MrExcel CD Content Update
LIBRARY Program
FREE ...See Details Inside

Excel° 2016

VBA and MACROS

Bill Jelen
Tracy Syrstad

Excel® 2016

r

VBA
and MACROS

This book is part of Que’s exciting new Content Update
Program, which provides automatic content updates for
major technology improvements!

» As Microsoft makes significant updates to Excel 2016,
sections of this book will be updated or new sections
will be added to match the updates to the software.

» The updates will be delivered to you via a free
Web Edition of this book, which can be accessed
with any Internet connection.

» This means your purchase is protected from
immediately outdated information!

For more information on Que’s Content Update program,
see the inside back cover or go to

www.quepublishing.com/CUP.

\ Content Update
c: Program P

If you have additional questions, please email our
Customer Service department at informit@custhelp.com.

http://www.que publishing.com/CUP

MrExcel
LIBRARY

Excel® 2016
VBA and Macros

Bill Felen

Tracy Syrstad

800 E. 96th Street
Indianapolis, Indiana 46240

O o N O

10

12
13
14
15
16
17
18
19
2
21
y))
3
24
25
2%
27
28

Introduction

Referring to Ranges

Looping and Flow Control

R1C1-Style Formulas

Event Programming

Arrays

Userforms: An Introduction

Excel Power

Creating Charts

Text File Processing

Automating Word

Handling Errors

Creating Add-ins

1

Unleashing the Power of Excel with VBA 7
This Sounds Like BASIC, So Why Doesn't It Look Familiar?...............33
59

73

923

Creating and Manipulating Names in VBA..............rririsnn 103
115

131

Creating Classes and Collections 139
157

Data Mining with Advanced Filter 177
Using VBA to Create Pivot Tables 211
251

Sample User-Defined Functions 283
309

Data Visualizations and Conditional Formatting...................... 333
Dashboarding with Sparklines in Excel 2016.............crrirrn355
Reading from and Writing to the Web 375
391

405

Using Access as a Back End to Enhance Multiuser Access to Data...423
Advanced Userform Techniques 439
The Windows Application Programming Interface (API)................463
473

Customizing the Ribbon to RUn Macrosvessess 487
509

An Introduction to Creating Office Add-ins.............ocoririririnn 317
What's New in Excel 2016 and What's Changed................coouvrrn.539
545

Index

Excel® 2016 VBA and Macros

Copyright © 2016 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the infor-
mation contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-7897-5585-8
ISBN-10: 0-7897-5585-8

Library of Congress Control Number: 2015950785
Printed in the United States of America
First Printing: November 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Que Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The authors and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Editor-in-Chief
Greg Wiegand

Acquisitions Editor
Joan Murray

Development Editor
Charlotte Kughen

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Kitty Wilson

Indexer
Ken Johnson

Proofreader
Dan Knott

Technical Editor
Bob Umlas

Editorial Assistant
Cindy Teeters

Designer
Chuti Prasertsith

Compositor
Trina Wurst

Contents

Introduction 1
What Is in This Book? 1
Reducing the Learning Curve 1
Excel VBA Power 2
Techie Stuff Needed to Produce Applications 2
Does This Book Teach Excel? 2
The Future of VBA and Windows Versions of Excel 4
Versions of Excel 4
Differences for Mac Users 4
Special Elements and Typographical Conventions 5
Code Files 5
Next Steps 5
1 Unleashing the Power of Excel with VBA 7
The Power of Excel 7
Barriers to Entry 7
The Macro Recorder Doesn’t Work! 7

No One on the Excel Team Is Focused on the Macro Recorder 8
Visual Basic Is Not Like BASIC 8
Good News: Climbing the Learning Curve s Easy 9
Great News: Excel with VBA Is Worth the Effort 9
Knowing Your Tools: The Developer Tab 9
Understanding Which File Types Allow Macros 10
Macro Security 12
Adding a Trusted Location 12
Using Macro Settings to Enable Macros in Workbooks Outside Trusted Locations 13
Using Disable All Macros with Notification 14
Overview of Recording, Storing, and Running a Macro 14
Filling Out the Record Macro Dialog 15
Running a Macro 16
(reating a Macro Button on the Ribbon 16
(reating a Macro Button on the Quick Access Toolbar 17
Assigning a Macro to a Form Control, Text Box, or Shape 18
Understanding the VB Editor 19
VB Editor Settings 20
The Project Explorer 20
The Properties Window 21
Understanding Shortcomings of the Macro Recorder 21
Recording the Macro 23
Examining Code in the Programming Window 23
Running the Macro on Another Day Produces Undesired Results 25
Possible Solution: Use Relative References When Recording 26
Never Use AutoSum or Quick Analysis While Recording a Macro 30

iv FExcel 2016 VBAs and Macros

Four Tips for Using the Macro Recorder

31

Next Steps

32

This Sounds Like BASIC, So Why Doesn’t It Look Familiar?

33

| Can't Understand This Code

33

Understanding the Parts of VBA “Speech”

34

37

VBA Is Not Really Hard
VBA Help Files: Using F1 to Find Anything

38

38

Using Help Topics
Examining Recorded Macro Code: Using the VB Editor and Help

39

39

Optional Parameters
Defined Constants

40

Properties Can Return Objects

It

Using Debugging Tools to Figure Out Recorded Code

5

5

Stepping Through Code
More Debugging Options: Breakpoints

45

Backing Up or Moving Forward in Code

45

Not Stepping Through Each Line of Code

46

Querying Anything While Stepping Through Code

46

49

Using a Watch to Set a Breakpoint
Using a Watch on an Object

49

50

Object Browser: The Ultimate Reference
Seven Tips for Cleaning Up Recorded Code

51

51

Tip 1: Don’t Select Anything
Tip2:Use Cells (2, 5) Because It's More Convenient Than Range ("E2")

52

52

Tip 3: Use More Reliable Ways to Find the Last Row
Tip 4: Use Variables to Avoid Hard-Coding Rows and Formulas

53

Tip 5: Use R1C1 Formulas That Make Your Life Easier

54

Tip 6: Copy and Paste in a Single Statement

54

Tip7:Usewith. ..End with to Perform Multiple Actions

54

Next Steps

57

Referring to Ranges

59

59

The Range Object
Syntax for Specifying a Range

60

Named Ranges

60

Shortcut for Referencing Ranges

60

Referencing Ranges in Other Sheets

61

61

Referencing a Range Relative to Another Range
Using the Ce11 s Property to Select a Range

62

Using the Of £ set Property to Refer to a Range

63

65

Using the Res i ze Property to Change the Size of a Range
Using the Columns and Rows Properties to Specify a Range

66

66

Using the Union Method to Join Multiple Ranges

Contents v

Using the Intersect Method to Create a New Range from Overlapping Ranges 67
Using the T sEmpty Function to Check Whether a Cell Is Empty 67
Using the CurrentRegion Property to Select a Data Range 68
Using the Areas Collection to Return a Noncontiguous Range 70
Referencing Tables 71
Next Steps 72
Looping and Flow Control 73
For...Next Loops 73
Using Variables in the For Statement 75
Variations on the For . . . Next Loop 76
Exiting a Loop Early After a Condition Is Met 77
Nesting One Loop Inside Another Loop 78
Do Loops 78
Using the while oruntil Clause in Do Loops 81
The VBA Loop: For Each 82
Object Variables 83
Flow Control:Using If . . . Then. . .Elseand Select Case 86
Basic Flow Control: T£. . . Then. . .Else 86
Using Select Case...End Select for Multiple Conditions 88
Next Steps 91
R1C1-Style Formulas 93
Referring to Cells: A1 Versus R1C1 References 93
Toggling to R1C1-Style References 94
Witnessing the Miracle of Excel Formulas 95
Entering a Formula Once and Copying 1,000 Times 95
The Secret: It's Not That Amazing 9%
Understanding the R1C1 Reference Style 97
Using R1C1 with Relative References 97
Using R1C1 with Absolute References 98
Using R1C1 with Mixed References 98
Referring to Entire Columns or Rows with R1C1 Style 929
Replacing Many A1 Formulas with a Single R1C1 Formula 929
Remembering Column Numbers Associated with Column Letters 101
Using R1C1 Formulas with Array Formulas 101
Next Steps 102
Creating and Manipulating Names in VBA 103
Global Versus Local Names 103
Adding Names 104
Deleting Names 105
Adding Comments 106
Types of Names 106

