

JavaScript by Example
Second Edition

This page intentionally left blank

JavaScript by Example
Second Edition

Ellie Quigley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Quigley, Ellie.

p. cm.JavaScript by example / Ellie Quigley.—2nd ed.
 Includes index.
 ISBN 978-0-13-705489-3 (pbk. : alk. paper)
1. JavaScript (Computer program language) I. Title.
QA76.73.J39Q54 2010
005.13’3—dc22

2010020402

Copyright © 2011 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise.

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-705489-3
ISBN-10: 0-13-705489-0
4 20

Editor-in-Chief
Mark L. Taub

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Production Editor
Dmitri Korzh
Techne Group

Copy Editor
Teresa Horton

Indexer
Potomac Indexing, LLC

Proofreader
Beth Roberts

Editorial Assistant
Kim Boedigheimer

Cover Designer
Anne Jones

Composition
Techne Group

mailto:corpsales@pearsontechgroup.com
http://informit.com

v

Contents

Preface xv

1 Introduction to JavaScript 1
1.1 What JavaScript Is 1

1.2 What JavaScript Is Not 2

1.3 What JavaScript Is Used For 3

1.4 JavaScript and Its Place in a Web Page 4

1.4.1 Analysis of the Diagram 4

1.5 What Is Ajax? 5

1.6 What JavaScript Looks Like 7

1.7 JavaScript and Its Role in Web Development 8

1.7.1 The Three Layers 8

1.8 JavaScript and Events 10

1.9 Standardizing JavaScript and the W3C 12

1.9.1 JavaScript Objects 13
1.9.2 The Document Object Model 13

1.10 What Browser? 15

1.10.1 Versions of JavaScript 16
1.10.2 Does Your Browser Follow the Standard? 18
1.10.3 Is JavaScript Enabled on Your Browser? 18

1.11 Where to Put JavaScript 20

1.11.1 JavaScript from External Files 22

1.12 Validating Your Markup 24

1.12.1 The W3C Validation Tool 24
1.12.2 The Validome Validation Tool 25

1.13 What You Should Know 26

vi Contents

2 Script Setup 29
2.1 The HTML Document and JavaScript 29

2.1.1 Script Execution 30

2.2 Syntactical Details 33

2.2.1 Case Sensitivity 33
2.2.2 Free Form and Reserved Words 33
2.2.3 Statements and Semicolons 34
2.2.4 Comments 35
2.2.5 The <script> Tag 35

2.3 Generating HTML and Printing Output 37

2.3.1 Strings and String Concatenation 37
2.3.2 The write() and writeln() Methods 38

2.4 About Debugging 40

2.4.1 Types of Errors 40

2.5 Debugging Tools 41

2.5.1 Firefox 41
2.5.2 Debugging in Internet Explorer 8 44
2.5.3 The JavaScript: URL Protocol 46

2.6 JavaScript and Old or Disabled Browsers 47

2.6.1 Hiding JavaScript from Old Browsers 47

2.7 What You Should Know 50

3 The Building Blocks: Data Types, Literals, and Variables 53
3.1 Data Types 53

3.1.1 Primitive Data Types 53
3.1.2 Composite Data Types 59

3.2 Variables 59

3.2.1 Valid Names 60
3.2.2 Declaring and Initializing Variables 60
3.2.3 Dynamically or Loosely Typed Language 62
3.2.4 Scope of Variables 66
3.2.5 Concatenation and Variables 66

3.3 Constants 67

3.4 Bugs to Watch For 69

3.5 What You Should Know 70

4 Dialog Boxes 73
4.1 Interacting with the User 73

4.1.1 The alert() Method 73
4.1.2 The prompt() Method 76
4.1.3 The confirm() Method 78

4.2 What You Should Know 80

Contents vii

5 Operators 83
5.1 About JavaScript Operators and Expressions 83

5.1.1 Assignment 84
5.1.2 Precedence and Associativity 84

5.2 Types of Operators 88

5.2.1 Arithmetic Operators 88
5.2.2 Shortcut Assignment Operators 90
5.2.3 Autoincrement and Autodecrement Operators 91
5.2.4 Concatenation Operator 94
5.2.5 Comparison Operators 95
5.2.6 Logical Operators 101
5.2.7 The Conditional Operator 108
5.2.8 Bitwise Operators 109

5.3 Number, String, or Boolean? Data Type Conversion 112

5.3.1 The parseInt() Function 114
5.3.2 The parseFloat() Function 116
5.3.3 The eval() Function 118

5.4 Special Operators 119

5.5 What You Should Know 120

6 Under Certain Conditions 123
6.1 Control Structures, Blocks, and Compound Statements 123

6.2 Conditionals 123

6.2.1 if/else 124
6.2.2 if/else if 127
6.2.3 switch 128

6.3 Loops 131

6.3.1 The while Loop 131
6.3.2 The do/while Loop 133
6.3.3 The for Loop 134
6.3.4 The for/in Loop 135
6.3.5 Loop Control with break and continue 136
6.3.6 Nested Loops and Labels 137

6.4 What You Should Know 140

7 Functions 143
7.1 What Is a Function? 143

7.1.1 Function Declaration and Invocation 144
7.1.2 Return Values 153
7.1.3 Anonymous Functions as Variables 156
7.1.4 Closures 158
7.1.5 Recursion 161
7.1.6 Functions Are Objects 166

viii Contents

7.2 Debugging Techniques 166

7.2.1 Function Syntax 166
7.2.2 Exception Handling with try/catch and throw 168

7.3 What You Should Know 172

8 Objects 175
8.1 What Are Objects? 175

8.1.1 Objects and the Dot Syntax 176
8.1.2 Creating an Object with a Constructor 177
8.1.3 Properties of the Object 178
8.1.4 Methods of the Object 180

8.2 Classes and User-Defined Functions 182

8.2.1 What Is a Class? 182
8.2.2 What Is this? 182
8.2.3 Inline Functions as Methods 185

8.3 Object Literals 187

8.4 Manipulating Objects 191

8.4.1 The with Keyword 191
8.4.2 The for/in Loop 194

8.5 Extending Objects with Prototypes 196

8.5.1 Adding Properties with the Prototype Property 198
8.5.2 The Prototype Lookup Chain 199
8.5.3 Adding Methods with Prototype 202
8.5.4 Properties and Methods of All Objects 204
8.5.5 Creating Subclasses and Inheritance 207

8.6 What You Should Know 210

9 JavaScript Core Objects 213
9.1 What Are Core Objects? 213

9.2 Array Objects 213

9.2.1 Declaring and Populating Arrays 214
9.2.2 Array Object Properties 219
9.2.3 Associative Arrays 221
9.2.4 Nested Arrays 223

9.3 Array Methods 227

9.4 The Date Object 234

9.4.1 Using the Date Object Methods 235
9.4.2 Manipulating the Date and Time 238
9.4.3 Customizing the Date Object with the prototype Property 240

9.5 The Math Object 241

9.5.1 Rounding Up and Rounding Down 244
9.5.2 Generating Random Numbers 245

Contents ix

9.5.3 Wrapper Objects (String, Number, Function, Boolean) 246
9.5.4 The String Object 247
9.5.5 The Number Object 259
9.5.6 The Boolean Object 263
9.5.7 The Function Object 264
9.5.8 The with Keyword Revisited 266

9.6 What You Should Know 267

10 It’s the BOM! Browser Objects 271
10.1 JavaScript and the Browser Object Model 271

10.1.1 Working with the navigator Object 273
10.1.2 Working with the window Object 285
10.1.3 Creating Timed Events 292
10.1.4 Working with Frames 303
10.1.5 The location Object 315
10.1.6 The history Object 319
10.1.7 The screen Object 322

10.2 What You Should Know 325

11 Working with Forms and Input Devices 327
11.1 The Document Object Model and the Legacy DOM 0 327

11.2 The JavaScript Hierarchy 328

11.2.1 The Document Itself 329

11.3 About HTML Forms 334

11.3.1 Attributes of the <form> Tag 334

11.4 JavaScript and the form Object 341

11.4.1 Naming Forms and Input Types (Controls) for Forms 342
11.4.2 The Legacy DOM with Forms 345
11.4.3 Naming Forms and Buttons 350
11.4.4 Submitting Fillout Forms 356
11.4.5 The this Keyword 365
11.4.6 The submit() and reset() Methods 368

11.5 Programming Input Devices (Controls) 372

11.5.1 Simple Form Validation 401

11.6 What You Should Know 409

12 Working with Images (and Links) 413
12.1 Introduction to Images 413

12.1.1 HTML Review of Images 414
12.1.2 The JavaScript image Object 416

12.2 Reviewing Links 417

12.2.1 The JavaScript links Object 418

x Contents

12.3 Working with Imagemaps 422

12.3.1 Replacing Images Dynamically with the src Property 428
12.3.2 Preloading Images and the Image() Constructor 432
12.3.3 Randomly Displaying Images and the onClick Event 434
12.3.4 Links with an Image Map and JavaScript 436

12.4 Resizing an Image to Fit the Window 438

12.5 Introduction to Slideshows 441

12.5.1 A Simple Slideshow with Controls 442
12.5.2 A Clickable Image Slideshow 445

12.6 Animation and Timers 449

12.6.1 Changing Image Position 450
12.6.2 Changing Image Height and Width Properties 451

12.7 What You Should Know 452

13 Handling Events 455
13.1 Introduction to Event Handlers 455

13.2 The Inline Model for Handling Events 455

13.2.1 HTML and the Event Handler 456
13.2.2 Setting Up an Event Handler 459
13.2.3 Return Values 461
13.2.4 JavaScript Object Methods and Events 462

13.3 Handling a Window or Frame Event 465

13.3.1 The onLoad and onUnLoad Events 465
13.3.2 The onFocus and onBlur Event Handlers 468
13.3.3 The onResize Event Handler 472

13.4 Handling Mouse Events 474

13.4.1 How to Use Mouse Events 475
13.4.2 Mouse Events and Images—Rollovers 477
13.4.3 Creating a Slideshow with Mouse Events 478

13.5 Handling Link Events 481

13.5.1 JavaScript URLs 481

13.6 Handling a Form Event 482

13.6.1 Buttons 483
13.6.2 this for Forms and this for Buttons 484
13.6.3 Forms and the onClick Event Handler 486
13.6.4 Forms and the onFocus and onBlur Event Handlers 487
13.6.5 Forms and the onChange Event Handler 489
13.6.6 Forms and the onSubmit Event Handler 491
13.6.7 HTML Event Handlers and JavaScript Event Methods 496
13.6.8 The onError Event 498

13.7 The event Object 499

13.7.1 Capturing and Bubbling (Trickle Down and Bubble Up) 500
13.7.2 Event Object Properties 501

Contents xi

13.7.3 Using Event Object Properties 503
13.7.4 Passing Events to a JavaScript Function 505
13.7.5 Mouse Positions 508
13.7.6 Key Events 513

13.8 The Scripting Model for Handling Events 517

13.8.1 Getting a Reference to the Object 517

13.9 What You Should Know 523

14 Introduction to CSS (Cascading Style Sheets) with
JavaScript 527
14.1 What Is CSS? 527

14.2 What Is a Style Sheet? 527

14.2.1 What Is a CSS-Enhanced Browser? 528
14.2.2 How Does a Style Sheet Work? 529

14.3 CSS Program Structure 530

14.3.1 Comments 530
14.3.2 Grouping 531

14.4 Common Style Sheet Properties 532

14.4.1 Units of Measurement 535
14.4.2 Working with Colors 536
14.4.3 Working with Fonts 539
14.4.4 Working with Text 542
14.4.5 Working with Backgrounds and Images 544
14.4.6 Working with Margins and Borders 547

14.5 Types of Style Sheets 550

14.5.1 The Embedded Style Sheet and the <style> Tag 550
14.5.2 The Inline Style and the <style> Attribute 553

14.6 The External Type with a Link 555

14.6.1 The <link> Tag 555
14.6.2 Importing with @import 557

14.7 Creating a Style Class 558

14.7.1 Styling a Simple Table with Class 560
14.7.2 Using a Specific Class Selector 562

14.8 The ID Selector and the ID Attribute 564

14.9 Overriding or Adding a Style with the Tag 566

14.9.1 The Tag and the style Attribute 567
14.9.2 The Tag and the class Attribute 568
14.9.3 Inheritance and Contextual Selectors 569

14.10 Positioning Elements and Layers 572

14.10.1 Absolute Positioning 573
14.10.2 The <div> Container 579
14.10.3 Absolute Positioning 580

xii Contents

14.10.4 Relative Positioning 581
14.10.5 The z-index and Three Dimensions 583

14.11 Where Does JavaScript Fit In? 585

14.11.1 What Is DHTML? 585
14.11.2 How JavaScript Views Style Sheets 585
14.11.3 The style Object 589
14.11.4 The className Property 598
14.11.5 Drop-Down Menus and Tooltips 601

14.12 What You Should Know 609

15 The W3C DOM and JavaScript 611
15.1 The W3C DOM 611

15.2 How the DOM Works with Nodes 612

15.3 Nodes 613

15.3.1 Parents and Children 615
15.3.2 Siblings 616
15.3.3 The nodeName and nodeType Properties 616
15.3.4 The Whitespace Bug 617

15.4 Walking with the DOM 618

15.5 DOM Inspectors 621

15.6 Methods to Shorten the DOM Walk 622

15.6.1 The document.getElementById() Method 622
15.6.2 The document.getElementsByTagName() Method 625
15.6.3 JavaScript Properties to Represent HTML Attributes 627

