

Programmers
for

Learning C++20
(and other Popular Programming Languages)

 with Deitel on O’Reilly Online Learning

O’Reilly Online Learning
• This subscription service is popular with

millions of developers worldwide.
• Many organizations purchase subscriptions

for unlimited employee access.
• The site contains 46,000+ e-books and

5,800+ video products.
• If your organization has a subscription, you

can access all this content at no charge.
• Subscribers here get early access to new

Deitel e-book “Rough Cuts” and
LiveLessons video “Sneak Peeks.”

All Deitel C++20 publications on
O'Reilly Online Learning Are
Based on Their Print Book
C++20 for Programmers
• Approximately 1,000 pages.
• 200+ complete, working programs, each

followed by live execution outputs.
• Approximately 15,000 lines of code.
• Line-by-line code walkthroughs.
• Emphasis on Modern C++ idiom, software

engineering, performance and security.
• Real-world applications.
• Interact with the authors at

deitel@deitel.com.

C++20 LiveLessons Fundamentals
Video Product
• 50+ hours of video with Paul Deitel teaching

the content of C++20 for Programmers.
• Access asynchronously on O’Reilly Online

Learning at your convenience.
• Learn at your own pace.
• Interact with the authors at

deitel@deitel.com.

E-Books
• Same content as C++20 for Programmers

print book.
• Text searchable.
• Available from popular e-book providers,

including O’Reilly, Amazon, Informit,
VitalSource, Redshelf and more.

• Interact with the authors at
deitel@deitel.com.

Full-Throttle Live Training Courses
• Paul Deitel teaches fast-paced, full-day,

presentation-only courses.
• Ideal for busy developers and programming

managers.
• Ask Paul questions during the course and get

answers in real time.
• Still have questions? Email Paul after the

course at deitel@deitel.com.
• Courses offered monthly or bimonthly.
• C++20 Core Language Full Throttle.
• C++20 Standard Libraries Full Throttle.
• Python Full Throttle.
• Python Data Science Full Throttle.
• Java Full Throttle.

College Textbook Versions of C++20
for Programmers
• Available as Pearson interactive eTexts and

Revels.
• Both formats offer searchable text, video,

Checkpoint self-review questions with
answers, flashcards and other student
learning aids.

• In addition, Revel offers gradable,
interactive, programming and non-
programming assessment questions.

Deitel & Associates, Inc. also independently offers customized one- to five-day live courses deliv-
ered virtually over the Internet. Contact deitel@deitel.com for details.

mailto:deitel@deitel.com
mailto:deitel@deitel.com
mailto:deitel@deitel.com
mailto:deitel@deitel.com
mailto:deitel@deitel.com

D E I T E L® D E V E L O P E R S E R I E S

Paul Deitel • Harvey Deitel

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Programmers
for

An Objects-Natural Approach

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial cap-
ital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: https://informit.com

Library of Congress Control Number: 2021943762

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit https://www.pearson.com/permissions/.

Deitel and the double-thumbs-up bug are registered trademarks of Deitel & Associates, Inc.

Cover design by Paul Deitel, Harvey Deitel, and Chuti Prasertsith

ISBN-13: 978-0-13-690569-1
ISBN-10: 0-13-690569-2

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
https://informit.com
https://www.pearson.com/permissions/

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gen-
der, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential
to deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diver-
sity of learners.

• Our educational content accurately reflects the histories and experiences of the
learners we serve.

• Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.
Please contact us with concerns about any potential bias at
 https://www.pearson.com/report-bias.html

https://www.pearson.com/report-bias.html

To the Members of the ISO C++ Standards Committee:
For your efforts in evolving the world’s
preeminent language for programming
high-performance, mission-critical and
business-critical applications.

Paul Deitel
Harvey Deitel

Preface xxi

Before You Begin xliii

1 Intro and Test-Driving Popular, Free
C++ Compilers 1

1.1 Introduction 2
1.2 Test-Driving a C++20 Application 4

1.2.1 Compiling and Running a C++20 Application with
Visual Studio 2022 Community Edition on Windows 4

1.2.2 Compiling and Running a C++20 Application with
Xcode on macOS 8

1.2.3 Compiling and Running a C++20 Application with
GNU C++ on Linux 11

1.2.4 Compiling and Running a C++20 Application with
g++ in the GCC Docker Container 13

1.2.5 Compiling and Running a C++20 Application with
clang++ in a Docker Container 14

1.3 Moore’s Law, Multi-Core Processors and Concurrent Programming 16
1.4 A Brief Refresher on Object Orientation 17
1.5 Wrap-Up 20

2 Intro to C++20 Programming 21
2.1 Introduction 22
2.2 First Program in C++: Displaying a Line of Text 22
2.3 Modifying Our First C++ Program 25
2.4 Another C++ Program: Adding Integers 26
2.5 Arithmetic 30
2.6 Decision Making: Equality and Relational Operators 31
2.7 Objects Natural: Creating and Using Objects of Standard-Library

Class string 35
2.8 Wrap-Up 38

Contents

viii Contents

3 Control Statements: Part 1 39
3.1 Introduction 40
3.2 Control Structures 40

3.2.1 Sequence Structure 41
3.2.2 Selection Statements 42
3.2.3 Iteration Statements 42
3.2.4 Summary of Control Statements 43

3.3 if Single-Selection Statement 43
3.4 if…else Double-Selection Statement 44

3.4.1 Nested if…else Statements 45
3.4.2 Blocks 46
3.4.3 Conditional Operator (?:) 47

3.5 while Iteration Statement 47
3.6 Counter-Controlled Iteration 48

3.6.1 Implementing Counter-Controlled Iteration 48
3.6.2 Integer Division and Truncation 50

3.7 Sentinel-Controlled Iteration 50
3.7.1 Implementing Sentinel-Controlled Iteration 50
3.7.2 Converting Between Fundamental Types Explicitly and Implicitly 52
3.7.3 Formatting Floating-Point Numbers 53

3.8 Nested Control Statements 54
3.8.1 Problem Statement 54
3.8.2 Implementing the Program 54
3.8.3 Preventing Narrowing Conversions with Braced Initialization 56

3.9 Compound Assignment Operators 57
3.10 Increment and Decrement Operators 58
3.11 Fundamental Types Are Not Portable 60
3.12 Objects-Natural Case Study: Arbitrary-Sized Integers 61
3.13 C++20: Text Formatting with Function format 65
3.14 Wrap-Up 67

4 Control Statements: Part 2 69
4.1 Introduction 70
4.2 Essentials of Counter-Controlled Iteration 70
4.3 for Iteration Statement 71
4.4 Examples Using the for Statement 74
4.5 Application: Summing Even Integers 74
4.6 Application: Compound-Interest Calculations 75
4.7 do…while Iteration Statement 78
4.8 switch Multiple-Selection Statement 80
4.9 C++17 Selection Statements with Initializers 85
4.10 break and continue Statements 86
4.11 Logical Operators 88

4.11.1 Logical AND (&&) Operator 88

Contents ix

4.11.2 Logical OR (||) Operator 89
4.11.3 Short-Circuit Evaluation 89
4.11.4 Logical Negation (!) Operator 90
4.11.5 Example: Producing Logical-Operator Truth Tables 90

4.12 Confusing the Equality (==) and Assignment (=) Operators 92
4.13 Objects-Natural Case Study: Using the miniz-cpp Library to Write

and Read ZIP files 94
4.14 C++20 Text Formatting with Field Widths and Precisions 98
4.15 Wrap-Up 100

5 Functions and an Intro to Function Templates 101
5.1 Introduction 102
5.2 C++ Program Components 103
5.3 Math Library Functions 103
5.4 Function Definitions and Function Prototypes 105
5.5 Order of Evaluation of a Function’s Arguments 108
5.6 Function-Prototype and Argument-Coercion Notes 108

5.6.1 Function Signatures and Function Prototypes 108
5.6.2 Argument Coercion 109
5.6.3 Argument-Promotion Rules and Implicit Conversions 109

5.7 C++ Standard Library Headers 111
5.8 Case Study: Random-Number Generation 113

5.8.1 Rolling a Six-Sided Die 114
5.8.2 Rolling a Six-Sided Die 60,000,000 Times 115
5.8.3 Seeding the Random-Number Generator 117
5.8.4 Seeding the Random-Number Generator with random_device 118

5.9 Case Study: Game of Chance; Introducing Scoped enums 119
5.10 Scope Rules 124
5.11 Inline Functions 128
5.12 References and Reference Parameters 129
5.13 Default Arguments 132
5.14 Unary Scope Resolution Operator 133
5.15 Function Overloading 134
5.16 Function Templates 137
5.17 Recursion 139
5.18 Example Using Recursion: Fibonacci Series 142
5.19 Recursion vs. Iteration 145
5.20 Lnfylun Lhqtomh Wjtz Qarcv: Qjwazkrplm xzz Xndmwwqhlz 147
5.21 Wrap-Up 150

6 arrays, vectors, Ranges and
Functional-Style Programming 153

6.1 Introduction 154
6.2 arrays 155
6.3 Declaring arrays 155

x Contents

6.4 Initializing array Elements in a Loop 155
6.5 Initializing an array with an Initializer List 158
6.6 C++11 Range-Based for and C++20 Range-Based for with Initializer 159
6.7 Calculating array Element Values and an Intro to constexpr 161
6.8 Totaling array Elements 163
6.9 Using a Primitive Bar Chart to Display array Data Graphically 164
6.10 Using array Elements as Counters 165
6.11 Using arrays to Summarize Survey Results 166
6.12 Sorting and Searching arrays 168
6.13 Multidimensional arrays 170
6.14 Intro to Functional-Style Programming 174

6.14.1 What vs. How 174
6.14.2 Passing Functions as Arguments to Other Functions: Introducing

Lambda Expressions 175
6.14.3 Filter, Map and Reduce: Intro to C++20’s Ranges Library 177

6.15 Objects-Natural Case Study: C++ Standard Library Class Template vector 180
6.16 Wrap-Up 187

7 (Downplaying) Pointers in Modern C++ 189
7.1 Introduction 190
7.2 Pointer Variable Declarations and Initialization 192

7.2.1 Declaring Pointers 192
7.2.2 Initializing Pointers 192
7.2.3 Null Pointers Before C++11 192

7.3 Pointer Operators 192
7.3.1 Address (&) Operator 193
7.3.2 Indirection (*) Operator 193
7.3.3 Using the Address (&) and Indirection (*) Operators 194

7.4 Pass-by-Reference with Pointers 195
7.5 Built-In Arrays 199

7.5.1 Declaring and Accessing a Built-In Array 199
7.5.2 Initializing Built-In Arrays 199
7.5.3 Passing Built-In Arrays to Functions 199
7.5.4 Declaring Built-In Array Parameters 200
7.5.5 C++11 Standard Library Functions begin and end 200
7.5.6 Built-In Array Limitations 200

7.6 Using C++20 to_array to Convert a Built-In Array to a std::array 201
7.7 Using const with Pointers and the Data Pointed To 202

7.7.1 Using a Nonconstant Pointer to Nonconstant Data 203
7.7.2 Using a Nonconstant Pointer to Constant Data 203
7.7.3 Using a Constant Pointer to Nonconstant Data 204
7.7.4 Using a Constant Pointer to Constant Data 204

7.8 sizeof Operator 205
7.9 Pointer Expressions and Pointer Arithmetic 208

7.9.1 Adding Integers to and Subtracting Integers from Pointers 209
7.9.2 Subtracting One Pointer from Another 209

Contents xi

7.9.3 Pointer Assignment 210
7.9.4 Cannot Dereference a void* 210
7.9.5 Comparing Pointers 210

7.10 Objects-Natural Case Study: C++20 spans—Views of Contiguous
Container Elements 210

7.11 A Brief Intro to Pointer-Based Strings 216
7.11.1 Command-Line Arguments 217
7.11.2 Revisiting C++20’s to_array Function 218

7.12 Looking Ahead to Other Pointer Topics 220
7.13 Wrap-Up 220

8 strings, string_views, Text Files,
CSV Files and Regex 221

8.1 Introduction 222
8.2 string Assignment and Concatenation 223
8.3 Comparing strings 225
8.4 Substrings 226
8.5 Swapping strings 227
8.6 string Characteristics 227
8.7 Finding Substrings and Characters in a string 230
8.8 Replacing and Erasing Characters in a string 232
8.9 Inserting Characters into a string 234
8.10 C++11 Numeric Conversions 235
8.11 C++17 string_view 236
8.12 Files and Streams 239
8.13 Creating a Sequential File 240
8.14 Reading Data from a Sequential File 243
8.15 C++14 Reading and Writing Quoted Text 245
8.16 Updating Sequential Files 246
8.17 String Stream Processing 247
8.18 Raw String Literals 249
8.19 Objects-Natural Case Study: Reading and Analyzing a CSV File

Containing Titanic Disaster Data 250
8.19.1 Using rapidcsv to Read the Contents of a CSV File 251
8.19.2 Reading and Analyzing the Titanic Disaster Dataset 253

8.20 Objects-Natural Case Study: Intro to Regular Expressions 259
8.20.1 Matching Complete Strings to Patterns 261
8.20.2 Replacing Substrings 265
8.20.3 Searching for Matches 265

8.21 Wrap-Up 267

9 Custom Classes 269
9.1 Introduction 270
9.2 Test-Driving an Account Object 271

xii Contents

9.3 Account Class with a Data Member and Set and Get Member Functions 272
9.3.1 Class Definition 272
9.3.2 Access Specifiers private and public 274

9.4 Account Class: Custom Constructors 275
9.5 Software Engineering with Set and Get Member Functions 279
9.6 Account Class with a Balance 280
9.7 Time Class Case Study: Separating Interface from Implementation 283

9.7.1 Interface of a Class 284
9.7.2 Separating the Interface from the Implementation 284
9.7.3 Class Definition 285
9.7.4 Member Functions 286
9.7.5 Including the Class Header in the Source-Code File 287
9.7.6 Scope Resolution Operator (::) 287
9.7.7 Member Function setTime and Throwing Exceptions 287
9.7.8 Member Functions to24HourString and to12HourString 288
9.7.9 Implicitly Inlining Member Functions 288
9.7.10 Member Functions vs. Global Functions 288
9.7.11 Using Class Time 288
9.7.12 Object Size 290

9.8 Compilation and Linking Process 290
9.9 Class Scope and Accessing Class Members 291
9.10 Access Functions and Utility Functions 292
9.11 Time Class Case Study: Constructors with Default Arguments 292

9.11.1 Class Time 292
9.11.2 Overloaded Constructors and C++11 Delegating Constructors 297

9.12 Destructors 298
9.13 When Constructors and Destructors Are Called 298
9.14 Time Class Case Study: A Subtle Trap —Returning a Reference or a

Pointer to a private Data Member 302
9.15 Default Assignment Operator 304
9.16 const Objects and const Member Functions 306
9.17 Composition: Objects as Members of Classes 308
9.18 friend Functions and friend Classes 313
9.19 The this Pointer 314

9.19.1 Implicitly and Explicitly Using the this Pointer to Access an
Object’s Data Members 315

9.19.2 Using the this Pointer to Enable Cascaded Function Calls 316
9.20 static Class Members: Classwide Data and Member Functions 320
9.21 Aggregates in C++20 324

9.21.1 Initializing an Aggregate 325
9.21.2 C++20: Designated Initializers 325

9.22 Objects-Natural Case Study: Serialization with JSON 326
9.22.1 Serializing a vector of Objects Containing public Data 327
9.22.2 Serializing a vector of Objects Containing private Data 331

9.23 Wrap-Up 333

Contents xiii

10 OOP: Inheritance and Runtime Polymorphism 335
10.1 Introduction 336
10.2 Base Classes and Derived Classes 339

10.2.1 CommunityMember Class Hierarchy 339
10.2.2 Shape Class Hierarchy and public Inheritance 340

10.3 Relationship Between Base and Derived Classes 341
10.3.1 Creating and Using a SalariedEmployee Class 341
10.3.2 Creating a SalariedEmployee–SalariedCommissionEmployee

Inheritance Hierarchy 344
10.4 Constructors and Destructors in Derived Classes 349
10.5 Intro to Runtime Polymorphism: Polymorphic Video Game 350
10.6 Relationships Among Objects in an Inheritance Hierarchy 351

10.6.1 Invoking Base-Class Functions from Derived-Class Objects 352
10.6.2 Aiming Derived-Class Pointers at Base-Class Objects 354
10.6.3 Derived-Class Member-Function Calls via Base-Class Pointers 355

10.7 Virtual Functions and Virtual Destructors 357
10.7.1 Why virtual Functions Are Useful 357
10.7.2 Declaring virtual Functions 357
10.7.3 Invoking a virtual Function 357
10.7.4 virtual Functions in the SalariedEmployee Hierarchy 358
10.7.5 virtual Destructors 361
10.7.6 final Member Functions and Classes 361

10.8 Abstract Classes and Pure virtual Functions 362
10.8.1 Pure virtual Functions 363
10.8.2 Device Drivers: Polymorphism in Operating Systems 363

10.9 Case Study: Payroll System Using Runtime Polymorphism 363
10.9.1 Creating Abstract Base Class Employee 364
10.9.2 Creating Concrete Derived Class SalariedEmployee 367
10.9.3 Creating Concrete Derived Class CommissionEmployee 368
10.9.4 Demonstrating Runtime Polymorphic Processing 370

10.10 Runtime Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 373

10.11 Non-Virtual Interface (NVI) Idiom 376
10.12 Program to an Interface, Not an Implementation 383

10.12.1 Rethinking the Employee Hierarchy—
CompensationModel Interface 385

10.12.2 Class Employee 385
10.12.3 CompensationModel Implementations 387
10.12.4 Testing the New Hierarchy 389
10.12.5 Dependency Injection Design Benefits 390

10.13 Runtime Polymorphism with std::variant and std::visit 391
10.14 Multiple Inheritance 397

10.14.1 Diamond Inheritance 401
10.14.2 Eliminating Duplicate Subobjects with virtual

Base-Class Inheritance 403
10.15 protected Class Members: A Deeper Look 405

xiv Contents

10.16 public, protected and private Inheritance 406
10.17 More Runtime Polymorphism Techniques; Compile-Time Polymorphism 408

10.17.1 Other Runtime Polymorphism Techniques 408
10.17.2 Compile-Time (Static) Polymorphism Techniques 410
10.17.3 Other Polymorphism Concepts 411

10.18 Wrap-Up 412

11 Operator Overloading, Copy/Move Semantics
and Smart Pointers 415

11.1 Introduction 416
11.2 Using the Overloaded Operators of Standard Library Class string 418
11.3 Operator Overloading Fundamentals 423

11.3.1 Operator Overloading Is Not Automatic 423
11.3.2 Operators That Cannot Be Overloaded 423
11.3.3 Operators That You Do Not Have to Overload 424
11.3.4 Rules and Restrictions on Operator Overloading 424

11.4 (Downplaying) Dynamic Memory Management with new and delete 425
11.5 Modern C++ Dynamic Memory Management: RAII and Smart Pointers 427

11.5.1 Smart Pointers 427
11.5.2 Demonstrating unique_ptr 428
11.5.3 unique_ptr Ownership 429
11.5.4 unique_ptr to a Built-In Array 430

11.6 MyArray Case Study: Crafting a Valuable Class with Operator Overloading 430
11.6.1 Special Member Functions 431
11.6.2 Using Class MyArray 432
11.6.3 MyArray Class Definition 441
11.6.4 Constructor That Specifies a MyArray’s Size 442
11.6.5 C++11 Passing a Braced Initializer to a Constructor 443
11.6.6 Copy Constructor and Copy Assignment Operator 444
11.6.7 Move Constructor and Move Assignment Operator 447
11.6.8 Destructor 450
11.6.9 toString and size Functions 451
11.6.10 Overloading the Equality (==) and Inequality (!=) Operators 451
11.6.11 Overloading the Subscript ([]) Operator 453
11.6.12 Overloading the Unary bool Conversion Operator 454
11.6.13 Overloading the Preincrement Operator 454
11.6.14 Overloading the Postincrement Operator 455
11.6.15 Overloading the Addition Assignment Operator (+=) 456
11.6.16 Overloading the Binary Stream Extraction (>>) and

Stream Insertion (<<) Operators 456
11.6.17 friend Function swap 459

11.7 C++20 Three-Way Comparison Operator (<=>) 459
11.8 Converting Between Types 462
11.9 explicit Constructors and Conversion Operators 463
11.10 Overloading the Function Call Operator () 466
11.11 Wrap-Up 466

Contents xv

12 Exceptions and a Look Forward to Contracts 467
12.1 Introduction 468
12.2 Exception-Handling Flow of Control 471

12.2.1 Defining an Exception Class to Represent the Type of Problem
That Might Occur 472

12.2.2 Demonstrating Exception Handling 472
12.2.3 Enclosing Code in a try Block 474
12.2.4 Defining a catch Handler for DivideByZeroExceptions 474
12.2.5 Termination Model of Exception Handling 475
12.2.6 Flow of Control When the User Enters a Nonzero Denominator 476
12.2.7 Flow of Control When the User Enters a Zero Denominator 476

12.3 Exception Safety Guarantees and noexcept 476
12.4 Rethrowing an Exception 477
12.5 Stack Unwinding and Uncaught Exceptions 479
12.6 When to Use Exception Handling 481

12.6.1 assert Macro 483
12.6.2 Failing Fast 483

12.7 Constructors, Destructors and Exception Handling 483
12.7.1 Throwing Exceptions from Constructors 484
12.7.2 Catching Exceptions in Constructors via Function try Blocks 484
12.7.3 Exceptions and Destructors: Revisiting noexcept(false) 486

12.8 Processing new Failures 487
12.8.1 new Throwing bad_alloc on Failure 488
12.8.2 new Returning nullptr on Failure 489
12.8.3 Handling new Failures Using Function set_new_handler 489

12.9 Standard Library Exception Hierarchy 490
12.10 C++’s Alternative to the finally Block: Resource Acquisition Is

Initialization (RAII) 493
12.11 Some Libraries Support Both Exceptions and Error Codes 493
12.12 Logging 494
12.13 Looking Ahead to Contracts 495
12.14 Wrap-Up 503

13 Standard Library Containers and Iterators 505
13.1 Introduction 506
13.2 Introduction to Containers 508

13.2.1 Common Nested Types in Sequence and Associative Containers 510
13.2.2 Common Container Member and Non-Member Functions 510
13.2.3 Requirements for Container Elements 513

13.3 Working with Iterators 513
13.3.1 Using istream_iterator for Input and ostream_iterator

for Output 514
13.3.2 Iterator Categories 515
13.3.3 Container Support for Iterators 516

xvi Contents

13.3.4 Predefined Iterator Type Names 516
13.3.5 Iterator Operators 516

13.4 A Brief Introduction to Algorithms 518
13.5 Sequence Containers 518
13.6 vector Sequence Container 519

13.6.1 Using vectors and Iterators 519
13.6.2 vector Element-Manipulation Functions 522

13.7 list Sequence Container 526
13.8 deque Sequence Container 531
13.9 Associative Containers 533

13.9.1 multiset Associative Container 533
13.9.2 set Associative Container 537
13.9.3 multimap Associative Container 539
13.9.4 map Associative Container 541

13.10 Container Adaptors 543
13.10.1 stack Adaptor 543
13.10.2 queue Adaptor 545
13.10.3 priority_queue Adaptor 546

13.11 bitset Near Container 547
13.12 Optional: A Brief Intro to Big O 549
13.13 Optional: A Brief Intro to Hash Tables 552
13.14 Wrap-Up 553

14 Standard Library Algorithms and
C++20 Ranges & Views 555

14.1 Introduction 556
14.2 Algorithm Requirements: C++20 Concepts 558
14.3 Lambdas and Algorithms 560
14.4 Algorithms 563

14.4.1 fill, fill_n, generate and generate_n 563
14.4.2 equal, mismatch and lexicographical_compare 566
14.4.3 remove, remove_if, remove_copy and remove_copy_if 568
14.4.4 replace, replace_if, replace_copy and replace_copy_if 572
14.4.5 Shuffling, Counting, and Minimum and Maximum