Formulas 106

vi Excel 2016 VBAs and Macros

Strings 107
Numbers 108
Tables 109
Using Arrays in Names 109
Reserved Names 110
Hiding Names m
Checking for the Existence of a Name m
Next Steps 14
7 Event Programming 115
Levels of Events 15
Using Events 116
Event Parameters 116
Enabling Events n7
Workbook Events 17
Workbook-Level Sheet and Chart Events 19
Worksheet Events 120
Chart Events 123
Embedded Charts 123
Embedded Chart and Chart Sheet Events 124
Application-Level Events 125
Next Steps 130
8 Arrays 131
Declaring an Array 131
Declaring a Multidimensional Array 132
Filling an Array 133
Retrieving Data from an Array 134
Using Arrays to Speed Up Code 135
Using Dynamic Arrays 136
Passing an Array 137
Next Steps 138
9 Creating Classes and Collections 139
Inserting a Class Module 139
Trapping Application and Embedded Chart Events 140
Application Events 140
Embedded Chart Events 141
(reating a Custom Object 143
Using a Custom Object 145
Using Collections 145
(reating a Collection 146
(reating a Collection in a Standard Module 146

Creating a Collection in a Class Module 148

Contents | vii

Using Dictionaries 150
Using User-Defined Types to Create Custom Properties 153
Next Steps 156
10 Userforms: An Introduction 157
Input Boxes 157
Message Boxes 158
(reating a Userform 158
(alling and Hiding a Userform 159
Programming Userforms 160
Userform Events 160
Programming Controls 162
Using Basic Form Controls 163
Using Labels, Text Boxes, and Command Buttons 163
Deciding Whether to Use List Boxes or Combo Boxes in Forms 165
Adding Option Buttons to a Userform 167
Adding Graphics to a Userform 169
Using a Spin Button on a Userform 170
Using the Mu1 t i Page Control to Combine Forms 17
Verifying Field Entry 174
lllegal Window Closing 174
Getting a Filename 175
Next Steps 176
11 Data Mining with Advanced Filter 177
Replacing a Loop with AutoFilter 177
Using AutoFilter Techniques 180
Selecting Visible Cells Only 183
Advanced Filter—Easier in VBA Than in Excel 184
Using the Excel Interface to Build an Advanced Filter 185
Using Advanced Filter to Extract a Unique List of Values 186
Extracting a Unique List of Values with the User Interface 186
Extracting a Unique List of Values with VBA Code 187
Getting Unique Combinations of Two or More Fields 191
Using Advanced Filter with Criteria Ranges 192
Joining Multiple Criteria with a Logical OR 193
Joining Two Criteria with a Logical AND 194
Other Slightly Complex Criteria Ranges 194
The Most Complex Criteria: Replacing the List of Values with a Condition Created as the Result of a Formula................. 194
Using Filter in Place in Advanced Filter 201
(atching No Records When Using a Filter in Place 202
Showing All Records After Running a Filter in Place 202
The Real Workhorse: x1 Fi 1 terCopy with All Records Rather Than Unique Records Only 203

Copying All Columns 203

viii Fxcel 2016 VBAs and Macros

Copying a Subset of Columns and Reordering

204

Excel in Practice: Turning Off a Few Drop-downs in the AutoFilter

Next Steps

209

210

12 Using VBA to Create Pivot Tables

Understanding How Pivot Tables Evolved Over Various Excel Versions

21
M

212

While Building a Pivot Table in Excel VBA
Defining the Pivot Cache

212

213

(reating and Configuring the Pivot Table
Adding Fields to the Data Area

214

Learning Why You Cannot Move or Change Part of a Pivot Report
Determining the Size of a Finished Pivot Table to Convert the Pivot Table to Values

Using Advanced Pivot Table Features

216

217

219

Using Multiple Value Fields

220

Grouping Daily Dates to Months, Quarters, or Years

221

222

Changing the Calculation to Show Percentages
Eliminating Blank Cells in the Values Area

225

225

Controlling the Sort Order with AutoSort
Replicating the Report for Every Product

225

228

Filtering a Data Set

Manually Filtering Two or More Items in a Pivot Field

Using the Conceptual Filters

228

229

Using the Search Filter

233

Setting Up Slicers to Filter a Pivot Table

235

Setting Up a Timeline to Filter an Excel 2016 Pivot Table

Using the Data Model in Excel 2016

239

242

Adding Both Tables to the Data Model

242

(reating a Relationship Between the Two Tables

243

Defining the PivotCache and Building the Pivot Table

Adding Model Fields to the Pivot Table

243

244

Adding Numeric Fields to the Values Area

244

Putting It All Together.

245

247

Using Other Pivot Table Features
(alculated Data Fields

247

(alculated Items

247

Using ShowDetail to Filter a Record Set

248

Changing the Layout from the Design Tab

248

248

Settings for the Report Layout
Suppressing Subtotals for Multiple Row Fields

249

250

Next Steps

13 Excel Power

File Operations

251
251

Listing Files in a Directory

251

Importing and Deleting a CSV File

254

254

Reading a Text File into Memory and Parsing

Contents | ix

Combining and Separating Workbooks 255
Separating Worksheets into Workbooks 255
Combining Workbooks 256
Filtering and Copying Data to Separate Worksheets 257
Copying Data to Separate Worksheets Without Using Filter 258
Exporting Data to an XML File 259

Working with Cell Comments 260
Resizing Comments 260
Placing a Chart in a Comment 261

Selecting Cells 263
Using Conditional Formatting to Highlight the Selected Cell 263
Highlighting the Selected Cell Without Using Conditional Formatting 264
Selecting/Deselecting Noncontiguous Cells 265
(reating a Hidden Log File 267

Techniques for VBA Pros 268
(reating an Excel State Class Module 268
Drilling-Down a Pivot Table 270
Filtering an OLAP Pivot Table by a List of Items 271
(reating a Custom Sort Order 273
(reating a Cell Progress Indicator 274
Using a Protected Password Box 275
Changing Case 277
Selecting with SpecialCells 279
Resetting a Table’s Format 279

(ool Applications 280
Getting Historical Stock/Fund Quotes 280
Using VBA Extensibility to Add Code to New Workbooks 281

Next Steps 282

14 Sample User-Defined Functions 283

(reating User-Defined Functions 283

Sharing UDFs 286

Useful Custom Excel Functions 286
Setting the Current Workbook's Name in a Cell 286
Setting the Current Workbook's Name and File Path in a Cell 287
Checking Whether a Workbook Is Open 287
Checking Whether a Sheet in an Open Workbook Exists 287
Counting the Number of Workbooks in a Directory 288
Retrieving the User ID 289
Retrieving Date and Time of Last Save 291
Retrieving Permanent Date and Time 291
Validating an Email Address 292
Summing Cells Based on Interior Color 293
Counting Unique Values 294