15.7 Modifying the DOM (Appending, Copying, and Removing Nodes) 629

15.7.1 The innerHTML Property and the Element’s Content 630
15.7.2 Modifying the Content of an Element 632
15.7.3 Creating New Elements with the DOM 634
15.7.4 Inserting Before a Node 636
15.7.5 Creating Attributes for Nodes 637
15.7.6 DOM Review: Creating a Blog 639
15.7.7 Creating a Table with the DOM 644
15.7.8 Cloning Nodes 648
15.7.9 Removing a Node 653
15.7.10 Scrolling with the Nodes 658

15.8 Event Handling and the DOM 661

15.8.1 The HTML Inline Way 661
15.8.2 The Scripting Way 661
15.8.3 The DOM Way 662
15.8.4 Bubbling and Capturing 662

15.9 Event Listeners with the W3C Model 668

15.9.1 Adding an Event 668
15.9.2 Registering More Than One Event 670

Contents xiii

15.9.3 Removing an EventListener 673
15.9.4 Event Listeners with Microsoft Internet Explorer 676
15.9.5 Event Properties Revisited 678

15.10 Unobtrusive JavaScript 682

15.10.1 JavaScript Libraries 689

15.11 What You Should Know 690

16 Cookies 695
16.1 What Are Cookies? 695

16.1.1 Cookie Ingredients 698
16.1.2 The Attributes of a Cookie 699

16.2 Creating a Cookie with JavaScript 701

16.2.1 The Cookie Object 701
16.2.2 Assigning Cookie Attributes 702
16.2.3 Let’s Make Cookies! 704
16.2.4 Retrieving Cookies from a Server 708
16.2.5 Deleting a Cookie 710
16.2.6 Using the Browser to Remove Cookies 713

16.3 What You Should Know 714

17 Regular Expressions and Pattern Matching 717
17.1 What Is a Regular Expression? 717

17.2 Creating a Regular Expression 719

17.2.1 The Literal Way 719
17.2.2 The Constructor Method 720
17.2.3 Testing the Expression 721
17.2.4 Properties of the RegExp Object 724

17.3 String Methods Using Regular Expressions 727

17.3.1 The match() Method 727
17.3.2 The search() Method 729
17.3.3 The replace() Method 730
17.3.4 The split() Method 731

17.4 Getting Control—The Metacharacters 733

17.4.1 The Dot Metacharacter 736
17.4.2 The Character Class 738
17.4.3 Metasymbols 741
17.4.4 Metacharacters to Repeat Pattern Matches 745
17.4.5 Anchoring Metacharacters 754
17.4.6 Alternation 759

17.5 Form Validation with Regular Expressions 765

17.5.1 Checking for Empty Fields 765
17.5.2 Checking for Numeric Zip Codes 767
17.5.3 Checking for Alphabetic Data 769

xiv Contents

17.5.4 Removing Extraneous Characters 771
17.5.5 Checking for Valid Social Security Numbers 775
17.5.6 Checking for Valid Phone Numbers 777
17.5.7 Checking for Valid E-Mail Addresses 781
17.5.8 Credit Card Validation 783
17.5.9 Putting It All Together 791

17.6 What You Should Know 795

18 An Introduction to Ajax (with JSON) 797
18.1 Why Ajax? 797

18.2 Why Is Ajax Covered Last? 798

18.3 The Steps for Creating Ajax Communication 799

18.3.1 Step 1: Create the XMLHttpRequest Object 800
18.3.2 Step 2: Initializing the Object 803
18.3.3 Sending the Request to the Server 805
18.3.4 Step 3: Monitoring the State of the Server Response 806
18.3.5 Handling the Response with a Callback Function 808
18.3.6 The Browser Cache Issue 810

18.4 Putting It All Together 812

18.4.1 Using Ajax to Retrieve Text from a File 819
18.4.2 Using Ajax to Retrieve XML from a File 822
18.4.3 Ajax and Forms 826

18.5 Ajax and JSON 834

18.5.1 JSON Data Structures 835
18.5.2 Steps to Use JSON 836
18.5.3 Putting It All Together with JSON 839
18.5.4 Solving the eval() Security Problem 843

18.6 Debugging Ajax with Firebug 848

18.6.1 Basic Instructions for Using Firefox 851
18.6.2 What You Should Know 852

Index 855

xv

Preface
This second edition of JavaScript by Example is really more than a new edition; it is a new
book! So much has changed since the first edition in 2002, and now with the newfound
popularity of Ajax, JavaScript is on a roll! Almost every personal computer has Java-
Script installed and running and it is the most popular Web scripting language around,
although it comes under different aliases, including Mocha, LiveScript, JScript, and
ECMAScript. There are a lot of books out there dedicated to some aspect of the Java-
Script language and if you are new to JavaScript, it would be difficult to know where to
start. This book is a “one size fits all” edition, dedicated to those of you who need a bal-
ance between the technical side of the language and the fun elements, a book that
addresses cross-platform issues, and a book that doesn’t expect that you are already a
guru before you start. This edition explains how the language works from the most basic
examples to the more complex, in a progression that seemlessly leads you from example
to example until you have mastered the basics all the way to the more advanced topics
such as CSS, the DOM, and Ajax.

Because I am a teacher first, I found that using my first edition worked well in the
classroom, but I needed more and better examples to get the results I was looking for.
Many of my students have been designers but not programmers, or programmers who
don’t understand design. I needed a text that would accommodate both without leaving
either group bored or overwhelmed. This huge effort to modernize the first edition went
way beyond where I had expected or imagined. I have learned much and hope that you
will enjoy sharing my efforts to make this a fun and thorough coverage of a universally
popular and important Web programming language.

xvi

Acknowledgments

Many thanks go to the folks at Prentice Hall: Mark L. Taub, editor-in-chief, and the most
supportive person I know; Julie Nahil, Full-Service Production Manager; John Fuller,
Managing Editor; and Ann Jones, Cover Designer. Thanks also to Dmitri Korzh, Produc-
tion Editor at Techne Group. Finally, a special thank you to Thomas Bishop who spent
hours reviewing and sending constructive criticism that greatly improved the quality of
the book; to Brendon Crawford for reviewing the manuscript; and to Elizabeth Triplett
for her artwork to give the chapters a cheerful beginning.

Ellie Quigley
September, 2010

1

chapter

1
Introduction to
JavaScript

1.1 What JavaScript Is

JavaScript is a popular general-purpose scripting language used to put energy and pizzaz
into otherwise dead Web pages by allowing a page to interact with users and respond to
events that occur on the page. JavaScript has been described as the glue that holds Web
pages together.1 It would be a hard task to find a commercial Web page, or almost any
Web page, that does not contain some JavaScript code (see Figure 1.1).

JavaScript, originally called LiveScript, was developed by Brendan Eich at Netscape
in 1995 and was shipped with Netscape Navigator 2.0 beta releases. JavaScript is a
scripting language that gives life, hence LiveScript, to otherwise static HTML pages. It
runs on most platforms and is hardware independent. JavaScript is a client-side language
designed to work in the browser on your computer, not the server. It is built directly into
the browser (although not restricted to browsers), Microsoft Internet Explorer and
Mozilla Firefox being the most common browsers. In syntax, JavaScript is similar to C,
Perl, and Java; for example, if statements and while and for loops are almost identical.
Like Perl, it is an interpreted language, not a compiled language.

Because JavaScript is associated with a browser, it is tightly integrated with HTML.
Whereas HTML is handled in the browser by its own networking library and graphics
renderer, JavaScript programs are executed by a JavaScript interpreter built into the
browser. When the browser requests such a page, the server sends the full content of the
document, including HTML and JavaScript statements, over the network to the client.
When the page loads, HTML content is read and rendered line by line until a JavaScript
opening tag is read, at which time the JavaScript interpreter takes over. When the closing
JavaScript tag is reached, the HTML processing continues.

1. But the creator of JavaScript, Brendan Eich, says it’s even more! In his article, “Innovators of the Net:
Brendan Eich and JavaScript,” he says, “Calling JavaScript ‘the glue that holds web pages together’ is short
and easy to use, but doesn’t do justice to what’s going on. Glue sets and hardens, but JavaScript is more
dynamic than glue. It can create a reaction and make things keep going, like a catalyst.”

2 Chapter 1 • Introduction to JavaScript

JavaScript handled by a browser is called client-side JavaScript. Although JavaScript
is used mainly as a client-side scripting language, it can also be used in contexts other
than a Web browser. Netscape created server-side JavaScript to be programmed as a CGI
language, such as Python or Perl, but this book will address JavaScript as it is most com-
monly used—running on the client side, your browser.

1.2 What JavaScript Is Not
JavaScript is not Java. “Java is to JavaScript what Car is to Carpet”2 Well, that quote
might be a little extreme, but suggests that these are two very different languages.
Java was developed at Sun Microsystems. JavaScript was developed at Netscape. Java
applications can be independent of a Web page, whereas JavaScript programs are embed-
ded in a Web page and must be run in a browser window.3 Java is a strongly typed lan-
guage with strict guidelines, whereas JavaScript is loosely typed and flexible. Java data

Figure 1.1 A dynamic Web page using JavaScript to give it life. For example, if the
user rolls the mouse over any of the text after the arrows, the text will become
underscored links for navigation.

2. From a discussion group on Usenet, also p. 4 Beginning JavaScript with DOM Scripting and Ajax by Christian
Heilmann, APRESS, 2006.

1.3 What JavaScript Is Used For 3

types must be declared. JavaScript types such as variables, parameters, and function
return types do not have to be declared. Java programs are compiled. JavaScript pro-
grams are interpreted by a JavaScript engine that lives in the browser.

JavaScript is not HTML, but JavaScript code can be embedded in an HTML docu-
ment and is contained within HTML tags. JavaScript has its own syntax rules and
expects statements to be written in a certain way. JavaScript doesn’t understand
HTML, but it can contain HTML content within its statements. All of this will become
clear as we proceed.

JavaScript is not used to read or write the files on client machines with the exception
of writing to cookies (see Chapter 16, “Cookies”). It does not let you write to or store
files on the server. It does not open or close windows already opened by other applica-
tions and it cannot read from an opened Web page that came from another server.

JavaScript is object based but not strictly object oriented because it does not support
the traditional mechanism for inheritance and classes found in object-oriented program-
ming languages, such as Java and C++. The terms private, protected, and public do not
apply to JavaScript methods as with Java and C++.

JavaScript is not the only language that can be embedded in an application. VBScript,
for example, developed by Microsoft, is similar to JavaScript, but is embedded in Micro-
soft’s Internet Explorer.

1.3 What JavaScript Is Used For

JavaScript programs are used to detect and react to user-initiated events, such as a
mouse going over a link or graphic. They can improve a Web site with navigational
aids, scrolling messages and rollovers, dialog boxes, dynamic images, and so forth.
JavaScript lets you control the appearance of the page as the document is being parsed.
Without any network transmission, it lets you validate what the user has entered into
a form before submitting the form to the server. It can test to see if the user has plug-
ins and send the user to another site to get the plug-ins if needed. It has string func-
tions and supports regular expressions to check for valid e-mail addresses, Social
Security numbers, credit card data, and the like. JavaScript serves as a programming
language. Its core language describes such basic constructs as variables and data types,
control loops, if/else statements, switch statements, functions, and objects.4 It is used
for arithmetic calculations, manipulates the date and time, and works with arrays,
strings, and objects. It handles user-initiated events, sets timers, and changes content
and style on the fly. JavaScript also reads and writes cookie values, and dynamically
creates HTML based on the cookie value.

3. The JavaScript interpreter is normally embedded in a Web browser, but is not restricted to the browser.
Servers and other applications can also use the JavaScript interpreter.

4. The latest version of the core JavaScript language is JavaScript 1.8.1, supported by Mozilla and Microsoft
Internet Explorer.

4 Chapter 1 • Introduction to JavaScript

1.4 JavaScript and Its Place in a Web Page

1.4.1 Analysis of the Diagram

The Players. The players in Figure 1.2 are the applications involved in the life cycle
of a Web page:

1. A browser (Firefox, Internet Explorer, Safari, Opera). This is where JavaScript
lives!

2. A network (HTTP).
3. A server (Apache, Windows IIS, Zeus).
4. A server module (PHP, ASP.NET, ColdFusion, Java servlet).
5. External files and/or a database (MySQL, Oracle, Sybase).

The Steps. Figure 1.2 illustrates the life cycle of a Web page from when the client
makes a request until it gets a response.

1. On the left hand side of the diagram, we see the client, or browser where the
request is made. The user makes a request for a Web site by typing the address

Figure 1.2 The life cycle of a typical Web page.

Server

PHP
ASP

HTTP

Perl
Python

Client
JavaScript
HTML/XML

Web page displayed here

http://website.page.html

Database
MySQL
Oracle
Sybase

Network

CGI

Web page is fetched by the Server

<html>
 <head>
 <title>See Me!</title>
 </head>
 <script type="text/JavaScript"
 src="file.js">
 </script>
 <link rel=stylesheet
 href=styling.css

 ... continues ...

http://website.page.html

1.5 What Is Ajax? 5

of the Web site in the browser’s URL location box. The “request” is transmitted
to the server via Hypertext Transfer Protocol (HTTP). The Web server on the
other side accepts that request. If the request is for an HTML file, the Web
server responds by simply returning the file to the client’s browser. The browser
will then render the HTML tags, format the page for display, and wait for
another request. If the page contains JavaScript tags, the JavaScript interpreter
will handle that code based on a user-initiated event such as clicking a button,
rolling a mouse over a link or image, or submitting a form. It is with JavaScript
that the page becomes interactive. JavaScript detects whatever is happening on
the page and responds. It handles fillout forms, feedback, animation, slide-
shows, and multimedia. It responds to a key press, a mouse moving over an
image, or a user submitting a form. It can read cookies and validate data. It can
dynamically change a cell in an HTML table, change the text in a paragraph, or
add a new bullet item to a list. But it doesn’t do everything. It cannot close a
window it didn’t open, query a database, update the value in a file upload field,
or write to files on a server. After the JavaScript interpreter has completed its
tasks, and the page has been fully rendered, another request can be made to the
server. Going back and forth between the browser and the server is known as
the Request/Response loop, the basis of how the Web works.