Element Algorithms 574
14.4.6 Searching and Sorting Algorithms 578
14.4.7 swap, iter_swap and swap_ranges 582
14.4.8 copy_backward, merge, unique, reverse, copy_if and copy_n 584
14.4.9 inplace_merge, unique_copy and reverse_copy 588
14.4.10 Set Operations 589
14.4.11 lower_bound, upper_bound and equal_range 592
14.4.12 min, max and minmax 594
14.4.13 Algorithms gcd, lcm, iota, reduce and partial_sum from

Header <numeric> 596
14.4.14 Heapsort and Priority Queues 599

Contents xvii

14.5 Function Objects (Functors) 603
14.6 Projections 608
14.7 C++20 Views and Functional-Style Programming 611

14.7.1 Range Adaptors 611
14.7.2 Working with Range Adaptors and Views 612

14.8 Intro to Parallel Algorithms 617
14.9 Standard Library Algorithm Summary 619
14.10 A Look Ahead to C++23 Ranges 622
14.11 Wrap-Up 623

15 Templates, C++20 Concepts and
Metaprogramming 625

15.1 Introduction 626
15.2 Custom Class Templates and Compile-Time Polymorphism 629
15.3 C++20 Function Template Enhancements 634

15.3.1 C++20 Abbreviated Function Templates 634
15.3.2 C++20 Templated Lambdas 636

15.4 C++20 Concepts: A First Look 636
15.4.1 Unconstrained Function Template multiply 637
15.4.2 Constrained Function Template with a C++20 Concepts

requires Clause 640
15.4.3 C++20 Predefined Concepts 642

15.5 Type Traits 644
15.6 C++20 Concepts: A Deeper Look 648

15.6.1 Creating a Custom Concept 648
15.6.2 Using a Concept 649
15.6.3 Using Concepts in Abbreviated Function Templates 650
15.6.4 Concept-Based Overloading 651
15.6.5 requires Expressions 654
15.6.6 C++20 Exposition-Only Concepts 657
15.6.7 Techniques Before C++20 Concepts: SFINAE and Tag Dispatch 658

15.7 Testing C++20 Concepts with static_assert 659
15.8 Creating a Custom Algorithm 661
15.9 Creating a Custom Container and Iterators 663

15.9.1 Class Template ConstIterator 665
15.9.2 Class Template Iterator 668
15.9.3 Class Template MyArray 670
15.9.4 MyArray Deduction Guide for Braced Initialization 673
15.9.5 Using MyArray and Its Custom Iterators with

std::ranges Algorithms 674
15.10 Default Arguments for Template Type Parameters 678
15.11 Variable Templates 678
15.12 Variadic Templates and Fold Expressions 679

15.12.1 tuple Variadic Class Template 679

xviii Contents

15.12.2 Variadic Function Templates and an Intro to
C++17 Fold Expressions 682

15.12.3 Types of Fold Expressions 686
15.12.4 How Unary-Fold Expressions Apply Their Operators 686
15.12.5 How Binary-Fold Expressions Apply Their Operators 689
15.12.6 Using the Comma Operator to Repeatedly Perform an Operation 690
15.12.7 Constraining Parameter Pack Elements to the Same Type 691

15.13 Template Metaprogramming 693
15.13.1 C++ Templates Are Turing Complete 694
15.13.2 Computing Values at Compile-Time 694
15.13.3 Conditional Compilation with Template Metaprogramming

and constexpr if 699
15.13.4 Type Metafunctions 701

15.14 Wrap-Up 705

16 C++20 Modules: Large-Scale Development 707
16.1 Introduction 708
16.2 Compilation and Linking Before C++20 710
16.3 Advantages and Goals of Modules 711
16.4 Example: Transitioning to Modules—Header Units 712
16.5 Modules Can Reduce Translation Unit Sizes and Compilation Times 715
16.6 Example: Creating and Using a Module 716

16.6.1 module Declaration for a Module Interface Unit 717
16.6.2 Exporting a Declaration 719
16.6.3 Exporting a Group of Declarations 719
16.6.4 Exporting a namespace 719
16.6.5 Exporting a namespace Member 720
16.6.6 Importing a Module to Use Its Exported Declarations 720
16.6.7 Example: Attempting to Access Non-Exported Module Contents 722

16.7 Global Module Fragment 724
16.8 Separating Interface from Implementation 725

16.8.1 Example: Module Implementation Units 725
16.8.2 Example: Modularizing a Class 728
16.8.3 :private Module Fragment 731

16.9 Partitions 732
16.9.1 Example: Module Interface Partition Units 732
16.9.2 Module Implementation Partition Units 735
16.9.3 Example: “Submodules” vs. Partitions 736

16.10 Additional Modules Examples 740
16.10.1 Example: Importing the C++ Standard Library as Modules 740
16.10.2 Example: Cyclic Dependencies Are Not Allowed 742
16.10.3 Example: imports Are Not Transitive 743
16.10.4 Example: Visibility vs. Reachability 744

16.11 Migrating Code to Modules 746

Contents xix

16.12 Future of Modules and Modules Tooling 746
16.13 Wrap-Up 748

17 Parallel Algorithms and Concurrency:
A High-Level View 755

17.1 Introduction 756
17.2 Standard Library Parallel Algorithms (C++17) 759

17.2.1 Example: Profiling Sequential and Parallel Sorting Algorithms 759
17.2.2 When to Use Parallel Algorithms 762
17.2.3 Execution Policies 763
17.2.4 Example: Profiling Parallel and Vectorized Operations 764
17.2.5 Additional Parallel Algorithm Notes 766

17.3 Multithreaded Programming 767
17.3.1 Thread States and the Thread Life Cycle 767
17.3.2 Deadlock and Indefinite Postponement 769

17.4 Launching Tasks with std::jthread 771
17.4.1 Defining a Task to Perform in a Thread 772
17.4.2 Executing a Task in a jthread 773
17.4.3 How jthread Fixes thread 775

17.5 Producer–Consumer Relationship: A First Attempt 776
17.6 Producer–Consumer: Synchronizing Access to Shared Mutable Data 783

17.6.1 Class SynchronizedBuffer: Mutexes, Locks and
Condition Variables 785

17.6.2 Testing SynchronizedBuffer 791
17.7 Producer–Consumer: Minimizing Waits with a Circular Buffer 795
17.8 Readers and Writers 804
17.9 Cooperatively Canceling jthreads 805
17.10 Launching Tasks with std::async 808
17.11 Thread-Safe, One-Time Initialization 815
17.12 A Brief Introduction to Atomics 816
17.13 Coordinating Threads with C++20 Latches and Barriers 820

17.13.1 C++20 std::latch 820
17.13.2 C++20 std::barrier 823

17.14 C++20 Semaphores 826
17.15 C++23: A Look to the Future of C++ Concurrency 830

17.15.1 Parallel Ranges Algorithms 830
17.15.2 Concurrent Containers 830
17.15.3 Other Concurrency-Related Proposals 831

17.16 Wrap-Up 831

18 C++20 Coroutines 833
18.1 Introduction 834
18.2 Coroutine Support Libraries 835
18.3 Installing the concurrencpp and generator Libraries 837

xx Contents

18.4 Creating a Generator Coroutine with co_yield and the generator Library 837
18.5 Launching Tasks with concurrencpp 841
18.6 Creating a Coroutine with co_await and co_return 845
18.7 Low-Level Coroutines Concepts 853
18.8 C++23 Coroutines Enhancements 855
18.9 Wrap-Up 856

A Operator Precedence and Grouping 857

B Character Set 859

Index 861

Online Chapters and Appendices
19 Stream I/O and C++20 Text Formatting
20 Other Topics and a Look Toward C++23
C Number Systems
D Preprocessor
E Bit Manipulation

Welcome to C++20 for Programmers: An Objects-Natural Approach. This book presents
leading-edge computing technologies for software developers. It conforms to the C++20
standard (1,834 pages), which the ISO C++ Standards Committee approved in September
2020.1,2

The C++ programming language is popular for building high-performance business-
critical and mission-critical computing systems—operating systems, real-time systems,
embedded systems, game systems, banking systems, air-traffic-control systems, communi-
cations systems and more. This book is an introductory- through intermediate-level tuto-
rial presentation of the C++20 version of C++, which is among the world’s most popular
programming languages,3 and its associated standard libraries. We present a friendly, con-
temporary, code-intensive, case-study-oriented introduction to C++20. In this Preface, we
explore the “soul of the book.”

P.1 Modern C++
We focus on Modern C++, which includes the four most recent C++ standards—C++20,
C++17, C++14 and C++11, with a look toward key features anticipated for C++23 and
later. A common theme of this book is to focus on the new and improved ways to code in
C++. We employ best practices, emphasizing current professional software-development
Modern C++ idioms, and we focus on performance, security and software engineering
issues.

Keep It Topical
“Who dares to teach must never cease to learn.”4 (J. C. Dana)

To “take the pulse” of Modern C++, which changes the way developers write C++ pro-
grams, we read, browsed or watched approximately 6,000 current articles, research papers,
white papers, documentation pieces, blog posts, forum posts and videos.

1. The final draft C++ standard is located at: https://timsong-cpp.github.io/cppwp/n4861/. This
version is free. The published final version (ISO/IEC 14882:2020) may be purchased at https://
www.iso.org/standard/79358.html.

2. Herb Sutter, “C++20 Approved, C++23 Meetings and Schedule Update,” September 6, 2020. Ac-
cessed January 11, 2022. https://herbsutter.com/2020/09/06/c20-approved-c23-meetings-
and-schedule-update/.

3. Tiobe Index for January 2022. Accessed January 7, 2022. http://www.tiobe.com/tiobe-index.
4. John Cotton Dana. From https://www.bartleby.com/73/1799.html: “In 1912 Dana, a Newark,

New Jersey, librarian, was asked to supply a Latin quotation suitable for inscription on a new building
at Newark State College (now Kean University), Union, New Jersey. Unable to find an appropriate
quotation, Dana composed what became the college motto.”—The New York Times Book Review,
March 5, 1967, p. 55.”

Preface

https://timsong-cpp.github.io/cppwp/n4861/
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://herbsutter.com/2020/09/06/c20-approved-c23-meetings-and-schedule-update/
https://herbsutter.com/2020/09/06/c20-approved-c23-meetings-and-schedule-update/
http://www.tiobe.com/tiobe-index
https://www.bartleby.com/73/1799.html

xxii Preface

C++ Versions
As a developer, you might work on C++ legacy code or projects requiring specific C++ ver-
sions. So, we use margin icons like the “20” icon shown here to mark each mention of a
Modern C++ language feature with the C++ version in which it first appeared. The icons
help you see C++ evolving, often from programming with low-level details to easier-to-use,
higher-level forms of expression. These trends help reduce development times, and
enhance performance, security and system maintainability.

P.2 Target Audiences
C++20 for Programmers: An Objects-Natural Approach has several target audiences:

• C++ software developers who want to learn the latest C++20 features in the con-
text of a full-language, professional-style tutorial,

• non-C++ software developers who are preparing to do a C++ project and want to
learn the latest version of C++,

• software developers who learned C++ in college or used it professionally some
time ago and want to refresh their C++ knowledge in the context of C++20, and

• professional C++ trainers developing C++20 courses.

P.3 Live-Code Approach and Getting the Code
At the heart of the book is the Deitel signature live-code approach. Rather than code snip-
pets, we show C++ as it’s intended to be used in the context of hundreds of complete,
working, real-world C++ programs with live outputs.

Read the Before You Begin section that follows this Preface to learn how to set up
your Windows, macOS or Linux computer to run the 200+ code examples consisting of
approximately 15,000 lines of code. All the source code is available free for download at

• https://github.com/pdeitel/CPlusPlus20ForProgrammers

• https://www.deitel.com/books/c-plus-plus-20-for-programmers

• https://informit.com/title/9780136905691 (see Section P.8)

For your convenience, we provide the book’s examples in C++ source-code (.cpp and .h)
files for use with integrated development environments and command-line compilers. See
Chapter 1’s Test-Drives (Section 1.2) for information on compiling and running the
code examples with our three preferred compilers. Execute each program in parallel with
reading the text to make your learning experience “come alive.” If you encounter a prob-
lem, you can reach us at

deitel@deitel.com

P.4 Three Industrial-Strength Compilers
We tested the code examples on the latest versions of

• Visual C++® in Microsoft® Visual Studio® Community edition on Windows®,

20

https://github.com/pdeitel/CPlusPlus20ForProgrammers
https://www.deitel.com/books/c-plus-plus-20-for-programmers
https://informit.com/title/9780136905691
mailto:deitel@deitel.com

P.5 Programming Wisdom and Key C++20 Features xxiii

• Clang C++ (clang++) in Apple® Xcode® on macOS®, and in a Docker® con-
tainer, and

• GNU® C++ (g++) on Linux® and in the GNU Compiler Collection (GCC)
Docker® container.

At the time of this writing, most C++20 features are fully implemented by all three
compilers, some are implemented by a subset of the three and some are not yet imple-
mented by any. We point out these differences as appropriate and will update our digital
content as the compiler vendors implement the remaining C++20 features. We’ll also post
code updates to the book’s GitHub repository:

https://github.com/pdeitel/CPlusPlus20ForProgrammers

and both code and text updates on the book’s websites:

https://www.deitel.com/books/c-plus-plus-20-for-programmers

https://informit.com/title/9780136905691

P.5 Programming Wisdom and Key C++20 Features
Throughout the book, we use margin icons to call your attention to software-develop-
ment wisdom and C++20 modules and concepts features:

• Software engineering observations highlight architectural and design issues for
proper software construction, especially for larger systems.

• Security best practices help you strengthen your programs against attacks.

• Performance tips highlight opportunities to make your programs run faster or
minimize the amount of memory they occupy.

• Common programming errors help reduce the likelihood that you’ll make the
same mistakes.

• C++ Core Guidelines recommendations (introduced in Section P.9).

• C++20’s new modules features.

• C++20’s new concepts features.

P.6 “Objects-Natural” Learning Approach
In Chapter 9, we’ll cover how to develop custom C++20 classes, then continue our treat-
ment of object-oriented programming throughout the rest of the book.

What Is Objects Natural?
In the early chapters, you’ll work with preexisting classes that do significant things. You’ll
quickly create objects of those classes and get them to “strut their stuff” with a minimal
number of simple C++ statements. We call this the “Objects-Natural Approach.”

Given the massive numbers of free, open-source class libraries created by the C++
community, you’ll be able to perform powerful tasks long before you study how to create
your own custom C++ classes in Chapter 9. This is one of the most compelling aspects
of working with object-oriented languages, in general, and with a mature object-oriented
language like C++, in particular.

20

SE

Sec

Perf

Err

CG

Mod

C Concepts

https://github.com/pdeitel/CPlusPlus20ForProgrammers
https://www.deitel.com/books/c-plus-plus-20-for-programmers
https://informit.com/title/9780136905691

xxiv Preface

Free Classes
We emphasize using the huge number of valuable free classes available in the C++ ecosys-
tem. These typically come from:

• the C++ Standard Library,

• platform-specific libraries, such as those provided with Microsoft Windows,
Apple macOS or various Linux versions,

• free third-party C++ libraries, often created by the open-source community, and

• fellow developers, such as those in your organization.

We encourage you to view lots of free, open-source C++ code examples (available on sites
such as GitHub) for inspiration.

The Boost Project
Boost provides 168 open-source C++ libraries.5 It also serves as a “breeding ground” for
new capabilities that are eventually incorporated into the C++ standard libraries. Some
that have been added to Modern C++ include multithreading, random-number genera-
tion, smart pointers, tuples, regular expressions, file systems and string_views.6 The fol-
lowing StackOverflow answer lists Modern C++ libraries and language features that
evolved from the Boost libraries:7

https://stackoverflow.com/a/8852421

Objects-Natural Case Studies
Chapter 1 reviews the basic concepts and terminology of object technology. In the early
chapters, you’ll then create and use objects of preexisting classes long before creating your
own custom classes in Chapter 9 and in the remainder of the book. Our objects-natural
case studies include:

• Section 2.7—Creating and Using Objects of Standard-Library Class string

• Section 3.12—Arbitrary-Sized Integers

• Section 4.13—Using the miniz-cpp Library to Write and Read ZIP files

• Section 5.20—Lnfylun Lhqtomh Wjtz Qarcv: Qjwazkrplm xzz Xndmwwqhlz
(this is the encrypted title of our private-key encryption case study)

• Section 6.15—C++ Standard Library Class Template vector

• Section 7.10—C++20 spans: Views of Contiguous Container Elements

• Section 8.19—Reading/Analyzing a CSV File Containing Titanic Disaster Data

• Section 8.20—Intro to Regular Expressions

• Section 9.22—Serializing Objects with JSON (JavaScript Object Notation)

5. “Boost 1.78.0 Library Documentation.” Accessed January 9, 2022. https://www.boost.org/doc/
libs/1_78_0/.

6. “Boost C++ Libraries.” Wikipedia. Wikimedia Foundation. Accessed January 9, 2022. https://
en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries).

7. Kennytm, Answer to “Which Boost Features Overlap with C++11?” Accessed January 9, 2022.
https://stackoverflow.com/a/8852421.

https://stackoverflow.com/a/8852421
https://www.boost.org/doc/libs/1_78_0/
https://www.boost.org/doc/libs/1_78_0/
https://en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)
https://en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)
https://stackoverflow.com/a/8852421

P.7 A Tour of the Book xxv

A perfect example of the objects-natural approach is using objects of existing classes, like
array and vector (Chapter 6), without knowing how to write custom classes in general
or how those classes are written in particular. Throughout the rest of the book, we use
existing C++ standard library capabilities extensively.

P.7 A Tour of the Book
The full-color table of contents graphic inside the front cover shows the book’s modular
architecture. As you read this Tour of the Book, also refer to that graphic. Together, the
graphic and this section will help you quickly “scope out” the book’s coverage.

This Tour of the Book points out many of the book’s key features. The early chapters
establish a solid foundation in C++20 fundamentals. The mid-range to high-end chapters
and the case studies ease you into Modern C++20-based software development. Through-
out the book, we discuss C++20’s programming models:

• procedural programming,

• functional-style programming,

• object-oriented programming,

• generic programming and

• template metaprogramming.

Part 1: Programming Fundamentals Quickstart

Chapter 1, Intro and Test-Driving Popular, Free C++ Compilers: This book is for pro-
fessional software developers, so Chapter 1

• presents a brief introduction,

• discusses Moore’s law, multi-core processors and why standardized concurrent
programming is important in Modern C++, and

• provides a brief refresher on object orientation, introducing terminology used
throughout the book.

Then we jump right in with test-drives demonstrating how to compile and execute C++
code with our three preferred free compilers:

• Microsoft’s Visual C++ in Visual Studio on Windows,

• Apple’s Xcode on macOS and

• GNU’s g++ on Linux.

We tested the book’s code examples using each, pointing out the few cases in which a com-
piler does not support a particular feature. Choose whichever program-development envi-
ronment(s) you prefer. The book also will work well with other C++20 compilers.

We also demonstrate GNU g++ in the GNU Compiler Collection Docker container
and Clang C++ in a Docker container. This enables you to run the latest GNU g++ and
clang++ command-line compilers on Windows, macOS or Linux. See Section P.13,
Docker, for more information on this important developer tool. See the Before You Begin
section for installation instructions.

xxvi Preface

For Windows users, we point to Microsoft’s step-by-step instructions that allow you
to install Linux in Windows via the Windows Subsystem for Linux (WSL). This is another
way to use the g++ and clang++ compilers on Windows.

Chapter 2, Intro to C++ Programming, presents C++ fundamentals and illustrates key
language features, including input, output, fundamental data types, arithmetic operators
and their precedence, and decision making. Section 2.7’s objects-natural case study
demonstrates creating and using objects of standard-library class string—without you
having to know how to develop custom classes in general or how that large complex class
is implemented in particular).

Chapter 3, Control Statements: Part 1, focuses on control statements. You’ll use the if
and if…else selection statements, the while iteration statement for counter-controlled
and sentinel-controlled iteration, and the increment, decrement and assignment opera-
tors. Section 3.12’s objects-natural case study demonstrates using a third-party library to
create arbitrary-sized integers.

Chapter 4, Control Statements: Part 2, presents C++’s other control statements—for,
do…while, switch, break and continue—and the logical operators. Section 4.13’s
objects-natural case study demonstrates using the miniz-cpp library to write and read
ZIP files programmatically.

Chapter 5, Functions and an Intro to Function Templates, introduces custom functions.
We demonstrate simulation techniques with random-number generation. The random-
number generation function rand that C++ inherited from C does not have good statistical
properties and can be predictable.8 This makes programs using rand less secure. We include
a treatment of C++11’s more secure library of random-number capabilities that can pro-
duce nondeterministic random numbers—a set of random numbers that can’t be predicted.
Such random-number generators are used in simulations and security scenarios where pre-
dictability is undesirable. We also discuss passing information between functions, and recur-
sion. Section 5.20’s objects-natural case study demonstrates private-key encryption.

Part 2: Arrays, Pointers and Strings

Chapter 6, arrays, vectors, Ranges and Functional-Style Programming, begins our
early coverage of the C++ standard library’s containers, iterators and algorithms. We pres-
ent the C++ standard library’s array container for representing lists and tables of values.
You’ll define and initialize arrays, and access their elements. We discuss passing arrays
to functions, sorting and searching arrays and manipulating multidimensional arrays.
We begin our introduction to functional-style programming with lambda expressions
(anonymous functions) and C++20’s Ranges—one of C++20’s “big four” features.
Section 6.15’s objects-natural case study demonstrates the C++ standard library class
template vector. This entire chapter is essentially a large objects-natural case study of
both arrays and vectors. The code in this chapter is a good example of Modern C++ cod-
ing idioms.

8. Fred Long, “Do Not Use the rand() Function for Generating Pseudorandom Numbers.” Last modified
by Jill Britton on November 20, 2021. Accessed December 27, 2021. https://wiki.sei.cmu.edu/
confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+

pseudorandom+numbers.

Sec
11

20

https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers

P.7 A Tour of the Book xxvii

Chapter 7, (Downplaying) Pointers in Modern C++, provides thorough coverage of
pointers and the intimate relationship among built-in pointers, pointer-based arrays and
pointer-based strings (also called C-strings), each of which C++ inherited from the C pro-
gramming language. Pointers are powerful but challenging to work with and are error-
prone. So, we point out Modern C++ features that eliminate the need for most pointers
and make your code more robust and secure, including arrays and vectors, C++20 spans
and C++17 string_views. We still cover built-in arrays because they remain useful in C++
and so you’ll be able to read legacy code. In new development, you should favor Modern
C++ capabilities. Section 7.10’s objects-natural case study demonstrates one such capa-
bility—C++20 spans. These enable you to view and manipulate elements of contiguous
containers, such as pointer-based arrays and standard library arrays and vectors, without
using pointers directly. This chapter again emphasizes Modern C++ coding idioms.

Chapter 8, strings, string_views, Text Files, CSV Files and Regex, presents many of
the standard library string class’s features; shows how to write text to, and read text from,
both plain text files and comma-separated values (CSV) files (popular for representing
datasets); and introduces string pattern matching with the standard library’s regular-
expression (regex) capabilities. C++ offers two types of strings—string objects and C-style
pointer-based strings. We use string class objects to make programs more robust and
eliminate many of the security problems of C strings. In new development, you should
favor string objects. We also present C++17’s string_views—a lightweight, flexible
mechanism for passing any type of string to a function. This chapter presents two objects-
natural case studies:

• Section 8.19 introduces data analysis by reading and analyzing a CSV file con-
taining the Titanic Disaster dataset—a popular dataset for introducing data ana-
lytics to beginners.

• Section 8.20 introduces regular-expression pattern matching and text replace-
ment.

Part 3: Object-Oriented Programming

Chapter 9, Custom Classes, begins our treatment of object-oriented programming as we
craft valuable custom classes. C++ is extensible—each class you create becomes a new type
you can use to create objects. Section 9.22’s objects-natural case study uses the third-
party library cereal to convert objects into JavaScript Object Notation (JSON) format—
a process known as serialization—and to recreate those objects from their JSON repre-
sentation—known as deserialization.