Removing Duplicates from a Range 295

X Excel 2016 VBAs and Macros

Finding the First Nonzero-Length Cell in a Range 296
Substituting Multiple Characters 297
Retrieving Numbers from Mixed Text 298
Converting Week Number into Date 299
Extracting a Single Element from a Delimited String 300
Sorting and Concatenating 300
Sorting Numeric and Alpha Characters 302
Searching for a String Within Text 303
Reversing the Contents of a Cell 304
Returning the Addresses of Duplicate Max Values 304
Returning a Hyperlink Address 305
Returning the Column Letter of a Cell Address 306
Using Static Random 306
Using select Case onaWorksheet 307
Next Steps 308
15 Creating Charts 309
(ontrasting the Good and Bad VBA to Create Charts 309
Planning for More Charts to Break 310
Using . AddChart2 to Create a Chart 3N
Understanding Chart Styles 312
Formatting a Chart 315
Referring to a Specific Chart 315
Specifying a Chart Title 316
Applying a Chart Color 317
Filtering a Chart 318
Using Set E1ement to Emulate Changes from the Plus Icon 319
Using the Format Method to Micromanage Formatting Options 324
Changing an Object’s Fill 325
Formatting Line Settings 327
(reating a Combo Chart 327
Exporting a Chart as a Graphic 330
Considering Backward Compatibility 331
Next Steps 331
16 Data Visualizations and Conditional Formatting 333
VBA Methods and Properties for Data Visualizations 334
Adding Data Bars to a Range 335
Adding Color Scales to a Range 339
Adding Icon Sets to a Range 341
Specifying an Icon Set 341
Specifying Ranges for Each Icon 343
Using Visualization Tricks 343
(reating an Icon Set for a Subset of a Range 344

Using Two Colors of Data Bars in a Range 345

Using Other Conditional Formatting Methods

Contents

Xi

347

348

Formatting Cells That Are Above or Below Average
Formatting Cells in the Top 10 or Bottom 5

348

Formatting Unique or Duplicate Cells

349

Formatting Cells Based on Their Value

350

Formatting Cells That Contain Text

351

351

Formatting Cells That Contain Dates
Formatting Cells That Contain Blanks or Errors

351

Using a Formula to Determine Which Cells to Format

352

353

Using the New NumberFormat Property
Next Steps

354

17 Dashboarding with Sparklines in Excel 2016

(reating Sparklines

355
356

Scaling Sparklines

357

Formatting Sparklines

361

Using Theme Colors

361

Using RGB Colors

364

Formatting Sparkline Elements

365

368

Formatting Win/Loss Charts
(reating a Dashboard

369

369

Observations About Sparklines
(reating Hundreds of Individual Sparklines in a Dashboard

370

Next Steps

374

18 Reading from and Writing to the Web
Getting Data from the Web

375
375

377

Building Multiple Queries with VBA
Finding Results from Retrieved Data

378

Putting It All Together

379

380

Examples of Scraping Websites Using Web Queries
Using Application.OnTime to Periodically Analyze Data

381

381

Using Ready Mode for Scheduled Procedures
Specifying a Window of Time for an Update

382

(anceling a Previously Scheduled Macro

382

(losing Excel Cancels All Pending Scheduled Macros

383

Scheduling a Macro to Run x Minutes in the Future

383

383

Scheduling a Verbal Reminder
Scheduling a Macro to Run Every Two Minutes

384

385

Publishing Data to a Web Page
Using VBA to Create Custom Web Pages

386

Using Excel as a Content Management System

387

Bonus: FTP from Excel

389

Next Steps

390

Xii FExcel 2016 VBAs and Macros

19 Text File Processing 391
Importing from Text Files 391
Importing Text Files with Fewer Than 1,048,576 Rows 391
Dealing with Text Files with More Than 1,048,576 Rows 398
Writing Text Files 402
Next Steps 403

20 Automating Word 405
Using Early Binding to Reference a Word Object 406
Using Late Binding to Reference a Word Object 408
Using the New Keyword to Reference a Word Application 409
Using the CreateObsject Function to Create a New Instance of an Object 409
Using the Get Obj ect Function to Reference an Existing Instance of Word 410
Using Constant Values 4an
Using the Watches Window to Retrieve the Real Value of a Constant 4an

Using the Object Browser to Retrieve the Real Value of a Constant 412
Understanding Word's Objects 413
The Document Object 413

The Selection Object 415

The Range Object 416
Bookmarks 419
Controlling Form Fields in Word 420
Next Steps 422

21 Using Access as a Back End to Enhance Multiuser Access to Data 423
ADO Versus DAOs 424
The Tools of ADO 426
Adding a Record to a Database 427
Retrieving Records from a Database 429
Updating an Existing Record 431
Deleting Records via ADO 433
Summarizing Records via ADO 433
Other Utilities via ADO 434
Checking for the Existence of Tables 434
Checking for the Existence of a Field 435
Adding a Table On the Fly 436
Adding a Field On the Fly 436

SQL Server Examples 437
Next Steps 438

22 Advanced Userform Techniques 439
Using the UserForm Toolbar in the Design of Controls on Userforms 439
More Userform Controls 440

Checkbox Controls

440

Contents | xiii

Controls and Collections 447
Modeless Userforms 449
Using Hyperlinks in Userforms 449
Adding Controls at Runtime 450
Resizing the Userform On the Fly 452
Adding a Control On the Fly 452
Sizing On the Fly 452
Adding Other Controls 453
Adding an Image On the Fly 453
Putting It All Together 454
Adding Help to a Userform 456
Showing Accelerator Keys 456
Adding Control Tip Text 457
(reating the Tab Order 457
Coloring the Active Control 457
(reating Transparent Forms 460
Next Steps 461
23 The Windows Application Programming Interface (API) 463
Understanding an APl Declaration 464
Using an API Declaration 465
Making 32-Bit- and 64-Bit-Compatible APl Declarations 465
API Function Examples 467
Retrieving the Computer Name 467
Checking Whether an Excel File Is Open on a Network 467
Retrieving Display-Resolution Information 468
Customizing the About Dialog 469
Disabling the X for Closing a Userform 470
(reating a Running Timer 471
Playing Sounds 472
Next Steps 472
24 Handling Errors 473
What Happens When an Error Occurs? 473
A Misleading Debug Error in Userform Code 475
Basic Error Handling with the On Error GoTo Syntax 477
Generic Error Handlers 478
Handling Errors by Choosing to Ignore Them 479
Suppressing Excel Warnings 481
Encountering Errors on Purpose 481
Training Your Clients 481
Errors While Developing Versus Errors Months Later 482
Runtime Error 9: Subscript Out of Range 482
Runtime Error 1004: Method Range of Object Global Failed 483

The llls of Protecting Code 484

Xiv Excel 2016 VBAs and Macros

More Problems with Passwords 485
Errors Caused by Different Versions 486
Next Steps 486
25 Customizing the Ribbon to Run Macros 487
Where to Add Code: The customui Folder and File 488
(reating a Tab and a Group 489
Adding a Control to a Ribbon 490
Accessing the File Structure 496
Understanding the RELS File 496
Renaming an Excel File and Opening a Workbook 497
Using Images on Buttons 497
Using Microsoft Office Icons on a Ribbon 498
Adding Custom Icon Images to a Ribbon 499
Troubleshooting Error Messages 500
The Attribute “Attribute Name" on the Element “customui Ribbon" Is Not Defined in the DTD/Schema.....................500
Illegal Qualified Name Character 501
Element “customui Tag Name" |s Unexpected According to Content Model of Parent Element
“customui Tag Name” 501
Found a Problem with Some Content 502
Wrong Number of Arguments or Invalid Property Assignment 503
Invalid File Format or File Extension 503
Nothing Happens 503
Other Ways to Run a Macro 504
Using a Keyboard Shortcut to Run a Macro 504
Attaching a Macro to a Command Button 504
Attaching a Macro to a Shape 505
Attaching a Macro to an ActiveX Control 506
Running a Macro from a Hyperlink 507
Next Steps 508
26 Creating Add-ins 509
Characteristics of Standard Add-ins 509
Converting an Excel Workbook to an Add-in 510
Using Save As to Convert a File to an Add-in 511
Using the VB Editor to Convert a File to an Add-in 512
Having a Client Install an Add-in 512
(losing Add-ins 514
Removing Add-ins 514
Using a Hidden Workbook as an Alternative to an Add-in 515
Next Steps 516
27 An Introduction to Creating Office Add-ins 517
Creating Your First Office Add-in—Hello World 517