2. The cloud between the client side and the server side represents the network.
This can be a very large network such as the Internet consisting of millions
upon millions of computers, an intranet within an organization, or a wireless
network on a personal desktop computer or handheld device. The user doesn’t
care how big or small the network is—it is totally transparent. The protocol
used to transfer documents to and from the server is called HTTP.

3. The server side includes an HTTP Web server such as Apache, Microsoft’s IIS,
or lighttpd. Web servers are generic programs capable of accepting Web-based
requests and providing the response to them. In most cases, this response is
simply retrieving the file from server’s local file system. With dynamic Web
sites, which require processing beyond the capabilities of JavaScript, such as
processing form information, sending e-mail, starting a session, or connecting
to a database, Web servers turn over the request for a specific file to an appro-
priate helper application. Web servers, such as Apache and Internet Informa-
tion Service (IIS) have a list of helper applications that process any specific
language. The helper application could be an external program, such as a
CGI/Perl script, or one built right into the server, such as ColdFusion, ASP.NET,
or a PHP script. For example, if the Web server sees a request for a PHP file, it
looks up what helper application is assigned to process PHP requests, turns
over the request to the PHP module, and waits until it gets the result back.

1.5 What Is Ajax?

Ajax stands for Asnychronous JavasScript and XML, a term that was coined by Jesse
James Garrett in 2005. Ajax is not new. It’s been around since 1996, and is a technique

6 Chapter 1 • Introduction to JavaScript

used to create fast interactivity without having to wait for a response from the server. As
shown in our Web cycle example in Figure 1.2, the browser sends a request to the server
and waits for a response, often with a little wheel-shaped icon circling around in the
location bar reminding you that the page is loading. As you wait, the browser sits with
you and waits, and after each subsequent request, you must wait for the entire page to
reload to get the contents of the new page. Ajax lets you send data back and forth
between the browser and server without waiting for the whole page to reload. Only parts
of the page that change are replaced. Several requests can go out while you are scrolling,
zooming in and out, filling out a form, and so on, as those other parts are loaded in the
background. Because this interactivity is asnychronous, feedback is immediate with no
long waiting times between requests. Some examples of Ajax applications are Ajax Stock
Qutos Ticker (SentoSoft LTD), Flickr for photo storage and display, Gmail, Google Sug-
gest, and perhaps the best example, Google Maps at maps.google.com (see Figure 1.3).

t

Figure 1.3 Google uses Ajax for interactivity. © 2010 Google.

1.6 What JavaScript Looks Like 7

When you use this Web page, you have complete and fast interactivity. You can zoom in,
zoom out, move around the map, get directions from one point to another, view the loca-
tion’s terrain, see traffic, view a satellite picture, and so on. In Chapter 18 we discuss how
this technique works, but for now think of it as JavaScript on steroids.

1.6 What JavaScript Looks Like

Example 1.1 demonstrates a small JavaScript program. The Web page contains a simple
HTML table cell with a scrolling message (see Figure 1.4). Without JavaScript the mes-
sage would be static, but with JavaScript, the message will continue to scroll across the
screen, giving life to an otherwise dead page. This example will be explained in detail
later, but for now it is here to show you what a JavaScript program looks like. Notice
that the <script></script> tags have been highlighted. Between those tags you will see
JavaScript code that produces the scrolling effect in the table cell. Within a short time,
you will be able to read and write this type of script.

EXAMPLE 1.1

<html>
<head><title>Dynamic Page</title>

<script type="text/javascript">
// This is JavaScript. Be patient. You will be writing
// better programs than this in no time.
var message="Learning JavaScript will give your Web

page life!";
message += " Are you ready to learn? ";
var space="...";
var position=0;
function scroller(){

var newtext = message.substring(position,message.length)+
space + message.substring(0,position);
var td = document.getElementById("tabledata");
td.firstChild.nodeValue = newtext;
position++;
if (position > message.length){position=0;}
window.setTimeout(scroller,200);

}
</script>

</head>
<body bgColor="darkgreen" onload="scroller();">

<table border="1">
<tr>

<td id="tabledata" bgcolor="white">message goes here</td>
</tr>

</table>
</body>

</html>

8 Chapter 1 • Introduction to JavaScript

1.7 JavaScript and Its Role in Web
Development

When you start learning JavaScript, JavaScript code will be embedded directly in the
content of an HTML page. Once we have covered the core programming constructs, you
will see how a document is structured by using the document object model (DOM), and
how JavaScript can get access to every element of your page. Finally you will be intro-
duced to cascading style sheets (CSS), a technology that allows you to design your page
with a stylized presentation. The combination of HTML, CSS, and JavaScript will allow
you to produce a structured, stylized, interactive Web page. As your knowledge grows,
so will your Web page, until it becomes necessary to create more pages and link them
together. And then you still have to be sure your visitors are having a pleasant experi-
ence, no matter what browser they are using, at the same time trying to manage the site
behind the scenes. To keep all of this in perspective, Web designers have determined that
there are really three fundamental parts to a Web page: the content, the way the content
is presented, and the behavior of that content.

1.7.1 The Three Layers

When a Web page is designed on the client (browser) side, it might start out as a sim-
ple HTML static page. Later the designer might want to add style to the content to
give the viewer a more visually attractive layout. Last, to liven things up, JavaScript
code is added to give the viewer the ability to interact with the page, make the page
do something. A complete Web page, then, can be visualized as three separate layers:
the content or structural layer, the style or presentation layer, and the behavior layer
(see Figure 1.5). Each of these layers requires careful planning and skill. Designers
are not necessarily programmers and vice versa. Separating the layers allows the
designer to concentrate on the part he or she is good at, while the programmer can
tweak the code in the JavaScript application without messing up the design. Of
course, there is often a blurred line between these layers but the idea of separating
content structure and style from behavior lends to easier maintenance, less repeti-
tion, and hopefully less debugging.

Figure 1.4 Scrolling text with JavaScript (output of Example 1.1).

1.7 JavaScript and Its Role in Web Development 9

Content or Structure. In Web development, HTML/XML markup makes up the
content layer, and it also structures the Web document. The content layer is what a
viewer sees when he or she comes to your Web page. Content can consist of text or
images and include the links and anchors a viewer uses to navigate around your Web
site. Because HTML/XML elements are used to create the structural content of your
page, misusing those elements might not seem relevant for a quick visual fix, but might
be very relevant when applying CSS and JavaScript. For example, using headings out of
order to force a change in font size, such H1, H3, and then H2 tags, in that order is
invalid HTML. These tags are intended to define the structure of the document on the
display. The browser views the Web page as a tree-like structure, a model consisting of
objects, where each HTML element (e.g., HEAD, BODY, H1) is an object in the model.
This document tree, the DOM, defines the hierarchical logic of your document, which
becomes an important tool for creating dynamic content. Because the structure is so
important, valid markup should be a priority before going to the next layer: the CSS pre-
sentation layer. See Section 1.12 for markup validation tools.

Style or Presentation. The style or presentation layer is how the document will
appear and on what media types. This layer is defined by CSS. Prior to CSS, nearly all of
the presentation was contained within the HTML markup; all font colors, background
styles, element positions and alignments, borders, and so on, had to be explicitly, often
repeatedly, included in the HTML markup for the page. If, for example, you decided you
wanted your page to have a blue font for all headings, then you would have to change
each heading in the document. CSS changed all that. It gave designers the ability to
move the presentational content into separate style sheets, resulting in much simpler
HTML markup. Now you could change the font color in one place to affect all of the
pages in your site. Although styles can be embedded within a document and give you

Figure 1.5 Three layers that make up a Web page.

HTML Content

JavaScript Behavior

CSS Styles

<input type = "text"
 id = "email"
 onChange="checkEmail()" />

body { background-color:silver; }
p.first { font-family:"sans serif"; }
h1, h2, h3 { color: darkblue; }

<html>
 <head>
 <title>HTML Page</title>
 </head>
 <body>
 <h3>Hello, world!</h3>
 </body>
</html>

10 Chapter 1 • Introduction to JavaScript

control over selected elements, it is more likely they will be found in separate .css files
to let you produce sweeping changes over an entire document. With one CSS file you
can control the style of one or thousands of documents. External style sheets are cached,
reduce the amount of code, and let you modify an entire site without mangling the
HTML content pages. And CSS works with JavaScript and the DOM to create a dynamic
presentation, often known as DHTML.

Behavior. The behavior layer is the layer of a Web page that makes the page perform
some action. For most Web pages, the first level of behavior is JavaScript. JavaScript
allows you to dynamically control the elements of the Web page based on user interac-
tion such as an individual keystroke, moving a mouse, submitting form input, and so
on. JavaScript also makes it easy to perform style changes on the fly. Although tradition-
ally CSS and JavaScript are separate layers, now with the DOM, they work so closely
together that the lines are somewhat blurred. JavaScript programs are often stored in
external files, which are then put in libraries where other programmers can share them.
See http://JavaScriptlibraries.com/.

Unobtrusive JavaScript. When you hear this phrase, “Make sure you use unobtru-
sive JavaScript,” and you will hear or read about it once you have started really using
JavaScript, it refers to the three layers we just discussed. It is a technique to completely
separate JavaScript from the other two layers of Web development by putting JavaScript
code in its own file and leaving the HTML/XHTML/XML and CSS in their own respec-
tive files. In the following chapters we have included most of the JavaScript examples in
the same the HTML document because the files are small and serve to teach a particular
aspect of the language. So for the time being, we will be obtrusive.

Once you have learned the JavaScript basics and start working on larger applications,
you might want to understand this more fully. For the seven rules of unobtrusive Java-
Script, go to http://icant.co.uk/articles/seven-rules-of-unobtrusive-JavaScript/.

1.8 JavaScript and Events

HTML is static. It structures and defines how the elements of a Web page will appear in
the browser; for example, it is used to create buttons, tables, text boxes, and fillout
forms, but it cannot by itself react to user input. JavaScript is not static; it is dynamic. It
reacts asynchronously to events triggered by a user. For example, when a user fills out
a form; presses a button, link, or image; or moves his or her mouse over a link, JavaScript
can respond to the event and interact dynamically with the user. JavaScript can examine
user input and validate it before sending it off to a server, or cause a new image to appear
if a mouse moves over a link or the user presses a button, reposition objects on the page,
even add, delete, or modify the HTML elements on the fly. Events are discussed in detail
in Chapter 13, “Handling Events,” but you should be made aware of them right at the
beginning because they are inherently part of what JavaScript does, and there will be
many examples throughout this text that make use of them.

http://JavaScriptlibraries.com/
http://icant.co.uk/articles/seven-rules-of-unobtrusive-JavaScript/

1.8 JavaScript and Events 11

The events, in their simplest form, are tied to HTML. In the following example, an
HTML form is created with the <form> tag and its attributes. Along with the type and
value attributes, the JavaScript onClick event handler is just another attribute of the
HTML <form> tag. The type of input device is called a button and the value assigned to
the button is “Pinch me”. When the user clicks the button in the browser window, a Java-
Script event, called click, will be triggered. The onClick event handler is assigned a value
that is the command that will be executed after the button has been clicked. In our
example, it will result in an alert box popping up in its own little window, displaying
“OUCH!!”. See the output of Example 1.2 in Figures 1.6 and 1.7.

EXAMPLE 1.2

<html>
<head><title>Event</title></head>
<body>

1 <form>
2 <input type ="button"
3 value = "Pinch me"
4 onClick="alert('OUCH!!')" />
5 </form>

</body>
</html>

Figure 1.6 User initiates a click event when he or she clicks the mouse on the button.

Figure 1.7 The onClick event handler is triggered when the button labeled “Pinch me” is
pressed.

12 Chapter 1 • Introduction to JavaScript

Some of the events that JavaScript can handle are listed in Table 1.1.

1.9 Standardizing JavaScript and the W3C

ECMAScript, which is more commonly known by the name JavaScript™, is an essen-
tial component of every Web browser and the ECMAScript standard is one of the core
standards that enable the existence of interoperable Web applications on the World
Wide Web.

—Ema International

During the 1990s Microsoft Internet Explorer and Netscape were competing for indus-
try dominance in the browser market. They rapidly added new enhancements and pro-
prietary features to their browsers, creating incompatibilities that made it difficult to
view a Web site the same way in the two browsers. These times were popularly called
the Browser Wars, ending with Microsoft’s Internet Explorer browser winning. For now
there seems to be peace among modern browsers, due to the fact that the World Wide
Web Consortium (W3C) set some standards. To be a respectable browser, compliance
with the standards is expected.

