine
the commands \tocdataartistprint (receiving prefix, first, last, and suffix as
arguments to format the name) and \tocdataartisttextprint (responsible for

58

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.59

2.3 Table of contents structures

formatting extra-text). See the package documentation for details.

2-3-4

Sebastian Rahtz (1955–2016)

This has been already used
in the first edition of TLC

Figure 1: A cat

\usepackage{graphicx,tocdata} \tdartistright
\begin{figure}
\centering
\includegraphics{cat}
\captionartist{A cat}[This has been already used\\

in the first edition of TLC]
{Sebastian}{Rahtz}[(1955--2016)]

\end{figure}

Instead of the command \captionartist you can use \captionauthor with
exactly the same syntax (and corresponding configuration commands). The difference
between the two is the default formatting: \captionartist typesets the name
centered, whereas \captionauthor places it flush right. The latter may look nicer
for wide pictures.

If you use the caption package, which supports the \caption* command, then
\captionartist and \captionauthor will also accept a star.

2.3.2 titletoc — A high-level approach to contents list design
The titletoc package written by Javier Bezos was originally developed as a companion
package to titlesec but can be used on its own. It implements its own interface to lay
out contents structures, thereby avoiding some of the limitations of the original LaTEX
code for this task. This makes it a good candidate when adjustments of such lists are
necessary when a new class is being developed.

The actual generation of external contents files and their syntax is left unchanged
Relation to standard
LATEX

so that it works nicely with other packages generating such files. There is one excep-
tion, however: contents files should end with the command \contentsfinish . For
the standard file extensions .toc , .lof , and .lot , this is handled automatically.
But if you provide your own type of contents lists (see Section 2.3.4), you have to
announce it to titletoc, as in the following example:

\contentsuse{example}{xmp}

Designing the layout for a single contents list entry

A single contents list entry normally consists of one or more lines of text, typically
starting with a label (e.g., the heading number) followed by the heading title and
finishing off with a page number. Typically, the page number is pushed to the right
edge so that page numbers from different entries align. Thus, there is normally a
gap between title and page number, which is filled either by white space or by some
leaders, e.g., some dots or a line.

Standard LaTEX already supports that type of design with some flexibility in
allowing for indentation at the left and right of all lines. In addition, the start of the

59

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.60

2 THE STRUCTURE OF A LATEX DOCUMENT

first line as well as the endpoint of the last line can be moved (typically to place both
the label and the page number outside of the title text block).

A typical multiline entry could look like this:

3.11 This is a sample section entry which has been deliberately made very
long so that it spans three lines to exhibit the handling of the first
and the last line in the entry . 27

As you see, the entry is indented on both sides with the entry label placed into the
available white space. The heading title is set ragged right in sans serif, and the page
number is separated from the text block using a row of leader dots and again placed
outside of the block.

Standard (dotted) layouts

The titletoc package supports this type of standard layout, but compared to standard
LaTEX offers more convenient ways to customize it. In addition, it supports other
layouts such as running lower-level heading entries together in a single paragraph
and, as a nice add-on, supports partial table of contents lists so that you can provide
chapter tables, etc. For the most common case, i.e., the layout shown above, it offers
the \dottedcontents declaration.

\dottedcontents{type}[left-indent]{before-code}{label-width}{leader-width}

The first argument of \dottedcontents contains the type of contents entry for
which we set up the layout — normally the name of the heading command without
a backslash or the name of the float environment, e.g., figure . In other words,
for each type of sectioning command that can appear in the document, we need
one \dottedcontents (or alternatively \titlecontents discussed below) decla-
ration.1 The remaining arguments have the following meaning:

left-indent The indentation from the left margin for all lines of the entry. It should
normally be wider than the label-width argument because the label is placed into
that space. Even though this argument has to be given in square brackets, it is
not optional in the current package release (and probably never will become one)!

before-code Code to be executed before the entry is typeset. It can be used to provide
vertical space, such as by using \addvspace , and to set up formatting direc-
tives, such as font changes, for the whole entry. You can also use \filleft ,
\filright , \filcenter , or \fillast , already known from the titlesec pack-
age, at this point.

label-width Nominal width of the label, i.e., the label starts to left of the first line
offset by this amount. Thus, the value should be wide enough to comfortably

1The package honors existing type declarations made, for example, by the document class even if
they are defined using the standard LaTEX interface. Thus, it can be used to change the layout of only
some types.

60

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.61

2.3 Table of contents structures

hold the label material for this type. Problematic cases with varying label widths
and possible solutions are discussed on pages 63 (\contentspush) and 73.

leaders-width Distance between two dots in the leaders on the last line of the entry.

For example, the entry above was typeset using the following declaration:

\dottedcontents{section}[40pt]{\normalfont\sffamily\filright}{24pt}{6pt}

i.e., we have an indentation of 40pt from the left margin with the label starting 16pt
from the margin1 and occupying 24pt . The whole entry is set in sans serif and ragged
right (via \filright), and each leader dot occupies 6pt of space.

You may wonder where the indentation on the right (for all lines but the last)
comes from and why it is not available as an argument to \dottedcontents . The
main reason is that in nearly all designs its value is the same for all entry types, and
thus providing it as an argument on the entry level would cumbersome and error
prone. In most document classes the default is wide enough to contain up to three
digits in the document body font. If that is not enough (or too much), it can be globally
(or locally) changed with a \contentsmargin declaration.

\contentsmargin[correction]{right-sep}

This declaration shortens all entry lines by right-sep. On the last line the page number
is typeset in that space, so if it is too small, the entry and page number may overlap.
In addition, the optional correction argument is added to all lines of an entry except
the last. This argument can, for example, be used to fine-tune the contents layout so
that dots from a row of leaders align with the text of previous lines in a multiline
entry if the entry is set justified.

In the unlikely case that there is a need to have different right-sep values for
different entry types, then the solution is to place this command inside the before-code
of \dottedcontents or \titlecontents . It is then local to that entry type.

More complicated layouts

While \dottedcontents works well in many cases, it clearly has its limitations and
cannot be used if you do not want any leaders or other typographic adjustments
that go beyond setting the font or the indentation. For such cases titletoc offers
the \titlecontents declaration and a few helper commands to be used within its
arguments.

\titlecontents{type}[left-indent]{before-code}{numbered-entry-format}
{numberless-entry-format}{page-format}[below-code]

The first three arguments type, left-indent, and before-code are the same as the
corresponding ones for \dottedcontents and are described there. However, the
remaining ones differ. Instead of simply specifying the width for the label we have

1In other words, left-indent minus label-width, i.e., 40pt− 24pt in this case.

61

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.62

2 THE STRUCTURE OF A LATEX DOCUMENT

now two arguments that allow us to explicitly define how the label and the title text
should be formatted and what should happen if the label is empty. This means you
have way more design possibilities at the cost of specifying more code.

numbered-entry-format Code to format the entry including its number. It is executed
in horizontal mode (after setting up the indentation). The last token can be a
command with one argument, in which case it receives the entry text as its argu-
ment. The unformatted heading number is available in the \thecontentslabel
command, but see below for other possibilities to access and place it.

numberless-entry-format Code to format the entry if the current entry does not
contain a number. Again, the last token may be a command with one argument.

Instead of specifying the leader-width, we now have an argument in which we have
to define exactly what should happen after the title text and how the page number
should be formatted. Finally, there is a further optional argument to be executed after
the entry is typeset.

page-format Code that is executed after formatting the entry but while still being
in horizontal mode. It is normally used to add some filling material, such as a
dotted line, and to attach the page number stored in \thecontentspage . You
can use the \titlerule command, discussed on page 47, to produce leaders.

below-code Optional code to be executed in vertical mode after the entry is typeset —
for example, to add some extra vertical space after the entry.

To help with placing and formatting the heading and page numbers, the titletoc
package offers two useful tools: \contentslabel and \contentspage .

\contentslabel[text]{size} \contentspage[text]

The purpose of the \contentslabel command is to typeset the text (which by
default contains \thecontentslabel) left aligned in a box of width size and to
place that box to the left of the current position. Thus, if you use this command in the
numbered-entry-format argument of \titlecontents , then the number is placed in
front of the entry text into the margin or indentation set up by left-indent. For a more
refined layout you can use the optional argument to specify your own formatting
usually involving \thecontentslabel .

In a similar fashion \contentspage typesets text (which by default contains
\thecontentspage) right aligned in a box and arranges for the box to be placed
to the right of the current position but without taking up space. Thus, if placed at
the right end of a line, the box extends into the margin. In this case, however, no
mandatory argument specifies the box size: it is the same for all entries. Its value is
the same as the space found to the right of all entries and can be set by the command
\contentsmargin described below.

The package offers three options to influence the default outcome of the
Package options for
\contentslabel \contentslabel command when used without the text argument. With the option

rightlabels the heading number is right aligned in the space, while leftlabels

62

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.63

2.3 Table of contents structures

(the default) makes it left aligned. You can also specify dotinlabels to always add
a period after the number.

Instead of indenting the whole entry and then moving some material into the left
margin using \contentslabel , you can make use of \contentspush to achieve a
similar effect.

\contentspush{text}

This command typesets text and then increases the left-indent by the width of text for
all additional lines of the entry (if any). As a consequence, the indentation will vary if
the width of the text changes. In many cases such variation is not desirable, but in
some cases other solutions give even worse results. Consider the case of a document
with many chapters, each containing dozens of sections. A rigid left-indent needs to
be able to hold the widest number, which may have five or six digits. In that case
a label like “1.1” comes out unduly separated from its entry text. Given below is a
solution that grows with the size of the entry number:

2-3-5

12.8 Some section that is
wrapped in the TOC 87

12.9 Another section 88
12.10 And yet another

wrapping section 90
12.11 Final section 92

\usepackage{titletoc}
\titlecontents{section}[0pt]{\addvspace{2pt}\filright}

{\contentspush{\thecontentslabel\enspace }}
{}{~\hrulefill\contentspage}

\contentsline{section}{\numberline{12.8}Some section that
is wrapped in the TOC}{87}{}%

\contentsline{section}{\numberline{12.9}Another section}{88}{}%
\contentsline{section}{\numberline{12.10}And yet another

wrapping section}{90}{}%
\contentsline{section}{\numberline{12.11}Final section}{92}{}%
\contentsfinish

A few design examples

For the examples in this section we copied some parts of the original .toc file
~A note on the

examples in this
and the next section

generated by LaTEX for this book (Chapter 2 and parts of Chapter 3) into a file we called
partial.toc and manually added a \contentsfinish command at the end. Inside
the examples we can then load this file with \input . Of course, in a real document
you would use the command \tableofcontents instead so that the .toc file for
your document is loaded and processed.

In our first example we provide a new formatting for chapter entries, while keep-
ing the formatting for the section entries as defined by the standard LaTEX document
class. The chapter entries are now set ragged right (\filright) in bold typeface, get
one pica space above, followed by a thick rule. The actual entry is indented by six picas.
In that space we typeset the word “Chapter” in small caps followed by a space and
the chapter number (\thecontentslabel) using the \contentslabel directive
with its optional argument. There is no special handling for entries without numbers,
so they would be formatted with an indentation of six picas. We fill the remaining
space using \hfill and typeset the page number in the margin via \contentspage .

63

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.64

2 THE STRUCTURE OF A LATEX DOCUMENT

Finally, after the entry we add another two points of space so that the entry is slightly
separated from any section entry following.

Chapter 2 The Structure of a LATEX Document 21
2.1. The overall structure of a source file 22
2.2. Sectioning commands 32
2.3. Table of contents structures 54
2.4. Managing references 75
2.5. Document source management 108

Chapter 3 Basic Formatting Tools 119
3.1. Shaping your paragraphs 120
3.2. Dealing with special characters 147
3.3. Generated or specially formatted text 154
3.4. Various ways of highlighting and quoting text 177
3.5. Footnotes, endnotes, and marginals 204

\usepackage[dotinlabels]{titletoc}
\titlecontents{chapter} [5pc]

{\addvspace{1pc}\bfseries
\titlerule[2pt]\filright}
{\contentslabel

[\textsc{\chaptername}\
\thecontentslabel]{5pc}}

{}{\hfill\contentspage}
[\addvspace{2pt}]

% Show only chapter/section entries:
\setcounter{tocdepth}{1}
\input{partial.toc} 2-3-6

In our second example we typeset the chapter title in sans serif with the chapter
and page numbers on the left and right. Any free space is filled with a rule on
the baseline, and we provide a bit of extra space above and below the chapter line.
The section headings are shown slightly indented; for them the page numbers are
suppressed. All numbers are formatted using oldstyle numerals.

2 The Structure of a LATEX Document 21
2.1 – The overall structure of a source file
2.2 – Sectioning commands
2.3 – Table of contents structures
2.4 – Managing references
2.5 – Document source management

3 Basic Formatting Tools 119
3.1 – Shaping your paragraphs
3.2 – Dealing with special characters
3.3 – Generated or specially formatted text
3.4 – Various ways of highlighting and quoting text
3.5 – Footnotes, endnotes, and marginals

\usepackage{titletoc}
\titlecontents{chapter}[0pc]

{\addvspace{6pt}}
{\large\sffamily
\oldstylenums{\thecontentslabel}
\ \hrulefill\ }{}
{\large\sffamily\ \hrulefill\
\oldstylenums{\thecontentspage}}
[\addvspace{2pt}]

\titlecontents{section} [1pc]{}
{\oldstylenums{\thecontentslabel}
-- }{}{}

\setcounter{tocdepth}{1}
\input{partial.toc} 2-3-7

The third example and final example for now puts the page numbers in focus;
they are printed on the left, while the normal heading numbers are suppressed. The
chapter title is placed on the right by filling the available space with \dotfill .
Section titles are left aligned and separated with an en-dash from the page number.
Note that we use \enspace instead of a normal space around it so that this space
does not stretch or shrink if the section title is longer than a single line.

64

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.65

2.3 Table of contents structures

2-3-8

21The Structure of a LATEX Document
22 – The overall structure of a source file
32 – Sectioning commands
54 – Table of contents structures
75 – Managing references

108 – Document source management

119Basic Formatting Tools
120 – Shaping your paragraphs
147 – Dealing with special characters
154 – Generated or specially formatted text
177 – Various ways of highlighting and quoting text
204 – Footnotes, endnotes, and marginals

\usepackage{titletoc}
\titlecontents{chapter}[2pc]

{\addvspace{5pt}}
{\large\bfseries
\contentslabel[\hfill

\thecontentspage]{2pc}\dotfill
}{}{}
[\addvspace{2pt}]

\titlecontents{section}[2pc]{}
{\contentslabel[\hfill

\thecontentspage]{2pc}%
\enspace --\enspace }{}{}

\setcounter{tocdepth}{1}
\input{partial.toc}

Note that none of the previous examples have provisions to format headings
that are unnumbered; i.e., the third mandatory argument of the \titlecontents
command was always left empty. This was done because the sample data contains
only numbered headings and it saved space to not provide formatting instructions
for unnumbered headings that are never used. However, in real life you better think
about how such entries should be displayed as well.

Contents entries combined in a paragraph

Standard LaTEX only supports contents entries formatted on individual lines. In some
cases, however, it is more economical to format lower-level entries together in a single
paragraph. With the titletoc package this becomes possible.

\titlecontents*{type}[left-indent]{before-code}{numbered-entry-format}
{numberless-entry-format}{page-format}[mid-code]

\titlecontents*{type}. . .{page-format}[mid-code][final-code]
\titlecontents*{type}. . .{page-format}[start-code][mid-code][final-code]

The \titlecontents* declaration is used for entries that should be formatted
together with other entries of the same or lower level in a single paragraph. The first
six arguments are identical to those of \titlecontents described on page 61.

Instead of a vertically oriented below-code argument, \titlecontents* pro-
vides one to three optional arguments that handle different situations that can happen
when entries are about to be joined horizontally. All three optional arguments are by
default empty. The joining works recursively as follows:

• If the current entry is the first entry to participate in joining, then its start-code is
executed before typesetting the entry.

• Otherwise, there has been a previous entry already participating.

– If both entries are on the same level, then the mid-code is inserted.

65

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.66

2 THE STRUCTURE OF A LATEX DOCUMENT

– Otherwise, if the current entry is of a lower level, then the start-code for it is
inserted, and we recur processing the new level.

– Otherwise, the current entry is of a higher level. First, we execute for each
level that has ended the final-code (in reverse order). Then, if the current
entry is not participating in joining, we are done. Otherwise, the mid-code for
the entry is executed, as a previous entry of the same level should already be
present (assuming a hierarchically structured document).

If several levels are to be joined, then you have to specify any paragraph layout
�Careful

with paragraph
parameters

information in the before-code of the highest level participating. Otherwise, the
scope of your settings does not include the paragraph end and thus is not applied.
In the following example, \footnotesize applies only to the section entries —
the \baselineskip for the whole paragraph is still set in \normalsize . This
artificial example shows how one can join two different levels using the three optional
arguments. Note in particular the spaces added at the beginning of some arguments
to get the right result when joining.

The Structure of a LATEX Document, 21 {The
overall structure of a source file; Sectioning commands;
Table of contents structures; Managing references;
Document source management} • Basic Format-
ting Tools, 119 {Shaping your paragraphs; Dealing
with special characters; Generated or specially format-
ted text; Various ways of highlighting and quoting text;
Footnotes, endnotes, and marginals} ¶

\usepackage{titletoc,xcolor} \contentsmargin{0pt}
\titlecontents*{chapter}[0pt]

{\sffamily}{}{}{, \thecontentspage}
[\ \textbullet \] [~\P] % mid, finish

\titlecontents*{section}[0pt]
{\color{blue}\footnotesize\slshape}{}{}{}
[\{] [;] [\}] % start, mid, finish

\setcounter{tocdepth}{1}
\sloppy \input{partial.toc} 2-3-9

Let us now see how this works in practice. In the next example we join the section
level, separating entries by a bullet surrounded by some stretchable space (\xquad)
and finishing the list with a period. The chapter entries are interesting as well, because
we move the page number to the left. Both types omit the heading numbers completely
in this design. Because there are no page numbers at the right, we also set the right
margin to zero.

21 The Structure of a LATEX Document
The overall structure of a source file, 22 • Sectioning
commands, 32 • Table of contents structures, 54 •
Managing references, 75 • Document source
management, 108.

119 Basic Formatting Tools
Shaping your paragraphs, 120 • Dealing with special
characters, 147 • Generated or specially formatted
text, 154 • Various ways of highlighting and quoting
text, 177 • Footnotes, endnotes, and marginals, 204.

\usepackage{titletoc}
\contentsmargin{0pt}
\titlecontents{chapter}[0pt]

{\addvspace{1.4pc}\bfseries}
{{\Huge\thecontentspage\quad}}{}{}

\newcommand\xquad
{\hspace{1em plus.4em minus.4em}}

\titlecontents*{section}[0pt]
{\filright\small}{}{}
{,~\thecontentspage}
[\xquad\textbullet\xquad][.]

\setcounter{tocdepth}{1}
\input{partial.toc} 2-3-10

66

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.67

2.3 Table of contents structures

As a second example we look at a setup implementing a layout close to the one
used in Methods of Book Design [198]. This design uses Garamond fonts with oldstyle
digits, something we achieve by using the garamondx package. The \chapter titles
are set in small capitals. To arrange that we use \scshape and turn all letters
in the title to lowercase using \MakeLowercase (remember that the last token
of the numbered-entry-format and the numberless-entry-format arguments can be
a command with one argument to receive the heading text). The sections are all
run together in a paragraph with the section number getting a § sign prepended.
Separation between entries is a period followed by a space, and the final section is
finished with a period as well.

Justifying the paragraph really requires a wider measure than available in the
example, even though it comes out fairly well with the given text. If not, consider
using \filright , but that would rather drastically alter the design.

2-3-11

2 the structure of a L
A
TEX document 21

§2.1 The overall structure of a source file, 22. §2.2 Sectioning
commands, 32. §2.3 Table of contents structures, 54. §2.4 Man-
aging references, 75. §2.5 Document source management, 108.

3 basic formatting tools 119

§3.1 Shaping your paragraphs, 120. §3.2 Dealing with special
characters, 147. §3.3 Generated or specially formatted text, 154.
§3.4 Various ways of highlighting and quoting text, 177. §3.5
Footnotes, endnotes, and marginals, 204.

\usepackage[osf]{garamondx}
\usepackage{titletoc}
\contentsmargin{0pt}
\titlecontents{chapter}[1.5pc]
{\addvspace{2pc}\large}
{\contentslabel{2pc}%
\scshape\MakeLowercase}

{\scshape\MakeLowercase}
{\hfill\thecontentspage}
[\vspace{2pt}]

\titlecontents*{section}[1.5pc]
{\small}{\S\thecontentslabel\ }
{}{,~\thecontentspage}[.\][.]

\setcounter{tocdepth}{1}
\input{partial.toc}

Generating partial table of contents lists

It is possible to generate partial contents lists using the titletoc package like we do
for every chapter in this book; it provides four commands for this purpose.

\startcontents[name]

A partial table of contents is started with \startcontents . It is possible to collect
data for several partial TOCs in parallel, such as one for the current \part as well as
one for the current \chapter . In that case the optional name argument allows us to
distinguish between the two (its default value is the string default). Concurrently
running partial TOCs are allowed to overlap each other, although normally they will
be nested. All information about these partial TOCs is stored in a single file with the
extension .ptc ; this file is generated once a single \startcontents command is
executed.

67

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.68

2 THE STRUCTURE OF A LATEX DOCUMENT

\printcontents[name]{prefix}{start-level}{toc-code}

This command prints the current partial TOC started earlier by \startcontents
and includes all entries up to the next invocation of \startcontents . If the optional
name argument is used, then a partial contents list with that name must have been
started earlier.

It is quite likely that you want to format the partial TOC differently from the main
table of contents. To allow for this the prefix argument is prepended to any entry type
when looking for a layout definition provided via \titlecontents or its starred
form. In the example below we used p- as the prefix and then defined a formatting
for p-subsection to format \subsection entries in the partial TOC.

The start-level argument defines the first level that is shown in the partial TOC;
in the example we used the value 2 to indicate that we want to see all subsections
and lower levels.

The depth to which we want to include entries in the partial TOC can be set in
toc-code by setting the tocdepth counter to a suitable value. Other initializations for
typesetting the partial TOC can be made there as well. In the example we cancel any
right margin, because the partial TOC is formatted as a single paragraph.

Integrating partial TOCs in the heading definitions so that there is no need to
change the actual document is very easy when titletoc is used together with the
titlesec package. Below we extend Example 2-2-14 from page 45 so that the \section
command now automatically prints a partial TOC of all its subsections. This is done by
using the optional after-code argument of the \titleformat declaration. We first add
some vertical space, thereby ensuring that no page break can happen at this point. We
next (re)start the default partial TOC with \startcontents . We then immediately
typeset it using \printcontents ; its arguments have been explained above. Finally,
we set up the formatting for subsections in a partial TOC using \titlecontents*
to run them together in a justified paragraph whose last line is centered (\fillast).
Stringing this all together gives the desired output without any modification to the
document source. Of course, a real design would also change the look and feel of the
subsection headings in the document to better fit those of the sections.

SECTION 1
A Title Test

A first — A longer second — An even longer
fourth.

Some text to prove that this paragraph is
not indented.