Chapter 10, OOP: Inheritance and Runtime Polymorphism, focuses on the relationships
among classes in an inheritance hierarchy and the powerful runtime polymorphic processing
capabilities that these relationships enable. An important aspect of this chapter is under-
standing how polymorphism works. A key feature of this chapter is its detailed diagram and
explanation of how C++ typically implements polymorphism, virtual functions and
dynamic binding “under the hood.” You’ll see that it uses an elegant pointer-based data
structure. We present other mechanisms to achieve runtime polymorphism, including the
non-virtual interface idiom (NVI) and std::variant/std::visit. We also discuss pro-
gramming to an interface, not an implementation.

Sec
20
17

20

Sec

17

xxviii Preface

Chapter 11, Operator Overloading, Copy/Move Semantics and Smart Pointers, shows
how to enable C++’s existing operators to work with custom class objects, and introduces
smart pointers and dynamic memory management. Smart pointers help you avoid
dynamic memory management errors by providing additional functionality beyond that
of built-in pointers. We discuss unique_ptr in this chapter and shared_ptr and weak_ptr
in online Chapter 20. A key aspect of this chapter is crafting valuable classes. We begin
with a string class test-drive, presenting an elegant use of operator overloading before
you implement your own customized class with overloaded operators. Then, in one of the
book’s most important case studies, you’ll build your own custom MyArray class using
overloaded operators and other capabilities to solve various problems with C++’s native
pointer-based arrays.9 We introduce and implement the five special member functions
you can define in each class—the copy constructor, copy assignment operator, move con-
structor, move assignment operator and destructor. We discuss copy semantics and
move semantics, which enable a compiler to move resources from one object to another
to avoid costly unnecessary copies. We introduce C++20’s three-way comparison opera-
tor (<=>; also called the “spaceship operator”) and show how to implement custom con-
version operators. In Chapter 15, you’ll convert MyArray to a class template that can store
elements of a specified type. You will have truly crafted valuable classes.

Chapter 12, Exceptions and a Look Forward to Contracts, continues our exception-
handling discussion that began in Chapter 6. We discuss when to use exceptions, excep-
tion safety guarantees, exceptions in the context of constructors and destructors, handling
dynamic memory allocation failures and why some projects do not use exception han-
dling. The chapter concludes with an introduction to contracts—a potential future C++
feature that we demonstrate via an experimental contracts implementation available on
godbolt.org. A goal of contracts is to make most functions noexcept—meaning they
do not throw exceptions—which might enable the compiler to perform additional opti-
mizations and eliminate the overhead and complexity of exception handling.

Part 4: Standard Library Containers, Iterators and Algorithms

Chapter 13, Standard Library Containers and Iterators, begins our broader and deeper
treatment of three key C++ standard library components:

• containers (templatized data structures),

• iterators (for accessing container elements) and

• algorithms (which use iterators to manipulate containers).

We’ll discuss containers, container adaptors and near containers. You’ll see that the C++
standard library provides commonly used data structures, so you do not need to create
your own—the vast majority of your data structures needs can be fulfilled by reusing these
standard library capabilities. We demonstrate most standard library containers and intro-
duce how iterators enable algorithms to be applied to various container types. You’ll see
that different containers support different kinds of iterators. We continue showing how
C++20 Ranges can simplify your code.

9. In industrial-strength systems, you’ll use standard library classes for this, but this example enables us
to demonstrate many key Modern C++ concepts.

Err

Perf
20

Err

Perf

20

http://godbolt.org

P.7 A Tour of the Book xxix

Chapter 14, Standard Library Algorithms and C++20 Ranges & Views, presents many of
the standard library’s 115 algorithms, focusing on common container manipulations,
including filling containers with values, generating values, comparing elements or entire con-
tainers, removing elements, replacing elements, mathematical operations, searching, sorting,
swapping, copying, merging, set operations, determining boundaries, and calculating mini-
mums and maximums. We discuss minimum iterator requirements so you can determine
which containers can be used with each algorithm. We begin discussing C++20 Concepts—
another of C++20’s “big four” features. The algorithms in C++20’s std::ranges namespace
use C++20 Concepts to specify their requirements. We continue our discussion of C++’s
functional-style programming features with C++20 Ranges and Views.

Part 5: Advanced Topics

Chapter 15, Templates, C++20 Concepts and Metaprogramming, discusses generic pro-
gramming with templates, which have been in C++ since the 1998 C++ standard was
released. The importance of Templates has increased with each new C++ release. A major
Modern C++ theme is to do more at compile-time for better type checking and better run-
time performance—anything resolved at compile-time avoids runtime overhead and makes
systems faster. As you’ll see, templates and especially template metaprogramming are the
keys to powerful compile-time operations. In this chapter, we’ll take a deeper look at tem-
plates, showing how to develop custom class templates and exploring C++20 concepts.
You’ll create your own concepts, convert Chapter 11’s MyArray case study to a class template
with its own iterators, and work with variadic templates that can receive any number of tem-
plate arguments. We’ll introduce how to work with C++ metaprogramming.

Chapter 16, C++20 Modules, presents another of C++20’s “big four” features. Modules are
a new way to organize your code, precisely control which declarations you expose to client
code and encapsulate implementation details. Modules help developers be more productive,
especially as they build, maintain and evolve large software systems. Modules help such sys-
tems build faster and make them more scalable. C++ creator Bjarne Stroustrup says, “Mod-
ules offer a historic opportunity to improve code hygiene and compile times for C++ (bringing C++
into the 21st century).”10 You’ll see that even in small systems, modules offer immediate ben-
efits in every program by eliminating the need for the C++ preprocessor. We would have
liked to integrate modules in our programs but, at the time of this writing, our key compilers
are still missing various modules capabilities.

Chapter 17, Parallel Algorithms and Concurrency: A High-Level View, is one of the
most important chapters in the book, presenting C++’s features for building applications
that create and manage multiple tasks. This can significantly improve program perfor-
mance and responsiveness. We show how to use C++17’s prepackaged parallel algorithms
to create multithreaded programs that will run faster (often much faster) on today’s
multi-core computer architectures. For example, we sort 100 million values using a
sequential sort, then a parallel sort. We use C++’s <chrono> library features to profile the
performance improvement we get on today’s popular multi-core systems, as we employ an
increasing number of cores. You’ll see that the parallel sort runs 6.76 times faster than the

10. Bjarne Stroustrup, “Modules and Macros.” February 11, 2018. Accessed January 9, 2022. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf.

20

20
20

Perf

20

Mod

Perf

SE

Perf
17

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf

xxx Preface

sequential sort on our Windows 10 64-bit computer using an 8-core Intel processor. We
discuss the producer–consumer relationship and demonstrate various ways to implement
it using low-level and high-level C++ concurrency primitives, including C++20’s new
latch, barrier and semaphore capabilities. We emphasize that concurrent programming is
difficult to get right and that you should aim to use the higher-level concurrency features
whenever possible. Lower-level features like semaphores and atomics can be used to
implement higher-level features like latches.

Chapter 18, C++20 Coroutines, presents coroutines—the last of C++20’s “big four” fea-
tures. A coroutine is a function that can suspend its execution and be resumed later by
another part of the program. The mechanisms supporting this are handled entirely by
code that’s written for you by the compiler. You’ll see that a function containing any of
the keywords co_await, co_yield or co_return is a coroutine and that coroutines enable
you to do concurrent programming with a simple sequential-like coding style. Corou-
tines require sophisticated infrastructure, which you can write yourself, but doing so is
complex, tedious and error-prone. Instead, most experts agree that you should use high-
level coroutine support libraries, which is the approach we demonstrate. The open-source
community has created several experimental libraries for developing coroutines quickly
and conveniently—we use two in our presentation. C++23 is expected to have standard
library support for coroutines.

Appendices
Appendix A, Operator Precedence Chart, lists C++’s operators in highest-to-lowest pre-
cedence order.

Appendix B, Character Set, shows characters and their corresponding numeric codes.

P.8 How to Get the Online Chapters and Appendices
We provide several online chapters and appendices on informit.com. Perform the fol-
lowing steps to register your copy of C++20 for Programmers: An Objects-Natural
Approach on informit.com and access this online content:

1. Go to https://informit.com/register and sign in with an existing account or
create a new one.

2. Under Register a Product, enter the ISBN 9780136905691, then click Submit.

3. In your account page’s My Registered Products section, click the Access Bonus
Content link under C++20 for Programmers: An Objects-Natural Approach.

This will take you to the book’s online content page.

Online Chapters
Chapter 19, Stream I/O; C++20 Text Formatting: A Deeper Look, discusses standard
C++ input/output capabilities and legacy formatting features of the <iomanip> library. We
include these formatting features primarily for programmers who might encounter them in
legacy C++ code. We also present C++20’s new text-formatting features in more depth.

Chapter 20, Other Topics, presents miscellaneous C++ topics and looks forward to new
features expected in C++23 and beyond.

20

20

SE

23

2020

23

http://informit.com
http://informit.com
https://informit.com/register

P.9 C++ Core Guidelines xxxi

Online Appendices
Appendix C, Number Systems, overviews the binary, octal, decimal and hexadecimal
number systems.

Appendix D, Preprocessor, discusses additional features of the C++ preprocessor. Tem-
plate metaprogramming (Chapter 15) and C++20 Modules (Chapter 16) obviate many of
this appendix’s features.

Appendix E, Bit Manipulation, discusses bitwise operators for manipulating the individ-
ual bits of integral operands and bit fields for compactly representing integer data.

Web-Based Materials on deitel.com
Our deitel.com web page for the book

https://deitel.com/c-plus-plus-20-for-programmers

contains the following additional resources:

• Links to our GitHub repository containing the book’s downloadable C++ source
code

• Blog posts—https://deitel.com/blog

• Book updates

For more information about downloading the examples and setting up your C++ develop-
ment environment, see the Before You Begin section.

P.9 C++ Core Guidelines
The C++ Core Guidelines (approximately 500 printed pages)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

are recommendations “to help people use modern C++ effectively.”11 They’re edited by
Bjarne Stroustrup (C++’s creator) and Herb Sutter (Convener of the ISO C++ Standards
Committee). According to the overview:

“The guidelines are focused on relatively high-level issues, such as interfaces,
resource management, memory management, and concurrency. Such rules affect
application architecture and library design. Following the rules will lead to code
that is statically type safe, has no resource leaks, and catches many more program-
ming logic errors than is common in code today. And it will run fast—you can
afford to do things right.”12

Throughout this book, we adhere to these guidelines as appropriate. You’ll want to pay
close attention to their wisdom. We point out many C++ Core Guidelines recommenda-
tions with a CG icon. There are hundreds of core guidelines divided into scores of catego-
ries and subcategories. Though this might seem overwhelming, static code analysis tools
(Section P.10) can check your code against the guidelines.

20

CG

11. C++ Core Guidelines, “Abstract.” Accessed January 9, 2020. https://isocpp.github.io/CppCo-
reGuidelines/CppCoreGuidelines#S-abstract.

12. C++ Core Guidelines, “Abstract.”

Err

SE

Perf

CG

http://deitel.com
http://deitel.com
https://deitel.com/c-plus-plus-20-for-programmers
https://deitel.com/blog
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCo-reGuidelines/CppCoreGuidelines#S-abstract
https://isocpp.github.io/CppCo-reGuidelines/CppCoreGuidelines#S-abstract

xxxii Preface

Guidelines Support Library
The C++ Core Guidelines often refer to capabilities of the Guidelines Support Library
(GSL), which implements helper classes and functions to support various recommenda-
tions.13 Microsoft provides an open-source GSL implementation on GitHub at

https://github.com/Microsoft/GSL

We use GSL features in a few examples in the early chapters. Some GSL features have since
been incorporated into the C++ standard library.

P.10 Industrial-Strength Static Code Analysis Tools
Static code analysis tools let you quickly check your code for common errors and security
problems and provide insights for code improvement. Using these tools is like having
world-class experts checking your code. To help us adhere to the C++ Core Guidelines and
improve our code in general, we used the following static-code analyzers:

• clang-tidy—https://clang.llvm.org/extra/clang-tidy/

• cppcheck—https://cppcheck.sourceforge.io/

• Microsoft’s C++ Core Guidelines static code analysis tools, which are built into
Visual Studio’s static code analyzer

We used these three tools on the book’s code examples to check for

• adherence to the C++ Core Guidelines,

• adherence to coding standards,

• adherence to modern C++ idioms,

• possible security problems,

• common bugs,

• possible performance issues,

• code readability

• and more.

We also used the compiler flag -Wall in the GNU g++ and Clang C++ compilers to enable
all compiler warnings. With a few exceptions for warnings beyond this book’s scope, we
ensure that our programs compile without warning messages. See the Before You Begin
section for static analysis tool configuration information.

P.11 Teaching Approach
C++20 for Programmers: An Objects-Natural Approach contains a rich collection of live-
code examples. We stress program clarity and concentrate on building well-engineered
software.

13. C++ Core Guidelines, “GSL: Guidelines Support Library.” Accessed January 9, 2022. https://iso-
cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl.

Err

Sec

Err

Sec

https://github.com/Microsoft/GSL
https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/
https://iso-cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl
https://iso-cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl

P.12 Developer Resources xxxiii

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence in bold
text for easier reference. C++ code uses a fixed-width font (e.g., x = 5). We place on-
screen components in the bold Helvetica font (e.g., the File menu).

Syntax Coloring
For readability, we syntax color all the code. In our e-books, our syntax-coloring conven-
tions are as follows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

Objectives and Outline
Each chapter begins with objectives that tell you what to expect.

Tables and Illustrations
Abundant tables and line drawings are included.

Programming Tips and Key Features
We call out programming tips and key features with icons in margins (see Section P.5).

Index
For convenient reference, we’ve included an extensive index, with defining occurrences of
key terms highlighted with a bold page number.

P.12 Developer Resources
StackOverflow
StackOverflow is one of the most popular developer-oriented, question-and-answer sites.
Many problems programmers encounter have already been discussed here, so it’s a great
place to find solutions to those problems and post questions about new ones. Many of our
Google searches for various, often complex, issues throughout our writing effort returned
StackOverflow answers as their first results.

GitHub
“The best way to prepare [to be a programmer] is to write programs, and to study
great programs that other people have written. In my case, I went to the garbage
cans at the Computer Science Center and fished out listings of their operating sys-
tems.”14—William Gates

GitHub is an excellent venue for finding free, open-source code to incorporate into your
projects—and for you to contribute your code to the open-source community if you like.
Fifty million developers use GitHub.15 The site hosts over 200 million repositories for

14. William Gates, quoted in Programmers at Work: Interviews with 19 Programmers Who Shaped the
Computer Industry by Susan Lammers. Microsoft Press, 1986, p. 83.

15. “GitHub.” Accessed January 7, 2022. https://github.com/.

https://github.com/

xxxiv Preface

code written in an enormous number of programming languages16—developers contrib-
uted to 61+ million repositories in the last year.17 GitHub is a crucial element of the pro-
fessional software developer’s arsenal with version-control tools that help developer teams
manage public open-source projects and private projects.

There is a massive C++ open-source community. On GitHub, there are over 41,00018

C++ code repositories. You can check out other people’s C++ code on GitHub and even
build upon it if you like. This is a great way to learn and is a natural extension of our live-
code teaching approach.19

In 2018, Microsoft purchased GitHub for $7.5 billion. As a software developer,
you’re almost certainly using GitHub regularly. According to Microsoft’s CEO, Satya
Nadella, the company bought GitHub to “empower every developer to build, innovate and
solve the world’s most pressing challenges.”20

We encourage you to study and execute lots of developers’ open-source C++ code on
GitHub and to contribute your own.

P.13 Docker
We use Docker—a tool for packaging software into containers that bundle everything
required to execute that software conveniently and portably across platforms. Some software
packages require complicated setup and configuration. For many of these, you can download
free preexisting Docker containers, avoiding complex installation issues. You can simply exe-
cute software locally on your desktop or notebook computers, making Docker a great way
to help you get started with new technologies quickly, conveniently and economically.

We show how to install and execute Docker containers preconfigured with

• the GNU Compiler Collection (GCC), which includes the g++ compiler, and

• the latest version of Clang’s clang++ compiler.

Each can run in Docker on Windows, macOS and Linux.
Docker also helps with reproducibility. Custom Docker containers can be configured

with the software and libraries you use. This would enable others to recreate the environ-
ment you used, then reproduce your work, and will help you reproduce your own results.
Reproducibility is especially important in the sciences and medicine—for example, when
researchers want to prove and extend the work in published articles.

P.14 Some Key C++ Documentation and Resources
The book includes over 900 citations to videos, blog posts, articles and online documen-
tation we studied while writing the manuscript. You may want to access some of these
resources to investigate more advanced features and idioms. The website cpprefer-
ence.com has become the defacto C++ documentation site. We reference it frequently so

16. “Where the World Builds Software.” Accessed January 7, 2022. https://github.com/about.
17. “The 2021 State of the Octoverse.” Accessed January 7, 2022. https://octoverse.github.com.
18. “C++.” Accessed January 7, 2022. https://github.com/topics/cpp.
19. Students will need to become familiar with the variety of open-source licenses for software on

GitHub.
20. “Microsoft to Acquire GitHub for $7.5 Billion.” Accessed January 7, 2022. https://news.micro-

soft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/.

Sec

Sec

Sec

http://cpprefer-ence.com
http://cpprefer-ence.com
https://github.com/about
https://octoverse.github.com
https://github.com/topics/cpp
https://news.micro-soft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://news.micro-soft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/

P.14 Some Key C++ Documentation and Resources xxxv

you can get more details about the standard C++ classes and functions we use throughout
the book. We also frequently reference the final draft of the C++20 standard document,
which is available for free on GitHub at

https://timsong-cpp.github.io/cppwp/n4861/

You may also find the following C++ resources helpful as you work through the book.

Documentation
• C++20 standard document final draft adopted by the C++ Standard Committee:

 https://timsong-cpp.github.io/cppwp/n4861/

• C++ Reference at cppreference.com:

 https://cppreference.com/

• Microsoft’s C++ language documentation:

 https://docs.microsoft.com/en-us/cpp/cpp/

• The GNU C++ Standard Library Reference Manual:

 https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html

Blogs
• Sutter’s Mill Blog—Herb Sutter on software development:

 https://herbsutter.com/

• Microsoft’s C++ Team Blog:

 https://devblogs.microsoft.com/cppblog

• Marius Bancila’s Blog:

 https://mariusbancila.ro/blog/

• Jonathan Boccara’s Blog:

 https://www.fluentcpp.com/

• Bartlomiej Filipek’s Blog:

 https://www.cppstories.com/

• Rainer Grimm’s Blog:

 http://modernescpp.com/

• Arthur O’Dwyer’s Blog:

 https://quuxplusone.github.io/blog/

Additional Resources
• Bjarne Stroustrup’s website:

 https://stroustrup.com/

• Standard C++ Foundation website:

 https://isocpp.org/

• C++ Standard Committee website:

 http://www.open-std.org/jtc1/sc22/wg21/

20

https://timsong-cpp.github.io/cppwp/n4861/
https://timsong-cpp.github.io/cppwp/n4861/
http://cppreference.com
https://cppreference.com/
https://docs.microsoft.com/en-us/cpp/cpp/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html
https://herbsutter.com/
https://devblogs.microsoft.com/cppblog
https://mariusbancila.ro/blog/
https://www.fluentcpp.com/
https://www.cppstories.com/
http://modernescpp.com/
https://quuxplusone.github.io/blog/
https://stroustrup.com/
https://isocpp.org/
http://www.open-std.org/jtc1/sc22/wg21/

xxxvi Preface

P.15 Getting Your Questions Answered
Popular C++ and general programming online forums include

• https://stackoverflow.com

• https://www.reddit.com/r/cpp/

• https://groups.google.com/g/comp.lang.c++

• https://www.dreamincode.net/forums/forum/15-c-and-c/

For a list of other valuable sites, see

https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-
from-these-10-best-websites/

Also, vendors often provide forums for their tools and libraries. Many libraries are man-
aged and maintained at github.com. Some library maintainers provide support through
the Issues tab on a given library’s GitHub page.

Communicating with the Authors
As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

We’ll respond promptly.

P.16 Join the Deitel & Associates, Inc. Social Media
Communities
Join the Deitel social media communities on

• LinkedIn®—https://bit.ly/DeitelLinkedIn

• YouTube®—https://youtube.com/DeitelTV

• Twitter®—https://twitter.com/deitel

• Facebook®—https://facebook.com/DeitelFan

P.17 Deitel Pearson Products on O’Reilly Online
Learning
If you’re at a company or college, your organization might have an O’Reilly Online Learn-
ing subscription, giving you free access to all of Deitel’s Pearson e-books and LiveLessons
videos hosted on the site, as well as Paul Deitel’s live, one-day Full Throttle training
courses, offered on a continuing basis. Individuals may sign up for a 10-day free trial at

https://learning.oreilly.com/register/

For a list of all our current products and courses on O’Reilly Online Learning, visit

https://deitel.com/LearnWithDeitel

Textbooks and Professional Books
Each Deitel e-book on O’Reilly Online Learning is presented in full color, extensively
indexed and text searchable. As we write our professional books, they’re posted on

Sec

https://stackoverflow.com
https://www.reddit.com/r/cpp/
https://groups.google.com/g/comp.lang.c++
https://www.dreamincode.net/forums/forum/15-c-and-c/
https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-from-these-10-best-websites/
https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-from-these-10-best-websites/
http://github.com
mailto:deitel@deitel.com
https://bit.ly/DeitelLinkedIn
https://youtube.com/DeitelTV
https://twitter.com/deitel
https://facebook.com/DeitelFan
https://learning.oreilly.com/register/
https://deitel.com/LearnWithDeitel

P.18 Live Instructor-Led Training with Paul Deitel xxxvii

O’Reilly Online Learning for early “rough cut” access, then replaced with the book’s final
content once published. The final e-book for C++20 for Programmers: An Objects-Natu-
ral Approach is available to O’Reilly subscribers at

https://learning.oreilly.com/library/view/c-20-for-programmers/
9780136905776

Asynchronous LiveLessons Video Products
Learn hands-on with Paul Deitel as he presents compelling, leading-edge computing tech-
nologies in C++, Java, Python and Python Data Science/AI (and more coming). Access to
our C++20 Fundamentals LiveLessons videos is available to O’Reilly subscribers at

https://learning.oreilly.com/videos/c-20-fundamentals-parts/
9780136875185

These videos are ideal for self-paced learning. At the time of this writing, we’re still record-
ing this product. Additional videos will be posted as they become available during Q1 and
Q2 of 2022. The final video product will contain 50–60 hours of video—approximately
the equivalent of two college semester courses.

Live Full-Throttle Training Courses
Paul Deitel’s live Full-Throttle training courses at O’Reilly Online Learning

https://deitel.com/LearnWithDeitel

are one-full-day, presentation-only, fast-paced, code-intensive introductions to Python,
Python Data Science/AI, Java, C++20 Fundamentals and the C++20 Standard Library.
These courses are for experienced developers and software project managers preparing for
projects using other languages. After taking a Full-Throttle course, participants often
watch the corresponding LiveLessons video course, which has many more hours of class-
room-paced learning.

P.18 Live Instructor-Led Training with Paul Deitel
Paul Deitel has been teaching programming languages to developer audiences for three
decades. He presents a variety of one- to five-day C++, Python and Java corporate training
courses, and teaches Python with an Introduction to Data Science for the UCLA Anderson
School of Management’s Master of Science in Business Analytics (MSBA) program. His
courses can be delivered worldwide on-site or virtually. Please contact deitel@deitel.com
for a proposal customized to meet your company’s or academic program’s needs.

P.19 College Textbook Version of C++20 for Programmers
Our college textbook, C++ How to Program, Eleventh Edition, will be available in three
digital formats:

• Online e-book offered through popular e-book providers.

• Interactive Pearson eText (see below).

• Interactive Pearson Revel with assessment (see below).

All of these textbook versions include standard “How to Program” features such as:

• A chapter introducing hardware, software and Internet concepts.

20

20

https://learning.oreilly.com/library/view/c-20-for-programmers/9780136905776
https://learning.oreilly.com/library/view/c-20-for-programmers/9780136905776
https://learning.oreilly.com/videos/c-20-fundamentals-parts/9780136875185
https://learning.oreilly.com/videos/c-20-fundamentals-parts/9780136875185
https://deitel.com/LearnWithDeitel
mailto:deitel@deitel.com

xxxviii Preface

• An introduction to programming for novices.