To guarantee that there is one standard version of JavaScript available to companies
producing Web pages, European Computer Manufacturers Association (ECMA)
worked with Netscape to provide an international standardization of JavaScript called
ECMAScript. ECMAScript is based on core JavaScript and behaves the same way in all

Table 1.1 JavaScript Event Handlers

Event Handler What Caused It

onAbort Image loading was interrupted.

onBlur The user moved away from a form element.

onChange The user changed a value in a form element.

onClick The user clicked a button-like form element.

onError The program had an error when loading an image.

onFocus The user activated a form element.

onLoad The document finished loading.

onMouseOut The mouse moved away from an object.

onMouseOver The mouse moved over an object.

onSubmit The user submitted a form.

onUnLoad The user left the window or frame.

1.9 Standardizing JavaScript and the W3C 13

applications that support the standard. The first version of the ECMA standard is doc-
umented in the ECMA-262 specification. Both JavaScript (Mozilla) and JScript
(Microsoft IE) are really just a superset of ECMAScript and strive to be compatible
with ECMAScript even though they have some of their own additions.5 After ECMA-
Script was released, W3C began work on a standardized DOM, known as DOM Level
1, and recommended in late 1998. DOM Level 2 was published in late 2000. The cur-
rent release of the DOM specification was published in April 2004. By 2005, large parts
of W3C DOM were well supported by common ECMAScript-enabled browsers,
including Microsoft Internet Explorer version 6 (2001), Gecko-based browsers (like
Mozilla Firefox, and Camino), Konqueror, Opera, and Safari. In fact 95% of all modern
browsers support the DOM specifications.

For the latest information on the latest ECMA-252 edition 5, see http://www.ecmas-
cript.org/.

1.9.1 JavaScript Objects

Everything you do in JavaScript involves objects, just as everything you do in real life
involves objects. JavaScript sees a Web page as many different objects, such as the
browser object, the document object, and each element of the document as an object;
for example, forms, images, and links are also objects. In fact every HTML element in
the page can be viewed as an object. HTML H1, P, TD, FORM, and HREF elements are
all examples of objects. JavaScript has a set of its own core objects that allow you to
manipulate strings, numbers, functions, dates, and so on, and JavaScript allows you to
create your own objects. When you see a line such as:

document.write("Hello, world");

the current page is the document object. After the object, there is a dot that separates
the object from the write method. A method is a function that lets the object do some-
thing. The method is always followed by a set of parentheses that might or might not
contain data. In this example the parentheses contain the string “Hello, world” telling
JavaScript to write this string in the document window, your browser. In Chapter 8,
“Objects,” we discuss objects in detail. Because everything in JavaScript is viewed as an
object, it is important to understand the concept from the start.

1.9.2 The Document Object Model

What is the DOM? A basic Web document consists of HTML/XML markup. The
browser’s job is to turn that markup into a Web page so that you can see text, input
devices, pictures, tables, and so on in your browser window. It is also the browser’s job
to store its interpretation of the HTML page as a model, called the Document Object
Model. The model is similar to the structure of a family tree, consisting of parents, chil-
dren, siblings, and so on. Each element of the tree is related to another element in the

5. ECMAScript 5th edition adds some new features and is now available for review and testing (2009).

http://www.ecmascript.org/
http://www.ecmascript.org/

14 Chapter 1 • Introduction to JavaScript

tree. These elements are referred to as nodes, with the root parent node of the tree at the
top. With this upside down tree model every element of the document becomes an
object accessible by JavaScript (and other applications), thus giving the JavaScript pro-
grammer control over an entire Web page; that is, the ability to navigate, create, add,
modify, or delete the elements and their content dynamically.

As mentioned earlier, the DOM, Level 16 (see http://www.w3.org/DOM), a standard
application programming interface (API) developed by the W3C is implemented by all
modern browsers, including Microsoft Internet Explorer version 6 (2001), Gecko-based
browsers (like Mozilla Firefox and Camino), Konqueror, Opera, and Safari.

After you learn the fundamentals of JavaScript, you will see how to create and manip-
ulate objects, how to use the core objects, and then how to use JavaScript to control
every part of your Web page with the DOM. With CSS, the DOM, and JavaScript you can
reposition elements on a page dynamically, create animation, create scrolling marquees,
and change the style of the page with fancy fonts and colors based on user input or user-
initiated events, such as rolling the mouse over an image or link, clicking an icon, submit-
ting a fillout form, or just opening up or closing a new window. Figure 1.8 demonstrates

6. DOM Levels 2 and 3 have also been developed by W3C, but DOM Level 1 is supported by most browsers.

Figure 1.8 http://www.w3.org/TR/DOM-Level-2-Core/introduction.html.

http://www.w3.org/DOM
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html

1.10 What Browser? 15

an HTML table and how it is represented as a tree where each element is related to its
parent and siblings as described by the W3C shown at http://www.w3.org/DOM.

1.10 What Browser?

When a user receives a page that includes JavaScript, the script is sent to the JavaScript
interpreter, which executes the script. Because each browser has its own interpreter,
there are often differences in how the code will be executed. And as the competing com-
panies improve and modify their browsers, new inconsistencies may occur. There are
not only different types of browsers to cause the incompatibilities but also different ver-
sions of the same browser. Because modern browsers conform to the W3C standards,
these inconsistencies tend to be less of a distraction than they were in the past. Popular
browsers today are shown in Table 1.2.

The little script in Example 1.3 should tell you what browser you are using. Even
though the application name might display Netscape for Firefox and Microsoft Internet
Explorer for Opera, if you examine the user agent, you will be able find Firefox or Opera
as part of the output string (see Figure 1.9). Programs that determine the browser type
are called browser sniffers. We have a complete example in Chapter 10, “It’s the BOM!
Browser Objects.”

Table 1.2 Modern Browsers

Browser Web Site

Internet Explorer microsoft.com/windows/ie

Firefox mozilla.org/products/firefox

Safari apple.com/safari

Opera opera.com

Google Chrome google.com/chrome

Konqueror konqueror.org/

EXAMPLE 1.3

<script type="text/javascript">
alert("User appName is "+ navigator.appName +

"\nUser agent is "+ navigator.userAgent);
</script>

http://www.w3.org/DOM

16 Chapter 1 • Introduction to JavaScript

1.10.1 Versions of JavaScript

JavaScript has a history. Invented by Netscape, the first version was JavaScript 1.0. It was
new and buggy and has long since been replaced by much cleaner versions. Microsoft
has a scripting language comparable to JavaScript called JScript. Table 1.3 lists versions
of both JavaScript and JScript. For a discussion of JavaScript versions and development
see http://ejohn.org/blog/versions-of-JavaScript/.

Figure 1.9 Output from Example 1.3.

Table 1.3 JavaScript Versions

JavaScript or
JScript Version Browsers Supported

JavaScript 1.0 1996 Netscape Navigator 2.0, Internet Explorer 3.0

JavaScript 1.1 1996 Netscape Navigator 3.0, Internet Explorer 4.0

JavaScript 1.2 1997 Netscape Navigator 4.0–4.05, Internet Explorer 4.0

http://ejohn.org/blog/versions-of-JavaScript/

1.10 What Browser? 17

JavaScript 1.3 1998 ECMA-232, Netscape Navigator 4.06–4.7x, Internet Explorer 5.0

JavaScript 1.5 2000 ECMA-232, Netscape Navigator 6.0+, Mozilla Firefox, Internet
Explorer 5.5+, JScript 5.5, 5.6, 5.7, 6

JavaScript 1.6 2006 Mozilla Firefox, Safari

JavaScript 1.7 2006 Mozilla Firefox, Safari, Google Chrome

JavaScript 1.8 2008 Mozilla Firefox

JavaScript is supported by Firefox, Explorer, Opera, and all newer versions of these browsers. In addition,
HotJava 3 supports JavaScript, as do iCab for the Mac, WebTV, OmniWeb for OS X, QNX Voyager and
Konqueror for the Linux KDE environment. NetBox for TV, AWeb and Voyager 3 for Amiga, and SEGA
Dreamcast and ANT Fresco on RISC OS also support JavaScript.

Figure 1.10 JavaScript2 and the Web, an informative paper by Brendan Eich.

Table 1.3 JavaScript Versions (continued)

JavaScript or
JScript Version Browsers Supported

18 Chapter 1 • Introduction to JavaScript

So where is JavaScript now? As of December 2009, the ECMA-262 Standard is in its 5th
edition. JavaScript is a dialect of ECMAScript, but JavaScript 1.8 is comparable to
ECMAScript, edition 3 and is currently the most widely used version (JavaScript 1.9 is
available for download). To understand some of the proposals for a JavaScript2 version
(ECMAScript Edition 4), Brian Eich, the creator of JavaScript, wrote an interesting arti-
cle a few years ago that he published on the Web. If nothing else, it tells you some of the
pros and cons of the current state of the JavaScript language and the obstacles faced in
trying to change it. See Figure 1.10.

1.10.2 Does Your Browser Follow the Standard?

Modern browsers are using versions of JavaScript 1.5 or above, which generally follow
the standards set by the W3C. The snippet of code in Example 1.4 tests to see if you are
using a modern version of JavaScript that follows the standard DOM (see Figure 1.11).
Both the getElementById and createTextNode are part of the W3C standard, which sup-
ports the DOM.

1.10.3 Is JavaScript Enabled on Your Browser?

To see if JavaScript is enabled on your browser, you can check the options menu of
Firefox by going to the Tools menu/Options/Content. If using Apple’s Safari browser,
go to Safari menu/Preferences/Security and with Internet Explorer, go to the Tools
menu/Internet Options/Security/Custom Level and enable Active scripting (see Figure
1.12). If using Opera go to the Opera menu/Preferences/Advanced/Content and click
Enable JavaScript. An easy way to test if your browser has JavaScript enabled is to go
to the Web site http://www.mistered.us/test/alert.shtml and follow directions (see Fig-
ure 1.13).

EXAMPLE 1.4

<script type="text/javascript">
if (document.getElementById && document.createTextNode){

alert("DOM supported by " + navigator.appName);
}

</script>

Figure 1.11 Internet Explorer supports the standard.

http://www.mistered.us/test/alert.shtml

1.10 What Browser? 19

Figure 1.12 Enabling JavaScript on Microsoft Internet Explorer.

Figure 1.13 Is your browser JavaScript enabled?

20 Chapter 1 • Introduction to JavaScript

1.11 Where to Put JavaScript

Before learning JavaScript, you should be familiar with HTML and how to create an
HTML document. This doesn’t mean that you have to be an expert, but you should be
familiar with the structure of HTML documents and how the tags are used to display
various kinds of content on your browser. Once you have a static HTML document, then
adding basic JavaScript statements is quite easy. (Go to http://www.w3schools.com for an
excellent HTML tutorial.) In this text we have devoted a separate chapter to CSS. CSS
allows you to control the style and layout of your Web page by changing fonts, colors,
backgrounds, margins, and so on in a single file. With HTML, CSS, and JavaScript you
can create a Web site with structure, style, and action.

Client-side JavaScript programs are embedded in an HTML document between
HTML head tags <head> and </head> or between the body tags <body> and </body>.
Many developers prefer to put JavaScript code within the <head> tags, and at times, as
you will see later, it is the best place to store function definitions and objects. If you want
text displayed at a specific spot in the document, you might want to place the JavaScript
code within the <body> tags (as shown in Example 1.5). Or you might have multiple
scripts within a page, and place the JavaScript code within both the <head> and <body>
tags. In either case, a JavaScript program starts with a <script> tag, and ends with a
</script> tag. And if the JavaScript code is going to be long and involved, or may be
shared by multiple pages, it should be placed in an external file (text file ending in .js)
and loaded into the page. In fact, once you start developing Web pages with JavasScript,
it is customary to separate the HTML/CSS content from the programming logic (Java-
Script) by creating separate files for each entity.

When a document is sent to the browser, it reads each line of HTML code from top to
bottom, and processes and displays it. As JavaScript code is encountered, it is read and exe-
cuted by the JavaScript interpreter until it is finished, and then the parsing and rendering
of the HTML continues until the end of the document is reached.

EXAMPLE 1.5

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

2 <html>
3 <head><title>First JavaScript Sample</title></head>
4 <body bgcolor="yellow" text="blue">
5 <script type="text/javascript">

document.write("<h2>Welcome to the JavaScript World!</h2>");
6 </script>
7 <big>This is just plain old HTML stuff.</big>
8 </body>
9 </html>

http://www.w3schools.com

1.11 Where to Put JavaScript 21

EXPLANATION
1 The doctype declaration tells the Web browser what version of the markup lan-

guage will be used for this page and should be the very first thing in an HTML
document, and must be included in an XHTML document.The doctype declara-
tion refers to a Document Type Definition (DTD). The DTD specifies the rules for
the markup language, so that the browsers can render the content correctly. This
document is declared to be HTML 4.01 Strict. HTML 4.01 Strict is a version of
HTML 4.01 that emphasizes structure over presentation. Deprecated elements
and attributes, frames, and link targets are not allowed in HTML 4 Strict. In most
of the examples in this book, this declaration will be omitted just to save space,
but when you create your own documents, you should include the doctype dec-
laration.

2 This is the starting tag for an HTML document.

3 This is the HTML <head> tag. The <head> tags contain all the elements that don’t be-
long in the body of the document, such as the <title> tags, as well as JavaScript tags.

4 The <body> tag defines the background color and text color for the document.

5 This <script> tag is the starting HTML tag for the JavaScript script, which consists
of a mix of textual content and JavaScript instructions. JavaScript instructions are
placed between this tag and the closing </script> tag. JavaScript understands Java-
Script instructions, not HTML.
 The JavaScript writeln method is called for the document. The string enclosed
in parentheses is passed to the JavaScript interpreter. If the JavaScript interpreter
encounters HTML content, it sends that content to the HTML renderer and it is
printed into the document on the browser. The normal HTML parsing and ren-
dering resumes after the closing JavaScript tag is reached.