Adding Interactivity to an Office Add-in 521

Contents XV

A Basic Introduction to HTML 524
Using Tags 524
Adding Buttons 524
Using CSS Files 525

Using XML to Define an Office Add-in 525

Using JavaScript to Add Interactivity to an Office Add-in 526
The Structure of a Function 526
Variables 527
Strings 528
Arrays 528
JavaScript £or Loops 529
How to Do an i £ Statement in JavaScript 530
HowtoDoa Select. . Case Statement in JavaScript 530
HowtoDoa For each..next Statementin JavaScript 532
Mathematical, Logical, and Assignment Operators 532
Math Functions in JavaScript 534
Writing to the Content Pane or Task Pane 535
JavaScript Changes for Working in an Office Add-in 535

Napa Office 365 Development Tools 536

Next Steps 537

28 What's New in Excel 2016 and What's Changed 539

If It Has Changed in the Front End, It Has Changed in VBA 539
The Ribbon 539
Single Document Interface (SDI) 540
Quick Analysis Tool 541
Charts 541
Pivot Tables 541
Slicers 541
SmartArt 542

Learning the New Objects and Methods 542

Compatibility Mode 542
Using the Version Property 543
Using the Excel8CompatibilityMode Property 543

Next Steps 544

Index 545

Xvi Excel 2016 VBAs and Macros

About the Authors

Bill Jelen, Excel MVP and the host of MrExcel.com, has been using spreadsheets since
1985, and he launched the MrExcel.com website in 1998. Bill was a regular guest on Ca/l
for Help with Leo Laporte and has produced more than 1,900 episodes of his daily video
podcast, Learn Excel from MrExcel. He is the author of 44 books about Microsoft Excel and
writes the monthly Excel column for Strategic Finance magazine. Before founding MrExcel.
com, Bill Jelen spent 12 years in the trenches—working as a financial analyst for finance,
marketing, accounting, and operations departments of a $500 million public company. He
lives in Merritt Island, Florida, with his wife, Mary Ellen.

Tracy Syrstad is a Microsoft Excel developer and author of eight Excel books. She has
been helping people with Microsoft Office issues since 1997, when she discovered free
online forums where anyone could ask and answer questions. Tracy found out she enjoyed
teaching others new skills, and when she began working as a developer, she was able to
integrate the fun of teaching with one-on-one online desktop sharing sessions. Tracy lives
on acreage in eastern South Dakota with her husband, one dog, two cats, one horse (two,
hopefully soon), and a variety of wild foxes, squirrels, and rabbits.

Dedications
For Robert K. Jelen
—Bill Felen

For Marlee Fo Facobson
—Tracy Syrstad

Acknowledgments | Xvii

Acknowledgments
Thanks to Tracy Syrstad for being a great coauthor.

Bob Umlas is the smartest Excel guy I know and is an awesome technical editor. At
Pearson, Joan Murray is an excellent acquisitions editor.

Along the way, I've learned a lot about VBA programming from the awesome community
at the MrExcel.com message board. VoG, Richard Schollar, and Jon von der Heyden all
stand out as having contributed posts that led to ideas in this book. Thanks to Pam Gensel
for Excel macro lesson #1. Mala Singh taught me about creating charts in VBA, and Oliver
Holloway brought me up to speed with accessing SQL Server. Scott Ruble and Robin
Wakefield at Microsoft helped with the charting chapter.

My family was incredibly supportive during this time. Thanks to Mary Ellen Jelen, Robert
F. Jelen, and Robert K. Jelen.

—Bill

Juan Pablo Gonzalez Ruiz and Zack Barresse are great programmers, and I really appreciate
their time and patience showing me new ways to write better programs. Chris “Smitty”
Smith has really helped me sharpen my business acumen.

Thank you to all the moderators at the MrExcel forum who keep the board organized,
despite the best efforts of the spammers.

Programming is a constant learning experience, and I really appreciate the clients who have
encouraged me to program outside my comfort zone so that my skills and knowledge have
expanded.

And last, but not least, thanks to Bill Jelen. His site, MrExcel.com, is a place where
thousands come for help. It’s also a place where I, and others like me, have an opportunity
to learn from and assist others.

—Tracy

xviii Excel 2016 VBAs and Macros

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

y p
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot belp you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Que Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at quepublishing.com/register for convenient access
to any updates, downloads, or errata that might be available for this book.

As corporate I'T departments have found them- I N T R 0 D U c T I O N

selves with long backlogs of requests, Excel users
have discovered that they can produce the reports
needed to run their businesses themselves using the
macro language Visual Basic for Applications (VBA).
VBA enables you to achieve tremendous efficien-
cies in your day-to-day use of Excel. VBA helps you
figure out how to import data and produce reports
in Excel so that you don’t have to wait for the I'T
department to help you. The Future of VBA and Windows Versions
of Excel

Wh at I S in Thi S B 0 0k7 Special Elements and Typographical

Conventions...

What Is in This Book?..

You have taken the right step by purchasing this

book. We can help you reduce the learning curve so
that you can write your own VBA macros and put an Next Steps
end to the burden of generating reports manually.

Code Files ..

Reducing the Learning Curve

This Introduction provides a case study about the
power of macros. Chapter 1, “Unleashing the Power
of Excel with VBA,” introduces the tools and con-
firms what you probably already know: The macro
recorder does not work reliably. Chapter 2, “This
Sounds Like BASIC, So Why Doesn’t It Look Famil-
iar?” helps you understand the crazy syntax of VBA.
Chapter 3, “Referring to Ranges,” cracks the code on
how to work efficiently with ranges and cells.

Chapter 4, “Looping and Flow Control,” covers the
power of looping using VBA. The case study in this
chapter demonstrates creating a program to produce
a department report and then wrapping that report
routine in a loop to produce 46 reports.

Chapter 5, “R1C1-Style Formulas,” covers, obvi-
ously, R1C1-style formulas. Chapter 6, “Creating and
Manipulate Names in VBA,” covers names. Chapter
7, “Event Programming,” includes some great tricks
that use event programming. Chapters 8, “Arrays,”

2 Introduction

and 9, “Creating Classes and Collections,” cover arrays, classes, and collections. Chapter 10,
“Userforms: An Introduction,” introduces custom dialog boxes that you can use to collect
information from a human using Excel.

Excel VBA Power

Chapters 11, “Data Mining with Advanced Filter,” and 12, “Using VBA to Create Pivot
Tables,” provide an in-depth look at Filter, Advanced Filter, and pivot tables. Report auto-
mation tools rely heavily on these concepts. Chapters 13, “Excel Power,” and 14, “Sample
User-Defined Functions,” include dozens of code samples designed to exhibit the power of
Excel VBA and custom functions.

Chapters 15, “Creating Charts,” through 20, “Automating Word,” handle charting, data
visualizations, web queries, sparklines, and automating Word.

Techie Stuff Needed to Produce Applications

Chapter 21, “Using Access as a Back End to Enhance Multiuser Access to Data,” handles
reading and writing to Access databases and SQL Server. The techniques for using Access
databases enable you to build an application with the multiuser features of Access while
keeping the friendly front end of Excel.

