

NETWORK SECURITY
PRIVATE Communication in a PUBLIC World

The Radia Perlman Series in
Computer Networking and Security
Radia Perlman, Series Editor

Dusseault WebDAV: Next-Generation Collaborative
Web Authoring

Hellberg, Boyes, and Greene Broadband Network Architectures: Designing
and Deploying Triple Play Services

Kaufman, Perlman, and Speciner Network Security: Private Communication in
a Public World, Second Edition

Liska The Practice of Network Security: Deployment
Strategies for Production Environments

Mancill Linux Routers: A Primer for Network
Administrators, Second Edition

Maufer A Field Guide to Wireless LANs for
Administrators and Power Users

Mirkovic, Dietrich, Dittrich,
and Reiher

Internet Denial of Service: Attack and Defense
Mechanisms

Skoudis with Liston Counter Hack Reloaded: A Step-by-Step Guide
to Computer Attacks and Effective Defenses,
Second Edition

Skoudis with Zeltser Malware: Fighting Malicious Code

Solomon Mobile IP: The Internet Unplugged

Syme and Goldie Optimizing Network Performance with Content
Switching: Server, Firewall, and Cache Load
Balancing

Tomsu and Schmutzer Next Generation Optical Networks

NETWORK SECURITY
PRIVATE Communication in a PUBLIC World

CHARLIE KAUFMAN • RADIA PERLMAN • MIKE SPECINER

Editorial/Production Supervision: Faye Gemmellaro
Executive Editor: Mary Franz
Editorial Assistant: Noreen Regina
Marketing Manager: Dan DePasquale
Manufacturing Buyer: Maura Zaldivar
Cover Illustration: Tom Post
Cover Design Director: Jerry Votta

© 2002 by
A division of Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

For information regarding corporate and government bulk discounts, please contact:
Corporate and Government Sales, (800) 382-3419, or corpsales@pearsontechgroup.com

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher. All trademarks mentioned
herein are the properties of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 Second Printing

ISBN 0-13-046019-2

Pearson Education Ltd.
Pearson Education Australia PTY, Ltd.
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan
Pearson Education Malaysia, Pte. Ltd.

Si spy net work, big fedjaw iog link kyxogy

This page intentionally left blank

vii

CONTENTS

Acknowledgments xxv

CHAPTER 1 Introduction 1

1.1 Roadmap to the Book ...2
1.2 What Type of Book Is This? ..3
1.3 Terminology ...4
1.4 Notation ..6
1.5 Primer on Networking ..7

1.5.1 OSI Reference Model ...7
1.5.2 IP, UDP, and TCP ..8
1.5.3 Directory Service..9
1.5.4 Replicated Services ..11
1.5.5 Packet Switching ..11
1.5.6 Network Components...12
1.5.7 Destinations: Ultimate and Next-Hop ..13
1.5.8 Address Structure ...14

1.6 Active vs. Passive Attacks..15
1.7 Layers and Cryptography ...15
1.8 Authorization..15
1.9 Tempest ..16
1.10 Key Escrow for Law Enforcement ...17
1.11 Key Escrow for Careless Users ..19
1.12 Viruses, Worms, Trojan Horses ...19

1.12.1 Where Do They Come From? ..20
1.12.2 Spreading Pests from Machine to Machine..23
1.12.3 Virus Checkers ...24
1.12.4 What Can We Do Today?...25
1.12.5 Wish List for the Future ...26

1.13 The Multi-level Model of Security...27
1.13.1 Mandatory (Nondiscretionary) Access Controls ..28
1.13.2 Levels of Security...29
1.13.3 Mandatory Access Control Rules...29
1.13.4 Covert Channels ...30
1.13.5 The Orange Book ...32
1.13.6 Successors to the Orange Book ..35

viii CONTENTS

1.14 Legal Issues .. 36
1.14.1 Patents .. 36
1.14.2 Export Controls .. 37

 CRYPTOGRAPHY

CHAPTER 2 Introduction to Cryptography 41

2.1 What Is Cryptography? .. 41
2.1.1 Computational Difficulty ... 42
2.1.2 To Publish or Not to Publish .. 43
2.1.3 Secret Codes... 44

2.2 Breaking an Encryption Scheme .. 45
2.2.1 Ciphertext Only .. 45
2.2.2 Known Plaintext... 46
2.2.3 Chosen Plaintext... 46

2.3 Types of Cryptographic Functions... 47
2.4 Secret Key Cryptography ... 47

2.4.1 Security Uses of Secret Key Cryptography.. 47
2.4.2 Transmitting Over an Insecure Channel... 48
2.4.3 Secure Storage on Insecure Media ... 48
2.4.4 Authentication .. 48
2.4.5 Integrity Check... 49

2.5 Public Key Cryptography... 50
2.5.1 Security Uses of Public Key Cryptography ... 52
2.5.2 Transmitting Over an Insecure Channel... 52
2.5.3 Secure Storage on Insecure Media ... 52
2.5.4 Authentication .. 53
2.5.5 Digital Signatures... 54

2.6 Hash Algorithms .. 54
2.6.1 Password Hashing .. 55
2.6.2 Message Integrity ... 56
2.6.3 Message Fingerprint ... 56
2.6.4 Downline Load Security... 57
2.6.5 Digital Signature Efficiency... 57

2.7 Homework.. 57

CHAPTER 3 Secret Key Cryptography 59

3.1 Introduction .. 59
3.2 Generic Block Encryption.. 59
3.3 Data Encryption Standard (DES) ... 62

3.3.1 DES Overview.. 64
3.3.2 The Permutations of the Data... 66
3.3.3 Generating the Per-Round Keys... 67

CONTENTS ix

3.3.4 A DES Round ...69
3.3.5 The Mangler Function ..70
3.3.6 Weak and Semi-Weak Keys...74
3.3.7 What’s So Special About DES? ...74

3.4 International Data Encryption Algorithm (IDEA) ...75
3.4.1 Primitive Operations...75
3.4.2 Key Expansion..77
3.4.3 One Round..78

3.4.3.1 Odd Round..78
3.4.3.2 Even Round...79

3.4.4 Inverse Keys for Decryption ..80
3.4.5 Does IDEA Work? ...81

3.5 Advanced Encryption Standard (AES)...81
3.5.1 Basic Structure..82
3.5.2 Primitive Operations...84

3.5.2.1 What about the inverse cipher?...87
3.5.3 Key Expansion..89
3.5.4 Rounds..90
3.5.5 Inverse Rounds ...91
3.5.6 Optimization ...91

3.6 RC4...92
3.7 Homework ..92

CHAPTER 4 Modes of Operation 95

4.1 Introduction ..95
4.2 Encrypting a Large Message ..95

4.2.1 Electronic Code Book (ECB) ...96
4.2.2 Cipher Block Chaining (CBC) ...97

4.2.2.1 CBC Threat 1—Modifying Ciphertext Blocks99
4.2.2.2 CBC Threat 2—Rearranging Ciphertext Blocks100

4.2.3 Output Feedback Mode (OFB)...101
4.2.4 Cipher Feedback Mode (CFB) ...102
4.2.5 Counter Mode (CTR) ...104

4.3 Generating MACs...105
4.3.1 Ensuring Privacy and Integrity Together ...106
4.3.2 CBC with a Weak Cryptographic Checksum...107
4.3.3 CBC Encryption and CBC Residue with Related Keys108
4.3.4 CBC with a Cryptographic Hash..108
4.3.5 Offset Codebook Mode (OCB) ..108

4.4 Multiple Encryption DES...109
4.4.1 How Many Encryptions?..111

4.4.1.1 Encrypting Twice with the Same Key111

x CONTENTS

4.4.1.2 Encrypting Twice with Two Keys.. 111
4.4.1.3 Triple Encryption with only Two Keys 112

4.4.2 CBC Outside vs. Inside .. 113
4.5 Homework.. 114

CHAPTER 5 Hashes and Message Digests 117

5.1 Introduction .. 117
5.2 Nifty Things to Do with a Hash ... 121

5.2.1 Authentication .. 123
5.2.2 Computing a MAC with a Hash... 123
5.2.3 Encryption with a Message Digest... 125

5.2.3.1 Generating a One-Time Pad ... 125
5.2.3.2 Mixing In the Plaintext ... 126

5.2.4 Using Secret Key for a Hash .. 126
5.2.4.1 UNIX Password Hash... 126
5.2.4.2 Hashing Large Messages .. 127

5.3 MD2 ... 128
5.3.1 MD2 Padding ... 129
5.3.2 MD2 Checksum Computation.. 129
5.3.3 MD2 Final Pass .. 131

5.4 MD4 ... 133
5.4.1 MD4 Message Padding .. 133
5.4.2 Overview of MD4 Message Digest Computation 133
5.4.3 MD4 Message Digest Pass 1.. 135
5.4.4 MD4 Message Digest Pass 2.. 135
5.4.5 MD4 Message Digest Pass 3.. 136

5.5 MD5 ... 136
5.5.1 MD5 Message Padding .. 137
5.5.2 Overview of MD5 Message Digest Computation 137
5.5.3 MD5 Message Digest Pass 1.. 138
5.5.4 MD5 Message Digest Pass 2.. 138
5.5.5 MD5 Message Digest Pass 3.. 139
5.5.6 MD5 Message Digest Pass 4.. 139

5.6 SHA-1... 140
5.6.1 SHA-1 Message Padding ... 140
5.6.2 Overview of SHA-1 Message Digest Computation 140
5.6.3 SHA-1 Operation on a 512-bit Block... 141

5.7 HMAC.. 142
5.8 Homework.. 143

CHAPTER 6 Public Key Algorithms 147

6.1 Introduction .. 147

CONTENTS xi

6.2 Modular Arithmetic ..148
6.2.1 Modular Addition ...148
6.2.2 Modular Multiplication ..149
6.2.3 Modular Exponentiation...151

6.3 RSA ..152
6.3.1 RSA Algorithm...152
6.3.2 Why Does RSA Work? ..153
6.3.3 Why Is RSA Secure? ..153
6.3.4 How Efficient Are the RSA Operations? ...154

6.3.4.1 Exponentiating with Big Numbers ...154
6.3.4.2 Generating RSA Keys...156

Finding Big Primes p and q ..156
Finding d and e ...158

6.3.4.3 Having a Small Constant e..158
6.3.4.4 Optimizing RSA Private Key Operations160

6.3.5 Arcane RSA Threats...161
6.3.5.1 Smooth Numbers ..161
6.3.5.2 The Cube Root Problem ...162

6.3.6 Public-Key Cryptography Standard (PKCS)..163
6.3.6.1 Encryption...163
6.3.6.2 Encryption—Take 2..164
6.3.6.3 Signing ..165

6.4 Diffie-Hellman ...166
6.4.1 The Bucket Brigade/Man-in-the-Middle Attack167
6.4.2 Defenses Against Man-in-the-Middle Attack ..169

6.4.2.1 Published Diffie-Hellman Numbers169
6.4.2.2 Authenticated Diffie-Hellman ..169

6.4.3 Encryption with Diffie-Hellman...170
6.4.4 ElGamal Signatures ..170
6.4.5 Diffie-Hellman Details—Safe Primes..171

6.5 Digital Signature Standard (DSS) ..172
6.5.1 The DSS Algorithm..172
6.5.2 Why Does the Verification Procedure Work?..174
6.5.3 Why Is This Secure?...174
6.5.4 The DSS Controversy...175
6.5.5 Per-Message Secret Number ..176

6.6 How Secure Are RSA and Diffie-Hellman? ..177
6.7 Elliptic Curve Cryptography (ECC)...178
6.8 Zero Knowledge Proof Systems...179

6.8.1 Zero Knowledge Signatures ...181
6.9 Homework Problems ..182

xii CONTENTS

CHAPTER 7 Number Theory 185

7.1 Introduction .. 185
7.2 Modular Arithmetic.. 185
7.3 Primes... 186
7.4 Euclid’s Algorithm... 187

7.4.1 Finding Multiplicative Inverses in Modular Arithmetic 189
7.5 Chinese Remainder Theorem ... 190
7.6 Zn*.. 192
7.7 Euler’s Totient Function... 194
7.8 Euler’s Theorem... 194

7.8.1 A Generalization of Euler’s Theorem .. 195
7.9 Homework Problems.. 195

CHAPTER 8 Math with AES and Elliptic Curves 197

8.1 Introduction .. 197
8.2 Notation.. 197
8.3 Groups .. 198
8.4 Fields .. 200

8.4.1 Polynomials.. 201
8.4.2 Finite Fields.. 204

8.4.2.1 What Sizes Can Finite Fields Be? .. 205
8.4.2.2 Representing a Field ... 205

8.5 Mathematics of Rijndael .. 206
8.5.1 A Rijndael Round... 207

8.6 Elliptic Curve Cryptography .. 209
8.7 Homework.. 210

 AUTHENTICATION

CHAPTER 9 Overview of Authentication Systems 215

9.1 Password-Based Authentication... 215
9.1.1 Off- vs. On-Line Password Guessing... 217
9.1.2 Storing User Passwords.. 217

9.2 Address-Based Authentication... 219
9.2.1 Network Address Impersonation.. 221

9.3 Cryptographic Authentication Protocols .. 222
9.4 Who Is Being Authenticated? .. 223
9.5 Passwords as Cryptographic Keys ... 223
9.6 Eavesdropping and Server Database Reading.. 224
9.7 Trusted Intermediaries.. 226

9.7.1 KDCs.. 227
9.7.2 Certification Authorities (CAs).. 228

CONTENTS xiii

9.7.3 Certificate Revocation ..229
9.7.4 Multiple Trusted Intermediaries ...230

9.7.4.1 Multiple KDC Domains..230
9.7.4.2 Multiple CA Domains...232

9.8 Session Key Establishment...233
9.9 Delegation...234
9.10 Homework ..236

CHAPTER 10 Authentication of People 237

10.1 Passwords ...238
10.2 On-Line Password Guessing ..238
10.3 Off-Line Password Guessing..241
10.4 How Big Should a Secret Be? ..243
10.5 Eavesdropping ..244
10.6 Passwords and Careless Users..245

10.6.1 Using a Password in Multiple Places ...246
10.6.2 Requiring Frequent Password Changes..246
10.6.3 A Login Trojan Horse to Capture Passwords...247
10.6.4 Non-Login Use of Passwords...248

10.7 Initial Password Distribution..249
10.8 Authentication Tokens..250
10.9 Physical Access ..253
10.10 Biometrics...253
10.11 Homework ..255

CHAPTER 11 Security Handshake Pitfalls 257

11.1 Login Only..258
11.1.1 Shared Secret ..258
11.1.2 One-Way Public Key..262

11.2 Mutual Authentication..264
11.2.1 Reflection Attack..264
11.2.2 Password Guessing...266
11.2.3 Public Keys...267
11.2.4 Timestamps...268

11.3 Integrity/Encryption for Data ...269
11.3.1 Shared Secret ..269
11.3.2 Two-Way Public Key Based Authentication ...271
11.3.3 One-Way Public Key Based Authentication ..272
11.3.4 Privacy and Integrity ..272

11.4 Mediated Authentication (with KDC) ..274
11.4.1 Needham-Schroeder ...275
11.4.2 Expanded Needham-Schroeder ..277

xiv CONTENTS

11.4.3 Otway-Rees .. 278
11.5 Nonce Types... 280
11.6 Picking Random Numbers ... 282
11.7 Performance Considerations .. 284
11.8 Authentication Protocol Checklist ... 285
11.9 Homework.. 288

CHAPTER 12 Strong Password Protocols 291

12.1 Introduction .. 291
12.2 Lamport’s Hash .. 292
12.3 Strong Password Protocols... 295

12.3.1 The Basic Form .. 295
12.3.2 Subtle Details ... 296
12.3.3 Augmented Strong Password Protocols ... 298
12.3.4 SRP (Secure Remote Password) .. 299

12.4 Strong Password Credentials Download Protocols.. 300
12.5 Homework.. 301

 STANDARDS

CHAPTER 13 Kerberos V4 307

13.1 Introduction .. 307
13.2 Tickets and Ticket-Granting Tickets.. 308
13.3 Configuration ... 309
13.4 Logging Into the Network .. 310

13.4.1 Obtaining a Session Key and TGT... 310
13.4.2 Alice Asks to Talk to a Remote Node.. 311

13.5 Replicated KDCs.. 314
13.6 Realms.. 315
13.7 Interrealm Authentication .. 316
13.8 Key Version Numbers .. 317
13.9 Encryption for Privacy and Integrity.. 318
13.10 Encryption for Integrity Only... 320
13.11 Network Layer Addresses in Tickets ... 321
13.12 Message Formats.. 322