6 This is the ending JavaScript tag. The output is shown in Figure 1.14.

7 HTML tags and text continue in the body of the document.

8 The body of the document ends here.

9 This is the ending tag for the HTML document.

Figure 1.14 Example 1.5 output: JavaScript has been inserted in a document.

22 Chapter 1 • Introduction to JavaScript

1.11.1 JavaScript from External Files

 When scripts are long or need to be shared by other pages, they are usually placed in
external files, separate from the HTML page. Keeping the JavaScript separate (unobtru-
sive JavaScript) from the HTML or CSS files is important when developing a Web site.
It enables you to apply one set of functions to every page of the site, so that when you
need to make a change, you can do it in one document rather than going through each
individual page to apply the change. A JavaScript external file contains just plain Java-
Script code and is saved as a .js file. The .js file is linked to the Web page by including it
between the <head> tags of the HTML document and within its own <script> tags. The
external JavaScript file is assigned to the src attribute of the <script> tag in the HTML
file. The external file name includes the full URL if the script is on another server, direc-
tory path or just the script name if in the local directory. You can include more than one
.js script in a file.

<script type="text/javascript"
src="http://servername/JavaScriptfile.js">

</script>

The following examples, although very small, give you the idea of how external files are
used. The welcome.js script contains a JavaScript function (see Chapter 7, “Functions”).

EXAMPLE 1.6

// The external file called "welcome.js"
function welcome(){

alert("Welcome to JavaScript!");
}

EXAMPLE 1.7

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>External .js File</title>
1 <script type="text/javascript" src="welcome.js">
2 </script>

</head>
<body bgColor="lavender">

We are working with an external file.

3 <input type="button" onClick="welcome()" value="Welcome Me!" />

</body>
</html>

http://servername/JavaScriptfile.js

1.11 Where to Put JavaScript 23

As you can see in Figure 1.16, Pearson Education uses many external JavaScript files
(.js) files to produce their Web site.

EXPLANATION
1 The JavaScript <script> tag’s src attribute is assigned the name of a file (name must

end in .js) that contains JavaScript code. The file’s name is welcome.js and it con-
tains a JavaScript program of its own containing a simple JavaScript function that
will be called when the user clicks the “Welcome Me!” button. See Figure 1.15.

2 The JavaScript program ends here.

3 This is an HTML button input device. When the user clicks the button, a Java-
Script function called welcome() will be called. It is defined in the external file,
welcome.js.

Figure 1.15 After clicking the “Welcome Me!” button, a function from the external
.js file is called.

Figure 1.16 Viewing the source code for a Web site using external JavaScript files.

24 Chapter 1 • Introduction to JavaScript

1.12 Validating Your Markup

Because your JavaScript code does not stand alone but is integrated with HTML/XHTML
and CSS, it is important to find validation tools to verify that your markup is correct,
especially when conforming to the DOM and W3C standards. There are a number of free
tools on the Web to help you make sure your markup is valid.

1.12.1 The W3C Validation Tool

The W3C validation tool is shown in Figure 1.17. This tool allows you to validate by
URI, file upload, or by direct input. This validator checks the markup validity of Web
documents in HTML, XHTML, SMIL, MathML, and so on, but to evaluate specific con-
tent such as RSS/Atom feeds or CSS stylesheets, MobileOK content, or to find broken
links, there are other validators and tools available.

Figure 1.17 The W3C markup validation of an HTML page.

1.12 Validating Your Markup 25

1.12.2 The Validome Validation Tool

The validator at www.validome.org is another excellent tool for validating an online page
or an XHTML document. Just go to the Validome Web page and select the URL or
Upload option to get a file from your hard drive. Once you have selected a file, just click
Validate (see Figure 1.18).

Figure 1.18 The Validome validation tool.

www.validome.org

26 Chapter 1 • Introduction to JavaScript

1.13 What You Should Know

This first chapter introduces you to the JavaScript programming language, its history,
why it is important in Web development, and how it fits into a Web page. Before going
further, you should know:

1. The difference between a compiled and scripting language.
2. Where JavaScript is defined, the client or server?
3. What JavaScript is used for.
4. How JavaScript makes a page interactive.
5. Where JavaScript programs are stored.
6. What a JavaScript program looks like.
7. What Ajax stands for and an example of how it is used.
8. What W3C stands for.
9. Why the DOM was standardized.

10. What is meant by unobtrusive JavaScript.
11. Where on the Web to find a good HTML tutorial.

1.13 What You Should Know 27

1. Describe the life cycle of a Web page.

2. What browser are you using? What version? How do you know?

3. What is an example of a JavaScript event handler? Copy Example 1.2 into your
editor and run the program in your browser.

4. What is the difference between JavaScript and JScript?

5. Where do JavaScript tags go in an HTML page? Does JavaScript understand
HTML?

6. What is the DOM?

7. Define the three layers of a Web page.

8. How do you set up JavaScript in an external file?

9. Write a JavaScript program that prints a welcome message in a large blue font.
Check to see if JavaScript is enabled. Use comments to explain what you are
doing.

Exercises

Exercises

This page intentionally left blank

29

chapter

2
Script Setup

2.1 The HTML Document and JavaScript

Unlike Perl and Python scripts, JavaScript scripts are not stand-alone programs. They
are run in the context of an HTML document. When programming on the client side,
the first step will be to create an HTML document in your favorite text editor, such as
UNIX vi or emacs, or Windows Notepad,1 WordPad, or TextPad (see Figure 2.1). There
are a number of popular integrated development environments (IDEs) such as NetBeans,
Komodo Edit, and Eclipse, with highlighting, validation, debugging features, and so on
you might prefer to use. A list of recommended IDEs can be found at http://JavaScript-
ide.software.informer.com/downloads/. Because the file you create is an HTML document,
its name must include either an .html or .htm extension. JavaScript programs can be
embedded within the HTML document between the <script> and </script> tags.
Figures 2.1 and 2.2 show an HTML file containing JavaScript code.

1. If you are using Windows Notepad, be sure to turn off word wrap (under the Format menu) to avoid
errors in your program.

Figure 2.1 JavaScript in TextPad editor.

http://JavaScriptide.software.informer.com/downloads/
http://JavaScriptide.software.informer.com/downloads/

30 Chapter 2 • Script Setup

2.1.1 Script Execution

Because a JavaScript program is embedded in an HTML document, you will execute it
in your browser window. If you are using an IDE, the browser is part of the integrated
environment, but either way, you can execute a JavaScript program directly in the
browser. If using Mozilla Firefox, Opera, or Internet Explorer, follow these instructions:

Figure 2.2 JavaScript in PSPad Editor, a popular free IDE with many features.

2.1 The HTML Document and JavaScript 31

1. Go to the File menu and open the HTML file by browsing for the correct one.

2. All files in the www folder are displayed. (The .html extension on the files will
appear in the browser’s URL.)

32 Chapter 2 • Script Setup

3. The file example 2.1.html is highlighted. (The .html extension is not visible.)

2.2 Syntactical Details 33

4. Or you can type the URL (complete address) in the navigation bar of your
browser as shown here. (Note the .html extension appears in the URL.)

2.2 Syntactical Details

Rules, rules, rules. Just like English, French, or Chinese, all programming languages
have their rules. Many of the rules are similar and many have individual quirks, but to
do anything at all, you have to obey the rules, or your program simply won’t work. If
you have experience programming in other languages, you will find the JavaScript rules
and syntax quite familiar. When you write JavaScript programs, you have to deal with
HTML rules (and CSS rules), as well as JavaScript rules, because JavaScript does not
stand alone.

2.2.1 Case Sensitivity

The HTML tags in a document are not case sensitive. If you type the title tag as <title>,
<Title>, <TItle>, or any combination of upper or lowercase characters, the HTML ren-
derer will not care. But JavaScript names, such as variables, keywords, objects, func-
tions, and so on, are case sensitive. If, for example, you spell the Boolean value true with
any uppercase letters (e.g., TrUE), JavaScript will not recognize it and will produce an
error or simply ignore the JavaScript code. Although most names favor lowercase, some
JavaScript names use a combination of upper and lowercase (e.g., onClick, Math.floor,
Date.getFullYear).

2.2.2 Free Form and Reserved Words

JavaScript ignores whitespace (i.e., spaces, tabs, and newlines) if the whitespace appears
between words. For example, a function name, such as onMouseOver(), toLowerCase(),
or onClick(), cannot contain whitespace even though it consists of more than one word.

1. var name="Tom"; 1 and 2 are equivalent statements
2. var name =

"Tom";

3. onMouseOver() 3 and 4 are not the same
4. on Mouse Over()

34 Chapter 2 • Script Setup

 Whitespace is preserved when it is embedded within a string or regular expression.
For example, the whitespace in the string, “Hello there” will be preserved because
it is enclosed within double quotes. Of course, you can’t break up a word such as switch,
if, else, window, document, and so on, because it would no longer be the same word.
Because extra whitespace is ignored by the JavaScript interpreter, you are free to indent,
break lines, and organize your program so that it is easier to read and debug.

There are a number of reserved words (also called keywords) in JavaScript. Being
reserved means that keywords are special vocabulary for the JavaScript language and can-
not be used by programmers as identifiers for variables, functions and labels, and the like.
Words such as if, for, while, return, null, and typeof are examples of reserved words.
Table 2.1 gives a list of reserved words.

2.2.3 Statements and Semicolons

Just like sentences (which represent complete thoughts) in the English language, Java-
Script statements are made up of expressions. The statements are executed top down,
one statement at a time. If there are multiple statements on a line, the statements must
be separated by semicolons. Although not a rule, it is good practice to terminate all state-
ments with a semicolon to make it clear where the statement ends. Because JavaScript is
free form, as long as statements are terminated with a semicolon, the lines can be bro-
ken, contain whitespace, and so on. A statement results in some action unless the state-
ment is a null statement, in which case it does nothing.

The following two lines are both technically correct:

var name = "Ellie" <– no semicolon, valid
var name = "Ellie"; <– better

Table 2.1 Reserved Keywords

abstract boolean break byte case catch

char class const continue default delete

do double else extends false final

finally float for function goto if

implements import in instanceof int interface

long native new null package private

protected public return short static super

switch synchronized this throw throws transient

true try typeof var void volatile

while with

2.2 Syntactical Details 35

The following line is incorrect:

var name = "Ellie" document.write("Hi "+name); <– wrong, two statements

It should be:

var name = "Ellie"; document.write("Hi " + name); <– semicolon needed
to separate two
statements on the
same line

If the statements are grouped in a block of curly braces, they act as a single statement.

if (x > y) { statement; statement; } <– Statements enclosed in curly
braces act as a single
statement

2.2.4 Comments

A comment is text that describes what the program or a particular part of the program
is trying to do and is ignored by the JavaScript interpreter. Comments are used to help
you and other programmers understand, maintain, and debug scripts. JavaScript uses
two types of comments: single-line comments and block comments.

Single-line comments start with a double slash:

// This is a comment

For a block of comments, use the /* */ symbols:

/* This is a block of comments
that continues for a number of lines

*/

2.2.5 The <script> Tag

JavaScript programs must start and end with the HTML <script> and </script> tags,
respectively. Everything within these tags is considered JavaScript code, nothing else.
The script tag can be placed anywhere within an HTML document. If you want the Java-
Script code to be executed before the page is displayed, it is placed between the <head>
and </head> tags. This, for example, is where function definitions are placed (see Chap-
ter 7, “Functions”). If the script performs some action pertaining to the body of the doc-
ument, then it is placed within the <body> and </body> tags. A document can have
multiple <script> tags, each enclosing any number of JavaScript statements.

36 Chapter 2 • Script Setup

Attributes. The <script> tag also has attributes to modify the behavior of the tag. The
attributes are

• language
• type
• src

Any JavaScript-enabled browser can identify that the scripting language is JavaScript,
if the language attribute is set to JavaScript2 rather than, for example, VBScript or JScript.
You normally set the language attribute as follows:

<script language="JavaScript">

According to the W3C recommendation, the value assigned to this attribute is an
identifier for the scripting language, but because these identifiers are not standard, this
attribute has been deprecated in favor of the type attribute.

The language attribute can be assigned a version number to specify what version of
JavaScript is supported to view the page. If the browser doesn’t recognize the version,
the script will be totally ignored. You shouldn’t have to worry about this if you are using
the latest version of a particular browser, but just in case, here’s how you specify a ver-
sion number.

<script language="JavaScript1.5">
</script>

The type attribute is used to specify both the scripting language and the Internet con-
tent type. It is used mainly to validate JavaScript as part of a well-formed document and
is the preferred way to start JavaScript in all modern browsers.

<script language="JavaScript"
type="text/javascript">

</script>

FORMAT

<script>
JavaScript statements...

</script>

EXAMPLE 2.1

<script>
document.write("Hello, world!
");

</script>

2. Although common to most scripts, the language attribute has been deprecated as of HTML 4.0 in favor of
the type attribute.

2.3 Generating HTML and Printing Output 37

The src attribute is used when the JavaScript code is in an external file, the file name
ending with a .js extension. The src attribute is assigned the name of the file, which can
be prefixed with its location (e.g., a directory tree or URL).