• End-of-section programming and non-programming Checkpoint self-review
exercises with answers.

• End-of-chapter exercises.

Deitel Pearson eTexts and Revels include:

• Videos in which Paul Deitel discusses the material in the book’s core chapters.

• Interactive programming and non-programming Checkpoint self-review exer-
cises with answers.

• Flashcards and other learning tools.

In addition, Pearson Revels include interactive programming and non-programming
automatically graded exercises, as well as instructor course-management tools, such as a
grade book.

Supplements available to qualified college instructors teaching from the textbook
include:

• Instructor solutions manual with solutions to most of the end-of-chapter exer-
cises.

• Test-item file with four-part, code-based and non-code-based multiple-choice
questions with answers.

• Customizable PowerPoint lecture slides.

Please write to deitel@deitel.com for more information.

P.20 Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this proj-
ect. We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the efforts and 27-year mentorship of our friend and colleague
Mark L. Taub, Vice President of the Pearson IT Professional Group. Mark and his team
publish our professional books and LiveLessons video products, and sponsor our live online
training seminars, offered through the O’Reilly Online Learning service:

https://learning.oreilly.com/

Charvi Arora recruited the book’s reviewers and managed the review process. Julie Nahil
managed the book’s production. Chuti Prasertsith designed the cover.

Reviewers
We were fortunate on this project to have 10 distinguished professionals review the manu-
script. Most of the reviewers are either on the ISO C++ Standards Committee, have served
on it or have a working relationship with it. Many have contributed features to the language.
They helped us make a better book—any remaining flaws are our own.

• Andreas Fertig, Independent C++ Trainer and Consultant, Creator of cppin-
sights.io, Author of Programming with C++20

• Marc Gregoire, Software Architect, Nikon Metrology, Microsoft Visual C++
MVP and author of Professional C++, 5/e (which is up-to-date with C++20)

20

20

mailto:deitel@deitel.com
https://learning.oreilly.com/
http://cppin-sights.io
http://cppin-sights.io

P.20 Acknowledgments xxxix

• Dr. Daisy Hollman, ISO C++ Standards Committee Member

• Danny Kalev, Ph.D. and Certified System Analyst and Software Engineer, For-
mer ISO C++ Standards Committee Member

• Dietmar Kühl, Senior Software Developer, Bloomberg L.P., ISO C++ Standard
Committee Member

• Inbal Levi, SolarEdge Technologies, ISO C++ Foundation director, ISO C++
SG9 (Ranges) chair, ISO C++ Standards Committee member

• Arthur O’Dwyer, C++ trainer, Chair of CppCon’s Back to Basics track, author of
several accepted C++17/20/23 proposals and the book Mastering the C++17 STL

• Saar Raz, Senior Software Engineer, Swimm.io and Implementor of C++20 Con-
cepts in Clang

• José Antonio González Seco, Parliament of Andalusia

• Anthony Williams, Member of the British Standards Institution C++ Standards
Panel, Director of Just Software Solutions Ltd., Author of C++ Concurrency in
Action, 2/e (Anthony is the author or co-author of many C++ Standard Commit-
tee papers that led to C++’s standardized concurrency features)

Arthur O’Dwyer
We’d like to call out the extraordinary efforts Arthur O’Dwyer put into reviewing our
manuscript. While working through his comments, we learned a great deal about C++’s
subtleties and especially Modern C++ coding idioms. In addition to carefully marking
each chapter PDF we sent him, Arthur provided a separate comprehensive document
explaining his comments in detail, often rewriting code and providing external resources
that offered additional insights. As we applied all the reviewers’ comments, we always
looked forward to what Arthur had to say, especially regarding the more challenging issues.
He’s a busy professional, yet he was generous with his time and always constructive. He
insisted that we “get it right” and worked hard to help us do that. Arthur teaches C++ to
professionals. He taught us a much about how to do C++ right.

GitHub
Thanks to GitHub for making it easy for us to share our code and keep it up-to-date, and
for providing the tools that enable 73+ million developers to contribute to 200 million+
code repositories.21 These tools support the massive open-source communities that pro-
vide libraries for today’s popular programming languages, making it easier for developers
to create powerful applications and avoid “reinventing the wheel.”

Matt Godbolt and Compiler Explorer
Thanks to Matt Godbolt, creator of Compiler Explorer at https://godbolt.org, which
enables you to compile and run programs in many programming languages. Through this
site, you can test your code

• on most popular C++ compilers—including our three preferred compilers—and

• across many released, developmental and experimental compiler versions.

21. “Where the World Builds Software.” Accessed January 7, 2022. https://github.com/about.

17
20
23
20

https://godbolt.org
https://github.com/about

xl Preface

For example, we used an experimental g++ compiler version to demonstrate contracts
(Chapter 12, Exceptions and a Look Forward to Contracts), which we hope to see stan-
dardized in a future C++ language version. Several of our reviewers used godbolt.org to
demonstrate suggested changes to us, helping us improve the book.

Dietmar Kühl
We would like to thank Dietmar Kühl, Senior Software Developer at Bloomberg L.P. and
an ISO C++ Committee member, for sharing with us his views on inheritance and static
and dynamic polymorphism. His insights helped us shape our presentations of these topics
in Chapters 10 and 15.

Rainer Grimm
Our thanks to Rainer Grimm (http://modernescpp.com/), among the Modern C++ com-
munity’s most prolific bloggers. As we got deeper into C++20, our Google searches fre-
quently pointed us to his writings. Rainer Grimm is a professional C++ trainer who offers
courses in German and English. He is the author of several C++ books, including C++20:
Get the Details, Concurrency with Modern C++, The C++ Standard Library, 3/e and C++ Core
Guidelines Explained. He is already blogging about features likely to appear in C++23.

Brian Goetz
We were privileged to have as a reviewer on one of our other books—Java How to Program,
10/e—Brian Goetz, Oracle Java Language Architect and co-author of Java Concurrency in
Practice. He provided us with many insights and constructive comments, especially on

• inheritance hierarchy design, which influenced our design decisions for several
examples in Chapter 10, OOP: Inheritance and Runtime Polymorphism, and

• Java concurrency, which influenced our approach to C++20 concurrency in
Chapter 17, Parallel Algorithms and Concurrency: A High-Level View.

Open-Source Contributors and Bloggers
A special note of thanks to the technically oriented people worldwide who contribute to the
open-source movement and blog about their work online, and to their organizations that
encourage the proliferation of such open software and information.

Google Search
Thanks to Google, whose search engine answers our constant stream of queries, each in a
fraction of a second, at any time day or night—and at no charge. It’s the single best pro-
ductivity enhancement tool we’ve added to our research process in the last 20 years.

Grammarly
We now use the paid version of Grammarly on all our manuscripts. They describe their
tools as helping you “compose bold, clear, mistake-free writing” with their “AI-powered
writing assistant.”22 They also say, “Using a variety of innovative approaches—including
advanced machine learning and deep learning—we consistently break new ground in nat-

22. “Grammarly.” Accessed January 15, 2022. https://www.grammarly.com.

http://godbolt.org
http://modernescpp.com/
https://www.grammarly.com

 About the Authors xli

ural language processing (NLP) research to deliver unrivaled assistance.”23 Grammarly
provides free tools that you can integrate into several popular web browsers, Microsoft®

Office 365™ and Google Docs™. They also offer more powerful premium and business
tools. You can view their free and paid plans at

https://www.grammarly.com/plans

As you read the book and work through the code examples, we’d appreciate your com-
ments, criticisms, corrections and suggestions for improvement. Please send all correspon-
dence, including questions, to

deitel@deitel.com

We’ll respond promptly.
Welcome to the exciting world of C++20 programming. We’ve enjoyed writing 11

editions of our academic and professional C++ content over the last 30 years. We hope you
have an informative, challenging and entertaining learning experience with C++20 for
Programmers: An Objects-Natural Approach and enjoy this look at leading-edge, Modern
C++ software development.

Paul Deitel
Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT
graduate with 42 years in computing. Paul is one of the world’s most experienced
programming-languages trainers, having taught professional courses to software develop-
ers since 1992. He has delivered hundreds of programming courses to academic, industry,
government and military clients of Deitel & Associates, Inc. internationally, including
UCLA, Cisco, IBM, Siemens, Sun Microsystems (now Oracle), Dell, Fidelity, NASA at
the Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile
Range, Rogue Wave Software, Boeing, Puma, iRobot and many more. He and his co-
author, Dr. Harvey M. Deitel, are among the world’s best-selling programming-language
textbook, professional book, video and interactive multimedia e-learning authors, and vir-
tual- and live-training presenters.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 61 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—
he studied computing in each of these programs before they spun off Computer Science
departments. He has extensive industry and college teaching experience, including earning
tenure and serving as the Chairman of the Computer Science Department at Boston Col-
lege before founding Deitel & Associates in 1991 with his son, Paul. The Deitels’ publica-
tions have earned international recognition, with more than 100 translations published in
Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Tradi-
tional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered
hundreds of programming courses to academic, corporate, government and military clients.

23. “Our Mission.” Accessed January 15, 2022. https://www.grammarly.com/about.

20

https://www.grammarly.com/plans
mailto:deitel@deitel.com
https://www.grammarly.com/about

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate-training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include some of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered virtually and live at client sites
worldwide, and virtually for Pearson Education on O’Reilly Online Learning (https://
learning.oreilly.com), formerly called Safari Books Online.

Through its 47-year publishing partnership with Pearson, Deitel & Associates, Inc.,
publishes leading-edge programming professional books and college textbooks in print
and e-book formats, LiveLessons video courses, O’Reilly Online Learning live training
courses and Revel™ interactive multimedia college courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal for vir-
tual or on-site, instructor-led training worldwide, write to

deitel@deitel.com

To learn more about Deitel virtual and on-site corporate training, visit

https://deitel.com/training

Individuals wishing to purchase Deitel books can do so at

https://amazon.com
https://www.barnesandnoble.com/

Bulk orders by corporations, the government, the military and academic institutions should
be placed directly with Pearson. For corporate and government sales, send an email to

corpsales@pearsoned.com

Deitel e-books are available in various formats from

https://www.amazon.com/ https://www.vitalsource.com/

https://www.barnesandnoble.com/ https://www.redshelf.com/

https://www.informit.com/ https://www.chegg.com/

To register for a free 10-day trial to O’Reilly Online Learning, visit

https://learning.oreilly.com/register/

https://learning.oreilly.com
https://learning.oreilly.com
mailto:deitel@deitel.com
https://deitel.com/training
https://amazon.com
https://www.barnesandnoble.com/
mailto:corpsales@pearsoned.com
https://www.amazon.com/
https://www.vitalsource.com/
http://https://www.barnesandnoble.com/
https://www.redshelf.com/
http://https://www.informit.com/
https://www.chegg.com/
https://learning.oreilly.com/register/

Before using this book, please read this section to understand our conventions and set up
your computer to compile and run our example programs.

Font and Naming Conventions
We use fonts to distinguish application elements and C++ code elements from regular text:

• We use a sans-serif bold font for on-screen application elements, as in “the File
menu.”

• We use a sans-serif font for C++ code elements, as in sqrt(9).

Obtaining the Code Examples
We maintain the code examples for C++20 for Programmers in a GitHub repository. The
Source Code section of the book’s webpage at

 https://deitel.com/cpp20fp

includes a link to the GitHub repository and a link to a ZIP file containing the code. If
you’re familiar with Git and GitHub, clone the repository to your system. If you download
the ZIP file, be sure to extract its contents. In our instructions, we assume the examples
reside in your user account’s Documents folder in a subfolder named examples.

If you’re not familiar with Git and GitHub but are interested in learning about these
essential developer tools, check out their guides at

 https://guides.github.com/activities/hello-world/

Compilers We Use in C++20 for Programmers
Before reading this book, ensure that you have a recent C++ compiler installed. We tested
the code examples in C++20 for Programmers using the following free compilers:

• For Microsoft Windows, we used Microsoft Visual Studio Community edition,
which includes the Visual C++ compiler and other Microsoft development tools.1

• For macOS, we used the Apple Xcode2 C++ compiler, which uses a version of the
Clang C++ compiler.

• For Linux, we used the GNU C++ compiler3—part of the GNU Compiler Col-
lection (GCC). GNU C++ is already installed on most Linux systems (though

1. Visual Studio 2022 Community at the time of this writing.
2. Xcode 13.2.1 at the time of this writing.
3. GNU g++ 11.2 at the time of this writing.

Before
You Begin

https://deitel.com/cpp20fp
https://guides.github.com/activities/hello-world/

xliv Before You Begin

you might need to update the compiler to a more recent version) and can be
installed on macOS and Windows systems.

• You also can run the latest versions of GNU C++ and Clang C++ conveniently on
Windows, macOS and Linux via Docker containers. See the “Docker and Docker
Containers” section later in this Before You Begin section.

This Before You Begin describes installing the compilers and Docker. Section 1.2’s test-
drives demonstrate how to compile and run C++ programs using these compilers.

Some Examples Do Not Compile and Run on All Three Compilers
At the time of this writing (February 2022), the compiler vendors had not yet fully imple-
mented some of C++20’s new features. As those features become available, we’ll retest the
code, update our digital products and post updates for our print products at

https://deitel.com/cpp20fp

Installing Visual Studio Community Edition on Windows
If you are a Windows user, first ensure that your system meets the requirements for Mic-
rosoft Visual Studio Community edition at

https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-
requirements

Next, go to

https://visualstudio.microsoft.com/downloads/

Then perform the following installation steps:

1. Click Free Download under Community.

2. Depending on your web browser, you may see a pop-up at the bottom of your
screen in which you can click Run to start the installation process. If not, double-
click the installer file in your Downloads folder.

3. In the User Account Control dialog, click Yes to allow the installer to make chang-
es to your system.

4. In the Visual Studio Installer dialog, click Continue to allow the installer to down-
load the components it needs for you to configure your installation.

5. For this book’s examples, select the option Desktop Development with C++, which
includes the Visual C++ compiler and the C++ standard libraries.

6. Click Install. Depending on your Internet connection speed, the installation pro-
cess can take a significant amount of time.

Installing Xcode on macOS
On macOS, perform the following steps to install Xcode:

1. Click the Apple menu and select App Store…, or click the App Store icon in the
dock at the bottom of your Mac screen.

2. In the App Store’s Search field, type Xcode.

3. Click the Get button to install Xcode.

https://deitel.com/cpp20fp
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://visualstudio.microsoft.com/downloads/

 Installing the Most Recent GNU C++ Version xlv

Installing the Most Recent GNU C++ Version
There are many Linux distributions, and they often use different software upgrade tech-
niques. Check your distribution’s online documentation for the proper way to upgrade
GNU C++ to the latest version. You also can download GNU C++ for various platforms at

https://gcc.gnu.org/install/binaries.html

Installing the GNU Compiler Collection in Ubuntu Linux Running
on the Windows Subsystem for Linux
You can install the GNU Compiler Collection on Windows via the Windows Subsystem
for Linux (WSL), which enables you to run Linux in Windows. Ubuntu Linux provides
an easy-to-use installer in the Windows Store, but first you must install WSL:

1. In the search box on your taskbar, type “Turn Windows features on or off,” then
click Open in the search results.

2. In the Windows Features dialog, locate Windows Subsystem for Linux and ensure
that it is checked. If it is, WSL is already installed. Otherwise, check it and click
OK. Windows will install WSL and ask you to reboot your system.

3. Once the system reboots and you log in, open the Microsoft Store app and search
for Ubuntu, select the app named Ubuntu and click Install. This installs the latest
version of Ubuntu Linux.

4. Once installed, click the Launch button to display the Ubuntu Linux command-
line window, which will continue the installation process. You’ll be asked to cre-
ate a username and password for your Ubuntu installation—these do not need to
match your Windows username and password.

5. When the Ubuntu installation completes, execute the following two commands
to install the GCC and the GNU debugger—you may be asked enter your pass-
word for the account you created in Step 4:

 sudo apt-get update
 sudo apt-get install build-essential gdb

6. Confirm that g++ is installed by executing the following command:

 g++ --version

To access our code files, use the cd command change the folder within Ubuntu to:

cd /mnt/c/Users/YourUserName/Documents/examples

Use your own username and update the path to where you placed our examples on your
system.

Docker and Docker Containers
Docker is a tool for packaging software into containers (also called images) that bundle
everything required to execute that software across platforms, which is particularly useful
for software packages with complicated setups and configurations. For many such pack-
ages, there are free preexisting Docker containers (often at https://hub.docker.com) that
you can download and execute locally on your system. Docker is a great way to get started

https://gcc.gnu.org/install/binaries.html
https://hub.docker.com

xlvi Before You Begin

with new technologies quickly and conveniently. It is also a great way to experiment with
new compiler versions.

Installing Docker
To use a Docker container, you must first install Docker. Windows and macOS users
should download and run the Docker Desktop installer from

https://www.docker.com/get-started

Then follow the on-screen instructions. Also, sign up for a Docker Hub account on this
webpage so you can take advantage of containers from https://hub.docker.com. Linux
users should install Docker Engine from

https://docs.docker.com/engine/install/

Downloading the GNU Compiler Collection Docker Container
The GNU team maintains official Docker containers at

https://hub.docker.com/_/gcc

Once Docker is installed and running, open a Command Prompt4 (Windows), Terminal
(macOS/Linux) or shell (Linux), then execute the command

docker pull gcc:latest

Docker downloads the GNU Compiler Collection (GCC) container’s most current ver-
sion (at the time of this writing, version 11.2). In one of Section 1.2’s test-drives, we’ll
demonstrate how to execute the container and use it to compile and run C++ programs.

Downloading the GNU Compiler Collection Docker Container
Currently, the Clang team does not provide an official Docker container, but many work-
ing containers are available on https://hub.docker.com. For this book we used a popular
one from

https://hub.docker.com/r/teeks99/clang-ubuntu

Open a Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then
execute the command

docker pull teeks99/clang-ubuntu:latest

Docker downloads the Clang container’s most current version (at the time of this writing,
version 13). In one of Section 1.2’s test-drives, we’ll demonstrate how to execute the con-
tainer and use it to compile and run C++ programs.

Getting Your C++ Questions Answered
As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

and
https://deitel.com/contact-us

We’ll respond promptly.

4. Windows users should choose Run as administrator when opening the Command Prompt.

https://www.docker.com/get-started
https://hub.docker.com
https://docs.docker.com/engine/install/
https://hub.docker.com/_/gcc
https://hub.docker.com
https://hub.docker.com/r/teeks99/clang-ubuntu
mailto:deitel@deitel.com
https://deitel.com/contact-us

 Online C++ Documentation xlvii

The web is loaded with programming information. An invaluable resource for nonpro-
grammers and programmers alike is the website

https://stackoverflow.com

on which you can

• search for answers to most common programming questions,

• search for error messages to see what causes them,

• ask programming questions to get answers from programmers worldwide and

• gain valuable insights about programming in general.

For live C++ discussions, check out the Slack channel cpplang:

https://cpplang-inviter.cppalliance.org

and the Discord server #include<C++>:

https://www.includecpp.org/discord/

Online C++ Documentation
For documentation on the C++ standard library, visit

https://cppreference.com

Also, be sure to check out the C++ FAQ at

https://isocpp.org/faq

A Note Regarding the {fmt} Text-Formatting Library
Throughout the book many programs include the following line of code:

#include <fmt/format.h>

which enables our programs to use the open-source {fmt} library’s text-formatting fea-
tures.5 Those programs include calls to the function fmt::format.

C++20’s new text-formatting capabilities are a subset of the {fmt} library’s features.
In C++20, the preceding line of code should be

#include <format>

and the corresponding function calls should use the std::format function.
At the time of this writing, only Microsoft Visual C++ supported C++20’s new text-

formatting capabilities. For this reason, our examples use the open-source {fmt} library to
ensure most of the examples will execute on all of our preferred compilers.

Static Code Analysis Tools
We used the following static code analyzers to check our code examples for adherence to
the C++ Core Guidelines, adherence to coding standards, adherence to Modern C++ idi-
oms, possible security problems, common bugs, possible performance issues, code read-
ability and more:

5. “{fmt}.” Accessed February 15, 2022. https://github.com/fmtlib/fmt.

https://stackoverflow.com
https://cpplang-inviter.cppalliance.org
https://www.includecpp.org/discord/
https://cppreference.com
https://isocpp.org/faq
https://github.com/fmtlib/fmt

xlviii Before You Begin

• clang-tidy—https://clang.llvm.org/extra/clang-tidy/

• cppcheck—https://cppcheck.sourceforge.io/

• Microsoft’s C++ Core Guidelines static code analysis tools, which are built into
Visual Studio’s static code analyzer

You can install clang-tidy on Linux with the following commands:

sudo apt-get update -y
sudo apt-get install -y clang-tidy

You can install cppcheck for various operating-system platforms by following the instruc-
tions at https://cppcheck.sourceforge.io/. For Visual C++, once you learn how to
create a project in Section 1.2’s test-drives, you can configure Microsoft’s C++ Core
Guidelines static code analysis tools as follows:

1. Right-click your project name in the Solution Explorer and select Properties.

2. In the dialog that appears, select Code Analysis > General in the left column, then
set Enable Code Analysis on Build to Yes in the right column.

3. Next, select Code Analysis > Microsoft in the left column. Then, in the right col-
umn you can select a specific subset of the analysis rules in the drop-down list.
We used the option <Choose multiple rule sets…> to select all the rule sets that
begin with C++ Core Check. Click Save As…, give your custom rule set a name,
click Save, then click Apply. (Note that this will produce large numbers of warn-
ings for the {fmt} text-formatting library that we use in the book’s examples.)

https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/

1
Intro and Test-Driving

Popular, Free C++ Compilers

O b j e c t i v e s
In this chapter, you’ll:
■ Quickly get a “40,000-foot view” of this book’s architecture

and coverage of the large, complex and powerful programming
language that is C++20.

■ Test-drive compiling and running a C++ application using our
three preferred compilers—Visual C++ in Microsoft Visual
Studio on Windows, Clang C++ in Xcode on macOS and
GNU g++ on Linux.

■ See how to execute Docker containers for the g++ and
clang++ command-line compilers, so you can use these
compilers on Windows, macOS or Linux.

■ See resources where you can learn about C++’s history and
milestones over 40+ years.

■ Understand why concurrent programming is crucial in
Modern C++ for getting maximum performance from today’s
multi-core processors.

■ Review object-technology concepts used in the early chapters’
objects-natural case studies and presented in the book’s
object-oriented programming chapters (starting with
Chapter 9).

2 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

1.1 Introduction
Welcome to C++—one of the world’s most popular programming languages.1 We present
Modern C++ in the context of C++20—the latest version standardized through the Inter-
national Organization for Standardization (ISO). This chapter presents

• a quick way for you to understand the book’s superstructure,

• several test-drives of the most popular free C++ compilers,

• a discussion of Moore’s law, multi-core processors and why concurrent program-
ming is crucial to building high-performance applications in Modern C++, and

• a brief refresher on object-oriented programming concepts and terminology we’ll
use throughout the book.

This Book’s Superstructure
Before you “dig in,” we recommend that you get a “40,000-foot” view of the book’s super-
structure to understand where you’re headed as you prepare to learn the large, complex
and powerful language that is C++20. To do so, we recommend reviewing the following
items:

• The one-page, full-color Table of Contents diagram inside the front cover pro-
vides a high-level overview of the book. You can view a scalable PDF version of
this diagram at

 https://deitel.com/cpp20fpTOCdiagram

• The back cover contains a concise introduction to the book, a bullet list of its key
features and several testimonial comments. More are included on the inside back
cover and its facing page. These comments are from the C++ subject-matter
experts who reviewed the prepublication manuscript. Reading them will give you
a nice overview of the book’s features the reviewers felt were important. These
comments are also posted on the book’s webpage at

 https://deitel.com/cpp20fp

• The Preface presents the “soul of the book” and our approach to Modern C++
programming. We introduce the “Objects-Natural Approach,” in which you’ll

1.1 Introduction
1.2 Test-Driving a C++20 Application

1.2.1 Compiling and Running a C++20
Application with Visual Studio 2022
Community Edition on Windows

1.2.2 Compiling and Running a C++20
Application with Xcode on macOS

1.2.3 Compiling and Running a C++20
Application with GNU C++ on Linux

1.2.4 Compiling and Running a C++20
Application with g++ in the GCC
Docker Container

1.2.5 Compiling and Running a C++20
Application with clang++ in a
Docker Container

1.3 Moore’s Law, Multi-Core Processors
and Concurrent Programming

1.4 A Brief Refresher on Object
Orientation

1.5 Wrap-Up

1. “TIOBE Index.” Accessed January 10, 2022. https://www.tiobe.com/tiobe-index/.

