

Core Java

Volume I–Fundamentals

Eleventh Edition

This page intentionally left blank

Core Java

Volume I–Fundamentals

Eleventh Edition

Cay S. Horstmann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com

Library of Congress Preassigned Control Number: 2018942070

Copyright © 2019 Pearson Education Inc.

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or omissions.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and related graphics
contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be
viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the
U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-516630-7
ISBN-10: 0-13-516630-6

ScoutAutomatedPrintCode

http://informit.com
http://www.pearsoned.com/permissions/
mailto:governmentsales@pearsoned.com

Contents

xixPreface ..

xxvAcknowledgments ...

1Chapter 1: An Introduction to Java ...

1Java as a Programming Platform ...1.1
2The Java “White Paper” Buzzwords ..1.2
3Simple ...1.2.1
4Object-Oriented ...1.2.2
4Distributed ...1.2.3
4Robust ...1.2.4
5Secure ...1.2.5
6Architecture-Neutral ..1.2.6
6Portable ..1.2.7
7Interpreted ..1.2.8
7High-Performance ...1.2.9
8Multithreaded ..1.2.10
8Dynamic ...1.2.11
9Java Applets and the Internet ...1.3

10A Short History of Java ..1.4
13Common Misconceptions about Java ...1.5

17Chapter 2: The Java Programming Environment

18Installing the Java Development Kit ...2.1
18Downloading the JDK ...2.1.1
20Setting up the JDK ..2.1.2
22Installing Source Files and Documentation2.1.3
23Using the Command-Line Tools ...2.2
29Using an Integrated Development Environment2.3
32JShell ..2.4

v

37Chapter 3: Fundamental Programming Structures in Java

38A Simple Java Program ..3.1
41Comments ..3.2
42Data Types ...3.3
43Integer Types ...3.3.1
44Floating-Point Types ...3.3.2
46The char Type ..3.3.3
47Unicode and the char Type ...3.3.4
48The boolean Type ...3.3.5
48Variables and Constants ..3.4
48Declaring Variables ...3.4.1
50Initializing Variables ...3.4.2
51Constants ..3.4.3
52Enumerated Types ...3.4.4
52Operators ...3.5
52Arithmetic Operators ..3.5.1
54Mathematical Functions and Constants3.5.2
56Conversions between Numeric Types3.5.3
57Casts ..3.5.4
58Combining Assignment with Operators3.5.5
58Increment and Decrement Operators3.5.6
59Relational and boolean Operators ..3.5.7
60Bitwise Operators ..3.5.8
61Parentheses and Operator Hierarchy3.5.9
62Strings ..3.6
62Substrings ...3.6.1
63Concatenation ..3.6.2
63Strings Are Immutable ..3.6.3
65Testing Strings for Equality ..3.6.4
66Empty and Null Strings ...3.6.5
66Code Points and Code Units ...3.6.6
68The String API ...3.6.7
71Reading the Online API Documentation3.6.8
74Building Strings ...3.6.9
75Input and Output ..3.7

Contentsvi

75Reading Input ..3.7.1
78Formatting Output ...3.7.2
83File Input and Output ...3.7.3
86Control Flow ..3.8
86Block Scope ..3.8.1
87Conditional Statements ...3.8.2
91Loops ..3.8.3
95Determinate Loops ..3.8.4
99Multiple Selections The switch Statement3.8.5

102Statements That Break Control Flow3.8.6
105Big Numbers ..3.9
108Arrays ...3.10
108Declaring Arrays ..3.10.1
109Accessing Array Elements ..3.10.2
110The “for each” Loop ..3.10.3
111Array Copying ..3.10.4
112Command-Line Parameters ..3.10.5
113Array Sorting ..3.10.6
116Multidimensional Arrays ..3.10.7
120Ragged Arrays ..3.10.8

125Chapter 4: Objects and Classes ..

126Introduction to Object-Oriented Programming4.1
127Classes ..4.1.1
128Objects ..4.1.2
129Identifying Classes ...4.1.3
129Relationships between Classes ..4.1.4
131Using Predefined Classes ...4.2
132Objects and Object Variables ...4.2.1
135The LocalDate Class of the Java Library4.2.2
138Mutator and Accessor Methods ...4.2.3
141Defining Your Own Classes ..4.3
142An Employee Class ...4.3.1
145Use of Multiple Source Files ..4.3.2
146Dissecting the Employee Class ..4.3.3
146First Steps with Constructors ...4.3.4

viiContents

148Declaring Local Variables with var4.3.5
148Working with null References ...4.3.6
150Implicit and Explicit Parameters ..4.3.7
151Benefits of Encapsulation ..4.3.8
154Class-Based Access Privileges ..4.3.9
155Private Methods ...4.3.10
155Final Instance Fields ..4.3.11
156Static Fields and Methods ..4.4
156Static Fields ..4.4.1
157Static Constants ...4.4.2
158Static Methods ...4.4.3
159Factory Methods ..4.4.4
160The main Method ...4.4.5
163Method Parameters ...4.5
170Object Construction ..4.6
170Overloading ..4.6.1
171Default Field Initialization ..4.6.2
172The Constructor with No Arguments4.6.3
173Explicit Field Initialization ..4.6.4
174Parameter Names ..4.6.5
175Calling Another Constructor ..4.6.6
175Initialization Blocks ...4.6.7
180Object Destruction and the finalize Method4.6.8
180Packages ...4.7
181Package Names ..4.7.1
181Class Importation ..4.7.2
183Static Imports ...4.7.3
184Addition of a Class into a Package4.7.4
187Package Access ..4.7.5
189The Class Path ...4.7.6
191Setting the Class Path ...4.7.7
192JAR Files ...4.8
192Creating JAR files ..4.8.1
193The Manifest ..4.8.2
194Executable JAR Files ..4.8.3

Contentsviii

195Multi-Release JAR Files ...4.8.4
197A Note about Command-Line Options4.8.5
198Documentation Comments ..4.9
199Comment Insertion ...4.9.1
199Class Comments ..4.9.2
200Method Comments ..4.9.3
201Field Comments ...4.9.4
201General Comments ..4.9.5
202Package Comments ...4.9.6
203Comment Extraction ...4.9.7
204Class Design Hints ..4.10

207Chapter 5: Inheritance ..

208Classes, Superclasses, and Subclasses ..5.1
208Defining Subclasses ...5.1.1
210Overriding Methods ..5.1.2
211Subclass Constructors ...5.1.3
216Inheritance Hierarchies ...5.1.4
217Polymorphism ..5.1.5
218Understanding Method Calls ...5.1.6
221Preventing Inheritance: Final Classes and Methods5.1.7
223Casting ..5.1.8
225Abstract Classes ...5.1.9
231Protected Access ..5.1.10
232Object: The Cosmic Superclass ..5.2
232Variables of Type Object ...5.2.1
233The equals Method ..5.2.2
234Equality Testing and Inheritance5.2.3
238The hashCode Method ...5.2.4
241The toString Method ...5.2.5
248Generic Array Lists ...5.3
248Declaring Array Lists ...5.3.1
251Accessing Array List Elements ...5.3.2
255Compatibility between Typed and Raw Array Lists5.3.3
256Object Wrappers and Autoboxing ..5.4
260Methods with a Variable Number of Parameters5.5

ixContents

261Enumeration Classes ..5.6
264Reflection ...5.7
264The Class Class ..5.7.1
267A Primer on Declaring Exceptions5.7.2
268Resources ..5.7.3
271Using Reflection to Analyze the Capabilities of Classes 5.7.4
277Using Reflection to Analyze Objects at Runtime5.7.5
283Using Reflection to Write Generic Array Code5.7.6
286Invoking Arbitrary Methods and Constructors5.7.7
290Design Hints for Inheritance ...5.8

295Chapter 6: Interfaces, Lambda Expressions, and Inner Classes

296Interfaces ..6.1
296The Interface Concept ...6.1.1
303Properties of Interfaces ...6.1.2
305Interfaces and Abstract Classes ...6.1.3
306Static and Private Methods ...6.1.4
307Default Methods ..6.1.5
308Resolving Default Method Conflicts6.1.6
310Interfaces and Callbacks ...6.1.7
313The Comparator Interface ...6.1.8
314Object Cloning ...6.1.9
322Lambda Expressions ...6.2
322Why Lambdas? ...6.2.1
323The Syntax of Lambda Expressions6.2.2
326Functional Interfaces ...6.2.3
328Method References ..6.2.4
332Constructor References ...6.2.5
333Variable Scope ...6.2.6
335Processing Lambda Expressions ..6.2.7
339More about Comparators ...6.2.8
340Inner Classes ...6.3
341Use of an Inner Class to Access Object State6.3.1
345Special Syntax Rules for Inner Classes6.3.2
346Are Inner Classes Useful? Actually Necessary? Secure? 6.3.3
349Local Inner Classes ..6.3.4

Contentsx

350Accessing Variables from Outer Methods6.3.5
352Anonymous Inner Classes ..6.3.6
356Static Inner Classes ...6.3.7
360Service Loaders ...6.4
362Proxies ..6.5
363When to Use Proxies ..6.5.1
363Creating Proxy Objects ...6.5.2
368Properties of Proxy Classes ..6.5.3

371Chapter 7: Exceptions, Assertions, and Logging

372Dealing with Errors ...7.1
373The Classification of Exceptions ..7.1.1
375Declaring Checked Exceptions ...7.1.2
378How to Throw an Exception ..7.1.3
380Creating Exception Classes ..7.1.4
381Catching Exceptions ...7.2
381Catching an Exception ..7.2.1
383Catching Multiple Exceptions ..7.2.2
384Rethrowing and Chaining Exceptions7.2.3
386The finally Clause ..7.2.4
389The try-with-Resources Statement7.2.5
391Analyzing Stack Trace Elements ..7.2.6
396Tips for Using Exceptions ..7.3
399Using Assertions ...7.4
399The Assertion Concept ...7.4.1
400Assertion Enabling and Disabling7.4.2
401Using Assertions for Parameter Checking7.4.3
402Using Assertions for Documenting Assumptions7.4.4
403Logging ...7.5
404Basic Logging ...7.5.1
405Advanced Logging ...7.5.2
407Changing the Log Manager Configuration7.5.3
409Localization ..7.5.4
410Handlers ...7.5.5
414Filters ..7.5.6
415Formatters ...7.5.7

xiContents

415A Logging Recipe ..7.5.8
425Debugging Tips ...7.6

431Chapter 8: Generic Programming ...

432Why Generic Programming? ..8.1
432The Advantage of Type Parameters8.1.1
433Who Wants to Be a Generic Programmer?8.1.2
434Defining a Simple Generic Class ..8.2
437Generic Methods ...8.3
438Bounds for Type Variables ...8.4
441Generic Code and the Virtual Machine ...8.5
441Type Erasure ..8.5.1
442Translating Generic Expressions ..8.5.2
443Translating Generic Methods ...8.5.3
445Calling Legacy Code ...8.5.4
447Restrictions and Limitations ..8.6

447
Type Parameters Cannot Be Instantiated with Primitive
Types ...

8.6.1

447Runtime Type Inquiry Only Works with Raw Types8.6.2
448You Cannot Create Arrays of Parameterized Types 8.6.3
448Varargs Warnings ..8.6.4
450You Cannot Instantiate Type Variables8.6.5
451You Cannot Construct a Generic Array8.6.6

452
Type Variables Are Not Valid in Static Contexts of
Generic Classes ..

8.6.7

453
You Cannot Throw or Catch Instances of a Generic
Class ..

8.6.8

454You Can Defeat Checked Exception Checking8.6.9
455Beware of Clashes after Erasure ..8.6.10
457Inheritance Rules for Generic Types ..8.7
459Wildcard Types ...8.8
459The Wildcard Concept ..8.8.1
461Supertype Bounds for Wildcards8.8.2
464Unbounded Wildcards ..8.8.3
465Wildcard Capture ..8.8.4
467Reflection and Generics ...8.9

Contentsxii

467The Generic Class Class ...8.9.1
469Using Class<T> Parameters for Type Matching8.9.2
469Generic Type Information in the Virtual Machine8.9.3
473Type Literals ...8.9.4

481Chapter 9: Collections ..

482The Java Collections Framework ...9.1
482Separating Collection Interfaces and Implementation9.1.1
485The Collection Interface ...9.1.2
485Iterators ...9.1.3
489Generic Utility Methods ..9.1.4
492Interfaces in the Collections Framework ..9.2
494Concrete Collections ..9.3
496Linked Lists ..9.3.1
507Array Lists ..9.3.2
507Hash Sets ..9.3.3
511Tree Sets ...9.3.4
516Queues and Deques ..9.3.5
518Priority Queues ..9.3.6
519Maps ...9.4
519Basic Map Operations ...9.4.1
523Updating Map Entries ...9.4.2
525Map Views ..9.4.3
526Weak Hash Maps ...9.4.4
527Linked Hash Sets and Maps ...9.4.5
529Enumeration Sets and Maps ...9.4.6
530Identity Hash Maps ...9.4.7
532Views and Wrappers ...9.5
532Small Collections ...9.5.1
534Subranges ...9.5.2
535Unmodifiable Views ..9.5.3
536Synchronized Views ..9.5.4
536Checked Views ..9.5.5
537A Note on Optional Operations ..9.5.6
541Algorithms ...9.6
541Why Generic Algorithms? ..9.6.1

xiiiContents

543Sorting and Shuffling ..9.6.2
546Binary Search ...9.6.3
547Simple Algorithms ...9.6.4
549Bulk Operations ...9.6.5
550Converting between Collections and Arrays9.6.6
551Writing Your Own Algorithms ..9.6.7
552Legacy Collections ..9.7
553The Hashtable Class ..9.7.1
553Enumerations ...9.7.2
555Property Maps ..9.7.3
558Stacks ..9.7.4
559Bit Sets ..9.7.5

565Chapter 10: Graphical User Interface Programming

565A History of Java User Interface Toolkits10.1
567Displaying Frames ...10.2
568Creating a Frame ...10.2.1
570Frame Properties ..10.2.2
574Displaying Information in a Component10.3
579Working with 2D Shapes ..10.3.1
587Using Color ..10.3.2
589Using Fonts ..10.3.3
597Displaying Images ...10.3.4
598Event Handling ..10.4
598Basic Event Handling Concepts ...10.4.1
600Example: Handling a Button Click10.4.2
604Specifying Listeners Concisely ...10.4.3
605Adapter Classes ...10.4.4
608Actions ..10.4.5
614Mouse Events ...10.4.6
620The AWT Event Hierarchy ...10.4.7
624The Preferences API ...10.5

631Chapter 11: User Interface Components with Swing

632Swing and the Model-View-Controller Design Pattern11.1
636Introduction to Layout Management ..11.2

Contentsxiv

637Layout Managers ...11.2.1
639Border Layout ..11.2.2
642Grid Layout ..11.2.3
643Text Input ..11.3
643Text Fields ..11.3.1
645Labels and Labeling Components11.3.2
647Password Fields ...11.3.3
647Text Areas ..11.3.4
648Scroll Panes ..11.3.5
651Choice Components ...11.4
651Checkboxes ..11.4.1
654Radio Buttons ...11.4.2
658Borders ..11.4.3
661Combo Boxes ...11.4.4
665Sliders ...11.4.5
671Menus ...11.5
672Menu Building ...11.5.1
675Icons in Menu Items ...11.5.2
676Checkbox and Radio Button Menu Items11.5.3
677Pop-Up Menus ...11.5.4
679Keyboard Mnemonics and Accelerators11.5.5
682Enabling and Disabling Menu Items11.5.6
687Toolbars ..11.5.7
689Tooltips ...11.5.8
690Sophisticated Layout Management ...11.6
691The Grid Bag Layout ...11.6.1

693
The gridx, gridy, gridwidth, and gridheight
Parameters ...

11.6.1.1

694Weight Fields ...11.6.1.2
694The fill and anchor Parameters11.6.1.3
694Padding ..11.6.1.4

695
Alternative Method to Specify the gridx, gridy,
gridwidth, and gridheight Parameters

11.6.1.5

695A Grid Bag Layout Recipe11.6.1.6

696
A Helper Class to Tame the Grid Bag
Constraints ...

11.6.1.7

xvContents

702Custom Layout Managers ...11.6.2
706Dialog Boxes ..11.7
707Option Dialogs ...11.7.1
712Creating Dialogs ..11.7.2
716Data Exchange ...11.7.3
723File Dialogs ...11.7.4

733Chapter 12: Concurrency ...