<script type="text/javascript"
src="sample.js">

</script>

<script type="text/javascript"
src="directory/sample.js">

</script>

<script type="text/javascript"
src="http://hostname/sample.js">

</script>

2.3 Generating HTML and Printing Output

When you create a program in any language, the first thing you want to see is the output
of the program displayed on a screen. In the case of JavaScript, you’ll see your output in
the browser window. Of course, browsers use HTML to format output. Although Java-
Script doesn’t understand HTML per se, it can generate HTML output with its built-in
methods, write() and writeln().

2.3.1 Strings and String Concatenation

A string is a character or set of characters enclosed in matching quotes. Because the meth-
ods used to display text take strings as their arguments, this is a good time to talk a little
about strings. See Chapter 9, “JavaScript Core Objects,” for a more complete discussion.
All strings must be placed within a matched set of either single or double quotes; for exam-
ple:

"this is a string" or 'this is a string'

Double quotes can hide single quotes; for example:

"I don't care"

And single quotes can hide double quotes; for example:

'He cried, "Ahoy!"'

Either way, the entire string is enclosed in a set of matching quotes.
Concatenation is caused when two strings are joined together. The plus (+) sign is

used to concatenate strings; for example:

http://hostname/sample.js

38 Chapter 2 • Script Setup

"hot" + "dog" or "San Francisco" + "
"

For more information on strings, see Chapter 3, “The Building Blocks: Data Types,
Literals, and Variables.”

2.3.2 The write() and writeln() Methods

One of the most important features of client-side JavaScript is its ability to generate
pages dynamically. Data, text, and HTML itself can be written to the browser on the fly.
The write() method is a special kind of built-in JavaScript function used to output
HTML to the document as it is being parsed. When generating output with write() and
writeln(), put the text in the body of the document (rather than in the header) at the
place where you want the text to appear when the page is loaded.

Method names are followed by a set of parentheses. They are used to hold the argu-
ments. These are messages that will be sent to the methods, such as a string of text, the
output of a function, or the results of a calculation. Without arguments, the write() and
writeln() methods would have nothing to write.

JavaScript defines the current document (i.e., the HTML file that contains the script)
as a document object. (You will learn more about objects later.) For now, whenever you
refer to the document object, the object name is appended with a dot and the name of
the method that will manipulate the document object. In the following example the
write() method must be prepended with the name of the document object and a period.
The browser will display this text in the document’s window. The syntax is

document.write("Hello to you");

The writeln() method is essentially just like the write() method, except when the text
is inserted within HTML <pre> or <xmp> tags, in which case writeln() will insert a new-
line at the end of the string. The HTML <pre> tag is used to enclose preformatted text.
It results in “what you see is what you get.” All spaces and line breaks are rendered lit-
erally, in a monopitch typeface. The <xmp> tag is an obsolete HTML tag that functions
much like the <pre> tag.

EXAMPLE 2.2

<html>
<head><title>Printing Output</title></head>
<body bgcolor="yellow" text="blue">

<big>
Comparing the document.write and

document.writeln methods

<script type="text/javascript">

1 document.write("One, "); // No newline
2 document.writeln("Two, ");

2.3 Generating HTML and Printing Output 39

document.writeln("Three, ");
3 document.write("Blast off....
"); // break tag
4 //document.write("The browser you are using is " +

// navigator.userAgent + "
");
5 </script>
6 <pre>
7 <script type="text/javaScript">

/*Lines are broken due to size of this page. If you cut
and paste these programs into an editor, make sure
strings start and end with qutoes!!!*/

8 document.writeln("With the HTML <pre>
 tags, ");

document.writeln("the writeln method produces a
newline.");

document.writeln("Slam");
document.writeln("Bang");
document.writeln("Dunk!");

9 </script>
10 </pre>

</big>
</body>

</html>

EXPLANATION
1 The document.write() method does not produce a newline at the end of the string

it displays. HTML tags are sent to the HTML renderer as the lines are parsed.

2 The document.writeln() method doesn’t produce a newline either, unless it is in an
HTML <pre> tag.

3 Again, the document.write() method does not produce a newline at the end of the
string. The
 tag is added to produce the line break.

4 The document.write() method does not produce a newline. The
 tag takes
care of that. userAgent is a special navigator property that tells you about your
browser.

5 The first JavaScript program ends here.

6 The HTML <pre> tag starts a block of preformatted text; that is, text that ignores
formatting instructions and fonts.

7 This tag starts the JavaScript code.

8 When enclosed in a <pre> tag, the writeln() method will break each line it prints
with a newline; otherwise, it behaves like the write() method (i.e., you will have
to add a
 tag to get a newline).

9 This tag marks the end of the JavaScript code.

10 This tag marks the end of preformatted text. The output is shown in Figure 2.3.

EXAMPLE 2.2 (CONTINUED)

40 Chapter 2 • Script Setup

2.4 About Debugging
Have you ever tried to draw a picture or do your resume for the first time without a mis-
take either in the layout, order, type, style, or whatever? In any programming language,
it’s the same story, and JavaScript is no exception. It’s especially tricky with JavaScript
because you have to consider the HTML as well as the JavaScript code when your page
doesn’t turn out right. You might get errors on the console or get a totally blank page.
Finding errors in a script can get quite frustrating without proper debugging tools.
Before we go any further, this is a good time to get acquainted with some of the types of
errors you might encounter.

2.4.1 Types of Errors

Load or Compile Time. Load-time errors are the most common errors and are
caught by JavaScript as the script is being loaded. These errors will prevent the script
from running at all. Load-time errors are generally caused by mistakes in syntax, such
as missing parentheses in a function or misspelling a keyword. You might have typed a
string of text and forgotten to enclose the string in quotes, or you might have mis-
matched the quotes, starting with single quotes but ending with double quotes.

Runtime. Runtime errors, as the name suggests, are those errors that occur when the
JavaScript program actually starts running. An example of a runtime error would be if
your program references an object or variable that doesn’t exist, or you put some code
between the <head></head> tags and it should have been placed within the
<body></body> tags, or you referenced a page that doesn’t exist.

Logical. Logical errors are harder to find because they imply that you didn’t antici-
pate an event or that you inadvertently misused an operator, but your syntax was okay.

Figure 2.3 The output from Example 2.2 demonstrates the difference between the
document.write() and document.writeln() methods.

2.5 Debugging Tools 41

For example, if you are checking to see if two expressions are equal, you should use the
== equality operator, not the = assignment operator.

2.5 Debugging Tools

To see your where errors have occurred in your JavaScript programs, modern browsers
provide an error console window.

2.5.1 Firefox

Error Console. You can bring up the error console for Firefox by going to
“Tools/Error Console” The Console displays the lines containing the errors. Leave the
console open and watch your errors build up. There is a “Clear” option to refresh the
error console window. The following JavaScript program contains an error that will be
displayed in the Error Console window as shown in Figure 2.4.

Table 2.2 Browser Error Console

Browser How to Invoke Error Console

Internet Explorer Double-click the little yellow triangle in the left corner

Firefox Tools/Error Console

Safari Develop/Show Error Console

Opera9 Tools/Advanced/Error Console script Options/

EXAMPLE 2.3

<html>
<head>

<title>First JavaScript Sample</title>
</head>
<body bgcolor="lavender">

1 <script type = "text/javascript">
2 document.writeln("<h2>Welcome to the JavaScript World!</h2>);

// Bug in line2: Missing double quote!!
</script>

This is just plain old HTML stuff.

</body>
</html>

42 Chapter 2 • Script Setup

EXPLANATION
1 JavaScript code starts here.

2 In this line, the string starts with a double quote, but doesn’t terminate with one.
Because the quotes are not matched, JavaScript produces an error. Each browser
has a way of handling error messages. Figure 2.4 uses the Firefox error console to
detect the error.

Figure 2.4 Firefox Error Console (go to Firefox Tools/Error Console).

2.5 Debugging Tools 43

Firebug. Firebug is a Firefox extension that has become very popular with Web devel-
opers for editing, debugging, and monitoring CSS, HTML, and JavaScript live in any
Web page (see Figures 2.5 and 2.6). It is easy to download and can be found in the
Firefox Tools menu.

Figure 2.5 The Firebug Web site.

44 Chapter 2 • Script Setup

You can also use a version of Firebug in Internet Explorer, Opera, and Safari called
Firebug Lite. See http://getfirebug.com/lite.html.

2.5.2 Debugging in Internet Explorer 8

When an error occurs in your JavaScript program, a little yellow triangle appears in the bot-
tom left corner of the browser window. If you double-click the triangle, a debugging window
opens explaining the error and the line number where it occurred (see Figure 2.7).

Internet Explorer Developer Tools. Every installation of Internet Explorer 8 comes
with the Developer Tools for debugging JavaScript (Microsoft JScript), HTML, and CSS on
the fly. It comes with a plethora of features including the ability to control script execution,
set break points, inspect variables, profile performance, edit and prototype new designs, and
so on. See http://msdn.microsoft.com/en-us/library/dd565628(VS.85).aspx.

To start debugging your JavaScript programs, open the Developer Tools and switch to
the Script tab, then click Start Debugging. When starting the debugging process, the
Developer Tools will refresh the page and you will have all the functionality you expect
from a debugger (see Figure 2.8). Once you are done, click Stop Debugging. Go to Inter-
net Explorer Tools/Developer Tools and the debugger window will appear. Click Script,
and then restart your program in the browser.

Figure 2.6 The Firebug Debugging window.

http://getfirebug.com/lite.html
http://msdn.microsoft.com/en-us/library/dd565628(VS.85).aspx

2.5 Debugging Tools 45

Figure 2.7 Internet Explorer 8 after clicking the little yellow triangle in the bottom left corner.

Figure 2.8 Internet Explorer 8 Developer Tools (go to the Tools menu and then Developer Tools).

46 Chapter 2 • Script Setup

2.5.3 The JavaScript: URL Protocol

For simple debugging or testing code, you can use the URL pseudoprotocol, JavaScript:
followed by any valid JavaScript expression or expressions separated by semicolons. The
result of the expression is returned as a string to your browser window, as shown in
Example 2.4 and Figures 2.9, 2.10, and 2.11.

FORMAT

JavaScript: expression

EXAMPLE 2.4

JavaScript: 5 + 4

Figure 2.9 Internet Explorer and the JavaScript: protocol.

Figure 2.10 Mozilla Firefox and the JavaScript: protocol.

Figure 2.11 Opera and the JavaScript: protocol.

2.6 JavaScript and Old or Disabled Browsers 47

2.6 JavaScript and Old or Disabled Browsers
2.6.1 Hiding JavaScript from Old Browsers

Is JavaScript Enabled? The answer is most probably “yes.” There are many ver-
sions of browsers available to the public and the vast majority of the public uses Firefox,
Opera or Internet Explorer. So why worry? Well, just because a browser supports Java-
Script does not mean that everyone has JavaScript enabled. There are also some older
text browsers that don’t support JavaScript, but today it’s more likely that JavaScript has
been disabled for security reasons or to avoid cookies than because the browser is old.
Cell phones, Palm handhelds, and speech browsers for the visibly disabled provide
browser support, but do not necessarily have JavaScript. There has to be some alterna-
tive way to address those Web browsers (see http://www.internet.com).

Hiding JavaScript. If you put a script in a Web page, and the browser is old and doesn’t
know what a <script> tag is, the JavaScript code will be treated as regular HTML. But if you
enclose JavaScript code within HTML comment tags, it will be invisible to the HTML ren-
derer and, therefore, ignored by browsers not supporting JavaScript. If the browser has Java-
Script enabled, then any HTML tags (including HTML comments) inserted between the
<script> </script> tags will be ignored. Hiding JavaScript in comment tags is a common prac-
tice used in JavaScript programs. It is introduced here so that when you notice these embed-
ded comments in other’s programs, you will understand why. See Example 2.5.

EXAMPLE 2.5

<html>
<head><title>Old Browsers</title></head>
<body>

<div align=center>
1 <script type="text/javascript">
2 <!-- Hiding JavaScript from Older Browsers
3 document.write("<h2>Welcome to Maine!</h2>");
4 // Stop Hiding JavaScript from Older Browsers -->
5 </script>

Bailey's Island

</div>
</body>

</html>

EXPLANATION
1 The JavaScript program starts here. Browsers that don’t support JavaScript will

skip over this opening <script> tag.

2 The <!-- symbol is the start of an HTML comment and will continue until --> is
reached. Any browser not supporting JavaScript will treat this whole block as a
comment. JavaScript itself uses two slashes or C-style syntax, /* */, and will ignore
the HTML comment tags.

Continues

http://www.internet.com

48 Chapter 2 • Script Setup

3 The document.write method displays this line in the page. Any HTML tags inserted
in the quoted strings will be handled by the HTML renderer. JavaScript does not
know how to interpret HTML by itself. If the browser supports JavaScript, the line
Welcome to Maine! will appear just above the image. If the browser does not sup-
port JavaScript, or has it disabled, this section of code is ignored. See the two ex-
amples of output shown in Figures 2.12 and 2.13.

4 This line starts with two slashes, the start of a JavaScript comment. This is done
so that if JavaScript is interpreting this section, it won’t see the HTML closing
comment tag, -->. Why don’t we want JavaScript to see the closing tag if it could
see the opening tag? Because JavaScript would see the double dash as one of its
special operators, and produce an error. Netscape’s error:

5 The JavaScript program ends here with its closing </script> tag.

Figure 2.12 Example 2.5 output in a JavaScript-disabled browser.