13.12.1 Tickets .. 324
13.12.2 Authenticators .. 325
13.12.3 Credentials.. 326
13.12.4 AS_REQ... 328
13.12.5 TGS_REQ .. 328
13.12.6 AS_REP and TGS_REP... 329
13.12.7 Error Reply from KDC... 331
13.12.8 AP_REQ... 331

CONTENTS xv

13.12.9 AP_REP..332
13.12.10 Encrypted Data (KRB_PRV) ...333
13.12.11 Integrity-Checked Data (SAFE) ...333
13.12.12 AP_ERR ...335

13.13 Homework ..336

CHAPTER 14 Kerberos V5 337

14.1 ASN.1 ...337
14.2 Names ...339
14.3 Delegation of Rights...339
14.4 Ticket Lifetimes..342

14.4.1 Renewable Tickets..342
14.4.2 Postdated Tickets..343

14.5 Key Versions ..344
14.6 Making Master Keys in Different Realms Different ..344
14.7 Optimizations ...345
14.8 Cryptographic Algorithms..345

14.8.1 Integrity-Only Algorithms..346
14.8.1.1 rsa-md5-des...346
14.8.1.2 des-mac ...347
14.8.1.3 des-mac-k..348
14.8.1.4 rsa-md4-des...348
14.8.1.5 rsa-md4-des-k ...348

14.8.2 Encryption for Privacy and Integrity..349
14.9 Hierarchy of Realms...349
14.10 Evading Password-Guessing Attacks ...352
14.11 Key Inside Authenticator..353
14.12 Double TGT Authentication...353
14.13 PKINIT—Public Keys for Users..354
14.14 KDC Database ..355
14.15 Kerberos V5 Messages ...356

14.15.1 Authenticator ..356
14.15.2 Ticket ..357
14.15.3 AS_REQ...357
14.15.4 TGS_REQ...359
14.15.5 AS_REP..360
14.15.6 TGS_REP ...362
14.15.7 AP_REQ...362
14.15.8 AP_REP..363
14.15.9 KRB_SAFE ..363
14.15.10 KRB_PRIV...364
14.15.11 KRB_CRED ...364

xvi CONTENTS

14.15.12 KRB_ERROR .. 365
14.16 Homework.. 369

CHAPTER 15 PKI (Public Key Infrastructure) 371

15.1 Introduction .. 371
15.2 Some Terminology... 372
15.3 PKI Trust Models ... 372

15.3.1 Monopoly Model.. 372
15.3.2 Monopoly plus Registration Authorities (RAs) 373
15.3.3 Delegated CAs.. 373
15.3.4 Oligarchy.. 374
15.3.5 Anarchy Model... 375
15.3.6 Name Constraints ... 376
15.3.7 Top-Down with Name Constraints .. 376
15.3.8 Bottom-Up with Name Constraints.. 377
15.3.9 Relative Names .. 380
15.3.10 Name Constraints in Certificates.. 380
15.3.11 Policies in Certificates.. 381

15.4 Revocation.. 382
15.4.1 Revocation Mechanisms .. 383

15.4.1.1 Delta CRLs ... 383
15.4.1.2 First Valid Certificate ... 384

15.4.2 OLRS Schemes .. 384
15.4.3 Good-lists vs. Bad-lists .. 385

15.5 Directories and PKI.. 386
15.5.1 Store Certificates with Subject or Issuer? .. 387
15.5.2 Finding Certificate Chains ... 388

15.6 PKIX and X.509... 389
15.6.1 Names... 389
15.6.2 OIDs ... 390
15.6.3 Specification of Time ... 391

15.7 X.509 and PKIX Certificates ... 391
15.7.1 X.509 and PKIX CRLs... 395

15.8 Authorization Futures... 395
15.8.1 ACL (Access Control List) .. 396
15.8.2 Central Administration/Capabilities... 396
15.8.3 Groups .. 397

15.8.3.1 Cross-Organizational and Nested Groups 397
15.8.4 Roles... 398
15.8.5 Anonymous Groups.. 400

15.9 Homework.. 401

CONTENTS xvii

CHAPTER 16 Real-time Communication Security 403

16.1 What Layer? ...403
16.2 Session Key Establishment...406
16.3 Perfect Forward Secrecy...407
16.4 PFS-Foilage ..409
16.5 Denial-of-Service/Clogging Protection ..410

16.5.1 Cookies ...410
16.5.2 Puzzles..411

16.6 Endpoint Identifier Hiding ...412
16.7 Live Partner Reassurance ...413
16.8 Arranging for Parallel Computation...415
16.9 Session Resumption..416
16.10 Plausible Deniability ..416
16.11 Data Stream Protection...417
16.12 Negotiating Crypto Parameters ..419
16.13 Easy Homework ...420
16.14 Homework ..420

CHAPTER 17 IPsec: AH and ESP 423

17.1 Overview of IPsec ..423
17.1.1 Security Associations ...423
17.1.2 Security Association Database ...424
17.1.3 Security Policy Database..424
17.1.4 AH and ESP..424
17.1.5 Tunnel, Transport Mode...425
17.1.6 Why Protect the IP Header? ...427

17.2 IP and IPv6 ...427
17.2.1 NAT (Network Address Translation)...428
17.2.2 Firewalls ...429
17.2.3 IPv4 Header ..430
17.2.4 IPv6 Header ..431

17.3 AH (Authentication Header) ..432
17.3.1 Mutable, Immutable ...433
17.3.2 Mutable but Predictable..434

17.4 ESP (Encapsulating Security Payload)...435
17.5 So, Do We Need AH? ..436
17.6 Comparison of Encodings ..437
17.7 Easy Homework ...438
17.8 Homework ..438

CHAPTER 18 IPsec: IKE 441

18.1 Photuris...442

xviii CONTENTS

18.2 SKIP ... 443
18.3 History of IKE.. 444
18.4 IKE Phases ... 445
18.5 Phase 1 IKE.. 446

18.5.1 Aggressive Mode and Main Mode ... 446
18.5.2 Key Types .. 448
18.5.3 Proof of Identity ... 449
18.5.4 Cookie Issues.. 450
18.5.5 Negotiating Cryptographic Parameters .. 451
18.5.6 Session Keys .. 452
18.5.7 Message IDs ... 454
18.5.8 Phase 2/Quick Mode .. 454
18.5.9 Traffic Selectors ... 454
18.5.10 The IKE Phase 1 Protocols... 455

18.5.10.1 Public Signature Keys, Main Mode.. 455
18.5.10.2 Public Signature Keys, Aggressive Mode 456
18.5.10.3 Public Encryption Key, Main Mode, Original 457
18.5.10.4 Public Encryption Key, Aggressive Mode, Original 458
18.5.10.5 Public Encryption Key, Main Mode, Revised........................ 458
18.5.10.6 Public Encryption Key, Aggressive Mode, Revised 459
18.5.10.7 Shared Secret Key, Main Mode.. 459
18.5.10.8 Shared Secret Key, Aggressive Mode 460

18.6 Phase-2 IKE: Setting up IPsec SAs.. 462
18.7 ISAKMP/IKE Encoding... 463

18.7.1 Fixed Header .. 465
18.7.2 Payload Portion of ISAKMP Messages ... 467
18.7.3 SA Payload... 467

18.7.3.1 Ps and Ts within the SA Payload.. 468
18.7.3.2 Payload Length in SA, P, and T Payloads 468
18.7.3.3 Type of Next Payload ... 468
18.7.3.4 SA Payload Fields .. 469

18.7.4 P Payload.. 470
18.7.5 T Payload.. 471
18.7.6 KE Payload... 472
18.7.7 ID Payload.. 472
18.7.8 Cert Payload ... 473
18.7.9 Certificate Request Payload ... 474
18.7.10 Hash/Signature/Nonce Payloads .. 474
18.7.11 Notify Payload.. 474
18.7.12 Vendor ID Payload... 475

18.8 Homework.. 476

CONTENTS xix

CHAPTER 19 SSL/TLS 477

19.1 Introduction ..477
19.2 Using TCP ..477
19.3 Quick History ...477
19.4 SSL/TLS Basic Protocol...478
19.5 Session Resumption..480
19.6 Computing the Keys ...481
19.7 Client Authentication..482
19.8 PKI as Deployed by SSL..482
19.9 Version Numbers..483
19.10 Negotiating Cipher Suites...484

19.10.1 Who Makes the Decision?..485
19.10.2 Cipher Suite Names..485

19.11 Negotiating Compression Method..486
19.12 Attacks Fixed in v3...486

19.12.1 Downgrade Attack..486
19.12.2 Truncation Attack...486

19.13 Exportability ...487
19.13.1 Exportability in SSLv2...487
19.13.2 Exportability in SSLv3...488
19.13.3 Server Gated Cryptography/Step-Up ...489

19.14 Encoding...490
19.14.1 Encrypted Records..491
19.14.2 Handshake Messages..492

19.14.2.1 ClientHello..493
19.14.2.2 ServerHello ...493
19.14.2.3 ServerHelloDone ..493
19.14.2.4 ClientKeyExchange ..494
19.14.2.5 ServerKeyExchange..494
19.14.2.6 CertificateRequest...495
19.14.2.7 Certificate..495
19.14.2.8 CertificateVerify ...496
19.14.2.9 HandshakeFinished...496

19.14.3 ChangeCipherSpec ...496
19.14.4 Alerts ..497

19.15 Further Reading ..497
19.16 Easy Homework ...497
19.17 Homework ..498

 ELECTRONIC MAIL

CHAPTER 20 Electronic Mail Security 501

xx CONTENTS

20.1 Distribution Lists.. 501
20.2 Store and Forward .. 504
20.3 Security Services for Electronic Mail .. 505
20.4 Establishing Keys... 506

20.4.1 Establishing Public Keys.. 507
20.4.2 Establishing Secret Keys.. 507

20.5 Privacy.. 508
20.5.1 End-to-End Privacy .. 508
20.5.2 Privacy with Distribution List Exploders... 509

20.6 Authentication of the Source.. 510
20.6.1 Source Authentication Based on Public Key Technology 510
20.6.2 Source Authentication Based on Secret Keys .. 511
20.6.3 Source Authentication with Distribution Lists... 512

20.7 Message Integrity ... 512
20.7.1 Message Integrity without Source Authentication 513

20.8 Non-Repudiation .. 514
20.8.1 Non-Repudiation Based on Public Key Technology 514
20.8.2 Plausible Deniability Based on Public Key Technology 514
20.8.3 Non-Repudiation with Secret Keys.. 515

20.9 Proof of Submission ... 516
20.10 Proof of Delivery.. 516
20.11 Message Flow Confidentiality ... 517
20.12 Anonymity.. 517
20.13 Containment ... 519
20.14 Annoying Text Format Issues .. 519

20.14.1 Disguising Data as Text ... 521
20.15 Names and Addresses... 523
20.16 Verifying When a Message Was Really Sent .. 524

20.16.1 Preventing Backdating ... 524
20.16.2 Preventing Postdating... 525

20.17 Homework.. 525

CHAPTER 21 PEM & S/MIME 529

21.1 Introduction .. 529
21.2 Structure of a PEM Message.. 530
21.3 Establishing Keys... 533
21.4 Some PEM History... 534
21.5 PEM Certificate Hierarchy... 536
21.6 Certificate Revocation Lists (CRLs) .. 538
21.7 Reformatting Data to Get Through Mailers ... 539
21.8 General Structure of a PEM Message .. 540
21.9 Encryption .. 541

CONTENTS xxi

21.10 Source Authentication and Integrity Protection ...542
21.11 Multiple Recipients ..543
21.12 Bracketing PEM Messages...544
21.13 Forwarding and Enclosures ..547

21.13.1 Forwarding a Message..547
21.14 Unprotected Information ..549
21.15 Message Formats ..550

21.15.1 ENCRYPTED, Public Key Variant..551
21.15.2 ENCRYPTED, Secret Key Variant..554
21.15.3 MIC-ONLY or MIC-CLEAR, Public Key Variant..................................556
21.15.4 MIC-ONLY and MIC-CLEAR, Secret Key Variant................................557
21.15.5 CRL-RETRIEVAL-REQUEST ...558
21.15.6 CRL ..558

21.16 DES-CBC as MIC Doesn’t Work...558
21.17 Differences in S/MIME ..561
21.18 S/MIME Certificate Hierarchy ...564

21.18.1 S/MIME with a Public Certifier ...564
21.18.2 S/MIME with an Organizational Certifier..564
21.18.3 S/MIME with Certificates from Any Old CA ..564

21.19 Homework ..565

CHAPTER 22 PGP (Pretty Good Privacy) 567

22.1 Introduction ...567
22.2 Overview ..568
22.3 Key Distribution ...569
22.4 Efficient Encoding..571
22.5 Certificate and Key Revocation..572
22.6 Signature Types ..573
22.7 Your Private Key..573
22.8 Key Rings ...574
22.9 Anomalies...574

22.9.1 File Name ...574
22.9.2 People Names ...575

22.10 Object Formats ...575
22.10.1 Message Formats ..576
22.10.2 Primitive Object Formats ...577

 LEFTOVERS

CHAPTER 23 Firewalls 585

23.1 Packet Filters ..588
23.2 Application Level Gateway..589
23.3 Encrypted Tunnels..591

xxii CONTENTS

23.4 Comparisons... 592
23.5 Why Firewalls Don’t Work.. 592
23.6 Denial-of-Service Attacks .. 593
23.7 Should Firewalls Go Away? .. 594

CHAPTER 24 More Security Systems 595

24.1 NetWare V3.. 595
24.2 NetWare V4.. 597

24.2.1 NetWare’s Guillou-Quisquater Authentication Scheme 600
24.3 KryptoKnight ... 602

24.3.1 KryptoKnight Tickets... 603
24.3.2 Authenticators .. 604
24.3.3 Nonces vs. Timestamps.. 604
24.3.4 Data Encryption.. 605

24.4 DASS/SPX ... 605
24.4.1 DASS Certification Hierarchy ... 605
24.4.2 Login Key... 606
24.4.3 DASS Authentication Handshake .. 606
24.4.4 DASS Authenticators ... 608
24.4.5 DASS Delegation ... 608
24.4.6 Saving Bits ... 609

24.5 Lotus Notes Security .. 609
24.5.1 ID Files... 610
24.5.2 Coping with Export Controls ... 611
24.5.3 Certificates for Hierarchical Names... 612
24.5.4 Certificates for Flat Names .. 613
24.5.5 Lotus Notes Authentication.. 614
24.5.6 The Authentication Long-Term Secret .. 616
24.5.7 Mail .. 616
24.5.8 Certification Revocation .. 617

24.6 DCE Security.. 617
24.7 Microsoft Windows Security ... 622

24.7.1 LAN Manager and NTLM ... 622
24.7.2 Windows 2000 Kerberos.. 624

24.8 Network Denial of Service... 626
24.8.1 Robust Broadcast.. 626
24.8.2 Robust Packet Delivery.. 628

24.9 Clipper .. 629
24.9.1 Key Escrow .. 632

24.10 Homework.. 633

CHAPTER 25 Web Issues 635

CONTENTS xxiii

25.1 Introduction ..635
25.2 URLs/URIs ...636
25.3 HTTP ..638
25.4 HTTP Digest Authentication..639
25.5 Cookies ...641

25.5.1 Alternatives to Cookies ..641
25.5.2 Cookie Rules ..642
25.5.3 Tracking Users..643

25.6 Other Web Security Problems ..645
25.6.1 Spoofing a Site to a User ..645
25.6.2 Merchants Unclear on the Concept ..646
25.6.3 Getting Impersonated by a Subsequent User..646
25.6.4 Cross-Site Scripting..647
25.6.5 Poisoning Cookies ..649
25.6.6 Other Misuse of Cookies ..649

25.7 Homework ..650

CHAPTER 26 Folklore 653

26.1 Perfect Forward Secrecy...653
26.2 Change Keys Periodically ..654
26.3 Multiplexing Flows over a Single SA ..655

26.3.1 The Splicing Attack..655
26.3.2 Service Classes ...656
26.3.3 Different Cryptographic Algorithms ..656

26.4 Use Different Keys in the Two Directions ...657
26.5 Use Different Secret Keys for Encryption vs. Integrity Protection..........................657
26.6 Use Different Keys for Different Purposes ..658
26.7 Use Different Keys for Signing vs. Encryption..658
26.8 Have Both Sides Contribute to the Master Key ...659
26.9 Don’t Let One Side Determine the Key ...659
26.10 Hash in a Constant When Hashing a Password..660
26.11 HMAC Rather than Simple MD...661
26.12 Key Expansion..661
26.13 Randomly Chosen IVs..662
26.14 Use of Nonces in Protocols ..663
26.15 Don’t Let Encrypted Data Begin with a Constant..663
26.16 Don’t Let Encrypted Data Begin with a Predictable Value664
26.17 Compress Data Before Encrypting It ...664
26.18 Don’t Do Encryption Only ...665
26.19 Avoiding Weak Keys ...665
26.20 Minimal vs. Redundant Designs...666
26.21 Overestimate the Size of Key ...666

xxiv CONTENTS

26.22 Hardware Random Number Generators ... 667
26.23 Timing Attacks ... 667
26.24 Put Checksums at the End of Data ... 668
26.25 Forward Compatibility ... 669

26.25.1 Options ... 669
26.25.2 Version Numbers.. 670

26.25.2.1 Version Number Field Must Not Move.................................. 670
26.25.2.2 Negotiating Highest Version Supported................................. 670
26.25.2.3 Minor Version Number Field ... 671

26.25.3 Vendor Options .. 672
26.26 Negotiating Parameters .. 672
26.27 Homework.. 673

Bibliography 675

Glossary 685

Index 703

xxv

ACKNOWLEDGMENTS

Despite the controversies that crop up around security issues, it has been our experience that people
in the security community are generally generous with their wisdom and time. It’s always a little
scary thanking specific people, for fear we’ll leave someone out, but leaving everyone out seems
wrong. It’s not even the fair thing to do, since some people would be more egregiously wronged by
being left out than others.