Chapter 22, “Advanced Userform Techniques,” shows you how to go further with userforms.
Chapter 23, “The Windows Application Programming Interface (API),” teaches some tricky
ways to achieve tasks using the Windows API. Chapters 24, “Handling Errors,” through

26, “Creating Add-ins,” deal with error handling, custom menus, and add-ins. Chapter 27,
“An Introduction to Creating Office Add-Ins,” provides a brief introduction to building
your own JavaScript application within Excel. Chapter 28, “What’s New in Excel 2016 and
What'’s Changed,” summarizes the changes in Excel 2016.

Does This Book Teach Excel?

Microsoft believes that the ordinary Office user touches only 10% of the features in Office.
We realize that everyone reading this book is above average, and MrExcel.com has a pretty
smart audience. Even so, a poll of 8,000 MrExcel.com readers showed that only 42% of
smarter-than-average users are using any 1 of the top 10 power features in Excel.

I regularly present a Power Excel seminar for accountants. These are hard-core Excelers
who use Excel 30 to 40 hours every week. Even so, two things come out in every seminar.
First, half of the audience gasps when they see how quickly you can do tasks with a particu-
lar feature, such as automatic subtotals or pivot tables. Second, someone in the audience
routinely trumps me. For example, someone asks a question, I answer, and someone in the
second row raises a hand to give a better answer.

The point? You and I both know a lot about Excel. However, I assume that in any given
chapter, maybe 58% of the people have not used pivot tables before and maybe even fewer
have used the Top 10 Filter feature of pivot tables. With this in mind, before I show how to

What Is in This Book? | 3

automate something in VBA, I briefly cover how to do the same task in the Excel interface.
This book does not teach you how to make pivot tables, but it does alert you when you
might need to explore a topic and learn more about it elsewhere.

STUDY: MONTHLY ACCOUNTING REPORTS

This is a true story. Valerie is a business analyst in the accounting department of a medium-size corporation. Her com-
pany recently installed an overbudget $16 million enterprise resource planning (ERP) system. As the project ground to
a close, there were no resources left in the IT budget to produce the monthly report that this corporation used to sum-
marize each department.

However, Valerie had been close enough to the implementation to think of a way to produce the report herself. She
understood that she could export general ledger data from the ERP system to a text file with comma-separated values.
Using Excel, Valerie was able to import the general ledger data from the ERP system into Excel.

(reating the report was not easy. As in many other companies, there were exceptions in the data. Valerie knew that certain
accounts in one particular cost center needed to be reclassed as expenses. She knew that other accounts needed to be
excluded from the report entirely. Working carefully in Excel, Valerie made these adjustments. She created one pivot table to
produce the first summary section of the report. She cut the pivot table results and pasted them into a blank worksheet. Then
she created a new pivot table report for the second section of the summary. After about three hours, she had imported the
data, produced five pivot tables, arranged them in a summary, and neatly formatted the report in color.

Becoming the Hero

Valerie handed the report to her manager. The manager had just heard from the IT department that it would be months
before they could get around to producing “that convoluted report.”When Valerie created the Excel report, she became
the instant hero of the day. In three hours, Valerie had managed to do the impossible. Valerie was on cloud nine after a
well-deserved “atta-qirl.”

More Cheers

The next day, Valerie’s manager attended the monthly department meeting. When the department managers started
complaining that they could not get the report from the ERP system, this manager pulled out his department’s report
and placed it on the table. The other managers were amazed. How was he able to produce this report? Everyone was
relieved to hear that someone had cracked the code. The company president asked Valerie's manager if he could have the
report produced for each department.

Cheers Turn to Dread

You can probably see what's coming. This particular company had 46 departments. That means 46 one-page summa-

ries had to be produced once a month. Each report required importing data from the ERP system, backing out certain
accounts, producing five pivot tables, and then formatting the reports in color. It had taken Valerie three hours to produce
the first report, but after she got into the swing of things, she could produce the 46 reports in 40 hours. Even after she
reduced her time per report, though, this is horrible. Valerie had a job to do before she became responsible for spending
40 hours a month producing these reports in Excel.

4 Introduction

VBA to the Rescue

Valerie found my company, MrExcel Consulting, and explained her situation. In the course of about a week, | was
able to produce a series of macros in Visual Basic that did all the mundane tasks. For example, the macros imported
the data, backed out certain accounts, made five pivot tables, and applied the color formatting. From start to finish,
the entire 40-hour manual process was reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing manual tasks in Excel that can be auto-
mated with VBA. | am confident that | can walk into any company that has 20 or more Excel users and find a case just
as amazing as Valerie’s.

The Future of VBA and Windows Versions of Excel

Several years ago, there were many rumblings that Microsoft might stop supporting VBA.
There is now plenty of evidence to indicate that VBA will be around in Windows versions
of Excel through 2036. When VBA was removed from the Mac version of Excel 2008, a
huge outery from customers led to its being included in the next Mac version of Excel.

XLM macros were replaced by VBA in 1993, and 23 years later, they are still supported.
Microsoft is making strides toward providing a JavaScript alternative to VBA, but it appears
that Excel will support VBA for about another 23 years.

Versions of Excel

This fifth edition of VBA and Macros is designed to work with Excel 2016. The previous
editions of this book covered code for Excel 97 through Excel 2013. In 80% of the chap-
ters, the code for Excel 2016 is identical to the code in previous versions. However, there
are exceptions. For example, the new AutoGroup functionality in pivot tables adds new
options that were not available in Excel 2013.

Differences for Mac Users

Although Excel for Windows and Excel for the Mac are similar in terms of user interface,
there are a number of differences when you compare the VBA environment. Certainly,
nothing in Chapter 23 that uses the Windows API will work on the Mac. That said, the
overall concepts discussed in this book apply to the Mac. You can find a general list of dif-
ferences as they apply to the Mac at http://www.mrexcel.com/macvba.html. Development in
VBA for Mac Excel 2016 is far more difficult than in Windows, with only rudimentary VBA
editing tools. Microsoft actually recommends that you write all of your VBA in Excel 2016
for Windows and then use that VBA on the Mac.

http://www.mrexcel.com/macvba.html

NextSteps | 5

Special Elements and Typographical Conventions

The following typographical conventions are used in this book:

B [ralic—Indicates new terms when they are defined, special emphasis, non-English words
or phrases, and letters or words used as words.
B Monospace—Indicates parts of VBA code, such as object or method names.

B Bold monospace—Indicates user input.

In addition to these typographical conventions, there are several special elements. Each
chapter has at least one case study that presents a real-world solution to common problems.
The case study also demonstrates practical applications of topics discussed in the chapter.

In addition to the case studies, you will see Notes, Tips, and Cautions.

Notes provide additional information outside the main thread of the chapter discussion that might be

useful for you to know.

~NOTE

Tips provide quick workarounds and time-saving techniques to help you work more efficiently.

TIP

CAUTION
(autions warn about potential pitfalls you might encounter. Pay attention to the Cautions; they alert

you to problems that might otherwise cause you hours of frustration.

Code Files

As a thank-you for buying this book, we have put together a set of 50 Excel workbooks that
demonstrate the concepts included in this book. This set of files includes all the code from
the book, sample data, additional notes from the authors, and 25 bonus macros. To down-
load the code files, visit this book’s web page at http://www.quepublishing.com or http://

www.mrexcel.com/getcode2016.html.

Next Steps

Chapter 1 introduces the editing tools of the Visual Basic environment and shows why
using the macro recorder is not an effective way to write VBA macro code.

http://www.quepublishing.com
http://www.mrexcel.com/getcode2016.html
http://www.mrexcel.com/getcode2016.html

This page intentionally left blank

Unleashing the Power of
Excel with VBA

The Power of Excel

Visual Basic for Applications (VBA) combined with
Microsoft Excel is probably the most powerful tool
available to you. VBA is sitting on the desktops of
750 million users of Microsoft Office, and most have The Power of Excel
never figured out how to harness the power of VBA
in Excel. Using VBA, you can speed the production
of any task in Excel. If you regularly use Excel to Knowing Your Tools: The Developer Tab
produce a series of monthly charts, for example, you
can have VBA do that task for you in a matter of

Barriers to Entry.