734What Are Threads? ...12.1
739Thread States ...12.2
740New Threads ..12.2.1
740Runnable Threads ..12.2.2
741Blocked and Waiting Threads ..12.2.3
742Terminated Threads ..12.2.4
743Thread Properties ..12.3
743Interrupting Threads ...12.3.1
746Daemon Threads ...12.3.2
747Thread Names ..12.3.3
747Handlers for Uncaught Exceptions12.3.4
749Thread Priorities ..12.3.5
750Synchronization ...12.4
750An Example of a Race Condition12.4.1
752The Race Condition Explained ..12.4.2
755Lock Objects ..12.4.3
758Condition Objects ...12.4.4
764The synchronized Keyword ..12.4.5
768Synchronized Blocks ...12.4.6
770The Monitor Concept ..12.4.7
771Volatile Fields ...12.4.8
772Final Variables ...12.4.9
773Atomics ...12.4.10
775Deadlocks ...12.4.11
778Thread-Local Variables ...12.4.12
779Why the stop and suspend Methods Are Deprecated12.4.13
781Thread-Safe Collections ...12.5
781Blocking Queues ..12.5.1

Contentsxvi

789Efficient Maps, Sets, and Queues12.5.2
790Atomic Update of Map Entries ..12.5.3
794Bulk Operations on Concurrent Hash Maps12.5.4
796Concurrent Set Views ...12.5.5
797Copy on Write Arrays ...12.5.6
797Parallel Array Algorithms ...12.5.7
799Older Thread-Safe Collections ...12.5.8
800Tasks and Thread Pools ...12.6
800Callables and Futures ..12.6.1
802Executors ..12.6.2
806Controlling Groups of Tasks ..12.6.3
811The Fork-Join Framework ...12.6.4
814Asynchronous Computations ...12.7
815Completable Futures ...12.7.1
817Composing Completable Futures12.7.2
823Long-Running Tasks in User Interface Callbacks12.7.3
831Processes ..12.8
832Building a Process ...12.8.1
834Running a Process ...12.8.2
835Process Handles ...12.8.3

839Appendix ..

843Index ...

xviiContents

This page intentionally left blank

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene
and gained instant celebrity status. The promise of Java technology was that
it would become the universal glue that connects users with information
wherever it comes from—web servers, databases, information providers, or
any other imaginable source. Indeed, Java is in a unique position to fulfill
this promise. It is an extremely solidly engineered language that has gained
wide acceptance. Its built-in security and safety features are reassuring both
to programmers and to the users of Java programs. Java has built-in support
for advanced programming tasks, such as network programming, database
connectivity, and concurrency.

Since 1995, eleven major revisions of the Java Development Kit have been
released. Over the course of the last 20 years, the Application Programming
Interface (API) has grown from about 200 to over 4,000 classes. The API now
spans such diverse areas as user interface construction, database management,
internationalization, security, and XML processing.

The book that you are reading right now is the first volume of the eleventh
edition of Core Java. Each edition closely followed a release of the Java Devel-
opment Kit, and each time, we rewrote the book to take advantage of the
newest Java features. This edition has been updated to reflect the features of
Java Standard Edition (SE) 9, 10, and 11.

As with the previous editions of this book, we still target serious programmers
who want to put Java to work on real projects. We think of you, our reader, as a
programmer with a solid background in a programming language other than
Java, and we assume that you don’t like books filled with toy examples (such
as toasters, zoo animals, or “nervous text”). You won’t find any of these in
our book. Our goal is to enable you to fully understand the Java language
and library, not to give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every
language and library feature that we discuss. We keep the sample programs
purposefully simple to focus on the major points, but, for the most part, they

xix

aren’t fake and they don’t cut corners. They should make good starting points
for your own code.

We assume you are willing, even eager, to learn about all the advanced fea-
tures that Java puts at your disposal. For example, we give you a detailed
treatment of

• Object-oriented programming
• Reflection and proxies
• Interfaces and inner classes
• Exception handling
• Generic programming
• The collections framework
• The event listener model
• Graphical user interface design
• Concurrency

With the explosive growth of the Java class library, a one-volume treatment
of all the features of Java that serious programmers need to know is no longer
possible. Hence, we decided to break up the book into two volumes. This
first volume concentrates on the fundamental concepts of the Java language,
along with the basics of user-interface programming. The second volume,
Core Java, Volume II—Advanced Features, goes further into the enterprise features
and advanced user-interface programming. It includes detailed discussions of

• The Stream API
• File processing and regular expressions
• Databases
• XML processing
• Annotations
• Internationalization
• Network programming
• Advanced GUI components
• Advanced graphics
• Native methods

When writing a book, errors and inaccuracies are inevitable. We’d very much
like to know about them. But, of course, we’d prefer to learn about each of
them only once. We have put up a list of frequently asked questions, bug
fixes, and workarounds on a web page at http://horstmann.com/corejava. Strategi-
cally placed at the end of the errata page (to encourage you to read through

Prefacexx

http://horstmann.com/corejava

it first) is a form you can use to report bugs and suggest improvements. Please
don’t be disappointed if we don’t answer every query or don’t get back to
you immediately. We do read all e-mail and appreciate your input to make
future editions of this book clearer and more informative.

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from
other programming languages. We explain what the designers of the language
set out to do and to what extent they succeeded. Then, we give a short history
of how Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the pro-
gram examples for this book. Then we guide you through compiling and
running a console application and a graphical application. You will see how
to use the plain JDK, a Java IDE, and the JShell tool.

Chapter 3 starts the discussion of the Java language. In this chapter, we
cover the basics: variables, loops, and simple functions. If you are a C or C++
programmer, this is smooth sailing because the syntax for these language
features is essentially the same as in C. If you come from a non-C background
such as Visual Basic, you will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of program-
ming practice, and Java is an object-oriented programming language.
Chapter 4 introduces encapsulation, the first of two fundamental building
blocks of object orientation, and the Java language mechanism to implement
it—that is, classes and methods. In addition to the rules of the Java language,
we also give advice on sound OOP design. Finally, we cover the marvelous
javadoc tool that formats your code comments as a set of hyperlinked web
pages. If you are familiar with C++, you can browse through this chapter
quickly. Programmers coming from a non-object-oriented background should
expect to spend some time mastering the OOP concepts before going further
with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5
introduces the other—namely, inheritance. Inheritance lets you take an existing
class and modify it according to your needs. This is a fundamental technique
for programming in Java. The inheritance mechanism in Java is quite similar
to that in C++. Once again, C++ programmers can focus on the differences
between the languages.

xxiPreface

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let
you go beyond the simple inheritance model of Chapter 5. Mastering interfaces
allows you to have full access to the power of Java’s completely object-oriented
approach to programming. After we cover interfaces, we move on to lambda
expressions, a concise way for expressing a block of code that can be executed
at a later point in time. We then cover a useful technical feature of Java
called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal with
the fact that bad things can happen to good programs. Exceptions give you
an efficient way of separating the normal processing code from the error
handling. Of course, even after hardening your program by handling all ex-
ceptional conditions, it still might fail to work as expected. In the final part
of this chapter, we give you a number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming
makes your programs easier to read and safer. We show you how to use
strong typing and remove unsightly and unsafe casts, and how to deal with
the complexities that arise from the need to stay compatible with older
versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform.
Whenever you want to collect multiple objects and retrieve them later, you
should use a collection that is best suited for your circumstances, instead of
just tossing the elements into an array. This chapter shows you how to take
advantage of the standard collections that are prebuilt for your use.

Chapter 10 provides an introduction into GUI programming. We show how
you can make windows, how to paint on them, how to draw with geometric
shapes, how to format text in multiple fonts, and how to display images. Next,
you’ll see how to write code that responds to events, such as mouse clicks
or key presses.

Chapter 11 discusses the Swing GUI toolkit in great detail. The Swing
toolkit allows you to build cross-platform graphical user interfaces. You’ll
learn all about the various kinds of buttons, text components, borders, sliders,
list boxes, menus, and dialog boxes. However, some of the more advanced
components are discussed in Volume II.

Chapter 12 finishes the book with a discussion of concurrency, which enables
you to program tasks to be done in parallel. This is an important and exciting
application of Java technology in an era where most processors have multiple
cores that you want to keep busy.

Prefacexxii

A bonus JavaFX chapter contains a rapid introduction into JavaFX, a modern
GUI toolkit for desktop applications. If you read the print book, download
the chapter from the book companion site at http://horstmann.com/corejava.

The Appendix lists the reserved words of the Java language.

Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

TIP: Tips are tagged with “tip” icons that look like this.

CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are many C++ notes that explain the differences between
Java and C++. You can skip over them if you don’t have a background in C++
or if you consider your experience with that language a bad dream of which
you’d rather not be reminded.

Java comes with a large programming library, or Application Programming
Interface (API). When using an API call for the first time, we add a short
summary description at the end of the section. These descriptions are a bit
more informal but, we hope, also a little more informative than those in the
official online API documentation. The names of interfaces are in italics, just
like in the official documentation. The number after a class, interface, or
method name is the JDK version in which the feature was introduced, as
shown in the following example:

Application Programming Interface 9

xxiiiPreface

http://horstmann.com/corejava

Programs whose source code is on the book’s companion web site are
presented as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code

The web site for this book at http://horstmann.com/corejava contains all sample
code from the book. See Chapter 2 for more information on installing the
Java Development Kit and the sample code.

Register your copy of Core Java, Volume I—Fundamentals, Eleventh Edition, on the
InformIT site for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register and log in
or create an account. Enter the product ISBN (9780135166307) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

Prefacexxiv

http://horstmann.com/corejava
http://toinformit.com/register

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem
to be much easier, especially with the continuous change in Java technology.
Making a book a reality takes many dedicated people, and it is my great
pleasure to acknowledge the contributions of the entire Core Java team.

A large number of individuals at Pearson provided valuable assistance but
managed to stay behind the scenes. I’d like them all to know how much I
appreciate their efforts. As always, my warm thanks go to my editor, Greg
Doench, for steering the book through the writing and production process,
and for allowing me to be blissfully unaware of the existence of all those
folks behind the scenes. I am very grateful to Julie Nahil for production sup-
port, and to Dmitry Kirsanov and Alina Kirsanova for copyediting and type-
setting the manuscript. My thanks also to my coauthor of earlier editions,
Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing
errors and made lots of thoughtful suggestions for improvement. I am partic-
ularly grateful to the excellent reviewing team who went over the manuscript
with an amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley
University), Lance Andersen (Oracle), Paul Anderson (Anderson Software
Group), Alec Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua
Bloch, David Brown, Corky Cartwright, Frank Cohen (PushToTest), Chris
Crane (devXsolution), Dr. Nicholas J. De Lillo (Manhattan College), Rakesh
Dhoopar (Oracle), David Geary (Clarity Training), Jim Gish (Oracle), Brian
Goetz (Oracle), Angela Gordon, Dan Gordon (Electric Cloud), Rob Gordon,
John Gray (University of Hartford), Cameron Gregory (olabs.com), Marty Hall
(coreservlets.com, Inc.), Vincent Hardy (Adobe Systems), Dan Harkey (San
Jose State University), William Higgins (IBM), Vladimir Ivanovic (PointBase),
Jerry Jackson (CA Technologies), Tim Kimmet (Walmart), Chris Laffra,
Charlie Lai (Apple), Angelika Langer, Doug Langston, Hang Lau (McGill
University), Mark Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore,
Bob Lynch (Lynch Associates), Philip Milne (consultant), Mark Morrissey
(The Oregon Graduate Institute), Mahesh Neelakanta (Florida Atlantic Uni-
versity), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges (University of
Arizona), Simon Ritter (Azul Systems), Rich Rosen (Interactive Data Corpora-
tion), Peter Sanders (ESSI University, Nice, France), Dr. Paul Sanghera (San

xxv

http://olabs.com
http://coreservlets.com

Jose State University and Brooks College), Paul Sevinc (Teamup AG), Devang
Shah (Sun Microsystems), Yoshiki Shibata, Bradley A. Smith, Steven Stelting
(Oracle), Christopher Taylor, Luke Taylor (Valtech), George Thiruvathukal,
Kim Topley (StreamingEdge), Janet Traub, Paul Tyma (consultant), Peter van
der Linden, Christian Ullenboom, Burt Walsh, Dan Xu (Oracle), and John
Zavgren (Oracle).

Cay Horstmann
San Francisco, California
June 2018

Acknowledgmentsxxvi

1CHAPTER

An Introduction to Java

In this chapter

• 1.1 Java as a Programming Platform, page 1

• 1.2 The Java “White Paper” Buzzwords, page 2

• 1.3 Java Applets and the Internet, page 9

• 1.4 A Short History of Java, page 10

• 1.5 Common Misconceptions about Java, page 13

The first release of Java in 1996 generated an incredible amount of excitement,
not just in the computer press, but in mainstream media such as the New
York Times, the Washington Post, and BusinessWeek. Java has the distinction of
being the first and only programming language that had a ten-minute story
on National Public Radio. A $100,000,000 venture capital fund was set up
solely for products using a specific computer language. I hope you will enjoy
a brief history of Java that you will find in this chapter.

1.1 Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to
write about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good
programming language. There is no doubt that it is one of the better languages
available to serious programmers. We think it could potentially have been a

1

great programming language, but it is probably too late for that. Once a lan-
guage is out in the field, the ugly reality of compatibility with existing code
sets in.”

Our editor got a lot of flack for this paragraph from someone very high up
at Sun Microsystems, the company that originally developed Java. The Java
language has a lot of nice features that we will examine in detail later in this
chapter. It has its share of warts, and some of the newer additions to the
language are not as elegant as the original features because of compatibility
requirements.

But, as we already said in the first edition, Java was never just a language.
There are lots of programming languages out there, but few of them make
much of a splash. Java is a whole platform, with a huge library, containing
lots of reusable code, and an execution environment that provides services
such as security, portability across operating systems, and automatic garbage
collection.

As a programmer, you will want a language with a pleasant syntax and
comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of
other fine languages. Some languages give you portability, garbage collection,
and the like, but they don’t have much of a library, forcing you to roll your
own if you want fancy graphics or networking or database access. Well, Java
has everything—a good language, a high-quality execution environment, and
a vast library. That combination is what makes Java an irresistible proposition
to so many programmers.

1.2 The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their design
goals and accomplishments. They also published a shorter overview that is
organized along the following 11 buzzwords:

1. Simple
2. Object-Oriented
3. Distributed
4. Robust
5. Secure
6. Architecture-Neutral
7. Portable
8. Interpreted

Chapter 1 An Introduction to Java2

9. High-Performance
10. Multithreaded
11. Dynamic

In the following subsections, you will find a summary, with excerpts from
the white paper, of what the Java designers say about each buzzword, together
with a commentary based on my experiences with the current version of Java.