Eric Rescorla and Hilarie Orman have been particularly helpful with answering questions and
reviewing chapters for this edition. Other reviewers, and people who have been helpful answering
questions, include Tom Wu, Kevin Fu, Marshall Rose, Joe Tardo, Joe Pato, Seth Proctor, Timothy
Spiller, Tom Rice, Kristen McIntyre, Gary Winiger, Dan Harkins, Peter Memishian, Jeff Schiller,
Burt Kaliski, Tony Lauck, Phil Karn, Ron Rivest, Steve Crocker, Steve Kent, John Linn, Steve
Hanna, Jim Bidzos, Dave Jablon, Ted Ts’o, Matthew Barnes, Keith McCloughrie, Jeffrey Case,
Kathrin Winkler, Philippe Auphelle, Sig Handelman, Phillip Hallam-Baker, Uri Blumenthal, Serge
Vaudenay, and Boyd Roberts.

We could not have done Chapter 24 More Security Systems without help from the various
companies involved, since for the most part the security systems were previously undocumented.
We’d like to thank Al Eldridge from Iris (Lotus Notes), Amir Herzberg and Mark Davis from IBM
(KryptoKnight), Walt Tuvell from OSF, and Cliff Van Dyke from Microsoft (LAN Manager and
Windows NT security) for explaining their systems to us, doing timely reviews of what we wrote,
and being enthusiastic and supportive of the project. Although nearly 67% of us work for compa-
nies that have products in this area, the opinions we offer are ours alone, and not those of our com-
panies.

Mary Franz, our editor at Prentice Hall, has been enthusiastic and optimistic and patient with
us throughout. She’s shown good judgment about when to be helpful, when to keep out of the way,
when to nag, and when to just look soulful so we feel guilty enough to meet a deadline.

Despite the fact that this book has kept both of his parents busy for a significant part of his
life, Ray Perlner has kept us inspired with his wholehearted and unselfish enthusiasm for the
project. He’s shown genuine interest in the subject matter, offered useful advice during interauthor
arguments, helped search for quotes, reviewed part of the book, and particularly liked the sub-
scripted pronouns. If we overdo those, it’s just because it’s fun to see him giggle. Dawn Perlner has
also been a great supporter of the project, and manages to convince a surprising number of her
friends, as well as complete strangers, to buy the book.

xxvi

And of course we thank you, our reader. We welcome your comments and suggestions. Com-
pliments are always welcome. We hope to update the book periodically, so if there are topics you
wish we’d covered or errors you’d like us to correct, let us know. Errata can be found at
http://www.phptr.com/networksecurity.

Our current email addresses are ckaufman@us.ibm.com, radia@alum.mit.edu, and
ms@alum.mit.edu. But we’ve found that email is not always reliable and email addresses change.
If all else fails, you can contact the publisher, Prentice Hall, particularly our editor Mary Franz
(mfranz@prenhall.com), and find out our current addresses.

We wish to thank the following for their permission to use their quotes in this book:

• Quote on page 10 from The Hollywood Book of Quotes, Omnibus Press.

• Quotes on page 17 and page 25 Copyright © 1994 Newsweek, Inc. All rights reserved.
Reprinted by permission.

• Quote on page 43 reprinted by permission of Singer Media Corporation.

• Quote on page 19 reprinted by permission of Turner Entertainment.

• Quote on page 117 courtesy of Donald Knuth.

• Quote on page 253 reprinted by permission of The Wall Street Journal, Copyright © 1992
Dow Jones & Company, Inc.

http://www.phptr.com/networksecurity

1

1 INTRODUCTION

It was a dark and stormy night. Somewhere in the distance a dog howled. A shiny object caught
Alice’s eye. A diamond cufflink! Only one person in the household could afford diamond cufflinks!
So it was the butler, after all! Alice had to warn Bob. But how could she get a message to him with-
out alerting the butler? If she phoned Bob, the butler might listen on an extension. If she sent a car-
rier pigeon out the window with the message taped to its foot, how would Bob know it was Alice
that was sending the message and not Trudy attempting to frame the butler because he spurned her
advances?

That’s what this book is about. Not much character development for Alice and Bob, we’re
afraid; nor do we really get to know the butler. But we do discuss how to communicate securely
over an insecure medium.

What do we mean by communicating securely? Alice should be able to send a message to
Bob that only Bob can understand, even though Alice can’t avoid having others see what she sends.
When Bob receives a message, he should be able to know for certain that it was Alice who sent the
message, and that nobody tampered with the contents of the message in the time between when
Alice launched the message and Bob received it.

What do we mean by an insecure medium? Well, in some dictionary or another, under the
definition of “insecure medium” should be a picture of the Internet. The world is evolving towards
interconnecting every computer, and people talk about connecting household appliances as well, all
into some wonderful global internetwork. How wonderful! You’d be able to send electronic mail to
anyone in the world. You’d also be able to control your nuclear power plant with simple commands
sent across the network while you were vacationing in Fiji. Or sunny Libya. Or historic Iraq. Inside
the network the world is scary. There are links that eavesdroppers can listen in on. Information
needs to be forwarded through packet switches, and these switches can be reprogrammed to listen
to or modify data in transit.

The situation might seem hopeless, but we may yet be saved by the magic of mathematics,
and in particular cryptography, which can take a message and transform it into a bunch of numbers
known as ciphertext. The ciphertext is unintelligible gibberish except to someone who knows the
secret to reversing the transformation. Cryptography allows us to disguise our data so that eaves-
droppers gain no information from listening to the information as transmitted. Cryptography also
allows us to create an unforgeable message and detect if it has been modified in transit. One method

2 INTRODUCTION 1.1

of accomplishing this is with a digital signature, a number associated with a message and its
sender that can be verified as authentic by others, but can only be generated by the sender. This
should seem astonishing. How can there be a number which you can verify but not generate? A per-
son’s handwritten signature can (more or less) only be generated by that person, though it can be
verified by others. But it would seem as if a number shouldn’t be hard to generate, especially if it
can be verified. Theoretically, you could generate someone’s signature by trying lots of numbers
and testing each one until one passed the verification test. But with the size of the numbers used, it
would take too much compute time (for instance, several universe lifetimes) to generate the signa-
ture that way. So a digital signature has the same property as a handwritten signature, in that it can
only be generated by one person. But a digital signature does more than a handwritten signature.
Since the digital signature depends on the contents of the message, if someone alters the message
the signature will no longer be correct and the tampering will be detected. This will all become
clear if you read Chapter 2 Introduction to Cryptography.

Cryptography is a major theme in this book, not because cryptography is intrinsically inter-
esting (which it is), but because many of the security features people want in a computer network
can best be provided through cryptography.

1.1 ROADMAP TO THE BOOK

After this introductory chapter, there are five main sections in the book:

• Part 1 CRYPTOGRAPHY Chapter 2 Introduction to Cryptography is the only part of the
cryptography section of the book essential for understanding the rest of the book, since it
explains the generic properties of secret key, message digest, and public key algorithms, and
how each is used. We’ve tried our best to make the descriptions of the actual cryptographic
algorithms nonthreatening yet thorough, and to give intuition into why they work. It’s
intended to be readable by anyone, not just graduate students in mathematics. Never once do
we use the term lemma. We do hope you read Chapter 3 Secret Key Cryptography, Chapter 4
Modes of Operation, Chapter 5 Hashes and Message Digests, and Chapter 6 Public Key
Algorithms which give the details of the popular standards, but it’s also OK to skip them and
save them for later, or just for reference. Chapter 7 Number Theory and Chapter 8 Math with
AES and Elliptic Curves gives a deeper treatment of the mathematics behind the cryptogra-
phy. Reading them is not necessary for understanding the rest of the book.

• Part 2 AUTHENTICATION Chapter 9 Overview of Authentication Systems introduces
the general issues involved in proving your identity across a network. Chapter 10 Authentica-
tion of People deals with the special circumstances when the device proving its identity is a

1.2 WHAT TYPE OF BOOK IS THIS? 3

human being. Chapter 11 Security Handshake Pitfalls deals with the details of authentication
handshakes. There are many security flaws that keep getting designed into protocols. This
chapter attempts to describe variations of authentication handshakes and their relative secu-
rity and performance strengths. We end the chapter with a checklist of security attacks so that
someone designing a protocol can specifically check their protocol for these flaws.

• Part 3 STANDARDS This portion of the book describes the standards: Kerberos versions 4
and 5, certificate and PKI standards, IPsec, and SSL. We hope that our descriptions will be
much more readable than the standards themselves. And aside from just describing the stan-
dards, we give intuition behind the various choices, and criticisms where they are overly com-
plex or have flaws. We hope that our commentary will make the descriptions more interesting
and provide a deeper understanding of the design decisions. Our descriptions are not meant
to, and cannot, replace reading the standards themselves, since the standards are subject to
change. But we hope that after reading our description, it will be much easier to understand
the standards.

• Part 4 ELECTRONIC MAIL Chapter 20 Electronic Mail Security describes the various
types of security features one might want, and how they might be provided. Chapter 21 PEM
& S/MIME and Chapter 22 PGP (Pretty Good Privacy) describe the specifics of PEM,
S/MIME, and PGP.

• Part 5 LEFTOVERS Chapter 23 Firewalls talks about what firewalls are, what problems
they solve, and what problems they do not solve. Chapter 24 More Security Systems,
describes a variety of security systems, including Novell NetWare (Versions 3 and 4), Lotus
Notes, DCE, KryptoKnight/NetSP, Clipper, SNMP, DASS/SPX, Microsoft (LAN Manager
and Windows NT), and sabotage-proof routing protocols. Chapter 25 Web Issues talks about
the protocols involved in web surfing: URLs, HTTP, HTML, cookies, etc., and the security
issues these raise. We close with Chapter 26 Folklore, which describes the reasoning behind
some of the advice you will hear from cryptographers.

1.2 WHAT TYPE OF BOOK IS THIS?

We believe the reason most computer science is hard to understand is because of jargon and irrele-
vant details. When people work with something long enough they invent their own language, come
up with some meta-architectural framework or other, and forget that the rest of the world doesn’t
talk or think that way. We intend this book to be reader-friendly. We try to extract the concepts and

4 INTRODUCTION 1.3

ignore the meta-architectural framework, since whatever a meta-architectural framework is, it’s
irrelevant to what something does and how it works.

We believe someone who is a relative novice to the field ought to be able to read this book.
But readability doesn’t mean lack of technical depth. We try to go beyond the information one
might find in specifications. The goal is not just to describe exactly how the various standards and
de facto standards work, but to explain why they are the way they are, why some protocols designed
for similar purposes are different, and the implications of the design decisions. Sometimes engi-
neering tradeoffs were made. Sometimes the designers could have made better choices (they are
human after all), in which case we explain how the protocol could have been better. This analysis
should make it easier to understand the current protocols, and aid in design of future protocols.

The primary audience for this book is engineers, especially those who might need to evaluate
the security of, or add security features to, a distributed system; but the book is also intended to be
usable as a textbook, either on the advanced undergraduate or graduate level. Most of the chapters
have homework problems at the end.

Not all the chapters will be of interest to all readers. In some cases we describe and critique a
standard in great detail. These chapters might not be of interest to students or people trying to get a
conceptual understanding of the field. But in many cases the standards are written fairly unintelligi-
bly. People who need to understand the standard, perhaps to implement it, or maybe even to use it,
need to have a place where it is described in a readable way (and we strive for readability), but also
a place in which mistakes in the standard are pointed out as such. It’s very difficult to understand
why, for instance, two fields are included which both give the same information. Sometimes it is
because the designers of the protocol made a mistake. Once something like that is pointed out as a
simple mistake, it’s much easier to understand the specification. We hope that reading the descrip-
tions in the book will make the specifications more intelligible.

1.3 TERMINOLOGY

Computer science is filled with ill-defined terminology used by different authors in conflicting
ways, often by the same author in conflicting ways. We apologize in advance for probably being
guilty sometimes ourselves. Some people take terminology very seriously, and once they start to
use a certain word in a certain way, are extremely offended if the rest of the world does not follow.

When I use a word, it means just what I choose it to mean—neither more
nor less.

—Humpty Dumpty (in Through the Looking Glass)

1.3 TERMINOLOGY 5

Some terminology we feel fairly strongly about. We do not use the term hacker to describe
the vandals that break into computer systems. These criminals call themselves hackers, and that is
how they got the name. But they do not deserve the name. True hackers are master programmers,
incorruptibly honest, unmotivated by money, and careful not to harm anyone. The criminals termed
“hackers” are not brilliant and accomplished. It is really too bad that they not only steal money,
people’s time, and worse, but they’ve also stolen a beautiful word that had been used to describe
some remarkable and wonderful people. We instead use words like intruder, bad guy, and impostor.
When we need a name for a bad guy, we usually choose Trudy (since it sounds like intruder).

We grappled with the terms secret key and public key cryptography. Often in the security liter-
ature the terms symmetric and asymmetric are used instead of secret and public. We found the terms
symmetric and asymmetric intimidating and sometimes confusing, so opted instead for secret key
and public key. We occasionally regretted our decision to avoid the words symmetric and asymmet-
ric when we found ourselves writing things like secret key based interchange keys rather than sym-
metric interchange keys.

We use the term privacy when referring to the desire to keep communication from being seen
by anyone other than the intended recipients. Some people in the security community avoid the
term privacy because they feel its meaning has been corrupted to mean the right to know, because in
some countries there are laws known as privacy laws which state that citizens have the right to see
records kept about themselves. Privacy also tends to be used when referring to keeping personal
information about people from being collected and misused. The security community also avoids
the use of the word secrecy, because secret has special meaning within the military context, and
they feel it would be confusing to talk about the secrecy of a message that was not actually labeled
top secret or secret. The term most commonly used in the security community for keeping com-
munication from being seen is confidentiality. We find that strange because confidential, like secret,
is a security label, and the security community should have scorned use of confidential, too. In the
first edition, we chose not to use confidentiality because we felt it had too many syllables, and saw
no reason not to use privacy. For the second edition we reconsidered this decision, and were about
to change all use of privacy to confidentiality until one of us pointed out we’d have to change the
title of the book to something like Network Security: Confidential Communication in a Non-Confi-
dential World, at which point we decided to stick with privacy.

Speaker: Isn’t it terrifying that on the Internet we have no privacy?
Heckler1: You mean confidentiality. Get your terms straight.
Heckler2: Why do security types insist on inventing their own language?
Heckler3: It’s a denial-of-service attack.

—Overheard at recent gathering of security types

We often refer to things involved in a conversation by name, for instance, Alice and Bob,
whether the things are people or computers. This is a convenient way of making things unambigu-

6 INTRODUCTION 1.4

ous with relatively few words, since the pronoun she can be used for Alice and he can be used for
Bob. It also avoids lengthy inter- (and even intra-) author arguments about whether to use the polit-
ically incorrect he, a confusing she, an awkward he/she or (s)he, an ungrammatical they, an imper-
sonal it, or an incredibly awkward rewriting to avoid the problem. We remain slightly worried that
people will assume when we’ve named things with human names that we are referring to people.
Assume Alice, Bob, and the rest of the gang may be computers unless we specifically say some-
thing like the user Alice, in which case we’re talking about a human.