Understanding Which File Types Allow

Macros
seconds.
Macro Security
Bar"ers to Entry Overview of Recording, Storing, and

Running a Macro
There are two barriers to learning successful VBA

programming. First, Excel’s macro recorder is
flawed and does not produce workable code for you Understanding the VB Editor
to use as a model. Second, for many who learned a
programming language such as BASIC, the syntax of
VBA is horribly frustrating.

Running a Macro

Understanding Shortcomings of the Macro
Recorder

Next Steps
The Macro Recorder Doesn’t Work!

Microsoft began to dominate the spreadsheet mar-
ket in the mid-1990s. Although it was wildly suc-
cessful in building a powerful spreadsheet program
to which any Lotus 1-2-3 user could easily transi-
tion, the macro language was just too different. Any-
one proficient in recording Lotus 1-2-3 macros who
tried recording a few macros in Excel most likely
failed. Although the Microsoft VBA programming
language is much more powerful than the Lotus
1-2-3 macro language, the fundamental flaw is that
the macro recorder does not work when you use the
default settings.

8 Unleashing the Power of Excel with VBA

With Lotus 1-2-3, you could record a macro today and play it back tomorrow, and it would
faithfully work. When you attempt the same feat in Microsoft Excel, the macro might work
today but not tomorrow. In 1995, when I tried to record my first Excel macro, I was hor-
ribly frustrated by this. In this book, I teach you the three rules for getting the most out of
the macro recorder.

No One on the Excel Team Is Focused on the Macro Recorder

As Microsoft adds new features to Excel, the individual project manager for a feature makes
sure that the macro recorder will record something when you execute the command. In the
past decade, the recorded code might work in some situations, but it often does not work
in all situations. If Microsoft had someone who was focused on creating a useful macro
recorder, the recorded code could often be a lot more general than it currently is.

I once asked the project managers if they had a mission statement for the macro recorder.

I asked them, “Are you trying to record code that will actually work or just trying to reveal
the objects and methods so the person recording the code has to do more research to figure
out how to use the commands?” The responses made me believe that no one at Microsoft
actually cares about the macro recorder.

It used to be that you could record a command in any of five ways and the recorded code
would work. Unfortunately, today, if you want to use the macro recorder, you often have to
try recording the macro several different ways, until you find a set of steps that records code

that reliably works.

Visual Basic Is Not Like BASIC

Two decades ago, the code generated by the macro recorder was unlike anything I had ever
seen. It said this was “Visual Basic” (VB). I have had the pleasure of learning half a dozen
programming languages at various times; this bizarre-looking language was horribly unin-
tuitive and did not resemble the BASIC language I had learned in high school.

"To make matters worse, even in 1995 I was the spreadsheet wizard in my office. My com-
pany had forced everyone to convert from Lotus 1-2-3 to Excel, which meant I was faced
with a macro recorder that didn’t work and a language that I couldn’t understand. This was
not a good combination of events.

My assumption in writing this book is that you are pretty talented with a spreadsheet. You
probably know more than 90% of the people in your office. I also assume that even though
you are not a programmer, you might have taken a class in BASIC at some point. How-
ever, knowing BASIC is not a requirement—it actually is a barrier to entry into the ranks
of being a successful VBA programmer. There is a good chance that you have recorded a
macro in Excel, and there’s a similar chance that you were not happy with the results.

Knowing Your Tools: The DeveloperTab | 9

Good News: Climbing the Learning Curve Is Easy

Even if you've been frustrated with the macro recorder, it is really just a small speed bump
on your road to writing powerful programs in Excel. This book teaches you not only why
the macro recorder fails but also how to change the recorded code into something useful.
For all the former BASIC programmers in the audience, I decode VBA so that you can eas-
ily pick through recorded macro code and understand what is happening.

Great News: Excel with VBA Is Worth the Effort

Although you probably have been frustrated with Microsoft over the inability to record
macros in Excel, the great news is that Excel VBA is powerful. Absolutely anything you can
do in the Excel interface can be duplicated with stunning speed in Excel VBA. If you find
yourself routinely creating the same reports manually day after day or week after week,
Excel VBA will greatly streamline those tasks.

The authors of this book work for MrExcel Consulting. In this role, we have automated
reports for hundreds of clients. The stories are often similar: The I'T department has a
several-month backlog of requests. Someone in accounting or engineering discovers that he
or she can import some data into Excel and get the reports necessary to run the business.
This is a liberating event: You no longer need to wait months for the I'T department to
write a program. However, the problem is that after you import the data into Excel and win
accolades from your manager for producing the report, you will likely be asked to produce
the same report every month or every week. This becomes very tedious.

Again, the great news is that with a few hours of VBA programming, you can automate the
reporting process and turn it into a few button clicks. The reward is great. So hang with me
as we cover a few of the basics.

This chapter exposes why the macro recorder does not work. It also walks through an
example of recorded code and demonstrates why it works today but will fail tomorrow. I
realize that the code you see in this chapter might not be familiar to you, but that’s okay.
The point of this chapter is to demonstrate the fundamental problem with the macro
recorder. You’'ll also learn the fundamentals of the Visual Basic environment.

Knowing Your Tools: The Developer Tab

Let’s start with a basic overview of the tools needed to use VBA. By default, Microsoft hides
the VBA tools. You need to complete the following steps to change a setting to access the
Developer tab:

1. Right-click the ribbon and choose Customize the Ribbon.
2. In the right list box, select the Developer check box, which is the eighth item.
3. Click OK to return to Excel.

Excel displays the Developer tab, as shown in Figure 1.1.

10

Unleashing the Power of Excel with VBA

Figure 1.1 i . ge Loyou ats Review View [IEECTTRN Add-lns Excel Analyzer
The Developer tab - - T Properties fies £82Import
provides an interface for e ¢ s s = Counne 13 Expansion Packs

running and recording

macros.

The Code group on the Developer tab contains the icons used for recording and playing
back VBA macros, as listed here:

B Visual Basic—Opens the Visual Basic Editor.

B Macros—Displays the Macro dialog, where you can choose to run or edit a macro
from the list of macros.

B Record Macro—Begins the process of recording a macro.

B Use Relative References—Toggles between using relative or absolute recording. With
relative recording, Excel records that you move down three cells. With absolute record-
ing, Excel records that you selected cell A4.

B Macro Security—Accesses the Trust Center, where you can choose to allow or disal-
low macros to run on this computer.

The Add-ins group provides icons for managing regular add-ins and COM add-ins.

The Controls group of the Developer tab contains an Insert menu where you can access

a variety of programming controls that can be placed on the worksheet. See “Assigning a
Macro to a Form Control, Text Box, or Shape,” later in this chapter. Other icons in this
group enable you to work with the on-sheet controls. The Run Dialog button enables you
to display a custom dialog box or userform that you designed in VBA. For more on user-
forms, see Chapter 10, “Userforms: An Introduction.”

The XML group of the Developer tab contains tools for importing and exporting XML
documents.

The Modify group enables you to specify whether the Document Panel is always displayed
for new documents. Users can enter keywords and a document description in the Docu-
ment Panel. If you have SharePoint and InfoPath, you can define custom fields to appear in
the Document Panel.

Understanding Which File Types Allow Macros

Excel 2016 offers support for four file types. Macros are not allowed to be stored in the
xlsx file type, and this file type is the default file type! You have to use the Save As setting
for all of your macro workbooks, or you can change the default file type used by Excel
2016.

The available files types are as listed here:

Understanding Which File Types Allow Macros | 11

Excel Workbook (.xIsx)—Files are stored as a series of XML objects and then zipped
into a single file. This creates significantly smaller file sizes. It also allows other applica-
tions (even Notepad!) to edit or create Excel workbooks. Unfortunately, macros cannot
be stored in files with an .xIsx extension.