EXPLANATION (CONTINUED)

2.6 JavaScript and Old or Disabled Browsers 49

The <noscript> Tag. Modern browsers provide a set of tags called <noscript></noscript>
that enable you to provide alternative information to browsers that are either unable to read
JavaScript or have it turned off. All JavaScript-enabled browsers recognize the <noscript> tag.
They will just ignore whatever is between <noscript> and</noscript>. Browsers that do not
support JavaScript do not recognize the <noscript> tags. They will ignore the tags but will
display whatever is in between them. See Example 2.6.

Figure 2.13 Example 2.5 output in a JavaScript-enabled browser.

EXAMPLE 2.6

<html>
<head>

<title>Has JavaScript been turned off?</title>
</head>
<body bgColor="blue">

<h3>

1 <script type="text/javascript" >
2 document.write("Your browser supports JavaScript!");

</script>
3 <noscript>

Please turn JavaScript on if you want to see this page!

4 Firefox > Tools > Options > Content >
Enable JavaScript

IE > Tools > Internet Options > Security >
Custom Level >Security Setting > Scripting >
Enable

5 </noscript>

Continues

50 Chapter 2 • Script Setup

2.7 What You Should Know

This chapter introduced you the JavaScript, the language. You should now be able to
create a simple script and execute it in the browser window. Here are some things you
should know:

1. How HTML and JavaScript coexist.
2. Understand the syntax, or how to write correct JavaScript statements.
3. How to execute a JavaScript program.
4. About case sensitivity, special words called reserved words or keywords, and

how JavaScript handles whitespace, that it is free form.
5. Three ways to comment text that is used to explain what is going on in your

program and ignored by the interpreter.
6. How to use <script> </script> tags, its attributes, and where to put them.

</h3>

</body>
</html>

EXPLANATION
1 The JavaScript program starts here with the opening <script> tag.

2 This line is displayed on the Web page only if JavaScript is enabled.

3 The <noscript> tag is read by browsers that support JavaScript. They will ignore ev-
erything between the <noscript> and </noscript> tags. Disabled browsers will not
recognize the <noscript> tag and thus ignore them, displaying all enclosed text.

4 JavaScript-disabled browsers will display the message shown in Figure 2.14.

5 The </noscript> tag ends here.

Figure 2.14 Output from Example 2.6.

EXAMPLE 2.6 (CONTINUED)

2.7 What You Should Know 51

7. How and why you would create a .js file.
8. How to create and quote a string, and how to use the writeln() method.
9. Identify three types of errors and use your browser’s debugging tools.

10. How to hide JavaScript from old browsers.

52 Chapter 2 • Script Setup

1. What is a reserved word? Give an example.

2. Is JavaScript case sensitive?

3. What is the purpose of enclosing statements within curly braces?

4. What is the latest version of JavaScript? Where can you find this information?

5. What is the difference between the JavaScript src and type attributes?

6. How would you concatenate the following three strings with JavaScript?

"trans" "por" "tation"

7. Write a script that demonstrates how concatenation works.

8. Create a JavaScript program that will print “Hello, world! Isn’t life great?” in an
Arial bold font, size 14, and make the background color of the screen light
green.

9. Add two strings to the first JavaScript program—your first name and last
name—concatenated and printed in a blue sans serif font, size 12.

10. In the Location field of your browser, test the value of an expression using the
JavaScript: protocol.

11. Find the errors in the following script:

<html>

<head>

<title>Finding Errors</title>

</head>

<body bgcolor="yellow" text="blue">

<script type="text/javascript"

document.writeln("Two, ")

document.writeln ("Three, ")

document.write('Blast off....
");

</script>

</body>

</html>

Exercises

53

chapter

3
The Building Blocks:
Data Types, Literals,
and Variables

3.1 Data Types

A program can do many things, including calculations, sorting names, preparing phone
lists, displaying images, validating forms, ad infinitum. But to do anything, the program
works with the data that is given to it. Data types specify what kind of data, such as num-
bers and characters, can be stored and manipulated within a program. JavaScript sup-
ports a number of fundamental data types. These types can be broken down into two
categories, primitive data types and composite data types.

3.1.1 Primitive Data Types

Primitive data types are the simplest building blocks of a program. They are types that
can be assigned a single literal value such as the number 5.7, or a string of characters
such as “hello”. JavaScript supports three core or basic data types:

• numeric
• string
• Boolean

In addition to the three core data types, there are two other special types that consist
of a single value:

• null
• undefined

Numeric Literals. JavaScript supports both integers and floating-point numbers. Inte-
gers are whole numbers and do not contain a decimal point, such as 123 and –6. Integers
can be expressed in decimal (base 10), octal (base 8), and hexadecimal (base 16), and are
either positive or negative values. See Example 3.1.

54 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

Floating-point numbers are fractional numbers such as 123.56 or –2.5. They must
contain a decimal point or an exponent specifier, such as 1.3e–2. The letter “e” for expo-
nent notation can be either uppercase or lowercase.

JavaScript numbers can be very large (e.g., 10308 or 10–308).

String Literals and Quoting. String literals are rows of characters enclosed in either
double or single quotes.1 The quotes must be matched. If the string starts with a single
quote, it must end with a matching single quote, and likewise if it starts with a double
quote, it must end with a double quote. Single quotes can hide double quotes, and dou-
ble quotes can hide single quotes:

"This is a string"
'This is another string'
"This is also 'a string' "
'This is "a string"'

An empty set of quotes is called the null string. If a number is enclosed in quotes, it
is considered a string; for example, “5” is a string, whereas 5 is a number.

Strings are called constants or literals. The string value “hello” is called a string con-
stant or literal. To change a string requires replacing it with another string.

Strings can contain escape sequences (a single character preceded with a backslash),
as shown in Table 3.1. Escape sequences are a mechanism for quoting a single character.

EXAMPLE 3.1

12345 integer
23.45 float
.234E-2 scientific notation
.234e+3 scientific notation
0x456fff hexadecimal
0x456FFF hexadecimal
0777 octal

1. Any string without quotation marks surrounding it is considered the name of a variable.

Table 3.1 Escape Sequences

Escape Sequence What It Represents

\' Single quotation mark

\" Double quotation mark

\t Tab

3.1 Data Types 55

\n Newline

\r Return

\f Form feed

\b Backspace

\e Escape

\\ Backslash

Special Escape Sequences

\XXX The character with the Latin-1 encoding specified by up to
three octal digits XXX between 0 and 377.
\251 is the octal sequence for the copyright symbol.

\xXX The character with the Latin-1 encoding specified by the
two hexadecimal digits XX between 00 and FF.
\xA9 is the hexadecimal sequence for the copyright symbol.

\uXXXX The Unicode character specified by the four hexadecimal
digits XXXX.
\u00A9 is the Unicode sequence for the copyright symbol.

EXAMPLE 3.2

<html>
<head><title>Escape Sequences</title></head>
<body>

1 <pre>
<big>

2 <script type="text/javascript">
<!-- Hide script from old browsers.

3 document.write("\t\tHello\nworld!\n");
4 document.writeln("\"Nice day, Mate.\"\n");
5 document.writeln('Smiley face: \u263a\n');

//End hiding here. -->
</script>

</big>
</pre>

</body>
</html>

Table 3.1 Escape Sequences (continued)

Escape Sequence What It Represents

56 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

Putting Strings Together. The process of joining strings together is called concate-
nation. The string concatenation operator is a plus sign (+). Its operands are two strings.
If one string is a number and the other is a string, JavaScript will still concatenate them
as strings. If both operands are numbers, the + will be the addition operator. The follow-
ing examples output “popcorn” and “Route 66”, respectively.

document.write("pop" + "corn");
document.write("Route " + 66);

The expression 5 + 100 results in 105, whereas “5” + 100 results in “5100”.

Boolean Literals. Boolean literals are logical values that have only one of two values,
true or false. You can think of the values as yes or no, on or off, or 1 or 0. They are used
to test whether a condition is true or false. When using numeric comparison and equal-
ity operators, the value true evaluates to 1 and false evaluates to 0. (Read about compar-
ison operators in Chapter 5, “Operators.”)

EXPLANATION
1 The escape sequences will work only if in a <pre> tag or an alert dialog box.

2 The JavaScript program starts here.

3 The write() method sends to the browser a string containing two tabs (\t\t), Hello,
a newline (\n), world!, and another newline (\n).

4 The writeln() method sends to the browser a string containing a double quote (\”),
Nice day, Mate., another double quote (\”), and a newline (\n). Because the
writeln() method automatically creates a newline, the output will display two
newlines: the default value and the \n in the string.

5 This string contains a backslash sequence that will be translated into Unicode.
The Unicode hexadecimal character 263a is preceded by a \u. The output is a smi-
ley face. See Figure 3.1.

Figure 3.1 Escape sequences.

3.1 Data Types 57

answer1 = true;

or

if (answer2 == false) { do something; }

The typeof Operator. The typeof operator returns a string to identify the type of its
operand (i.e., a variable, string, keyword, or object). The values returned can be “num-
ber”, “string”, “boolean”, “object”, “null”, and “undefined”. You can use the typeof oper-
ator to check whether a variable has been defined because if there is no value associated
with the variable, the typeof operator returns undefined.

FORMAT

typeof operand
typeof (operand)

EXAMPLE

typeof(54.6)
typeof("yes")

EXAMPLE 3.3

<html>
<head>

<title>The typeof Operator</title>
</head>
<body bgcolor="gold">

<big>
<script type="text/javascript">

1 document.write(typeof(55),"
"); // Number
2 document.write(typeof("hello there"),"
"); // String
3 document.write(typeof(true),"
"); // Boolean

</script>
</big>

</body>
</html>

EXPLANATION
1 The integer, 55, is a number type.

2 The text “hello there” is a string type.

3 The true or false keyword represent a boolean type. See Figure 3.2.

58 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

Null and Undefined. The difference between null and undefined is a little subtle.
The null keyword represents “no value,” meaning “nothing,” not even an empty string
or zero. It is a type of JavaScript object (see Chapter 8, “Objects”). It can be used to ini-
tialize a variable so that it does not produce errors or to clear the value of a variable, so
that there is no longer any data associated with that variable, and the memory used by
it is freed. When a variable is assigned null, it does not contain any valid data type.

A variable that has been declared, but given no initial value, contains the value unde-
fined and will produce a runtime error if you try to use it. (If you declare the variable
and assign null to it, null will act as a placeholder and you will not get an error.) The
word undefined is not a keyword in JavaScript. If compared with the == equality opera-
tors, null and undefined are equal, but if compared with the identity operator, they are
not identical (see Chapter 5, “Operators”).

Figure 3.2 Output from Example 3.3.

EXAMPLE 3.4

<html>
<head>
<title>The typeof Operator with Null and Undefined</title>

</head>
<body bgColor="gold">
<big>
<script type="text/javascript">

document.write("null is type "+
1 typeof(null),"
");

document.write("undefined is type "+
2 typeof(undefined),"
");

</script>
</big>

</body>
</html>

EXPLANATION
1 The null keyword is a type of object. It is a built-in JavaScript object that contains

no value.

2 Undefined is returned when a variable has been given no initial value or when the
void operator is used (see Table 5.19 on page 120). See output in Figure 3.3.

3.2 Variables 59

3.1.2 Composite Data Types

We mentioned that there are two types of data: primitive and composite. This chapter
focuses on the primitive types: numbers, strings, and Booleans—each storing a single
value. Composite data types, also called complex types, consist of more than one compo-
nent. Objects, arrays, and functions, covered later in this book, all contain a collection of
components. Objects contain properties and methods, arrays contain a sequential list of
elements, and functions contain a collection of statements. The composite types are dis-
cussed in later chapters.

3.2 Variables
Variables are fundamental to all programming languages. They are data items that rep-
resent a memory storage location in the computer. Variables are containers that hold
data such as numbers and strings. Variables have a name, a type, and a value.

num = 5; // name is "num", value is 5, type is numeric
friend = "Peter"; // name is "friend", value is "Peter",

// type is string

The values assigned to variables can change throughout the run of a program whereas
constants, also called literals, remain fixed. JavaScript variables can be assigned three
types of data:

• numeric
• string
• Boolean

Computer programming languages like C++ and Java require that you specify the
type of data you are going to store in a variable when you declare it. For example, if you
are going to assign an integer to a variable, you would have to say something like:

int n = 5;

Figure 3.3 Output from Example 3.4.

60 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

And if you were assigning a floating-point number:

float x = 44.5;

Languages that require that you specify a data type are called “strongly typed” lan-
guages. JavaScript, conversely, is a dynamically or loosely typed language, meaning that
you do not have to specify the data type of a variable. In fact, doing so will produce an
error. With JavaScript, you would simply say:

n = 5;
x = 44.5;

and JavaScript will figure out what type of data is being stored in n and x.

3.2.1 Valid Names

Variable names consist of any number of letters (an underscore counts as a letter) and
digits. The first character must be a letter or an underscore. Because JavaScript keywords
do not contain underscores, using an underscore in a variable name can ensure that you
are not inadvertently using a reserved keyword. Variable names are case sensitive; for
example, Name, name, and NAme are all different variable names. Refer to Table 3.2.

3.2.2 Declaring and Initializing Variables

Variables must be declared before they can be used. To make sure that variables are
declared first, you can declare them in the head of the HTML document. There are two
ways to declare a variable: with or without the keyword var. Although laziness might get
the best of you, it is a better practice to always use the var keyword.

You can assign a value to the variable (or initialize a variable) when you declare it,
but it is not mandatory, unless you omit the var keyword. If a variable is declared but
not initialized, it is “undefined.”