With a name like yours, you might be any shape, almost.
—Humpty Dumpty to Alice (in Through the Looking Glass)

Occasionally, one of the three of us authors will want to make a personal comment. In that
case we use I or me with a subscript. When it’s a comment that we all agree with, or that we man-
aged to slip past me3 (the rest of us are wimpier), we use the term we.

1.4 NOTATION

We use the symbol ⊕ (pronounced ex-or) for the bitwise-exclusive-or operation. We use the symbol
| for concatenation. We denote secret key encryption with curly brackets preceded by the key with
which something was encrypted, as in K{message}, which means message is secret key encrypted
with K. Public key encryption we denote with curly braces, and the name of the owner of the public
key subscripting the close brace, as in {message}Bob. Signing (which means using the private key),
we denote with square brackets, with the name of the owner of the key subscripting the close
bracket, as in [message]Bob.

Table of Notation

⊕ bitwise exclusive or (pronounced ex-or)
| concatenation (pronounced concatenated with)

K{message} message encrypted with secret key K
{message}Bob message encrypted with Bob’s public key
[message]Bob message signed with Bob’s private key

1.5 PRIMER ON NETWORKING 7

1.5 PRIMER ON NETWORKING

You have to know something about computer networks to understand computer network security, so
we’re including this primer. For a more detailed understanding, we recommend PERL99, TANE96,
COME00, STEV94, KURO00.

Networks today need to be very easy to use and configure. Networks are no longer an expen-
sive educational toy for researchers, but instead are being used by real people. Most sites with net-
works will not be able to hire a full-time person with networking expertise to start and keep the
network running.

1.5.1 OSI Reference Model

Somehow, a book about computer networks would seem incomplete without a picture of the OSI
(Open Systems Interconnection) Reference Model, so here it is.

The OSI Reference Model is useful because it gives some commonly used terminology,
though it might mislead you into thinking that there is only one way to construct a network. The
reference model was designed by an organization known as the International Standards Organiza-
tion (ISO). The ISO decided it would be a good idea to standardize computer networking. Since
that was too big a task for a single committee, they decided to subdivide the problem among several
committees. They somewhat arbitrarily chose seven, each responsible for one layer. The basic idea
is that each layer uses the services of the layer below, adds functionality, and provides a service to
the layer above. When you start looking at real networks, they seldom neatly fit into the seven-layer
model, but for basic understanding of networking, the OSI Reference Model is a good place to start.

1. physical layer. This layer delivers an unstructured stream of bits across a link of some sort.

2. data link layer. This layer delivers a piece of information across a single link. It organizes
the physical layer’s bits into packets and controls who on a shared link gets each packet.

application layer
presentation layer

session layer
transport layer
network layer
data link layer
physical layer

Figure 1-1. OSI Reference Model

8 INTRODUCTION 1.5.2

3. network layer. This layer computes paths across an interconnected mesh of links and packet
switches, and forwards packets over multiple links from source to destination.

4. transport layer. This layer establishes a reliable communication stream between a pair of
systems across a network by putting sequence numbers in packets, holding packets at the des-
tination until they can be delivered in order, and retransmitting lost packets.

5. session layer. The OSI session layer adds extra functions to the reliable pair-wise communi-
cation provided by the transport layer. Most network architectures do not have or need the
functionality in this layer, and it is not of concern to security, so for the purposes of this book
we can ignore it.

6. presentation layer. This layer encodes application data into a canonical (system-indepen-
dent) format and decodes it into a system-dependent format at the receiving end.

7. application layer. This is where the applications that use the network, such as web surfing,
file transfer, and electronic mail, reside.

A layer communicates with the equivalent layer in a different node. In order to get data to a
peer layer, though, the layer at the transmitting node gives the data to the layer below it (on the
same node), which adds a header containing additional information if necessary, and that layer in
turn gives it to the layer below. As the packet is received by the destination node, each layer reads
and strips off its own header, so that the packet received by layer n looks to that layer just like it did
when it was sent down to layer n−1 for transmission.

This seven-layer model is the basis for a lot of the terminology in networking, and a good first
step towards understanding networks, but today’s network protocols do not neatly fit this model.
Throughout the book we sometimes use the OSI terminology by discussing things such as encryp-
tion at layer 2 vs. layer 3 vs. layer 4, or use the terms data link layer, or transport layer.

1.5.2 IP, UDP, and TCP

Today the most common protocols are the ones standardized by the IETF (Internet Engineering
Task Force). All the IETF documents are on-line and freely available from the web site
www.ietf.org. The protocols are specified in documents known as RFCs. (RFC is an abbreviation
for “Request for Comments”, but the time to comment is when the documents are in the more pre-
liminary “internet draft” stage. Nobody wants to hear your comments on RFCs.)

The IETF’s protocol suite is usually referred to as the “TCP/IP suite”, after the most common
layer 3 (IP) and layer 4 (TCP) protocols at the time the suite was being nicknamed. IP (Internet Pro-
tocol), the layer 3 protocol, is defined in RFC 791. Its job is to deliver data across a network. To get
a letter mailed with the postal service, you put it in an envelope that specifies the source and desti-

www.ietf.org

1.5.3 PRIMER ON NETWORKING 9

nation address. Similarly, the IP layer adds an envelope (a header) to the data that specifies the
source and destination addresses.

But the IP address only specifies the destination machine. There might be multiple processes
at the destination machine all communicating across the network, so it’s necessary to also specify
which process should receive the data. This is similar to putting an apartment number on the enve-
lope in addition to the street address. IP doesn’t identify the processes, but instead has a 1-octet
field that specifies which protocol should receive the packet, and the rest of the information neces-
sary to identify the destination process is contained in the layer 4 header, in the PORT fields.

The two most important layer 4 protocols in the IETF suite are TCP (Transmission Control
Protocol, defined in RFC 793) and UDP (User Datagram Protocol, defined in RFC 768). TCP sends
an unlimited size stream of data, reliably (either all data is delivered to the other end without loss,
duplication, or misordering, or the connection is terminated). UDP sends limited-sized individual
chunks, with best-effort service. Both TCP and UDP have fields for SOURCE PORT and DESTINA-
TION PORT, which specify the process to whom the data belongs. TCP additionally has sequence
numbers and acknowledgments to ensure the data arrives reliably.

Some port numbers are “well-known”, i.e., permanently assigned to a particular service,
whereas others are dynamically assigned. Being able to contact someone at a well-known port
makes it easy to establish communication. In contrast, if Alice and Bob were going to attempt to
communicate by going to public telephones wherever they happened to be, they’d never be able to
communicate, since neither one would know what number to call. But if one of them were listening
at a well-known telephone number, then the other could call from anywhere. This is very similar to
the use of well-known ports.

To communicate with a particular service, say the telnet service, at some machine at IP
address x, you’d know that telnet uses TCP, and is always assigned to port 23. So in the IP header,
you’d specify x as the destination address, and 6 (which means TCP) as the protocol type. In the
TCP header, you’d specify port 23 as the destination port. Your process would be at a dynamically
assigned port, but the recipient process at node x would know which port to reply to by copying the
port from the source port in the received TCP header.

This will all become much more relevant when we discuss firewalls in Chapter 23 Firewalls,
and how they can distinguish telnet packets (which firewall administrators would usually like to
block) from, say, email packets (which firewall administrators would usually like to allow).

1.5.3 Directory Service

Having a telephone line into your house means you can access any phone in the world, if you know
the telephone number. The same thing is true, more or less, in computer networks. If you know the
network layer address of a node on the network, you should be able to communicate with that node.
(This isn’t always true because of security gateways, which we’ll discuss in Chapter 23 Firewalls.)

10 INTRODUCTION 1.5.3

But how do you find out another node’s network layer address? Network layer addresses are not the
kind of things that people will be able to remember, or type. People instead will want to access
something using a name such as File-Server-3.

This is a similar problem to finding someone’s telephone number. Typically you start out by
knowing the name of the person or service you want to talk to, and then look the name up in a tele-
phone book. In a computer network there is a service which stores information about a name,
including its network layer address. Anything that needs to be found is listed in the service. Any-
thing that needs to find something searches the service.

We call such a service a directory, though some people like to reserve the term “directory”
for something in which you search based on an attribute (e.g., “find all the people who live on Main
Street”) rather than look up something based on knowing its name. Those people would call a sim-
ple service in which you look up information (rather than do complex searches) a naming service.
We see no reason to make that distinction. It might be nice to search for all items that match a cer-
tain attribute, but usually the name will be known, and the attributes of that name will be fetched.

Rather than keeping all names in one directory, the directory service is typically structured as
a tree of directories. Usually a name is hierarchical, so that the directory in which the name can be
found is obvious from the name. For example, an Internet name looks like radia@east.sun.com.
The top level consists of pointers to the directories com for commercial enterprises, edu for educa-
tional institutions, gov for U.S. government, and various country names. Under com, there are var-
ious company names.

Having multiple directories rather than keeping all names in one directory serves two pur-
poses. One is to prevent the directory from getting unreasonably large. The other reason is to reduce
name collisions (more than one object with the same name). For instance, when you’re looking up a
telephone number for your friend John Smith, it’s bad enough trying to figure out which John Smith
is the one you want if you know which town he lives in and the telephone company has separate
directories for each town, but imagine if the telephone company didn’t have separate books for each
town and simply had a list of names and telephone numbers!

Ideally, with a hierarchy of directories, name collisions could be prevented. Once a company
hired one Radia Perlman, they just wouldn’t hire another. I2 think that’s reasonable, but someone
with a name like John Smith might start having problems finding a company that could hire him.

Now why did you name your baby John? Every Tom, Dick, and Harry is
named John.

—Sam Goldwyn

For electronic mail addresses, conflicts must be prevented. Typically, companies let the first
John Smith use the name John@companyname for his email address, and then perhaps the next
one will be Smith@companyname, and the next one JSmith@companyname, and the next one
has to start using middle initials. But for directories of names, there is usually no way to avoid name

1.5.4 PRIMER ON NETWORKING 11

collisions within a directory. In other words, both John Smiths will use the same name within the
company. Then, just like with a telephone book and multiple John Smiths, you have to do the best
you can to figure out which one you want based on various attributes (such as in the telephone
directory, using the street address). And just like in “real life,” there will be lots of confusion where
one John Smith gets messages intended for a different John Smith.

The directory service is very important to security. It is assumed to be widely available and
convenient to access—otherwise large-scale networking really is too inconvenient to be practical.
The directory service is a convenient place to put information, such as a user’s public cryptographic
key. But the directory service, although convenient, is not likely to be very secure. An intruder
might tamper with the information. The magic of cryptography will help us detect such tampering
so that it will not be necessary to physically secure all locations that store directory service infor-
mation. If the information is tampered with, good guys will detect this. It might prevent good guys
from accessing the network, since they won’t be able to find information they can trust, but it will
not allow bad guys unauthorized access.

1.5.4 Replicated Services

Sometimes it is convenient to have two or more computers performing the same function. One rea-
son is performance. A single server might become overloaded, or might not be sufficiently close to
all users on a large network. Another reason is availability. If the service is replicated, it does not
matter if some of the replicas are down or unavailable. When someone wants to access the service
provided, it doesn’t matter which of the computers they reach. Often the user can’t even tell
whether there’s a single copy of the service or there are replicas.

What are the security issues with a replicated service? You’d want the user to have the same
authentication information regardless of which replica was authenticating the user. If authentication
information is stored at each replica, then coordinating the databases, for example after a change
password command, can be tricky. And if the identical exchange will work with any of the repli-
cas, then having an eavesdropper repeat the authentication handshake with a different replica might
be a security problem.

1.5.5 Packet Switching

A really naive assumption would be that if people wanted computer A to talk to computer B, they’d
string a wire between A and B. This doesn’t work if networks get large, either in number of nodes
(n2 wires) or physical distance (it takes a lot of wire to connect each of 10000 nodes in North
America with each of 10000 nodes in Asia). So in a network, messages do not go directly from
sender to recipient, but rather have to be forwarded by various computers along the way. These

12 INTRODUCTION 1.5.6

message forwarders are referred to as packet switches, routers, gateways, bridges, and probably lots
of other names as well.

A message is generally broken into smaller chunks as it is sent through the network. There
are various reasons for this.

• Messages from various sources can be interleaved on the same link. You wouldn’t want your
message to have to wait until someone else finished sending a huge message, so messages are
sent a small chunk at a time. If the link is in the process of sending the huge message when
your little single-chunk message arrives, your message only has to wait until the link finishes
sending a chunk of the large message.

• Error recovery is done on the chunk. If you find out that one little chunk got mangled in
transmission, only that chunk needs to be retransmitted.

• Buffer management in the routers is simpler if the size of packets has a reasonable upper
limit.

1.5.6 Network Components

The network is a collection of packet switches (usually called routers) and links. A link can either
be a wire between two computers or a multi-access link such as a LAN (local area network). A
multi-access link has interesting security implications. Whatever is transmitted on the link can be
seen by all the other nodes on that link. Multi-access links with this property include Ethernet (also
known as CSMA/CD), token rings, and packet radio networks.

Connected to the backbone of the network are various types of nodes. A common categoriza-
tion of the nodes is into clients, which are workstations that allow humans to access the resources
on the network, and servers, which are typically dedicated machines that provide services such as
file storage and printing. It should be possible to deploy a new service and have users be able to
conveniently find the service. Users should be able to access the network from various locations,
such as a public workstation a company makes available for visitors. If a person has a dedicated
workstation located in one location, such as an office, it should be possible with a minimum of con-
figuration for the user to plug the workstation into the network.

Historically, another method for users to access a network is through a dumb terminal. A
dumb terminal is not a general-purpose computer and does not have the compute power to do cryp-
tographic operations. Usually a dumb terminal hooks directly into a host machine, or into a termi-
nal server which relays the terminal’s keystrokes via a network protocol across the network to the
host machine (the machine the user logs into). Very few dumb terminals remain today, but their leg-
acy lives on in the form of software-based terminal emulators implemented in most PCs and work-
stations. Even though these devices are capable of complex calculations, for backward
compatibility, they don’t do them.

1.5.7 PRIMER ON NETWORKING 13

1.5.7 Destinations: Ultimate and Next-Hop

A network is something to which multiple systems can attach. We draw it as a cloud since, from the
point of view of the systems connected to it, exactly what goes on inside is not relevant. If two sys-
tems are on the same cloud, one can send a message to the other by attaching a header that contains
a source address and a destination address, much like putting a letter into an envelope for delivery
by the postal service.

Figure 1-2. A Network

But how do you connect to the network? With a point-to-point link to a packet switch inside
the network, things are reasonably simple. If A wants to send a message to B, A will put A as
source address and B as destination address and send the message on the point-to-point link. But
what if A is connected on a LAN? In that case, in order to transmit the packet through the network,
A has to specify which of its neighbors should receive the message. For example:

Figure 1-3. Network Connections

If A wants to send a message to D it has to know (somehow—if you care how, you can read
my2 book [PERL99]) that the appropriate neighbor for forwarding the packet is R2. So when A
transmits the message there are two destinations: R2 as the next recipient and D as the ultimate
recipient. A reasonably simple way of thinking about this is that the data link layer worries about
transmission across a single link. The data link header has a source address and a destination
address which indicate the transmitter on that link and the receiver on that link. The network layer
worries about transmission across a multi-hop network. It has a header that carries the original
source and ultimate destination. The data link header is removed each time a message is received,
and a new data link header is tacked onto the message when it is forwarded to the next hop.

A

B

C

D

E

R1

A B

R2

R3
R4

R5 R6

R7

D

token
ring

14 INTRODUCTION 1.5.8

When A transmits the packet, the network header has source A, destination D. The data link
header has source A, destination R2. R2 forwards the packet to R5. Since R2 is connected to R5 with
a point-to-point link, the data link header will not have addresses. But when R5 forwards the packet
to R6 across the LAN, the network layer header will (still) be source A, destination D. The data link
header will be source R5, destination R6. When R6 forwards it (across the token ring LAN) the net-
work header is still the same, and the data link header has source R6, destination D.

Most likely A’s data link address will look different from its network layer address, so it’s a
bit sloppy to say source A in both the data link header and network header. But this is all irrelevant
to security. Fascinating in its own right, but irrelevant to this book.