Excel Macro-Enabled Workbook (.xlsm)—This is similar to the default .xlsx format,
except macros are allowed. The basic concept is that if someone has an .xIsx file, he will
not need to worry about malicious macros. However, if he sees an .xIsm file, he should
be concerned that there might be macros attached.

Excel Binary Workbook (.xIsb)—This is a binary format designed to handle the
larger 1-million-row grid size introduced in Excel 2007. Legacy versions of Excel
stored their files in a proprietary binary format. Although binary formats might load
more quickly, they are more prone to corruption, and a few lost bits can destroy a
whole file. Macros are allowed in this format.

Excel 97-2003 Workbook (.xIs)—This format produces files that can be read by any-
one using legacy versions of Excel. Macros are allowed in this binary format; however,
when you save in this format, you lose access to any cells outside A1:IV65536. In addi-
tion, if someone opens the file in Excel 2003, she loses access to anything that used
features introduced in Excel 2007 or later.

"To avoid having to choose a macro-enabled workbook in the Save As dialog, you can cus-
tomize your copy of Excel to always save new files in the .xlsm format by following these

steps:

1.
2.
3.

Click the File menu and select Options.
In the Excel Options dialog, select the Save category from the left navigation pane.

Open the Save Files in This Format drop-down and select Excel Macro-Enabled
Workbook (*xIsm). Click OK.

Although you and | are not afraid to use macros, | have encountered people who freak out when they
see the .xIsm file type. They actually seem angry that | sent them an .xlsm file that did not have any
macros. Their reaction seemed reminiscent of King Arthur’s “You got me all worked up!” line in Monty
Python and the Holy Grail. Google’s Gmail has joined this camp, refusing to show a preview of any
attachments sent in the .xlsm format.

NOTE

If you encounter someone who seems to have a fear of the .xIsm file type, remind them of these points:

B Every workbook created in the past 30 years could have had macros, but in fact, most did not.

B If someone is trying to avoid macros, she should use the security settings to prevent mac-
ros from running anyway. The person can still open the .xIsm file to get the data in the
spreadsheet.

With these arguments, | hope you can overcome any fears of the .xIsm file type so that it can be your
default file type.

12 Unleashing the Power of Excel with VBA

Macro Security

After a Word VBA macro was used as the delivery method for the Melissa virus, Microsoft
changed the default security settings to prevent macros from running. Therefore, before we
can begin discussing the recording of a macro, it’s important to look at how to adjust the
default settings.

In Excel 2016, you can either globally adjust the security settings or control macro settings
for certain workbooks by saving the workbooks in a trusted location. Any workbook stored
in a folder that is marked as a trusted location automatically has its macros enabled.

You can find the macro security settings under the Macro Security icon on the Developer
tab. When you click this icon, the Macro Settings category of the Trust Center is displayed.
You can use the left navigation bar in the dialog to access the Trusted Locations list.

Adding a Trusted Location

You can choose to store your macro workbooks in a folder that is marked as a trusted loca-
tion. Any workbook stored in a trusted folder will have its macros enabled. Microsoft sug-
gests that a trusted location should be on your hard drive. The default setting is that you
cannot trust a location on a network drive.

"To specify a trusted location, follow these steps:

1. Click Macro Security in the Developer tab.
2. Click Trusted Locations in the left navigation pane of the Trust Center.

3. If you want to trust a location on a network drive, select Allow Trusted Locations on

My Network.

4. Click the Add New Location button. Excel displays the Microsoft Office Trusted
Location dialog (see Figure 1.2).

5. Click the Browse button. Excel displays the Browse dialog.

6. Browse to the parent folder of the folder you want to be a trusted location. Click the
trusted folder. Although the folder name does not appear in the Folder Name box, click
OK. The correct folder name will appear in the Browse dialog.

7. If you want to trust subfolders of the selected folder, select Subfolders of This Location
Are Also Trusted.

8. Click OK to add the folder to the Trusted Locations list.

CAUTION
Use care when selecting a trusted location. When you double-click an Excel attachment in an email
message, Outlook stores the file in a temporary folder on your C: drive. You will not want to globally
add C:\ and all subfolders to the Trusted Locations list.

Figure 1.2

Manage trusted folders
in the Trusted Locations
category of the Trust
Center.

Microsoft Office Trusted Location - M

Warning: This location will be treated as a trusted source for opening files. If
you change or add a location, make sure that the new location |s secure.

Path:
Ch\Users\Bill\Do cuments'\ExcelMacros

Browse.,.
|¥| Subfolders of this location are also trusted
Deseription:
Falder to store trusted mac!o;i|
Date and Time Created: 4/6/2015 5:40 AM
OK_ _ Cancel J

= = = A

Macro Security | 13

Using Macro Settings to Enable Macros in Workbooks Qutside Trusted Locations

For all macros not stored in a trusted location, Excel relies on the macro settings. The
Low, Medium, High, and Very High settings that were familiar in Excel 2003 have been

renamed.

To access the macro settings, click Macro Security in the Developer tab. Excel displays the
Macro Settings category of the Trust Center dialog. Select the second option, Disable All
Macros with Notification. A description of each option follows:

B Disable All Macros Without Notification—This setting prevents all macros from
running. This setting is for people who never intend to run macros. Because you are
currently holding a book that teaches you how to use macros, it is assumed that this
setting is not for you. This setting is roughly equivalent to the old Very High security
setting in Excel 2003. With this setting, only macros in the Trusted Locations folders

can run.

Disable All Macros with Notification—The operative words in this setting are “with
Notification.” This means that you see a notification when you open a file with macros
and you can choose to enable the content. If you ignore the notification, the macros
remain disabled. This setting is similar to Medium security setting in Excel 2003 and
is the recommended setting. In Excel 2016, a message is displayed in the Message Area
indicating that macros have been disabled. You can choose to enable the content by
clicking that option, as shown in Figure 1.3.

Disable All Macros Except Digitally Signed Macros—This setting requires you to
obtain a digital signing tool from VeriSign or another provider. This might be appro-
priate if you are going to be selling add-ins to others, but it’s a bit of a hassle if you just
want to write macros for your own use.

Enable All Macros (Not Recommended: Potentially Dangerous Code Can
Run)—This setting is similar to the Low macro security setting in Excel 2003.
Although it requires the least amount of hassle, it also opens your computer to attacks
from malicious Melissa-like viruses. Microsoft suggests that you not use this setting.

14 Unleashing the Power of Excel with VBA

Figure 1.3 | 1 SECURITY WARNING Macros have been disabled. Enable Content
The Enable Content
option appears when you
use Disable All Macros
with Notification.

Using Disable All Macros with Notification

It is recommended that you set your macro settings to Disable All Macros with Notifica-
tion. If you use this setting and open a workbook that contains macros, you see a security
warning in the area just above the formula bar. If you are expecting macros in this work-
book, click Enable Content. If you do not want to enable macros for the current workbook,
dismiss the security warning by clicking the X at the far right of the message bar.

If you forget to enable the macros and attempt to run a macro, Excel indicates that you can-
not run the macro because all macros have been disabled. If this occurs, close the workbook
and reopen it to access the message bar again.

CAUTION
After you enable macros in a workbook stored on a local hard drive and then save the workbook, Excel
remembers that you previously enabled macros in this workbook. The next time you open this work-
book, macros are automatically enabled.

Overview of Recording, Storing, and Running a Macro

Recording a macro is useful when you do not have experience writing lines of code in a
macro. As you gain more knowledge and experience, you will record macros less frequently.

"To begin recording a macro, select Record Macro from the Developer tab. Before recording
begins, Excel displays the Record Macro dialog box, as shown in Figure 1.4.