NOTE: The white paper can be found at www.oracle.com/technetwork/java
/langenv-140151.html. You can retrieve the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf.

1.2.1 Simple

We wanted to build a system that could be programmed easily without a lot of
esoteric training and which leveraged today’s standard practice. So even though
we found that C++ was unsuitable, we designed Java as closely to C++ as pos-
sible in order to make the system more comprehensible. Java omits many rarely
used, poorly understood, confusing features of C++ that, in our experience, bring
more grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is
no need for header files, pointer arithmetic (or even a pointer syntax), struc-
tures, unions, operator overloading, virtual base classes, and so on. (See the
C++ notes interspersed throughout the text for more on the differences be-
tween Java and C++.) The designers did not, however, attempt to fix all of
the clumsy features of C++. For example, the syntax of the switch statement
is unchanged in Java. If you know C++, you will find the transition to the
Java syntax easy.

At the time Java was released, C++ was actually not the most commonly used
programming language. Many developers used Visual Basic and its drag-and-
drop programming environment. These developers did not find Java simple.
It took several years for Java development environments to catch up. Nowa-
days, Java development environments are far ahead of those for most other
programming languages.

Another aspect of being simple is being small. One of the goals of Java is to
enable the construction of software that can run stand-alone on small machines.
The size of the basic interpreter and class support is about 40K; the basic stan-
dard libraries and thread support (essentially a self-contained microkernel) add
another 175K.

31.2 The Java “White Paper” Buzzwords

http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf

This was a great achievement at the time. Of course, the library has since
grown to huge proportions. There is now a separate Java Micro Edition with
a smaller library, suitable for embedded devices.

1.2.2 Object-Oriented

Simply stated, object-oriented design is a programming technique that focuses
on the data—objects—and on the interfaces to those objects. To make an analogy
with carpentry, an “object-oriented” carpenter would be mostly concerned with
the chair he is building, and secondarily with the tools used to make it; a “non-
object-oriented” carpenter would think primarily of his tools. The object-oriented
facilities of Java are essentially those of C++.

Object orientation was pretty well established when Java was developed. The
object-oriented features of Java are comparable to those of C++. The major
difference between Java and C++ lies in multiple inheritance, which Java has
replaced with a simpler concept of interfaces. Java has a richer capacity for
runtime introspection (discussed in Chapter 5) than C++.

1.2.3 Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net
via URLs with the same ease as when accessing a local file system.

Nowadays, one takes this for granted—but in 1995, connecting to a web
server from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust

Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error-prone. . . . The
single biggest difference between Java and C/C++ is that Java has a pointer
model that eliminates the possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would show
up only at runtime. As for the second point, anyone who has spent hours
chasing memory corruption caused by a pointer bug will be very happy with
this aspect of Java.

Chapter 1 An Introduction to Java4

1.2.5 Secure

Java is intended to be used in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction
of virus-free, tamper-free systems.

From the beginning, Java was designed to make certain kinds of attacks
impossible, among them:

• Overrunning the runtime stack—a common attack of worms and viruses
• Corrupting memory outside its own process space
• Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!”
Untrusted code was executed in a sandbox environment where it could not
impact the host system. Users were assured that nothing bad could happen
because Java code, no matter where it came from, could never escape from
the sandbox.

However, the security model of Java is complex. Not long after the first version
of the Java Development Kit was shipped, a group of security experts at
Princeton University found subtle bugs that allowed untrusted code to attack
the host system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers
got quite good at spotting subtle flaws in the implementation of the security
architecture. Sun, and then Oracle, had a tough time keeping up with bug
fixes.

After a number of high-profile attacks, browser vendors and Oracle became
increasingly cautious. Java browser plug-ins no longer trust remote code unless
it is digitally signed and users have agreed to its execution.

NOTE: Even though in hindsight, the Java security model was not as successful
as originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism fromMicrosoft relied on digital signatures alone for security.
Clearly this was not sufficient: As any user of Microsoft’s own products can
confirm, programs from well-known vendors do crash and create damage.

51.2 The Java “White Paper” Buzzwords

1.2.6 Architecture-Neutral

The compiler generates an architecture-neutral object file format. The compiled
code is executable on many processors, given the presence of the Java runtime
system. The Java compiler does this by generating bytecode instructions which
have nothing to do with a particular computer architecture. Rather, they are
designed to be both easy to interpret on any machine and easy to translate into
native machine code on the fly.

Generating code for a “virtual machine” was not a new idea at the time.
Programming languages such as Lisp, Smalltalk, and Pascal had employed
this technique for many years.

Of course, interpreting virtual machine instructions is slower than running
machine instructions at full speed. However, virtual machines have the option
of translating the most frequently executed bytecode sequences into machine
code—a process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it
can check the behavior of instruction sequences.

1.2.7 Portable

Unlike C and C++, there are no “implementation-dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the behavior
of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean
a 16-bit integer, a 32-bit integer, or any other size that the compiler vendor
likes. The only restriction is that the int type must have at least as many bytes
as a short int and cannot have more bytes than a long int. Having a fixed size
for number types eliminates a major porting headache. Binary data is stored
and transmitted in a fixed format, eliminating confusion about byte ordering.
Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,
there is an abstract Window class and implementations of it for UNIX, Windows,
and the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who has
ever tried knows, it is an effort of heroic proportions to implement a user
interface that looks good on Windows, the Macintosh, and ten flavors of
UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that provided
common user interface elements on a number of platforms. Unfortunately,
the result was a library that, with a lot of work, could give barely acceptable

Chapter 1 An Introduction to Java6

results on different systems. That initial user interface toolkit has since been
replaced, and replaced again, and portability across platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java libraries
do a great job of letting you work in a platform-independent manner. You
can work with files, regular expressions, XML, dates and times, databases,
network connections, threads, and so on, without worrying about the under-
lying operating system. Not only are your programs portable, but the Java
APIs are often of higher quality than the native ones.

1.2.8 Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to
which the interpreter has been ported. Since linking is a more incremental
and lightweight process, the development process can be much more rapid and
exploratory.

This was a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,
Python, R, or Scala knows what a “rapid and exploratory” development process
is. You try out something, and you instantly see the result. For the first
20 years of Java’s existence, development environments were not focused on
that experience. It wasn’t until Java 9 that the jshell tool supported rapid and
exploratory programming.

1.2.9 High-Performance

While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can be
translated on the fly (at runtime) into machine code for the particular CPU the
application is running on.

In the early years of Java, many users disagreed with the statement that the
performance was “more than adequate.” Today, however, the just-in-time
compilers have become so good that they are competitive with tradi-
tional compilers and, in some cases, even outperform them because they have
more information available. For example, a just-in-time compiler can monitor
which code is executed frequently and optimize just that code for speed. A
more sophisticated optimization is the elimination (or “inlining”) of function
calls. The just-in-time compiler knows which classes have been loaded. It can
use inlining when, based upon the currently loaded collection of classes, a
particular function is never overridden, and it can undo that optimization
later if necessary.

71.2 The Java “White Paper” Buzzwords

1.2.10 Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-time
behavior.

Nowadays, we care about concurrency because Moore’s law has come to an
end. Instead of faster processors, we just get more of them, and we have to
keep them busy. Yet when you look at most programming languages, they
show a shocking disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to support
concurrent programming. As you can see from the white paper, its motivation
was a little different. At the time, multicore processors were exotic, but web
programming had just started, and processors spent a lot of time waiting for
a response from the server. Concurrent programming was needed to make
sure the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job
making it manageable.

1.2.11 Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment. Libraries can freely add new
methods and instance variables without any effect on their clients. In Java,
finding out runtime type information is straightforward.

This is an important feature in situations where code needs to be added to
a running program. A prime example is code that is downloaded from the
Internet to run in a browser. In C or C++, this is indeed a major challenge,
but the Java designers were well aware of dynamic languages that made it
easy to evolve a running program. Their achievement was to bring this feature
to a mainstream programming language.

NOTE: Shortly after the initial success of Java, Microsoft released a product
called J++ with a programming language and virtual machine that were almost
identical to Java. This effort failed to gain traction, and Microsoft followed
through with another language called C# that also has many similarities to Java
but runs on a different virtual machine. This book does not cover J++ or C#.

Chapter 1 An Introduction to Java8

1.3 Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the Internet
and run them on their own machines. Java programs that work on web pages
are called applets. To use an applet, you only need a Java-enabled web
browser, which will execute the bytecodes for you. You need not install any
software. You get the latest version of the program whenever you visit the
web page containing the applet. Most importantly, thanks to the security of
the virtual machine, you never need to worry about attacks from hostile code.

Inserting an applet into a web page works much like embedding an image.
The applet becomes a part of the page, and the text flows around the space
used for the applet. The point is, this image is alive. It reacts to user com-
mands, changes its appearance, and exchanges data between the computer
presenting the applet and the computer serving it.

Figure 1.1 shows the Jmol applet that displays molecular structures. By using
the mouse, you can rotate and zoom each molecule to better understand
its structure. At the time that applets were invented, this kind of direct ma-
nipulation was not achievable with web pages—there was only rudimentary
JavaScript and no HTML canvas.

Figure 1.1 The Jmol applet

91.3 Java Applets and the Internet

When applets first appeared, they created a huge amount of excitement. Many
people believe that the lure of applets was responsible for the astonishing
popularity of Java. However, the initial excitement soon turned into frustration.
Various versions of the Netscape and Internet Explorer browsers ran different
versions of Java, some of which were seriously outdated. This sorry situation
made it increasingly difficult to develop applets that took advantage of the
most current Java version. Instead, Adobe’s Flash technology became popular
for achieving dynamic effects in the browser. Later, when Java was dogged
by serious security issues, browsers and the Java browser plug-in became in-
creasingly restrictive. Nowadays, it requires skill and dedication to get applets
to work in your browser. For example, if you visit the Jmol web site at
http://jmol.sourceforge.net/demo/aminoacids/, you will likely encounter a message
exhorting you to configure your browser for allowing applets to run.

1.4 A Short History of Java

This section gives a short history of Java’s evolution. It is based on various
published sources (most importantly an interview with Java’s creators in the
July 1995 issue of SunWorld’s online magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick
Naughton and James Gosling (a Sun Fellow and an all-around computer
wizard), wanted to design a small computer language that could be used for
consumer devices like cable TV switchboxes. Since these devices do not have
a lot of power or memory, the language had to be small and generate very
tight code. Also, as different manufacturers may choose different central
processing units (CPUs), it was important that the language not be tied to
any single architecture. The project was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to
design a portable language that generated intermediate code for a virtual
machine.

The Sun people came from a UNIX background, so they based their language
on C++ rather than Lisp, Smalltalk, or Pascal. But, as Gosling says in the in-
terview, “All along, the language was a tool, not the end.” Gosling decided
to call his language “Oak” (presumably because he liked the look of an oak
tree that was right outside his window at Sun). The people at Sun later real-
ized that Oak was the name of an existing computer language, so they changed
the name to Java. This turned out to be an inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an
extremely intelligent remote control. Unfortunately, no one was interested in
producing this at Sun, and the Green people had to find other ways to market

Chapter 1 An Introduction to Java10

their technology. However, none of the standard consumer electronics com-
panies were interested either. The group then bid on a project to design a
cable TV box that could deal with emerging cable services such as video-on-
demand. They did not get the contract. (Amusingly, the company that did
was led by the same Jim Clark who started Netscape—a company that
did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993
and half of 1994 looking for people to buy its technology. No one was found.
(Patrick Naughton, one of the founders of the group and the person who
ended up doing most of the marketing, claims to have accumulated 300,000 air
miles in trying to sell the technology.) First Person was dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the Internet
was growing bigger and bigger. The key to the World Wide Web was the
browser translating hypertext pages to the screen. In 1994, most people were
using Mosaic, a noncommercial web browser that came out of the supercom-
puting center at the University of Illinois in 1993. (Mosaic was partially written
by Marc Andreessen as an undergraduate student on a work-study project,
for $6.85 an hour. He moved on to fame and fortune as one of the cofounders
and the chief of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language devel-
opers realized that “We could build a real cool browser. It was one of the
few things in the client/server mainstream that needed some of the weird
things we’d done: architecture-neutral, real-time, reliable, secure—issues that
weren’t terribly important in the workstation world. So we built a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and
evolved into the HotJava browser, which was designed to show off the power
of Java. The browser was capable of executing Java code inside web pages.
This “proof of technology” was shown at SunWorld ’95 on May 23, 1995, and
inspired the Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized
that Java 1.0 was not going to cut it for serious application development.
Sure, you could use Java 1.0 to make a nervous text applet that moved text
randomly around in a canvas. But you couldn’t even print in Java 1.0. To be
blunt, Java 1.0 was not ready for prime time. Its successor, version 1.1, filled
in the most obvious gaps, greatly improved the reflection capability, and
added a new event model for GUI programming. It was still rather limited,
though.

The big news of the 1998 JavaOne conference was the upcoming release of
Java 1.2, which replaced the early toylike GUI and graphics toolkits with so-
phisticated scalable versions. Three days (!) after its release in December

111.4 A Short History of Java

1998, Sun’s marketing department changed the name to the catchy Java 2
Standard Edition Software Development Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro
Edition for embedded devices such as cell phones, and the Enterprise Edition
for server-side processing. This book focuses on the Standard Edition.

Versions 1.3 and 1.4 of the Standard Edition were incremental improvements
over the initial Java 2 release, with an ever-growing standard library, increased
performance, and, of course, quite a few bug fixes. During this time, much
of the initial hype about Java applets and client-side applications abated, but
Java became the platform of choice for server-side applications.

Version 5.0 was the first release since version 1.1 that updated the Java lan-
guage in significant ways. (This version was originally numbered 1.5, but the
version number jumped to 5.0 at the 2004 JavaOne conference.) After many
years of research, generic types (roughly comparable to C++ templates) have
been added—the challenge was to add this feature without requiring changes
in the virtual machine. Several other useful language features were inspired
by C#: a “for each” loop, autoboxing, and annotations.

Version 6 (without the .0 suffix) was released at the end of 2006. Again, there
were no language changes but additional performance improvements and
library enhancements.

As datacenters increasingly relied on commodity hardware instead of special-
ized servers, Sun Microsystems fell on hard times and was purchased by Or-
acle in 2009. Development of Java stalled for a long time. In 2011, Oracle
released a new version, with simple enhancements, as Java 7.

In 2014, the release of Java 8 followed, with the most significant changes to
the Java language in almost two decades. Java 8 embraces a “functional” style
of programming that makes it easy to express computations that can be exe-
cuted concurrently. All programming languages must evolve to stay relevant,
and Java has shown a remarkable capacity to do so.

The main feature of Java 9 goes all the way back to 2008. At that time, Mark
Reinhold, the chief engineer of the Java platform, started an effort to break
up the huge, monolithic Java platform. This was to be achieved by introducing
modules, self-contained units of code that provide a specific functionality. It
took eleven years to design and implement a module system that is a good
fit for the Java platform, and it remains to be seen whether it is also a good fit
for Java applications and libraries. Java 9, released in 2017, has other appealing
features that we cover in this book.

Chapter 1 An Introduction to Java12

Starting in 2018, Java versions are released every six months, to enable faster
introduction of features. Certain versions, such as Java 11, are designated as
long-term support versions.

Table 1.1 shows the evolution of the Java language and library. As you can
see, the size of the application programming interface (API) has grown
tremendously.