The network layer header can be thought of as an envelope for the message. The data link
header is an outer envelope. We’ve described the case of two envelopes—a network header inside a
data link header. The world can be even more complicated than this. In fact, the “data link layer”
might be a multi-hop network with multi-hop networks inside it as well. So a message might wind
up with several envelopes. Again this is fascinating stuff but irrelevant to this book.

1.5.8 Address Structure

What do addresses look like? In terms of security, the main issue is how difficult it is to forge a
source address, and how easy it is to arrange for the network to deliver packets to you when they are
addressed to someone other than you. For instance, think of a letter as having a source address (the
return address, it’s called in paper mail) and a destination address. It’s easy to send a letter to any-
one and put President, White House, USA as the source address. It’s harder to arrange to receive
mail sent to President, White House, USA if you are not the U.S. President, especially if you
don’t live in the White House, and most likely more difficult the further you live from the address
you’d like to impersonate. Network addresses are usually hierarchical, just like a postal address. If
we think of the address as specifying country/state/city/person, then in general it will be easier to
arrange to receive someone else’s messages if you reside in the same city (for instance by bribing a
postal employee), and most difficult if they’re in a different country.

Forging source addresses is easy in most network layers today. Routers can be built more
defensively and do a sanity check on the source address, based on where they receive the packet
from. After some highly publicized denial of service attacks, where vandals overwhelmed victim
sites with nuisance traffic, many routers are now deployed with this feature of checking source
addresses and discarding traffic received from an unexpected direction. It’s not a perfect solution,
though. As typically implemented, it requires extra configuration (so the routers will know what
source addresses to expect from which directions), somewhat violates my2 philosophy (as a layer 3
specialist) that routers should be self-configuring and adapt to topological changes, and slows down
the router because it has to make an extra check when forwarding a packet.

1.6 ACTIVE VS. PASSIVE ATTACKS 15

1.6 ACTIVE VS. PASSIVE ATTACKS

A passive attack is one in which the intruder eavesdrops but does not modify the message stream in
any way. An active attack is one in which the intruder may transmit messages, replay old messages,
modify messages in transit, or delete selected messages from the wire. A typical active attack is one
in which an intruder impersonates one end of the conversation, or acts as a man-in-the-middle (see
§6.4.1 The Bucket Brigade/Man-in-the-Middle Attack).

1.7 LAYERS AND CRYPTOGRAPHY

Encryption and integrity protection are sometimes done on the original message or on each chunk
of the message, and if on each chunk, it might be done end-to-end or hop-by-hop. There are inter-
esting tradeoffs and implications of these choices. If done on the original message, it can be pro-
tected while being stored, and the infrastructure does not need to even know whether the data it is
moving is cryptographically protected. This means that the location where the cryptographically
protected message is kept, and the infrastructure for transmitting the message, need not be trusted.

Encryption hop-by-hop can foil traffic analysis, i.e., it hides from eavesdroppers the informa-
tion about which parties are communicating. Thus it is useful even if encryption is being done at
other layers. If done hop-by-hop, the packet switches must be trusted, because by definition of hop-
by-hop, the packet switches will see the plaintext.

If done end-to-end as the data is being transmitted, if individual chunks are separately
encrypted and integrity protected, then the data that arrives intact can be used, whereas if there’s
only a single integrity check for the entire message, then any corruption or loss will require retrans-
mitting the entire thing, since (by definition of cryptographically protecting the data as a whole
instead of individual chunks) there will be no way to know where the loss/corruption occurred.

1.8 AUTHORIZATION

Network security basically attempts to answer two questions: “who are you?” and “should you be
doing that?” Authentication proves who you are. Authorization defines what you’re allowed to
do. Typically the way a server decides whether someone should have access to a resource is by first
authenticating the user, and then consulting a database associated with the resource that indicates

16 INTRODUCTION 1.9

who is allowed to do what with that resource. For instance, the database associated with a file might
say that Alice can read it and Bob and Carol can both read and write it. This database is often
referred to as an ACL (access control list).

Another model of authorization is known as the capability model. Instead of listing, with
each resource, the set of authorized users and their rights (e.g., read, write, execute), you would
have a database that listed, for each user, everything she was allowed to do.

If there were only a single resource, then the ACL model and the capability model would be
basically the same, since in both cases there would be a database that lists all the authorized users
and what rights each has to that resource. But in a world in which there are many resources, not all
under control of one organization, it would be difficult to have a central database listing what each
user was allowed to do (for instance, all the files that user is allowed to read), and it would have
scaling problems if there were many resources each user was allowed to access.

Some people worry that ACLs don’t scale well if there are many users allowed access to each
resource. But the concept of a group answers that concern. A very basic form of group imple-
mented in some systems is that each user is a member of one group, and someone with special priv-
ileges assigns users to groups. There is a special group known as “world”, which includes everyone.
Alice would be allowed to read a file if her name was listed on the ACL with read access, or if her
group was listed on the ACL with read access, or if “world” was given read access.

Extensions to the idea of groups that might be useful:

• allow a user to be in multiple groups (researchers, security experts, U.S. citizens)

• allow anyone (not just someone with special privileges) to create a group. Allow anyone to
name that group on an ACL they are authorized to administer.

• allow a group for which the user explicitly invokes his membership. This type of group is
known as a role. The main difference between what people think of as a role and what people
think of as a group is that the user always has all the rights of all the groups he is a member
of, but only has the rights of the role he has explicitly invoked. Some people would claim that
if the user is allowed to assert multiple roles, he can have only one of them active at any time.

We discuss ways of implementing very flexible notions of groups in §15.8.3 Groups.

1.9 TEMPEST

One security concern is having intruders tap into a wire, giving them the ability to eavesdrop and
possibly modify or inject messages. Another security concern is electronic emanation, whereby
through the magic of physics, the movement of electrons can be measured from a surprising dis-

1.10 KEY ESCROW FOR LAW ENFORCEMENT 17

tance away. This means that intruders can sometimes eavesdrop without even needing to physically
access the link. The U.S. military Tempest program measures how far away an intruder must be
before eavesdropping is impossible. That distance is known as the device’s control zone. The con-
trol zone is the region that must be physically guarded to keep out intruders that might be attempt-
ing to eavesdrop. A well-shielded device will have a smaller control zone. I1 remember being told
in 1979 of a tape drive that had a control zone over two miles. Unfortunately, most control zone
information is classified, and I2 couldn’t get me1 to be very specific about them, other than that
they’re usually expressed in metric. Since it is necessary to keep intruders away from the control
zone, it’s certainly better to have something with a control zone on the order of a few inches rather
than a few miles (oh yeah, kilometers).

CIA eavesdroppers could not intercept the radio transmissions used by
Somali warlord Mohammed Farah Aidid; his radios, intelligence officials
explained, were too “low tech.”
—Douglas Waller & Evan Thomas, Newsweek, October 10, 1994, page 32

1.10 KEY ESCROW FOR LAW ENFORCEMENT

Law enforcement would like to preserve its ability to wiretap otherwise secure communication.
(Also, sometimes companies want to be able to read all data of their employees, either to enforce
company policies, or to ensure data is not lost when an employee forgets a password or leaves the
company.)

In order for the government to ensure it can always wiretap, it must prevent use of encryption,
break the codes used for encryption (as it did in a military context during World War II), or some-
how learn everyone’s cryptographic keys. The Clipper proposal was proposed in the mid-90’s and
attempted the third option. It allows the government to reconstruct your key (only upon court order
and with legitimate cause of course). This is made possible through the use of a device known as
the Clipper chip. A lot about Clipper was classified by the government as secret (and classified by a
lot of other people as evil). We describe the basic technical design of Clipper in §24.9 Clipper.
Although the Clipper proposal appears to have been a failure, and the government appears to have
for the moment at least given up on attempting to control cryptography, the Clipper design was fas-
cinating, and is worth learning about. The simple concept is that encryption is done with a special
chip (the Clipper chip). Each chip manufactured has a unique key, and the government keeps a
record of the serial number/encryption key correspondence of every chip manufactured. Because
not all people have complete trust in the government, rather than keeping the key in one place, each
key is broken into two quantities which must be ⊕’d in order to obtain the actual key. Each piece is

18 INTRODUCTION 1.10

completely useless without the other. Since each piece is kept with a separate government agency, it
would require two U.S. government agencies to cooperate in order to cheat and obtain the key for
your Clipper chip without a valid court order. The government assures us, and evidence of past
experience supports its claim, that cooperation between U.S. government agencies is unlikely.

The Clipper proposal was always controversial, starting with its name (which violated some-
one’s trademark on something unrelated). Why would anyone use Clipper when alternative meth-
ods should be cheaper and more secure? The reason alternatives would be cheaper is that enforcing
the ability of the U.S. government to wiretap adds a lot of complexity over a design that simply
encrypts the data. Proponents of Clipper gave several answers to this question:

• The government would buy a lot of Clipper chips, bringing the cost down because of volume
production, so Clipper would wind up being the most cost-effective solution.

• Encryption technology is only useful if both parties have compatible equipment. Since the
U.S. government would use Clipper, to talk securely to the U.S. government, you would have
to use Clipper. So any other mechanism would have to be implemented in addition to Clipper.

• Again, since encryption technology is only useful if both parties have compatible equipment,
if Clipper took over enough market share, it would essentially own the market (just like VHS,
a technically inferior standard supposedly, beat out Beta in the VCR marketplace). Since
Clipper would be one of the earliest standards, it might take over the marketplace before any
other standards have an opportunity to become entrenched. The argument was that most peo-
ple wouldn’t care that Clipper enables wiretapping, because they’ll assume they have nothing
to fear from the U.S. government wiretapping them.

• The government claimed that the cryptographic algorithm in Clipper was stronger than you
could get from a commercial source.

Civil libertarians feared Clipper was a first step towards outlawing untappable cryptography.
Clipper proponents say it was not. It’s true that outlawing alternatives was not part of the Clipper
proposal. However, there have been independent efforts to outlaw cryptography. Those efforts have
been thwarted in part with the argument that industry needs security. But if Clipper were deployed,
that argument would have gone away.

Clipper was designed for telephones, fax, and other low-speed applications, and in some
sense is not relevant to computer networking. Many people regard it, however, as a first step and a
model for taking the same approach for computer networks.

The Clipper proposal was a commercial failure, and export controls are currently relaxed.
However, the technical aspects of such designs are fascinating, laws can change at any time, and
export controls have created other fascinating and arcane designs that we will describe throughout
the book, for instance, §19.13 Exportability.

1.11 KEY ESCROW FOR CARELESS USERS 19

1.11 KEY ESCROW FOR CARELESS USERS

It is prudent to keep your key in a safe place so that when you misplace your own key you can
retrieve a copy of the key rather than conceding that all your encrypted files are irretrievably lost. It
would be a security risk to have all users’ keys stored unencrypted somewhere. The database of
keys could be stored encrypted with a key known to the server that was storing the database, but this
would mean that someone who had access to that machine could access all the user keys. Another
possibility is to encrypt the key in a way that can only be reconstructed with the cooperation of sev-
eral independent machines. This is feasible, and we’ll discuss it more in §24.9.1 Key Escrow.

Some applications don’t require recoverable keys. An example of such an application is
login. If a user loses the key required for login, the user can be issued a new key. A user may there-
fore want different keys for different uses, where only some of the keys are escrowed. For applica-
tions that do require recoverable keys, protection from compromise can be traded off against
protection from loss.

1.12 VIRUSES, WORMS, TROJAN HORSES

Lions and tigers and bears, oh my!
—Dorothy (in the movie The Wizard of Oz)

People like to categorize different types of malicious software and assign them cute biological
terms (if one is inclined to think of worms as cute). We don’t think it’s terribly important to distin-
guish between these things, but will define some of the terms that seem to be infecting the litera-
ture.

• Trojan horse—instructions hidden inside an otherwise useful program that do bad things.
Usually the term Trojan horse is used when the malicious instructions are installed at the time
the program is written (and the term virus is used if the instructions get added to the program
later).

• virus—a set of instructions that, when executed, inserts copies of itself into other programs.
More recently, the term has been applied to instructions in email messages that, when exe-
cuted, cause the malicious code to be sent in email to other users.

• worm—a program that replicates itself by installing copies of itself on other machines across
a network.

20 INTRODUCTION 1.12.1

• trapdoor—an undocumented entry point intentionally written into a program, often for
debugging purposes, which can be exploited as a security flaw.

• logic bomb—malicious instructions that trigger on some event in the future, such as a partic-
ular time occurring.

• zombie—malicious instructions installed on a system that can be remotely triggered to carry
out some attack with less traceability because the attack comes from another victim. Often
the attacker installs large numbers of zombies in order to be able to generate large bursts of
network traffic.

We do not think it’s useful to take these categories seriously. As with most categorizations
(e.g., plants vs. animals, intelligence vs. instinct), there are things that don’t fit neatly within these
categories. So we’ll refer to all kinds of malicious software generically as digital pests.

1.12.1 Where Do They Come From?

Where do these nasties come from? Except for trapdoors, which may be intentionally installed to
facilitate troubleshooting, they are written by bad guys with nothing better to do with their lives
than annoy people.

How could an implementer get away with writing a digital pest into a program? Wouldn’t
someone notice by looking at the program? One of the most famous results in computer science is
that it is provably impossible to be able to tell what an arbitrary program will do by looking at it*,
so certainly it would be impossible to tell, in general, whether the program had any unpleasant side
effects besides its intended purpose. But that’s not the real problem. The real problem is that
nobody looks. Often when you buy a program you do not have access to the source code, and even
if you did, you probably wouldn’t bother reading it all, or reading it very carefully. Many programs
that run have never been reviewed by anybody. A major advantage offered by the “open source”
movement (where all software is made available in source code format) is that even if you don’t
review it carefully, there is a better chance that someone else will.

What does a virus look like? A virus can be installed in just about any program by doing the
following:

• replace any instruction, say the instruction at location x, by a jump to some free place in
memory, say location y; then

• write the virus program starting at location y; then

* This is known in the literature as the halting problem, which states that it is impossible in general to tell whether a given
program will halt or not. In fact it is impossible in general to discern any nontrivial property of a program.

1.12.1 VIRUSES, WORMS, TROJAN HORSES 21

• place the instruction that was originally at location x at the end of the virus program, followed
by a jump to x+1.

Besides doing whatever damage the virus program does, it might replicate itself by looking
for any executable files in any directory and infecting them. Once an infected program is run, the
virus is executed again, to do more damage and to replicate itself to more programs. Most viruses
spread silently until some triggering event causes them to wake up and do their dastardly deeds. If
they did their dastardly deeds all the time, they wouldn’t spread as far.

How does a digital pest originally appear on your computer? All it takes is running a single
infected program. A program posted on a bulletin board might certainly be infected. But even a pro-
gram bought legitimately might conceivably have a digital pest. It might have been planted by a dis-
gruntled employee or a saboteur who had broken into the computers of the company and installed
the pest into the software before it was shipped. There have been cases where commercial programs
were infected because some employee ran a program gotten from a friend or a bulletin board.

Often at holiday times people send email messages with attached programs and instructions
to run them. While this used to require extracting the email message to a file and possibly process-
ing it first, modern email systems make it very convenient to run such things... often just by clicking
on an icon in the message. Often the result is some sort of cute holiday-specific thing, like display-
ing a picture of a turkey or playing a Christmas carol. It could certainly also contain a virus. Few
people will scan the program before running it, especially if the message arrives from a friend. And
if you were to run such a program and it did something cute, you might very well forward it to a
friend, not realizing that in addition to doing the cute thing it might very well have installed a virus
that will start destroying your directory a week after the virus is first run. A good example of a
Christmas card email message is a program written by Ian Phillipps, which was a winner of the
1988 International Obfuscated C Code Contest. It is delightful as a Christmas card. It does nothing
other than its intended purpose (I1 have analyzed the thing carefully and I2 have complete faith in
me1), but we doubt many people would take the time to understand this program before running it
(see Figure 1-4).

Sometimes you don’t realize you’re running a program. PostScript is a complete program-
ming language. It is possible to embed a Trojan horse into a PostScript file that infects files with
viruses and does other damage. Someone could send you a file and tell you to display it. You
wouldn’t realize you were running a program by merely displaying the file. And if there was any
hope of scanning a C program to find suspicious instructions, there are very few people who could
scan a PostScript file and look for suspicious PostScript commands. PostScript is, for all practical
purposes, a write-only language.