20

https://deitel.com/cpp20fpTOCdiagram
https://deitel.com/cpp20fp
https://www.tiobe.com/tiobe-index/

1.1 Introduction 3

use small numbers of simple C++ statements to make powerful classes perform
significant tasks—long before you create custom classes. Be sure to read the Tour
of the Book, which points out the key features of each chapter. As you read the
Tour, you might also want to refer to the Table of Contents diagram.

Resources on the History of C++
In 1979, Bjarne Stroustrup began creating C++, which he called “C with Classes.”2 There
are now at least five million developers (with some estimates are as high as 7.5 million3,4)
using C++ to build a wide range of business-critical and mission-critical systems and appli-
cations software.5,6 Today’s popular desktop operating systems—Windows7 and
macOS8—are partially written in C++. Many popular applications also are partially writ-
ten in C++, including web browsers (e.g., Google Chrome9 and Mozilla Firefox10), data-
base management systems (e.g., MySQL11and MongoDB12) and more.

C++’s history and significant milestones are well documented:

• Wikipedia’s C++ page provides a detailed history of C++ with many citations:

 https://en.wikipedia.org/wiki/C%2B%2B

• Bjarne Stroustrup, C++’s creator, provides a thorough history of the language and
its design from inception through C++20:

 https://www.stroustrup.com/C++.html#design

• cppreference.com provides a list of C++ milestones since its inception with
many citations:

 https://en.cppreference.com/w/cpp/language/history

2. “Bjarne Stroustrup.” Accessed January 10, 2022. https://en.wikipedia.org/wiki/Bja-

rne_Stroustrup.
3. “State of the Developer Nation, 21st Edition,” Q3 2021. Accessed January 10, 2022. https://

www.slashdata.co/free-resources/state-of-the-developer-nation-21st-edition.
4. Tim Anderson, “Report: World's Population of Developers Expands, Javascript Reigns, C# Over-

takes PHP,” April 26, 2021. Accessed January 10, 2022. https://www.theregister.com/2021/04/
26/report_developers_slashdata/.

5. “Top 10 Reasons to Learn C++.” Accessed January 10, 2022. https://www.geeksforgeeks.org/
top-10-reasons-to-learn-c-plus-plus/.

6. “What Is C++ Used For? Top 12 Real-World Applications and Uses of C++.” Accessed January 10,
2022. https://www.softwaretestinghelp.com/cpp-applications/.

7. “What Programming Language Is Windows Written In?” Accessed January 10, 2022. https://
social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-pro-

gramming-language-is-windows-written-in.
8. “macOS.” Wikipedia. Wikimedia Foundation. Accessed January 10, 2022. https://en.wikipe-

dia.org/wiki/MacOS.
9. “Google Chrome.” Wikipedia. Wikimedia Foundation. Accessed January 10, 2022. https://

en.wikipedia.org/wiki/Google_Chrome.
10. “Firefox.” Wikipedia. Wikimedia Foundation. Accessed January 10, 2022. https://en.wikipe-

dia.org/wiki/Firefox.
11. “MySQL.” Wikipedia. Wikimedia Foundation. Accessed January 10, 2022. https://en.wikipe-

dia.org/wiki/MySQL.
12. “MongoDB.” Wikipedia. Wikimedia Foundation. Accessed January 10, 2022. https://en.wiki-

pedia.org/wiki/MongoDB.

https://en.wikipedia.org/wiki/C%2B%2B
https://www.stroustrup.com/C++.html#design
http://cppreference.com
https://en.cppreference.com/w/cpp/language/history
https://en.wikipedia.org/wiki/Bja-rne_Stroustrup
https://en.wikipedia.org/wiki/Bja-rne_Stroustrup
https://www.slashdata.co/free-resources/state-of-the-developer-nation-21st-edition
https://www.slashdata.co/free-resources/state-of-the-developer-nation-21st-edition
https://www.theregister.com/2021/04/26/report_developers_slashdata/
https://www.theregister.com/2021/04/26/report_developers_slashdata/
https://www.geeksforgeeks.org/top-10-reasons-to-learn-c-plus-plus/
https://www.geeksforgeeks.org/top-10-reasons-to-learn-c-plus-plus/
https://www.softwaretestinghelp.com/cpp-applications/
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-pro-gramming-language-is-windows-written-in
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-pro-gramming-language-is-windows-written-in
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-pro-gramming-language-is-windows-written-in
https://en.wikipe-dia.org/wiki/MacOS
https://en.wikipe-dia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipe-dia.org/wiki/Firefox
https://en.wikipe-dia.org/wiki/Firefox
https://en.wikipe-dia.org/wiki/MySQL
https://en.wikipe-dia.org/wiki/MySQL
https://en.wiki-pedia.org/wiki/MongoDB
https://en.wiki-pedia.org/wiki/MongoDB

4 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

1.2 Test-Driving a C++20 Application
In this section, you’ll compile, run and interact with your first C++ application13—a
guess-the-number game, which picks a random number from 1 to 1,000 and prompts you
to guess it. If you guess correctly, the game ends. If you guess incorrectly, the application
indicates whether your guess is higher or lower than the correct number. There’s no limit
on the number of guesses you can make.

Summary of the Compiler and IDE Test-Drives
We’ll show how to compile and execute C++ code using:

• Microsoft Visual Studio 2022 Community edition for Windows (Section 1.2.1),

• Clang in Apple Xcode on macOS (Section 1.2.2),

• GNU g++ in a shell on Linux (Section 1.2.3),

• g++ in a shell running inside the GNU Compiler Collection (GCC) Docker con-
tainer (Section 1.2.4), and

• clang++ (the command-line version of the Clang C++ compiler) in a shell run-
ning inside a Docker container (Section 1.2.5).

You can read only the section that corresponds to your platform. To use the Docker con-
tainers for g++ and clang++, you must have Docker installed and running, as discussed in
the Before You Begin section after the Preface.

1.2.1 Compiling and Running a C++20 Application with Visual Studio
2022 Community Edition on Windows
In this section, you’ll run a C++ program on Windows using Microsoft Visual Studio
2022 Community edition.14 There are several versions of Visual Studio available—on
some versions, the options, menus and instructions we present might differ slightly. From
this point forward, we'll simply say “Visual Studio” or “the IDE.”

Step 1: Checking Your Setup
If you have not already done so, read the Before You Begin section to install the IDE and
download the book’s code examples.

Step 2: Launching Visual Studio
Open Visual Studio from the Start menu. Dismiss this initial Visual Studio window by
pressing the Esc key. Do not click the X in the upper-right corner—that will terminate
Visual Studio. You can access this window at any time by selecting File > Start Window.
We use > to indicate selecting a menu item from a menu, so File > Open means “select the
Open menu item from the File menu.”

13. We intentionally do not cover the code for this C++ program here. Its purpose is simply to demon-
strate compiling and running a program using each compiler we discuss in this section. We present
random-number generation in Chapter 5.

14. At the time of this writing, the Visual Studio 2022 Community version number was 17.0.5.

1.2 Test-Driving a C++20 Application 5

Step 3: Creating a Project
A project is a group of related files, such as the C++ source-code files that compose an
application. Visual Studio organizes applications into projects and solutions. A solution
contains one or more projects. Multi-project solutions are used to create large-scale appli-
cations. Each application in this book requires only a single-project solution. For our code
examples, you’ll begin with an Empty Project and add files to it. To create a project:

1. Select File > New > Project… to display the Create a New Project dialog.

2. Select the Empty Project template with the tags C++, Windows and Console. This
project template is for programs that execute at the command line in a Command
Prompt window. Depending on your Visual Studio version and its installed op-
tions, many other project templates may be installed. You can filter your choices
using the Search for templates textbox and the drop-down lists below it. Click
Next to display the Configure your new project dialog.

3. Provide a Project name and Location. For the Project name, we specified
cpp20_test. For the Location, we selected this book’s examples folder. Click
Create to open your new project in Visual Studio.

At this point, the Visual Studio creates your project, places its folder in

C:\Users\YourUserAccount\Documents\examples

(or the folder you specified) and opens the main window.
When you edit C++ code, Visual Studio displays each file as a separate tab within the

window. The Solution Explorer—docked to Visual Studio’s left or right side—is for view-
ing and managing your application’s files. In this book’s examples, you’ll typically place
each program’s code files in the Source Files folder. If the Solution Explorer is not dis-
played, you can display it by selecting View > Solution Explorer.

Step 4: Adding the GuessNumber.cpp File to the Project
Next, you’ll add GuessNumber.cpp to the project you created in Step 3. In the Solution
Explorer:

1. Right-click the Source Files folder and select Add > Existing Item….

2. In the dialog that appears, navigate to the ch01 subfolder of the book’s examples
folder, select GuessNumber.cpp and click Add.15

Step 5: Configuring Your Project to Use C++20
The Visual C++ compiler in Visual Studio supports several versions of the C++ standard.
For this book, we use C++20, which we must configure in our project’s settings:

1. Right-click the project’s node— —in the Solution Explorer and select
Properties to display the project’s cpp20_test Property Pages dialog.

2. In the Configuration drop-down list, select All Configurations. In the Platform
drop-down list, select All Platforms.

SE

15. For the multiple source-code-file programs that you’ll see in later chapters, select all the files for a
given program. When you begin creating programs yourself, you can right-click the Source Files
folder and select Add > New Item… to display a dialog for adding a new file.

6 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

3. In the left column, expand the C/C++ node, then select Language.

4. In the right column, click in the field to the right of C++ Language Standard, click
the down arrow, then select ISO C++20 Standard (/std:c++20) and click OK.

Step 6: Compiling and Running the Project
To compile and run the project so you can test-drive the application, select Debug > Start
without debugging or type Ctrl + F5. If the program compiles correctly, Visual Studio
opens a Command Prompt window and executes the program. We changed the Com-
mand Prompt’s color scheme and font size for readability:

Step 7: Entering Your First Guess
At the ? prompt, type 500 and press Enter—the outputs will vary each time you run the
program. In our case, the application displayed "Too low. Try again." to indicate the
value was less than the number the application chose as the correct guess:

Step 8: Entering Another Guess
At the next prompt, if your system said the first guess was too low, type 750 and press
Enter; otherwise, type 250 and press Enter. In our case, we entered 750, and the application
displayed "Too high. Try again." because the value was greater than the correct guess:

Step 9: Entering Additional Guesses
Continue to play the game by entering values until you guess the correct number. When
you guess correctly, the application displays "Excellent! You guessed the number!":

20

1.2 Test-Driving a C++20 Application 7

Step 10: Playing the Game Again or Exiting the Application
After guessing the correct number, the application asks if you’d like to play another game.
At the "Would you like to play again (y or n)?" prompt, entering y causes the applica-
tion to choose a new number and start a new game. Entering n terminates the application.

Reusing This Project for Subsequent Examples
You can follow the steps in this section to create a separate project for every application in
the book. However, you may find it more convenient for our examples to remove the cur-
rent program from the project, then add a new program. To remove a file from your proj-
ect (but not your system), select it in the Solution Explorer, then press Del (or Delete). You
can then repeat Step 4 to add a different program to the project.

Using Ubuntu Linux in the Windows Subsystem for Linux
Some Windows users may want to use the GNU gcc compiler on Windows. You can do
this using the GNU Compiler Collection Docker container (Section 1.2.4), or you can
use gcc in Ubuntu Linux running in the Windows Subsystem for Linux. To install the
Windows Subsystem for Linux, follow the instructions at

https://docs.microsoft.com/en-us/windows/wsl/install

Once you install and launch the Ubuntu app on your Windows System, you can use the
following command to change to the folder containing the test-drive code example on
your Windows system:

cd /mnt/c/Users/YourUseName/Documents/examples/ch01

Then you can continue with Step 2 in Section 1.2.3.

https://docs.microsoft.com/en-us/windows/wsl/install

8 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

1.2.2 Compiling and Running a C++20 Application with Xcode on
macOS
In this section, you’ll run a C++ program on macOS using Apple’s version of the Clang
compiler in the Apple Xcode IDE.16

Step 1: Checking Your Setup
If you have not already done so, read the Before You Begin section to install the IDE and
download the book’s code examples.

Step 2: Launching Xcode
Open a Finder window, select Applications and double-click the Xcode icon:

If this is your first time running Xcode, the Welcome to Xcode window appears. Close this
window—you can access it by selecting Window > Welcome to Xcode. We use the > char-
acter to indicate selecting a menu item from a menu. For example, File > Open… indicates
that you should select the Open… menu item from the File menu.

Step 3: Creating a Project
A project is a group of related files, such as the C++ source-code files that compose an
application. The Xcode projects we created for this book’s examples are Command Line
Tool projects that you’ll execute directly in the IDE. To create a project:

1. Select File > New > Project….

2. At the top of the Choose a template for your new project dialog, click macOS.

3. Under Application, click Command Line Tool and click Next.

4. For Product Name, enter a name for your project—we specified cpp20_test.

5. In the Language drop-down list, select C++, then click Next.

6. Specify where you want to save your project. We selected the examples folder
containing this book’s code examples.

7. Click Create.

Xcode creates your project and displays the workspace window initially showing three
areas—the Navigator area (left), Editor area (middle) and Utilities area (right).

The left-side Navigator area has icons at its top for the navigators that can be displayed
there. For this book, you’ll primarily work with two of these navigators:

• Project ()—Shows all the files and folders in your project.

• Issue ()—Shows you warnings and errors generated by the compiler.

Clicking a navigator button displays the corresponding navigator panel.
The middle Editor area is for managing project settings and editing source code. This

area is always displayed in your workspace window. When you select a file in the Project nav-
igator, the file’s contents display in the Editor area. The right-side Utilities area typically dis-
plays inspectors. For example, if you were building an iPhone app that contained a touchable

16. At the time of this writing, the Xcode version was 13.2.1.

1.2 Test-Driving a C++20 Application 9

button, you’d be able to configure the button’s properties (its label, size, position, etc.) in this
area. You will not use the Utilities area in this book. There’s also a Debug area where you’ll
interact with the running guess-the-number program. This will appear below the Editor area.

The workspace window’s toolbar contains options for executing a program, display-
ing the progress of tasks executing in Xcode, and hiding or showing the left (Navigator)
and right (Utilities) areas.

Step 4: Configuring the Project to Compile Using C++20
The Apple Clang compiler in Xcode supports several versions of the C++ standard. For
this book, we use C++20, which we must configure in our project’s settings:

1. In the Project navigator, select your project’s name (cpp20_test).

2. In the Editors area’s left side, select your project’s name under TARGETS.

3. At the top of the Editors area, click Build Settings, and just below it, click All.

4. Scroll to the Apple Clang - Language - C++ section.

5. Click the value to the right of C++ Language Dialect and select GNU++20
[-std=gnu++20].

6. Click the value to the right of C++ Standard Library and select Compiler Default.

Step 5: Deleting the main.cpp File from the Project
By default, Xcode creates a main.cpp source-code file containing a simple program that
displays "Hello, World!". You won’t use main.cpp in this test-drive, so you should delete
the file. In the Project navigator, right-click the main.cpp file and select Delete. In the dia-
log that appears, select Move to Trash. The file will not be removed from your system until
you empty your trash.

Step 6: Adding the GuessNumber.cpp File into the Project
In a Finder window, open the ch01 folder in the book’s examples folder, then drag
GuessNumber.cpp onto the cpp20_test folder in the Project navigator. In the dialog that
appears, ensure that Copy items if needed is checked, then click Finish.17

Step 7: Compiling and Running the Project
To compile and run the project so you can test-drive the application, simply click the run
() button on Xcode’s toolbar. If the program compiles correctly, Xcode opens the Debug
area and executes the program in the right half of the Debug area, and the application displays
"Please type your first guess." and a question mark (?) as a prompt for input:

17. For the multiple source-code-file programs that you’ll see later in the book, drag all the files for a giv-
en program to the project’s folder. When you begin creating your own programs, you can right-click
the project’s folder and select New File… to display a dialog for adding a new file.

20

10 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

Step 8: Entering Your First Guess
Click the Debug area, then type 500 and press Return—the outputs will vary each time you
run the program. In our case, the application displayed "Too high. Try again." because
the value was more than the number the application chose as the correct guess.

Step 9: Entering Another Guess
At the next prompt, if your system said the first guess was too low, type 750 and press
Enter; otherwise, type 250 and press Enter. In our case, we entered 250, and the application
displayed "Too high. Try again." because the value was greater than the correct guess:

Step 10: Entering Additional Guesses
Continue to play the game by entering values until you guess the correct number. When
you guess correctly, the application displays "Excellent! You guessed the number.":

1.2 Test-Driving a C++20 Application 11

Playing the Game Again or Exiting the Application
After guessing the correct number, the application asks if you’d like to play another game.
At the "Would you like to play again (y or n)?" prompt, entering y causes the applica-
tion to choose a new number and start a new game. Entering n terminates the application.

Reusing This Project for Subsequent Examples
You can follow the steps in this section to create a separate project for every application in
the book. However, for our examples, you may find it more convenient to remove the cur-
rent program from the project, then add a new one. To remove a file from your project
(but not your system), right-click the file in the Project navigator and select Delete. In the
dialog that appears, select Remove Reference. You can then repeat Step 6 to add a different
program to the project.

1.2.3 Compiling and Running a C++20 Application with GNU C++ on
Linux
In this section, you’ll run a C++ program in a Linux shell using the GNU C++ compiler
(g++).18 For this test-drive, we assume that you’ve read the Before You Begin section and
that you’ve placed the book’s examples in your user account’s Documents/examples folder.

Step 1: Changing to the ch01 Folder
From a Linux shell, use the cd command to change to the ch01 subfolder of the book’s
examples folder:

In this section’s figures, we use bold to highlight the user inputs. The prompt in our
Ubuntu Linux shell uses a tilde (~) to represent the home directory. Each prompt ends
with the dollar sign ($). The prompt may differ on your Linux system.

Step 2: Compiling the Application
Before running the application, you must first compile it with the g++ command:19

• The -std=c++20 option indicates that we’re using C++20.

18. At the time of this writing, the current g++ version was 11.2. You can determine your system’s g++
version number with the command g++ --version. If you have an older version of g++, consider
searching online for the instructions to upgrade the GNU Compiler Collection (GCC) for your
Linux distribution or consider using the GCC Docker container discussed in Section 1.2.4.

~$ cd ~/Documents/examples/ch01
~/Documents/examples/ch01$

19. If you have multiple g++ versions installed, you might need to use g++-##, where ## is the g++ version
number. For example, the command g++-11 might be required to run the latest version of g++ 11.x
on your computer.

12 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

• The -o option names the executable file (GuessNumber) that you’ll use to run the
program. If you do not include this option, g++ automatically names the execut-
able a.out.

Step 3: Running the Application
Type ./GuessNumber at the prompt and press Enter to run the program:

The ./ before GuessNumber tells Linux to run GuessNumber from the current directory.

Step 4: Entering Your First Guess
The application displays "Please type your first guess.", then displays a question mark
(?) as a prompt on the next line. At the prompt, enter 500—the outputs will vary each time
you run the program:

In our case, the application displayed "Too high. Try again." because the value entered
was greater than the number the application chose as the correct guess.

Step 5: Entering Another Guess
At the next prompt, if your system said the first guess was too low, type 750 and press
Enter; otherwise, type 250 and press Enter. In our case, we entered 250, and the application
displayed "Too high. Try again." because the value was greater than the correct guess:

~/Documents/examples/ch01$ g++ -std=c++20 GuessNumber.cpp -o GuessNumber
~/Documents/examples/ch01$

~/Documents/examples/ch01$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

~/Documents/examples/ch01$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
?

~/Documents/examples/ch01$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
? 250
Too high. Try again.
?

1.2 Test-Driving a C++20 Application 13

Step 6: Entering Additional Guesses
Continue to play the game by entering values until you guess the correct number. When
you guess correctly, the application displays "Excellent! You guessed the number.":

Step 7: Playing the Game Again or Exiting the Application
After guessing the correct number, the application asks if you’d like to play another game.
At the "Would you like to play again (y or n)?" prompt, entering y causes the applica-
tion to choose a new number and start a new game. Entering n terminates the application
and returns you to the shell.

1.2.4 Compiling and Running a C++20 Application with g++ in the GCC
Docker Container
You can use the latest GNU C++ compiler on your system, regardless of your operating
system. One of the most convenient cross-platform ways to do this is by using the GNU
Compiler Collection (GCC) Docker container. This section assumes you’ve already
installed Docker Desktop (Windows or macOS) or Docker Engine (Linux), as discussed
in the Before You Begin section that follows the Preface.

Executing the GNU Compiler Collection (GCC) Docker Container
Open a Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then
perform the following steps to launch the GCC Docker container:

1. Use cd to navigate to the examples folder containing this book’s examples.

2. Windows users: Launch the GCC Docker container with the command20

 docker run --rm -it -v "%CD%":/usr/src gcc:latest

3. macOS/Linux users: Launch the GCC Docker container with the command

 docker run --rm -it -v "$(pwd)":/usr/src gcc:latest

? 125
Too high. Try again.
? 62
Too low. Try again.
? 93
Too low. Try again.
? 109
Too high. Try again.
? 101
Too low. Try again.
? 105
Too high. Try again.
? 103
Too high. Try again.
? 102

Excellent! You guessed the number!
Would you like to play again (y or n)?

20. A notification might appear asking you to allow Docker to access the files in the current folder. You
must allow this; otherwise, you will not be able to access our source-code files in Docker.

14 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

In the preceding commands:

• --rm cleans up the container’s resources when you eventually shut it down.

• -it runs the container in interactive mode, so you can enter commands to change
folders and to compile and run programs using the GNU C++ compiler.

• -v "%CD%":/usr/src (Windows) or -v "$(pwd)":/usr/src (macOS/Linux)
allows the Docker container to access the files in the folder from which you exe-
cuted the docker run command. In the Docker container, you’ll navigate with
the cd command to subfolders of /usr/src to compile and run the book’s exam-
ples. In other words, your local system folder will be mapped to the /usr/src
folder in the Docker container.

• gcc:latest is the container name. The :latest specifies that you want to use
the most up-to-date version of the gcc container.21

Once the container is running, you’ll see a prompt similar to:

root@67773f59d9ea:/#

The container uses a Linux operating system. Its prompt displays the current folder loca-
tion between the : and #.

Changing to the ch01 Folder in the Docker Container
The docker run command specified above attaches your examples folder to the con-
tainer’s /usr/src folder. In the Docker container, use the cd command to change to the
ch01 subfolder of /usr/src:

To compile, run and interact with the GuessNumber application in the Docker container,
follow Steps 2–7 of Section 1.2.3’s GNU C++ Test-Drive.

Terminating the Docker Container
You can terminate the Docker container by typing Ctrl + d at the container’s prompt.

1.2.5 Compiling and Running a C++20 Application with clang++ in a
Docker Container
As with g++, you can use the latest LLVM/Clang C++ (clang++) command-line compiler
on your system, regardless of your operating system. Currently, the LLVM/Clang team
does not have an official Docker container, but many working containers are available on
https://hub.docker.com. This section assumes you’ve already installed Docker Desktop
(Windows or macOS) or Docker Engine (Linux), as discussed in the Before You Begin
section that follows the Preface.

21. If you’d like to keep your GCC container up-to-date with the latest release, you can execute the com-
mand docker pull gcc:latest before running the container.

root@01b4d47cadc6:/# cd /usr/src/ch01
root@01b4d47cadc6:/usr/src/ch01#

https://hub.docker.com

1.2 Test-Driving a C++20 Application 15

We used the most recent and widely downloaded one containing clang++ version 13,
which you can get via the following command:22

docker pull teeks99/clang-ubuntu:13

Executing the teeks99/clang-ubuntu Docker Container
Open a Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then
perform the following steps to launch the teeks99/clang-ubuntu Docker container:

1. Use cd to navigate to the examples folder containing this book’s examples.

2. Windows users: Launch the Docker container with the command23

 docker run --rm -it -v "%CD%":/usr/src teeks99/clang-ubuntu:13

3. macOS/Linux users: Launch the Docker container with the command

 docker run --rm -it -v "$(pwd)":/usr/src teeks99/clang-ubuntu:13

In the preceding commands:

• --rm cleans up the container’s resources when you eventually shut it down.