Table 1.1 Evolution of the Java Language

Number of
Classes and
Interfaces

New Language FeaturesYearVersion

211The language itself19961.0

477Inner classes19971.1

1,524The strictfp modifier19981.2

1,840None20001.3

2,723Assertions20021.4

3,279Generic classes, “for each” loop, varargs,
autoboxing, metadata, enumerations, static
import

20045.0

3,793None20066

4,024Switch with strings, diamond operator, binary
literals, exception handling enhancements

20117

4,240Lambda expressions, interfaces with default
methods, stream and date/time libraries

20148

6,005Modules, miscellaneous language and library
enhancements

20179

1.5 Common Misconceptions about Java

This chapter closes with a commented list of some common misconceptions
about Java.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of
a web page. They have nothing in common except that there are HTML
extensions for placing Java applets on a web page.

131.5 Common Misconceptions about Java

I use XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can
process XML data with any programming language, but the Java API contains
excellent support for XML processing. In addition, many important XML tools
are implemented in Java. See Volume II for more information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to
distinguish between how easy it is to write toy programs and how hard it is
to do serious work. Also, consider that only seven chapters in this book discuss
the Java language. The remaining chapters of both volumes show how to
put the language to work, using the Java libraries. The Java libraries contain
thousands of classes and interfaces and tens of thousands of functions.
Luckily, you do not need to know every one of them, but you do need to
know surprisingly many to use Java for anything realistic.

Java will become a universal programming language for all platforms.

This is possible in theory. But in practice, there are domains where other
languages are entrenched. Objective C and its successor, Swift, are not going
to be replaced on iOS devices. Anything that happens in a browser is con-
trolled by JavaScript. Windows programs are written in C++ or C#. Java has
the edge in server-side programming and in cross-platform client applications.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it to C, C++,
or C#. But there have been hundreds of nice programming languages that
never gained widespread popularity, whereas languages with obvious flaws,
such as C++ and Visual Basic, have been wildly successful.

Why? The success of a programming language is determined far more by the
utility of the support system surrounding it than by the elegance of its syntax.
Are there useful, convenient, and standard libraries for the features that you
need to implement? Are there tool vendors that build great programming and
debugging environments? Do the language and the toolset integrate with the
rest of the computing infrastructure? Java is successful because its libraries
let you easily do things such as networking, web applications, and concurrency.
The fact that Java reduces pointer errors is a bonus, so programmers seem
to be more productive with Java—but these factors are not the source of its
success.

Java is proprietary, and should therefore be avoided.

When Java was first created, Sun gave free licenses to distributors and end
users. Although Sun had ultimate control over Java, they involved many

Chapter 1 An Introduction to Java14

other companies in the development of language revisions and the design of
new libraries. Source code for the virtual machine and the libraries has always
been freely available, but only for inspection, not for modification and
redistribution. Java was “closed source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that future
versions of Java would be available under the General Public License (GPL),
the same open source license that is used by Linux. Oracle has committed
to keeping Java open source. There is only one fly in the ointment—patents.
Everyone is given a patent grant to use and modify Java, subject to the GPL,
but only on desktop and server platforms. If you want to use Java in embedded
systems, you need a different license and will likely need to pay royalties.
However, these patents will expire within the next decade, and at that point
Java will be entirely free.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, the Java
virtual machine uses a just-in-time compiler. The “hot spots” of your code
will run just as fast in Java as they would in C++, and in some cases even
faster.

All Java programs run inside a web page.

All Java applets run inside a web browser. That is the definition of an applet—a
Java program running inside a browser. But most Java programs are stand-
alone applications that run outside of a web browser. In fact, many Java
programs run on web servers and produce the code for web pages.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of failures in
the Java security system. Researchers viewed it as a challenge to find chinks
in the Java armor and to defy the strength and sophistication of the applet
security model. The technical failures that they found have all been quickly
corrected. Later, there were more serious exploits, to which Sun, and later
Oracle, responded too slowly. Browser manufacturers reacted, and perhaps
overreacted, by deactivating Java by default. To keep this in perspective,
consider the far greater number of virus attacks in Windows executable files
that cause real grief but surprisingly little criticism of the weaknesses of the
attacked platform. Even 20 years after its creation, Java is far safer than any
other commonly available execution platform.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was in-
vented by Netscape and originally called LiveScript. JavaScript has a syntax

151.5 Common Misconceptions about Java

that is reminiscent of Java, and the languages’ names sound similar, but
otherwise they are unrelated. In particularly, Java is strongly typed—the com-
piler catches many errors that arise from type misuse. In JavaScript, such errors
are only found when the program runs, which makes their elimination far
more laborious.

With Java, I can replace my desktop computer with a cheap “Internet appliance.”

When Java was first released, some people bet big that this was going to
happen. Companies produced prototypes of Java-powered network computers,
but users were not ready to give up a powerful and convenient desktop for
a limited machine with no local storage. Nowadays, of course, the world has
changed, and for a large majority of end users, the platform that matters is
a mobile phone or tablet. The majority of these devices are controlled by the
Android platform, which is a derivative of Java. Learning Java programming
will help you with Android programming as well.

Chapter 1 An Introduction to Java16

2CHAPTER

The Java Programming
Environment

In this chapter

• 2.1 Installing the Java Development Kit, page 18

• 2.2 Using the Command-Line Tools, page 23

• 2.3 Using an Integrated Development Environment, page 29

• 2.4 JShell, page 32

In this chapter, you will learn how to install the Java Development Kit (JDK)
and how to compile and run various types of programs: console programs,
graphical applications, and applets. You can run the JDK tools by typing
commands in a terminal window. However, many programmers prefer
the comfort of an integrated development environment. You will learn how
to use a freely available development environment to compile and run Java
programs. Once you have mastered the techniques in this chapter and picked
your development tools, you are ready to move on to Chapter 3, where you
will begin exploring the Java programming language.

17

2.1 Installing the Java Development Kit

The most complete and up-to-date versions of the Java Development Kit (JDK)
are available from Oracle for Linux, Mac OS, Solaris, and Windows. Versions
in various states of development exist for many other platforms, but those
versions are licensed and distributed by the vendors of those platforms.

2.1.1 Downloading the JDK

To download the Java Development Kit, visit the web site at www.oracle.com
/technetwork/java/javase/downloads and be prepared to decipher an amazing amount
of jargon before you can get the software you need. See Table 2.1 for a
summary.

Table 2.1 Java Jargon

ExplanationAcronymName

The software for programmers who want to
write Java programs

JDKJava Development
Kit

The software for consumers who want to run
Java programs

JREJava Runtime
Environment

The software for running Java programs on
servers

—Server JRE

The Java platform for use on desktops and
simple server applications

SEStandard Edition

The Java platform for complex server
applications

EEEnterprise Edition

The Java platform for use on small devicesMEMicro Edition

An alternate toolkit for graphical user interfaces
that is included with certain Java SE
distributions prior to Java 11

—JavaFX

A free and open source implementation of
Java SE

—OpenJDK

An outdated term that described Java versions
from 1998 until 2006

J2Java 2

An outdated term that described the JDK from
1998 until 2006

SDKSoftware
Development Kit

Oracle’s term for a bug fix release up to Java 8uUpdate

Oracle’s integrated development environment—NetBeans

Chapter 2 The Java Programming Environment18

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

You already saw the abbreviation JDK for Java Development Kit. Somewhat
confusingly, versions 1.2 through 1.4 of the kit were known as the Java SDK
(Software Development Kit). You will still find occasional references to the
old term. Up to Java 10, there is also a Java Runtime Environment (JRE) that
contains only the virtual machine. That is not what you want as a developer.
It is intended for end users who have no need for the compiler.

Next, you’ll see the term Java SE everywhere. That is the Java Standard Edition,
in contrast to Java EE (Enterprise Edition) and Java ME (Micro Edition).

You might run into the term Java 2 that was coined in 1998 when the market-
ing folks at Sun felt that a fractional version number increment did not
properly communicate the momentous advances of JDK 1.2. However, since
they had that insight only after the release, they decided to keep the version
number 1.2 for the development kit. Subsequent releases were numbered 1.3,
1.4, and 5.0. The platform, however, was renamed from Java to Java 2. Thus,
we had Java 2 Standard Edition Software Development Kit Version 5.0, or
J2SE SDK 5.0.

Fortunately, in 2006, the numbering was simplified. The next version of
the Java Standard Edition was called Java SE 6, followed by Java SE 7 and
Java SE 8.

However, the “internal” version numbers are 1.6.0, 1.7.0, and 1.8.0. This minor
madness finally ran its course with Java SE 9, when the version number be-
came 9, and then 9.0.1. (Why not 9.0.0 for the initial version? To keep a
modicum of excitement, the version number specification requires that trailing
zeroes are dropped for the fleeting interval between a major release and its
first security update.)

NOTE: For the remainder of the book, we will drop the “SE” acronym. When
you see “Java 9”, that means “Java SE 9”.

Prior to Java 9, there were 32-bit and 64-bit versions of the Java Development
Kit. The 32-bit versions are no longer developed by Oracle. You need to have
a 64-bit operating system to use the Oracle JDK.

With Linux, you have a choice between an RPM file and a .tar.gz file. We
recommend the latter—you can simply uncompress it anywhere you like.

Now you know how to pick the right JDK. To summarize:

192.1 Installing the Java Development Kit

• You want the JDK (Java SE Development Kit), not the JRE.
• Linux: Pick the .tar.gz version.

Accept the license agreement and download the file.

NOTE: Depending on the constellation of the planets, Oracle may offer you a
bundle that contains both the Java Development Kit and the NetBeans integrated
development environment. I suggest that you stay away from all bundles and
install only the Java Development Kit at this time. If you later decide to use
NetBeans, simply download it from http://netbeans.org.

2.1.2 Setting up the JDK

After downloading the JDK, you need to install it and figure out where it was
installed—you’ll need that information later.

• Under Windows, launch the setup program. You will be asked where to
install the JDK. It is best not to accept a default location with spaces in
the path name, such as c:\Program Files\Java\jdk-11.0.x. Just take out the Program
Files part of the path name.

• On the Mac, run the installer. It installs the software into /Library/Java
/JavaVirtualMachines/jdk-11.0.x.jdk/Contents/Home. Locate it with the Finder.

• On Linux, simply uncompress the .tar.gz file to a location of your choice,
such as your home directory or /opt. Or, if you installed from the RPM
file, double-check that it is installed in /usr/java/jdk-11.0.x.

In this book, the installation directory is denoted as jdk. For example, when
referring to the jdk/bin directory, I mean the directory with a name such as
/opt/jdk-11.0.4/bin or c:\Java\jdk-11.0.4\bin.

When you install the JDK on Windows or Linux, you need to carry out one
additional step: Add the jdk/bin directory to the executable path—the list of
directories that the operating system traverses to locate executable files.

• On Linux, add a line such as the following to the end of your ~/.bashrc or
~/.bash_profile file:

export PATH=jdk/bin:$PATH

Be sure to use the correct path to the JDK, such as /opt/jdk-11.0.4.

• Under Windows 10, type “environment” into the search bar of the Windows
Settings, and select “Edit environment variables for your account” (see
Figure 2.1). An Environment Variables dialog should appear. (It may hide

Chapter 2 The Java Programming Environment20

http://netbeans.org

Figure 2.1 Setting system properties in Windows 10

behind the Windows Settings dialog. If you can’t find it anywhere, try
running sysdm.cpl from the Run dialog that you get by holding down the
Windows and R key at the same time, and then select the Advanced tab
and click the Environment Variables button.) Locate and select a variable
named Path in the User Variables list. Click the Edit button, then the New
button, and add an entry with the jdk\bin directory (see Figure 2.2).

Save your settings. Any new “Command Prompt” windows that you start
will have the correct path.

Here is how you test whether you did it right: Start a terminal window. Type
the line

javac --version

and press the Enter key. You should get a display such as this one:

javac 11.0.1

212.1 Installing the Java Development Kit

Figure 2.2 Setting the Path environment variable in Windows 10

If instead you get a message such as “javac: command not found” or “The
name specified is not recognized as an internal or external command, operable
program or batch file,” then you need to go back and double-check your
installation.

2.1.3 Installing Source Files and Documentation

The library source files are delivered in the JDK as a compressed file lib/src.zip.
Unpack that file to get access to the source code. Simply do the following:

1. Make sure the JDK is installed and the jdk/bin directory is on the
executable path.

Chapter 2 The Java Programming Environment22

2. Make a directory javasrc in your home directory. If you like, you can do
this from a terminal window.

mkdir javasrc

3. Inside the jdk/lib directory, locate the file src.zip.
4. Unzip the src.zip file into the javasrc directory. In a terminal window, you

can execute the commands

cd javasrc
jar xvf jdk/lib/src.zip
cd ..

TIP: The src.zip file contains the source code for all public libraries. To obtain
even more source (for the compiler, the virtual machine, the native methods,
and the private helper classes), go to http://openjdk.java.net.

The documentation is contained in a compressed file that is separate from
the JDK. You can download the documentation from www.oracle.com/technetwork
/java/javase/downloads. Follow these steps:

1. Download the documentation zip file. It is called jdk-11.0.x_doc-all.zip.
2. Unzip the file and rename the doc directory into something more de-

scriptive, like javadoc. If you like, you can do this from the command line:

jar xvf Downloads/jdk-11.0.x_doc-all.zip
mv docs jdk-11-docs

3. In your browser, navigate to jdk-11-docs/index.html and add this page to your
bookmarks.

You should also install the Core Java program examples. You can download
them from http://horstmann.com/corejava. The programs are packaged into a zip
file corejava.zip. Just unzip them into your home directory. They will be located
in a directory corejava. If you like, you can do this from the command line:

jar xvf Downloads/corejava.zip

2.2 Using the Command-Line Tools

If your programming experience comes from a development environment
such as Microsoft Visual Studio, you are accustomed to a system with a built-in
text editor, menus to compile and launch a program, and a debugger. The
JDK contains nothing even remotely similar. You do everything by typing
in commands in a terminal window. This sounds cumbersome, but it is

232.2 Using the Command-Line Tools

http://openjdk.java.net
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://11-docs/index.html
http://horstmann.com/corejava

nevertheless an essential skill. When you first install Java, you will want to
troubleshoot your installation before you install a development environ-
ment. Moreover, by executing the basic steps yourself, you gain a better
understanding of what a development environment does behind your back.

However, after you have mastered the basic steps of compiling and running
Java programs, you will want to use a professional development environment.
You will see how to do that in the following section.

Let’s get started the hard way: compiling and launching a Java program from
the command line.

1. Open a terminal window.
2. Go to the corejava/v1ch02/Welcome directory. (The corejava directory is where

you installed the source code for the book examples, as explained in
Section 2.1.3, “Installing Source Files and Documentation,” on p. 22.)

3. Enter the following commands:

javac Welcome.java
java Welcome

You should see the output shown in Figure 2.3 in the terminal window.

Figure 2.3 Compiling and running Welcome.java

Chapter 2 The Java Programming Environment24

Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the file
Welcome.java into the file Welcome.class. The java program launches the Java virtual
machine. It executes the bytecodes that the compiler placed in the class file.

The Welcome program is extremely simple. It merely prints a message to the
terminal. You may enjoy looking inside the program, shown in Listing 2.1.
You will see how it works in the next chapter.

Listing 2.1 Welcome/Welcome.java

 1 /**
 2 * This program displays a greeting for the reader.
 3 * @version 1.30 2014-02-27
 4 * @author Cay Horstmann
 5 */
 6 public class Welcome
 7 {
 8 public static void main(String[] args)
 9 {
10 String greeting = "Welcome to Core Java!";
11 System.out.println(greeting);
12 for (int i = 0; i < greeting.length(); i++)
13 System.out.print("=");
14 System.out.println();
15 }
16 }

In the age of integrated development environments, many programmers are
unfamiliar with running programs in a terminal window. Any number of
things can go wrong, leading to frustrating results.