1.1 A first
Some text . . .

\usepackage{titlesec,titletoc}
\titleformat{\section}[frame]{\normalfont}

{\footnotesize \enspace SECTION \thesection
\enspace}{6pt}{\large\bfseries\filcenter}

[\vspace*{5pt}\startcontents
\printcontents{p-}{2}{\contentsmargin{0pt}}]

\titlespacing*{\section}{1pc}{*4}{*2.3}[1pc]
\titlecontents*{p-subsection}[0pt]

{\small\itshape\fillast}{}{}{}[---][.]
\section{A Title Test}
Some text to prove that this paragraph is not indented.
\subsection{A first} Some text \ldots \newpage
\subsection{A longer second} Some more text.
\stopcontents \subsection{A third} \resumecontents
\subsection{An even longer fourth} 2-3-12

68

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.69

2.3 Table of contents structures

If necessary, one can temporarily (or permanently) stop collecting entries for a
partial TOC. We made use of this feature in the previous example by suppressing the
third subsection.

\stopcontents[name] \resumecontents[name]

The \stopcontents command stops the entry collection for the default partial
TOC or, if used with the name argument, for the TOC with that name. At a later
point the collection can be restarted using \resumecontents . Note that this is quite
different from calling \startcontents , which starts a new partial TOC, thereby
making the old entries inaccessible.

Partial TOCs do not need to be confined to a subset of your document. It is equally
possible to use them to provide “overviews”, e.g., listing only the chapter headings, in
addition to a full table of contents. A possible implementation could look like this:

\AtBeginDocument{\startcontents[short]}
\newcommand\shorttoc[1]{\chapter*{#1}%

\printcontents[short]{short-}{0}{\setcounter{tocdepth}{0}}}
\titlecontents{short-chapter}[..]{..}{..}{..}{..}

We start a partial contents list named short at the beginning of the document.
Because we never restart, this partial list receives all headings. Then we define the
command \shorttoc to produce a chapter heading without a number and then print
this partial TOC list starting from level 0 (i.e., chapters) but displaying only chapters
(since we set the tocdepth counter to zero). Finally, we define a suitable formatting
for chapter entries in that list. As we used the prefix short- , we need to define
short-chapter (no details given in the code above).

There are similar commands for producing partial lists of figures or tables named
\startlist , \printlist , \stoplist , and \resumelist but with a slightly dif-
ferent syntax. For details consult the package documentation.

In this book we used these partial contents lists in several places. Each chapter How we produced
the content lists for
this book

starts with a \startcontents declaration, which enables us to show the chapter
TOCs with special formatting. Each \chapter command executed something similar
to the following:

\startcontents
\printcontents{p-}{1}{\contentsmargin{0pt}\setcounter{tocdepth}{1}%

\color{blue}\headingfont\mdseries}

All we had to do in addition was to provide a suitable definition for p-section to
format the section entries. For this book we used the following setup, which was all
that was necessary:

\titlecontents{p-section}[18pt]{\addvspace{1pt}}
{\contentspush{\thecontentslabel\enspace}}
{}
{\titlerule*[6pt]{.}\ \thecontentspage}

69

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.70

2 THE STRUCTURE OF A LATEX DOCUMENT

Furthermore, for the overall content lists we also deployed partial lists, because
both physical books have been produced in a single run (to simplify cross-referencing
and indexing). We therefore started each part of the book with

\startcontents[part] \startlist[part]{lof} \startlist[part]{lot}

thereby dividing the content lists in the two parts representing the two physical books.
This enabled us to automatically include the headings of both books in the table of
contents for each book — with suitable formatting; i.e., in book I, we show only the
chapter titles of book II, while in book II only the chapters of book I are listed, but
chapters and sections are given for book II. The situation for the list of figures and
tables is simpler: here we show only those entries that belong to the current book. But
again this is possible only because we have divided the content lists as shown above.

2.3.3 multitoc — Setting contents lists in multiple columns
Setting contents lists in multiple columns is a design that is sometimes requested. A
solution for this is provided through the multitoc package by Martin Schröder, which
internally uses the multicol package to achieve the desired result.

The package has three options (toc , lof , and lot) to typeset the table of
contents, the list of figures, or the list of tables in multiple columns (default 2).

More columns are seldom needed, but if necessary, you can specify the de-
sired number of columns by changing \multicolumntoc , \multicolumnlof , or
\multicolumnlot with \renewcommand .

2.3.4 LATEX’s low-level interfaces
In this final section on TOCs we briefly review the basic interfaces for contents files as provided by
LaTEX, because you may find them used directly in older class files. Packages like titletoc also invoke
them but offer some additional level of abstraction on top.

Entering information into the contents files
The interface for writing to the contents files consists of two commands: \addcontentsline and
\addtocontents . They are automatically invoked by heading or caption commands, but if necessary,
it is also possible to use them to enter some information directly into the files.

\addcontentsline{ext}{type}{text}

The \addcontentsline command writes the text together with some additional information, such as
the page number of the current page, into a file with the extension ext (usually .toc , .lof , or .lot).
Fragile commands within text need to be protected with \protect . The type argument is a string
that specifies the kind of contents entry that is being made. For the table of contents (.toc), it is
usually the name of the heading command without a backslash; for .lof or .lot files, figure or
table is normally specified.

The \addcontentsline instruction is invoked automatically by the document sectioning com-
mands or by the \caption commands within the float environments. Unfortunately, the interface
has only one argument for the variable text, which makes it awkward to properly identify an object’s
number if present. Because such numbers (e.g., the heading number) typically need special formatting
in the contents lists, this identification is absolutely necessary. The trick used by the current LaTEX

70

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.71

2.3 Table of contents structures

kernel to achieve this goal is to surround such a number with the command \numberline within the
text argument as follows:

\protect\numberline{number}heading

For example, a \caption command inside a figure environment saves the caption text for the figure
using the following line:

\addcontentsline{lof}{figure}{\protect\numberline{\thefigure}caption text}

Because of the \protect command, \numberline is written unchanged into the external file, while
\thefigure is replaced along the way so that the actual figure number and not the command ends
up in the file.

Later, during the formatting of the contents lists, a suitable definition of \numberline can
then be used to format the number in a special way, such as by providing extra space or a different
font. The disadvantage of this approach is that it is less general than a version that takes a separate
argument for this number (e.g., you cannot easily do arbitrary transformation on this number), and it
requires an appropriate definition for \numberline— something that is unfortunately not always
easy to provide (see the discussion below).

\addtocontents{ext}{text}

The \addtocontents command does not contain a type parameter and is intended to enter special
formatting information not directly related to any contents line. For example, the \chapter command
of the standard classes places additional white space in the .lof and .lot files to separate entries
from different chapters as follows:

\addtocontents{lof}{\protect\addvspace{10pt}}
\addtocontents{lot}{\protect\addvspace{10pt}}

By using \addvspace at most 10 points separate the entries from different chapters without produc-
ing strange gaps if some chapters do not contain any figures or tables.

This example, however, shows a certain danger of the interface: while \addcontentsline ,
~Potential

problems with
\addvspace

\addtocontents , and \addvspace appear to be user-level commands (given that they do not contain
any @ signs in their names), they can easily produce strange errors.1 In particular, \addvspace can be
used only in vertical mode, which means that a line like the above works correctly only if an earlier
\addcontentsline ends in vertical mode. Thus, you need to understand how such lines are actually
processed to be able to enter arbitrary formatting instructions between them. This is the topic of the
next section.

If either \addcontentsline or \addtocontents is used within the source of a document, one ~Potential
problems with

\include
important restriction applies: neither command can be used at the same level as an \include
statement. That means, for example, that the sequence

\addtocontents{toc}{\protect\setcounter{tocdepth}{1}}
\include{sect1}

with sect1.tex containing a \section command would surprisingly result in a .toc file containing

\contentsline {section}{\numberline {1}Section from sect1}{2}{}%
\setcounter {tocdepth}{1}

showing that the lines appear out of order. The solution is to move the \addtocontents or
\addcontentsline statement into the file loaded via \include or to avoid \include altogether.

Typesetting a contents list
As discussed above, contents lists are generated by implicitly or explicitly using the commands
\addcontentsline and \addtocontents . The exact effect of \addcontentsline{ext}{type}{text} is
to place the line

\contentsline{type}{text}{page}{anchor-name}%

1For an in-depth discussion of \addvspace , see Appendix A.2.4, page →II 655.

71

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.72

2 THE STRUCTURE OF A LATEX DOCUMENT

including the final percent sign into the auxiliary file with extension ext, where page is the current
page number in the document. The anchor-name argument is by default empty but gets filled if the
hyperref package is loaded. In that case it specifies a hyperlink anchor name.

The command \addtocontents{ext}{text} is simpler: it just puts text into the auxiliary file
without any extra material. Thus, a typical contents list file consists of a number of \contentsline
commands, possibly interspersed with further formatting instructions added as a result of
\addtocontents calls. It is also possible for the user to create a table of contents by hand with the
help of the command \contentsline .

A typical example is shown below. Note that most (though not all) heading numbers are entered
�Inconsistency

with \part
as a parameter of the \numberline command to allow formatting with the proper indentation.
For historical reasons LaTEX is unfortunately not consistent here; the standard classes do not use
\numberline for \part headings but instead specify the formatting explicitly.1

I Part 2

1 A-Head 2
1.1 B-Head 3

1.1.1 C-Head 4
With Empty Number . 5

Unnumbered C-Head 6
1.1.2 Another C-Head . . . 8

1.2 Another B-Head 10

\setcounter{tocdepth}{3}
\contentsline {part}{I\hspace{1em}Part}{2}{}%
\contentsline{chapter}{\numberline{1}A-Head}{2}{}%
\contentsline{section}{\numberline{1.1}B-Head}{3}{}%
\contentsline{subsection}%

{\numberline{1.1.1}C-Head}{4}{}%
\contentsline{subsection}%

{\numberline{}With Empty Number}{5}{}%
\contentsline{subsection}{Unnumbered C-Head}{6}{}%
\contentsline{subsection}%

{\numberline{1.1.2}Another C-Head}{8}{}%
\contentsline{section}%

{\numberline{1.2}Another B-Head}{10}{}% 2-3-13

The \contentsline command is implemented to take its first argument type and then use it to
call the corresponding \l@type command, which does the actual typesetting. One separate command
for each of the types must be defined in the class file. For example, in the report class you find the
following definitions:

\newcommand\l@section {\@dottedtocline{1}{1.5em}{2.3em}}
\newcommand\l@subsection {\@dottedtocline{2}{3.8em}{3.2em}}
\newcommand\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}}
\newcommand\l@paragraph {\@dottedtocline{4}{10em}{5em}}
\newcommand\l@subparagraph {\@dottedtocline{5}{12em}{6em}}
\newcommand\l@figure {\@dottedtocline{1}{1.5em}{2.3em}}
\newcommand\l@table {\l@figure}

By defining \l@type to call \@dottedtocline (a command with five arguments) and specifying three
arguments (level, indent, and numwidth), the remaining arguments, text and page, of \contentsline
are picked up by \@dottedtocline as arguments 4 and 5. The last argument (which is by default
empty) is simply left sitting there doing nothing. If hyperref is loaded, the definitions are changed
and the last argument is also processed.

Note that some section levels build their table of contents entries in a somewhat more com-
plicated way so that the standard document classes have definitions for \l@part and \l@chapter
(or \l@section with article) that do not use \@dottedtocline . Generally they use a set of specific
formatting commands, perhaps omitting the ellipses and typesetting the title in a larger font.

So to define the layout for the contents lists, we have to declare the appropriate \l@type
commands (which is precisely what titletoc’s \dottedcontents and \titlecontents commands
do). One easy way without this package, as shown above, is to use \@dottedtocline , an internal
command that we will now look at in some detail.

1The titlesec package offers the option newparttoc to repair this defect.

72

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.73

2.3 Table of contents structures

\linewidth

indent numwidth This is heading text that generates \@tocrmarg
three lines in the entry in the table

of contents \@pnumwidth

Figure 2.2: Parameters defining the layout of a contents file

\@dottedtocline{level}{indent}{numwidth}{text}{page}

The last two arguments of \@dottedtocline coincide with the second and third arguments of
\contentsline , which itself usually invokes a \@dottedtocline command. The other arguments
are the following:

level The nesting level of the entry. With the help of the counter tocdepth the user can control how
many nesting levels are displayed. Levels greater than the value of this counter will not appear
in the table of contents.

indent The total indentation from the left margin.

numwidth The width of the box that contains the number if text has a \numberline command. It is
also the amount of extra indentation added to the second and later lines of a multiple-line entry.

Additionally, the command \@dottedtocline uses the following global formatting parameters, which
specify the visual appearance of all entries. Although all parameters store length values, they have to
be changed with \renewcommand!

\@pnumwidth The width of the box in which the page number is set.

\@tocrmarg The indentation of the right margin for all but the last line of multiple-line entries. It
can be set to a rubber length, which results in the TOC being set unjustified.

\@dotsep The separation between dots, in mu (math units).1 The value stored is a pure number (like
1.7 or 2). By making this number large enough you can get rid of the dots altogether.

A pictorial representation of the effects described is shown in Figure 2.2. The field identified by
numwidth contains a left-justified section number, if present. You can achieve the proper indentation
for nested entries by varying the settings of indent and numwidth.

One case in which this is necessary, while using a standard class (article , report , or book), arises Problem with too
many headings on
one level

when you have ten or more sections and within the later ones more than nine subsections. In that
case numbers and text will come too close together or even overlap if the numwidth argument on the
corresponding calls to \@dottedtocline is not extended, as seen in the following example.

2-3-14

10 A-Head 3
10.1 B-Head 3
. . .
10.9 B-Head 7
10.10B-Head 8

\contentsline{section}{\numberline{10}A-Head}{3}{}%
\contentsline{subsection}{\numberline{10.1}B-Head}{3}{}%
\ldots % several more heading lines here (not shown)
\contentsline{subsection}{\numberline{10.9}B-Head}{7}{}%
\contentsline{subsection}{\numberline{10.10}B-Head}{8}{}%

Redefining \l@subsection to leave a bit more space for the number (i.e., the third argument
to \@dottedtocline) gives a better result in this case. You will probably have to adjust the other

1There are 18 mu units to an em , where the latter is taken from the \fontdimen2 of the math
symbol font symbols . See Section 9.8.1 on page 745 for more information about \fontdimens.

73

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.74

2 THE STRUCTURE OF A LATEX DOCUMENT

commands, such as \l@subsubsection , as well to produce a balanced look for the whole table.

10 A-Head 3
. . .
10.9 B-Head 7
10.10 B-Head 8

\makeatletter
\renewcommand\l@subsection{\@dottedtocline{2}{1.5em}{3em}}
\makeatother
\contentsline{section}{\numberline{10}A-Head}{3}{}%
\ldots % several more heading lines here
\contentsline{subsection}{\numberline{10.9}B-Head}{7}{}%
\contentsline{subsection}{\numberline{10.10}B-Head}{8}{}% 2-3-15

Another example that requires changes is the use of unusual page numbering. For example,
if the pages are numbered by part and formatted as “A–78”, “B–328”, and so on, then the space
provided for the page number is probably too small, resulting at least in a large number of annoying
“Overfull hbox” warnings, but more likely in some bad spacing around them. In that case the remedy
is to set \@pnumwidth to a value that fits the widest entry — for example, via

\makeatletter \renewcommand\@pnumwidth{2cm} \makeatother

When adjusting \@pnumwidth this way, it is likely that the value of \@tocrmarg needs to be changed
as well to keep the layout of the table of contents consistent.

These examples and their remedies clearly show the advantages of the higher-level interfaces
provided by titletoc where commands like \contentspush allow for much simpler solutions.

Providing additional contents files
You may want to mark up other data in your document and display it as a list. If so, you need to
create a new contents file and then make use of the facilities described above.

For example, suppose you want to collect notes on artists. For this we need to define two com-
mands. The first command, \artist , typesets the artist’s name and associates both of its arguments
with the current position in the document by writing them and the current page number to the con-
tents file. The second command, \listofartistnotes , reads the information written to the contents
file on the previous run and typesets it at the point in the document where the command is called.

For this, the \listofartistnotes command invokes \@starttoc{ext} , which reads the ex-
ternal file (with the extension ext) and then reopens it for writing. This command is also used by
the commands \tableofcontents , \listoffigures , and \listoftables . The supplementary file
could be given any unused extension such as .rec . A command like \chapter*{Notes on artists}
can be put in front or inside of \listofartistnotes to produce a title and, if desired, one can signal
the presence of this list to the reader by entering it into the .toc file with an \addcontentsline
command.

The actual typesetting of the individual entries in the .rec file is controlled by \l@note , which
needs to be defined. In the example below, the notes are typeset as paragraphs followed by an
italicized page number. Instead of defining this command directly we could have used titletoc’s
interfaces, e.g., \titlecontents{note}...

The version of Ravel’s Boléro by Jacques
Loussier Trio is rather unusual. Quite inter-
esting is Davis’ Blue in Green by Cassandra
Wilson.

Notes on artists
Jacques Loussier Trio: A strange experience, 1
Cassandra Wilson: A wonderful version, 1

\newcommand\artist[2]
{#1\addcontentsline{rec}{note}{#1: #2}}

\makeatletter \newcommand\listofartistnotes
{\section*{Notes on artists}\@starttoc{rec}}

\newcommand\l@note[2]
{\par\noindent#1,~\textit{#2}\par} \makeatother

The version of Ravel’s Boléro by \artist{Jacques
Loussier Trio}{A strange experience} is rather
unusual. Quite interesting is Davis’ Blue in Green
by \artist{Cassandra Wilson}{A wonderful version}.
\listofartistnotes 2-3-16

The float package described in Section 7.3.1 on page 529 implements the above mechanism with
the command \listof , which generates a list of floats of the type specified as its argument.

74

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.75

2.4 Managing references

2.4 Managing references
LaTEX has commands that make it easy to manage references in a document. In
particular, it supports cross-references (internal references between elements within a
document), bibliographic citations (references to external documents), and indexing
of selected words or expressions. Indexing facilities will be discussed in Chapter 14,
and bibliographic citations in Chapters 15 and 16.

To allow cross-referencing of elements inside a document, you should assign
a “key” (consisting of a string of characters, preferably ASCII letters, digits, and
punctuation) to the given structural element and then use that key to refer to that
element elsewhere.

\label{key} \ref{key} \pageref{key}

The \label command assigns the key to the currently “active” element of the doc-
ument (see below for determining which element is active at a given point). The
\ref command typesets a string, identifying the given element — such as the section,
equation, or figure number — depending on the type of structural element that was
active when the \label command was issued. The \pageref command typesets the
number of the page where the \label command was given. The key strings should,
of course, be unique. As a simple aid it can be useful to prefix them with a string
identifying the structural element in question: sec might represent sectional units,
fig would identify figures, and so on.

2-4-1

4 A Section
A reference to this section looks like this: “see sec-
tion 4 on page 6”.

\section{A Section} \label{sec:this}

A reference to this section looks
like this: ‘‘see section~\ref{sec:this}
on page~\pageref{sec:this}’’.

There is a potential danger when using punctuation characters such as a colon.
~Restrictions

on the characters
used in keys

In certain language styles within the babel system (see Chapter 13), some of these
characters have special meanings and behave essentially like commands. The babel
package tries hard to allow such characters as part of \label keys, but this can
fail in some situations. Similarly, characters outside the ASCII range have been a
problem in the past. However, starting with the LaTEX release in 2019 there is a new
implementation that essentially supports all Unicode characters that can also be used
for typesetting text, i.e., are not generally rejected because LaTEX does not know how to
deal with them. Thus, you can use labels like “fig:größer”, but using, say, Chinese
characters may still give you errors, unless you have loaded special font support
packages for them or used a fairly recent LaTEX release.1

For building cross-reference labels, the “currently active” structural element of a
document is determined in the following way. The sectioning commands (\chapter ,

1With real Unicode engines, such as X ETEX or LuaTEX, all Unicode characters are usable. The
remaining technical restrictions of the pdfTEX engine were finally overcome with the November 2021
release of LaTEX — so now you can also use all Unicode characters with that engine.

75

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.76

2 THE STRUCTURE OF A LATEX DOCUMENT

\section , . . .), the environments equation , figure , table , and the theorem
family, as well as the various levels of the enumerate environment, and \footnote
set the current reference string, which contains the number generated by LaTEX for the
given element. This reference string is usually set at the beginning of an element and
reset when the scope of the element is exited.

Notable exceptions to this rule are the table and figure environments, where
�Problems with

wrong references
to floats

the reference string is defined by the \caption commands. This allows several
\caption and \label pairs inside one environment.1 Because it is the \caption
directive that generates the number, the corresponding \label command must follow
the \caption command in question. Otherwise, an incorrect number is generated. If
placed earlier in the float body, the \label command picks up the current reference
string from some earlier entity, typically the current sectional unit.

The problem is shown clearly in the following example, where only the labels
“fig:in2” and “fig:in3” are placed correctly to generate the needed reference
numbers for the figures. In the case of “fig:in4” it is seen that environments (in
this case, center) limit the scope of references, because we obtain the number of
the current section, rather than the number of the figure.

It should be noted that using a center environment in a float (like we did below)
�Do not use

center in floats
is not a good idea not just because it limits the reference scope: it also creates a
usually unwanted extra space at the top of the float! It is better to use a \centering
declaration, which avoids both problems.

3 A section
3.1 A subsection
Text before is referenced as ‘3.1’.

. . . figure body . . .

Figure 1: First caption

. . . figure body . . .

Figure 2: Second caption

The labels are: ‘before’ (3.1),
‘fig:in1’ (3.1) – bad, ‘fig:in2’ (1),
‘fig:in3’ (2), ‘fig:in4’ (3.1) – bad
and ‘after’ (3.1) – probably bad!

\section{A section}
\subsection{A subsection}\label{sec:before}
Text before is referenced as ‘\ref{sec:before}’.

\begin{figure}[ht] \label{fig:in1} % bad
\begin{center}
\fbox{\ldots{} figure body \ldots}
\caption{First caption} \label{fig:in2} % ok
\bigskip
\fbox{\ldots{} figure body \ldots}
\caption{Second caption} \label{fig:in3} % ok

\end{center} \label{fig:in4} % bad
\end{figure}
\label{sec:after} % bad, unless you want the page reference

\raggedright
The labels are: ‘before’ (\ref{sec:before}),
‘fig:in1’ (\ref{fig:in1}) -- bad, ‘fig:in2’ (\ref{fig:in2}),
‘fig:in3’ (\ref{fig:in3}), ‘fig:in4’ (\ref{fig:in4}) -- bad
and ‘after’ (\ref{sec:after}) -- probably bad! 2-4-2

1There are, however, good reasons for not placing more than one \caption command within a
float environment. Typically proper spacing is difficult to achieve, and, more importantly, it limits
LaTEXs options to place the float and should (if at all) be done only during final layout adjustments.

76

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.77

2.4 Managing references

For each key declared with \label{key} , LaTEX records the current reference
string and the page number. Thus, multiple \label commands (with different key
identifiers key) inside the same sectional unit generate an identical reference string
but, possibly, different page numbers like sec:before and sec:after above.

According to the LATEX Manual [106] labels can be placed inside the main argument
~Label commands

inside arguments
of heading or caption commands, rather than after them. Doing this makes the source
a little less readable (which is why I prefer them after), but there are some edge cases,
usually with \caption , where placing the label after the command can result in some
incorrect extra space, so you need to watch out for this.

Fancier labels

A reference via \ref produces, by default, the data associated with the corresponding
\label command (typically a number); any additional formatting must be provided
by the user. If, for example, references to equations are always to be typeset as
“equation (number)”, one has to code “equation (\ref{key})”.