• -it runs the container in interactive mode, so you can enter commands to change
folders and to compile and run programs using the clang++ compiler.

• -v "%CD%":/usr/src (Windows) or -v "$(pwd)":/usr/src (macOS/Linux)
allows the Docker container to access the files in the folder from which you exe-
cuted the docker run command. In the Docker container, you’ll navigate with
the cd command to subfolders of /usr/src to compile and run the book’s exam-
ples. In other words, your local system folder will be mapped to the /usr/src
folder in the Docker container.

• teeks99/clang-ubuntu:13 is the container name.

Once the container is running, you’ll see a prompt similar to:

root@9753bace2e87:/#

The container uses a Linux operating system. Its prompt displays the current folder loca-
tion between the : and #.

Changing to the ch01 Folder in the Docker Container
The docker run command specified above attaches your examples folder to the con-
tainer’s /usr/src folder. In the Docker container, use the cd command to change to the
ch01 subfolder of /usr/src:

22. The version of the Clang C++ compiler used in Xcode is not the most up-to-date version, so it does
not have as many C++20 features implemented as the version directly from the LLVM/Clang team.
Also, at the time of this writing, using "latest" rather than "13" in the docker pull command gives
you a Docker container with clang++ 12, not 13.

23. A notification will appear asking you to allow Docker to access the files in the current folder. You
must allow this; otherwise, you will not be able to access our source-code files in Docker.

root@9753bace2e87:/# cd /usr/src/ch01
root@9753bace2e87:/usr/src/ch01#

16 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

Compiling the Application
Before running the application, you must first compile it. This container uses the com-
mand clang++-13, as in

clang++-13 -std=c++20 GuessNumber.cpp -o GuessNumber

where:

• The -std=c++20 option indicates that we’re using C++20.

• The -o option names the executable file (GuessNumber) that you’ll use to run the
program. If you do not include this option, clang++ automatically names the exe-
cutable a.out.

Running the Application
To run and interact with the GuessNumber application in the Docker container, follow
Steps 3–7 of Section 1.2.3’s GNU C++ Test-Drive.

Terminating the Docker Container
You can terminate the Docker container by typing Ctrl + d at the container’s prompt.

1.3 Moore’s Law, Multi-Core Processors and Concurrent
Programming
Many of today’s personal computers can perform billions of calculations in one second—
more than a human can perform in a lifetime. Supercomputers are already performing thou-
sands of trillions (quadrillions) of instructions per second. The Japanese Fugaku supercom-
puter can perform over 442 quadrillion calculations per second (442.01 petaflops).24 To
put that in perspective, the Fugaku supercomputer can perform in one second about 40
million calculations for every person on the planet! And supercomputing “upper limits”
are growing quickly.

Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. Over the years, hardware costs
have fallen rapidly.

For decades, computer processing power approximately doubled inexpensively every
couple of years. This remarkable trend often is called Moore’s law, named for Gordon
Moore, co-founder of Intel and the person who identified the trend in the 1960s. Intel is
a leading manufacturer of processors in today’s computers and embedded systems, such as
smart home appliances, home security systems, robots, intelligent traffic intersections and
more. Moore’s law and related observations apply especially to

• the amount of memory that computers have for programs and data,

• the amount of secondary storage they have to hold programs and data, and

• their processor speeds—that is, the speeds at which computers execute programs
to do their work.

24. “Top500.” Wikipedia. Wikimedia Foundation. Accessed January 10, 2022. https://en.wikipe-
dia.org/wiki/TOP500.

Perf

Perf

https://en.wikipe-dia.org/wiki/TOP500
https://en.wikipe-dia.org/wiki/TOP500

1.4 A Brief Refresher on Object Orientation 17

Key executives at computer-processor companies NVIDIA and Arm have indicated
that Moore’s law no longer applies.25,26 Computer processing power continues to increase
but now relies on new processor designs, such as multi-core processors.

Multi-Core Processors and Performance
Most computers today have multi-core processors that economically implement multiple
processors on a single integrated circuit chip. A dual-core processor has two CPUs, a quad-
core processor has four, and an octa-core processor has eight. Our primary testing com-
puter uses an eight-core Intel processor. Apple’s recent M1 Pro and M1 Max processors
have 10-core CPUs. In addition, the top-of-the-line M1 Pro has a 16-core GPU, while the
top-of-the-line M1 Max processor has a 32-core GPU, and both have a 16-core “neural
engine” for machine learning.27,28 Intel has some processors with up to 72 cores29 and is
working on processors with up to 80.30 AMD is working on processors with 192 and 256
cores.31 The number of cores will continue to grow.

In multi-core systems, the hardware can put multiple processors to work truly simul-
taneously on different parts of your task, thereby enabling your program to complete
faster. To take full advantage of multi-core architecture, you need to write multi-
threaded applications. When a program splits tasks into separate threads, a multi-core sys-
tem can run those threads in parallel when a sufficient number of cores is available.

Interest in multithreading is rising quickly because of the proliferation of multi-core
systems. Standard C++ multithreading was one of the most significant updates introduced
in C++11. Each subsequent C++ standard has added higher-level capabilities to simplify
multithreaded application development. Chapter 17, Parallel Algorithms and Concur-
rency: A High-Level View, discusses creating and managing multithreaded C++ applica-
tions. Chapter 18 introduces C++20 coroutines, which enable concurrent programming
with a simple sequential-like coding style.

1.4 A Brief Refresher on Object Orientation
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more pre-
cisely—as we’ll see in Chapter 9—the classes objects come from, are essentially reusable

25. “Moore’s Law Turns 55: Is It Still Relevant?” Accessed November 2, 2020. https://www.techre-
public.com/article/moores-law-turns-55-is-it-still-relevant.

26. “Moore’s Law Is Dead: Three Predictions About the Computers of Tomorrow.” Accessed November
2, 2020. https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-
about-the-computers-of-tomorrow/.

27. Juli Clover, “Apple’s M1 Pro Chip: Everything You Need to Know,” November 3, 2021. Accessed
January 19, 2022. https://www.macrumors.com/guide/m1-pro/.

28. “Apple M1 Pro and M1 Max.” Wikipedia. Wikimedia Foundation. Accessed January 19, 2022.
https://en.wikipedia.org/wiki/Apple_M1_Pro_and_M1_Max.

29. “Intel® Xeon Phi™ Processors.” Accessed November 28,2021. https://ark.intel.com/content/
www/us/en/ark/products/series/132784/intel-xeon-phi-72x5-processor-family.html.

30. Anton Shilov, “Intel's Sapphire Rapids Could Have 72–80 Cores, According to New Die Shots,”
April 30, 2021. Accessed November 28, 2021. https://www.tomshardware.com/news/intel-
sapphire-rapids-could-feature-80-cores.

31. Joel Hruska, “Future 256-Core AMD Epyc CPU Might Sport Remarkably Low 600W TDP,” No-
vember 1, 2021. Accessed November 28, 2021. https://www.extremetech.com/computing/
328692-future-256-core-amd-epyc-cpu-might-sport-remarkably-low-600w-tdp.

Perf

Perf

11

SE

https://www.techre-public.com/article/moores-law-turns-55-is-it-still-relevant
https://www.techre-public.com/article/moores-law-turns-55-is-it-still-relevant
https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-about-the-computers-of-tomorrow/
https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-about-the-computers-of-tomorrow/
https://www.macrumors.com/guide/m1-pro/
https://en.wikipedia.org/wiki/Apple_M1_Pro_and_M1_Max
https://ark.intel.com/content/www/us/en/ark/products/series/132784/intel-xeon-phi-72x5-processor-family.html
https://ark.intel.com/content/www/us/en/ark/products/series/132784/intel-xeon-phi-72x5-processor-family.html
https://www.tomshardware.com/news/intel-sapphire-rapids-could-feature-80-cores
https://www.tomshardware.com/news/intel-sapphire-rapids-could-feature-80-cores
https://www.extremetech.com/computing/328692-future-256-core-amd-epyc-cpu-might-sport-remarkably-low-600w-tdp
https://www.extremetech.com/computing/328692-future-256-core-amd-epyc-cpu-might-sport-remarkably-low-600w-tdp

18 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

software components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers have discovered that using a
modular, object-oriented design-and-implementation approach can make software devel-
opment groups much more productive than was possible with earlier techniques—object-
oriented programs are often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster
by pressing its accelerator pedal. What must happen before you can do this? Well, before
you can drive a car, someone has to design it. A car typically begins as engineering draw-
ings, similar to the blueprints that describe the design of a house. These drawings include
the design for an accelerator pedal. The pedal hides from the driver the complex mecha-
nisms that make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Functions, Member Functions and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a function. The function houses the program
statements that perform its task. It hides these statements from its user, just as the accel-
erator pedal of a car hides from the driver the mechanisms of making the car go faster. In
C++, we often create a program unit called a class to house the set of functions that per-
form the class’s tasks—these are known as the class’s member functions. For example, a
class representing a bank account might contain a member function to deposit money to
an account, another to withdraw money from an account and a third to query the
account’s current balance. A class is similar to a car’s engineering drawings, which house
the design of an accelerator pedal, brake pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can drive a
car, you must build an object from a class before a program can perform the tasks that the
class’s member functions define. The process of doing this is called instantiation. An
object is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building
new classes and programs saves time and effort. Reuse also helps you build more reliable
and effective systems because existing classes and components often have been extensively
tested, debugged and performance tuned. Just as the notion of interchangeable parts wasSE

1.4 A Brief Refresher on Object Orientation 19

crucial to the Industrial Revolution, reusable classes are crucial to the software revolution
that has been spurred by object technology.

Messages and Member-Function Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to “go faster.” Similarly, you send messages to an object. Each message is imple-
mented as a member-function call that tells a member function of the object to perform
its task. For example, a program might call a particular bank-account object’s deposit
member function to increase the account’s balance by the deposit amount.

Attributes and Data Members
Besides having capabilities to accomplish tasks, a car also has attributes, such as its color,
number of doors, amount of gas in its tank, current speed and record of total miles driven
(i.e., its odometer reading). Like its capabilities, the car’s attributes are represented as part
of its design in its engineering diagrams (which, for example, include an odometer and a
fuel gauge). As you drive a car, these attributes are “carried along” with the car. Every car
maintains its own attributes. For example, each car knows how much gas is in its own gas
tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute representing the amount of money in the account. Each bank-account
object knows the balance in the account it represents, but not the balances of the other
accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and member functions into objects created from
those classes—an object’s attributes and member functions are intimately related. Objects
may communicate with one another, but they’re normally not allowed to know how other
objects are implemented internally. Those details are hidden within the objects them-
selves. This information hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance. The new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof
can be raised or lowered.

Object-Oriented Analysis and Design
Soon you’ll be writing programs in C++. How will you create the code for your programs?
Perhaps, like many programmers, you’ll simply turn on your computer and start typing.
This approach may work for small programs (like the ones we present in the book’s early
chapters), but what if you were asked to create a software system to control thousands of
automated teller machines for a major bank? Or suppose you were asked to work on a team
of thousands of software developers building the next generation of the U.S. air traffic con-
trol system? For projects so large and complex, you should not simply sit down and start
writing programs.

SE

20 Chapter 1 Intro and Test-Driving Popular, Free C++ Compilers

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C++ are object-
oriented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

1.5 Wrap-Up
In this introductory chapter, you saw how to compile and run applications using our three
preferred compilers—Visual C++ in Visual Studio 2022 Community edition on Win-
dows, Clang in Xcode on macOS and GNU g++ on Linux. We pointed you to a Microsoft
resource for installing Ubuntu Linux using the Windows Subsystem for Linux so you can
run g++ on Windows. We also demonstrated how to launch cross-platform Docker con-
tainers so you can use the latest g++ and clang++ versions on Windows, macOS or Linux.

We pointed you to several resources for learning about C++’s history and design,
including those provided by Bjarne Stroustrup, C++’s creator. Next, we discussed Moore’s
law, multi-core processors and why Modern C++’s concurrent programming features are
crucial for taking advantage of the power multi-core processors provide. Finally, we pro-
vided a brief refresher on object-oriented programming concepts and terminology we’ll
use throughout the book.

In the next chapter, we introduce C++ programming with basic input and output
statements, fundamental data types, arithmetic, decision making and our first “Objects
Natural” case study on using objects of C++ standard library class string.

SE

2
Intro to C++20 Programming

O b j e c t i v e s
In this chapter, you’ll:
■ Write simple C++ applications.
■ Use input and output statements.
■ Use fundamental data types.
■ Use arithmetic operators.
■ Understand the precedence of arithmetic operators.
■ Write decision-making statements.
■ Use relational and equality operators.
■ Begin appreciating the “Objects Natural” learning approach

by creating and using objects of the C++ standard library’s
string class before creating your own custom classes.

22 Chapter 2 Intro to C++20 Programming

O
ut

lin
e

2.1 Introduction
This chapter presents several code examples that demonstrate how your programs can dis-
play messages and obtain data from the user for processing. The first three examples dis-
play messages on the screen. The next obtains two numbers from a user at the keyboard,
calculates their sum and displays the result—the accompanying discussion introduces
C++’s arithmetic operators. The fifth example demonstrates decision making by showing
you how to compare two numbers, then display messages based on the comparison results.

The “Objects Natural” Learning Approach
In your programs, you’ll create and use many objects of preexisting carefully-developed-
and-tested classes that enable you to perform significant tasks with minimal code. These
classes typically come from:

• the C++ standard library,

• platform-specific libraries (such as those provided by Microsoft for creating Win-
dows applications or by Apple for creating macOS applications), and

• free third-party libraries often created by the massive open-source communities
that have developed around all major contemporary programming languages.

To help you appreciate this style of programming early in the book, you’ll create and use
objects of preexisting C++ standard library classes before creating your own custom classes.
We call this the “Objects Natural” approach. You’ll begin by creating and using string
objects in this chapter’s final example. In later chapters, you’ll create your own custom
classes. You’ll see that C++ enables you to craft valuable classes for your own use and for
reuse by other programmers.

Compiling and Running Programs
For instructions on compiling and running programs in Microsoft Visual Studio, Apple
Xcode and GNU C++, see the test-drives in Chapter 1 or our video instructions at:

http://deitel.com/c-plus-plus-20-for-programmers

2.2 First Program in C++: Displaying a Line of Text
Consider a simple program that displays a line of text (Fig. 2.1). The line numbers are not
part of the program.

2.1 Introduction
2.2 First Program in C++: Displaying a Line

of Text
2.3 Modifying Our First C++ Program
2.4 Another C++ Program: Adding Integers
2.5 Arithmetic

2.6 Decision Making: Equality and
Relational Operators

2.7 Objects Natural: Creating and
Using Objects of Standard-Library
Class string

2.8 Wrap-Up

http://deitel.com/c-plus-plus-20-for-programmers

2.2 First Program in C++: Displaying a Line of Text 23

Comments
Lines 1 and 2

// fig02_01.cpp
// Text-printing program.

both begin with //, indicating that the remainder of each line is a comment. In each of
our programs, the first-line comment contains the program’s file name. The comment
"Text-printing program." describes the program’s purpose. A comment beginning with
// is called a single-line comment because it terminates at the end of the current line. You
can create single or multiline comments by enclosing them in /* and */, as in

/* fig02_01.cpp: Text-printing program. */

or

/* fig02_01.cpp
 Text-printing program. */

#include Preprocessing Directive
Line 3

#include <iostream> // enables program to output data to the screen

is a preprocessing directive—that is, a message to the C++ preprocessor, which the com-
piler invokes before compiling the program. This line notifies the preprocessor to include
in the program the contents of the input/output stream header <iostream>. This header
is a file containing information the compiler requires when compiling any program that
outputs data to the screen or inputs data from the keyboard using C++’s stream input/out-
put. The program in Fig. 2.1 outputs data to the screen. Chapter 5 discusses headers in
more detail, and online Chapter 19 explains the contents of <iostream> in more detail.

Blank Lines and Whitespace
Line 4 is simply a blank line. You use blank lines, spaces and tabs to make programs easier
to read. Together, these characters are known as whitespace—they’re normally ignored by
the compiler.

1 // fig02_01.cpp
2 // Text-printing program.
3 #include <iostream> // enables program to output data to the screen
4
5 // function main begins program execution
6 int main() {
7 std::cout << "Welcome to C++!\n"; // display message
8
9 return 0; // indicate that program ended successfully

10 } // end function main

Welcome to C++!

Fig. 2.1 | Text-printing program.

24 Chapter 2 Intro to C++20 Programming

The main Function
Line 6

int main() {

is a part of every C++ program. The parentheses after main indicate that it’s a function.
C++ programs typically consist of one or more functions and classes. Exactly one function
in every program must be named main, which is where C++ programs begin executing.
The keyword int indicates that after main finishes executing, it “returns” an integer (whole
number) value. Keywords are reserved by C++ for a specific use. We show the complete
list of C++ keywords in Chapter 3. We’ll explain what it means for a function to “return
a value” when we demonstrate how to create your own functions in Chapter 5. For now,
simply include the keyword int to the left of main in each of your programs.

The left brace, {, (end of line 6) must begin each function’s body, which contains the
instructions the function performs. A corresponding right brace, }, (line 10) must end
each function’s body.

An Output Statement
Line 7

std::cout << "Welcome to C++!\n"; // display message

displays the characters contained between the double quotation marks. Together, the quo-
tation marks and the characters between them are called a string, a character string or a
string literal. We refer to characters between double quotation marks simply as strings.
Whitespace characters in strings are not ignored by the compiler.

The entire line 7—including std::cout, the << operator, the string "Welcome to
C++!\n" and the semicolon (;)—is called a statement. Most C++ statements end with a
semicolon. Omitting the semicolon at the end of a C++ statement when one is needed is
a syntax error. Preprocessing directives (such as #include) are not C++ statements and do
not end with a semicolon.

Typically, output and input in C++ are accomplished with streams of data. When the
preceding statement executes, it sends the stream of characters Welcome to C++!\n to the
standard output stream object (std::cout), which is normally “connected” to the screen.

Indentation
Indent each function’s body one level within the braces that delimit the body. This makes
a program’s functional structure stand out, making the program easier to read. Set a con-
vention for the size of indent you prefer, then apply it uniformly. The tab key may be used
to create indents, but tab stops may vary. We prefer three spaces per level of indent.

The std Namespace
The std:: before cout is required when we use names that we’ve brought into the pro-
gram from standard-library headers like <iostream>. The notation std::cout specifies
that we are using a name, in this case cout, that belongs to namespace std.1 The names
cin (the standard input stream) and cerr (the standard error stream)—introduced in
Chapter 1—also belong to namespace std. We discuss namespaces in Chapter 16. For
now, you should simply remember to include std:: before each mention of cout, cin and

1. We pronounce “std::” as “standard,” rather as its individual letters s, t and d.

Err

2.3 Modifying Our First C++ Program 25

cerr in a program. This can be cumbersome—we’ll soon introduce using declarations
and the using directive, which will enable you to omit std:: before each use of a name in
the std namespace.

The Stream Insertion Operator and Escape Sequences
In a cout statement, the << operator is referred to as the stream insertion operator. When
this program executes, the value to the operator’s right (the right operand) is inserted in
the output stream. Notice that the << operator points toward where the data goes. A
string’s characters normally display exactly as typed between the double quotes. However,
the characters \n are not displayed in Fig. 2.1’s sample output. The backslash (\) is called
an escape character. It indicates that a “special” character is to be output. When a back-
slash is encountered in a string, the next character is combined with the backslash to form
an escape sequence. The escape sequence \n means newline. It causes the cursor (i.e., the
current screen-position indicator) to move to the beginning of the next line on the screen.
Some common escape sequences are shown in the following table:

The return Statement
Line 9

return 0; // indicate that program ended successfully

is one of several means we’ll use to exit a function. In this return statement at the end of
main, the value 0 indicates that the program terminated successfully. If program execution
reaches main’s closing brace without encountering a return statement, C++ treats that the
same as encountering return 0; and assumes the program terminated successfully. So, we
omit main’s return statement in subsequent programs that terminate successfully.

2.3 Modifying Our First C++ Program
The next two examples modify the program of Fig. 2.1. The first displays text on one line
using multiple statements. The second displays text on several lines using one statement.

Displaying a Single Line of Text with Multiple Statements
Figure 2.2 performs stream insertion in multiple statements (lines 7–8), yet produces the
same output as Fig. 2.1. Each stream insertion resumes displaying where the previous one
stopped. Line 7 displays Welcome followed by a space, and because this string did not end
with \n, line 8 begins displaying on the same line immediately following the space.

Escape sequence Description

\n Newline. Positions the screen cursor to the beginning of the next line.

\t Horizontal tab. Moves the screen cursor to the next tab stop.

\r Carriage return. Positions the screen cursor to the beginning of the
current line; does not advance to the next line.

\a Alert. Sounds the system bell.

\\ Backslash. Includes a backslash character in a string.

\' Single quote. Includes a single-quote character in a string.

\" Double quote. Includes a double-quote character in a string.

26 Chapter 2 Intro to C++20 Programming

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using additional newline characters, as in
line 7 of Fig. 2.3. Each time the \n (newline) escape sequence is encountered in the output
stream, the screen cursor is positioned to the beginning of the next line. To get a blank
line in your output, place two newline characters back to back, as in line 7.

2.4 Another C++ Program: Adding Integers
Our next program obtains two integers typed by a user at the keyboard, computes their
sum and outputs the result using std::cout. Figure 2.4 shows the program and sample
inputs and outputs. In the sample execution, the user’s input is in bold.

1 // fig02_02.cpp
2 // Displaying a line of text with multiple statements.
3 #include <iostream> // enables program to output data to the screen
4
5 // function main begins program execution
6 int main() {
7 std::cout << "Welcome ";
8 std::cout << "to C++!\n";
9 } // end function main

Welcome to C++!

Fig. 2.2 | Displaying a line of text with multiple statements.

1 // fig02_03.cpp
2 // Displaying multiple lines of text with a single statement.
3 #include <iostream> // enables program to output data to the screen
4
5 // function main begins program execution
6 int main() {
7 std::cout << "Welcome\nto\n\nC++!\n";
8 } // end function main

Welcome
to

C++!

Fig. 2.3 | Displaying multiple lines of text with a single statement.

1 // fig02_04.cpp
2 // Addition program that displays the sum of two integers.
3 #include <iostream> // enables program to perform input and output
4

Fig. 2.4 | Addition program that displays the sum of two integers. (Part 1 of 2.)

2.4 Another C++ Program: Adding Integers 27

Variable Declarations and Braced Initialization
Lines 8–10

int number1{0}; // first integer to add (initialized to 0)
int number2{0}; // second integer to add (initialized to 0)
int sum{0}; // sum of number1 and number2 (initialized to 0)

are declarations—number1, number2 and sum are the names of variables. These declara-
tions specify that the variables number1, number2 and sum are data of type int, meaning
they will hold integer (whole number) values, such as 7, –11, 0 and 31914. All variables
must be declared with a name and a data type.

Lines 8–10 initialize each variable to 0 by placing a value in braces ({ and }) immedi-
ately following the variable’s name. This is known as braced initialization, which was
introduced in C++11. Although it’s not always necessary to initialize every variable explic-
itly, doing so will help you avoid many kinds of problems.

Prior to C++11, lines 8–10 would have been written as:

int number1 = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of number1 and number2 (initialized to 0)

In legacy C++ programs, you’re likely to encounter initialization statements using this older
C++ coding style. In subsequent chapters, we’ll discuss various benefits of braced initializers.