Pay attention to the following points:

• If you type in the program by hand, make sure you correctly enter the
uppercase and lowercase letters. In particular, the class name is Welcome and
not welcome or WELCOME.

• The compiler requires a file name (Welcome.java). When you run the program,
you specify a class name (Welcome) without a .java or .class extension.

• If you get a message such as “Bad command or file name” or “javac:
command not found”, go back and double-check your installation, in
particular the executable path setting.

• If javac reports that it cannot find the file Welcome.java, you should check
whether that file is present in the directory.

252.2 Using the Command-Line Tools

Under Linux, check that you used the correct capitalization for Welcome.java.

Under Windows, use the dir command, not the graphical Explorer tool.
Some text editors (in particular Notepad) insist on adding an extension
.txt to every file’s name. If you use Notepad to edit Welcome.java, it will
actually save it as Welcome.java.txt. Under the default Windows settings,
Explorer conspires with Notepad and hides the .txt extension because it
belongs to a “known file type.” In that case, you need to rename the file,
using the ren command, or save it again, placing quotes around the
file name: "Welcome.java".

• If you launch your program and get an error message complaining about
a java.lang.NoClassDefFoundError, then carefully check the name of the offending
class.

If you get a complaint about welcome (with a lowercase w), then you should
reissue the java Welcome command with an uppercase W. As always, case
matters in Java.

If you get a complaint about Welcome/java, it means you accidentally typed
java Welcome.java. Reissue the command as java Welcome.

• If you typed java Welcome and the virtual machine can’t find the Welcome class,
check if someone has set the CLASSPATH environment variable on your system.
It is not a good idea to set this variable globally, but some poorly written
software installers in Windows do just that. Follow the same procedure
as for setting the PATH environment variable, but this time, remove the
setting.

TIP: The excellent tutorial at http://docs.oracle.com/javase/tutorial/getStarted
/cupojava goes into much greater detail about the “gotchas” that beginners can
run into.

NOTE: In JDK 11, the javac command is not required with a single source file.
This feature is intended to support shell scripts starting with a “shebang” line
#!/path/to/java.

The Welcome program was not terribly exciting. Next, try out a graphical appli-
cation. This program is a simple image file viewer that loads and displays an
image. As before, compile and run the program from the command line.

1. Open a terminal window.
2. Change to the directory corejava/v1ch02/ImageViewer.

Chapter 2 The Java Programming Environment26

http://docs.oracle.com/javase/tutorial/getStarted/cupojava
http://docs.oracle.com/javase/tutorial/getStarted/cupojava

3. Enter the following:

javac ImageViewer.java
java ImageViewer

A new program window pops up with the ImageViewer application. Now,
select File → Open and look for an image file to open. (There are a couple
of sample files in the same directory.) The image is displayed (see Figure 2.4).
To close the program, click on the Close box in the title bar or select File →
Exit from the menu.

Figure 2.4 Running the ImageViewer application

Have a quick look at the source code (Listing 2.2). The program is substan-
tially longer than the first program, but it is not too complex if you consider
how much code it would take in C or C++ to write a similar application.
You’ll learn how to write graphical user interfaces like this in Chapter 10.

Listing 2.2 ImageViewer/ImageViewer.java

 1 import java.awt.*;
 2 import java.io.*;
 3 import javax.swing.*;
 4

 5 /**
 6 * A program for viewing images.
 7 * @version 1.31 2018-04-10

(Continues)

272.2 Using the Command-Line Tools

Listing 2.2 (Continued)

 8 * @author Cay Horstmann
 9 */
10 public class ImageViewer
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() -> {
15 var frame = new ImageViewerFrame();
16 frame.setTitle("ImageViewer");
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 frame.setVisible(true);
19 });
20 }
21 }
22

23 /**
24 * A frame with a label to show an image.
25 */
26 class ImageViewerFrame extends JFrame
27 {
28 private static final int DEFAULT_WIDTH = 300;
29 private static final int DEFAULT_HEIGHT = 400;
30

31 public ImageViewerFrame()
32 {
33 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34

35 // use a label to display the images
36 var label = new JLabel();
37 add(label);
38

39 // set up the file chooser
40 var chooser = new JFileChooser();
41 chooser.setCurrentDirectory(new File("."));
42

43 // set up the menu bar
44 var menuBar = new JMenuBar();
45 setJMenuBar(menuBar);
46

47 var menu = new JMenu("File");
48 menuBar.add(menu);
49

50 var openItem = new JMenuItem("Open");

Chapter 2 The Java Programming Environment28

51 menu.add(openItem);
52 openItem.addActionListener(event -> {
53 // show file chooser dialog
54 int result = chooser.showOpenDialog(null);
55

56 // if file selected, set it as icon of the label
57 if (result == JFileChooser.APPROVE_OPTION)
58 {
59 String name = chooser.getSelectedFile().getPath();
60 label.setIcon(new ImageIcon(name));
61 }
62 });
63

64 var exitItem = new JMenuItem("Exit");
65 menu.add(exitItem);
66 exitItem.addActionListener(event -> System.exit(0));
67 }
68 }

2.3 Using an Integrated Development Environment

In the preceding section, you saw how to compile and run a Java program
from the command line. That is a useful skill for troubleshooting, but for
most day-to-day work, you should use an integrated development environment.
These environments are so powerful and convenient that it simply doesn’t
make much sense to labor on without them. Excellent choices are the freely
available Eclipse, IntelliJ IDEA, and NetBeans. In this chapter, you will
learn how to get started with Eclipse. Of course, if you prefer a different
development environment, you can certainly use it with this book.

Get started by downloading Eclipse from http://eclipse.org/downloads. Versions
exist for Linux, Mac OS X, and Windows. Run the installation program and
pick the installation set called “Eclipse IDE for Java Developers”.

Here are the steps to write a program with Eclipse.

1. After starting Eclipse, select File → New → Project from the menu.
2. Select “Java Project” from the wizard dialog (see Figure 2.5).
3. Click the Next button. Uncheck the “Use default location” checkbox. Click

on Browse and navigate to the corejava/v1ch02/Welcome directory (Figure 2.6).

292.3 Using an Integrated Development Environment

http://eclipse.org/downloads

Figure 2.5 The New Project dialog in Eclipse

Figure 2.6 Configuring a project in Eclipse

Chapter 2 The Java Programming Environment30

4. Click the Finish button. The project is now created.
5. Click on the triangles in the left pane next to the project until you locate

the file Welcome.java, and double-click on it. You should now see a pane
with the program code (see Figure 2.7).

Figure 2.7 Editing a source file with Eclipse

6. With the right mouse button, click on the project name (Welcome) in
the left pane. Select Run → Run As → Java Application. The program
output is displayed in the console pane.

Presumably, this program does not have typos or bugs. (It was only a few
lines of code, after all.) Let us suppose, for the sake of argument, that your
code occasionally contains a typo (perhaps even a syntax error). Try it
out—ruin your file, for example, by changing the capitalization of String as
follows:

string greeting = "Welcome to Core Java!";

312.3 Using an Integrated Development Environment

Note the wiggly line under string. In the tabs below the source code, click on
Problems and expand the triangles until you see an error message that com-
plains about an unknown string type (see Figure 2.8). Click on the error
message. The cursor moves to the matching line in the edit pane, where you
can correct your error. This allows you to fix your errors quickly.

Figure 2.8 Error messages in Eclipse

TIP: Often, an Eclipse error report is accompanied by a lightbulb icon. Click on
the lightbulb to get a list of suggested fixes.

2.4 JShell

In the preceding section, you saw how to compile and run a Java program.
Java 9 introduces another way of working with Java. The JShell program
provides a “read-evaluate-print loop,” or REPL. You type a Java expression;
JShell evaluates your input, prints the result, and waits for your next input.
To start JShell, simply type jshell in a terminal window (see Figure 2.9).

Chapter 2 The Java Programming Environment32

Figure 2.9 Running JShell

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 11.0.1
| For an introduction type: /help intro

jshell>

Now type an expression, such as

"Core Java".length()

JShell responds with the result—in this case, the number of characters in the
string “Core Java”.

$1 ==> 9

Note that you do not type System.out.println. JShell automatically prints the value
of every expression that you enter.

332.4 JShell

The $1 in the output indicates that the result is available in further calculations.
For example, if you type

5 * $1 - 3

the response is

$2 ==> 42

If you need a variable many times, you can give it a more memorable name.
However, you have to follow the Java syntax and specify both the type and
the name. (We will cover the syntax in Chapter 3.) For example,

jshell> int answer = 6 * 7
answer ==> 42

Another useful feature is tab completion. Type

Math.

followed by the Tab key. You get a list of all methods that you can invoke
with the Math class:

jshell> Math.
E IEEEremainder(PI abs(
acos(addExact(asin(atan(
atan2(cbrt(ceil(class
copySign(cos(cosh(decrementExact(
exp(expm1(floor(floorDiv(
floorMod(fma(getExponent(hypot(
incrementExact(log(log10(log1p(
max(min(multiplyExact(multiplyFull(
multiplyHigh(negateExact(nextAfter(nextDown(
nextUp(pow(random() rint(
round(scalb(signum(sin(
sinh(sqrt(subtractExact(tan(
tanh(toDegrees(toIntExact(toRadians(
ulp(

Now type l and hit the Tab key again. The method name is completed to log,
and you get a shorter list:

jshell> Math.log
log(log10(log1p(

Now you can fill in the rest by hand:

jshell> Math.log10(0.001)
$3 ==> -3.0

To repeat a command, hit the ↑ key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the ← and → keys,

Chapter 2 The Java Programming Environment34

and add or delete characters. Hit Enter when you are done. For example,
hit and replace 0.001 with 1000, then hit Enter:

jshell> Math.log10(1000)
$4 ==> 3.0

JShell makes it easy and fun to learn about the Java language and library
without having to launch a heavy-duty development environment and without
fussing with public static void main.

In this chapter, you learned about the mechanics of compiling and running
Java programs. You are now ready to move on to Chapter 3 where you will
start learning the Java language.

352.4 JShell

This page intentionally left blank

3CHAPTER

Fundamental
Programming Structures
in Java

In this chapter

• 3.1 A Simple Java Program, page 38

• 3.2 Comments, page 41

• 3.3 Data Types, page 42

• 3.4 Variables and Constants, page 48

• 3.5 Operators, page 52

• 3.6 Strings, page 62

• 3.7 Input and Output, page 75

• 3.8 Control Flow, page 86

• 3.9 Big Numbers, page 105

• 3.10 Arrays, page 108

At this point, we are assuming that you successfully installed the JDK and
were able to run the sample programs that we showed you in Chapter 2.

37

It’s time to start programming. This chapter shows you how the basic pro-
gramming concepts such as data types, branches, and loops are implemented
in Java.

3.1 A Simple Java Program

Let’s look more closely at one of the simplest Java programs you can have—one
that merely prints a message to console:

public class FirstSample
{
 public static void main(String[] args)
 {
 System.out.println("We will not use 'Hello, World!'");
 }
}

It is worth spending all the time you need to become comfortable with the
framework of this sample; the pieces will recur in all applications. First and
foremost, Java is case sensitive. If you made any mistakes in capitalization (such
as typing Main instead of main), the program will not run.

Now let’s look at this source code line by line. The keyword public is called
an access modifier; these modifiers control the level of access other parts of a
program have to this code. We’ll have more to say about access modifiers in
Chapter 5. The keyword class reminds you that everything in a Java program
lives inside a class. Although we will spend a lot more time on classes in the
next chapter, for now think of a class as a container for the program logic
that defines the behavior of an application. As mentioned in Chapter 1,
classes are the building blocks with which all Java applications and applets
are built. Everything in a Java program must be inside a class.

Following the keyword class is the name of the class. The rules for class names
in Java are quite generous. Names must begin with a letter, and after that,
they can have any combination of letters and digits. The length is essentially
unlimited. You cannot use a Java reserved word (such as public or class) for a
class name. (See the appendix for a list of reserved words.)

The standard naming convention (which we follow in the name FirstSample) is
that class names are nouns that start with an uppercase letter. If a name
consists of multiple words, use an initial uppercase letter in each of the words.
(This use of uppercase letters in the middle of a word is sometimes called
“camel case” or, self-referentially, “CamelCase”.

Chapter 3 Fundamental Programming Structures in Java38

You need to make the file name for the source code the same as the name
of the public class, with the extension .java appended. Thus, you must store
this code in a file called FirstSample.java. (Again, case is important—don’t use
firstsample.java.)

If you have named the file correctly and not made any typos in the source
code, then when you compile this source code, you end up with a file con-
taining the bytecodes for this class. The Java compiler automatically names
the bytecode file FirstSample.class and stores it in the same directory as the
source file. Finally, launch the program by issuing the following command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it
simply displays the string We will not use 'Hello, World!' on the console.

When you use

java ClassName

to run a compiled program, the Java virtual machine always starts execution
with the code in the main method in the class you indicate. (The term “method”
is Java-speak for a function.) Thus, you must have a main method in the source
of your class for your code to execute. You can, of course, add your own
methods to a class and call them from the main method. (We cover writing
your own methods in the next chapter.)

NOTE: According to the Java Language Specification, the main method must
be declared public. (The Java Language Specification is the official document
that describes the Java language. You can view or download it from
http://docs.oracle.com/javase/specs.

However, several versions of the Java launcher were willing to execute Java
programs even when the main method was not public. A programmer filed a bug
report. To see it, visit http://bugs.java.com/bugdatabase/index.jsp and enter the Bug
ID 4252539. In 1999, that bug was marked as “closed, will not be fixed.” A Sun
engineer added an explanation that the Java Virtual Machine Specification (at
http://docs.oracle.com/javase/specs/jvms/se8/html) does not mandate that main is
public and that “fixing it will cause potential troubles.” Fortunately, sanity finally
prevailed. The Java launcher in Java 1.4 and beyond enforces that the main
method is public.

There are a couple of interesting aspects about this story. On the one hand, it
is frustrating to have quality assurance engineers, who are often overworked
and not always experts in the fine points of Java, make questionable decisions
about bug reports. On the other hand, it is remarkable that Sun made the bug

393.1 A Simple Java Program

http://docs.oracle.com/javase/specs
http://bugs.java.com/bugdatabase/index.jsp
http://docs.oracle.com/javase/specs/jvms/se8/html

reports and their resolutions available for anyone to scrutinize, long before Java
was open source. At one point, Sun even let programmers vote for their most
despised bugs and used the vote counts to decide which of them would get
fixed in the next JDK release.

Notice the braces { } in the source code. In Java, as in C/C++, braces delineate
the parts (usually called blocks) in your program. In Java, the code for any
method must be started by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We
follow a style that lines up matching braces. As whitespace is irrelevant to
the Java compiler, you can use whatever brace style you like. We will have
more to say about the use of braces when we talk about the various kinds of
loops.

For now, don’t worry about the keywords static void—just think of them as
part of what you need to get a Java program to compile. By the end of
Chapter 4, you will understand this incantation completely. The point to re-
member for now is that every Java application must have a main method that
is declared in the following way:

public class ClassName
{
 public static void main(String[] args)
 {

program statements
 }
}

C++ NOTE: As a C++ programmer, you know what a class is. Java classes are
similar to C++ classes, but there are a few differences that can trap you. For
example, in Java all functions are methods of some class. (The standard termi-
nology refers to them as methods, not member functions.) Thus, in Java you
must have a shell class for the main method. You may also be familiar with the
idea of static member functions in C++. These are member functions defined
inside a class that do not operate on objects. The mainmethod in Java is always
static. Finally, as in C/C++, the void keyword indicates that this method does
not return a value. Unlike C/C++, the mainmethod does not return an “exit code”
to the operating system. If the main method exits normally, the Java program
has the exit code 0, indicating successful completion. To terminate the program
with a different exit code, use the System.exit method.