To enforce consistency the amsmath package provides an \eqref command to
reference equations. It automatically places parentheses around the equation number.
To utilize this and also get varioref’s magic applied (see next section), one could define

\newcommand\eqvref[1]{\eqref{#1} \vpageref{#1}}

which then automatically adds a page reference if the equation is on a different page.
What that does not do is to automatically add the word “equation”, though you
could, of course, code that into the definition as well. However, a more general solution
for adding words based on the referenced counter is offered with the \labelformat
declaration. Alternatively you can use the cleveref package discussed in Section 2.4.2,
which provides a more sophisticated solution for this.

\labelformat{counter}{formatting-code} \Ref{label}

With \labelformat LaTEX offers a possibility to generate such frills automatically.1

The command takes two arguments: the name of a counter and its representation
when referenced. Thus, for a successful usage, one has to know the counter name
being used for generating the label, though in practice this should not pose a prob-
lem. When processing a reference the current counter number (or, more exactly, its
representation) is picked up as an argument, so the second argument should contain
#1 to retrieve it.

A side effect of using \labelformat is that, depending on the defined for-
matting, it becomes impossible to use \ref at the beginning of a sentence (if its
replacement text starts with a lowercase letter). To overcome this problem there is
also a \Ref command that behaves like \ref except that it uppercases the first token

1In the past this command was provided by the varioref package.

77

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.78

2 THE STRUCTURE OF A LATEX DOCUMENT

of the generated string. In the following example, you can observe this behavior when
“section” is turned into “Section”.

1 An example
Section 1 shows the use of the \labelformat
declaration with a reference to equation (1).

a = b (1)

\usepackage[nospace]{varioref}
\labelformat{section}{section~#1}
\labelformat{equation}{equation~(#1)}
\section{An example}\label{sec}
\Ref{sec} shows the use of the \verb=\labelformat=
declaration with a reference to \ref{eq}.
\begin{equation} a = b \label{eq} \end{equation} 2-4-3

To make the \Ref command work properly, the first token in the second argu-
ment of \labelformat has to be a single ASCII letter; otherwise, the capitalization
fails or, even worse, you end up with some error messages. If you actually need some-
thing more complicated in this place (e.g., an accented letter), you have to explicitly
surround it with braces, thereby identifying the part that needs to be capitalized. For
example, for figure references in the Hungarian language you might want to write
\labelformat{figure}{{á}bra~\thefigure} .

Unicode engines

In pdfTEX the braces are necessary, regardless of whether you write the ac-
cented character as \’a or as á as we did above, because in this engine UTF-8
characters are seen as several tokens even if on the screen they look like a
single character. The downside is that these braces prevent any kerning that
the font may specify between á and the following character. However, in X ETEX
or LuaTEX a Unicode character is a single token (not a sequence of bytes) and is
therefore picked up correctly even without the braces. Thus, with these engines
the braces should not be used to improve the typeset result.

As a second example of the use of \labelformat consider the following sit-
uation: in the report or book document class, footnotes are numbered per chapter.
Referencing them would normally be ambiguous, given that it is not clear whether we
refer to a footnote in the current chapter or to a footnote from a different chapter.
This ambiguity can be resolved by always adding the chapter information in the
reference or by comparing the number of the chapter in which the \label occurred
with the current chapter number and adding extra information if they differ. This is
achieved by the following code:

\usepackage{ifthen,varioref}
\labelformat{footnote}{#1\protect\iscurrentchapter{\thechapter}}
\newcommand\iscurrentchapter[1]{%

\ifthenelse{\equal{#1}{\thechapter}}{}{ in Chapter~#1}}

The trick is to use \protect to prevent \iscurrentchapter from being eval-
uated when the label is formed. Then, when the \ref command is executed,
\iscurrentchapter compares its argument (i.e., the chapter number current when
the label was formed) to the now current chapter number and, when they differ,
typesets the appropriate information.

78

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.79

2.4 Managing references

2.4.1 varioref — More flexible cross-references
In many cases it is helpful, when referring to a figure or table, to put both a \ref
and a \pageref command into the document, especially when one or more pages
separate the reference and the object. Some people use a command like

\newcommand\fullref[1]{\ref{#1} on page~\pageref{#1}}

to reduce the number of keystrokes necessary to make such a complete reference. But
because one never knows with certainty where the referenced object finally falls, this
method can result in a citation to the current page, which is disturbing and should
therefore be avoided. The package varioref, written by Frank Mittelbach, tries to resolve
that problem automatically. For this it provides the commands \vref and \vpageref
to deal with single references, as well as \vrefrange and \vpagerefrange to
handle multiple references.1

We recommend that you always load the package with the option nospace , and
~We recommend

to always use the
nospace option

this is what we assume throughout the book. Without it varioref manipulates the
spaces in front of its commands (and even adds one if there is not any), but this
causes a number of problems and should therefore be avoided.2 Some more details
are given on page 85.

\vref*[same-page]{key} \Vref*[same-page]{key}

The command \vref is like \ref when the reference and \label are on the same
page and the optional argument is not used. With the optional argument it prints
the text same-page after the reference.3 If the label and reference differ by one page,
\vref creates one of these strings: “on the facing page”, “on the preceding page”,
or “on the following page”. The word “facing” is used when both label and reference
fall on a double spread and the document is typeset in twoside mode. When the
difference is larger than one page, \vref produces both \ref and \pageref . Note
that when a special page numbering scheme is used instead of the usual arabic
numbering (for example, \pagenumbering{roman}), there will be no distinction
between being one or many pages off.

If \varioref is loaded with the option nospace as recommended, then the star ~Different
behaviors of the

star form depending
on options used

form has no effect unless you also load hyperref. In the latter case it prevents hyperref
from generating a hyperlink for this reference. If nospace is not used, then the star
form stops adding a space in front of the reference.

The \Vref command works like \vref except that it internally uses \Ref instead
of \ref ; i.e., it uppercases the first letter. See above for a discussion of the restrictions
that apply to its use with pdfTEX.

1As a matter of fact, the package also defines \fullref for cases where it is certain that label and
reference are far apart. Using that instead of \vref needs less resources and is faster although these
days this seldom matters.

2The reason that nospace is not the default is that the documents in the last twenty years assumed
the old behavior, and thus changing the default would break too many documents out there.

3Note that the optional arguments of \vref , \vpageref , and similar commands from varioref are
not supported if you also load the cleveref package! See Section 2.4.2 on page 86 for the restrictions.

79

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.80

2 THE STRUCTURE OF A LATEX DOCUMENT

\vpageref*[same-page][other-page]{key}

Sometimes you may only want to refer to a page number. In that case, a refer-
ence should be suppressed if you are citing the current page. For this purpose the
\vpageref command is defined. It produces the same strings as \vref except that
it does not start with \ref , and it produces the string saved in \reftextcurrent
if both label and reference fall on the same page.

Defining \reftextcurrent to produce something like “on the current page” en-
sures that text like “... see the diagram \vpageref{ex:foo} which shows
...” does not come out as “. . . see the diagram which shows . . . ”, which could be
misleading.

A space in front of \vpageref is ignored if the command does not create any
text at all. Thus the correct way to use the command is to place a space on either side.
As with \vref the star form has no effect when the option nospace is used unless
hyperref is also loaded in which case it suppresses the hyperlink to the page.

In fact, \vpageref allows even more control when used with its two optional
arguments. The first argument specifies an alternative text to be used if the label and
reference fall on the same page. This is helpful when both are close together so that
they may or may not be separated by a page break. In such a case, you usually know
whether the reference comes before or after the label so that you can code something
like the following:

... see the diagram \vpageref[above]{ex:foo} which shows ...

The resultant text will be “. . . see the diagram above which shows . . . ” when both
are on the same page, or “. . . see the diagram on the page before which shows . . . ”
(or something similar, depending on the settings of the \reftext..before and
\reftext..after commands) if they are separated by a page break. Note, however,
that if you use \vpageref with such an optional argument to refer to a figure or
table, depending on the float placement parameters, the float may show up at the top
of the current page and therefore before the reference, even if it follows the reference
in the source file.1

Maybe you even prefer to say “. . . see the above diagram” when both diagram
and reference fall on the same page — that is, reverse the word order compared to our
previous example. In fact, in some languages the word order automatically changes in
that case. To allow for this variation the second optional argument other-page can
be used. It specifies the text preceding the generated reference if both object and
reference do not fall on the same page. Thus, one would write

... see the \vpageref[above diagram][diagram]{ex:foo} which shows ...

to achieve the desired effect.

1To ensure that a floating object always follows its place in the source, use the flafter package,
which is described in Section 7.2.

80

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.81

2.4 Managing references

\vpagerefrange*[same-page]{first}{last}

This command is similar to \vpageref (without the second optional argument)
but takes two mandatory arguments — two labels denoting a range. If both labels
fall on the same page, the command acts exactly like \vpageref (with a single
label); otherwise, it produces something like “on pages 15–18” (see the customization
possibilities described below). It has an optional argument that defaults to the string
stored in \reftextcurrent and is used if both labels appear on the current page.

Again there exists a starred form, \vpagerefrange* , which suppresses a hy-
perlink or the insertion of a space depending on the options used.

\vrefrange[same-page]{first}{last}

This \vrefrange command is simply a convenient shorthand for

\ref{first} to \ref{last} \vrefpagerange[same-page]{first}{last}

except that it varies the word “to” depending on the language. This means it is
suitable only for ranges of length three or more, because with just two you better use
“and” between the references as we did in the following example.

2-4-4

1 Test
Observe equations 1.1
to 1.3 on pages 6–7
and in particular equa-
tions 1.2 and 1.3 on the
facing page.

a = b (1.1)

6

Here is a second equa-
tion. . .

b < c (1.2)

. . . and finally one more
equation:

a < c (1.3)

7

\usepackage[nospace]{varioref}
\renewcommand\theequation

{\thesection.\arabic{equation}}
\section{Test}
Observe equations~\vrefrange{A}{C} and
in particular equations~\ref{B}
and~\ref{C} \vpagerefrange{B}{C}.
\begin{equation}a=b\label{A}\end{equation}
Here is a second equation\ldots
\begin{equation}b<c\label{B}\end{equation}
\ldots and finally one more equation:
\begin{equation}a<c\label{C}\end{equation}

Providing your own reference commands

Sometimes you may want to define your own reference commands that make use of
the varioref features internally. For this the package offers three helper commands.

\vpagerefcompare{key1}{key2}{true-code}{false-code}

This command compares the page numbers for key1 and key2 and then executes
either true-code or false-code depending on the result. The next example shows a
not very serious application that compares two equation labels and prints out text

81

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.82

2 THE STRUCTURE OF A LATEX DOCUMENT

depending on their relative positions. Compare the results of the tests on the first
page with those on the second.

Test: the equa-
tions (1) and (2) on
this page.

Test: the equation
(1) on the current page
and (3) on page 8.

a = b (1)

b = c (2)

6

Test: the equa-
tions (1) and (2) on the
preceding page.

Test: the equation
(1) on the facing page
and (3) on the next
page.

We force eq. 3 to
the next page!

7

\usepackage[nospace]{varioref}
\newcommand\veqns[2]{the equation%

\vpagerefcompare{#1}{#2}%
{s (\ref{#1})}%
{ (\ref{#1}) \vpageref{#1}}%

\space and (\ref{#2}) \vpageref{#2}}
Test: \veqns{A}{B}. \par Test: \veqns{A}{C}.
\begin{equation} a=b \label{A}\end{equation}
\begin{equation} b=c \label{B}\end{equation}
\newpage
Test: \veqns{A}{B}. \par Test: \veqns{A}{C}.
\par We force eq.~\ref{C} to the next page!
\newpage % for eq. to next page
\begin{equation} c=a \label{C}\end{equation} 2-4-5

\vpagerefnearby{key}{true-code}{false-code}

This command lets you find out if a page reference would generate textual reference
because it is on the previous, current, or next page or if it would just generate
reference with a page number. Depending on the result, either the true-code or the
false-code is executed.

\vrefpagenum{cmd}{key}

The package also provides the \vrefpagenum command, which allows you to write
your own small commands that implement functions similar to those provided by the
two previous commands. It takes two arguments: the second is a label (i.e., as used
in \label or \ref), and the first is an arbitrary command name (make sure you use
your own) that is set to the page number representation related to this label. This can
then be used for comparisons with page numbers of other labels, but note that it may
not be a number.

Language options

The package supports the options defined by the babel system (see Section 13.1.3);
thus, a declaration like \usepackage[ngerman]{varioref} produces texts suit-
able for the German language. If your document is written in several languages, you
need to specify all of them as options so that the strings get integrated into babel’s
language switching mechanism. For languages not (yet) supported you need to specify
the relevant language strings yourself as explained on page 84.

Individual customizations

To allow further customization, the generated text strings (which will be prede-How to say
before . . . fined by the language options) are all defined via macros. Backward references

82

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.83

2.4 Managing references

use \reftextbefore if the label is on the preceding page but invisible, and
\reftextfacebefore if it is on the facing page (that is, if the current page number
is odd and the document is set in twoside mode).

Similarly, \reftextafter is used when the label comes on the next page but
. . . and after . . .

one has to turn the page, and \reftextfaceafter is used when it is on the next,
but facing, page. These four strings can be redefined with \renewcommand .

In fact, \reftextfacebefore and \reftextfaceafter are used only if the
user or the document class specified two-sided printing.

The command \reftextfaraway is used when the label and reference differ
. . . or far away

by more than one page or when they are nonnumeric. This macro is a bit different
from the preceding ones because it takes one argument, the symbolic reference
string, so that you can make use of \pageref in its replacement text. For instance, if
you wanted to use your macros in German language documents, you would define
something like:

\renewcommand\reftextfaraway[1]{auf Seite~\pageref{#1}}

The \reftextpagerange command takes two arguments and produces the text
Denoting ranges

that describes a page range (the arguments are keys to be used with \pageref).
Similarly, \reftextlabelrange takes two arguments and describes the range of
figures, tables, or whatever the labels refer to. See below for the English language
defaults of both.

To allow some random variation in the generated strings, you can use the com-
Minor randomness

mand \reftextvario inside the string macros. This command takes two arguments
and selects one or the other for printing depending on the number of \vref or
\vpageref commands already encountered in the document (alternating between
the first and the second argument).

As an example, the English language default definitions of the various macros
described in this section are shown below:

\newcommand\reftextfaceafter{on the \reftextvario{facing}{next} page}
\newcommand\reftextfacebefore

{on the \reftextvario{facing}{preceding} page}
\newcommand\reftextafter {on the \reftextvario{following}{next} page}
\newcommand\reftextbefore

{on the \reftextvario{preceding page}{page before}}
\newcommand\reftextcurrent {on \reftextvario{this}{the current} page}
\newcommand\reftextfaraway [1]{on page~\pageref{#1}}
\newcommand\reftextpagerange [2]{on pages~\pageref{#1}--\pageref{#2}}
\newcommand\reftextlabelrange[2]{\ref{#1} to~\ref{#2}}

If you want to customize the package according to your own preferences, just write
appropriate redefinitions of the above commands into the preamble of your docu-
ment or in a file with the extension .sty (e.g., vrflocal.sty) and load that with
\usepackage . If you also put \RequirePackage[nospace]{varioref} (see Sec-
tion A.6 on page →II 693) at the beginning of this file, then your local package
automatically loads the varioref package.

83

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.84

2 THE STRUCTURE OF A LATEX DOCUMENT

Some people do not like textual references to pages but want to automaticallyUsing varioref
without textual

references
suppress a page reference when both label and reference fall on the same page. This
can be achieved with the help of the \thevpagerefnum command as follows:

\renewcommand\reftextfaceafter {on page~\thevpagerefnum}
\renewcommand\reftextfacebefore{on page~\thevpagerefnum}
\renewcommand\reftextafter {on page~\thevpagerefnum}
\renewcommand\reftextbefore {on page~\thevpagerefnum}

Within one of the \reftext... commands, \thevpagerefnum evaluates to the
current page number if known or to two question marks otherwise.

In the same fashion you can suppress all textual page references if the reference
is on the preceding or following page and show the page number only when it is
further away. For this, change the definitions as follows:

\renewcommand\reftextfaceafter {\unskip}
\renewcommand\reftextafter {\unskip}
\renewcommand\reftextfacebefore{\unskip}
\renewcommand\reftextbefore {\unskip}

The \unskip is necessary in order to remove the space that was already added after
the reference. Without it you end up with two spaces.

Some languages have a completely different sentence structure so that adjust-
Altering the phrase

structure
ing only the individual phrases is not enough. To cater for this, there are also
\vrefformat , \Vrefformat , \vrefrangeformat , and \fullrefformat . For ex-
ample, for Japanese there are definitions such as

\renewcommand\vrefformat[2]{\ref{#2}(\vpageref[#1]{#2})} % for Japanese
\renewcommand\vrefformat[2]{\ref{#2} \vpageref[#1]{#2}} % all other

% languages

The parentheses in the Japanese definition are not the normal characters but their
full wide counterparts in Unicode slots U+FF08 and U+FF09 — something you cannot
see here but is important when this is used together with Kanji glyphs.

Customization for several languages with babel

If you use the babel system, redefinitions for individual languages should be added
using \addto , as explained in Section 13.6, e.g.,

\addto\extrasngerman{%
\renewcommand\reftextfaceafter{auf der nächsten Seite}%
... }

Do not forget to add appropriate % signs as shown above. Otherwise, a language
switch might generate spurious spaces in your document!

84

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.85

2.4 Managing references

A few things to watch out for

Defining commands like the ones described above poses some interesting problems.
Suppose, for example, that a generated text like “on the next page” gets broken across
pages. If this happens, it is very difficult to find an acceptable algorithmic solution,

~Impossible
documents!

and, in fact, this situation can even result in a document that always changes from
one state to another (i.e., inserting one string; finding that this is wrong; inserting
another string on the next run which makes the first string correct again; inserting
. . .). The current implementation of the package varioref considers the end of the
generated string as being relevant. For example,

Table 5 on the current ⟨page break⟩ page

would be true if Table 5 were on the page containing the word “page”, not the one
containing the word “current”. However, this behavior is not completely satisfactory
and in some cases may actually result in a possible loop (where LaTEX is requesting
an additional run over and over again). Therefore, all such situations produce a LaTEX
error message so that you can inspect the problem and perhaps decide to use a \ref
command in that place.

During document preparation, while one is still changing the text, such errors can
be turned into warnings by placing a \vrefwarning command in the preamble. This
is equivalent to specifying draft as an option to the package. \vrefshowerrors
ensures that varioref stops when detecting a possible loop. This is the default and
equivalent to specifying final as an option. The commands can also be used inside
the document if you want to disable the errors only in some places.

Also, be aware of the potential problems that can result from the use of
~Variation can

be dangerous!
\reftextvario in the default definitions: if you reference the same object sev-
eral times in nearby places, the change in wording every second time can look strange.
To get rid of the variations introduced by \reftextvario without redefining all the
\reftext... commands that use it, you can simply redefine it to always use the
first or the second of its arguments, e.g.,

\renewcommand\reftextvario[2]{#1}

in the preamble of your document.

Package behavior without the nospace option

When varioref was originally designed, it had a special behavior: its commands re-
moved any preceding space and inserted their own instead. Thus, you could leave
out space before \vref or \vpageref and it would still put the reference in the
right place. But this meant that you could not write something like (\vref{foo}) ,
and therefore the package offered star forms of the commands to prevent the space
manipulations. This is still the default behavior if you use the package without the
nospace option.

However, this approach has several drawbacks. For one it prevents hyperref from
using the star forms for hyperlink suppression (which is an important feature), it
makes your sources less readable if you leave out the space, and it does not work

85

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.86

2 THE STRUCTURE OF A LATEX DOCUMENT

well with other packages, e.g., cleveref. This is why these days we recommend using
always the nospace option.

2.4.2 cleveref — Cleverly formatted references
We have already seen on page 77 that LaTEX offers some light-weight support for for-
matted references based on the counter used in the reference. The package cleveref
by Toby Cubitt is the heavy-weight version of this approach. In addition, it supports
references to multiple labels and with numerical references or page references sorts
the results and compresses ranges appropriately. The varioref commands \vref ,
\Vref , and \vpageref are augmented to support multiple keys and reference for-
matting.1 All aspects of the formatting are customizable in the document preamble,
which makes cleveref a truly comprehensive and powerful solution.

\cref*{key-list} \Cref*{key-list}

The main command offered by cleveref is \cref . It accepts either a single key (like
\ref) or a list of such keys separated by commas. It then formats the corresponding
reference (or references) according to their type, e.g., prepends words such as “section”
or abbreviations such as “fig.” and possibly adds other frills such as parentheses
around equation numbers.

If a comma-separated list of keys is given, it uses plural forms as appropriate
and in longer lists it knows about appropriate conjunctions; e.g., it can distinguish
pairs, longer sets of individual references, and consecutive ranges, and it can handle
combinations thereof.

Because the generated text might start with a lowercase letter, the package
additionally offers \Cref to be used at the start of a sentence. It differs from \cref
by using a capital first letter in the text that is prepended to the reference number.
It also always uses full words, e.g., “Figure” not “Fig.”, whereas \cref may produce
abbreviations if so directed.

If the hyperref package is used, then the typeset reference gets a hyperlink to the
reference target by default. Use the star form to suppress this link.

4 A Section
A reference to an equation in this section
looks like: “see eq. (1) in section 4”.

a = b (1)
b < c (2)
c < d (3)

Equations (1) to (3) above are . . .

\usepackage{amsmath,cleveref}

\section{A Section}\label{sec:this}

A reference to an equation in this section looks
like: ‘‘see \cref{eq:a} in \cref{sec:this}’’.
\begin{align} a &= b \label{eq:a} \\

b &< c \label{eq:b} \\
c &< d \label{eq:c} \end{align}

\Cref{eq:c,eq:a,eq:b} above are \ldots 2-4-6

1The cleveref package requires varioref to be loaded with the option nospace , to be able to use
the star forms for suppressing hyperlinks. If necessary, it enforces this varioref behavior.

86

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.87

2.4 Managing references

As you can see, the reference to the equation is handled quite differently from the
one to the heading: it uses an abbreviation and adds parentheses around the equation
number, whereas the heading is referred to as “section”. In comparison, \Cref used
“Equations”; the references are correctly sorted (even though they are given in a
different order in the source), and the resulting range was correctly compressed.
Automatic sorting of references is usually helpful. If you rearrange parts of your text,
then some of your reference may change their order, and without this sorting, you
might end up with strange references such as “see figures (1), (3), and (2)”.

If we had two additional equations and referenced some of them, the result would
come out quite different as shown in the next example:

2-4-7

Equations (1) to (5) are sorted and eqs. (1)
to (3) and (5) are sorted with a gap. But com-
pare these results with referencing eqs. (1) to (3),
(4) and (5)! Surprised?

% equations as before + 2 more
\Cref{eq:c,eq:b,eq:a,eq:d,eq:e} are sorted and
\cref{eq:c,eq:b,eq:a,eq:e} are sorted with a gap.
But compare these results with referencing
\cref{eq:c,,eq:b,eq:a,eq:d,eq:e}! Surprised?

The behavior of the last \cref in the previous example may have been a bit
of a surprise: the references are correctly sorted but split into two groups with the
first one compressed. The reason is the “,,”. It tells cleveref that the preceding key
(eq:c) should be treated as a final reference in whatever range it belongs to after
sorting. Thus, equations eq:d and eq:e form a second range or rather a pair and we
therefore get this particular result in the second sentence of the example. This facility
can be sometimes helpful, but in such a case you would probably want to make sure
that you keep the keys sorted in the source to better understand what is going on.