Declaring Multiple Variables at Once
Variables of the same type may be declared in one declaration—for example, we could
have declared and initialized all three variables using a comma-separated list as follows:

int number1{0}, number2{0}, sum{0};

5 // function main begins program execution
6 int main() {
7 // declaring and initializing variables
8 int number1{0}; // first integer to add (initialized to 0)
9 int number2{0}; // second integer to add (initialized to 0)

10 int sum{0}; // sum of number1 and number2 (initialized to 0)
11
12 std::cout << "Enter first integer: "; // prompt user for data
13 std::cin >> number1; // read first integer from user into number1
14
15 std::cout << "Enter second integer: "; // prompt user for data
16 std::cin >> number2; // read second integer from user into number2
17
18 sum = number1 + number2; // add the numbers; store result in sum
19
20 std::cout << "Sum is " << sum << "\n"; // display sum
21 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.4 | Addition program that displays the sum of two integers. (Part 2 of 2.)

11

28 Chapter 2 Intro to C++20 Programming

However, this makes the program less readable and makes it awkward to provide com-
ments that describe each variable’s purpose.

Fundamental Types
We’ll soon discuss the type double for specifying real numbers and the type char for spec-
ifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and
–11.19. A char variable may hold only a single lowercase letter, uppercase letter, digit or
special character (e.g., $ or *). Types such as int, double, char and long long are called
fundamental types. Fundamental-type names typically consist of one or more keywords
and must appear in all lowercase letters. For a complete list of C++ fundamental types and
their typical ranges, see

https://en.cppreference.com/w/cpp/language/types

Identifiers and Camel-Case Naming
A variable name (such as number1) may be any valid identifier. An identifier is a series of
characters consisting of letters, digits and underscores (_) that does not begin with a digit
and is not a keyword. C++ is case sensitive—uppercase and lowercase letters are different.
So, a1 and A1 are different identifiers.

 C++ allows identifiers of any length. Do not begin an identifier with an underscore
and a capital letter or two underscores—C++ compilers use names like that for their own
purposes internally.

By convention, variable-name identifiers begin with a lowercase letter, and every word
in the name after the first word begins with a capital letter—e.g., firstNumber starts its
second word, Number, with a capital N. This naming convention is known as camel case,
because the uppercase letters stand out like a camel’s humps.

Placement of Variable Declarations
Variable declarations can be placed almost anywhere in a program, but they must appear
before the variables are used. For example, the declaration in line 8

int number1{0}; // first integer to add (initialized to 0)

could have been placed immediately before line 13:

std::cin >> number1; // read first integer from user into number1

the declaration in line 9:

int number2{0}; // second integer to add (initialized to 0)

could have been placed immediately before line 16:

std::cin >> number2; // read second integer from user into number2

and the declaration in line 10:

int sum{0}; // sum of number1 and number2 (initialized to 0)

could have been placed immediately before line 18:

sum = number1 + number2; // add the numbers; store result in sum

In fact, lines 10 and 18 could have been combined into the following declaration and
placed just before line 20:

int sum{number1 + number2}; // initialize sum with number1 + number2

https://en.cppreference.com/w/cpp/language/types

2.4 Another C++ Program: Adding Integers 29

Obtaining the First Value from the User
Line 12

std::cout << "Enter first integer: "; // prompt user for data

displays Enter first integer: followed by a space. This message is called a prompt
because it directs the user to take a specific action. Line 13

std::cin >> number1; // read first integer from user into number1

uses the standard input stream object cin (of namespace std) and the stream extraction
operator, >>, to obtain a value from the keyboard.

When the preceding statement executes, the program waits for you to enter a value
for variable number1. You respond by typing an integer (as characters), then pressing the
Enter key (sometimes called the Return key) to send the characters to the program. The
cin object converts the character representation of the number to an integer value and
assigns this value to the variable number1. Pressing Enter also causes the cursor to move to
the beginning of the next line on the screen.

When your program is expecting the user to enter an integer, the user could enter
alphabetic characters, special symbols (like # or @) or a number with a decimal point (like
73.5), among others. In these early programs, we assume that the user enters valid data.
We’ll present various techniques for dealing with data-entry problems later.

Obtaining the Second Value from the User
Line 15

std::cout << "Enter second integer: "; // prompt user for data

displays Enter second integer: on the screen, prompting the user to take action. Line 16

std::cin >> number2; // read second integer from user into number2

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User
The assignment statement in line 18

sum = number1 + number2; // add the numbers; store result in sum

adds the values of number1 and number2 and assigns the result to sum using the assignment
operator =. Most calculations are performed in assignment statements. The = operator and
the + operator are binary operators, because each has two operands. For the + operator, the
two operands are number1 and number2. For the preceding = operator, the two operands are
sum and the value of the expression number1 + number2. Placing spaces on either side of a
binary operator makes the operator stand out and makes the program more readable.

Displaying the Result
Line 20

std::cout << "Sum is " << sum << "\n"; // display sum

displays the character string "Sum is" followed by the numerical value of variable sum and
a newline.

The preceding statement outputs multiple values of different types. The stream inser-
tion operator “knows” how to output each type of data. Using multiple stream insertion

30 Chapter 2 Intro to C++20 Programming

operators (<<) in a single statement is referred to as concatenating, chaining or cascading
stream insertion operations.

Calculations can also be performed in output statements. We could have eliminated
the variable sum by combining the statements in lines 18 and 20 into the statement

std::cout << "Sum is " << number1 + number2 << "\n";

The signature feature of C++ is that you can create your own data types called classes
(we discuss this topic beginning in Chapter 9). You can then “teach” C++ how to input
and output values of these new data types using the >> and << operators, respectively. This
is called operator overloading, which we explore in Chapter 11.

2.5 Arithmetic
The following table summarizes the arithmetic operators:

Note the use of various special symbols not used in algebra. The asterisk (*) indicates mul-
tiplication and the percent sign (%) is the remainder operator, which we’ll discuss shortly.
These arithmetic operators are all binary operators.

Integer Division
Integer division in which the numerator and the denominator are integers yields an inte-
ger quotient. For example, the expression 7 / 4 evaluates to 1, and the expression 17 / 5

evaluates to 3. Any fractional part in the result of integer division is truncated—no round-
ing occurs.

Remainder Operator
The remainder operator, % (also called the modulus operator), yields the remainder after
integer division and can be used only with integer operands. The expression x % y yields
the remainder after dividing x by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order determined by the
following rules of operator precedence, which are generally the same as those in algebra:

Operation Arithmetic operator Algebraic expression C++ expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm or b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

x
y--

2.6 Decision Making: Equality and Relational Operators 31

1. Expressions in parentheses evaluate first. Parentheses are said to be at the “highest
level of precedence.” In cases of nested or embedded parentheses, such as

 (a * (b + c))

expressions in the innermost pair of parentheses evaluate first.

2. Multiplication, division and remainder operations evaluate next. In an expression
containing several of these operations, they’re applied from left-to-right. These
three operators are said to be on the same level of precedence.

3. Addition and subtraction operations evaluate last. If an expression contains sev-
eral of these operations, they’re applied from left-to-right. Addition and subtrac-
tion also have the same level of precedence.

Online Appendix A contains the complete operator precedence chart. Caution: In an
expression such as (a + b) * (c - d), where two sets of parentheses are not nested but
appear “on the same level,” the C++ Standard does not specify the order in which these
parenthesized subexpressions will evaluate.

Operator Grouping
When we say that C++ applies certain operators from left-to-right, we are referring to the
operators’ grouping (sometimes called associativity). For example, in the expression

a + b + c

the addition operators (+) group from left-to-right as if we parenthesized the expression as
(a + b) + c. Most C++ operators of the same precedence group from left-to-right. We’ll
see that some operators group from right-to-left.

2.6 Decision Making: Equality and Relational Operators
We now introduce C++’s if statement, which allows a program to take alternative actions
based on whether a condition is true or false. Conditions in if statements can be formed
by using the relational operators and equality operators in the following table:

Algebraic relational
or equality operator

C++ relational or
equality operator

Sample C++
condition Meaning of C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

32 Chapter 2 Intro to C++20 Programming

The relational operators all have the same level of precedence and group from left-to-right.
The equality operators both have the same level of precedence, which is lower than that of
the relational operators, and group from left-to-right.

Reversing the order of the pair of symbols in the operators !=, >= and <= (by writing
them as =!, => and =<, respectively) is normally a syntax error. In some cases, writing != as
=! will not be a syntax error, but almost certainly it will be a logic error that has an effect
at execution time. You’ll understand why when we cover logical operators in Section 4.11.

Confusing == and =
Confusing the equality operator == with the assignment operator = results in logic errors.
We like to read the equality operator as “is equal to” or “double equals” and the assignment
operator as “gets” or “gets the value of” or “is assigned the value of.” Confusing these oper-
ators may not necessarily cause an easy-to-recognize syntax error, but it may cause subtle
logic errors. Compilers generally warn about this.

Using the if Statement
Figure 2.5 uses six if statements to compare two integers input by the user. If a given if
statement’s condition is true, the output statement in the body of that if statement exe-
cutes. If the condition is false, the output statement in the body does not execute.

1 // fig02_05.cpp
2 // Comparing integers using if statements, relational operators
3 // and equality operators.
4 #include <iostream> // enables program to perform input and output
5
6 using std::cout; // program uses cout
7 using std::cin; // program uses cin
8
9 // function main begins program execution

10 int main() {
11 int number1{0}; // first integer to compare (initialized to 0)
12 int number2{0}; // second integer to compare (initialized to 0)
13
14 cout << "Enter two integers to compare: "; // prompt user for data
15 cin >> number1 >> number2; // read two integers from user
16
17 if (number1 == number2) {
18 cout << number1 << " == " << number2 << "\n";
19 }
20
21 if (number1 != number2) {
22 cout << number1 << " != " << number2 << "\n";
23 }
24
25 if (number1 < number2) {
26 cout << number1 << " < " << number2 << "\n";
27 }

Fig. 2.5 | Comparing integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

Err

Err

2.6 Decision Making: Equality and Relational Operators 33

using Declarations
Lines 6–7

using std::cout; // program uses cout
using std::cin; // program uses cin

are using declarations that eliminate the need to repeat the std:: prefix as we did in ear-
lier programs. We can now write cout instead of std::cout and cin instead of std::cin
in the remainder of the program.

using Directive
In place of lines 6–7, many programmers prefer the using directive

using namespace std;

which enables your program to use names from the std namespace without the std:: qual-
ification. In the early chapters, we’ll use this directive in our programs to simplify the code.2

28
29 if (number1 > number2) {
30 cout << number1 << " > " << number2 << "\n";
31 }
32
33 if (number1 <= number2) {
34 cout << number1 << " <= " << number2 << "\n";
35 }
36
37 if (number1 >= number2) {
38 cout << number1 << " >= " << number2 << "\n";
39 }
40 } // end function main

Enter two integers to compare: 3 7
3 != 7
3 < 7
3 <= 7

Enter two integers to compare: 22 12
22 != 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 == 7
7 <= 7
7 >= 7

Fig. 2.5 | Comparing integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

2. In online Chapter 19, we’ll discuss some disadvantages of using directives in large-scale systems.

34 Chapter 2 Intro to C++20 Programming

Variable Declarations and Reading the Inputs from the User
Lines 11–12

int number1{0}; // first integer to compare (initialized to 0)
int number2{0}; // second integer to compare (initialized to 0)

declare the variables used in the program and initialize them to 0.
Line 15

cin >> number1 >> number2; // read two integers from user

uses cascaded stream extraction operations to input two integers. Recall that we’re allowed
to write cin (instead of std::cin) because of line 7. This statement first reads a value into
number1, then into number2.

Comparing Numbers
The if statement in lines 17–19

if (number1 == number2) {
 cout << number1 << " == " << number2 << "\n";
}

determines whether the values of variables number1 and number2 are equal. If so, the cout
statement displays a line of text indicating that the numbers are equal. For each condition
that is true in the remaining if statements starting in lines 21, 25, 29, 33 and 37, the cor-
responding cout statement displays an appropriate line of text.

Braces and Blocks
Each if statement in Fig. 2.5 contains a single body statement that’s indented to enhance
readability. Also, notice that we’ve enclosed each body statement in a pair of braces, { },
creating what’s called a compound statement or a block.

You don’t need to use braces around single-statement bodies, but you must include
the braces around multiple-statement bodies. Forgetting to enclose multiple-statement
bodies in braces leads to errors. To avoid errors, as a rule, always enclose an if statement’s
body statement(s) in braces.

Common Logic Error: Placing a Semicolon after a Condition
Placing a semicolon immediately after the right parenthesis of the condition in an if state-
ment is often a logic error (although not a syntax error). The semicolon causes the body
of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the if state-
ment now becomes a statement in sequence with the if statement and always executes,
often causing the program to produce incorrect results. Most compilers will issue a warn-
ing for this logic error.

Splitting Lengthy Statements
A lengthy statement may be spread over several lines. If you must do this, choose mean-
ingful breaking points, such as after a comma in a comma-separated list, or after an oper-
ator in a lengthy expression. If a statement is split across two or more lines, it’s a good
practice to indent all subsequent lines.

Err

Err

2.7 Creating and Using Objects of Standard-Library Class string 35

Operator Precedence and Grouping
With the exception of the assignment operator =, all the operators presented in this chapter
group from left-to-right. Assignments (=) group from right-to-left. So, an expression such
as x = y = 0 evaluates as if it had been written x = (y = 0), which first assigns 0 to y, then
assigns the result of that assignment (that is, 0) to x.

Refer to the complete operator-precedence chart in online Appendix A when writing
expressions containing many operators. Confirm that the operators in the expression are
performed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to
force the order of evaluation, exactly as you’d do in an algebraic expression.

2.7 Objects Natural: Creating and Using Objects of
Standard-Library Class string
Throughout this book, we emphasize using preexisting valuable classes from the C++ stan-
dard library and various open-source libraries from the C++ open-source community.
You’ll focus on knowing what libraries are out there, choosing the ones you’ll need for
your applications, creating objects from existing library classes and making those objects
exercise their capabilities. By Objects Natural, we mean that you’ll be able to program with
powerful objects before you learn to create custom classes.

You’ve already worked with C++ objects—specifically the cout and cin objects,
which encapsulate the mechanisms for output and input, respectively. These objects were
created for you behind the scenes using classes from the header <iostream>. In this sec-
tion, you’ll create and interact with objects of the C++ standard library’s string3 class.

Test-Driving Class string
Classes cannot execute by themselves. A Person object can drive a Car object by telling it
what to do (go faster, go slower, turn left, turn right, etc.)—without knowing how the car’s
internal mechanisms work. Similarly, the main function can “drive” a string object by
calling its member functions—without knowing how the class is implemented. In this
sense, main in the following program is referred to as a driver program. Figure 2.6’s main
function test-drives several string member functions.

3. You’ll learn additional string capabilities in subsequent chapters. Chapter 8 discusses class string
in detail, test-driving many more of its member functions.

1 // fig02_06.cpp
2 // Standard library string class test program.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main() {
8 string s1{"happy"};
9 string s2{" birthday"};

10 string s3; // creates an empty string

Fig. 2.6 | Standard library string class test program. (Part 1 of 2.)

36 Chapter 2 Intro to C++20 Programming

Instantiating Objects
Typically, you cannot call a member function of a class until you create an object of that
class4—also called instantiating an object. Lines 8–10 create three string objects:

• s1 is initialized with a copy of the string literal "happy",

11
12 // display the strings and show their lengths
13 cout << "s1: \"" << s1 << "\"; length: " << s1.length()
14 << "\ns2: \"" << s2 << "\"; length: " << s2.length()
15 << "\ns3: \"" << s3 << "\"; length: " << s3.length();
16
17 // compare strings with == and !=
18 cout << "\n\nThe results of comparing s2 and s1:" << boolalpha
19 << "\ns2 == s1: " << (s2 == s1)
20 << "\ns2 != s1: " << (s2 != s1);
21
22 // test string member function empty
23 cout << "\n\nTesting s3.empty():\n";
24
25 if (s3.empty()) {
26 cout << "s3 is empty; assigning to s3;\n";
27 s3 = s1 + s2; // assign s3 the result of concatenating s1 and s2
28 cout << "s3: \"" << s3 << "\"";
29 }
30
31 // testing new C++20 string member functions
32 cout << "\n\ns1 starts with \"ha\": " << s1.starts_with("ha") << "\n";
33 cout << "s2 starts with \"ha\": " << s2.starts_with("ha") << "\n";
34 cout << "s1 ends with \"ay\": " << s1.ends_with("ay") << "\n";
35 cout << "s2 ends with \"ay\": " << s2.ends_with("ay") << "\n";
36 }

s1: "happy"; length: 5
s2: " birthday"; length: 9
s3: ""; length: 0

The results of comparing s2 and s1:
s2 == s1: false
s2 != s1: true

Testing s3.empty():
s3 is empty; assigning to s3;
s3: "happy birthday"

s1 starts with "ha": true
s2 starts with "ha": false
s1 ends with "ay": false
s2 ends with "ay": true

4. You’ll see in Section 9.20 that you can call a class’s static member functions without creating an
object of that class.

Fig. 2.6 | Standard library string class test program. (Part 2 of 2.)

2.7 Creating and Using Objects of Standard-Library Class string 37

• s2 is initialized with a copy of the string literal " birthday", and

• s3 is initialized by default to the empty string (that is, "").

When we declare int variables, as we did earlier, the compiler knows what int is—it’s a
fundamental type that’s built into C++. In lines 8–10, however, the compiler does not
know in advance what type string is—it’s a class type from the C++ standard library.

When packaged properly, classes can be reused by other programmers. This is one of
the most significant benefits of working with object-oriented programming languages like
C++ that have rich libraries of powerful prebuilt classes. For example, you can reuse the
C++ standard library’s classes in any program by including the appropriate headers—in
this case, the <string> header (line 4). The name string, like the name cout, belongs to
namespace std.

string Member Function length
Lines 13–15 output each string and its length. The string class’s length member func-
tion returns the number of characters stored in a particular string object. In line 13, the
expression

s1.length()

returns s1’s length by calling the object’s length member function. To call this member
function for a specific object, you specify the object’s name (s1), followed by the dot oper-
ator (.), then the member function name (length) and a set of parentheses. Empty paren-
theses indicate that length does not require any additional information to perform its
task. Soon, you’ll see that some member functions require additional information called
arguments to perform their tasks.

From main’s view, when the length member function is called:

1. The program transfers execution from the call (line 13 in main) to member func-
tion length. Because length was called via the s1 object, length “knows” which
object’s data to manipulate.

2. Next, member function length performs its task—that is, it returns s1’s length
to line 13 where the function was called. The main function does not know the
details of how length performs its task, just as the driver of a car doesn’t know
the details of how engines, transmissions, steering mechanisms and brakes are im-
plemented.

3. The cout object displays the number of characters returned by member function
length, then the program continues executing, displaying the strings s2 and s3
and their lengths.

Comparing string Objects with the Equality Operators
Like numbers, strings can be compared with one another. Lines 18–20 compare s2 to s1
using the equality operators—string comparisons are case sensitive.5

Normally, when you output a condition’s value, C++ displays 0 for false or 1 for true.
The stream manipulator boolalpha (line 18) from the <iostream> header tells the output
stream to display condition values as the words false or true.

5. In Chapter 8, you’ll see that strings perform lexicographical comparisons using the numerical values
of the characters in each string.

38 Chapter 2 Intro to C++20 Programming

string Member Function empty
Line 25 calls string member function empty, which returns true if the string is empty—
that is, the length of the string is 0. Otherwise, empty returns false. The object s3 was
initialized by default to the empty string, so it is indeed empty, and the body of the if
statement will execute.

string Concatenation and Assignment
Line 27 assigns a new value to s3 produced by “adding” the strings s1 and s2 using the +
operator—this is known as string concatenation. After the assignment, s3 contains the
characters of s1 followed by the characters of s2—"happy birthday". Line 28 outputs s3
to demonstrate that the assignment worked correctly.

C++20 string Member Functions starts_with and ends_with
Lines 32–35 demonstrate new C++20 string member functions starts_with and
ends_with, which return true if the string starts with or ends with a specified substring,
respectively; otherwise, they return false. Lines 32 and 33 show that s1 starts with "ha",
but s2 does not. Lines 34 and 35 show that s1 does not end with "ay" but s2 does.

2.8 Wrap-Up
We presented many important basic features of C++ in this chapter, including displaying
data on the screen, inputting data from the keyboard and declaring variables of fundamen-
tal types. In particular, you learned to use the output stream object cout and the input
stream object cin to build simple interactive programs. We declared and initialized vari-
ables and used arithmetic operators to perform calculations. We discussed the order in
which C++ applies operators (i.e., the rules of operator precedence), as well as the grouping
of the operators (also called the associativity of the operators). You saw how C++’s if state-
ment allows a program to make decisions. We introduced the equality and relational oper-
ators, which we used to form conditions in if statements.

Finally, we introduced our “Objects Natural” approach to learning C++ by creating
objects of the C++ standard-library class string and interacting with them using equality
operators and string member functions. In subsequent chapters, you’ll create and use
many objects of existing classes to accomplish significant tasks with minimal amounts of
code. Then, in Chapters 9–11, you’ll create your own custom classes. You’ll see that C++
enables you to “craft valuable classes.” In the next chapter, we begin our introduction to
control statements, which specify the order in which a program’s actions are performed.

20

3
Control Statements: Part 1

O b j e c t i v e s
In this chapter, you’ll:
■ Use the if and if…else selection statements to choose

between alternative actions.
■ Use the while iteration statement to execute statements in a

program repeatedly.
■ Use counter-controlled iteration and sentinel-controlled

iteration.
■ Use nested control statements.
■ Use the compound assignment operators and the increment

and decrement operators.
■ Learn why fundamental data types are not portable.
■ Continue our Objects Natural approach with a case study on

creating and manipulating integers as large as you want them
to be.

■ Use C++20’s new text-formatting capabilities, which are more
concise and more powerful than those in earlier C++ versions.

40 Chapter 3 Control Statements: Part 1

O
ut

lin
e

3.1 Introduction
In this chapter and the next, we present the theory and principles of structured program-
ming. The concepts presented here are crucial in building classes and manipulating
objects. We discuss the if statement in additional detail and introduce the if…else and
while statements. We also introduce the compound assignment operators and the incre-
ment and decrement operators.

We discuss why the fundamental types are not portable. We continue our Objects
Natural approach with a case study on arbitrary-sized integers that can represent values
beyond the ranges of integers supported by computer hardware.

We begin introducing C++20’s new text-formatting capabilities, which are based on
those in Python, Microsoft’s .NET languages (like C# and Visual Basic) and Rust.1 The
C++20 capabilities are more concise and more powerful than those in earlier C++ versions.

3.2 Control Structures
During the 1960s, it became clear that the indiscriminate use of transfers of control was the
root of many problems experienced by software development groups. The blame was
pointed at the goto statement (used in most programming languages of the time), which
allows you to specify a transfer of control to one of a wide range of destinations in a program.

The research of Böhm and Jacopini2 had demonstrated that programs could be writ-
ten without any goto statements. The challenge for programmers of the era was to shift
their styles to “goto-less programming.” The term structured programming became

3.1 Introduction
3.2 Control Structures

3.2.1 Sequence Structure
3.2.2 Selection Statements
3.2.3 Iteration Statements
3.2.4 Summary of Control Statements

3.3 if Single-Selection Statement
3.4 if…else Double-Selection

Statement
3.4.1 Nested if…else Statements
3.4.2 Blocks
3.4.3 Conditional Operator (?:)

3.5 while Iteration Statement
3.6 Counter-Controlled Iteration

3.6.1 Implementing Counter-Controlled
Iteration

3.6.2 Integer Division and Truncation
3.7 Sentinel-Controlled Iteration

3.7.1 Implementing Sentinel-Controlled
Iteration

3.7.2 Converting Between Fundamental
Types Explicitly and Implicitly

3.7.3 Formatting Floating-Point Numbers
3.8 Nested Control Statements

3.8.1 Problem Statement
3.8.2 Implementing the Program
3.8.3 Preventing Narrowing Conversions

with Braced Initialization
3.9 Compound Assignment Operators

3.10 Increment and Decrement Operators
3.11 Fundamental Types Are Not Portable
3.12 Objects Natural Case Study:

Arbitrary-Sized Integers
3.13 C++20: Text Formatting with

Function format
3.14 Wrap-Up

1. Victor Zverovich, “Text Formatting,” July 16, 2019. Accessed November 11, 2021. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r10.html.