As mail systems get more clever in their attempt to make things more convenient for users,
the risk becomes greater. If you receive a PostScript file and you are running a non-clever mail pro-
gram, you will see delightful crud like Figure 1-5

22 INTRODUCTION 1.12.1

If you wanted to display the file, you’d have to extract the mail message and send it to the
printer, or input it into a special program that displays PostScript on your screen. However, a clever
mail program might look at the message, recognize that it was PostScript, and automatically run the
PostScript code to display the message. Although this is convenient, it is dangerous.

There are various other clever features being added to mail programs. Some mail programs
allow the sender to send a program along with the mail message. Usually the mail message will
arrive and display some sort of icon. If the receiver clicks on the icon, the transmitted program is
executed. Someone, to illustrate this point, sent such a mail message. It displayed only as a button

/* Have yourself an obfuscated Christmas! */
#include <stdio.h>
main(t,_,a)
char *a;
{
return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):
1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#\
;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l \
q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# \
){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' \
iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \
}'+}##(!!/")
:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1)
:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a,
"!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);
}

Figure 1-4. Christmas Card?

%!PS-Adobe-3.0
%%Creator: Windows PSCRIPT
%%Title: c:\book\spcaut.doc
%%BoundingBox: 18 9 593 784
%%DocumentNeededResources: (atend)
%%DocumentSuppliedResources: (atend)
%%Pages: (atend)
%%BeginResource: procset Win35Dict 3 1
/Win35Dict 290 dict def Win35Dict begin/bd{bind def}bind def/in{72
mul}bd/ed{exch def}bd/ld{load def}bd/tr/translate ld/gs/gsave ld/gr
/grestore ld/M/moveto ld/L/lineto ld/rmt/rmoveto ld/rlt/rlineto ld
/rct/rcurveto ld/st/stroke ld/n/newpath ld/sm/setmatrix ld/cm/currentmatrix
ld/cp/closepath ld/ARC/arcn ld/TR{65536 div}bd/lj/setlinejoin ld/lc
/setlinecap ld/ml/setmiterlimit ld/sl/setlinewidth ld/scignore false
def/sc{scignore{pop pop pop}{0 index 2 index eq 2 index 4 index eq
and{pop pop 255 div setgray}{3{255 div 3 1 roll}repeat setrgbcolor}ifelse}ifelse}bd

Figure 1-5. Typical PostScript Code

1.12.2 VIRUSES, WORMS, TROJAN HORSES 23

that said push me. When the person who received the message clicked on the box, it came up with a
message that said, I could have just reformatted your hard drive.

In the first edition of this book, we said “Before the technology for clever mail goes much
further, we ought to consider how we can reap the benefits of such cleverness while minimizing the
security risks”. We can now confidently say that it has gone much further, no one has worried at all
about security, and as anyone who has been stung by the email virus of the week can attest, the sit-
uation is a disaster.

There remain dangers associated with booting from floppy disks. If the hard drive of a com-
puter were completely wiped clean, there has to be some way to come up again, so machines pro-
vide the feature that if there is a floppy in the drive when the machine is powered on, the machine
boots off the floppy. This can be disabled, but it rarely is. Even if system software becomes sophis-
ticated about security, it won’t be able to protect against Trojan horses on the boot device. When
you turn on many machines with a floppy disk inserted into the drive (intentionally or accidentally),
they execute the code on the floppy in a privileged mode. If there is a virus in that code, it can infect
the system.

Most PCs are configured to detect a CD-ROM placed in the drive and will execute a startup
program automatically when a new one is inserted. This may have been a relatively safe thing to do
when writable CD-Rs were a rarity and most CD-ROMs were commercially manufactured, but
today it is likely viruses will spread this way. With CD-RWs becoming common, viruses can spread
across your CDs the way they once did across floppies.

1.12.2 Spreading Pests from Machine to Machine

How might a virus or worm spread from machine to machine? An infected program might be cop-
ied to a floppy or other medium and moved to another machine. Or, as we said, a mail message
might carry the infection. But it is also possible for the pest to explore the network and send itself to
other machines, once it is running in one machine on a network. Such a pest is called a worm.

One method a worm can employ to transmit itself to another machine is to actually log into
the other machine. It can do this by guessing passwords. Sometimes things are set up to make it
really easy; for instance, account name/password pairs might be stored in script files so that a naive
user can access remote resources automatically. If the worm manages to find that information, it
can easily log into other machines and install itself. Sometimes machines have trapdoor debugging
features, such as the ability to run a command remotely. Sometimes it isn’t even necessary to log in
to run such a command. And if intruders can execute commands, they can do anything.

The only reason all the computers in the world haven’t crashed at the same
time is that they’re not all connected together yet.

—Dave Cheriton

24 INTRODUCTION 1.12.3

In the first widely publicized example, a Christmas-card-type email message displayed a
pretty animated tree on the screen, but also scanned the user’s directory for all possible correspon-
dents, including distribution lists, and mailed itself to them. Each time a recipient read a copy of the
message, it sprang into life and mailed itself off to all the mailboxes it could locate from that node.
This was written by someone who was not trying to attack systems—he was just trying to be “cute”
but didn’t consider the likely consequences of his action. Although this program did not destroy
data, like a classic worm it completely overloaded and disabled the corporation’s electronic mail.

Email borne viruses have become the most common kind in the last few years, taking advan-
tage both of bugs in email systems and naive users. The “ILoveYou” virus was particularly virulent
because users were willing to take a chance and run the attachment when the message had a seduc-
tive subject line.

Worms have also become more effective at spreading as more machines are continuously
connected to the Internet via cable modems and DSL, but not carefully configured for security. In
several cases, insecure default configurations or bugs in services that were enabled by default pro-
vided fertile ground for worms to spread.

1.12.3 Virus Checkers

How can a program check for viruses? There’s rather a race between the brave and gallant people
who analyze the viruses and write clever programs to detect and eliminate them, and the foul-smell-
ing scum who devise new types of viruses that will escape detection by all the current virus check-
ers.

The most common form of virus checker knows the instruction sequence for lots of types of
viruses, checks all the files on disk and instructions in memory for those patterns of commands, and
raises a warning if it finds a match hidden somewhere inside some file. Once you own such a virus
checker, you need to periodically get updates of the patterns file that includes the newest viruses. To
evade detection of their viruses, virus creators have devised what is known as a polymorphic virus
which changes the order of its instructions, or changes to functionally similar instructions, each
time it copies itself. Such a virus may still be detectable, but it takes more work and typically
requires a coding change and not just a new pattern file. Modern virus checkers don’t just periodi-
cally scan the disk. They actually hook into the operating system and inspect files before they are
written to disk.

Another type of virus checker takes a snapshot of disk storage by recording the information in
the directories, such as file lengths. It might even take message digests of the files. It is designed to
run, store the information, and then run again at a future time. It will warn you if there are suspi-
cious changes. One virus, wary of changing the length of a file by adding itself to the program,
compressed the program so that the infected program would wind up being the same length as the

1.12.4 VIRUSES, WORMS, TROJAN HORSES 25

original. When the program was executed, the uncompressed portion containing the virus decom-
pressed the rest of the program, so (other than the virus portion) the program could run normally.

It would be natural for viruses to attack the virus checkers rather than just trying to elude
them. One could even imagine a virus spread by the mechanism a virus checker uses to keep its pat-
tern files up to date. Such a virus has not been seen at the time of this writing, but it is something to
look forward to.

1.12.4 What Can We Do Today?

The world was a scary place before computer viruses came along, and will most likely continue to
be scary. How can you know whether you can trust a program not to do bad things when you run it?
Wouldn’t it be nice to have the equivalent of a lie-detector test for programs?

Ames slipped by a lie-detector test because no one had told the polygra-
pher he was under suspicion.

—Douglas Waller & Evan Thomas
Newsweek article on CIA and traitor Aldrich Ames, October 10, 1994

Given that there is no infallible method to test a program for hidden bad side effects, we can’t
be completely safe, but there are some precautions that are worth taking:

• Don’t run software from suspicious sources, like bulletin boards or people who aren’t as care-
ful as you are.

• Frequently run virus checkers. Have the industry employ people whose job it is to keep up
with virus technology and come up with vaccines.

• Try to run programs in the most limited possible environments. For instance, if you have a PC
in order to get real work done, and you also want to play games, sometimes using shareware
or games copied from bulletin boards, have two machines. If you run a game with a virus,
you’ll only wipe out your games. A somewhat more practical way to accomplish this is to
have a machine with multiple disks and a physical switch that connects only one of them at a
time.

• When your system puts up a warning saying that something is dangerous, don’t do it!

• Do frequent backups, and save old backups for a long time.

• Don’t boot off floppies, except in an extreme circumstance, such as the first time you unpack
your machine and turn it on. In those circumstances, be extremely careful about what floppy
you boot from.

26 INTRODUCTION 1.12.5

But mostly, the situation is pretty bleak, given the design of the operating systems for PCs.
Maybe in the future, some of our suggestions in the next section might be implemented.

1.12.5 Wish List for the Future

I2 always assumed computers were designed in such a way that no program that ran on the machine
could possibly injure the machine. Likewise, it should not be possible to send a piece of informa-
tion to a machine that might damage the machine. People are designed properly that way, aren’t
they?

Sticks and stones may break my bones but words will never hurt me.
(chant designed to encourage bullies to get physical)

But one of my2 first programs consisted of something that just sat around and waited for
interrupts, and processed the interrupts. The program itself, not counting the instructions for pro-
cessing the interrupts, was HERE: JUMP HERE (that’s not the exact instruction, because I2
don’t want to divulge the brand of computer). I2 discovered (the hard way) that you weren’t sup-
posed to do that, because it burned out core at the instruction that kept getting executed over and
over. Gerry Sussman, while a high school student, wrote a program that broke magnetic tapes. The
guru who guarded and ran the mainframe didn’t believe Gerry when he boasted that he could write
a program to break tapes, so Gerry wrote his program to go down the entire row of tape drives,
breaking the tape in each one. Another example was a machine designed with a small amount of
nonvolatile memory, but the type that wore out after a finite number of writes, say 10000. That kind
of memory is fine for something like saving terminal settings, since a human has to type the key
sequence to cause a write, and a human won’t do it very often. But if the same kind of memory is
used for storing parameter settings received by a network management message, then it is possible
to break the machine within seconds by sending it parameter settings over and over.

In an ideal world, it should be possible to load a floppy and examine the contents without
fear. You should be able to receive any email message without fear. If it is a multimedia message, it
should be possible to play the audio, display the video, print the text, or waft the odors without
damage to either the machine or files stored on the machine. A file is just a bunch of bits. If the file
claims to be audio, it should be possible, without risk of any type of harm, to play the file. Likewise,
if the file claims to be something worthy of printing, it should not cause any harm to print the file.

Programs are a bit trickier. It should be possible to run a program and have confidence that it
will not affect the files stored on your machine or the basic integrity of the operating system.

We know none of these “shoulds” are true today. The files on your machine can be virus-
infected through email, by displaying a PostScript file, or simply by inserting a floppy disk or CD-
ROM (on some machines). How could systems be designed more defensively?

1.13 THE MULTI-LEVEL MODEL OF SECURITY 27

One simple feature would be a write-protect switch on your hard disk. Sometimes you run
programs that you know should not be writing to your hard disk. A game program shouldn’t be
writing to your hard disk. Perhaps it wants to record highest score, but consumers might be willing
to do without that frill if it means that they can run any game they want without fear of wiping out
their life’s work. Legitimate game manufacturers could design their games to work with write-pro-
tected hard disks. There is still the risk that the social misfits who design games that spread viruses
could design their games to work with write-protected hard disks, but have their program check to
see if some user has forgotten to write-protect the disk, and then launch the virus.

Timesharing systems used to be much more defensive. You could not run a program that
would write into some other user’s memory, or modify any portion of the disk that you were not
authorized to write into. But PCs make the assumption that there is only one human on the machine
at a time, and that human ought to be able to do anything it wants. To make matters worse, to enable
snazzy maximally flexible features, there are all sorts of surprising places where someone can
insert a program that will be executed.

The operating system ought to be built more defensively. PCs should have accounts just like
timesharing systems so that you can set up a game account that can’t affect the rest of the system.
Likewise, your normal account shouldn’t be able to alter system software. You should be able to
easily run a program with the right to access only a single directory (its own). The world is moving
in this direction, but progress is slow.

1.13 THE MULTI-LEVEL MODEL OF SECURITY

Computer security has become sufficiently important that it was inevitable that governments would
decide they needed to “do something about it”. And when governments want to know something
about security, they turn to the experts: the military. And they develop standards and measurement
tools by which security can be measured that are unbiased so as not to favor any one organization.
And they mandate that anyone they can influence buy products meeting those standards.

The problem is that secure is not as simple to define as, say, flame-retardant. The security
threats in different environments are very different, as are the best ways to counter them. The mili-
tary has traditionally focussed on keeping their data secret (and learning the secrets of the other
side). They are less concerned (though probably shouldn’t be) about data getting corrupted or
forged. In a paper world, forgeries are so difficult and so likely to expose the spies placing them
that this threat takes a back seat. In the computerized environment, modification or corruption of
data is a more likely threat.

28 INTRODUCTION 1.13.1

1.13.1 Mandatory (Nondiscretionary) Access Controls

O negligence! … what cross devil made me put this main secret in the
packet I sent the king? Is there no way to cure this? No new device to beat
this from his brains?

—Shakespeare’s King Henry VIII, act 3, scene 2

Discretionary means that someone who owns a resource can make a decision as to who is allowed
to use (access) it. Nondiscretionary access controls enforce a policy where users might be
allowed to use information themselves but might not be allowed to make a copy of it available to
someone else. Strict rules are automatically enforced about who is allowed access to certain
resources based on the attributes of the resource, and even the owners of the resources cannot
change those attributes. The analogy in the paper world is that you might be given a book full of
confidential information, but you are not allowed to take the book out of the building. In the mili-
tary, information often has a security classification, and just because you have access to secret
information does not mean you can forward it as you see fit. Only someone with the proper clear-
ance can see it, and clearance levels are decided by a separate organization based on background
investigations—not based on whether someone seems like a nice guy at lunch.

The basic philosophy behind discretionary controls is that the users and the programs they
run are good guys, and it is up to the operating system to trust them and protect each user from out-
siders and other users. The basic philosophy behind nondiscretionary controls is that users are care-
less and the programs they run can’t be presumed to be carrying out their wishes. The system must
be ever vigilant to prevent the users from accidentally or intentionally giving information to some-
one who shouldn’t have it. Careless users might accidentally type the wrong file name when includ-
ing a file in a mail message, or might leave a message world-readable. The concept is to confine
information within a security perimeter, and thus not allow any information to move from a more
secure environment to a less secure environment. A secure system would have both discretionary
and nondiscretionary access controls, with the latter serving as a backup mechanism with less gran-
ularity.

Now of course, if you allow the users out of the building, there is an avenue for information
to leak out of a secure environment, since a user can remember the information and tell someone
once the user gets out of the security perimeter. There really is no way for a computer system to
prevent that. But the designers wanted to ensure that no Trojan horse in software could transmit any
information out of the perimeter, that nothing a user did inadvertently could leak information, and
that users couldn’t spirit out larger amounts of information than they could memorize.

1.13.2 THE MULTI-LEVEL MODEL OF SECURITY 29

1.13.2 Levels of Security

What does it mean for something to be “more sensitive” than something else? We will use a some-
what simplified description of the U.S. Department of Defense (DoD) definitions of levels of secu-
rity as an example. It is a reasonably general model and similar to what is done in other contexts. It
is sufficient to understand the security mechanisms we’ll describe.

The security label of something consists of two components:

• A security level (also known as classification), which might be an integer in some range, but
in the U.S. DoD consists of one of the four ratings unclassified, confidential, secret, and
top secret, where unclassified < confidential < secret < top secret.

• A set of zero or more categories (also known as compartments), which describe kinds of
information. For instance, the name CRYPTO might mean information about cryptographic
algorithms, INTEL might mean information about military intelligence, COMSEC might
mean information about communications security, or NUCLEAR might mean information
about types of families.

Documents (or computer files) are marked with a security label saying how sensitive the
information is, and people are issued security clearances according to how trustworthy they are per-
ceived to be and what information they have demonstrated a “need to know.”

A clearance might therefore be (SECRET;{COMSEC,CRYPTO}), which would indicate
someone who was allowed to know information classified unclassified, confidential, or secret
(but not top secret) dealing with cryptographic algorithms or communications security.