If you use \cref or \Cref with a list of keys, it is not required that they are all
of the same type as cleveref happily sorts them within each type and then applies the
rest of its magic. Of course, this works well only if the types are compatible with each
other, e.g., if you are referring to a number of different heading levels, to floats, or
to different types of theorem environments, etc. Otherwise, you might end up with
strange constructs.

2-4-8 In figs. 1 to 3 and table 1 we . . .
\usepackage{cleveref}
In \cref{fig:a,tab:a,fig:b,fig:c} we \ldots

You may not fancy all of the defaults that cleveref applies, so to alter them you
Options to alter the
package behavior

can use the options sort (but do not compress), compress (but do not sort), nosort
(do neither), or sort&compress (the default). If the generated texts should always
be capitalized, which is often requested in house styles, use the option capitalize .

The package also understands most language options; e.g., in the next example
we use German text and turn off compression but keep the sorting. We do not have to
use capitalize , because German nouns are always capitalized.

2-4-9
Gleichungen (1), (2) und (3) in Ab-

schnitt 4 . . .
\usepackage[ngerman,sort]{cleveref}
\Cref{eq:c,eq:a,eq:b} in \cref{sec:this} \ldots

87

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.88

2 THE STRUCTURE OF A LATEX DOCUMENT

Another useful option is noabbrev if you do not like the abbreviations used by
\cref in some languages such as English.

Finally, if you use cleveref with hyperref, then references are hyperlinked to their
target (unless the star forms of the commands are used). By default the link area, i.e.,
the text you can click to navigate, is only the label and does not include the additional
material. With the option nameinlink , you can change this to enlarge the clickable
area. To demonstrate this we colored the link areas in the next example:

Section 4 contains equations (1) and (2).

\usepackage[colorlinks,linkcolor=blue]{hyperref}
\usepackage[nameinlink,noabbrev]{cleveref}
\Cref{sec:this} contains \cref{eq:a,eq:b}. 2-4-10

\namecref{key} \nameCref{key} \lcnamecref{key}
\namecrefs{key} \nameCrefs{key} \lcnamecrefs{key}

Sometimes it is useful to provide just the text generated for a certain reference type
without typesetting the label value. The above commands do this for use within
a sentence and at the start of a sentence, both in singular and plural forms. The
\lcname... commands always use lowercase, even if the capitalize option is in
force. All of the commands accept only a single key as their argument, because a key
list would be pointless if no labels are set.

\labelcref{key-list} \labelcpageref{key-list}

There are also \labelcref and \labelcpageref that print the labels or page
references without prepending any text. They support key-lists and still add any
necessary conjunction text between the items. However, because no text denoting the
type is typeset, the elements in the key-list must be of a single type.

\crefrange*{key1}{key2} \Crefrange*{keyfirst}{keylast}

Instead of specifying a lengthy key-list with \cref , you can use \crefrange or
\Crefrange using the first and last keys to denote a consecutive range. Note that
the assumption is that this range has at least three items; thus, referencing a range of
length two comes out slightly strange as shown below. For this you therefore should
use \cref{eq:b,eq:c} .

Equations (1) to (5) and in particular
eqs. (2) to (3) show . . .

\usepackage{cleveref}
\Crefrange{eq:a}{eq:e} and in particular
\crefrange{eq:b}{eq:c} show \ldots 2-4-11

\cpageref{key-list} \Cpageref{key-list}
\cpagerefrange{keyfirst}{keylast} \Cpagerefrange{keyfirst}{keylast}

These are the commands to deal with references to page number and, just like with
\cref , sort and compress them and add the appropriate words and punctuations in
the target language.

88

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.89

2.4 Managing references

\vref*{key-list} \Vref*{key-list} \vrefrange*{keyfirst}{keylast}
\vpageref*{key-list} \vpagerefrange*{keyfirst}{keylast}

If the varioref package is used with cleveref, then some of its functions are changed
to support key-lists instead of only a single key as arguments. Note that optional argu-
ments are not supported if both packages are used together. For use at the beginning
of a sentence cleveref also defines \Vrefrange , \Vpageref , and \Vpagerefrange ,
which are not offered by varioref.

Below we repeat Example 2-4-4 on page 81 with both packages loaded. Note that
we can now simply use \vref with a key-list instead of the construction used before.

2-4-12

1 Test
Observe equations (1.1)
to (1.3) on pages 6–7
and in particular equa-
tions (1.2) and (1.3) on
the facing page.

a = b (1.1)

Here is a second equa-
tion that appears on the

6

next page . . .

b < c (1.2)

. . . and finally one more
equation:

a < c (1.3)

7

\usepackage[nospace]{varioref}
\usepackage[noabbrev]{cleveref}
\renewcommand\theequation

{\thesection.\arabic{equation}}
\section{Test}
Observe \vrefrange{A}{C} and
in particular \vref{B,C}.
\begin{equation}a=b\label{A}\end{equation}
Here is a second equation that appears
on the next page \ldots
\begin{equation}b<c\label{B}\end{equation}
\ldots and finally one more equation:
\begin{equation}a<c\label{C}\end{equation}

Customizing the references

The text generated by the cleveref commands depend on the “type” of the reference,
which is usually based on the counter used by the reference.1 For example, \section
commands use the section counter, figure environments the figure counter,
enumerate the counters enumi to enumiv for its different nesting levels, and so
on. Thus, the reference type for a second-level enumeration is enumii , while that
to a figure is figure . There are a few exceptions to the rule: the heading levels in
the back matter have the types appendix , subappendix , etc., and theorem-like
environments use the environment name if amsthm or ntheorem is loaded.

As the package has knowledge about all these standard types and defines default
texts for them, it can be used out of the box generating results like those shown in
the previous examples.

However, if you load additional packages that define their own environments or
commands with referenceable counters or if you simply do not like the default texts
generated by cleveref, then it is easy to adjust or extend them using the configuration
possibilities offered by the package as discussed below.

1As a side effect this means that if two different environments use the same counter, then
references to them are of the same type and thus always generate the same text. This is normally not
an issue, but see the discussion on theorems on page 91.

89

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.90

2 THE STRUCTURE OF A LATEX DOCUMENT

\crefname{type}{singular}{plural} \Crefname{type}{singular}{plural}

These two commands define for a given type the text to typeset when a single reference
is made and when several references are made by \cref and \Cref , respectively. For
convenience, various types inherit their defaults from other types; e.g., if you change
the section type, then subsection and the other lower levels inherit the new text
as well, unless you provide an explicit declaration for them too.

If you define for a given type only a \crefname , then a corresponding
\Crefname is automatically provided by uppercasing the first letter in the second
and third arguments. Similarly, if only \Crefname is provided, then \crefname is
constructed by the package by applying \MakeLowercase .

\creflabelformat{type}{format}

If you want the labels of a certain type formatted in a special way, you can denote
that with a \creflabelformat declaration. The format can be any LaTEX code,1 and
within it #1 denotes the place where the label (e.g., \thesection) is placed, and
#2 and #3 denote the start and end points of the clickable area if a hyperlink is
produced. For example, to add a closing parenthesis to references to an enumerate
environment, you could write

\creflabelformat{enumi}{#2#1)#3}

or to remove the parentheses around equation references the solution is to write

\creflabelformat{equation}{#2#1#3}

\crefrangeconjunction \crefpairconjunction
\crefmiddleconjunction \creflastconjunction

To alter the conjunctions between multiple labels, a number of commands exist that
contain the material to be inserted; all are changed using \renewcommand . Between
a consecutive range of labels \crefrangeconjunction is added, between pairs
\crefpairconjunction is used, and for longer lists \crefmiddleconjunction
and \creflastconjunction are added in the appropriate places.

For instance, if you did not like the fact that figures are abbreviated as “figs.” in
Example 2-4-8 on page 87 and you prefer a range dash instead of the word “to”, then
this can be easily arranged as follows:

In figures 1–3 and table 1 we show
all relevant data from the different exper-
iments . . .

\usepackage{cleveref}
\crefname{figure}{figure}{figures}
\newcommand\crefrangeconjunction{--}
In \cref{fig:a,tab:a,fig:b,fig:c} we show all
relevant data from the different experiments \ldots 2-4-13

1Use \protect with fragile commands.

90

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.91

2.4 Managing references

\crefalias{type}{existing-type} \label[type]{key}

Instead of setting up a (new) type with \crefname , etc., you can alternatively specify
that reference of that type should be formatted according to some existing-type. This
can be useful in some circumstances if you want several counters (types) to use the
same referencing format.

You can also use \label with an optional type argument to overwrite the default
type for references to a particular label. For example, if you want to refer to some
questions as “assumptions”, the following will do the trick:

2-4-14

a = b (1)

Starting from assumption (1) we get . . .

\usepackage{cleveref}
\crefname{assume}{assumption}{assumptions}
\creflabelformat{assume}{#2(#1)#3}
\begin{equation} a=b\label[assume]{eq}\end{equation}
Starting from \cref{eq} we get \ldots

There are several other adjustments possible with further configuration com-
mands supporting special cases as needed by some languages. Thus, if the above
is not sufficient for your needs, consult the package documentation for additional
customization possibilities.

Support for multiple languages

So far we covered customizing commands for the main language of a document. If Customizing several
languages in
parallel

your document uses several languages and you want to customize more than one of
them, then you have to get your changes into the language switching mechanism of
babel or polyglossia. Here is an example for babel:

2-4-15

In figures 1–3 and table 1 we have
. . .

In Abbildungen 1–3 und Tabelle 1
haben wir . . .

\usepackage[ngerman,english]{babel,cleveref}
\crefname{figure}{figure}{figures}
\newcommand\crefrangeconjunction{--}
\AtBeginDocument{\addto\extrasngerman{%

\crefname{figure}{Abbildung}{Abbildungen}%
\renewcommand\crefrangeconjunction{--}}}

In \cref{fig:a,tab:a,fig:b,fig:c} we have \ldots
\par \selectlanguage{ngerman}
In \cref{fig:a,tab:a,fig:b,fig:c} haben wir \ldots

Note that the additions to \extrasngerman have to be made after the beginning of
the document or inside \AtBeginDocument to take effect and that we have to use
\renewcommand , not \newcommand , at this point.

Handling theorem-like environments

If you define a new theorem-like environment with the help of \newtheorem , then
cleveref does not use the counter name as the type but instead the environment name
that has been set up.

91

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.92

2 THE STRUCTURE OF A LATEX DOCUMENT

It also automatically assumes that it can use the environment title as the reference
text (converted to lowercase if necessary), but it does not make any attempt to set up
a plural form as that is too irregular even in English. Thus, if we process the following
example, we see that \Cref and \cref with a single key work out of the box, but the
last one using a key-list fails without further declarations.

Theorem 1 A theorem.

Lemma 1 A lemma.

Lemma 2 Another one.

Lemma 2 is used to prove theorem 1.
But ?? 1?? 2 need formatting help.

\usepackage{cleveref}
\newtheorem{thm}{Theorem}
\newtheorem{lem}{Lemma}
\begin{thm} A theorem. \label{thm:a}\end{thm}
\begin{lem} A lemma. \label{lem:a}\end{lem}
\begin{lem} Another one.\label{lem:b}\end{lem}
\Cref{lem:b} is used to prove \cref{thm:a}. \\
But \cref{lem:a,lem:b} need formatting help. 2-4-16

Beside the question marks in the printout we also get warnings like

LaTeX Warning: cref reference format for label type ‘lem’
undefined on input line 31.

in that case. The remedy is to provide appropriate \crefname or \Crefname declara-
tions. However, even that is not enough if you set up the theorem-like environments to
share a single counter: in that case we suddenly get texts always referring to theorems
and not to lemmas where appropriate.

Theorem 1 A theorem.

Lemma 2 A lemma.

Lemma 3 Another one.

Theorem 3 is used to prove theorem 1.
But theorems 2 and 3 need formatting help.

\usepackage{cleveref}
\crefname{thm}{theorem}{theorems}
\crefname{lem}{lemma}{lemmas}
\newtheorem{thm}{Theorem} \newtheorem{lem}[thm]{Lemma}
\begin{thm} A theorem. \label{thm:a}\end{thm}
\begin{lem} A lemma. \label{lem:a}\end{lem}
\begin{lem} Another one.\label{lem:b}\end{lem}
\Cref{lem:b} is used to prove \cref{thm:a}. \\
But \cref{lem:a,lem:b} need formatting help. 2-4-17

Fortunately, cleveref has a solution for this case too. All you need to do is to use
either the amsthm , ntheorem , or thmtools package for theorem-like environments
(which is anyway preferable), and then everything comes out correctly.

Lemma 3 is used to prove theorem 1.
Now lemmas 2 and 3 are typeset correctly.

\usepackage{amsthm,cleveref}
% Otherwise same setup as in previous example ...
\Cref{lem:b} is used to prove \cref{thm:a}. \\
Now \cref{lem:a,lem:b} are typeset correctly. 2-4-18

Other special considerations

The cleveref package cannot be used together with LaTEX’s eqnarray , or, more pre-
�LATEX’s eqnarray

is not supported
cisely, you cannot use \cref to refer to a \label inside such an environment. If
you really need this, use \ref instead and supply the necessary textual material (e.g.,

92

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.93

2.4 Managing references

“eqs.”) manually. In most circumstances it is better to use the environments provided
by amsmath anyway, because they offer much better spacing of the equations.

2.4.3 nameref — Non-numerical references
In some documents it is required to reference sections by displaying their title texts
instead of their numbers, either because there is no number to refer to or because
the house style asks for it. This functionality is provided by the \nameref command,
available through the nameref package by Sebastian Rahtz (1955–2016) et al. This
package is also automatically loaded by hyperref.

For numbered sections and floats with captions, the titles are those that would be
displayed in the contents lists (regardless of whether such a list is actually printed).
That is, if a short title is provided via the optional argument of a sectioning command
or caption, then this title is printed by \nameref . This can be somewhat surprising
for the reader if the short title of a heading is noticeably different in wording to the
title in the body of the document. In contrast, unnumbered sections take their title
reference from the printed title. If you use \nameref with a label key unrelated to a
title (e.g., a label in a footnote, or an enumeration item), it simply displays the title of
the surrounding section.

As \nameref does not produce the heading number but only its title, you have to
additionally use \ref if you want to typeset both. More commonly you may want to
display the title together with a page reference for which you can use the abbreviation
\Nameref . Note that this command surrounds the title with single quotes, which may
not be to your taste and may lead to strange results if you use other type of quotes
elsewhere as we did in the next example.

2-4-19

4 Textual References
Section ‘Textual References’ on page 6 proves
that it is possible to reference unnumbered sec-
tions by referencing section “Example”.

A Small Example
The current section is referenced in section 4.

\usepackage{nameref}
\setcounter{secnumdepth}{1}
\section{Textual References}\label{num}
Section \Nameref{num} proves that
it is possible to reference unnumbered sections
by referencing section ‘‘\nameref{unnum}’’.

\subsection[Example]{A Small Example}\label{unnum}
The current section is referenced in
section~\ref{num}.

If hyperref is used, then you can also use \nameref* , which works like \nameref
but prevents a hyperlink to the section. If you load only nameref, both commands
have the same effect.

2.4.4 showkeys, refcheck — Displaying & checking reference keys
When writing a larger document, many people print intermediate drafts. In such drafts
it would be helpful if the positions of \label commands as well as their keys could

93

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.94

2 THE STRUCTURE OF A LATEX DOCUMENT

be made visible. This becomes possible with the showkeys package written by David
Carlisle or the refcheck package by Oleg V. Motygin.

When the showkeys package is loaded, the commands \label , \ref , \pageref ,
\cite , and \bibitem are modified in a way that the used key is printed. The \label
and \bibitem commands normally cause the key to appear in a box in the margin,
while the commands referencing a key print it in small type above the formatted
reference (possibly overprinting some text). The package tries hard to position the
keys in such a way that the rest of the document’s formatting is kept unchanged.
There is, however, no guarantee for this, and it is best to remove or disable the
showkeys package before attempting final formatting of the document.

1 An examplesec
1.1 A subsectionunused
Section

sec
1 shows the use of the showkeys

package with a reference to equation (
eq
1).

a = b (1) eq

a < b (2) eq2

a > b (3)

\usepackage{amsmath,showkeys}
\section{An example}\label{sec}
\subsection{A subsection}\label{unused}
Section~\ref{sec} shows the use of the
\texttt{showkeys} package with a
reference to equation~(\ref{eq}).
\begin{align} a &= b \label{eq} \\

a &< b \label{eq2} \\
a &> b \end{align} 2-4-20

The package supports the fleqn option of the standard classes and works
together with the packages of the AMS-LaTEX collection, varioref, natbib, and many
other packages. Nevertheless, it is nearly impossible to ensure its safe working with
all packages that hook into the reference mechanisms.

If you want to see only the keys on the \label command in the margin, you can
suppress the others by using the package option notref (which disables the redef-
inition of \ref , \pageref , and related commands) or the option notcite (which
does the same for \cite and its cousins from the natbib package). Alternatively, you
might want to use the option color to make the labels less obstructive.

Also supported are the options draft (default) and final . While the latter is
useless when used on the package level, because you can achieve the same result by
not specifying the showkeys package, draft comes in handy if final is specified as
a global option on the class and you nevertheless want to visualize the keys.

If you look at the keys used in Example 2-4-20, then both “unused” and “eq2”
are never used in references, and the third equation has an equation number without
a label. While the latter is directly visible because there is no boxed key in the margin,
the unused keys cannot be identified easily if at all. Nevertheless, all three cases are
likely to be either mistakes or leftovers; e.g., some references were intended but never
made or misspelled.

To find such problems you can use the package refcheck instead of showkeys.
With that package unused labels are shown in the margins surrounded by question
marks and in the case of equation tags also underlined. Equations with tags that are
not referenced show {?} in the margin. What is not shown are key usage by \ref ,

94

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.95

2.4 Managing references

\pageref , or \cite . Thus, by redoing our example with this package, we get the
following result:

2-4-21

1 An example
⟨sec⟩ 1.1 A subsection

?⟨unused⟩? Section 1 shows the use of the refcheck
package with a reference to equation (1).

a = b (1) eq

a < b (2) ?eq2?

a > b (3) {?}

\usepackage{amsmath,refcheck}
\section{An example}\label{sec}
\subsection{A subsection}\label{unused}
Section~\ref{sec} shows the use of the
\texttt{refcheck} package with a
reference to equation~(\ref{eq}).
\begin{align} a &= b \label{eq} \\

a &< b \label{eq2} \\
a &> b \end{align}

The checking is also done for \bibitems so that you can easily see if you have
any citations in your bibliography that are never referenced in your paper.

If you use the xr package to provide references across different documents, then
those can also be verified; for details see the package documentation.

2.4.5 xr — References to external documents
David Carlisle, building on the earlier work of Jean-Pierre Drucbert (1947–2009),
developed a package called xr, which implements a system for external references.

If, for instance, a document needs to refer to sections of another document —
say, other.tex— then you can specify the xr package in the main file and give the
command \externaldocument{other} in the preamble. Then you can use \ref
and \pageref to refer to anything that has been defined with a \label command
in either other.tex or your main document. You may declare any number of such
external documents.

If any of the external documents or the main document uses the same \label key,
then a conflict occurs, because the key is multiply defined. To overcome this problem,
\externaldocument takes an optional argument in which you can declare a prefix.
For example, with \externaldocument[A-]{other} all references from the file
other.tex are prefixed by A- . So, for instance, if a section in the file other.tex had
a \label{intro} , then it could be referenced with \ref{A-intro} . The prefix can
be any string chosen to ensure that all the keys imported from external files are unique.

Note, however, that if one of the packages you are using declares certain active
characters (e.g., : in French or " in German), then these characters should not be used
inside \label commands and thus not as part of the prefix either.

As of 2019 the package also supports referencing \bibitems; i.e., you can cite a Citations to external
bibliographiesbibliography entry with \cite or any of its cousins even if the bibliography is stored

in a separate document.1

The package does not work together with the hyperref package because both
modify the internal reference mechanism. Instead, you can use the xr-hyper package,
which is a reimplementation tailored to work with hyperref.

1This was originally available as a separate xcite package, written by Enrico Gregorio.

95

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.96

2 THE STRUCTURE OF A LATEX DOCUMENT

2.4.6 hyperref — Active references
The hyperref package has a long history with many contributors going back to the
early days of LaTEX2ε . The original development was done by Sebastian Rahtz (1955–
2016; see page vii), with contributions by Heiko Oberdiek and David Carlisle; later
Heiko took over and rewrote and extended the package — so today’s comprehensive
version is largely due to his efforts. Now the hyperref package is maintained by the
LaTEX Project Team.

The package makes it possible to automatically turn all cross-references (citations,
table of contents, and so on) into hypertext links. It also supports hyperlinks to
external resources, and in addition it offers access to many PDF features, such as
bookmarks, etc. The package is described in detail in [57, pp.35–67] and comes with
its own extensive manual [167]. In this section we therefore discuss only the most
important features useful for day-to-day work, but keep in mind that there is much
more available (just in terms of option keys you find more than 100 in the manual).

As has been mentioned in Section 2.1.1 there is a major shift under way during
which LaTEX is being modernized to support accessible PDF; adapting hyperref is an im-
portant step of the task, and if you start your document with \DocumentMetadata
to indicate that you want to use the new functionality, a large part of its internal code
is different. The LaTEX Project Team works on moving core parts of hyperref directly
into the LaTEX kernel, on cleaning up the code, and on extending and standardizing
its features.

These changes have also some impact on the user commands: a few features
�\DocumentMetadata

required!
depend on the new code. Options and commands that are not available or that behave
differently without \DocumentMetadata are therefore marked with a danger symbol
in the following sections.

Using hyperref can be quite easy. Just including it in your list of loaded packages
(preferably as the last package1) suffices to turn all cross-references in your document
into hypertext links. For documents viewed on a computer screen, this gives invaluable
help for navigating through them.

You may however consider some of the package’s default settings not particularly
Configuration

possibilities
pleasing (such as placing colored boxes around link areas), so many people call the
package with a few keys adjusted to taste. The package uses a key/value approach,
and most keys can be set when loading the package or later using a \hypersetup
declaration.2

Manually and automatically provided links

Hyperlinks within a document consist of two parts: a region (of text — typically) that, if
clicked, instructs the viewing software to jump to a different part in the document (the
so called anchor point). This is realized by putting “named” anchors into the target

1The hyperref documentation contains a lengthy section discussing deviations to this rule, i.e., in
which order certain packages should be loaded in relation to the hyperref package.

2Some keys need to be set when the package is loaded because they implement global settings that
cannot be altered once set. Even \hypersetup is then impossible, except when used in hyperref.cfg ,
the configuration file for the package.

96

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.97

2.4 Managing references

places, surrounding regions that should react to clicks with appropriate commands
that invoke some sort of “go to the anchor with a certain name” action.

To be able to jump to the right place, each anchor needs a unique name, and the
clickable regions need to know to which “name” they should point. This can be done
manually with the following two commands:

\hypertarget{name}{text} \hyperlink{name}{clickable text}

The \hypertarget typesets the text and additionally places an anchor with the
name name before it. In a different part of the document you can then make a link to it
using \hyperlink . The clickable region is the clickable text argument, and by default
this gets surrounded by a box with thin colored borders. If used in the manual way,
it is your responsibility to make sure that name is unique across the whole document.

In many cases there is no need to produce internal document links manually,
because hyperref does this automatically for us behind the scenes. Whenever a com-
mand or environment is set up to allow cross-references, hyperref adds an anchor
point, and when you use \ref or \pageref , it surrounds the generated number
with a \hyperlink so that clicking that number takes you to the section, caption,
bibliography item, or whatever else is referenced. In the same way, it adds hyperlinks
to the titles (and/or page numbers) in the table of contents, list of figures etc.