2. C. Böhm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

20

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r10.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r10.html

3.2 Control Structures 41

almost synonymous with “goto elimination.” The results were impressive. Software devel-
opment groups reported shorter development times, more frequent on-time delivery of
systems and more frequent within-budget completion of software projects. The key to
these successes was that structured programs were clearer, easier to debug and modify, and
more likely to be bug-free in the first place.

Böhm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the
iteration structure. We’ll discuss how C++ implements each of these.

3.2.1 Sequence Structure
The sequence structure is built into C++. Unless directed otherwise, statements execute
one after the other in the order they appear in the program—that is, in sequence. The fol-
lowing UML3 activity diagram illustrates a typical sequence structure in which two calcu-
lations are performed in order:

C++ lets you have as many actions as you want in a sequence structure. As you’ll soon see,
anywhere you may place a single action, you may place several actions in sequence.

An activity diagram models the workflow (also called the activity) of a portion of a
software system. Such workflows may include a portion of an algorithm, like the sequence
structure in the preceding diagram. Activity diagrams are composed of symbols, such as
action-state symbols (rectangles with their left and right sides replaced with outward arcs),
diamonds and small circles. These symbols are connected by transition arrows, represent-
ing the activity’s flow—that is, the order in which the actions should occur.

The preceding sequence-structure activity diagram contains two action states, each
containing an action expression—for example, “add grade to total” or “add 1 to
counter”—that specifies a particular action to perform. The arrows in the activity diagram
represent transitions, which indicate the order in which the actions represented by the
action states occur.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the program performs the modeled actions. The solid
circle surrounded by a hollow circle at the bottom of the diagram represents the final
state—that is, the end of the workflow after the program performs its actions.

The sequence-structure activity diagram also includes rectangles with the upper-right
corners folded over. These are UML notes (like comments in C++)—explanatory remarks

3. We use the UML in this chapter and Chapter 4 to show the flow of control in control statements,
then use UML again in Chapters 9–10 when we present custom class development.

add 1 to counter

add grade to total Corresponding C++ statement:
total = total + grade;

Corresponding C++ statement:
counter = counter + 1;

42 Chapter 3 Control Statements: Part 1

that describe the purpose of symbols in the diagram. A dotted line connects each note with
the element it describes. This diagram’s UML notes show how the diagram relates to the
C++ code for each action state. Activity diagrams usually do not show the C++ code.

3.2.2 Selection Statements
C++ has three types of selection statements. The if statement performs (selects) an action
(or group of actions) if a condition is true, or skips it if the condition is false. The if…else

statement performs an action (or group of actions) if a condition is true and performs a
different action (or group of actions) if the condition is false. The switch statement
(Chapter 4) performs one of many different actions (or groups of actions), depending on
the value of an expression.

The if statement is called a single-selection statement because it selects or ignores a
single action (or group of actions). The if…else statement is called a double-selection
statement because it selects between two different actions (or groups of actions). The
switch statement is called a multiple-selection statement because it selects among many
different actions (or groups of actions).

3.2.3 Iteration Statements
C++ provides four iteration statements—also called repetition statements or looping
statements—for performing statements repeatedly while a loop-continuation condition
remains true. The iteration statements are the while, do…while, for and range-based
for. The while and for statements perform their action (or group of actions) zero or more
times. If the loop-continuation condition is initially false, the action (or group of actions)
does not execute. The do…while statement performs its action (or group of actions) one
or more times. Chapter 4 presents the do…while and for statements. Chapter 6 presents
the range-based for statement.

Keywords
Each of the words if, else, switch, while, do and for is a C++ keyword. Keywords can-
not be used as identifiers, such as variable names, and contain only lowercase letters (and
sometimes underscores). The following table shows the complete list of C++ keywords:

C++ keywords

alignas alignof and and_eq asm

auto bitand bitor bool break

case catch char char16_t char32_t

class compl const const_cast constexpr

continue decltype default delete do

double dynamic_cast else enum explicit

export extern false final float

for friend goto if import

inline int long module mutable

3.3 if Single-Selection Statement 43

3.2.4 Summary of Control Statements
C++ has only three kinds of control structures, which from this point forward, we refer to
as control statements:

• sequence,

• selection (if, if…else and switch) and

• iteration (while, do…while, for and range-based for).

You form every program by combining these statements as appropriate for the algorithm
you’re implementing. We can model each control statement as an activity diagram. Each
diagram contains an initial state and a final state representing a control statement’s entry
point and exit point, respectively. Single-entry/single-exit control statements make it easy
to build readable programs—we simply connect the exit point of one to the entry point of
the next using control-statement stacking. There’s only one other way in which you may
connect control statements—control-statement nesting, in which one control statement
appears inside another. Thus, algorithms in C++ programs are constructed from only three
kinds of control statements, combined in only two ways. This is the essence of simplicity.

3.3 if Single-Selection Statement
We introduced the if single-selection statement briefly in Section 2.6. Programs use selec-
tion statements to choose among alternative courses of action. For example, suppose that
the passing grade on an exam is 60. The following C++ statement determines whether the
condition studentGrade >= 60 is true:

if (studentGrade >= 60) {
 cout << "Passed";
}

If so, "Passed" is printed, and the next statement in order is performed. If the condition
is false, the output statement is ignored, and the next statement in order is performed. The

namespace new noexcept not not_eq

nullptr operator or or_eq override

private protected public register reinterpret_cast

return short signed sizeof static

static_assert static_cast struct switch template

this thread_local throw true try

typedef typeid typename union unsigned

using void volatile virtual wchar_t

while xor xor_eq

Keywords new in C++20

char8_t concept consteval constinit co_await

co_return co_yield requires

C++ keywords (Cont.)

20

44 Chapter 3 Control Statements: Part 1

indentation of the second line of this selection statement is optional but recommended for
program clarity.

bool Data Type
In Chapter 2, you created conditions using the relational or equality operators. Actually,
any expression that evaluates to zero or nonzero can be used as a condition. Zero is treated
as false, and nonzero is treated as true. C++ also provides the data type bool for Boolean
variables that can hold only the values true and false—each is a C++ keyword. The com-
piler can implicitly convert true to 1 and false to 0.

UML Activity Diagram for an if Statement
The following diagram illustrates the single-selection if statement.

This figure contains the most important symbol in an activity diagram—the diamond, or
decision symbol, which indicates that a decision is to be made. The workflow continues
along a path determined by the symbol’s associated guard conditions, which can be true
or false. Each transition arrow emerging from a decision symbol has a guard condition
(specified in square brackets next to the arrow). If a guard condition is true, the workflow
enters the action state to which the transition arrow points. The diagram shows that if the
grade is greater than or equal to 60 (i.e., the condition is true), the program prints “Passed”
then transitions to the activity’s final state. If the grade is less than 60 (i.e., the condition
is false), the program immediately transitions to the final state without displaying a mes-
sage. The if statement is a single-entry/single-exit control statement.

3.4 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition
is true. The if…else double-selection statement allows you to specify an action to per-
form when the condition is true and another action when the condition is false. For exam-
ple, the following C++ statement prints "Passed" if studentGrade >= 60, but prints
"Failed" if it’s less than 60:

if (studentGrade >= 60) {
 cout << "Passed";
}
else {
 cout << "Failed";
}

In either case, after printing occurs, the next statement in sequence is performed.

print “Passed”
[studentGrade >= 60]

[studentGrade < 60]

3.4 if…else Double-Selection Statement 45

The body of the else also is indented. Whatever indentation convention you choose
should be applied consistently throughout your programs.

UML Activity Diagram for an if…else Statement
The following diagram illustrates the flow of control in the preceding if…else statement:

3.4.1 Nested if…else Statements
A program can test multiple cases by placing if…else statements inside other if…else

statements to create nested if…else statements. For example, the following nested
if…else prints "A" for exam grades greater than or equal to 90, "B" for grades 80 to 89,
"C" for grades 70 to 79, "D" for grades 60 to 69 and "F" for all other grades. We use shad-
ing to highlight the nesting.

If variable studentGrade is greater than or equal to 90, the first four conditions in the
nested if…else statement will be true, but only the statement in the if part of the first
if…else statement will execute. After that statement executes, the else part of the
“outermost” if…else statement is skipped. The preceding nested if…else statement
also can be written in the following form, which is identical but uses fewer braces, less spac-
ing and indentation:

print “Passed”print “Failed”
[studentGrade >= 60][studentGrade < 60]

if (studentGrade >= 90) {
 cout << "A";
}
else {
 if (studentGrade >= 80) {
 cout << "B";
 }
 else {
 if (studentGrade >= 70) {
 cout << "C";
 }
 else {
 if (studentGrade >= 60) {
 cout << "D";
 }
 else {
 cout << "F";
 }
 }
 }
}

46 Chapter 3 Control Statements: Part 1

if (studentGrade >= 90) {
 cout << "A";
}
else if (studentGrade >= 80) {
 cout << "B";
}
else if (studentGrade >= 70) {
 cout << "C";
}
else if (studentGrade >= 60) {
 cout << "D";
}
else {
 cout << "F";
}

This form avoids deep indentation of the code to the right, which can force lines to wrap.
Throughout the text, we always enclose control-statement bodies in braces ({ and }),
which avoids a logic error called the “dangling-else” problem.

3.4.2 Blocks
The if statement expects only one statement in its body. To include several statements in
an if’s or else’s body, enclose the statements in braces. It’s good practice always to use
the braces. Statements in a pair of braces (such as a control statement’s or function’s body)
form a block. A block can be placed anywhere in a function that a single statement can be
placed.

The following example includes a block of multiple statements in an if…else state-
ment’s else part:

if (studentGrade >= 60) {
 cout << "Passed";
}
else {
 cout << "Failed\n";
 cout << "You must retake this course.";
}

If studentGrade is less than 60, the program executes both statements in the body of the
else and prints

Failed
You must retake this course.

Without the braces surrounding the two statements in the else clause, the statement

cout << "You must retake this course.";

would be outside the body of the else part of the if…else statement and would execute
regardless of whether the studentGrade was less than 60—a logic error.

Empty Statement
Just as a block can be placed anywhere a single statement can be placed, it’s also possible
to have an empty statement, which is simply a semicolon (;) where a statement typically
would be. An empty statement has no effect.

3.5 while Iteration Statement 47

3.4.3 Conditional Operator (?:)
C++ provides the conditional operator (?:), which can be used in place of an if…else

statement. This can make your code shorter and clearer. The conditional operator is C++’s
only ternary operator (i.e., an operator that takes three operands). Together, the operands
and the ?: symbol form a conditional expression. For example, the following statement
prints the conditional expression’s value:

cout << (studentGrade >= 60 ? "Passed" : "Failed");

The operand to the left of the ? is a condition. The second operand (between the ? and :)
is the conditional expression’s value if the condition is true. The operand to the right of
the : is the conditional expression’s value if the condition is false. The conditional expres-
sion in this statement evaluates to the string "Passed" if the condition

studentGrade >= 60

is true and to the string "Failed" if it’s false. Thus, this statement with the conditional
operator performs essentially the same function as the first if…else statement in
Section 3.4. The precedence of the conditional operator is low, so the entire conditional
expression is normally placed in parentheses.

3.5 while Iteration Statement
An iteration statement allows you to specify that a program should repeat an action while
some condition remains true.

As an example of C++’s while iteration statement, consider a program segment that
finds the first power of 3 larger than 100. After the following while statement executes,
the variable product contains the result:

int product{3};

while (product <= 100) {
 product = 3 * product;
}

Each iteration of the while statement multiplies product by 3, so product takes on the
values 9, 27, 81 and 243 successively. When product becomes 243, product <= 100

becomes false. This terminates the iteration, so the final value of product is 243. At this
point, program execution continues with the next statement after the while statement.

UML Activity Diagram for a while Statement
The following while statement UML activity diagram introduces the merge symbol:

product = 3 * product

decision
[product <= 100]

[product > 100]

merge

48 Chapter 3 Control Statements: Part 1

The UML represents both the merge symbol and the decision symbol as diamonds. The
merge symbol joins two flows of activity into one. In this diagram, the merge symbol joins
the transitions from the initial state and the action state, so they both flow into the decision
that determines whether the loop should begin (or continue) executing.

You can distinguish the decision and merge symbols by the number of incoming and
outgoing transition arrows. A decision symbol has one transition arrow pointing to the
diamond and two or more pointing out from it to indicate possible transitions from that
decision. Also, each arrow pointing out of a decision symbol has a guard condition. A
merge symbol has two or more transition arrows pointing to it and only one pointing from
it to indicate multiple activity flows merging to continue the activity. None of the transi-
tion arrows associated with a merge symbol has a guard condition.

3.6 Counter-Controlled Iteration
Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0–100) for
this quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
program must input each grade, total all the grades entered, perform the averaging calcu-
lation and print the result.

We use counter-controlled iteration to input the grades one at a time. This technique
uses a counter to control the number of times a set of statements will execute. In this exam-
ple, iteration terminates when the counter exceeds 10.

3.6.1 Implementing Counter-Controlled Iteration
In Fig. 3.1, the main function calculates the class average with counter-controlled itera-
tion. It allows the user to enter 10 grades, then calculates and displays the average.

1 fig03_01.cpp
2 // Solving the class-average problem using counter-controlled iteration.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 // initialization phase
8 int total{0}; // initialize sum of grades entered by the user
9 int gradeCounter{1}; // initialize grade # to be entered next

10
11 // processing phase uses counter-controlled iteration
12 while (gradeCounter <= 10) { // loop 10 times
13 cout << "Enter grade: "; // prompt
14 int grade;
15 cin >> grade; // input next grade
16 total = total + grade; // add grade to total
17 gradeCounter = gradeCounter + 1; // increment counter by 1
18 }

Fig. 3.1 | Solving the class-average problem using counter-controlled iteration. (Part 1 of 2.)

3.6 Counter-Controlled Iteration 49

Local Variables in main
Lines 8, 9, 14 and 21 declare int variables total, gradeCounter, grade and average,
respectively. Variable grade stores the user input. A variable declared in a block (such as a
function’s body) is a local variable that can be used only from the line of its declaration to
the closing right brace of the block. A local variable’s declaration must appear before the
variable is used. Variable grade—declared in the body of the while loop—can be used
only in that block.

Initializing Variables total and gradeCounter
Lines 8–9 declare and initialize total to 0 and gradeCounter to 1. These initializations
occur before the variables are used in calculations.

Reading 10 Grades from the User
The while statement (lines 12–18) continues iterating as long as gradeCounter’s value is
less than or equal to 10. Line 13 displays the prompt "Enter grade: ". Line 15 inputs the
grade entered by the user and assigns it to variable grade. Then line 16 adds the new grade
entered by the user to the total and assigns the result to total, replacing its previous
value. Line 17 adds 1 to gradeCounter to indicate that the program has processed a grade
and is ready to input the next grade from the user. Incrementing gradeCounter eventually
causes it to exceed 10, which terminates the loop.

Calculating and Displaying the Class Average
When the loop terminates, line 21 performs the averaging calculation in the average vari-
able’s initializer. Line 24 displays the text "Total of all 10 grades is " followed by vari-
able total’s value. Then, line 25 displays the text "Class average is " followed by
average’s value. When execution reaches line 26, the program terminates.

19
20 // termination phase
21 int average{total / 10}; // int division yields int result
22
23 // display total and average of grades
24 cout << "\nTotal of all 10 grades is " << total;
25 cout << "\nClass average is " << average << "\n";
26 }

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Fig. 3.1 | Solving the class-average problem using counter-controlled iteration. (Part 2 of 2.)

50 Chapter 3 Control Statements: Part 1

3.6.2 Integer Division and Truncation
This example’s average calculation produces an int result. The program’s sample execu-
tion shows that the sum of the grades is 846—when divided by 10, this should yield 84.6.
Numbers like 84.6 containing decimal points are floating-point numbers. However, in
the class-average program, total / 10 produces the integer 84 because total and 10 are
both integers. Dividing two integers results in integer division—any fractional part of the
calculation is truncated. The next section shows how to obtain a floating-point result from
the averaging calculation. For example, 7 / 4 yields 1.75 in conventional arithmetic but
truncates to 1 in integer arithmetic rather than rounding to 2.

3.7 Sentinel-Controlled Iteration
Let’s generalize Section 3.6’s class-average problem. Consider the following problem:

Develop a class-averaging program that processes grades for an arbitrary number
of students each time it’s run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. Here, we do not know how
many grades the user will enter during the program’s execution. The program must pro-
cess an arbitrary number of grades.

One way to solve this problem is to use a sentinel value (also called a signal value, a
dummy value or a flag value) to indicate “end of data entry.” The user enters grades until
all legitimate grades have been entered. The user then enters the sentinel value to indicate
that no more grades will be entered.

You must choose a sentinel value that cannot be confused with an acceptable input
value. Grades on a quiz are non-negative integers, so –1 is an acceptable sentinel value for
this problem. Thus, a run of the class-averaging program might process a stream of inputs
such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89; since –1 is the sentinel value, it should not
enter into the averaging calculation.

It’s possible the user could enter –1 before entering grades, in which case the number
of grades will be zero. We must test for this case before calculating the class average.
According to the C++ standard, the result of division by zero in floating-point arithmetic
is undefined. When performing division (/) or remainder (%) calculations in which the
right operand could be zero, test for this and handle it (e.g., display an error message)
rather than allowing the calculation to proceed.

3.7.1 Implementing Sentinel-Controlled Iteration
Figure 3.2 implements sentinel-controlled iteration. Although each grade entered by the
user is an integer, the average calculation will likely produce a floating-point number,
which an int cannot represent. C++ provides data types float, double and long double
to store floating-point numbers in memory. The primary difference between these types
is that double variables typically store numbers with larger magnitude and finer detail than
float—that is, more digits to the right of the decimal point, which is also known as the
number’s precision. Similarly, long double stores values with larger magnitude and more
precision than double. We say more about floating-point types in Chapter 4.

3.7 Sentinel-Controlled Iteration 51

1 // fig03_02.cpp
2 // Solving the class-average problem using sentinel-controlled iteration.
3 #include <iostream>
4 #include <iomanip> // parameterized stream manipulators
5 using namespace std;
6
7 int main() {
8 // initialization phase
9 int total{0}; // initialize sum of grades

10 int gradeCounter{0}; // initialize # of grades entered so far
11
12 // processing phase
13 // prompt for input and read grade from user
14 cout << "Enter grade or -1 to quit: ";
15 int grade;
16 cin >> grade;
17
18 // loop until sentinel value is read from user
19 while (grade != -1) {
20 total = total + grade; // add grade to total
21 gradeCounter = gradeCounter + 1; // increment counter
22
23 // prompt for input and read next grade from user
24 cout << "Enter grade or -1 to quit: ";
25 cin >> grade;
26 }
27
28 // termination phase
29 // if user entered at least one grade...
30 if (gradeCounter != 0) {
31 // use number with decimal point to calculate average of grades
32 double average{static_cast<double>(total) / gradeCounter};
33
34 // display total and average (with two digits of precision)
35 cout << "\nTotal of the " << gradeCounter
36 << " grades entered is " << total;
37 cout << setprecision(2) << fixed;
38 cout << "\nClass average is " << average << "\n";
39 }
40 else { // no grades were entered, so output appropriate message
41 cout << "No grades were entered\n";
42 }
43 }

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. 3.2 | Solving the class-average problem using sentinel-controlled iteration.

52 Chapter 3 Control Statements: Part 1

Recall that integer division produces an integer result. This program introduces a cast
operator to force the average calculation to produce a floating-point result. This program
also stacks control statements in sequence—the while statement is followed in sequence
by an if…else statement. Much of this program’s code is identical to Fig. 3.1, so we con-
centrate on only the new concepts.

Program Logic for Sentinel-Controlled Iteration vs. Counter-Controlled Iteration
Line 10 initializes gradeCounter to 0 because no grades have been entered yet. Remember
that this program uses sentinel-controlled iteration to input the grades. The program
increments gradeCounter only when the user enters a valid grade. Line 32 declares double
variable average, which stores the calculated class average as a floating-point number.

Compare the program logic for sentinel-controlled iteration in this program with that
for counter-controlled iteration in Fig. 3.1. In counter-controlled iteration, each iteration
of the while statement (lines 12–18 of Fig. 3.1) reads a value from the user for the speci-
fied number of iterations. In sentinel-controlled iteration, the program prompts for and
reads the first value (lines 14 and 16 of Fig. 3.2) before reaching the while. This value
determines whether the flow of control should enter the while’s body. If the condition is
false, the user entered the sentinel value, so no grades were entered, and the body does not
execute. If the condition is true, the body begins execution, and the loop adds the grade
value to the total and increments the gradeCounter. Then lines 24–25 in the loop body
input the next value from the user. Next, program control reaches the closing right brace
of the loop at line 26, so execution continues with the test of the while’s condition (line
19). The condition uses the most recent grade entered by the user to determine whether
the loop body should execute again.

The next grade is always input from the user immediately before the while condition
is tested. This allows the program to determine whether the value just input is the sentinel
value before processing that value (i.e., adding it to the total). If the sentinel value is
input, the loop terminates, and the program does not add –1 to the total.

After the loop terminates, the if…else statement at lines 30–42 executes. The con-
dition at line 30 determines whether any grades were input. If none were input, the
if…else statement’s else part executes and displays the message "No grades were
entered". After the if…else executes, the program terminates.

3.7.2 Converting Between Fundamental Types Explicitly and Implicitly
If at least one grade was entered, line 32 of Fig. 3.2

double average{static_cast<double>(total) / gradeCounter};

calculates the average. Recall from Fig. 3.1 that integer division yields an integer result.
Even though average is declared as a double, if we had written line 32 as

double average{total / gradeCounter};

it would lose the fractional part of the quotient before the result of the division was used
to initialize average.

static_cast Operator
To perform a floating-point calculation with integers in this example, you first create tem-
porary floating-point values using the static_cast operator. Line 32 converts a tempo-

3.7 Sentinel-Controlled Iteration 53

rary copy of its operand in parentheses (total) to the type in angle brackets (double). The
value stored in the int variable total is still an integer. Using a cast operator in this man-
ner is called explicit conversion. static_cast is one of several cast operators we’ll discuss.

Promotions
After the cast, the calculation consists of the temporary double copy of total divided by
the int gradeCounter. For arithmetic, the compiler knows how to evaluate only expres-
sions in which all the operand types are identical. To ensure this, the compiler performs
an operation called promotion (also called implicit conversion) on selected operands. In
an expression containing values of data types int and double, C++ promotes int operands
to double values. So in line 32, C++ promotes a temporary copy of gradeCounter’s value
to type double, then performs the division. Finally, average is initialized with the float-
ing-point result. Section 5.6 discusses the allowed fundamental-type promotions.

Cast Operators for Any Type
Cast operators are available for use with every fundamental type and for other types, as
you’ll see beginning in Chapter 9. Simply specify the type in the angle brackets (< and >)
that follow the static_cast keyword. It’s a unary operator—that is, it has only one oper-
and. Other unary operators include the unary plus (+) and minus (-) operators for expres-
sions such as -7 or +5. Cast operators have the second-highest precedence.

3.7.3 Formatting Floating-Point Numbers
Figure 3.2’s formatting features are introduced here briefly. Online Chapter 19 explains
them in depth.

setprecision Parameterized Stream Manipulator
Line 37’s call to setprecision—setprecision(2)—indicates that floating-point values
should be output with two digits of precision to the right of the decimal point (e.g.,
92.37). setprecision is a parameterized stream manipulator because it requires an argu-
ment (in this case, 2) to perform its task. Programs that use parameterized stream manip-
ulators must include the header <iomanip> (line 4).

fixed Nonparameterized Stream Manipulator
The non-parameterized stream manipulator fixed (line 37) does not require an argu-
ment and indicates that floating-point values should be output in fixed-point format. This
is as opposed to scientific notation4, which displays a number between 1.0 and 10.0, mul-
tiplied by a power of 10. So, in scientific notation, the value 3,100.0 is displayed as
3.1e+03 (that is, 3.1 × 103). This format is useful for displaying very large or very small
values.

Fixed-point formatting forces a floating-point number to display without scientific
notation. Fixed-point formatting also forces the decimal point and trailing zeros to print,
even if the value is a whole-number amount, such as 88.00. Without the fixed-point for-
matting option, 88.00 prints as 88 without the trailing zeros and decimal point.

4. Formatting using scientific notation is discussed further in online Chapter 19.