Chapter 3 Fundamental Programming Structures in Java40

Next, turn your attention to this fragment:

{
 System.out.println("We will not use 'Hello, World!'");
}

Braces mark the beginning and end of the body of the method. This method
has only one statement in it. As with most programming languages, you can
think of Java statements as sentences of the language. In Java, every statement
must end with a semicolon. In particular, carriage returns do not mark the
end of a statement, so statements can span multiple lines if need be.

The body of the main method contains a statement that outputs a single line
of text to the console.

Here, we are using the System.out object and calling its println method. Notice
the periods used to invoke a method. Java uses the general syntax

object.method(parameters)

as its equivalent of a function call.

In this case, we are calling the println method and passing it a string parameter.
The method displays the string parameter on the console. It then terminates
the output line, so that each call to println displays its output on a new line.
Notice that Java, like C/C++, uses double quotes to delimit strings. (You can
find more information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero,
one, or more parameters (some programmers call them arguments). Even if a
method takes no parameters, you must still use empty parentheses. For exam-
ple, a variant of the println method with no parameters just prints a blank
line. You invoke it with the call

System.out.println();

NOTE: System.out also has a print method that doesn’t add a newline character
to the output. For example, System.out.print("Hello") prints Hellowithout a newline.
The next output appears immediately after the letter o.

3.2 Comments

Comments in Java, as in most programming languages, do not show up in
the executable program. Thus, you can add as many comments as needed
without fear of bloating the code. Java has three ways of marking comments.

413.2 Comments

The most common form is a //. Use this for a comment that runs from the //
to the end of the line.

System.out.println("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a //, or you
can use the /* and */ comment delimiters that let you block off a longer
comment.

Finally, a third kind of comment is used to generate documentation automat-
ically. This comment uses a /** to start and a */ to end. You can see this type
of comment in Listing 3.1. For more on this type of comment and on automatic
documentation generation, see Chapter 4.

Listing 3.1 FirstSample/FirstSample.java

 1 /**
 2 * This is the first sample program in Core Java Chapter 3
 3 * @version 1.01 1997-03-22
 4 * @author Gary Cornell
 5 */
 6 public class FirstSample
 7 {
 8 public static void main(String[] args)
 9 {
10 System.out.println("We will not use 'Hello, World!'");
11 }
12 }

CAUTION: /* */ comments do not nest in Java. That is, you might not be able
to deactivate code simply by surrounding it with /* and */ because the code
you want to deactivate might itself contain a */ delimiter.

3.3 Data Types

Java is a strongly typed language. This means that every variable must have a
declared type. There are eight primitive types in Java. Four of them are integer
types; two are floating-point number types; one is the character type char,
used for code units in the Unicode encoding scheme (see Section 3.3.3, “The
char Type,” on p. 46); and one is a boolean type for truth values.

Chapter 3 Fundamental Programming Structures in Java42

NOTE: Java has an arbitrary-precision arithmetic package. However, “big
numbers,” as they are called, are Java objects and not a primitive Java type.
You will see how to use them later in this chapter.

3.3.1 Integer Types

The integer types are for numbers without fractional parts. Negative values
are allowed. Java provides the four integer types shown in Table 3.1.

Table 3.1 Java Integer Types

Range (Inclusive)Storage
Requirement

Type

–2,147,483,648 to 2,147,483,647 (just over 2 billion)4 bytesint

–32,768 to 32,7672 bytesshort

–9,223,372,036,854,775,808 to 9,223,372,036,854,775,8078 byteslong

–128 to 1271 bytebyte

In most situations, the int type is the most practical. If you want to represent
the number of inhabitants of our planet, you’ll need to resort to a long. The
byte and short types are mainly intended for specialized applications, such as
low-level file handling, or for large arrays when storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine
on which you will be running the Java code. This alleviates a major pain for
the programmer who wants to move software from one platform to another,
or even between operating systems on the same platform. In contrast, C and
C++ programs use the most efficient integer type for each processor. As a
result, a C program that runs well on a 32-bit processor may exhibit integer
overflow on a 16-bit system. Since Java programs must run with the same
results on all machines, the ranges for the various types are fixed.

Long integer numbers have a suffix L or l (for example, 4000000000L). Hexa-
decimal numbers have a prefix 0x or 0X (for example, 0xCAFE). Octal numbers
have a prefix 0 (for example, 010 is 8)—naturally, this can be confusing, so we
recommend against the use of octal constants.

Starting with Java 7, you can write numbers in binary, with a prefix 0b or 0B.
For example, 0b1001 is 9. Also starting with Java 7, you can add underscores
to number literals, such as 1_000_000 (or 0b1111_0100_0010_0100_0000) to denote one
million. The underscores are for human eyes only. The Java compiler simply
removes them.

433.3 Data Types

C++ NOTE: In C and C++, the sizes of types such as int and long depend
on the target platform. On a 16-bit processor such as the 8086, integers are
2 bytes, but on a 32-bit processor like a Pentium or SPARC they are 4-byte
quantities. Similarly, long values are 4-byte on 32-bit processors and 8-byte on
64-bit processors. These differences make it challenging to write cross-platform
programs. In Java, the sizes of all numeric types are platform-independent.

Note that Java does not have any unsigned versions of the int, long, short, or byte
types.

NOTE: If you work with integer values that can never be negative and you really
need an additional bit, you can, with some care, interpret signed integer values
as unsigned. For example, instead of having a byte value b represent the range
from –128 to 127, you may want a range from 0 to 255. You can store it in a
byte. Due to the nature of binary arithmetic, addition, subtraction, and multi-
plication will work provided they don’t overflow. For other operations, call
Byte.toUnsignedInt(b) to get an int value between 0 and 255, then process the
integer value and cast back to byte. The Integer and Long classes have methods
for unsigned division and remainder.

3.3.2 Floating-Point Types

The floating-point types denote numbers with fractional parts. The two
floating-point types are shown in Table 3.2.

Table 3.2 Floating-Point Types

RangeStorage RequirementType

Approximately ±3.40282347E+38F
(6–7 significant decimal digits)

4 bytesfloat

Approximately ±1.79769313486231570E+308
(15 significant decimal digits)

8 bytesdouble

The name double refers to the fact that these numbers have twice the precision
of the float type. (Some people call these double-precision numbers.) The limited
precision of float (6–7 significant digits) is simply not sufficient for many sit-
uations. Use float values only when you work with a library that requires
them, or when you need to store a very large number of them.

Chapter 3 Fundamental Programming Structures in Java44

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-point
numbers without an F suffix (such as 3.14) are always considered to be of type
double. You can optionally supply the D or d suffix (for example, 3.14D).

NOTE: You can specify floating-point literals in hexadecimal. For example,
0.125 = 2–3 can be written as 0x1.0p-3. In hexadecimal notation, you use a p, not
an e, to denote the exponent. (An e is a hexadecimal digit.) Note that the man-
tissa is written in hexadecimal and the exponent in decimal. The base of the
exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In particular,
there are three special floating-point values to denote overflows and errors:

• Positive infinity
• Negative infinity
• NaN (not a number)

For example, the result of dividing a positive number by 0 is positive infinity.
Computing 0/0 or the square root of a negative number yields NaN.

NOTE: The constants Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, and Double.NaN
(as well as corresponding Float constants) represent these special values, but
they are rarely used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a number” values
are considered distinct. However, you can use the Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

CAUTION: Floating-point numbers are not suitable for financial calculations in
which roundoff errors cannot be tolerated. For example, the command
System.out.println(2.0 - 1.1) prints 0.8999999999999999, not 0.9 as you would expect.
Such roundoff errors are caused by the fact that floating-point numbers are
represented in the binary number system. There is no precise binary represen-
tation of the fraction 1/10, just as there is no accurate representation of the
fraction 1/3 in the decimal system. If you need precise numerical computations
without roundoff errors, use the BigDecimal class, which is introduced later in this
chapter.

453.3 Data Types

3.3.3 The char Type
The char type was originally intended to describe individual characters. How-
ever, this is no longer the case. Nowadays, some Unicode characters can be
described with one char value, and other Unicode characters require two char
values. Read the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is a
character constant with value 65. It is different from "A", a string containing
a single character. Values of type char can be expressed as hexadecimal values
that run from \u0000 to \uFFFF. For example, \u2122 is the trademark symbol (™)
and \u03C0 is the Greek letter pi (π).

Besides the \u escape sequences, there are several escape sequences for special
characters, as shown in Table 3.3. You can use these escape sequences inside
quoted character literals and strings, such as '\u2122' or "Hello\n". The \u escape
sequence (but none of the other escape sequences) can even be used outside
quoted character constants and strings. For example,

public static void main(String\u005B\u005D args)

is perfectly legal—\u005B and \u005D are the encodings for [and].

Table 3.3 Escape Sequences for Special Characters

Unicode ValueNameEscape Sequence

\u0008Backspace\b

\u0009Tab\t

\u000aLinefeed\n

\u000dCarriage return\r

\u0022Double quote\"

\u0027Single quote\'

\u005cBackslash\\

CAUTION:Unicode escape sequences are processed before the code is parsed.
For example, "\u0022+\u0022" is not a string consisting of a plus sign surrounded
by quotation marks (U+0022). Instead, the \u0022 are converted into " before
parsing, yielding ""+"", or an empty string.

Even more insidiously, you must beware of \u inside comments. The comment

// \u000A is a newline

Chapter 3 Fundamental Programming Structures in Java46

yields a syntax error since \u000A is replaced with a newline when the program
is read. Similarly, a comment

// look inside c:\users

yields a syntax error because the \u is not followed by four hex digits.

3.3.4 Unicode and the char Type
To fully understand the char type, you have to know about the Unicode encod-
ing scheme. Unicode was invented to overcome the limitations of traditional
character encoding schemes. Before Unicode, there were many different
standards: ASCII in the United States, ISO 8859-1 for Western European lan-
guages, KOI-8 for Russian, GB18030 and BIG-5 for Chinese, and so on. This
caused two problems. First, a particular code value corresponds to different
letters in the different encoding schemes. Second, the encodings for languages
with large character sets have variable length: Some common characters are
encoded as single bytes, others require two or more bytes.

Unicode was designed to solve these problems. When the unification effort
started in the 1980s, a fixed 2-byte code was more than sufficient to encode
all characters used in all languages in the world, with room to spare for future
expansion—or so everyone thought at the time. In 1991, Unicode 1.0 was re-
leased, using slightly less than half of the available 65,536 code values. Java
was designed from the ground up to use 16-bit Unicode characters, which was
a major advance over other programming languages that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond
65,536 characters, primarily due to the addition of a very large set of
ideographs used for Chinese, Japanese, and Korean. Now, the 16-bit char type
is insufficient to describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in Java,
beginning with Java 5. A code point is a code value that is associated with a
character in an encoding scheme. In the Unicode standard, code points are
written in hexadecimal and prefixed with U+, such as U+0041 for the code point
of the Latin letter A. Unicode has code points that are grouped into 17 code
planes. The first code plane, called the basic multilingual plane, consists of the
“classic” Unicode characters with code points U+0000 to U+FFFF. Sixteen additional
planes, with code points U+10000 to U+10FFFF, hold the supplementary characters.

The UTF-16 encoding represents all Unicode code points in a variable-length
code. The characters in the basic multilingual plane are represented as 16-bit
values, called code units. The supplementary characters are encoded as consec-
utive pairs of code units. Each of the values in such an encoding pair falls

473.3 Data Types

into a range of 2048 unused values of the basic multilingual plane, called the
surrogates area (U+D800 to U+DBFF for the first code unit, U+DC00 to U+DFFF for
the second code unit). This is rather clever, because you can immediately tell
whether a code unit encodes a single character or it is the first or second part
of a supplementary character. For example, (the mathematical symbol for
the set of octonions, http://math.ucr.edu/home/baez/octonions) has code point U+1D546
and is encoded by the two code units U+D835 and U+DD46. (See https://tools.ietf.org
/html/rfc2781 for a description of the encoding algorithm.)

In Java, the char type describes a code unit in the UTF-16 encoding.

Our strong recommendation is not to use the char type in your programs unless
you are actually manipulating UTF-16 code units. You are almost always
better off treating strings (which we will discuss in Section 3.6, “Strings,” on
p. 62) as abstract data types.

3.3.5 The boolean Type
The boolean type has two values, false and true. It is used for evaluating logical
conditions. You cannot convert between integers and boolean values.

C++ NOTE: In C++, numbers and even pointers can be used in place of boolean
values. The value 0 is equivalent to the bool value false, and a nonzero value is
equivalent to true. This is not the case in Java. Thus, Java programmers are
shielded from accidents such as

if (x = 0) // oops... meant x == 0

In C++, this test compiles and runs, always evaluating to false. In Java, the test
does not compile because the integer expression x = 0 cannot be converted to
a boolean value.

3.4 Variables and Constants

As in every programming language, variables are used to store values. Con-
stants are variables whose values don’t change. In the following sections, you
will learn how to declare variables and constants.

3.4.1 Declaring Variables

In Java, every variable has a type. You declare a variable by placing the type
first, followed by the name of the variable. Here are some examples:

Chapter 3 Fundamental Programming Structures in Java48

https://tools.ietf.org/html/rfc2781
https://tools.ietf.org/html/rfc2781

double salary;
int vacationDays;
long earthPopulation;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is neces-
sary because a declaration is a complete Java statement, and all Java statements
end in semicolons.

A variable name must begin with a letter and must be a sequence of letters
or digits. Note that the terms “letter” and “digit” are much broader in Java
than in most languages. A letter is defined as 'A'–'Z', 'a'–'z', '_', '$', or any
Unicode character that denotes a letter in a language. For example, German
users can use umlauts such as 'ä' in variable names; Greek speakers could use
a π. Similarly, digits are '0'–'9' and any Unicode characters that denote a
digit in a language. Symbols like '+' or '©' cannot be used inside variable
names, nor can spaces. All characters in the name of a variable are significant
and case is also significant. The length of a variable name is essentially
unlimited.

TIP: If you are really curious as to what Unicode characters are “letters”
as far as Java is concerned, you can use the isJavaIdentifierStart and
isJavaIdentifierPart methods in the Character class to check.

TIP: Even though $ is a valid Java letter, you should not use it in your own code.
It is intended for names that are generated by the Java compiler and other tools.

You also cannot use a Java reserved word as a variable name.

As of Java 9, a single underscore _ cannot be used as a variable name. A future
version of Java may use _ as a wildcard symbol.

You can declare multiple variables on a single line:

int i, j; // both are integers

However, we don’t recommend this style. If you declare each variable
separately, your programs are easier to read.

NOTE: As you saw, names are case sensitive, for example, hireday and hireDay
are two separate names. In general, you should not have two names that only
differ in their letter case. However, sometimes it is difficult to come up with a

493.4 Variables and Constants

good name for a variable. Many programmers then give the variable the same
name as the type, for example

Box box; // "Box" is the type and "box" is the variable name

Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.2 Initializing Variables

After you declare a variable, you must explicitly initialize it by means of an
assignment statement—you can never use the value of an uninitialized variable.
For example, the Java compiler flags the following sequence of statements as
an error:

int vacationDays;
System.out.println(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on
the left, an equal sign (=), and then some Java expression with an appropriate
value on the right.

int vacationDays;
vacationDays = 12;

You can both declare and initialize a variable on the same line. For example:

int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For example,
the following is valid code in Java:

double salary = 65000.0;
System.out.println(salary);
int vacationDays = 12; // OK to declare a variable here

In Java, it is considered good style to declare variables as closely as possible
to the point where they are first used.