If you want to make a reference without a hyperlink, use \ref* or \pageref*
instead. Making hyperlinks to existing \labels in the document is also available
through the following command:

\hyperref[label]{text}

This command is useful if you do not want to typeset a normal reference, through
\ref{label} , but instead want to refer in text to the object the \label{label} is
pointing to. Using \hyperref turns this text into a clickable area. If text should
additionally contain a \ref to display the reference number, use \ref* instead to
avoid nested links (which do not work).

\MakeLinkTarget{}

\ref , \pageref , and \hyperref do not jump to the place where the \label{label}
is written but to the last structure before the \label that set an anchor. This can have
the surprising (at least for \pageref) effect that it jumps to a different page than the
one shown in the output if, for example, the last section was on a previous page. In
such cases an explicit target before the label can be inserted with \MakeLinkTarget .
This creates the needed target anchor for a correct link if hyperref is loaded.1

The hyperref package also generates links from the lists generated by the com-
Links from the table
of contents and
similar lists

mands \tableofcontents , \listoffigures , etc., back to the pages with the
headings, figures, tables, and so forth. By default, the clickable areas are the heading
titles or the captions. This can be changed with the key linktoc , which accepts the

1The legacy hyperref name for this command is \phantomsection , but it is only available if the
package is loaded, while \MakeLinkTarget{} can be used with and without hyperref.

97

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.98

2 THE STRUCTURE OF A LATEX DOCUMENT

values none , section (the default), page , or all (in which case both the title and
page number become hyperlinks).

By default, links from footnote markers in the paragraphs to the footnote text at
Links to footnotes

the bottom of the page are automatically added except inside some environments (like
tabularx) or when packages such as bigfoot are loaded that introduce their own
footnote handling. You also do not get a link if you use \footnotemark with an op-
tional argument. You can explicitly suppress such links by setting hyperfootnotes
to false if you prefer not to have any footnote links at all.

It is also possible to automatically generate references from the bibliography back
Links from the

bibliography to
citations

to the pages where the bibliography items are cited. This can be helpful, especially
during document preparation. This is achieved with the package option pagebackref
(displaying the page numbers on which a bibliography item is cited) or backref . The
latter supports the values section (displaying the numbers of the sectional units
in which the citations are made, the default), slides for use in presentations, page
(same as pagebackref), or none to prevent them.

There is one important restriction to be aware of: the mechanism to add the links
requires that after each \bibitem entry there is always an empty line or a \par
command. If this is missing and the \bibitems directly follow each other, then the
links are attached to the wrong place.

The hyperref options for such back references are not relevant when the biblatex
package is used to produce the bibliography, because this package implements full
support for back references with links directly, and their behavior can and should be
adapted by using the relevant biblatex options.

Links back from an index to the pages that are referenced are also automatically
Links from the index

entries
generated. This can be controlled with the package option hyperindex , which can
be set to false if this is not wanted.

The names for anchors are built by hyperref with the name of the counter and a
Ensuring unique

anchor names
special representation of the counter called \theH⟨ctr⟩ , which by default expands
to \the⟨ctr⟩. If this representation is not unique across the document and you get
warnings about duplicated destination names, you should redefine it, for example, by
adding another counter value.

This is a common problem with appendices: their definitions often reset the
chapter or section counter to zero and switch the numbering style. We therefore repeat
the low-level definition from Section 7 on page 53 to demonstrate what is needed to
make it compatible with hyperref. We start with a redefinition of \appendix . Here
we add a redefinition of \theH⟨ctr⟩ to get a unique anchor name. We could simply
mirror the \thesection definition, but in languages different from English \Alph
is perhaps not usable as an anchor name, so we use a prefix instead. To avoid errors
if hyperref is not loaded, we provide also a default definition of \theHsection :

\providecommand\theHsection{\arabic{section}}
\makeatletter
\renewcommand\appendix{%

\renewcommand\section{% % Redefinition of \section...
\clearpage\thispagestyle{plain}% % new page, folio bottom

98

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.99

2.4 Managing references

\suppressfloats[t]\@afterindentfalse % no top floats, no indent
\secdef\Appendix\sAppendix}% % call \Appendix or \sAppendix

\setcounter{section}{0}\renewcommand\thesection{\Alph{section}}%
\renewcommand\theHsection{appendix-\arabic{section}}% for hyperref

}
\makeatother

No change is needed in the \Appendix command, but we should tell hyperref the
bookmark level:

\makeatletter \providecommand\toclevel@appendix{1} \makeatother

As a minimum, the \sAppendix command (implementing the starred form) needs a
\MakeLinkTarget so that it creates an anchor usable for page references:

\newcommand\sAppendix[1]{% % Simplified (starred) form
{\raggedleft\large\bfseries\MakeLinkTarget{}%
\appendixname\par \centering#1\par}%
\@afterheading\addvspace{\baselineskip}}

\makeatother

The special case of enumerate counters, which are typically never unique in a
document, is handled internally by hyperref. Another problem can arise from page
numbers: hyperref creates for every page an anchor and assumes that every page has a
unique name. This is normally the case because roman and arabic page numbers count
as different, but it can fail if documents reset the page number after a cover page. The
easiest workaround is to set the page number to a negative value for cover pages or to
use a different numbering style. If the class hardwires such duplicate page numbers,
then another option is to surround the cover pages with the NoHyper environment:
it disables all hyperref features and so suppresses also the anchor creation.

Links to external resources

It is also possible with hyperref to link to external resources, e.g., to some Internet
Uniform Resource Locator (URL) or to a local file, etc. In a PDF file, such links come
in three “flavors”: links to a URL, links that launch (“run”) an external application to
view a local file, and links to other PDF files that can be loaded by the PDF viewer. The
link types are marked automatically with different colors or link borders that can be
specified in \hypersetup .

The basic command for such links is \href , which attempts to identify the flavor
of the link based on some patterns, e.g., if there is a colon in the target or if the file
name ends with .pdf . For most standard cases this works quite well.

There are now also the more specialized commands \hrefurl , \hrefrun ,
~\DocumentMetadata

required!
and \hrefpdf that create the link type as specified by their name and offer some
additional options to manipulate the link target. The latter are available only if the
command \DocumentMetadata has been used at the start of the document.

99

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.100

2 THE STRUCTURE OF A LATEX DOCUMENT

\href[options]{link target}{text} \hrefurl[options]{url}{text}
\hrefrun[options]{file}{text} \hrefpdf[options]{file}{text}

The text argument is typeset and becomes the clickable area. You can use any kind
of formatting within text argument — it is just typeset by LaTEX as usual. The first
mandatory argument should describe where the link should take us. This can be a
website (starting with https:// or http://), but there are many other URL schemes
that are defined and supported by many PDF readers. For example,

\href{mailto:frank.mittelbach@latex-project.org?subject=Typo found
in TLC3}{Report Typo in TLC3}

would typeset the text “Report Typo in TLC3” in the document and, if clicked, would
open the reader’s mailing program with my e-mail address and a default subject line
prefilled — try it out if you find a typo.1

The special characters # , % , and ~ can be used verbatim in the argument for the
link target.2 This is helpful, because they appear quite often in URLs to web pages.

If the URL contains — as now happens quite commonly — non–ASCII characters,
Non–ASCII links

they must be converted into the “percent-encoded” form in the first argument of
\href ; this means, e.g., that a link to the town Köln should be entered as

\href{https://www.k%C3%B6ln.de}{Köln}

or if used in an argument as

\href{https://www.k\%C3\%B6ln.de}{Köln}

For this purpose the \hrefurl command offers the option urlencode , which
�\DocumentMetadata

required!
does the percent-encoding for you. This makes the LaTEX input considerably longer,
but if you need it often, you can also make it the default by setting href/urlencode
in \hypersetup .

\hrefurl[urlencode]{https://www.köln.de}{some text}

Most URLs use the HTTPS protocol. To save some typing, it is possible to preset
Preset a protocol

�\DocumentMetadata
required!

this protocol with href/protocol in \hypersetup for \hrefurl and \url :

\hypersetup{href/protocol=https://}
\hrefurl{www.latex-project.org.de}{some text}
\url{www.latex-project.org.de}

To link to files on the computer you can simply enter the file name in the \href ar-
Opening files by

launching an action
gument, or you can launch an action using hyperref’s special “run:” notation. The first
approach works well for PDF files, while a launch action is normally the better choice
for all other file types. It instructs the operating system to open the file, and for this

1Of course, to work, the viewing software would need to understand the URL schema mailto: ,
and the security configuration would need to allow the browser (or whatever is used for display) to
open other applications.

2You need to escape them only if \href is used inside an argument of another command, e.g., as
part of a \section title.

100

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.101

2.4 Managing references

to work, the operating system needs to know how to do this.1 Thus, if you can double-
click a file in your directory browser and that starts a program to view or process the
file, then run:file in the url argument does exactly the same. For example, writing

\href{run:resources/video.mp4}{see the video}

typesets “see the video”, and if clicked it opens — after a security dialog — the file
video.mp4 in the subdirectory resources relative to the current document in your
default .mp4 viewer. The optional options argument of \href can be used if PDF files
are opened in this way in Adobe Acrobat viewers. It accepts a number of different
keys, e.g., to specify at which page the PDF file should be opened; see the package
manual for details.

Being able to start other programs in this way out of your document can be very
handy, for example, in presentations where you can add little buttons that start an
audio or a video presentation, etc.

Links to external PDF files can jump to anchors in these files. If the files have
been created with LaTEX and hyperref , the names of the anchors can often be guessed
from the representation: in many cases the name is built from the counter name, a
period, and the value. For example, anchors to headings are by default constructed as
⟨heading⟩.⟨heading-number⟩. Thus, to jump to section 1.3 in manual.pdf , you can
write something like

\href{manual.pdf#section.1.3}{see section 1.3 in the manual}

Anchor names for other types of numbered objects are less easy to guess. Equa-
tions, for example, are often numbered on a per chapter or section basis in document
classes. To have a fighting chance for unique names, hyperref constructs such names
as equation.⟨section-number⟩.⟨equation-counter-value⟩ (where the section number
includes the chapter number if the class has chapters). If in doubt you can take a look
into the .aux file and look for lines containing the command \newlabel .

\hypersetup{. . ., baseurl = baseurl , . . .}

For URL links it is possible to shorten the url arguments by providing a base URL
through the key baseurl , e.g.,

\hypersetup{baseurl=https://www.latex-project.org/}
\href{publications.html}{Publications of the \LaTeX{} Project Team}
\href{help/books.html} {Books about \LaTeX}

This saves a bit of typing and may make later changes easier if most or all URLs have
the same base, but be aware that not every viewer program can deal with the fact
that the URLs are split into a base part and a remainder and that the base URL is
prepended only if hyperref identifies the URL as referring to an external website (e.g.,
through the .html extension). If the viewer thinks it is a local file, no base URL is
prepended.

1Usually the file extension is associated with a default program to open it, and that is then called.

101

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.102

2 THE STRUCTURE OF A LATEX DOCUMENT

Establishing a base URL can be done only once for the whole document because
this information is written into the PDF catalog. Links to all other places then need to
be specified with their complete URL.

\url{url} \nolinkurl{url}

A very common requirement when typesetting an external URL is to suppress normal
hyphenation and to allow it to break after slashes and other places. This is provided
by the \url command from the url package discussed in Section 3.4.7 on page 198.
This package is loaded by hyperref and its command is augmented so that you can
click the url to open it. To typeset a URL without a link, use \nolinkurl .

\url has an optional argument and can, like \hrefurl , percent-encode its
�\DocumentMetadata

required!
argument if it contains non–ASCII letters. However, this can be used only with Unicode
engines — while the link is encoded correctly in pdfTEX, the typeset output in the
document is mangled and shows something weird, such as www.kÃűln.de or similar,
depending on the current font encoding.

Highlighting links

The various links generated either automatically or through the above commands can
be highlighted in different ways through a number of keys, either as package options
or in a \hypersetup declaration. By default, clickable areas are surrounded by a box
with thin rules (in color). By specifying one of the following boolean keys, you can
change that behavior everywhere in your document.1

colorlinks Color the text in the clickable area and set the width of the thin rules
to zero to make them invisible.

hidelinks Do not mark links in any way.

The hyperref package offers a number of keys to change the colors of the text and
Setting colors

the borders if they are activated. All keys setting colors accept two color specifications:
the name of a color model together with a list of comma-separated numbers, or the
extended color syntax such as known from the xcolor package.

\hypersetup{ linkcolor = [rgb]{1,0,0} } % red in rgb
\hypersetup{ urlcolor = red!30!blue } % mix of red and blue

The color support is built using code from the L3 programming layer (which is
�\DocumentMetadata

required!
part of the format) and is thus available without needing an external color package.
Documents not using the new code should load xcolor.

The colors used for the individual links (when using colorlinks) can be altered
at any time using \hypersetup and the following key:

linkcolor Color for internal document links.

filecolor Color for URLs that open local files.

1In older hyperref versions they can be used only in the preamble.

102

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.103

2.4 Managing references

runcolor Color for run: links.

urlcolor Color for externally linked URLs.

menucolor Color for “named” links. These are links to menu functions of the PDF
viewer; see page 108.

allcolors Sets all link colors to the same value.

If you stay with borders around the links (or want to use them in addition to get a
particularly colorful result), the names for the keys are the same as those above with
bordercolor instead of just color at the end of the key name. All border colors
can be set with allbordercolors .

\hypersetup{ linkbordercolor = [rgb]{1,0,0} }
\hypersetup{ urlbordercolor = blue!30 }
\hypersetup{ allbordercolors = yellow }

The borders around the link areas (when drawn) are by default very thin so that
they often become invisible when rendered in the viewing programs.

With pdfborder you can adjust their width or reenable the borders if they have
been disabled with the colorlinks key. This key has a somewhat obscure syntax:
you need to supply three numbers: the first two typically zero and the third positive
specifying the rule size in pixels.1

There also exists the key pdfborderstyle that allows you to underline links
or place dash boxes around them. The feature is, however, supported only in a few
viewers; see the manual for details and examples.

Borders and border styles can also be set for individual link types by using keys ~\DocumentMetadata
required!such as urlborder or runborderstyle .

The hyperref package predefines a number of color schemes for the link colors
~\DocumentMetadata

required!
based on suggestions by users. By default it uses the color scheme phelype (named
after its author, a member of the LaTEX Project Team). The default colors used by
previous versions of hyperref were not to the liking of everyone, but if wanted, they
can be restored by using the scheme primary-colors .

\hypersetup{ colorscheme = primary-colors }

Bookmarks a.k.a. outline view

It is possible for a PDF document to contain an outline view, in a manner similar to
a table of contents, that can be used for navigating the document in the viewer. A
screenshot of such a view in Adobe Acrobat Pro, with some of the formatting options
described in this section, is shown in Figure 2.3 on the next page. These “bookmarks”
can be (and by default are) automatically produced by the hyperref package. The
package option bookmarks (default true) chooses whether bookmarks are produced
at all.

1The first two values are used to specify rounded corners, but only a few viewers support this.
Even the third value is not uniformly handled, unfortunately, but 0 always omits the border, and a
positive value shows it.

103

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.104

2 THE STRUCTURE OF A LATEX DOCUMENT

\DocumentMetadata{}
\documentclass{book} \usepackage{hyperref}
\hypersetup{next-anchor=toc} \tableofcontents
\bookmark[dest=toc,bold]{\contentsname}
\bookmarksetup{open,openlevel=3}
\chapter{Chapter A}
\section{Section A.1}
\subsection{Subsection A.1.1}
\section{Section A.2}
\bookmarksetup{openlevel=0}
\chapter{Chapter B} \section{Section B.1}
\subsection{Subsection B.1.1} \section{Section B.2}
\bookmark[uri =
{mailto:frank.mittelbach@latex-project.org?subject=Typo

found in TLC3},
italic,level=0]{Report Typo in TLC3}

Figure 2.3: The outline view of a PDF

In older versions this required at least two passes by LaTEX. In the first pass a file
with the extension .out was written that contained information about each sectional
unit plus some bookkeeping data. In subsequent runs the information from the
previous run was then placed into the PDF document. Heiko Oberdiek improved this
in a separate bookmark package that provided much more sophisticated bookmark
management allowing for additional formatting and the use of colors in the bookmarks
and that avoided the need of the second compilation.

The bookmark package has now been merged into hyperref and replaces its
�\DocumentMetadata

required!
legacy code. In older systems or when not using \DocumentMetadata , the package
bookmark should be loaded either after or instead of hyperref.

\bookmarksetup{options}

Bookmarks have their own command to set up various aspects like the level or the
depth.1 The full list of keys can be found in the documentation [159]; we present here
only a few important ones.

Typically the bookmarks mirror the content of the table of contents and the
Keys that influence

how bookmarks are
presented

nesting depth to which bookmarks are added is the value of the counter tocdepth .
This can be explicitly set and changed through the option depth . The key accepts
as values integers representing the level but also names for the level like section .
It can be set anywhere and so allows changing the depth locally. By using a negative
value, bookmarks of all levels can be suppressed.

\section{section} % shown
\subsection{subsection} % shown
\bookmarksetup{depth=section}

1For historical reasons a few options can also be set with \hypersetup .

104

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.105

2.4 Managing references

\section{section} % shown
\subsection{subsection} % hidden
\bookmarksetup{depth=-1}
\section{section} % hidden

With numbered you can decide if the bookmark string should include the section
numbers: by default it does not.

With the key open you can decide if the view should initially show only the
top level (which is the default) or if it should show all bookmarks already opened.
Additionally, you can use openlevel to request that bookmarks only up to a certain
level are initially opened. The value is an integer — unlike the depth it does not accept
a name — and it can be changed in the document and so allows fine-tuning which
parts are opened initially.

Finally, with the keys bold , italic , and color , the bookmark can be formatted.
The formatting is always applied to the whole bookmark, and only some PDF viewers
honor the settings. For example,

\bookmark[dest=toc,bold,italic,color={red!50!green}]{\contentsname}

Even if bookmarks are produced, you may not want them to be shown automati-
cally when the document is opened. This is controlled through pdfpagemode , which
is described below.

Textual data in such bookmarks can contain arbitrary Unicode characters, but
complicated formulas or similar constructs are not possible. The hyperref package
attempts to parse the titles of sectional units and places only allowed strings into
the bookmarks, but in some cases the results are less than suboptimal. For example,
suppose you have

\section{Discussion of $a \leq b$}

as a document heading. First of all this results in three warnings of the form

Token not allowed in a PDF string (Unicode):
(hyperref) removing ‘math shift’ on input line 46.

because neither the $ (math shift) nor the \leq is allowed. Worse, as a consequence,
the text of your bookmark becomes “Discussion of a b”, which is simply wrong.
In such cases you can help the hyperref package by using \texorpdfstring .

\texorpdfstring{TEX string}{PDF string}

The TEX string argument is used when doing normal typesetting, while the second
argument is used when writing a bookmark. This argument can even contain UTF-
8 characters that are unavailable for typesetting when pdfTEX is used and would
normally generate an error. Thus, writing

\section{Discussion of \texorpdfstring{$a \leq b$}{a <= b}} % or with
\section{Discussion of \texorpdfstring{$a \leq b$}{a _< b}} % U+2264 character

105

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.106

2 THE STRUCTURE OF A LATEX DOCUMENT

or even just using three dots as the PDF string would avoid the warnings and give a
better bookmark result.

\bookmark[options]{bookmark text}

Beside automatic generations of bookmarks through sectioning commands, it is also
Manual bookmarks

possible to create bookmarks manually to allow for easy navigation to places that are
normally not added to the printed table of contents such as the TOC itself. The target
of such a bookmark is given with the key dest , which needs as a value the name of
the anchor it should point to. Such anchors can be created with \hypertarget , but
for the table of contents you can also override the name of the automatically created
anchor with the key next-anchor of \hypersetup :

\hypersetup{next-anchor=toc}
\tableofcontents
\bookmark[dest=toc,level=0]{\contentsname}

Bookmarks not only allow you to jump to places in a document, other actions areBookmarks
executing other

actions
possible too. Thus, for example,

\bookmark[named=Print]{Print this!}

creates a bookmark that — if the PDF viewer supports this action — opens the print
dialog. Or to repeat the example from the begin of the section,

\bookmark[uri =
{mailto:frank.mittelbach@latex-project.org?subject=Typo found

in TLC3}]
{Report Typo in TLC3}

would add the text “Report Typo in TLC3” into the bookmarks and, if clicked, would
open the reader’s mailing program with my e-mail address in the same way as the
link in the document.

Document properties

If you look at the properties of a PDF document, you find information about title,
author, subject, keywords. They can be set in the preamble with keys of the same
name but prefixed with pdf , e.g.,

\hypersetup{pdfauthor = Frank Mittelbach,
pdftitle = {The LaTeX Companion, 3rd edition},
pdfsubject = Typesetting,
pdfkeywords = {document structure, layout, design, LaTeX}}

106

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.107

2.4 Managing references

Note the use of braces to hide the commas in the title and keyword list from being
misinterpreted as key separators. Like with bookmarks, the values have to be tex-
tual data, and hyperref removes unsuitable commands. This is the legacy interface
offered by hyperref since its first release. It is, however, only a small subset of the
metadata that is these days often required for PDF documents to comply with one
or the other standard. It will be therefore eventually superseded by keys offered by
\DocumentMetadata . Once that happens, these \hypersetup keys are deprecated
but will remain functional to support reuse of older documents.

PDF presentation possibilities (available with some viewers)

If a PDF document is opened in a viewer program such as Acrobat , it may start with
different configurations, e.g., in full screen, on a page different than the first, with or
without some menus open, etc. Such variant configurations can already be specified in
the source document, though as with many aspects of the hyperref package, the actual
behavior depends on the viewer used: they all work with Adobe’s Acrobat programs
but not necessarily elsewhere. The remainder of the section therefore describes the
situation with Acrobat software. Some of the keys also work with other viewers, but
the results may differ from viewer to viewer, so you need to check.

Perhaps the most important key is pdfpagemode with which you can control
the initial viewing layout. Possible values are UseNone , UseThumbs , UseOutlines
(i.e., show bookmarks), FullScreen , UseOC (when using overlay layers1), and
UseAttachments .

Normally the document window title shows the file name displayed, but if you
prefer to see its title, then add the key pdfdisplaydoctitle . The title should be
set with pdftitle for this; using only the command \title is not enough.

By default Acrobat starts out with both a menu bar and a tool bar (or pane)
open. Their settings are controlled through the keys pdfmenubar and pdftoolbar .
Especially the latter takes up a lot of space, so I prefer to turn it off by setting its key
to false .

Pages can be presented either as single pages or two pages side by side, and
one can flip them or ask for continuous scrolling. This is controlled through the
key pdfpagelayout that accepts six different values: SinglePage (flip pages when
pressing down or up keys), OneColumn (single pages with scrolling), TwoPageRight
(two pages with odd pages on the right), and TwoColumnRight (ditto with scrolling).

Note that Acrobat does not look at the logical page number but simply uses ~A simple-minded
way to determine

recto and verso
pages

the physical one to determine odd and even. It therefore also offers TwoPageLeft
and TwoColumnLeft , but neither helps if your pages are not continuous. In such a
case you really have to add empty pages into your document so that it is displayed
correctly.

By default the first physical page of PDF file is shown. To specify a different
starting page, use the key pdfstartpage . Again, if your logical pages are specially
numbered, you may have to count to determine the right physical page number to

1For example with the help of the ocgx2 package by Alexander Grahn.