Given two security labels, (X,S1) and (Y,S2), (X,S1) is defined as being “at least as sensitive
as” (Y,S2) iff X ≥ Y and S2 ⊆ S1. For example,

(TOP SECRET, {CRYPTO,COMSEC}) > (SECRET, {CRYPTO})

where “>” means “more sensitive than”.
It is possible for two labels to be incomparable in the sense that neither is more sensitive than

the other. For example, neither of the following are comparable to each other:

(TOP SECRET, {CRYPTO,COMSEC})

(SECRET, {NUCLEAR,CRYPTO})

1.13.3 Mandatory Access Control Rules

Every person, process, and piece of information has a security label. A person cannot run a process
with a label higher than the person’s label, but may run one with a lower label. Information is only
allowed to be read by a process that has at least as high a rating as the information. The terminology

30 INTRODUCTION 1.13.4

used for having a process read something with a higher rating than the process is read-up. Read-up
is illegal and must be prevented. A process cannot write a piece of information with a rating lower
than the process’s rating. The terminology used for a process writing something with a lower rating
than the process is write-down. Write-down is illegal and must be prevented.

The rules are:

• A human can only run a process that has a security label below or equal to that of the human’s
label.

• A process can only read information marked with a security label below or equal to that of
the process.

• A process can only write information marked with a security label above or equal to that of
the process. Note that if a process writes information marked with a security label above that
of the process, the process can’t subsequently read that information.

The prevention of read-up and write-down is the central idea behind mandatory access con-
trols. The concepts of confinement within a security perimeter and a generalized hierarchy of secu-
rity classes were given a mathematical basis by Bell and La Padula in 1973 [BELL74]. There is
significant complexity associated with the details of actually making them work. There has been
significant subsequent research on more complex models that capture both the trustworthiness and
the confidentiality of data and programs.

1.13.4 Covert Channels

A covert channel is a method for a Trojan horse to circumvent the automatic confinement of infor-
mation within a security perimeter. Let’s assume an operating system has enforced the rules in the
previous section. Let’s assume also that a bad guy has successfully tricked someone with a TOP
SECRET clearance into running a program with a Trojan horse. The program has access to some
sensitive data, and wants to pass the data to the bad guy. We’re assuming the operating system pre-
vents the process from doing this straightforwardly, but there are diabolical methods that theoreti-
cally could be employed to get information out.

The Trojan horse program cannot directly pass data, but all it needs is for there to be anything
it can do that can be detected by something outside the security perimeter. As long as information
can be passed one bit at a time, anything can be transmitted, given enough time.

One kind of covert channel is a timing channel. The Trojan horse program alternately loops
and waits, in cycles of, say, one minute per bit. When the next bit is a 1, the program loops for one
minute. When the next bit is a 0, the program waits for a minute. The bad guy’s program running on
the same computer but without access to the sensitive data constantly tests the loading of the sys-

1.13.4 THE MULTI-LEVEL MODEL OF SECURITY 31

tem. If the system is sluggish, its conspirator inside the perimeter is looping, and therefore transmit-
ting a 1. Otherwise, the conspirator is waiting, and therefore transmitting a 0.

This assumes those two processes are the only ones running on the machine. What happens if
there are other processes running and stopping at seemingly random times (from the point of view
of the program trying to read the covert channel)? That introduces noise into the channel. But com-
munications people can deal with a noisy channel; it just lowers the potential bandwidth, depending
on the signal to noise ratio.

Another kind of covert channel called a storage channel involves the use of shared resources
other than processor cycles. For instance, suppose there were a queue of finite size, say the print
queue. The Trojan horse program could fill the queue to transmit a 1, and delete some jobs to trans-
mit a 0. The covert channel reader would attempt to print something and note whether the request
was accepted. Other possible shared resources that might be exploited for passing information
include physical memory, disk space, network ports, and I/O buffers.

Yet another example depends on how clever the operating system is about not divulging
information in error messages. For instance, suppose the operating system says file does not exist
when a file really does not exist, but says insufficient privilege for requested operation when the
file does exist, but inside a security perimeter off limits to the process requesting to read the file.
Then the Trojan horse can alternately create and delete a file of some name known to the other pro-
cess. The conspirator process periodically attempts to read the file and uses the information about
which error message it gets to determine the setting of the next bit of information.

 There is no general way to prevent all covert channels. Instead, people imagine all the differ-
ent ways they can think of, and specifically attempt to plug those holes. For instance, the timing
channel can be eliminated by giving each security level a fixed percentage of the processor cycles.
This is wasteful and impractical in general, because there can be an immense number of distinct
classifications (in our model of (one of four levels, {categories}), the number of possible security
perimeters is 4 ⋅2n, where n is the number of categories).

Most covert channels have very low bandwidth. In many cases, instead of attempting to elim-
inate a covert channel, it is more practical to introduce enough noise into the system so that the
bandwidth becomes too low to be useful to an enemy. It’s also possible to look for jobs that appear
to be attempting to exploit covert channels (a job that alternately submitted enough print jobs to fill
the queue and then deleted them would be suspicious indeed if someone knew to watch). If the
bandwidth is low and the secret data is large, and knowing only a small subset of the secret data is
not of much use to an enemy, the threat is minimized.

How much secret data must be leaked before serious damage is done can vary considerably.
For example, assume there is a file with 100 megabytes of secret data. The file has been transmitted,
encrypted, on an insecure network. The enemy therefore has the ciphertext, but the cryptographic
algorithm used makes it impossible for the enemy to decrypt the data without knowing the key. A
Trojan horse with access to the file and a covert channel with a bandwidth of 1 bit every 10 seconds
would require 250 years to leak the data (by which time it’s hard to believe the divulging of the

32 INTRODUCTION 1.13.5

information could be damaging to anyone). However, if the Trojan horse had access to the 56-bit
key, it could leak that information across the covert channel in less than 10 minutes. That informa-
tion would allow the enemy to decrypt the 100-megabyte file. For this reason, many secure systems
go to great pains to keep cryptographic keys out of the hands of the programs that use them.

1.13.5 The Orange Book

The National Computer Security Center (NCSC), an agency of the U.S. government, has published
an official standard called “Trusted Computer System Evaluation Criteria”, universally known as
“the Orange Book” (guess what color the cover is). The Orange Book defines a series of ratings a
computer system can have based on its security features and the care that went into its design, doc-
umentation, and testing. This rating system is intended to give government agencies and commer-
cial enterprises an objective assessment of a system’s security and to goad computer manufacturers
into placing more emphasis on security.

The official categories are D, C1, C2, B1, B2, B3, and A1, which range from least secure to
most secure. In reality, of course, there is no way to place all the possible properties in a linear
scale. Different threats are more or less important in different environments. The authors of the
Orange Book made an attempt to linearize these concerns given their priorities. But the results can
be misleading. An otherwise A1 system that is missing some single feature might have a D rating.
Systems not designed with the Orange Book in mind are likely to get low ratings even if they are in
fact very secure.

The other problem with the Orange Book rating scheme is that the designers focused on the
security priorities of military security people—keeping data secret. A rating of B1 or better requires
implementation of multi-level security and mandatory access controls. In the commercial world,
data integrity is at least as important as data confidentiality. Mandatory access controls, even if
available, are not suitable for most commercial environments because they make some of the most
common operations, such as having a highly privileged user send mail to an unprivileged user, very
cumbersome.

Mandatory access controls do not by themselves protect the system from infection by viruses.
Mandatory access controls allow write-up, so if some unprivileged account became infected by
having someone carelessly run, say, a game program loaded from a bulletin board, the virus could
spread to more secure areas. Ironically, if it was a very secure area that first got infected, the manda-
tory access control features would prevent the infection from spreading to the less secure environ-
ments.

The following is a summary of what properties a system must have to qualify for each rating.

1.13.5 THE MULTI-LEVEL MODEL OF SECURITY 33

D – Minimal Protection. This simply means the system did not qualify for any of the higher rat-
ings; it might actually be very secure. No system is ever going to brag about the fact that it was
awarded a D rating.

C1 – Discretionary Security Protection. The requirements at this level correspond roughly to
what one might expect from a classic timesharing system. It requires

• The operating system must prevent unprivileged user programs from overwriting critical por-
tions of its memory. (Note that many PC operating systems do not satisfy this condition.)

• Resources must be protected with access controls. Those access controls need not be sophis-
ticated; classic owner/group/world controls would be sufficient.

• The system must authenticate users by a password or some similar mechanism, and the pass-
word database must be protected so that it cannot be accessed by unauthorized users.

There are additional requirements around testing and documentation, which become more detailed
at each successive rating.

C2 – Controlled Access Protection. This level corresponds roughly to a timesharing system where
security is an important concern but users are responsible for their own fates; an example might be
a commercial timesharing system. The additional requirements (over those required for C1) for a
C2 rating are

• access control at a per user granularity—It must be possible to permit access to any selected
subset of the user community, probably via ACLs. An ACL is a data structure attached to a
resource that specifies the resource’s authorized users. C2 does not explicitly require ACLs,
but they are the most convenient way to provide the granularity of protection that C2 requires.

• clearing of allocated memory—The operating system must ensure that freshly allocated disk
space and memory does not contain “left-over” data deleted by some previous user. It can do
that by writing to the space or by requiring processes to write to the space before they can
read it.

• auditing—The operating system must be capable of recording security-relevant events,
including authentication and object access. The audit log must be protected from tampering
and must record date, time, user, object, and event. Auditing must be selective based on user
and object.

It is reasonable to expect that C2-rateable systems will become ubiquitous, since they contain fea-
tures that are commonly desired and do not represent an unacceptable overhead. It is somewhat sur-
prising that such systems are not the norm.

34 INTRODUCTION 1.13.5

B1 – Labeled Security Protection. Additional requirements at this level are essentially those
required to implement Mandatory Access Controls for secrecy (not integrity) except that little
attention is given to covert channels. Requirements for B1 above those for C2 include

• Security Labels: Sensitivity labels must be maintained for all users, processes, and files, and
read-up and write-down must be prevented by the operating system.

• Attached devices must either themselves be labeled as accepting only a single level of infor-
mation, or they must accept and know how to process security labels.

• Attached printers must have a mechanism for ensuring that there is a human-readable sensi-
tivity label printed on the top and bottom of each page corresponding to the sensitivity label
of the information being printed. The operating system must enforce this correspondence.

B2 – Structured Protection. Beyond B1, there are few new features introduced; rather, the operat-
ing system must be structured to greater levels of assurance that it behaves correctly (i.e., has no
bugs). Additional requirements for B2 include

• trusted path to user—There must be some mechanism to allow a user at a terminal to reliably
distinguish between talking to the legitimate operating system and talking to a Trojan horse
password-capturing program.

• security level changes—A terminal user must be notified when any process started by that
user changes its security level.

• security kernel—The operating system must be structured so that only a minimal portion of it
is security-sensitive, i.e., that bugs in the bulk of the O/S cannot cause sensitive data to leak.
This is typically done by running the bulk of the O/S in the processor's user mode and having
a secure-kernel mini-O/S which enforces the mandatory access controls.

• Covert channels must be identified and their bandwidth estimated, but there is no requirement
that they be eliminated.

• Strict procedures must be used in the maintenance of the security-sensitive portion of the
operating system. For instance, anyone modifying any portion must document what they
changed, when they changed it, and why, and some set of other people should compare the
updated section with the previous version.

B3 – Security Domains. Additional requirements for B3 mostly involve greater assurance that the
operating system will not have bugs that might allow something to circumvent mandatory access
controls. Additional requirements include

1.13.6 THE MULTI-LEVEL MODEL OF SECURITY 35

• ACLs must be able to explicitly deny access to named individuals even if they are members
of groups that are otherwise allowed access. It is only at this level that ACLs must be able to
separately enforce modes of access (i.e., read vs. write) to a file.

• active audit—There must be mechanisms to detect selected audited events or thresholds of
audited events and immediately trigger notification of a security administrator.

• secure crashing—The system must ensure that the crashing and restarting of the system intro-
duces no security policy violations.

A1 – Verified Design. There are no additional features in an A1 system over a B3 system. Rather,
there are formal procedures for the analysis of the design of the system and more rigorous controls
on its implementation.

1.13.6 Successors to the Orange Book

Gee, I wish we had one of them Doomsday machines
—Turgidson, in Dr. Strangelove

Governments are rarely willing to adopt one another’s ideas, especially if they didn’t contribute.
They would rather develop their own. The publication of the Orange Book in 1983 set off a series of
efforts in various countries to come up with their own standards and classifications. These efforts
eventually merged in 1990 into a single non-U.S. standard called ITSEC, followed by a reconcilia-
tion with the U.S. and the development of a single worldwide standard called the Common Criteria
in 1994. Version 2.1 of the Common Criteria became an international standard in 1999.

The details of the various rating systems are all different, so passing the bureaucratic hurdles
to qualify for a rating under one system would not be much of a head start toward getting an equiv-
alent rating in another (much as different countries don’t recognize each other’s credentials for
practicing medicine). The following table is an oversimplification that we hope won’t be too offen-
sive to the advocates of these rating systems, but it does allow the novice to judge what is being
claimed about a system. In a partial acknowledgment of the multifaceted nature of security, many
of the systems gave two ratings: one for the features provided and one for the degree of assurance
that the system implements those features correctly. In practice, like the artistic and technical merit
scores at the Olympics, the two scores tend to be closely correlated.

36 INTRODUCTION 1.14

1.14 LEGAL ISSUES

The legal aspects of cryptography are fascinating, but the picture changes quickly, and we are cer-
tainly not experts in law. Although it pains us to say it, if you’re going to do anything involving
cryptography, talk to a lawyer.

1.14.1 Patents

One legal issue that affects the choice of security mechanisms is patents. Most cryptographic tech-
niques are covered by patents and historically this has slowed their deployment. One of the impor-
tant criteria for selection of the AES algorithm (see §3.5 Advanced Encryption Standard (AES))
was that it be royalty free.

The most popular public key algorithm is RSA (see §6.3 RSA). RSA was developed at MIT,
and under the terms of MIT’s funding at the time there are no license fees for U.S. government use.
It was only patented in the U.S., and licensing was controlled by one company which claimed that
the Hellman-Merkle patent also covered RSA, and that patent is international. Interpretation of
patent rights varies by country, so the legal issues were complex. At any rate, the last patent on RSA
ran out on September 20, 2000. There were many parties on that day.

To avoid large licensing fees, many standards attempted to use DSS (see §6.5 Digital Signa-
ture Standard (DSS)) instead of RSA. Although in most respects DSS is technically inferior to
RSA, when first announced it was advertised that DSS would be freely licensable, i.e., it would not
be necessary to reach agreement with the RSA licensing company. But the company claimed Hell-
man-Merkle covered all public key cryptography, and strengthened its position by acquiring rights

TCSEC
(Orange Book)

German
(Green Book)

British CLEF ITSEC Common Criteria

D Q0 E0 EAL 0
EAL 1

C1 Q1/F1 L1 C1/E1 EAL 2
C2 Q2/F2 L2 C2/E2 CAPP/EAL 3
B1 Q3/F3 L3 B1/E3 CSPP/EAL 4
B2 Q4/F4 L4 B2/E4 EAL 5
B3 Q5/F5 L5 B3/E5 EAL 6
A1 Q6/F5 L6 B3/E6 EAL 7

1.14.2 LEGAL ISSUES 37

to a patent by Schnorr that was closely related to DSS. Until the patents expired, the situation was
murky.

“I don’t know what you mean by your way,” said the Queen: “all the ways
about here belong to me…”

—Through the Looking Glass

Some of the relevant patents, luckily all expired, are:

• Diffie-Hellman: Patent #4,200,770, issued 1980. This covers the Diffie-Hellman key
exchange described in §6.4 Diffie-Hellman.

• Hellman-Merkle: Patent #4,218,582, issued 1980. This is claimed to cover all public key sys-
tems. There is some controversy over whether this patent should be valid. The specific public
key mechanisms described in the patent (knapsack systems) were subsequently broken.

• Rivest-Shamir-Adleman: Patent #4,405,829, issued 1983. This covers the RSA algorithm
described in §6.3 RSA.

• Hellman-Pohlig: Patent #4,424,414, issued 1984. This is related to the Diffie-Hellman key
exchange.

1.14.2 Export Controls

Mary had a little key
(It’s all she could export)
And all the email that she sent
Was opened at the Fort.