NOTE: Starting with Java 10, you do not need to declare the types of local
variables if they can be inferred from the initial value. Simply use the keyword
var instead of the type:

var vacationDays = 12; // vacationDays is an int
var greeting = "Hello"; // greeting is a String

We will start using this feature in the next chapter.

Chapter 3 Fundamental Programming Structures in Java50

C++ NOTE: C and C++ distinguish between the declaration and definition of a
variable. For example,

int i = 10;

is a definition, whereas

extern int i;

is a declaration. In Java, no declarations are separate from definitions.

3.4.3 Constants

In Java, you use the keyword final to denote a constant. For example:

public class Constants
{
 public static void main(String[] args)
 {

final double CM_PER_INCH = 2.54;
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "
 + paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
 }
}

The keyword final indicates that you can assign to the variable once, and then
its value is set once and for all. It is customary to name constants in all
uppercase.

It is probably more common in Java to create a constant so it’s available to
multiple methods inside a single class. These are usually called class constants.
Set up a class constant with the keywords static final. Here is an example of
using a class constant:

public class Constants2
{
 public static final double CM_PER_INCH = 2.54;

 public static void main(String[] args)
 {
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "
 + paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
 }
}

513.4 Variables and Constants

Note that the definition of the class constant appears outside the main method.
Thus, the constant can also be used in other methods of the same class.
Furthermore, if the constant is declared, as in our example, public, methods
of other classes can also use it—in our example, as Constants2.CM_PER_INCH.

C++ NOTE: const is a reserved Java keyword, but it is not currently used for
anything. You must use final for a constant.

3.4.4 Enumerated Types

Sometimes, a variable should only hold a restricted set of values. For example,
you may sell clothes or pizza in four sizes: small, medium, large, and extra
large. Of course, you could encode these sizes as integers 1, 2, 3, 4 or characters
S, M, L, and X. But that is an error-prone setup. It is too easy for a variable to
hold a wrong value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises.
An enumerated type has a finite number of named values. For example,

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:

Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type dec-
laration, or the special value null that indicates that the variable is not set to
any value at all.

We discuss enumerated types in greater detail in Chapter 5.

3.5 Operators

Operators are used to combine values. As you will see in the following sec-
tions, Java has a rich set of arithmetic and logical operators and mathematical
functions.

3.5.1 Arithmetic Operators

The usual arithmetic operators +, -, *, / are used in Java for addition, subtrac-
tion, multiplication, and division. The / operator denotes integer division if
both arguments are integers, and floating-point division otherwise. Integer
remainder (sometimes called modulus) is denoted by %. For example, 15 / 2 is
7, 15 % 2 is 1, and 15.0 / 2 is 7.5.

Chapter 3 Fundamental Programming Structures in Java52

Note that integer division by 0 raises an exception, whereas floating-point
division by 0 yields an infinite or NaN result.

NOTE:One of the stated goals of the Java programming language is portability.
A computation should yield the same results no matter which virtual machine
executes it. For arithmetic computations with floating-point numbers, it is sur-
prisingly difficult to achieve this portability. The double type uses 64 bits to store
a numeric value, but some processors use 80-bit floating-point registers. These
registers yield added precision in intermediate steps of a computation. For
example, consider the following computation:

double w = x * y / z;

Many Intel processors compute x * y, leave the result in an 80-bit register, then
divide by z, and finally truncate the result back to 64 bits. That can yield a more
accurate result, and it can avoid exponent overflow. But the result may be dif-
ferent from a computation that uses 64 bits throughout. For that reason, the
initial specification of the Java virtual machine mandated that all intermediate
computations must be truncated. The numeric community hated it. Not only
can the truncated computations cause overflow, they are actually slower than
the more precise computations because the truncation operations take time.
For that reason, the Java programming language was updated to recognize the
conflicting demands for optimum performance and perfect reproducibility. By
default, virtual machine designers are now permitted to use extended precision
for intermediate computations. However, methods tagged with the strictfp
keyword must use strict floating-point operations that yield reproducible results.

For example, you can tag main as

public static strictfp void main(String[] args)

Then all instructions inside the mainmethod will use strict floating-point compu-
tations. If you tag a class as strictfp, then all of its methods must use strict
floating-point computations.

The gory details are very much tied to the behavior of the Intel processors. In
the default mode, intermediate results are allowed to use an extended exponent,
but not an extended mantissa. (The Intel chips support truncation of the man-
tissa without loss of performance.) Therefore, the only difference between the
default and strict modes is that strict computations may overflow when default
computations don’t.

If your eyes glazed over when reading this note, don’t worry. Floating-point
overflow isn’t a problem that one encounters for most common programs. We
don’t use the strictfp keyword in this book.

533.5 Operators

3.5.2 Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you may
occasionally need, depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
System.out.println(y); // prints 2.0

NOTE: There is a subtle difference between the println method and the sqrt
method. The println method operates on the System.out object. But the sqrt
method in the Math class does not operate on any object. Such a method is
called a static method. You can learn more about static methods in Chapter 4.

The Java programming language has no operator for raising a quantity to a
power: You must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (xa). The pow method’s parameters are both
of type double, and it returns a double as well.

The floorMod method aims to solve a long-standing problem with integer re-
mainders. Consider the expression n % 2. Everyone knows that this is 0 if n is
even and 1 if n is odd. Except, of course, when n is odd and negative. Then
it is -1. Why? When the first computers were built, someone had to make
rules for how integer division and remainder should work for negative
operands. Mathematicians had known the optimal (or “Euclidean”) rule for
a few hundred years: always leave the remainder ≥ 0. But, rather than open a
math textbook, those pioneers came up with rules that seemed reasonable
but are actually inconvenient.

Consider this problem. You compute the position of the hour hand of a clock.
An adjustment is applied, and you want to normalize to a number between
0 and 11. That is easy: (position + adjustment) % 12. But what if the adjustment is
negative? Then you might get a negative number. So you have to introduce
a branch, or use ((position + adjustment) % 12 + 12) % 12. Either way, it is a hassle.

The floorMod method makes it easier: floorMod(position + adjustment, 12) always yields
a value between 0 and 11. (Unfortunately, floorMod gives negative results for
negative divisors, but that situation doesn’t often occur in practice.)

The Math class supplies the usual trigonometric functions:

Chapter 3 Fundamental Programming Structures in Java54

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan2

and the exponential function with its inverse, the natural logarithm, as well
as the decimal logarithm:

Math.exp
Math.log
Math.log10

Finally, two constants denote the closest possible approximations to the
mathematical constants π and e:

Math.PI
Math.E

TIP: You can avoid the Math prefix for the mathematical methods and constants
by adding the following line to the top of your source file:

import static java.lang.Math.*;

For example:

System.out.println("The square root of \u03C0 is " + sqrt(PI));

We discuss static imports in Chapter 4.

NOTE: The methods in the Math class use the routines in the computer’s floating-
point unit for fastest performance. If completely predictable results are more
important than performance, use the StrictMath class instead. It implements the
algorithms from the “Freely Distributable Math Library” (www.netlib.org/fdlibm),
guaranteeing identical results on all platforms.

NOTE: The Math class provides several methods to make integer arithmetic
safer. The mathematical operators quietly return wrong results when a compu-
tation overflows. For example, one billion times three (1000000000 * 3) evaluates
to -1294967296 because the largest int value is just over two billion. If you call
Math.multiplyExact(1000000000, 3) instead, an exception is generated. You can catch
that exception or let the program terminate rather than quietly continue with
a wrong result. There are also methods addExact, subtractExact, incrementExact,
decrementExact, negateExact, all with int and long parameters.

553.5 Operators

http://www.netlib.org/fdlibm

3.5.3 Conversions between Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3.1
shows the legal conversions.

Figure 3.1 Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information
loss. The three dotted arrows denote conversions that may lose precision.
For example, a large integer such as 123456789 has more digits than the float
type can represent. When the integer is converted to a float, the resulting
value has the correct magnitude but loses some precision.

int n = 123456789;
float f = n; // f is 1.23456792E8

When two values are combined with a binary operator (such as n + f where
n is an integer and f is a floating-point value), both operands are converted
to a common type before the operation is carried out.

• If either of the operands is of type double, the other one will be converted
to a double.

• Otherwise, if either of the operands is of type float, the other one will be
converted to a float.

Chapter 3 Fundamental Programming Structures in Java56

• Otherwise, if either of the operands is of type long, the other one will be
converted to a long.

• Otherwise, both operands will be converted to an int.

3.5.4 Casts

In the preceding section, you saw that int values are automatically converted
to double values when necessary. On the other hand, there are obviously times
when you want to consider a double as an integer. Numeric conversions are
possible in Java, but of course information may be lost. Conversions in which
loss of information is possible are done by means of casts. The syntax for
casting is to give the target type in parentheses, followed by the variable
name. For example:

double x = 9.997;
int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value to
an integer discards the fractional part.

If you want to round a floating-point number to the nearest integer (which in
most cases is a more useful operation), use the Math.round method:

double x = 9.997;
int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int) when
you call round. The reason is that the return value of the round method is a long,
and a long can only be assigned to an int with an explicit cast because there
is the possibility of information loss.

CAUTION: If you try to cast a number of one type to another that is out of range
for the target type, the result will be a truncated number that has a different
value. For example, (byte) 300 is actually 44.

C++ NOTE: You cannot cast between boolean values and any numeric type. This
convention prevents common errors. In the rare case when you want to convert
a boolean value to a number, you can use a conditional expression such as
b ? 1 : 0.

573.5 Operators

3.5.5 Combining Assignment with Operators

There is a convenient shortcut for using binary operators in an assignment.
For example,

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

NOTE: If the operator yields a value whose type is different from that of the left-
hand side, then it is coerced to fit. For example, if x is an int, then the statement

x += 3.5;

is valid, setting x to (int)(x + 3.5).

3.5.6 Increment and Decrement Operators

Programmers, of course, know that one of the most common operations with
a numeric variable is to add or subtract 1. Java, following in the footsteps of
C and C++, has both increment and decrement operators: n++ adds 1 to the
current value of the variable n, and n-- subtracts 1 from it. For example,
the code

int n = 12;
n++;

changes n to 13. Since these operators change the value of a variable, they
cannot be applied to numbers themselves. For example, 4++ is not a legal
statement.

There are two forms of these operators; you’ve just seen the postfix form of
the operator that is placed after the operand. There is also a prefix form, ++n.
Both change the value of the variable by 1. The difference between the two
appears only when they are used inside expressions. The prefix form does
the addition first; the postfix form evaluates to the old value of the variable.

int m = 7;
int n = 7;
int a = 2 * ++m; // now a is 16, m is 8
int b = 2 * n++; // now b is 14, n is 8

We recommend against using ++ inside expressions because this often leads
to confusing code and annoying bugs.

Chapter 3 Fundamental Programming Structures in Java58

3.5.7 Relational and boolean Operators
Java has the full complement of relational operators. To test for equality, use
a double equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or
equal), and >= (greater than or equal) operators.

Java, following C++, uses && for the logical “and” operator and || for the logical
“or” operator. As you can easily remember from the != operator, the exclama-
tion point ! is the logical negation operator. The && and || operators are
evaluated in “short circuit” fashion: The second argument is not evaluated if
the first argument already determines the value. If you combine two
expressions with the && operator,

expression1 && expression2

and the truth value of the first expression has been determined to be false,
then it is impossible for the result to be true. Thus, the value for the second
expression is not calculated. This behavior can be exploited to avoid errors.
For example, in the expression

x != 0 && 1 / x > x + y // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed
if x is zero, and no divide-by-zero error can occur.

Similarly, the value of expression1 || expression2 is automatically true if the first
expression is true, without evaluating the second expression.

Finally, Java supports the ternary ?: operator that is occasionally useful. The
expression

condition ? expression1 : expression2

evaluates to the first expression if the condition is true, to the second
expression otherwise. For example,

x < y ? x : y

gives the smaller of x and y.

593.5 Operators

3.5.8 Bitwise Operators

For any of the integer types, you have operators that can work directly with
the bits that make up the integers. This means that you can use masking
techniques to get at individual bits in a number. The bitwise operators are

& (“and”) | (“or”) ^ (“xor”) ~ (“not”)

These operators work on bit patterns. For example, if n is an integer variable,
then

int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of
n is 1, and 0 otherwise. Using & with the appropriate power of 2 lets you mask
out all but a single bit.

NOTE:When applied to boolean values, the & and | operators yield a boolean value.
These operators are similar to the && and || operators, except that the
& and | operators are not evaluated in “short circuit” fashion—that is, both
arguments are evaluated before the result is computed.

There are also >> and << operators which shift a bit pattern right or left. These
operators are convenient when you need to build up bit patterns to do bit
masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, unlike >> which extends the
sign bit into the top bits. There is no <<< operator.

CAUTION: The right-hand argument of the shift operators is reduced modulo
32 (unless the left-hand argument is a long, in which case the right-hand argu-
ment is reduced modulo 64). For example, the value of 1 << 35 is the same as
1 << 3 or 8.

C++ NOTE: In C/C++, there is no guarantee as to whether >> performs an
arithmetic shift (extending the sign bit) or a logical shift (filling in with zeroes).
Implementors are free to choose whichever is more efficient. That means the
C/C++ >> operator may yield implementation-dependent results for negative
numbers. Java removes that uncertainty.

Chapter 3 Fundamental Programming Structures in Java60

3.5.9 Parentheses and Operator Hierarchy

Table 3.4 shows the precedence of operators. If no parentheses are used,
operations are performed in the hierarchical order indicated. Operators on
the same level are processed from left to right, except for those that are right-
associative, as indicated in the table. For example, && has a higher precedence
than ||, so the expression

a && b || c

means

(a && b) || c

Table 3.4 Operator Precedence

AssociativityOperators

Left to right[] . () (method call)

Right to left! ~ ++ -- + (unary) - (unary) () (cast) new

Left to right* / %

Left to right+ -

Left to right<< >> >>>

Left to right< <= > >= instanceof

Left to right== !=

Left to right&

Left to right^

Left to right|

Left to right&&

Left to right||

Right to left?:

Right to left= += -= *= /= %= &= |= ^= <<= >>= >>>=

Since += associates right to left, the expression

a += b += c

means

a += (b += c)

613.5 Operators

That is, the value of b += c (which is the value of b after the addition) is
added to a.

C++ NOTE: Unlike C or C++, Java does not have a comma operator. However,
you can use a comma-separated list of expressions in the first and third slot of
a for statement.

3.6 Strings

Conceptually, Java strings are sequences of Unicode characters. For example,
the string "Java\u2122" consists of the five Unicode characters J, a, v, a, and ™.
Java does not have a built-in string type. Instead, the standard Java library
contains a predefined class called, naturally enough, String. Each quoted string
is an instance of the String class:

String e = ""; // an empty string
String greeting = "Hello";

3.6.1 Substrings

You can extract a substring from a larger string with the substring method of
the String class. For example,

String greeting = "Hello";
String s = greeting.substring(0, 3);

creates a string consisting of the characters "Hel".

NOTE: Like C and C++, Java counts code units and code points in strings
starting with 0.

The second parameter of substring is the first position that you do not want to
copy. In our case, we want to copy positions 0, 1, and 2 (from position 0 to
position 2 inclusive). As substring counts it, this means from position 0 inclusive
to position 3 exclusive.

There is one advantage to the way substring works: Computing the length of
the substring is easy. The string s.substring(a, b) always has length b − a. For
example, the substring "Hel" has length 3 − 0 = 3.