107

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.108

2 THE STRUCTURE OF A LATEX DOCUMENT

use as a value. With individual links that open PDF documents, you can also specify a
starting page with the key page in the optional argument to \href .

If you open PDF documents through \href links, then Acrobat replaces the
current document with the new one, which is often not desired. With the global
boolean key pdfnewwindow , you can specify that a new window should be used
instead in all such cases. Alternatively, you can do this on individual links in the
optional argument to \href .

It is also possible to add transition options. They typically have an effect only if
�\DocumentMetadata

required!
you view the PDF in full-screen mode and add animations between page switches like
pages flying into the screen or dissolving into the background.

\hypersetup{pdfpagetransition={style=Glitter,duration=2,
direction=180}}

Other miscellaneous features

For Adobe Acrobat viewer software the hyperref package offers some special support
for accessing the program menus through the command \Acrobatmenu . It allows
you to define clickable areas that act as if you have selected the corresponding menu.
A huge number of menu items are supported (see the package documentation), but
probably only a few of them are likely to be useful.

\Acrobatmenu{FullScreen}{F} \Acrobatmenu{FitWidth}{W}
\Acrobatmenu{NextPage}{R} \Acrobatmenu{PrevPage}{L}

This places “F”, “W”, “L”, and “R” onto the page, and if you click them, the Acrobat
menu action is carried out, e.g., your document changes size or advances to the
next page, etc. This can be helpful occasionally, but if you know the corresponding
keyboard shortcuts, it does not gain you that much. Also note that the clickable area
is only as big as the glyph(s) in the second argument, so if you try to make them
inconspicuous, there is not much to click unless you use gray or even white. The
border color around the link area can be set with key menubordercolor or, if the
link text is colored, with menucolor .

The package also offers a useful set of commands to build PDF or HTML forms
with fields, check boxes, radio buttons, etc. If you are interested in that kind of
functionality, consult the package documentation for details.

As mentioned in the beginning, the package offers more than one hundred keys to
adjust its behavior in certain situations of which we covered only the most important
ones in this section. If you require some feature that appears not to be possible, study
the extensive package documentation — it may well exist after all.

2.5 Document source management
In the final section of this chapter we discuss tools that help you archiving your
documents as well as reliably exchanging them with others, e.g., journal publishers.

108

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.109

2.5 Document source management

We start with environments that hold the contents of a file, which is then ex-
tracted when the document is processed, allowing you to combine several files in one
document. We then look at ways to gather information on “used files” for archival
purposes. This is followed by looking at two programs that take such information
to produce an archive with all relevant files included: bundledoc , which saves only
the text and package files used and produces fairly small archives, and mkjobtexmf ,
which does a more thorough job and also includes fonts and similar binary data.
Which of them is more suitable depends on your use case.

Finally, we briefly discuss the latexrelease package, which offers you a way to roll
back your LaTEX installation to an earlier date without the need to install a previous
release explicitly. There are limits to what it can achieve, but it is a good addition
to LaTEX’s insurance that your documents can be processed successfully without any
changes in the output for long periods of time.

2.5.1 Combining several files
When sending a LaTEX document to another person, you may have to send local or
uncommon package files (e.g., your private modifications to some packages) along
with the source. In such cases it is often helpful if you can put all the information
required to process the document into a single file.

\begin{filecontents}[option-list]{file name} . . . \end{filecontents}

For this purpose, LaTEX provides the environment filecontents . This environment
takes one mandatory argument, the name of a file1; its body consists of the contents
of this file. The \begin and \end tags should be placed on lines of their own in the
source. In particular, there should be no material following them, or you will get LaTEX
errors.

If LaTEX encounters such an environment, it tries to find the mentioned file name.
If it cannot, it writes the body of the environment verbatim into a file in the current di-
rectory and inform you about this action. Conversely, if a file with the given name was
found by LaTEX, it informs you that it has ignored this instance of the filecontents
environment because the file is already present on the file system.

The option-list argument allows you modify this behavior. If you specify
nosearch , then only the current directory is searched for the file, not the whole TEX
tree. This is useful if you want to write, for example, a local version of a configuration
file, such as graphics.cfg , which would otherwise not appear in your local direc-
tory. If you specify force (or overwrite), then the file is always written, even if it
already exists in the current directory or somewhere in the TEX installation tree. Use
this option with caution because you can clobber files this way by mistake.2 You can

1If no extension is specified, the actual external file name is the one LaTEX would read if you used
this name as an argument to \input , i.e., adding the extension .tex .

2The environment refuses to write to \jobname.tex— disaster is assured if you overwrite your
own input file. However, other files might be equally important!

109

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.110

2 THE STRUCTURE OF A LATEX DOCUMENT

silence any warnings from the force key by also specifying nowarn , in which case
warnings are only written to the .log file.

By default the generated file gets a few comment lines (using % as a comment
character) added to the top to announce that this file was written by a filecontents
environment:

%% LaTeX2e file ‘foo.txt’
%% generated by the ‘filecontents’ environment
%% from source ‘test’ on 2022/04/22.

If this is not appropriate — for example, if the file is not a LaTEX file — use the option
noheader in which case these extra lines are not produced. Alternatively, you can
use the filecontents* environment instead, which is just a short way to set this
option.

In older LaTEX formats the content of such a file was restricted to ASCII characters —
with other characters all bet were off. These days essentially any Unicode character
should be admissible.

If you use filecontents to ship all files necessary to process your document in
a single master file, then it is best to place the environment(s) at the very top of the file
so that they are written out before they are needed when processing the document.

There are, however, also use cases where one would want to write files somewhere
inside the document body. For example, if you have some material that is reused
several times, you could write it to a file and then load that file via \input wherever
necessary. Other use cases are packages that require their input in external files
(ltxtable is an example). In that case you can keep your data where it belongs in your
source and write it to a file prior to using it. If you are using filecontents for such
purposes, it is best to add the force option, because otherwise you are likely to be
puzzled by the fact that you change your data and nothing happens in your document
(because the file was already written out in a previous run).

2.5.2 Document archival information
For archival purposes or sharing or collaborating on documents, it is often important
to record (and usually collect) all files needed for processing a document. This needs
their correct versions to faithfully re-create the document at a later stage or in a
different place. For this a number of tools and programs are available.

As a simple solution LaTEX already offers the command \listfiles , which
records all files that are opened with \documentclass , \usepackage , \include ,
\input ,1 \includegraphics , etc. Suppose you process the following document

\documentclass[12pt]{article} \usepackage{lmodern}
\listfiles
\begin{document} Hello, world! \end{document}

1Files opened with \input are recorded only if you use the recommended syntax with a braced
argument. The primitive plain TEX syntax that delimits the file name with spaces is not supported!

110

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.111

2.5 Document source management

then as a result your transcript file will show the following list of files, possibly with
different version numbers if your installation is older or younger:

File List
article.cls 2021/02/12 v1.4n Standard LaTeX document class
size12.clo 2021/02/12 v1.4n Standard LaTeX file (size option)

lmodern.sty 2015/05/01 v1.6.1 Latin Modern Fonts
ot1lmr.fd 2015/05/01 v1.6.1 Font defs for Latin Modern

l3backend-pdftex.def 2021-05-07 L3 backend support: PDF output (pdfTeX)

As you can see, this shows the document class, the class option file, the package used,
and one font definition file for Latin Modern, but it is clearly missing everything else
related to font usage. Thus, if the fonts used in your document do not exist elsewhere
(or in a different version), then the results of processing your document may differ
without a way to determine the cause.

Nevertheless, it goes a long way towards resolving issues when collaborating with
others or experiencing a problem that others do not seem to have: good advice in such
cases is to add \listfiles to the document and compare the results on different
installations. In many cases this already pinpoints the reason for different behavior.

2.5.3 snapshot, bundledoc — Document archival and verification
The snapshot package by Michael Downes (1958–2003) uses the same approach as
\listfiles for collecting file information about a document but presents it in a way
that it can be automatically verified at a later stage or on a different installation. This
is particularly useful when collaborating or when one want to archive documents and
record this information as part of the document itself.

To enable it, you have to place the package in the first line of your document
using \RequirePackage[error]{snapshot} even before the \documentclass .
Without any further options to the package, this will then write a file with the extension
.dep (for dependencies) containing the following lines if applied to our example
document:

\RequireVersions{
*{application}{pdfTeX} {0000/00/00 v1.40.22}
*{format} {LaTeX2e} {2021-06-01 v2.e}
*{package}{snapshot} {2020/06/17 v2.14}
*{class} {article} {2021/02/12 v1.4n}
*{file} {size12.clo} {2021/02/12 v1.4n}
*{package}{lmodern} {2015/05/01 v1.6.1}
*{file} {ot1lmr.fd} {2015/05/01 v1.6.1}
*{file} {l3backend-pdftex.def}{2021-05-07 v3}

}

Up to this point this is not much difference than when using \listfiles , except that
the information is placed into a separate file and slightly more structured. However,

111

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.112

2 THE STRUCTURE OF A LATEX DOCUMENT

as a next step you can copy the content of this file into your document directly after
loading the package, which makes it the information of record for this document.
From now on this data is checked at each run, and if any differences are found, they
raise a warning or an error.

For example, assume that you collaborate with some people on writing the “Hello
World” short story and their TEX installation has an obsolete Latin Modern package
somewhere in their texmf tree, then they will see the following error message

! Package snapshot Error:
Required version 2009/10/30 v1.6 of lmodern.sty and
provided version 2008/12/01 v1.5 do not match.

if they attempt to run the document. If you prefer to generate just warnings instead
of errors, use the option warning (or no option). It is also possible to restrict file
information verification just to dates, versions, or major version numbers by using
one of the options date , version , or major-version— if the latter is applied in
our example, there would be no error because the major version is 1 for both files.

The .dep file produced by snapshot can also be used to produce an archive with
all or some of the files it lists, by using the bundledoc program by Scott Pakin. This
is particularly useful if you want to send your document with all the necessary files
to somebody else and do not want to worry about missing anything relevant. For
example, journals often request all source files in addition to the camera-ready PDF.
In that case running

bundledoc --verbose --localonly --include=⟨myfile⟩.pdf ⟨myfile⟩.dep

does the trick, and you get an archive file1 containing the final PDF and everything
that is required and not part of the main TEX installation. Of course, it requires an
up-to-date .dep file; i.e., you have to include the snapshot package as described above
and process your document with it.

Alternatively, or in addition, you can use --exclude=string to exclude all files
whose names contain that string, and with --include , you can explicitly request addi-
tional files otherwise not included to be added to the archive like we did above. For ex-
ample, you may want to include your bibliography databases (and not just the resulting
.bbl files used by the document), which can be achieved with --include="*.bib".
Both options can be used as often as necessary. The --verbose option, as used
above, gives some progress information.

Without any of the options above, bundledoc includes all files listed in the .dep
file, which is more suitable for archival purposes. But do not forget that some files
important for the final results (such as font files) are not included. The advantage
is that the archive is noticeably smaller in size compared to those produced by

1The exact type of archive depends on your operating system; on Windows it is typically a .zip ,
on Unix or macOS a .tar.gz file. The exact behavior can be controlled through configuration files.

112

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.113

2.5 Document source management

mkjobtexmf discussed in the next section. Usually a workable approach is to addition-
ally archive the yearly TEX Live distributions as fonts change less often. However, for
100% accurate results it might be required to archive all files for a given project using
mkjobtexmf .

By default, bundledoc flattens the directory structure and places all files in the
archive next to each other. With --keepdirs the original structure is preserved.

With the option --config you can select a configuration file, for example,
--config=miktex.cfg for .zip archives on MiKTEX. Another interesting one is
texlive-unix-arlatex.cfg , which generates a single LaTEX file including all other
files through filecontents environments. How to define your own configuration
file is described in the documentation where you also find details on a few other
options that may be useful in some cases.

You can omit the extensions .dep and .cfg for the dependency and the config
file, so on MiKTEX, for example, we could write

bundledoc --config=miktex --localonly --include=⟨myfile⟩.pdf ⟨myfile⟩

to prepare a .zip file for a journal submission.

2.5.4 mkjobtexmf — Providing a minimal TEX file tree
To find out exactly which files are used by a TEX engine when processing a document,
most modern engines offer the command-line option -recorder . If it is used, then a
file with the extension .fls is produced that contains information on all files that the
engine opened for reading or writing, one per line. With our “Hello World” example
this amounts to 28 lines, and after removing the duplicates (LaTEX opens most files
twice for reading), the following 16 remain, among them various configuration and
font files and the format file:

INPUT /usr/local/texlive/2023/texmf-dist/fonts/enc/dvips/lm/lm-rm.enc
INPUT /usr/local/texlive/2023/texmf-dist/fonts/map/fontname/texfonts.map
INPUT /usr/local/texlive/2023/texmf-dist/fonts/tfm/public/cm/cmr12.tfm
INPUT /usr/local/texlive/2023/texmf-dist/fonts/tfm/public/lm/rm-lmr12.tfm
INPUT /usr/local/texlive/2023/texmf-dist/fonts/type1/public/lm/lmr12.pfb
INPUT /usr/local/texlive/2023/texmf-dist/tex/latex/base/article.cls
INPUT /usr/local/texlive/2023/texmf-dist/tex/latex/base/size12.clo
INPUT /usr/local/texlive/2023/texmf-dist/tex/latex/lm/lmodern.sty
INPUT /usr/local/texlive/2023/texmf-dist/tex/latex/lm/ot1lmr.fd
INPUT /usr/local/texlive/2023/texmf-dist/tex/latex/snapshot/snapshot.sty
INPUT /usr/local/texlive/2023/texmf-dist/web2c/texmf.cnf
INPUT /usr/local/texlive/2023/texmf-var/fonts/map/pdftex/updmap/pdftex.map
INPUT /usr/local/texlive/2023/texmf-var/web2c/pdftex/pdflatex.fmt
INPUT /usr/local/texlive/2023/texmf.cnf
INPUT myfile.aux
INPUT myfile.tex

For 100% accuracy, all of them, except the .aux file, should be archived, and doing
this with the --include option of bundledoc would be rather cumbersome. This is

113

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.114

2 THE STRUCTURE OF A LATEX DOCUMENT

where the mkjobtexmf program by Heiko Oberdiek comes into play. If you execute

mkjobtexmf --verbose --copy --jobname myfile # without extension

then LaTEX is run (using the -recorder option) on the file myfile.tex . The resulting
.fls file is examined, and all files in the above listing are then copied into the
directory myfile.mjt using a standard setup of texmf subdirectories. For archival,
all that remains is to zip up this directory and store it in a safe place. Note that the
--copy or --force-copy is essential for this to work: without it mkjobtexmf adds
links to the files, not physical copies.1 The --copy does not overwrite existing files
in the target texmf , whereas --force-copy does. The latter is useful because it
means that updates are properly accounted for if you run the program repeatedly
and want to make sure that the latest versions are inside the tree.2

Always mandatory is the option --jobname to specify the file to run and
the default destination directory. The --verbose displays information about what
mkjobtexmf does and is sometimes helpful.

If you prefer a flat structure with all files directly in the myfile.mjt directory,
specify the option --flat . If your document should be processed with one of the
Unicode engines, you can specify this too, e.g., by using --cmd-tex lualatex for
LuaTEX.

There are a number of further options to tweak the program behavior including
defining the destination directory (--destdir), the LaTEX file name to process if it has
an extension different from .tex (--texname), and several others. --help produces
a concise but useful reference.

If you use mkjobtexmf for archival purposes as described above, then you should
�Existing files are

never changed in
the destination

directory

be aware of one important aspect in the program behavior. It always only adds new
material to its destination directory but never deletes from it nor does it replace any
existing link to a file with a copy of the file or vice versa. If the purpose is to speed
up processing, that is fine, but for archiving the final result, it might mean that the
archive contains files no longer used or contains links where it should contain copies
because you forgot to specify --copy on the first invocation. Even worse, it may not
contain the latest version of your source files if they have changed since the first time
the program was used.

2.5.5 The rollback concept for LATEX and individual packages
Keeping your LaTEX installation up-to-date and using the latest packages is usually
a good approach because that means you get the latest corrections and feature
updates. The LaTEX universe is well-known for its unparalleled backward compatibility:

1A texmf tree containing only links does not take up much space, but speeds up the processing of
a document because it contains only the files necessary for the document to run.

2I used this during the production of this book to store all packages used in the book in a source
control system (with history). That enabled me to keep track of changes that happened to the
packages while writing the book.

114

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.115

2.5 Document source management

reprocessing documents decades old with a modern LaTEX is normally not a problem,
and very seldom requires adjustments by the user.

However, there are cases where packages change their interfaces in incompatible
ways or where you have worked around a problem and now that the problem is solved,
your workaround no longer works.

For situations like this, LaTEX introduced in 2015 a rollback concept for the LaTEX
kernel as well as for document classes and packages, allowing the LaTEX maintainers to
make corrections to the software while continuing to maintain backward compatibility
to the highest degree. With its help you can explicitly ask LaTEX to revert its code to a
version that was current on a specific date, and the software tries its best to undo
changes to match this state.

To request a kernel rollback to its state at a given date, you use the latexrelease
package by the LaTEX Project Team. For example,

\RequirePackage[2016-01-01]{latexrelease}

would result in undoing all kernel modifications (corrections or extensions) released
between January 1, 2016, and the current date.1 Undoing means reinstalling the
definitions current at the requested date and normally also removing new commands
from TEX’s memory so that \newcommand and similar declarations do not fall over
because a name is already declared.

This mechanism helps in correctly processing older documents that contain
workarounds for issues with an older kernel and issues that have since been fixed
in a way that would make the old document fail, or produce different output, when
processed with the newer, fixed kernel.

If necessary, the latexrelease package also allows for rolling the kernel forward
without installing a new format. For example, if your current installation is dated
2016-04-01 but you have a document that requires a kernel with date 2018-01-01,
then this can be achieved by starting it with

\RequirePackage[latest]{latexrelease}

provided you have a version of the latexrelease package that knows about the kernel
changes between the date of your kernel and the requested date. Getting this version
of the package is simple as the latest version can always be downloaded from the
Comprehensive TEX Archive Network (CTAN). Thus, you are able to process your
document correctly, even when updating your complete installation is not advisable
or is impossible for one or another reason.2

1There are a few exceptions because some modifications are kept: for example, the ability to accept
date strings in ISO format (i.e., 2016-01-01) in addition to the older LaTEX convention (i.e., 2016/01/01).
These are not rolled back because removing such a feature would result in unnecessary failures.

2For example, this might help when you work on Overleaf (an online LaTEX portal). At the time of
writing this book, Overleaf was about a year behind the current LaTEX release. Of course, in that case
you may also have to upload individual packages into your account, if they have specific new features
that you want to use.

115

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.116

2 THE STRUCTURE OF A LATEX DOCUMENT

Typical scenarios

A typical example, for which such a rollback functionality would have provided
a major benefit (and will do for packages in the future), is the caption package
by Axel Sommerfeldt. This package started out under the name of caption with a
certain user interface. Over time it became clear that there were some deficiencies
in the user interface; to rectify these without making older documents fail, Axel
introduced caption2. At a later point the syntax of that package itself was superseded,
resulting in caption3, and then that got renamed back to caption. So now older
documents using caption will fail, while documents from the intermediate period
require caption2 (which is listed as superseded on CTAN but is still distributed in the
major distributions). So users accustomed to copying their document preamble from
one document to the next are probably still continuing to use it without noticing that
they are in fact using a version with defective and limited interfaces.

Another example would be the fixltx2e package that for many years contained
fixes to the LaTEX kernel. In 2015 these were integrated into the kernel so that today
this package is an empty shell, only telling the user that it is no longer needed.
However, if you process an old document (from before 2015) using rollback, and that
document loads fixltx2e, then of course fixes originally provided by this package
(like the corrections to the floats algorithm) would get lost as they are now neither
in the kernel nor in the “empty” fixltx2e package if that does not roll back as well —
fortunately it does, so in reality it is not quite an empty shell.

A somewhat different example would be the amsmath package, which for nearly
a decade did not see any corrections even though several problems have been found
in it over the years. If such bugs finally get corrected, then that would affect many
of the documents written since 2000, since their authors may have manually worked
around one or another deficiency of the code. Of course, as with the caption package,
one could introduce an amsmath2, amsmath3, . . . package, but that puts the burden
on the user to always select the latest version (instead of automatically using the
latest version unless an earlier one is really needed).

The document-level interface

By default LaTEX automatically uses the current version of any class or package — and
prior to offering the new rollback concept it always did that unless the package or
class had its own scheme for providing versioning, either using alternative names or
using hand-coded options that select a version.

With the new rollback concept all the user has to do (if they want a document
Global rollback

processed with a specific version of the kernel and packages) is to add the latexrelease
package at the beginning of the document and specify a desired date as the package
option, e.g.,

\RequirePackage[2018-01-01]{latexrelease}

This rolls back the kernel to its state on that day (as described earlier), and for each
package and the document class, it checks if there are alternate releases available and

116

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.117

2.5 Document source management

selects the most appropriate release of that package or class in relation to the given
date.

There is further fine-grain adjustment possible: both \documentclass as well
Individual rollback

as \usepackage have a second (less known) optional argument that up to now was
used to allow the specification of a “minimal date”. For example, by declaring

\usepackage[colaction]{multicol}[2018-01-01]

you specify that multicol is expected to be no older than the beginning of 2018. If
only an older version is found, then processing such a document results in a warning
message:

LaTeX Warning: You have requested, on input line 12, version
‘2018-01-01’ of package multicol, but only version
‘2017/04/11 v1.8q multicolumn formatting (FMi)’ is available.

The idea behind this approach is that packages seldom change syntax in an incompat-
ible way, but more often add new features: with such a declaration you can indicate
that you need a version that provides certain new features.

The new rollback concept now extends the use of this optional argument by
letting you additionally supply a target date for the rollback. This is done by prefixing
a date string with an equal sign. For example,

\usepackage{multicol}[=2017-06-01]

would request a release of multicol that corresponds to its version in June 2017.
So assuming that at some point in the future there will be a major rewrite of

this package that changes the way columns are balanced, the above would request a
fallback to what right now is the current version from 2017-04-11. The old use of this
optional argument is still available because existence or absence of the = determines
how the date is interpreted.

The same mechanism is available for document classes via the \documentclass
declaration and for \RequirePackage if that is ever needed.

Specifying a rollback date is most appropriate if you want to ensure that the ~Preparing your
document for

posterity
behavior of the processing engine (i.e., the kernel and all packages) corresponds to
that specific date. In fact, once you are finished with editing a document, you can
preserve it for posterity by adding this line at the top of your document:

\RequirePackage[today’s-date]{latexrelease}

This would mean that it is processed a little more slowly (because the kernel may
get rolled back and each package gets checked for alternate versions), but it would
have the advantage that processing it a long time in the future will probably still work
without the need to add that line later.

117

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3 p.118

2 THE STRUCTURE OF A LATEX DOCUMENT

However, in a case such as the caption package or, say, the longtable package,
Specifying a version

instead of a date
that might eventually see a major new release after several years, it would be nice
to allow the specification of a “named” release instead of a date: for example, a user
might want to explicitly use version 4 rather than 5 of longtable when these versions
have incompatible syntax or produce different results.

This is also now possible if the developer declares “named” releases for a package
or class: one can then request a named version simply by using this second optional
argument with the “name” prefixed by an equal sign. For example, if there is a new
version of longtable and the old (now current) version is labeled “v4”, then all that is
necessary to select that old version is

\usepackage{longtable}[=v4]

Note that there is no need to know that the new version is dated 2018-04-01 (nor to
request a date before that) to get the old version back.