Table 3.2 Valid and Invalid Variable Names

Valid Variable Names Invalid Variable Names

name1 10names

price_tag box.front

_abc name#last

Abc_22 A-23

A23 5

3.2 Variables 61

To declare a variable called firstname, you could say

var first_name="Ellie"

or

first_name ="Ellie";

or

var first_name;

You can declare multiple variables on the same line by separating each declaration
with a comma. For example, you could say

var first_name, middle_name, last_name;

FORMAT

var variable_name = value; // initialized
var variable_name; // uninitialized
variable_name; // wrong

EXAMPLE 3.5

<html>
<head><title>Using the var Keyword</title>

<script type="text/javascript">
1 var language="English"; // Variable is initialized
2 var name; // OK, undefined variable
3 age; // Not OK! var keyword missing ERROR!

</script>
</head>
<body bgcolor="silver">

<big>
<script type="text/javascript">

document.write("Language is " + language + "
");
document.write("Name is "+ name + "
");

4 document.write("Age is "+ age + "
");
</script>

</big>
</body>

</html>

EXPLANATION
1 The variable called language is defined and initialized. The var keyword is not re-

quired here, but is recommended.

2 Because the variable called name is not initialized, the var keyword is required here.

Continues

62 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

3.2.3 Dynamically or Loosely Typed Language

Remember, strongly typed languages like C++ and Java require that you specify the type
of data you are going to store in a variable when you declare it, but JavaScript is loosely
typed. It doesn’t expect or allow you to specify the data type when declaring a variable.
You can assign a string to a variable and later assign a numeric value. JavaScript doesn’t
care and at runtime, the JavaScript interpreter will convert the data to the correct type.
Consider the following variable, initialized to the floating-point value of 5.5. In each suc-
cessive statement, JavaScript will convert the type to the proper data type (see Table 3.3).

3 The variable called age is not assigned an initial value. The var keyword is re-
quired. Without it, the program produces errors, shown in the output for Firefox
and Explorer, in Figure 3.4 and Figure 3.5 (on page 63), respectively.

4 This line will not be printed until the variable called age is defined properly. Just
use the var keyword as good practice, even if it isn’t always required!

Figure 3.4 Firefox error (JavaScript Error Console). The variable age was
referenced twice on lines 6 and 16 in the actual program (lines numbered 3 and 4
in Example 3.5). Program was tested twice.

EXPLANATION (CONTINUED)

3.2 Variables 63

Figure 3.5 Internet Explorer error (Example 3.5).

Table 3.3 How JavaScript Converts Data Types

Variable Assignment Conversion

var item = 5.5; Assigned a float

item = 44; Converted to integer

item = "Today was bummer"; Converted to string

item = true; Converted to Boolean

item = null; Converted to the null value

64 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

EXAMPLE 3.6

<html>
<head><title>JavaScript Variables</title>

1 <script type="text/javascript">
2 var first_name="Christian"; // first_name is assigned a value
3 var last_name="Dobbins"; // last_name is assigned a value
4 var age = 8;
5 var ssn; // Unassigned variable
6 var job_title=null;

</script>
7 </head>
8 <body bgcolor="lightgreen">

<big>
9 <script type="text/javascript">
10 document.write("Name: " + first_name + " "

+ last_name + "
");
11 document.write("Age: " + age + "
");
12 document.write("SSN: " + ssn + "
");
13 document.write("Job Title: " + job_title+"
");
14 ssn="xxx-xx-xxxx";
15 document.write("Now SSN is: " + ssn , "
");

</script>
<p>

</body>
</p>

</big>
</body>

</html>

Output:

10 Name: Christian Dobbins
11 Age: 8
12 SSN: undefined
13 Job Title: null
15 Now Ssn is: xxx-xx-xxx

EXPLANATION
1 This JavaScript program is placed within the document head. Because the head of

the document is processed before the body, this assures you that the variable def-
initions will be defined first.

2 The string “Christian” is assigned to the variable called first_name.

3 The string “Dobbins” is assigned to the variable called last_name.

4 The number 8 is assigned to the variable called age.

5 The variable called ssn is not assigned any value at all. It is an uninitialized vari-
able. The return value is undefined.

3.2 Variables 65

6 The value null is assigned to the variable called job_title. Null is used to set a vari-
able to an initial value different from other valid types, but if used in an expression
the value of null will be converted to the appropriate type.

7 The document head ends here.

8 The body of the document starts here.

9 A new JavaScript program starts here. All the variables declared in the head of the
document are available here. Variables that are available throughout the entire
document are called global variables.

10 The document.write() method concatenates the values of the strings with the +
sign and sends them to the browser to display on the screen.

11 The value of the variable called age is displayed.

12 The variable called ssn was declared, but not initialized. It has no value, which
JavaScript calls undefined.

13 The variable job_title was assigned null, a placeholder value. The null string is re-
turned.

14 The variable ssn is assigned a string value. It is no longer undefined. Even though
the variable was declared in the head of the document, as long as it was declared,
it can be assigned a value anywhere else in the document.

15 The value of the variable ssn is displayed. Figure 3.6 shows the output in Internet
Explorer.

Figure 3.6 Declaring and displaying variables.

EXPLANATION

66 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

3.2.4 Scope of Variables

Scope describes where a variable is visible, or where it can be used, within the program.
JavaScript variables are either of global or local scope. A global variable can be accessed
from any JavaScript script on a page, as shown in Example 3.6. The variables we have
created so far are global in scope.

It is often desirable to create variables that are private to a certain section of the pro-
gram, thus avoiding naming conflicts and accidentally changing a value in some other
part of the program. Private variables are called local variables. Local variables are cre-
ated when a variable is declared within a function. Local variables must be declared with
the keyword, var. They are accessible only from within the function from the time of
declaration to the end of the enclosing block, and they take precedence over any global
variable with the same name. (See Chapter 7, “Functions.”)

3.2.5 Concatenation and Variables

To concatenate variables and strings together on the same line, the + sign is used. The +
sign is an operator because it operates on the expression on either side of it (each called
an operand). Sometimes the + sign is a string operator and sometimes it is a numeric
operator when used for addition. Addition is performed when both of the operands are
numbers. In expressions involving numeric and string values with the + operator, Java-
Script converts numeric values to strings. For example, consider these statements:

var temp = "The temperature is " + 87;
// returns "The temperature is 87"
var message = 25 + " days till Christmas";
// returns "25 days till Christmas"

But, if both operands are numbers, then addition is performed:

var sum = 10 + 5; // sum is 15

EXAMPLE 3.7

<html>
<head><title>Concatenation</title></head>
<body>

<script type="text/javascript">
1 var x = 25;
2 var y = 5 + "10 years";
3 document.write(x + " cats" , "
");
4 document.write("almost " + 25 , "
");
5 document.write(x + 4, "
");
6 document.write(y, "
");
7 document.write(x + 5 + " dogs" , "
");
8 document.write(" dogs" + x + 5 , "
");

</script>

3.3 Constants 67

3.3 Constants

The weather and moods are variable; time is constant, and so are the speed of light, mid-
night, PI, and e. In programming, a constant is a special kind of placeholder with a value
that cannot be changed during program execution. Many programming languages use a
special syntax to define a constant to distinguish it from a variable. JavaScript declares
constants with the const type (which replaces var) and the name of the constant is in

</body>
</html>

Output:

3 25 cats
4 almost 25
5 29
6 510 years
7 30 dogs
8 dogs255

EXPLANATION
1 Variable x is assigned a number.

2 Variable y is assigned the string 510 years. If the + operator is used, it could mean
the concatenation of two strings or addition of two numbers. JavaScript looks at
both of the operands. If one is a string and one is a number, the number is con-
verted to a string and the two strings are joined together as one string, so in this
example, the resulting string is 510 years. If one operand were 5 and the other 10,
addition would be performed, resulting in 15.

3 A number is concatenated with a string. The number 25 is converted to a string
and concatenated to “ cats”, resulting in 25 cats. (Note that the write() method can
also use commas to separate its arguments. In these examples the
 tag is not
concatenated to the string. It is sent to the write() method and appended.)

4 This time, a string is concatenated with a number, resulting in the string almost 25.

5 When the operands on either side of the + sign are numbers, addition is per-
formed.

6 The value of y, a string, is displayed.

7 The + operators works from left to right. Because x and y are both numbers, addi-
tion is performed, 25 + 5. 30 is concatenated with the string “ dogs”.

8 Because the + works from left to right, this time the first operand is a string being
concatenated to a number, the number is converted to string dogs25 and concat-
enated with string 5.

EXAMPLE 3.7 (CONTINUED)

68 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

uppercase letters, by convention only. Constants are assigned values at the time of the
declaration, and it is impossible to modify them during the run of the program. Caveat:
Firefox, Opera, Safari, Netscape, and many browsers support the JavaScript reserved
keyword const to declare constants (see Figure 3.7). It is important to note that Internet
Explorer 7 and 8 do not support it, as shown in Figure 3.8.

EXAMPLE 3.8

<html>
<head><title>Using the const Keyword</title>

<script type="text/javascript">
1 const NOON = 12;
2 const FREEZING = 32; // Can't change

</script>
</head>
<body bgcolor="silver">

<big>
<script type="text/javascript">

document.write("Farenheit temp is " + FREEZING + ".
");
3 FREEZING = 32 + 10;
4 NOON = NOON + " noon";
5 document.write("Make it warmer " + FREEZING + ".
");

document.write("See you at ", NOON, ".
");
</script>

</big>
</body>

</html>

EXPLANATION
1 The constant NOON is assigned 12, a value that will not change throughout the

execution of this program.

2 The constant FREEZING is assigned 32, a value that will not change throughout
the execution of this program.

3 Now if we try to add 10 to the constant, the value of the constant doesn’t change.
It’s still 32.

4 This time, we try to concatenate a string to the constant NOON. It will not be
changed.

5 The constants FREEZING and NOON are displayed. They were not changed.

3.4 Bugs to Watch For 69

3.4 Bugs to Watch For

Try to declare all your variables at the beginning of the program, even if you don’t have val-
ues for them yet. This will help you find misspelled names faster. Watch that you use proper
variable names. Don’t used reserved words and words that are too long to remember or type
easily. Remember that variable names are case sensitive. MyName is not the same as
myName. Avoid giving two variables similar names, such as MyName and myNames. Avoid
one-character differences in variable names, such as Name1 and Names1. Even though you
aren’t always required to use the var keyword, do it anyway. It’s safer. And, of course, be sure
that the variables you use are spelled properly throughout the script.

When you use strings don’t forget to enclose the strings in either double or single
quotes. Quoting will get the best of programmers every time!

Figure 3.7 Firefox 3.5.7 supports the const keyword.

Figure 3.8 Internet Explorer 8 does not support the const keyword.

70 Chapter 3 • The Building Blocks: Data Types, Literals, and Variables

3.5 What You Should Know

This chapter introduced you to the fundamental building blocks of the JavaScript lan-
guage; that is, the kinds of data that can be stored and manipulated within a program,
such as strings and numbers. To proceed to the next chapters, you should know:

1. What is meant by primitive data types.
2. What numeric literals are.
3. How to concatenate strings.
4. The two values for a Boolean.
5. What the typeof operator returns.
6. What is meant by null, undefined.
7. The difference between a variable and a constant.
8. The difference between loosely typed and strongly typed languages.
9. What scope is.

10. What types can be assigned to a variable.
11. How to name a variable.
12. When var is used.

3.5 What You Should Know 71

1. Create a script that uses the three primitive data types and prints output for
each type. In the same script, print the following:

She cried, "Aren't you going to help me?"

2. Go to http://www.unicode.org/charts/PDF/U2600.pdf and find a symbol. Use Java-
Script to display one of the symbols in a larger font (+5).

3. Write a script that displays the number 234 as an integer, a floating-point num-
ber, an octal number, a hexadecimal number, and the number in scientific nota-
tion.

4. When is it necessary to use the var keyword?

5. Write a script that contains four variables in the head of the document: The first
one contains your name, the second contains the value 0, the third one is
declared but has no value, and the last contains an empty string. In the body of
the document, write another script to display the type of each (use the typeof
operator).

Exercises

Exercises

http://www.unicode.org/charts/PDF/U2600.pdf

This page intentionally left blank

73

chapter

4
Dialog Boxes

4.1 Interacting with the User

Programs like to talk, ask questions, get answers, and respond. In the previous chapter,
we saw how the write() and writeln() methods are used to send the document’s output
to the browser. The document is defined in an object and write() and writeln() are meth-
ods that manipulate the document, make it do something. The document object is
defined within a window. The window is also an object and has its own methods.

The window object uses dialog boxes to interact with the user. The dialog boxes are
created with three methods:

• alert()
• prompt()
• confirm()

4.1.1 The alert() Method

The window’s alert() method is used to send a warning to the user or alert him or her to
do something. For example, you might let the user know he or she has not entered his
or her e-mail address correctly when filling out a form, or that his or her browser doesn’t
support a certain plug-in, and so on. The alert box is also commonly used for debugging
to find out the results of a calculation, if the program is executing in an expected order,
and so on.

The alert() method creates a little independent window—called a dialog box—that
contains a a user-customized message placed after a small triangle, and beneath it, an
OK button. See Figure 4.1. When the dialog box pops up, all execution is stopped until
the user clicks the OK button in the pop-up box. The exact appearance of this dialog
box might differ slightly on different browsers, but its functionality is the same.

Unlike the write() method, the alert() method doesn’t require the window object
name in front of it as window.alert(). Because the window is the top-level browser object,
it doesn’t have to be specified. This is true with any window object methods you use.