—Ron Rivest

The U.S. government used to impose severe restrictions on export of encryption. This caused much
bitterness in the computer industry and led to some fascinating technical designs so that domestic
products, which were legally allowed to use strong encryption, could use strong encryption where
possible, and yet interoperate with exportable products that were not allowed to use strong encryp-
tion. We describe such designs in this book (see §19.13 Exportability). Luckily, export controls
seem to be pretty much lifted. For historical reasons, and in case they become relevant again (we
sure hope not), we couldn’t bear to delete the following section. It was written for the first edition
of this book, and was timely in 1995 when that edition was published:

The U.S. government considers encryption to be a dangerous technology, like germ warfare
and nuclear weapons. If a U.S. corporation would like to sell to other countries (and the proceeds

38 INTRODUCTION 1.14.2

are not going to be funding the Contras), it needs export approval. The export control laws around
encryption are not clear, and their interpretation changes over time. The general principle is that
the U.S. government does not want you to give out technology that would make it more difficult for
them to spy. Sometimes companies get so discouraged that they leave encryption out of their prod-
ucts altogether. Sometimes they generate products that, when sold overseas, have the encryption
mechanisms removed. It is usually possible to get export approval for encryption if the key lengths
are short enough for the government to brute-force check all possible keys to decrypt a message. So
sometimes companies just use short keys, or sometimes they have the capability of varying the key
length, and they fix the key length to be shorter when a system is sold outside the U.S.

Even if you aren’t in the business of selling software abroad, you can run afoul of export con-
trols. If you install encryption software on your laptop and take it along with you on an interna-
tional trip, you may be breaking the law. If you distribute encryption software within the U.S.
without adequate warnings, you are doing your customers a disservice. And the legality of posting
encryption software on a public network is questionable.

PA
R

T
 1

C
R

Y
PT

O
G

R
A

PH
Y

This page intentionally left blank

41

2 INTRODUCTION TO

CRYPTOGRAPHY

2.1 WHAT IS CRYPTOGRAPHY?

The word cryptography comes from the Greek words κρυπτο (hidden or secret) and γραφη (writ-
ing). So, cryptography is the art of secret writing. More generally, people think of cryptography as
the art of mangling information into apparent unintelligibility in a manner allowing a secret method
of unmangling. The basic service provided by cryptography is the ability to send information
between participants in a way that prevents others from reading it. In this book we will concentrate
on the kind of cryptography that is based on representing information as numbers and mathemati-
cally manipulating those numbers. This kind of cryptography can provide other services, such as

• integrity checking—reassuring the recipient of a message that the message has not been
altered since it was generated by a legitimate source

• authentication—verifying someone’s (or something’s) identity

But back to the traditional use of cryptography. A message in its original form is known as
plaintext or cleartext. The mangled information is known as ciphertext. The process for produc-
ing ciphertext from plaintext is known as encryption. The reverse of encryption is called decryp-
tion.

While cryptographers invent clever secret codes, cryptanalysts attempt to break these codes.
These two disciplines constantly try to keep ahead of each other. Ultimately, the success of the
cryptographers rests on the

Fundamental Tenet of Cryptography

If lots of smart people have failed to solve a problem,
then it probably won’t be solved (soon).

ciphertextplaintext plaintext
encryption decryption

42 INTRODUCTION TO CRYPTOGRAPHY 2.1.1

Cryptographic systems tend to involve both an algorithm and a secret value. The secret value
is known as the key. The reason for having a key in addition to an algorithm is that it is difficult to
keep devising new algorithms that will allow reversible scrambling of information, and it is diffi-
cult to quickly explain a newly devised algorithm to the person with whom you’d like to start com-
municating securely. With a good cryptographic scheme it is perfectly OK to have everyone,
including the bad guys (and the cryptanalysts) know the algorithm because knowledge of the algo-
rithm without the key does not help unmangle the information.

The concept of a key is analogous to the combination for a combination lock. Although the
concept of a combination lock is well known (you dial in the secret numbers in the correct sequence
and the lock opens), you can’t open a combination lock easily without knowing the combination.

2.1.1 Computational Difficulty

It is important for cryptographic algorithms to be reasonably efficient for the good guys to com-
pute. The good guys are the ones with knowledge of the keys.* Cryptographic algorithms are not
impossible to break without the key. A bad guy can simply try all possible keys until one works.
The security of a cryptographic scheme depends on how much work it is for the bad guy to break it.
If the best possible scheme will take 10 million years to break using all of the computers in the
world, then it can be considered reasonably secure.

Going back to the combination lock example, a typical combination might consist of three
numbers, each a number between 1 and 40. Let’s say it takes 10 seconds to dial in a combination.
That’s reasonably convenient for the good guy. How much work is it for the bad guy? There are 403

possible combinations, which is 64000. At 10 seconds per try, it would take a week to try all com-
binations, though on average it would only take half that long (even though the right number is
always the last one you try!).

Often a scheme can be made more secure by making the key longer. In the combination lock
analogy, making the key longer would consist of requiring four numbers to be dialed in. This would
make a little more work for the good guy. It might now take 13 seconds to dial in the combination.
But the bad guy has 40 times as many combinations to try, at 13 seconds each, so it would take a
year to try all combinations. (And if it took that long, he might want to stop to eat or sleep).

With cryptography, computers can be used to exhaustively try keys. Computers are a lot
faster than people, and they don’t get tired, so thousands or millions of keys can be tried per second.
Also, lots of keys can be tried in parallel if you have multiple computers, so time can be saved by
spending money on more computers.

Sometimes a cryptographic algorithm has a variable-length key. It can be made more secure
by increasing the length of the key. Increasing the length of the key by one bit makes the good guy’s

*We’re using the terms good guys for the cryptographers, and bad guys for the cryptanalysts. This is a convenient shorthand
and not a moral judgment—in any given situation, which side you consider good or bad depends on your point of view.

2.1.2 WHAT IS CRYPTOGRAPHY? 43

job just a little bit harder, but makes the bad guy’s job up to twice as hard (because the number of
possible keys doubles). Some cryptographic algorithms have a fixed-length key, but a similar algo-
rithm with a longer key can be devised if necessary. If computers get 1000 times faster, so that the
bad guy’s job becomes reasonably practical, making the key 10 bits longer will make the bad guy’s
job as hard as it was before the advance in computer speed. However, it will be much easier for the
good guys (because their computer speed increase far outweighs the increment in key length). So
the faster computers get, the better life gets for the good guys.

Keep in mind that breaking the cryptographic scheme is often only one way of getting what
you want. For instance, a bolt cutter works no matter how many digits are in the combination.

You can get further with a kind word and a gun than you can with a kind
word alone.

—Willy Sutton, bank robber

2.1.2 To Publish or Not to Publish

Some people believe that keeping a cryptographic algorithm as secret as possible will enhance its
security. Others argue that publishing the algorithm, so that it is widely known, will enhance its
security. On the one hand, it would seem that keeping the algorithm secret must be more secure—it
makes for more work for the cryptanalyst to try to figure out what the algorithm is.

The argument for publishing the algorithm is that the bad guys will probably find out about it
eventually anyway, so it’s better to tell a lot of nonmalicious people about the algorithm so that in
case there are weaknesses, a good guy will discover them rather than a bad guy. A good guy who
discovers a weakness will warn people that the system has a weakness. Publication provides an
enormous amount of free consulting from the academic community as cryptanalysts look for weak-
nesses so they can publish papers about them. A bad guy who discovers a weakness will exploit it
for doing bad-guy things like embezzling money or stealing trade secrets.

It is difficult to keep the algorithm secret because if an algorithm is to be widely used, it is
highly likely that determined attackers will manage to learn the algorithm by reverse engineering
whatever implementation is distributed, or just because the more people who know something the
more likely it is for the information to leak to the wrong places. In the past, “good” cryptosystems
were not economically feasible, so keeping the algorithms secret was needed extra protection. We
believe (we hope?) today’s algorithms are sufficiently secure that this is not necessary.

Common practice today is for most commercial cryptosystems to be published and for mili-
tary cryptosystems to be kept secret. If a commercial algorithm is unpublished today, it’s probably
for trade secret reasons or because this makes it easier to get export approval rather than to enhance
its security. We suspect the military ciphers are unpublished mainly to keep good cryptographic
methods out of the hands of the enemy rather than to keep them from cryptanalyzing our codes.

44 INTRODUCTION TO CRYPTOGRAPHY 2.1.3

2.1.3 Secret Codes

We use the terms secret code and cipher interchangeably to mean any method of encrypting data.
Some people draw a subtle distinction between these terms that we don’t find useful.

The earliest documented cipher is attributed to Julius Caesar. The way the Caesar cipher
would work if the message were in English is as follows. Substitute for each letter of the message,
the letter which is 3 letters later in the alphabet (and wrap around to A from Z). Thus an A would
become a D, and so forth. For instance, DOZEN would become GRCHQ. Once you figure out
what’s going on, it is very easy to read messages encrypted this way (unless, of course, the original
message was in Greek).

A slight enhancement to the Caesar cipher was distributed as a premium with Ovaltine in the
1940s as Captain Midnight Secret Decoder rings. (There were times when this might have been a
violation of export controls for distributing cryptographic hardware!) The variant is to pick a secret
number n between 1 and 25, instead of always using 3. Substitute for each letter of the message, the
letter which is n higher (and wrap around to A from Z of course). Thus if the secret number was 1,
an A would become a B, and so forth. For instance HAL would become IBM. If the secret number
was 25, then IBM would become HAL. Regardless of the value of n, since there are only 26 possible
ns to try, it is still very easy to break this cipher if you know it’s being used and you can recognize a
message once it’s decrypted.

The next type of cryptographic system developed is known as a monoalphabetic cipher,
which consists of an arbitrary mapping of one letter to another letter. There are 26! possible pair-
ings of letters, which is approximately 4×1026. [Remember, n!, which reads “n factorial”, means
n(n−1)(n−2)⋅⋅⋅1.] This might seem secure, because to try all possibilities, if it took 1 microsecond to
try each one, would take about 10 trillion years. However, by statistical analysis of language
(knowing that certain letters and letter combinations are more common than others), it turns out to
be fairly easy to break. For instance, many daily newspapers have a daily cryptogram, which is a
monoalphabetic cipher, and can be broken by people who enjoy that sort of thing during their sub-
way ride to work. An example is

Cf lqr’xs xsnyctm n eqxxqgsy iqul qf wdcp eqqh, erl lqrx qgt iqul!

Computers have made much more complex cryptographic schemes both necessary and possi-
ble. Necessary because computers can try keys at a rate that would exhaust an army of clerks; and
possible because computers can execute the complex algorithms quickly and without errors.

2.2 BREAKING AN ENCRYPTION SCHEME 45

2.2 BREAKING AN ENCRYPTION SCHEME

What do we mean when we speak of a bad guy Fred breaking an encryption scheme? The three
basic attacks are known as ciphertext only, known plaintext, and chosen plaintext.

2.2.1 Ciphertext Only

In a ciphertext only attack, Fred has seen (and presumably stored) some ciphertext that he can ana-
lyze at leisure. Typically it is not difficult for a bad guy to obtain ciphertext. (If a bad guy can’t
access the encrypted data, then there would have been no need to encrypt the data in the first place!)

How can Fred figure out the plaintext if all he can see is the ciphertext? One possible strategy
is to search through all the keys. Fred tries the decrypt operation with each key in turn. It is essen-
tial for this attack that Fred be able to recognize when he has succeeded. For instance, if the mes-
sage was English text, then it is highly unlikely that a decryption operation with an incorrect key
could produce something that looked like intelligible text. Because it is important for Fred to be
able to differentiate plaintext from gibberish, this attack is sometimes known as a recognizable
plaintext attack.

It is also essential that Fred have enough ciphertext. For instance, using the example of a
monoalphabetic cipher, if the only ciphertext available to Fred were XYZ, then there is not enough
information. There are many possible letter substitutions that would lead to a legal three-letter
English word. There is no way for Fred to know whether the plaintext corresponding to XYZ is
THE or CAT or HAT. As a matter of fact, in the following sentence, any of the words could be the
plaintext for XYZ:

The hot cat was sad but you may now sit and use her big red pen.

[Don’t worry—we’ve found a lovely sanatorium for the coauthor who wrote that.
—the other coauthors]

Often it isn’t necessary to search through a lot of keys. For instance, the authentication
scheme Kerberos (see §13.4 Logging Into the Network) assigns to user Alice a DES key derived
from Alice’s password according to a straightforward, published algorithm. If Alice chooses her
password unwisely (say a word in the dictionary), then Fred does not need to search through all 256

possible DES keys—instead he only needs to try the derived keys of the 10000 or so common
English words.

A cryptographic algorithm has to be secure against a ciphertext only attack because of the
accessibility of the ciphertext to cryptanalysts. But in many cases cryptanalysts can obtain addi-
tional information, so it is important to design cryptographic systems to withstand the next two
attacks as well.

46 INTRODUCTION TO CRYPTOGRAPHY 2.2.2

2.2.2 Known Plaintext

Sometimes life is easier for the attacker. Suppose Fred has somehow obtained some 〈plaintext,
ciphertext〉 pairs. How might he have obtained these? One possibility is that secret data might not
remain secret forever. For instance, the data might consist of specifying the next city to be attacked.
Once the attack occurs, the plaintext to the previous day’s ciphertext is now known.

With a monoalphabetic cipher, a small amount of known plaintext would be a bonanza. From
it, the attacker would learn the mappings of a substantial fraction of the most common letters (every
letter that was used in the plaintext Fred obtained). Some cryptographic schemes might be good
enough to be secure against ciphertext only attacks but not good enough against known plaintext
attacks. In these cases, it becomes important to design the systems that use such a cryptographic
algorithm to minimize the possibility that a bad guy will ever be able to obtain 〈plaintext, cipher-
text〉 pairs.

2.2.3 Chosen Plaintext

On rare occasions, life may be easier still for the attacker. In a chosen plaintext attack, Fred can
choose any plaintext he wants, and get the system to tell him what the corresponding ciphertext is.
How could such a thing be possible?

Suppose the telegraph company offered a service in which they encrypt and transmit mes-
sages for you. Suppose Fred had eavesdropped on Alice’s encrypted message. Now he’d like to
break the telegraph company’s encryption scheme so that he can decrypt Alice’s message.

He can obtain the corresponding ciphertext to any message he chooses by paying the tele-
graph company to send the message for him, encrypted. For instance, if Fred knew they were using
a monoalphabetic cipher, he might send the message

The quick brown fox jumps over the lazy dog.

knowing that he would thereby get all the letters of the alphabet encrypted and then be able to
decrypt with certainty any encrypted message.

It is possible that a cryptosystem secure against ciphertext only and known plaintext attacks
might still be susceptible to chosen plaintext attacks. For instance, if Fred knows that Alice’s mes-
sage is either Surrender or Fight on, then no matter how wonderful an encryption scheme the tele-
graph company is using, all he has to do is send the two messages and see which one looks like the
encrypted data he saw when Alice’s message was transmitted.

A cryptosystem should resist all three sorts of attacks. That way its users don’t need to worry
about whether there are any opportunities for attackers to know or choose plaintext. Like wearing
both a belt and suspenders, many systems that use cryptographic algorithms will also go out of their
way to prevent any chance of chosen plaintext attacks.

2.3 TYPES OF CRYPTOGRAPHIC FUNCTIONS 47

2.3 TYPES OF CRYPTOGRAPHIC FUNCTIONS

There are three kinds of cryptographic functions: hash functions, secret key functions, and public
key functions. We will describe what each kind is, and what it is useful for. Public key cryptography
involves the use of two keys. Secret key cryptography involves the use of one key. Hash functions
involve the use of zero keys! Try to imagine what that could possibly mean, and what use it could
possibly have—an algorithm everyone knows with no secret key, and yet it has uses in security.

Since secret key cryptography is probably the most intuitive, we’ll describe that first.

2.4 SECRET KEY CRYPTOGRAPHY

Secret key cryptography involves the use of a single key. Given a message (called plaintext) and the
key, encryption produces unintelligible data (called an IRS Publication—no! no! that was just a fin-
ger slip, we meant to say “ciphertext”), which is about the same length as the plaintext was.
Decryption is the reverse of encryption, and uses the same key as encryption.

Secret key cryptography is sometimes referred to as conventional cryptography or sym-
metric cryptography. The Captain Midnight code and the monoalphabetic cipher are both exam-
ples of secret key algorithms, though both are easy to break. In this chapter we describe the
functionality of cryptographic algorithms, but not the details of particular algorithms. In Chapter 3
Secret Key Cryptography we describe the details of some popular secret key cryptographic algo-
rithms.

2.4.1 Security Uses of Secret Key Cryptography

The next few sections describe the types of things one might do with secret key cryptography.

ciphertextplaintext
encryption

ciphertext plaintextdecryption

key