The version “name” is an arbitrary string at the discretion of the package author —
but note that it must not resemble a date specification; i.e., it must not contain hyphens
or slashes, because these confuse the parsing routine.1

The user interface is fairly simple, and to keep the processing speed high, the
�Erroneous

input may have
strange effects

syntax checking is therefore rather light and rather unforgiving if it finds unexpected
data. Basically any string containing a hyphen or a slash triggers the date parsing,
which then expects two hyphens (in case of an ISO date) or two slashes (otherwise) and
other than these separators, only digits. If it does find anything else, chances are that
you get a “Missing \begin{document}” error or, perhaps even more puzzling, a
strange selection being made. For example, 2011/02 may mean to you February 2011,
but for the parsing routine it is some day in the year 20 A.D. That is, it gets converted
to the single number 201102 so that when this number is compared numerically to,
say, 20000101 , it is the smaller number, i.e., earlier, even though the latter is the
numerical representation of January 1, 2000. Bottom line: do not misspell your dates,
and all is fine.

The package writer interface

The commands to set up the rollback functionality in packages and classes are
described in Appendix A.6.1 on page →II 693; for more details on the concepts,
see [137].

1Of course, more sophisticated parsing could fix this, but we opted for a fast and simple parsing
that scans for slashes or hyphens with no further analysis.

118

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.119

C H A P T E R 3

Basic Formatting Tools
— Paragraph Level

3.1 Shaping your paragraphs . 120

3.2 Dealing with special characters . 147

3.3 Generated or specially formatted text . 154

3.4 Various ways of highlighting and quoting text. 177

3.5 Footnotes, endnotes, and marginals . 204

3.6 Support for document development. 237

The way information is presented visually can influence, to a large extent, the message
as it is understood by the reader. Therefore, it is important that you use the best
possible tools available to convey the precise meaning of your words. It must, however,
be emphasized that visual presentation forms should aid the reader in understanding
the text and should not distract his or her attention. For this reason, visual consistency
and uniform conventions for the visual clues are a must, and the way given structural
elements are highlighted should be the same throughout a document. This constraint
is most easily implemented by defining a specific command or environment for each
document element that has to be treated specially and by grouping these commands
and environments in a package file or in the document preamble. By using exclusively
these commands, you can be sure of a consistent presentation form.

In this chapter we look at such tools, starting at the micro level; larger structures
are covered in Chapter 4. The first section covers different aspects of paragraph
formatting, such as producing large initial letters at the start of a paragraph, modifying
paragraph justification, altering the vertical spacing between lines of a paragraph,
and similar topics. This is followed by a look at handling special characters such as
ellipses, dashes, underscores, or spaces.

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.120

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

In the third section we discuss generated or specially formatted text, i.e., counter
values represented as ordinals or cardinals, fractions formatted for use in running
text, and in particular the acro package for consistently managing acronyms and
abbreviations. A special focus is given to scientific notation provided by the siunitx
package, which forms the last and rather lengthy topic of this section.

The fourth section then covers various way of highlighting and quoting text. This
includes a number of generally useful packages as well as some more specialized
ones that are occasionally useful.

Section 3.5 deals with the different kind of “notes”, such as footnotes, marginal
notes, and endnotes, and explains how they can be customized to conform to different
styles, if necessary. In the final section we take a quick look at different helper
packages for document development, e.g., how to add different kind of notes, copy-
editing marks, or change bars to your documents.

3.1 Shaping your paragraphs
For formatting paragraphs LaTEX deploys the algorithms already built into the TEX

Paragraph
justification in TEX

and LATEX

program, which by default produce justified paragraphs. In other words, spaces
between words are slightly stretched or shortened to produce lines of equal length.
TEX achieves this outcome with an algorithm that attempts to find an optimal solution
for a whole paragraph, using the current settings of about 20 internal parameters.
They include aspects such as trying to produce visually compatible lines, such that a
tight line is not followed by one very loosely typeset, or considering several hyphens
in a row as a sign of bad quality. The interactions between these parameters are very
subtle, and even experts find it difficult to predict the results when tweaking them.
Because the standard settings are suitable for nearly all applications, we describe
only some of the parameters in this book. Appendix B.4.3 discusses how to trace
the algorithm. If you are interested in delving further into the matter of automatic
paragraph breaking, refer to The TEXbook [84, chap.14], which describes the algorithm
in great detail, or to the very interesting article by Michael Plass and Donald Knuth on
the subject, which is reprinted in Digital Typography [99].

The downside of the global optimizing approach of TEX, which you will encounter
�Downside

of global
optimization

sooner or later, is that making small changes, like correcting a typo near the end of a
paragraph, can have drastic and surprising effects, as it might affect the line breaking
of the whole paragraph. It is possible, and not even unlikely, that, for example, the
removal of a word might actually result in making a paragraph one line longer .

This behavior can be very annoying if you are near the end of an important project
(like the third edition of this book) and a correction wreaks havoc on your already
manually adjusted page breaks. In such a situation it is best to place \linebreak
or \pagebreak commands into strategic places to force TEX to choose a solution
that it would normally consider inferior. To be able to later get rid of such manual
corrections you can easily define your own commands, such as

\newcommand\CElinebreak{\linebreak}

rather than using the standard LaTEX commands directly. This helps you to distinguish

120

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.121

3.1 Shaping your paragraphs

the layout adjustments for a particular version from other usages of the original
commands — a method successfully used in the preparation of this book.

Interword spacing

The interword spacing in a justified paragraph (the white space between individual
words) is controlled by several TEX parameters — the most important ones are
\tolerance and \emergencystretch . By setting them suitably for your document
you can prevent most or all of the “Overfull box” messages without any manual
line breaks. The \tolerance command is a means for setting how much the
interword space in a paragraph is allowed to diverge from its optimum value.1

This command is a TEX (not LaTEX) counter, and therefore it has an uncommon
assignment syntax — for example, \tolerance=500 . Lower values make TEX
try harder to stay near the optimum; higher values allow for loose typesetting.
The default value is often 200. When TEX is unable to stay in the given tolerance,
you will find overfull boxes in your output (i.e., lines sticking out into the margin like this).
Enlarging the value of \tolerance means that TEX also considers poorer but hope-
fully still acceptable line breaks, instead of turning the problem over to you
for manual intervention. Sensible values are between 50 and 9999. Do not use

~Careful with
TEX’s idea about

infinitely bad

10000 or higher, because that allows TEX to produce a single arbitrarily bad line
(like this one)
to keep the rest of the paragraph perfect. If you really need fully automated
line breaking, it is better to set the length parameter \emergencystretch to a
positive value. If TEX cannot break a paragraph without producing overfull boxes (due
to the setting of \tolerance) and \emergencystretch is positive, it adds this
length as stretchable space to every line, thereby accepting line-breaking solutions
that have been rejected before. You may get some underfull box messages because all
the lines are now set in a loose measure, but this result will still look better than a
single horrible line in the middle of an otherwise perfectly typeset paragraph.

LaTEX has two predefined commands influencing the above parameters: \fussy ,
which is the default, and \sloppy , which allows for relatively bad lines. The \sloppy
command is automatically applied by LaTEX in some situations (e.g., when typesetting
\marginpar arguments or p columns in a tabular environment) where perfect line
breaking is seldom possible due to the narrow measure. It uses a \tolerance of
9999 together with an \emergencystretch of 3em.

Unjustified text

While the theory on producing high-quality justified text is well understood (even
though surprisingly few typesetting systems other than TEX use algorithms that can
produce high quality other than by chance), the same cannot be said for the situation
when unjustified text is being requested. This may sound strange at first hearing. After
all, why should it be difficult to break a paragraph into lines of different length? The
answer lies in the fact that we do not have quantifiable quality measures that allow us
to easily determine whether a certain breaking is good or bad. In comparison to its

1The optimum is font defined; see Section 9.8.1 on page 745.

121

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.122

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

work with justified text, TEX does a very poor job when asked to produce unjustified
paragraphs. Thus, to obtain the highest quality we have to be prepared to help TEX
far more often by adding explicit line breaks in strategic places. A good introduction
to the problems in this area is given in an article by Paul Stiff (1949–2011) [183].

The main type of unjustified text is the one in which lines are set flush left but are
unjustified at the right. For this arrangement LaTEX offers the environment flushleft .
It typesets all text in its scope “flush left” by adding very stretchable white space at
the right of each line; that is, it sets the internal parameter \rightskip to 0pt plus
1fil . This setting often produces very ragged-looking paragraphs because it makes
all lines equally good independent of the amount of text they contain. In addition,
hyphenation is essentially disabled because a hyphen adds to the “badness” of a line
and, because there is nothing to counteract it, TEX’s paragraph-breaking algorithm
normally chooses line breaks that avoid hyphenated words.

“The LATEX document preparation system is
a special version of Donald Knuth’s TEX
program. TEX is a sophisticated program
designed to produce high-quality
typesetting, especially for mathematical
text.”

\begin{flushleft}
‘‘The \LaTeX{} document preparation system is
a special version of Donald Knuth’s \TeX{}
program. \TeX{} is a sophisticated program
designed to produce high-quality typesetting,
especially for mathematical text.’’

\end{flushleft} 3-1-1

In summary, LaTEX’s flushleft environment is not particularly well suited to
continuous unjustified text, which should vary at the right-hand boundary only to a
certain extent and where appropriate should use hyphenation (see ragged2e in the
next section for alternatives). Nevertheless, it can be useful to place individual objects,
like a graphic, flush left to the margin, especially because this environment adds space
above and below itself in the same way as list environments do.

Another important restriction is the fact that the settings chosen by this envi-
ronment have no universal effect, because some environments (e.g., minipage or
tabular) and commands (e.g., \parbox , \footnote , and \caption) restore the
alignment of paragraphs to full justification. That is, they set the \rightskip length
parameter to 0pt and thus cancel the stretchable space at the right line endings. A
way to automatically deal with this problem is provided by the package ragged2e .

Other ways of typesetting paragraphs are flush right and centered, with the
flushright and center environments, respectively. In these cases the line breaks
are usually indicated with the \\ command, whereas for ragged-right text (the
flushleft environment discussed above) you can let LaTEX do the line breaking
itself (if you are happy with the resulting quality).

The three environments discussed in this section work by changing declarations
that control how TEX typesets paragraphs. These declarations are also available as
LaTEX commands, as shown in the following table of correspondence:

environment: center flushleft flushright
command: \centering \raggedright \raggedleft

122

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.123

3.1 Shaping your paragraphs

The commands neither start a new paragraph nor add vertical space, unlike the
corresponding environments. Hence, the commands can be used inside other envi-
ronments and inside a \parbox , in particular, to control the alignment in p columns
of an array or tabular environment. Note, however, that if they are used in the
last column of a tabular or array environment, the \\ is no longer available to
denote the end of a row. Instead, the command \tabularnewline can be used for
this purpose (see also Section 6.2.2).

It is also important to realize that the command forms always apply to whole
~End of

paragraphs
matter!

paragraphs, even if used in the middle of a paragraph. TEX uses the setting active at
the end of a paragraph to decide how to justify the text. This means that if using, for
example, \centering inside a group, you have to ensure that the paragraph ends
within that group, otherwise your request is ignored or partially ignored.

3.1.1 ragged2e — Improving unjustified text
Above we discussed the deficiencies of LaTEX’s flushleft and flushright environ-
ments if used for normal text. The package ragged2e, written by Martin Schröder and
now maintained by Marei Peischl, sets out to provide alternatives that do not produce
such extreme raggedness. This venture is not quite as simple as it sounds, because it
is not enough to set \rightskip to something like 0pt plus 2em . Notwithstanding
the fact that this would result in TEX trying hard to keep the line endings within the
2em boundary, there remains a subtle problem: by default, the interword space is also
stretchable for most fonts. Thus, if \rightskip has only finite stretchability, TEX
distributes excess space equally to all spaces. As a result, the interword spaces have
different width, depending on the amount of material in the line. The solution is to
redefine the interword space so that it no longer can stretch or shrink by specifying
a suitable (font-dependent) value for \spaceskip . This internal TEX parameter, if
nonzero, represents the current interword space, overwriting the default that is
defined by the current font.

By default, the package does not modify the standard LaTEX commands and
environments discussed in the previous section, but instead defines its own using the
same names except that some letters are uppercased.1 The new environments and
commands are given in the following correspondence table:

environment: Center FlushLeft FlushRight
command: \Centering \RaggedRight \RaggedLeft

They differ from their counterparts of the previous section not only in the fact that
they try to produce less ragged output, but also in their attempt to provide additional
flexibility by easily letting you change most of their typesetting aspects.

The available parameters and their default values are shown in Table 3.1 on the
The default values

following page. They are used as values for \parindent , \leftskip , \rightskip ,
and \parfillskip , whenever one of the corresponding ragged2e commands or

1This is actually against standard naming conventions. In most packages, mixed-case commands
indicate interface commands to be used by designers in class files or in the preamble, but not
commands to be used inside documents.

123

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.124

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

Parameter Default Parameter Default

\RaggedLeftParindent 0pt \RaggedLeftLeftskip 0pt plus 2em
\RaggedLeftRightskip 0pt \RaggedLeftParfillskip 0pt

\CenteringParindent 0pt \CenteringLeftskip 0pt plus 2em
\CenteringRightskip 0pt plus 2em \CenteringParfillskip 0pt

\RaggedRightParindent 0pt \RaggedRightLeftskip 0pt
\RaggedRightRightskip 0pt plus 2em \RaggedRightParfillskip 0pt plus 1fil

\JustifyingParindent 1em \JustifyingParfillskip 0pt plus 1fil

Table 3.1: Parameters used by ragged2e

environments is called. Using em values in the defaults (see Table 3.1) means that
special care is needed when loading the package, because the em is turned into
a real dimension at this point! The package should therefore be loaded after the
body font and size have been established — for example, after font packages have
been loaded.

Instead of using the defaults listed in Table 3.1, one can instruct the package to
initially mimic the original LaTEX settings by using the option originalparameters
and then changing the parameter values as desired afterwards.

To set a whole document unjustified, you can specify document as an option to
Unjustified setting as

the default
the ragged2e package. For the purpose of justifying individual paragraphs in such
a document the package offers the command \justifying and the environment
justify . Thus, to produce a document with a moderate amount of raggedness and
paragraphs indented by 12pt, you could use a setting like the one in the following
example (compare it to Example 3-1-1 on page 122):

“The LATEX document preparation sys-
tem is a special version of Donald Knuth’s
TEX program. TEX is a sophisticated pro-
gram designed to produce high-quality
typesetting, especially for mathematical
text.”

\usepackage[document]{ragged2e}
\setlength\RaggedRightRightskip{0pt plus 1cm}
\setlength\RaggedRightParindent{12pt}
‘‘The \LaTeX{} document preparation system is
a special version of Donald Knuth’s \TeX{}
program. \TeX{} is a sophisticated program
designed to produce high-quality typesetting,
especially for mathematical text.’’ 3-1-2

In places with narrow measures (e.g., \marginpars, \parboxes, minipage en-
Unjustified settings
in narrow columns

vironments, or p-columns of tabular environments), the justified setting usually
produces inferior results. With the option raggedrightboxes , paragraphs in such
places are automatically typeset using \RaggedRight . If necessary, \justifying
can be used to force a justified paragraph in individual cases.

124

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.125

3.1 Shaping your paragraphs

Spurious underfull box warnings

There is, however, one problem that you should be aware of if you use the command
\RaggedLeft or \Centering with very little text (i.e., less than a single line): you
may get strange “Underfull box” warnings such as

Underfull \hbox (badness 10000) in paragraph at lines 25--25
[]\T1/ptm/m/n/10 ragged left text
Underfull \hbox (badness 5893) in paragraph at lines 26--27
[]\T1/ptm/m/n/10 centered text

even though the result looks (and is) correct. For example, the above warnings have
been generated during the processing of the next example:

3-1-3

ragged right text
ragged left text

centered text

\usepackage{ragged2e}
\RaggedRight ragged right text \par
\RaggedLeft ragged left text \par
\Centering centered text

The reason is that with ragged2e there is only very limited flexibility in each line
compared to \raggedleft or \centering where the white space on one or both
sides can stretch arbitrarily. \RaggedRight on the other hand is usually fine, because
there we still have a fully stretchable \parfillskip at the end of the paragraph.

Thus, while it is tempting to overload the standard LaTEX definitions with the new
Overloading the
original commands
not recommended

commands (using the package option newcommands) to avoid the need to typeset
the somewhat tedious mixed-case names, it cannot really be recommended. At least
\centering is very often used to center a single object such as a graphic in a figure
environment, and each such case would then result in a spurious warning.

3.1.2 nolbreaks — Preventing line breaks in text fragments
To prevent a line break at a space inside a paragraph LaTEX offers ~ denoting an unbreak-
able space that you can use instead of an ordinary one, e.g., A.~Einstein to ensure
that the initial and surname are not split apart. If you (additionally) want to ensure that
a word is not hyphenated, you can put it into an \mbox , e.g., A.~\mbox{Einstein} .

However, to keep several words together, it is not a good idea to place them
together with the spaces between them into a single \mbox , because inside a box a
space has always its nominal width and does not react to the justification of the line,
which means that you can end up with noticeably uneven spacing.1 For high quality
it is therefore necessary to \mbox all words individually and place a ~ between each
of them — which is fairly cumbersome. To simplify this task Donald Arseneau has
written the small package nolbreaks that offers a single command.

1Exemplified in this paragraph by boxing “it is not a good idea” in the first line.

125

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.126

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

\nolbreaks*{text}

The text does not break across lines, but spaces inside still participate in paragraph
justification as expected. If you use the starred form, then the line before the unbreak-
able text is allowed to run short (like ragged-right) as shown below. You can also
load the package with the option ragged in which case \nolbreaks behaves like its
starred form.

However, to keep several
words together, it is not a good
idea to place them together with
the spaces between them into
a box; use \nolbreaks instead.

\usepackage{nolbreaks} \sloppy
However, to keep several \nolbreaks*{words together,}
it is not a good idea to place them together
with the spaces between them into \nolbreaks{a box};
use \verb=\nolbreaks= instead. 3-1-4

The command does not work in all circumstances, e.g., you cannot have verbatim
material in its argument, and spaces hidden inside braces or commands can still
create breakpoints, but in most situations it offers a simple and readable method for
fine-tuning your text. Note that you may need a higher \tolerance or \sloppy if
you add many unbreakable chunks to your paragraphs.

3.1.3 microtype — Enhancing justified text
As mentioned before, TEX uses an algorithm for line breaking that attempts to globally
optimize the paragraphs according to a set of parameters weighing different (often
conflicting) goals, such as unevenness in the white space distribution, incompatible
lines (with respect to word space size), length of the paragraph, number of consecutive
hyphens, etc., against each other.

There are, however, a number of further aspects that improve the paragraph
quality not taken into account by the original TEX algorithm. Support for them is due
to the work of Hàn Thế Thành who developed pdfTEX, which is now the standard TEX
engine,1 and thus these improvements are available to everybody [62, 63, 65].

Already Donald Knuth discussed the use of “hanging punctuations” as an exercise
in the TEXbook [84, p. 394f] and gave the following example:

“What is hanging punctuation?” asked Alice,
with a puzzled frown. ‘Well, y’know, actually,’
answered Bill, ‘I’d rather demonstrate it than
explain it.’ “Oh, now I see. Commas, periods,
and quotes are allowed to stick out into the

margins, if they occur next to a line break.”
‘Yeah, I guess.’ “Really! But why do all your
remarks have single quotes, while mine are
double?” ‘I haven’t the foggiest; it’s weird.
Ask the author of this crazy book.’ 3-1-5

As you can see, all punctuation marks and quotation characters are placedOptical alignment
a.k.a. protrusion

feature
outside the text body into the margin. This is a special version of a general principle
of optical alignment: to achieve optimal vertical alignment of the text at the margins,

1The features discussed in this section are also (with minor variations) available in the Unicode
engines X ETEX and LuaTEX and can thus be used with any modern TEX engine.

126

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.127

3.1 Shaping your paragraphs

it is necessary to take the glyph shapes into account and allow some glyphs to
protrude slightly into the margin because otherwise the line would appear to be
slightly indented — hanging punctuation is just an extreme variant of this principle.
How much to protrude depends on the glyph shape and the amount of whiteness
it produces. It thus depends on the font being used and may need adjustments
accordingly for optimal results. However, even if you do not have specially tailored
values for the fonts used in your document, you achieve noticeable improvements by
applying a set of default values based on “typical” glyph forms.

A second type of improvement introduced with pdfTEX was in the incorporation
The hz algorithm
a.k.a. expansion
feature

of the hz-algorithm named after its inventor Hermann Zapf (1918–2015). He realized
that (certain) letter shapes can be slightly expanded or compressed without being
noticeable to the reader and that this extra flexibility in the text can be used to improve
justification. For example, instead of just enlarging the word space (possibly beyond
acceptable limits), one can slightly widen most letters in a line, thereby achieving
a much more consistent gray value of the whole paragraph. In fact, the additional
flexibility introduced this way may lead to different set of line breaks that would
otherwise not be possible. This can then avoid overfull lines that would be otherwise
produced by TEX’s algorithm if it could not satisfy all requirements posed by the
line-breaking parameter settings.

Both features and configuration possibilities to tailor them are made available
through the microtype package1 by Robert Schlicht. It has been used with excellent
results throughout this book and is one of the standard packages the author loads in
the preamble of nearly every document.

Three other micro-typographical features are supported but not activated by
Tracking, kerning,
and spacing feature

default (because applying them does not always lead to improvements). These are
automatic letterspacing of Small Capitals and possibly other fonts (discussed in
Section 3.4.6), extra kerning around individual characters, and interword spacing
adjustments based on the character before the space (kind of an extension to the
\spacefactor concept of TEX). The features are enabled with the options tracking ,
kerning , and spacing , respectively. Tracking can be used with pdfTEX and LuaTEX,
while the other two features are available only with pdfTEX to date.

Package options

In many cases it is fully sufficient to simply load the package with a \usepackage
declaration (without any option) in the preamble and let it apply its magic behind
the scenes using its default configuration. It then automatically applies character
protrusion and (if possible) font expansion.

For the latter the engine has to be either pdfTEX or LuaTEX, you have to use only
scalable outline fonts (i.e., no bitmap fonts generated from METAFONT sources2),
and the engine must be set to generate Portable Document Format (PDF) and not
Device Independent File Format (DVI). For details of what is possible in DVI mode, see

1We discuss most aspects of the package here; its letterspacing features are covered in Section 3.4.6.
2Bitmap fonts usually produce a fatal error; see page →II 735. There are ways to work with them,

but the fonts need to be specially tailored for this.

127

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.128

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

the manual [179]. Saying it differently, the package applies as many micro-typographic
improvements as can be expected to work correctly given the circumstances.

It does, however, offer a number of key/value options to globally adjust the
Turning them on

(or off)
behavior and as we see later, also methods to tailor the behavior depending on
fonts, font sets, and the context inside the document. The options protrusion and
expansion can be used to change or turn on or off the respective feature by giving
the value true (default), false , or compatibility . The latter restricts the features
to act only on single lines after the line-breaking algorithm has acted. This ensures
that the line breaking with or without microtype is identical, but at the same time it
limits the positive effects that the package can offer and is therefore useful only in
special situations.

One can also specify a font set name as a value, in which case only fonts belonging
to this set use the feature. For details on this advanced usage, consult the microtype
manual [179].