Chapter 3 Fundamental Programming Structures in Java62

3.6.2 Concatenation

Java, like most programming languages, allows you to use + to join
(concatenate) two strings.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The preceding code sets the variable message to the string "Expletivedeleted".
(Note the lack of a space between the words: The + operator joins two strings
in the order received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is
converted to a string. (As you will see in Chapter 5, every Java object can
be converted to a string.) For example,

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements. For example,

System.out.println("The answer is " + answer);

is perfectly acceptable and prints what you would expect (and with correct
spacing because of the space after the word is).

If you need to put multiple strings together, separated by a delimiter, use the
static join method:

String all = String.join(" / ", "S", "M", "L", "XL");
 // all is the string "S / M / L / XL"

As of Java 11, there is a repeat method:

String repeated = "Java".repeat(3); // repeated is "JavaJavaJava"

3.6.3 Strings Are Immutable

The String class gives no methods that let you change a character in an existing
string. If you want to turn greeting into "Help!", you cannot directly change the
last positions of greeting into 'p' and '!'. If you are a C programmer, this can
make you feel pretty helpless. How are we going to modify the string? In Java,
it is quite easy: Concatenate the substring that you want to keep with the
characters that you want to replace.

greeting = greeting.substring(0, 3) + "p!";

633.6 Strings

This declaration changes the current value of the greeting variable to "Help!".

Since you cannot change the individual characters in a Java string, the docu-
mentation refers to the objects of the String class as immutable. Just as the
number 3 is always 3, the string "Hello" will always contain the code-unit se-
quence for the characters H, e, l, l, o. You cannot change these values. Yet you
can, as you just saw, change the contents of the string variable greeting and
make it refer to a different string, just as you can make a numeric variable
currently holding the value 3 hold the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the code units
than to build up a whole new string from scratch. Well, yes and no. Indeed,
it isn’t efficient to generate a new string that holds the concatenation of "Hel"
and "p!". But immutable strings have one great advantage: The compiler can
arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a
common pool. String variables then point to locations in the pool. If you copy
a string variable, both the original and the copy share the same characters.

Overall, the designers of Java decided that the efficiency of sharing outweighs
the inefficiency of string editing by extracting substrings and concatenating.
Look at your own programs; we suspect that most of the time, you don’t
change strings—you just compare them. (There is one common exception—
assembling strings from individual characters or from shorter strings that
come from the keyboard or a file. For these situations, Java provides a separate
class that we describe in Section 3.6.9, “Building Strings,” on p. 74.)

C++NOTE:C programmers are generally bewildered when they see Java strings
for the first time because they think of strings as arrays of characters:

char greeting[] = "Hello";

That is a wrong analogy: A Java string is roughly analogous to a char* pointer,

char* greeting = "Hello";

When you replace greeting with another string, the Java code does roughly the
following:

char* temp = malloc(6);
strncpy(temp, greeting, 3);
strncpy(temp + 3, "p!", 3);
greeting = temp;

Sure, now greeting points to the string "Help!". And even the most hardened C
programmer must admit that the Java syntax is more pleasant than a sequence
of strncpy calls. But what if we make another assignment to greeting?

Chapter 3 Fundamental Programming Structures in Java64

greeting = "Howdy";

Don’t we have a memory leak? After all, the original string was allocated on the
heap. Fortunately, Java does automatic garbage collection. If a block of memory
is no longer needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI C++,
you will be muchmore comfortable with the Java String type. C++ string objects
also perform automatic allocation and deallocation of memory. The memory
management is performed explicitly by constructors, assignment operators,
and destructors. However, C++ strings are mutable—you can modify individual
characters in a string.

3.6.4 Testing Strings for Equality

To test whether two strings are equal, use the equals method. The expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t
can be string variables or string literals. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the
upper/lowercase letter distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test whether two strings are equal! It only deter-
mines whether or not the strings are stored in the same location. Sure, if
strings are in the same location, they must be equal. But it is entirely possible
to store multiple copies of identical strings in different places.

String greeting = "Hello"; // initialize greeting to a string
if (greeting == "Hello") . . .
 // probably true
if (greeting.substring(0, 3) == "Hel") . . .
 // probably false

If the virtual machine always arranges for equal strings to be shared, then
you could use the == operator for testing equality. But only string literals are
shared, not strings that are the result of operations like + or substring. Therefore,
never use == to compare strings lest you end up with a program with the worst
kind of bug—an intermittent one that seems to occur randomly.

653.6 Strings

C++ NOTE: If you are used to the C++ string class, you have to be particularly
careful about equality testing. The C++ string class does overload the == operator
to test for equality of the string contents. It is perhaps unfortunate that Java
goes out of its way to give strings the same “look and feel” as numeric values
but then makes strings behave like pointers for equality testing. The language
designers could have redefined == for strings, just as they made a special
arrangement for +. Oh well, every language has its share of inconsistencies.

C programmers never use == to compare strings but use strcmp instead. The
Java method compareTo is the exact analog of strcmp. You can use

if (greeting.compareTo("Hello") == 0) . . .

but it seems clearer to use equals instead.

3.6.5 Empty and Null Strings

The empty string "" is a string of length 0. You can test whether a string is
empty by calling

if (str.length() == 0)

or

if (str.equals(""))

An empty string is a Java object which holds the string length (namely, 0)
and an empty contents. However, a String variable can also hold a special
value, called null, that indicates that no object is currently associated with the
variable. (See Chapter 4 for more information about null.) To test whether a
string is null, use

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use

if (str != null && str.length() != 0)

You need to test that str is not null first. As you will see in Chapter 4, it is an
error to invoke a method on a null value.

3.6.6 Code Points and Code Units

Java strings are sequences of char values. As we discussed in Section 3.3.3,
“The char Type,” on p. 46, the char data type is a code unit for representing
Unicode code points in the UTF-16 encoding. The most commonly
used Unicode characters can be represented with a single code unit. The
supplementary characters require a pair of code units.

Chapter 3 Fundamental Programming Structures in Java66

The length method yields the number of code units required for a given string
in the UTF-16 encoding. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5

To get the true length—that is, the number of code points—call

int cpCount = greeting.codePointCount(0, greeting.length());

The call s.charAt(n) returns the code unit at position n, where n is between 0
and s.length() – 1. For example:

char first = greeting.charAt(0); // first is 'H'
char last = greeting.charAt(4); // last is 'o'

To get at the ith code point, use the statements

int index = greeting.offsetByCodePoints(0, i);
int cp = greeting.codePointAt(index);

Why are we making a fuss about code units? Consider the sentence

 is the set of octonions.

The character (U+1D546) requires two code units in the UTF-16 encoding.
Calling

char ch = sentence.charAt(1)

doesn’t return a space but the second code unit of . To avoid this problem,
you should not use the char type. It is too low-level.

NOTE: Don’t think that you can ignore exotic characters with code units above
U+FFFF. Your emoji-loving users may put characters such as (U+1F37A, beer
mug) into strings.

If your code traverses a string, and you want to look at each code point in
turn, you can use these statements:

int cp = sentence.codePointAt(i);
if (Character.isSupplementaryCodePoint(cp)) i += 2;
else i++;

You can move backwards with the following statements:

i--;
if (Character.isSurrogate(sentence.charAt(i))) i--;
int cp = sentence.codePointAt(i);

673.6 Strings

Obviously, that is quite painful. An easier way is to use the codePoints method
that yields a “stream” of int values, one for each code point. (We will discuss
streams in Chapter 2 of Volume II.) You can just turn the stream into an array
(see Section 3.10, “Arrays,” on p. 108) and traverse that.

int[] codePoints = str.codePoints().toArray();

Conversely, to turn an array of code points to a string, use a constructor. (We
discuss constructors and the new operator in detail in Chapter 4.)

String str = new String(codePoints, 0, codePoints.length);

NOTE: The virtual machine does not have to implement strings as sequences
of code units. In Java 9, strings that hold only single-byte code units use a byte
array, and all others a char array.

3.6.7 The String API
The String class in Java contains more than 50 methods. A surprisingly large
number of them are sufficiently useful that we can imagine using them fre-
quently. The following API note summarizes the ones we found most useful.

These API notes, found throughout the book, will help you understand the
Java Application Programming Interface (API). Each API note starts with
the name of a class, such as java.lang.String. (The significance of the so-called
package name java.lang is explained in Chapter 4.) The class name is followed
by the names, explanations, and parameter descriptions of one or more
methods.

We typically do not list all methods of a particular class but select those that
are most commonly used and describe them in a concise form. For a full
listing, consult the online documentation (see Section 3.6.8, “Reading the
Online API Documentation,” on p. 71).

We also list the version number in which a particular class was introduced.
If a method has been added later, it has a separate version number.

java.lang.String 1.0

• char charAt(int index)

returns the code unit at the specified location. You probably don’t want to call
this method unless you are interested in low-level code units.

(Continues)

Chapter 3 Fundamental Programming Structures in Java68

java.lang.String 1.0 (Continued)

• int codePointAt(int index) 5

returns the code point that starts at the specified location.

• int offsetByCodePoints(int startIndex, int cpCount) 5

returns the index of the code point that is cpCount code points away from the
code point at startIndex.

• int compareTo(String other)

returns a negative value if the string comes before other in dictionary order, a
positive value if the string comes after other in dictionary order, or 0 if the
strings are equal.

• IntStream codePoints() 8

returns the code points of this string as a stream. Call toArray to put them in
an array.

• new String(int[] codePoints, int offset, int count) 5

constructs a string with the count code points in the array starting at offset.

• boolean isEmpty()

boolean isBlank() 11

returns true if the string is empty or consists of whitespace.

• boolean equals(Object other)

returns true if the string equals other.

• boolean equalsIgnoreCase(String other)

returns true if the string equals other, except for upper/lowercase distinction.

• boolean startsWith(String prefix)
• boolean endsWith(String suffix)

returns true if the string starts with prefix or ends with suffix.

• int indexOf(String str)
• int indexOf(String str, int fromIndex)
• int indexOf(int cp)
• int indexOf(int cp, int fromIndex)

returns the start of the first substring equal to the string str or the code point
cp, starting at index 0 or at fromIndex, or -1 if str does not occur in this string.

(Continues)

693.6 Strings

java.lang.String 1.0 (Continued)

• int lastIndexOf(String str)
• int lastIndexOf(String str, int fromIndex)
• int lastindexOf(int cp)
• int lastindexOf(int cp, int fromIndex)

returns the start of the last substring equal to the string str or the code point
cp, starting at the end of the string or at fromIndex.

• int length()

returns the number of code units of the string.

• int codePointCount(int startIndex, int endIndex) 5

returns the number of code points between startIndex and endIndex – 1.

• String replace(CharSequence oldString, CharSequence newString)

returns a new string that is obtained by replacing all substrings matching
oldString in the string with the string newString. You can supply String or
StringBuilder objects for the CharSequence parameters.

• String substring(int beginIndex)
• String substring(int beginIndex, int endIndex)

returns a new string consisting of all code units from beginIndex until the end
of the string or until endIndex – 1.

• String toLowerCase()
• String toUpperCase()

returns a new string containing all characters in the original string, with up-
percase characters converted to lowercase, or lowercase characters converted
to uppercase.

• String trim()

String strip() 11

returns a new string by eliminating all leading and trailing characters that are
≤ U+0020 (trim) or whitespace (strip) in the original string.

• String join(CharSequence delimiter, CharSequence... elements) 8

returns a new string joining all elements with the given delimiter.

• String repeat(int count) 11

returns a string that repeats this string count times.

Chapter 3 Fundamental Programming Structures in Java70

NOTE: In the API notes, there are a few parameters of type CharSequence. This is
an interface type to which all strings belong. You will learn about interface types
in Chapter 6. For now, you just need to know that you can pass arguments of
type String whenever you see a CharSequence parameter.

3.6.8 Reading the Online API Documentation

As you just saw, the String class has lots of methods. Furthermore, there are
thousands of classes in the standard libraries, with many more methods. It
is plainly impossible to remember all useful classes and methods. Therefore,
it is essential that you become familiar with the online API documentation
that lets you look up all classes and methods in the standard library. You can
download the API documentation from Oracle and save it locally, or you
can point your browser to https://docs.oracle.com/en/java/javase/11/docs/api.

Figure 3.2 The Java API documentation

713.6 Strings

https://docs.oracle.com/en/java/javase/11/docs/api

As of Java 9, the API documentation has a search box (see Figure 3.2). Older
versions have frames with lists of packages and classes. You can still get those
lists by clicking on the Frames menu item. For example, to get more informa-
tion on the methods of the String class, type “String” into the search box and
select the type java.lang.String, or locate the link in the frame with class names
and click it. You get the class description, as shown in Figure 3.3.

Figure 3.3 Class description for the String class

When you scroll down, you reach a summary of all methods, sorted in alpha-
betical order (see Figure 3.4). Click on any method name for a detailed de-
scription of that method (see Figure 3.5). For example, if you click on the
compareToIgnoreCase link, you’ll get the description of the compareToIgnoreCase
method.

TIP: If you have not already done so, download the JDK documentation, as
described in Chapter 2. Bookmark the jdk-11-docs/index.html page in your
browser right now.

Chapter 3 Fundamental Programming Structures in Java72

Figure 3.4 Method summary of the String class

Figure 3.5 Detailed description of a String method

733.6 Strings

3.6.9 Building Strings

Occasionally, you need to build up strings from shorter strings, such as
keystrokes or words from a file. It would be inefficient to use string concate-
nation for this purpose. Every time you concatenate strings, a new String object
is constructed. This is time consuming and wastes memory. Using the
StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces. First,
construct an empty string builder:

StringBuilder builder = new StringBuilder();

Each time you need to add another part, call the append method.

builder.append(ch); // appends a single character
builder.append(str); // appends a string

When you are done building the string, call the toString method. You will get
a String object with the character sequence contained in the builder.

String completedString = builder.toString();

NOTE: The StringBuilder class was introduced in Java 5. Its predecessor,
StringBuffer, is slightly less efficient, but it allows multiple threads to add or re-
move characters. If all string editing happens in a single thread (which is usually
the case), you should use StringBuilder instead. The APIs of both classes are
identical.

The following API notes contain the most important methods for the
StringBuilder class.

java.lang.StringBuilder 5

• StringBuilder()

constructs an empty string builder.

• int length()

returns the number of code units of the builder or buffer.

• StringBuilder append(String str)

appends a string and returns this.

(Continues)

Chapter 3 Fundamental Programming Structures in Java74

java.lang.StringBuilder 5 (Continued)

• StringBuilder append(char c)

appends a code unit and returns this.

• StringBuilder appendCodePoint(int cp)

appends a code point, converting it into one or two code units, and returns
this.

• void setCharAt(int i, char c)

sets the ith code unit to c.

• StringBuilder insert(int offset, String str)

inserts a string at position offset and returns this.

• StringBuilder insert(int offset, char c)

inserts a code unit at position offset and returns this.

• StringBuilder delete(int startIndex, int endIndex)

deletes the code units with offsets startIndex to endIndex – 1 and returns this.

• String toString()

returns a string with the same data as the builder or buffer contents.

3.7 Input and Output

To make our example programs more interesting, we want to accept input
and properly format the program output. Of course, modern programs use a
GUI for collecting user input. However, programming such an interface
requires more tools and techniques than we have at our disposal at this
time. Our first order of business is to become more familiar with the Java
programming language, so we use the humble console for input and output.

3.7.1 Reading Input

You saw that it is easy to print output to the “standard output stream” (that
is, the console window) just by calling System.out.println. Reading from the
“standard input stream” System.in isn’t quite as simple. To read console input,
you first construct a Scanner that is attached to System.in:

Scanner in = new Scanner(System.in);

(We discuss constructors and the new operator in detail in Chapter 4.)

753.7 Input and Output

http://System.in
http://System.in