The option factor can be used to tailor the protrusion feature, and it expects
Protrusion control

an integer value between 0 (no protrusion) and 1000 (full protrusion). For example,
specifying a value of 500 means that the currently defined protrusion for every
character is halved. To showcase the results let’s first repeat Example 3-1-5 on
page 126 with a factor of 0 (which is equivalent to not using protrusion at all):

“What is hanging punctuation?” asked Al-
ice, with a puzzled frown. ‘Well, y’know,
actually,’ answered Bill, ‘I’d rather demon-
strate it than explain it.’ “Oh, now I see.
Commas, periods, and quotes are allowed to
stick out into the margins, if they occur next

to a line break.” ‘Yeah, I guess.’ “Really! But
why do all your remarks have single quotes,
while mine are double?” ‘I haven’t the foggi-
est; it’s weird. Ask the author of this crazy
book.’

3-1-6

You can nicely observe the different line breaks that we get with just the nor-
mal TEX algorithm. Now repeat this but with a factor of 500 , in which case the
punctuation and quote characters stick out somewhat into the margins.

“What is hanging punctuation?” asked Alice,
with a puzzled frown. ‘Well, y’know, actually,’
answered Bill, ‘I’d rather demonstrate it than
explain it.’ “Oh, now I see. Commas, periods,
and quotes are allowed to stick out into the

margins, if they occur next to a line break.”
‘Yeah, I guess.’ “Really! But why do all your
remarks have single quotes, while mine are
double?” ‘I haven’t the foggiest; it’s weird.
Ask the author of this crazy book.’ 3-1-7

The line breaks are now identical to Example 3-1-5 even though we use a smaller
amount of protrusion. Note that the protrusion feature does not generate more
flexibility for the paragraph breaking (in contrast to the expansion feature). It only
alters the line breaks because characters at the margins appear unconditionally
smaller than without the feature turned on and thus change the attractiveness of
individual breakpoints so that TEX may decide to choose a different set.

Also note that in the examples above protrusion was only specified for the
punctuation and quote characters to implement “hanging punctuation”. For proper
optical alignment, one would have to specify protrusion for many more characters. As
a showcase for optical alignment, you can look at any paragraph in this book (except

128

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.129

3.1 Shaping your paragraphs

for the examples) where many characters stick out to a small degree into the margin
to give the impression of vertical alignment at both sides.

To control expansion, a few more options are available. The options stretch
Expansion control

and shrink define how much fonts are allowed to be expanded or compressed. They
expect an integer value that is multiplied by 1 ⁄1000 of the character width. Thus, to
allow a maximum of 1.5% expansion you would specify stretch=15 . The default
value for both is 20 , and if you specify only stretch , then its value is also inherited
by shrink .

As the next example shows, you should be conservative when allowing fonts
to stretch or shrink. The idea is to improve the typographic quality by producing
paragraphs with more uniform grayness and fewer hyphenated lines by offering
the line-breaking algorithm more choices. With most fonts a variation range of ±2%
yields reasonable results, but already above 3% you may notice the stems getting
bigger or thinner, which can be distracting. Furthermore, some shapes are somewhat
distorted when only stretched horizontally, and above a certain point this may become
noticeable and thus reduce, rather than enhance, the quality.

3-1-8

Stretching or shrinking text too much is a bad idea! -15%
Stretching or shrinking text too much is a bad idea! -5%
Stretching or shrinking text too much is a bad idea! -2%
Stretching or shrinking text too much is a bad idea! (natural)
Stretching or shrinking text too much is a bad idea! 2%
Stretching or shrinking text too much is a bad idea! 5%
Stretching or shrinking text too much is a bad idea! 15%

To lessen the impact of distorted shapes, microtype offers the option selected
in which case such shapes are expanded or compressed at a smaller rate than others.
This may allow slightly higher overall limits, but on the other hand one has to realize
that it also means that characters next to each other may stretch at different rates
and thus show different stem widths. In our example, the characters “trix!” are fully
expanded, while all others are expanded only by 70%. Whether or not this is then
really an improvement is probably a matter of taste.

3-1-9

Stretching or shrinking text too much is a bad idea! -3%
Stretching or shrinking text too much is a bad idea! -2%
Stretching or shrinking text too much is a bad idea! (natural)
Stretching or shrinking text too much is a bad idea! 2%
Stretching or shrinking text too much is a bad idea! 3%
Stretching or shrinking text too much is a bad idea! 5%
Stretching or shrinking text too much is a bad idea! 15%

For best results with expansion you need to use scalable fonts (which is fortu-
nately not a problem any longer), and it is advisable to generate PDF output, though
neither is an absolute must. If need be, it is possible to use a DVI-based workflow, and

129

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.130

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

even bitmap fonts can be prepared for the task, but it requires a more complicated
setup and specially tailored font support files; see the manual [179] for details.

There are a few other options that can become handy once in a while. Among
Miscellaneous

options
them is activate , which is simply a shorthand for setting both protrusion and
expansion to the same value. Then there is verbose , which outputs extra infor-
mation into the transcript file (useful for debugging) or, if given the value errors ,
stops if it thinks it encounters a questionable situation. Once you have investigated
all warnings, you can also give it the value silent .

Specifying the option babel directs microtype to adjust the typesetting to the
language(s) used in the document. This feature exists for only a few selected languages
so far.

The package supports the option disable that disables all processing if given.
As a result, processing is much faster when microtype does nothing, but then line and
page breaks are likely to change.1

By default microtype loads its configuration from the file microtype.cfg . You
can bypass this by using the option config and specify a different configuration
file (without the extension .cfg). This way you can maintain and use your own
configuration setup if you do not like the default values.

All options except for config can alternatively be used in the argument to
\microtypesetup to define or alter the desired setup in the preamble. Furthermore,
this command can also be used inside the document body to temporarily disable or
enable any of the micro-typography features, e.g.,

\microtypesetup{expansion=false}

but otherwise changing the features is no longer possible.

Configuring the machinery

As already indicated, the micro-typography features supported by microtype all
require tailoring to the individual fonts used to achieve best results. While that
sounds no doubt daunting, the good news is that the package already comes equipped
with ready-made protrusion settings for more than a dozen common font families,
and for most others the default profile is likely to give you good results too. For
expansion the default of ±2% is also likely to work universally, and if not, it is easy to
change for a document. In summary, the general usage information provided above
should be sufficient for most real-life situations.

We therefore give only a few examples for setup commands to enable you to skim
through the configuration files and grasp what they are setting up. This may not be
enough to embark on the somewhat tedious task of providing a fully hand-tailored
setup for a new font family, but if you are one of the few people2 interested in that,
all necessary information can be found in [179].

1In older versions of the package this option was called draft , which was rather unfortunate,
because specifying draft on the document class made microtype stop working. You can restore the
previous behavior, if you really want to, by specifying disable=ifdraft .

2Rest assured that Robert would be happy to hear from you that you have worked on the integration
of another font family.

130

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.131

3.1 Shaping your paragraphs

\SetProtrusion[key/value list]{set of fonts}{protrusion settings}

The \SetProtrusion declaration lets you define protrusion settings for an arbitrary
number of characters for a given set of fonts.

The protrusion settings consists of character={integer-tuple} where the integer-
tuple defines the protrusion for left and right margin for the character . Zero or no
value means no protrusion, and 1000 denotes full protrusion. The character can be
given as a UTF-8 character, a LaTEX command, and in a few other ways. For example

A = {50,50}, \AE = {50, }, : = { ,500}, - = {400,500}

lets “A” protrude by 5% on both sides and “Æ” by 5% on the left only. Both the colon
and hyphen protrude with half of their width into the right margin, and on the left
the hyphen also protrudes with 40% of its width. If you specify a base character such
as “A”, then microtype knows that there are several other characters, e.g., “À, Á, Â, Ã,
Ä, Å, Ą, Ă”, that should inherit the setting, and it does that automatically1 for you.

There are many ways to specify the set of fonts, but very often it is enough to
specify the supported encoding(s) and the font family name (in New Font Selection
Scheme (NFSS) convention); for further details, see [179, §4].

In the optional argument you can specify a number of key values: with name
you can give your setting a name, which is useful when reading the output from the
verbose option. More importantly, this allows you to refer to such a setting in a later
declaration with a load key, thereby extending or modifying it for special situations.

For example, the main protrusion settings for Computer Modern fonts are
named cmr-default ; additions specific to T1 encoding are named cmr-T1 (loading
cmr-default first). And because Latin Modern fonts are very similar to Computer
Modern, the protrusion declaration for that family is then simply this:

\SetProtrusion [name = lmr-T1, load = cmr-T1]
{ encoding = {T1,LY1}, family = lmr }
{ \textquotedblleft = {300,400}, \textquotedblright = {300,400} }

That is, it loads cmr-T1 , which in turn loads cmr-default and then makes two
changes. All of this applies to any font in the font family lmr in either T1 or LY1
encoding (but not in OT1 or other encodings).

If you like the look and feel of hanging punctuation, here is how Example 3-1-5
from page 126 was produced using Latin Modern fonts:

\usepackage{lmodern}
\usepackage[expansion=false,verbose]{microtype}
\LoadMicrotypeFile{cmr}

1Of course, if ever needed, that is customizable too, using \CharacterInheritance . With pdfTEX
the standard settings are most likely adequate for all fonts. However, with the Unicode engines it is
more likely that font-specific adjustments are needed, simply because OpenType fonts have many
more characters (or miss some) so that a single default is not sufficient. Details on that is given
in [179].

131

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.132

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

\SetProtrusion [name = lmr-hangingp]
{ encoding = {T1,OT1}, family = lmr }
{ . = { ,1000}, {,} = { ,1000}, ; = { ,1000}, : = { ,1000},
\textquotedblleft = {1000, }, \textquotedblright = { ,1000},
\textquoteleft = {1000, }, \textquoteright = { ,1000} }

This example is interesting on several accounts: we explicitly disabled expansion to
reproduce the same line breaks as in the TEXbook. With expansion, TEX would have
found a “better” or at least different alternative. The protrusion settings as such hold
no surprises: each of the punctuation and quote characters fully protrudes into the
respective margin. You may also want to do the same to the hyphen character. This
was not done, because again it would result in different line breaks compared to the
TEXbook.

The surprising line is the second one — without it nothing happens. The problem
Nothing happens

when making config
changes

is that when microtype encounters a font family for the first time in a document, it
attempts to load a configuration file named mt-⟨family⟩.cfg and applies the declara-
tions it contains. If that file also contains a declaration for the set of fonts that we try to
customize, it overwrites our carefully drafted setup in the preamble of the document.
The solution here is to load that configuration file (using \LoadMicrotypeFile)
before we make our declarations so that our settings overwrite the default and not
the other way around.

A slight complication is that some font families share such configuration files. In
our case we have to load the one for the cmr font family, because that also contains
the settings for lmr . The basic advice here is to use the verbose option if something
does not seem to work, because that tells you what microtype loads for which font
and what gets overwritten and with that information it is easy to make the right
adjustments.

If you develop your own protrusion set for a font family or if you want to verify
Supporting the

development visually
that the currently used one is sufficient and adequate, you can use the companion
package microtype-show that offers a number of check and test commands, such as
\ShowProtrusion or \ShowCharacterInheritance . These commands produce
test output by displaying the current settings both numerically as well as visually. This
is a great development and debugging facility; for details see the microtype package
documentation.

\SetExpansion[key/value list]{set of fonts}{expansion settings}

Expansion is normally applied uniformly to all characters, and the necessary settings
(if any) are done through the package options stretch and shrink . If, however, the
option selected was used, then certain characters expand more than others, and
the settings for this can be done through \SetExpansion .

The expansion settings are a list with elements of the form character=factor
where factor is an integer between 0 (no expansion) and 1000 (full expansion).

The set of fonts argument limits the declaration to a group of fonts in the same
way as was already discussed for \SetProtrusion . For example, the default settings

132

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.133

3.1 Shaping your paragraphs

(defined in microtype.cfg) used for all fonts in the major text encodings look as
follows:

\SetExpansion [name = default] { encoding = {OT1,OT4,QX,T1,LY1} }
{ A = 500, a = 700, \AE = 500, \ae = 700, B = 700, b = 700,
C = 700, c = 700, D = 500, d = 700, E = 700, e = 700,
F = 700, G = 500, g = 700, H = 700, h = 700,
K = 700, k = 700, M = 700, m = 700, N = 700, n = 700,
O = 500, o = 700, \OE = 500, \oe = 700, P = 700, p = 700,
Q = 500, q = 700, R = 700, S = 700, s = 700,
U = 700, u = 700, W = 700, w = 700, Z = 700, z = 700,
2 = 700, 3 = 700, 6 = 700, 8 = 700, 9 = 700 }

In the key/value list argument you can again use name and load , though with
expansion, these keys are less likely to be needed. The keys stretch and shrink
overwrite the global defaults or the values given on the package level. One application
of this is when you provide special settings for named contexts as we see below.

Providing context

By default all declarations made with \SetProtrusion and friends apply globally
throughout the document. There is, however, the possibility of specifying that they
should be activated only in a specific context. This is done by using the key context
in the key/value list argument and assigning it a context name. In that case the
declaration is activated only if we are within that context.

\microtypecontext{context spec}
\begin{microtypecontext}{context spec} . . . \end{microtypecontext}
\textmicrotypecontext{context spec}{text}

You can inform microtype that it is in a specific context in three different ways:
with \microtypecontext a new context is started that continues to the end of
the current scope, or you can use the environment form of that, or you can use
the command \textmicrotypecontext in which the context applies to the text
argument. The context spec is a comma-separated list of assignments of the form
feature = context where feature is protrusion , expansion , tracking , kerning ,
or spacing and context is the name you assigned in the declaration. To reset the
context (if not automatically reverted through scoping) you can provide an empty
context name.

Specifying tracking, extra kerning, and adjusted spacing

The features described below cover some concepts that are not activated by default
but need to be explicitly enabled through options, i.e., tracking , kerning , and
spacing , respectively. Furthermore, the kerning and spacing features are available
only with pdfTEX, while tracking can also be used with the LuaTEX engine. An interest-
ing article on the background of these features can be found in [64].

133

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.134

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

\SetTracking[key/value list]{set of fonts}{tracking amount}
\SetExtraKerning[key/value list]{set of fonts}{kerning settings}
\SetExtraSpacing[key/value list]{set of fonts}{spacing settings}

The \SetTracking declaration allows you to specify extra spaces between all char-
acters of a font or a set of fonts in order to achieve letter spacing. This is discussed
further in Section 3.4.6 on page 191.

The \SetExtraKerning declaration provides a way to specify for individual
characters some additional space to be added on either side of the glyph. This is useful
with languages that have typographical traditions requiring such spacing around some
characters (typically punctuations). In French, for example, an extra space is required
in front of “:”, “;”, “?”, and “!”, and with a declaration such as

\SetExtraKerning[name=french-default, context=french, unit=space]
{encoding = {OT1,T1,LY1}}
{ : = {1000,}, ; = {500, }, ! = {500,}, ? = {500,} }

this can be automatically provided without the need to alter the input sources. Note
the use of the context key, which limits the declaration to a context named french
so that you can restrict its usage as needed.

To communicate with babel and install different contexts per language, microtype
offers the declaration \DeclareMicrotypeBabelHook . In the next example we use
this to specify special kerning for French text. The \SetExtraKerning declaration
is already in that form part of the microtype default settings, so we can make use of
it without the need to repeat it in the example.

FRENCH : Je ne parle pas français !
ENGLISH: I speak English!

\usepackage[english,french]{babel}
\usepackage[kerning]{microtype}
% \SetExtraKerning ... as above
\DeclareMicrotypeBabelHook{french}{kerning=french}
FRENCH: Je ne parle pas français! \par
\selectlanguage{english} ENGLISH: I speak English! 3-1-10

Finally, with the \SetExtraSpacing declaration you get granular control over
the width and behavior of interword spaces. For each font TEX maintains three
dimensions (called \fontdimens: see page 745) that describe the default width of
a space, the amount by which that space can stretch, and the amount it can shrink
when doing paragraph justification. In addition, there is a “space factor” table where
for each character a factor is specified by which these font dimensions are multiplied
when that character is directly in front of a space. This is the reason why spaces after
punctuation characters appear larger (when \nonfrenchspacing is in force — the
default) and appear uniform (when \frenchspacing is specified).

The problem with TEX’s approach of a space factor is that you not only get larger
or smaller spaces with the help of these factors; in addition, they are also applied
to the stretching and shrinking components and so in spaced-out lines spaces after
punctuation characters may become excessively large.

134

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.135

3.1 Shaping your paragraphs

The pdfTEX engine extends the TEX functionality by providing individual con-
trols on a per-character and per-font basis for all three dimensions, and the
\SetExtraSpacing declaration offers an interface to that. For example,

\SetExtraSpacing[unit=space]
{font={*/*/*/*/*}}{ . = {2000,0,0} }

would double the space after a period without altering its stretch and shrink compo-
nent. The mechanism can also be used to implement optical spacing, that is, slightly
altering the standard width of a space depending on the shape of the preceding
character. The default configuration files for microtype provide some settings for this.
However, this is of course semi-optimal given that only a character to the left of the
space can influence its width.

For further details on all three features refer to the package manual [179] and
study the default configuration files that provide standard settings from which you
may want to start if you make changes.

Disabling selected ligatures

Using ligatures, e.g., “ffi” instead of “ffi”, usually improves the appearance, and the
fact that LaTEX can produce them automatically (if available in the font) is normally
a good thing. There are occasions where you want to prevent this from happening,
e.g., in compound words like “Auflage” instead of “Auflage”, (because it is a special
“Lage” not a “Flage”), but these are rare and need to be handled on an individual basis.
The babel package offers some support for this; see Example 13-3-7 on page →II 311.
However, there are also situations where one wants to disable ligatures (or some
ligatures) altogether and for this microtype provides \DisableLigatures .

\DisableLigatures[start characters]{set of fonts}

With the set of fonts argument one specifies for which fonts ligatures should be
suppressed and with the optional start characters argument, it is possible to restrict
it to only a subset of ligatures. For example, Latin Modern Typewriter has ligatures
for “--” becoming a single “-” and “<<” and “>>” generating “«” and “»”, respectively.
To prevent this you could write

\DisableLigatures[-,<,>]{family = lmtt}

Note that for technical reasons you can specify only the ligature start character, thus
by specifying, for example, f , you disable all ligatures starting with “f”.

Some special considerations when using microtype

As mentioned before it is usually just enough to load microtype in the preamble
without any further adjustments to the document body. There are, however, a few
cases to watch out for, and it might pay to temporarily turn off some or all of the
package features or guide them in difficult situations.

135

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.136

3 BASIC FORMATTING TOOLS — PARAGRAPH LEVEL

Protrusion, for example, works automatically in normal paragraphs, but in certain
Being pedantic

about protrusion
situations TEX does not consider the text whose boundary requires vertical alignment
(and thus protrusion) as being at the margin, because there is some intervening
material. For instance, the bullet in an itemize is seen by LaTEX as being part of the
line, while for a human reader the text of that item is what needs visual alignment.
Thus, without help, the first character on that line would not protrude, while the first
character on the next line would.1

\leftprotrusion{text} \rightprotrusion{text}
\leftprotrusion \noprotrusion

In case protrusion is not done automatically or not done correctly, you can force
or prevent it with these commands. \leftprotrusion and \rightprotrusion
add a protrusion correction to the left or right of text , respectively. You can use
also \leftprotrusion without an argument, in which case it scans the input for
text characters, and if it finds one (which may be a ligature), it applies protrusion to
this character. The version without argument is slightly less efficient, but it has the
advantage that you can use it in places where you do not know what text is following,
e.g., at the beginning of a tabular cell:

\begin{tabular}{l>{\leftprotrusion}p{9cm}r}

This is unfortunately not possible for protrusion on the right: with the command
\rightprotrusion you always have to use the argument.

There is also \noprotrusion that prohibits protrusion in all cases. This com-
mand is already defined in the LaTEX format so you can use it in command definitions
whether or not microtype gets loaded in your document.

If protrusion is turned on while a table of contents is being typeset, then the
Interaction with

TOC-like lists
page numbers at the right might protrude into the margin. That in turn makes the
left-hand side of the page number column somewhat uneven, which may be noticeable
if the numbers start with the same digits. The solution in such a case is to use
\microtypesetup to set protrusion to false , i.e.,

\microtypesetup{protrusion=false}
\tableofcontents \listoftables \listoffigures
\microtypesetup{protrusion=true}

Standard LaTEX avoids this problem, but with older document classes or special defini-
tions for such lists it may still happen.

Similarly, both protrusion and expansion are not really wanted if you typeset code
Interaction with

verbatim material verbatim. After all, the idea of using a mono-spaced font in verbatim envi-
ronments is to ensure that the characters appear perfectly aligned above each other,
and either feature may spoil that alignment. Thus, setting both features (or activate

1There is work under way to help LaTEX to recognize this particular case automatically, so in the
future the itemize case may work automatically. Currently, the microtype package attempts to patch
\item , but this does not always work and may have to be prevented with the nopatch option.

136

[git] • Branch: master@e650bd51 • Release: (2023-08-28)

TLC3, , p.137

3.1 Shaping your paragraphs

as a shorthand) to false in front of such environments solves this problem. However,
you may not want to litter your source with such declarations, especially if you have
many such environments.1

A possibly better alternative is to incorporate the setting into the environment
itself using \AddToHook with a reasonably new LaTEX as follows:

\AddToHook{env/verbatim/begin}{\microtypesetup{activate=false}}

There is no need to undo the setting because the environment forms a group so that
at its end the change is automatically undone. If you are doing that, then you may
want to also update \tableofcontents and friends in a similar way:

\AddToHook{cmd/tableofcontents/before}{\microtypesetup{protrusion=false}}
\AddToHook{cmd/tableofcontents/after} {\microtypesetup{protrusion=true}}

In this case we have to turn microtype on again after the command.
Another situation where expansion is often not really helpful is the case of

Interaction with
ragged2e

typesetting unjustified text using the ragged2e package, discussed in Section 3.1.1 on
page 123. Because this package tries to avoid extreme raggedness by making short
lines appear “underfull” to the paragraph-breaking algorithm, microtype mistakenly
tries to help by expanding the fonts in such lines. Thus, nearly all lines in unjustified
paragraphs get expanded, which is not a desired state of affairs.

On the other hand, microtype is still useful if there is a need to slightly shrink
a line to make it fit. Instead of completely disabling expansion when typesetting
unjustified text, it is better to define a special context in which only shrinking but not
stretching is allowed. This can be done as follows (and with the help of \AddToHook
directly attached to \RaggedRight and similar commands):

\SetExpansion[context = ragged, stretch = 0, shrink = 30]
{ encoding = {OT1,T1,TS1} } {}

\AddToHook{cmd/RaggedRight/before}{\microtypecontext{expansion=ragged}}

There is usually no need to restore the context in this case, because that happens
automatically when the scope of \RaggedRight ends.

3.1.4 parskip — Adjusting the look and feel of paragraphs
In the majority of publications, paragraphs are typeset justified with the first line
indented by some fixed amount and the last line run short based on the line-breaking
results of the paragraph material. Because of the indentation at the left in the first
line and the white space on the right in the last line, readers can easily identify the
paragraphs without any further visual signals. Therefore, there is typically no extra
vertical space added between paragraphs, which saves space. This type of layout is
used by most LaTEX document classes and is what you see on most pages in this book.

1Verbatim-like environments done with listings or fancyvrb are not affected because due to their
implementation, protrusion or expansion is automatically prevented.

137