Figure 14 rRecord Macro liﬂ‘
Use the Record Macro dia-
. Macro name:
log box to assign a name Ntoczmt|
and a shortcut key to the
R Shortcut key:
macro being recorded. o
Store macro jn:
This Workbook |z|
Desaiption:
OK | Cancel

Overview of Recording, Storing, and Running a Macro | 15

Filling Out the Record Macro Dialog

In the Macro Name field, type a name for the macro. Be sure to type continuous characters.
For example, type Macrol without a space, not Macro 1 with a space. Assuming that you
will soon be creating many macros, use a meaningful name for the macro. A name such as
FormatReport is more useful than one like Macrol.

The second field in the Record Macro dialog box is a shortcut key. If you type a lowercase

j in this field and later press Ctrl+], this macro runs. Be careful, however, because Ctrl+A
through Ctrl+Z (except Ctrl+]) are all already assigned to other tasks in Excel. If you assign
a macro to Ctrl+B, you won’t be able to use Ctrl+B for bold anymore. One alternative is to
assign the macros to Curl+Shift+A through Curl+Shift+Z. To assign a macro to Cirl+Shift+A,
you type Shift+A in the shortcut key box.

CAUTION
You can reuse a shortcut key for a macro. For example, if you assign a macro to Ctrl+C, Excel runs your
macro instead of doing the normal action of copy.

In the Record Macro dialog box, choose where you want to save a macro when it is
recorded: Personal Macro Workbook, New Workbook, or This Workbook. It is recom-
mended that you store macros related to a particular workbook in This Workbook.

The Personal Macro Workbook (Personal.xlsm) is not a visible workbook; it is created

if you choose to save the recording in the Personal Macro Workbook. This workbook is
used to save a macro in a workbook that opens automatically when you start Excel, thereby
enabling you to use the macro. After Excel is started, the workbook is hidden. If you want
to display it, select Unhide from the View tab.

2 ltis not recommended that you use the personal workbook for every macro you save. Save only

those macros that assist you in general tasks—not in tasks that are performed in a specific sheet or
workbook.

The fourth box in the Record Macro dialog is for a description. This description is added as
a comment to the beginning of your macro.

After you select the location where you want to store the macro, click OK. Record your
macro. For this example, type Hello World in the active cell and press Ctrl+Enter to accept
the entry and stay in the same cell. When you are finished recording the macro, click the
Stop Recording icon in the Developer tab.

16

Unleashing the Power of Excel with VBA

You can also access a Stop Recording icon in the lower-left corner of the Excel window. Look for a small
white square to the right of the word Ready in the status bar. Using this Stop button might be more
convenient than returning to the Developer tab. After you record your first macro, this area usually has
a Record Macro icon, which is a small dot on an Excel worksheet.

TIP

Running a Macro

If you assigned a shortcut key to your macro, you can play it by pressing the key combina-
tion. You can also assign macros to a button on the ribbon or the Quick Access Toolbar,
form controls, or drawing objects, or you can run them from the Visual Basic toolbar.

Creating a Macro Button on the Ribbon

You can add an icon to a new group on the ribbon to run your macro. This is appropri-
ate for macros stored in the Personal Macro Workbook. Icons added to the ribbon are still

enabled even when your macro workbook is not open. If you click the icon when the macro
workbook is not open, Excel opens the workbook and runs the macro. Follow these steps to
add a macro button to the ribbon:

1.
2.
3.

10.

Right-click the ribbon and choose Customize the Ribbon.
In the list box on the right, choose the tab name where you want to add an icon.

Click the New Group button below the right list box. Excel adds a new entry called
New Group (Custom) to the end of the groups in that ribbon tab.

"To move the group to the left in the ribbon tab, click the up arrow icon on the right
side of the dialog several times.

. To rename the group, click the Rename button. Type a new name, such as Report

Macros. Click OK. Excel shows the group in the list box as Report Macros (Custom).
Note that the word Custornz does not appear in the ribbon.

Open the upper-left drop-down and choose Macros from the list. The Macros category
is fourth in the list. Excel displays a list of available macros in the left list box.

. Choose a macro from the left list box. Click the Add button in the center of the dialog.

Excel moves the macro to the right list box in the selected group. Excel uses a generic
VBA icon for all macros.

Click the macro in the right list box. Click the Rename button at the bottom of the
right list box. Excel displays a list of 180 possible icons. Choose an icon. Alternatively,
type a friendly label for the icon, such as Format Report.

You can move the Report Macros group to a new location on the ribbon tab. Click
Report Macros (Custom) and use the up and down arrow icons on the right of the
dialog.

Click OK to close the Excel Options dialog. The new button appears on the selected
ribbon tab.

Runninga Macro | 17

Creating a Macro Button on the Quick Access Toolbar

You can add an icon to the Quick Access Toolbar to run a macro. If a macro is stored in the
Personal Macro Workbook, you can have the button permanently displayed in the Quick
Access Toolbar. If the macro is stored in the current workbook, you can specify that the
icon should appear only when the workbook is open. Follow these steps to add a macro but-
ton to the Quick Access Toolbar:

1.
2.

Figure 1.5

Attach a macro to a but-
ton on the Quick Access

Toolbar.

Right-click the Quick Access Toolbar and choose Customize Quick Access Toolbar.

If your macro should be available only when the current workbook is open, open the
upper-right drop-down and change For All Documents (Default) to For FileName.xlsm.
Any icons associated with the current workbook are displayed at the end of the Quick
Access Toolbar.

Open the upper-left drop-down and select Macros from the list. The Macros category
is fourth in the list. Excel displays a list of available macros in the left list box.

Choose a macro from the left list box. Click the Add button in the center of the dia-
log. Excel moves the macro to the right list box. Excel uses a generic VBA icon for all
macros.

Click the macro in the right list box. Click the Modify button at the bottom of the
right list box. Excel displays a list of 180 possible icons (see Figure 1.5). Choose an icon
from the list. In the Display Name box, replace the macro name with a short name that
appears in the tooltip for the icon.

Click OK to close the Modify Button dialog.

Click OK to close the Excel Options dialog. The new button appears on the Quick
Access Toolbar.

Excel Options ¥ =
General B)
EE Customize the Quick Access Toolbar.
Faemulas =
- Choose commands fram: Custamize Quick Access Toalbar
rocting Macros lz‘ For 01-MacroTolmportinvoicesai15.d... El
Save
Canigiaige <Separator> &% Importlnvoice
B AbsClickSelectall |
Advanced £ Modify Button I_gﬁ‘
Custemize Ribbon s "1:
\Fa eRightDown symbol:
Quick Access Toolbar P Formatinvoice3 i
A & Importinvoice
kol LS ImpartinvoicesRelative
Trust Center B RelCrria L
Ba RelCeriStar b
i RelHomeRightDown
i RelSelectAll Add >
&, SOLVERXLAMISOLVERADD = ;
[SOLVERXLAMISOLVER.CHANGE << Bemove Pk inmiE! 8ok
(A X v b M p¥i=
PUEGREEDLAVES -
Display name: Helle World
Com)
\ = —=/
il

Enter the ToolTip here

18

Unleashing the Power of Excel with VBA

Assigning a Macro to a Form Control, Text Box, or Shape

If you want to create a macro specific to a workbook, you can store the macro in the work-
book and attach it to a form control or any object on the sheet.

Follow these steps to attach a macro to a form control on the sheet:

1.

On the Developer tab, click the Insert button to open its drop-down list. Excel offers
12 form controls and 12 ActiveX controls in this one drop-down menu. The form
controls are at the top, and the ActiveX controls are at the bottom. Most icons in the
ActiveX section of the drop-down look identical to an icon in the form controls section
of the drop-down. Click the Button Form Control icon at the upper-left corner of the
Insert drop-down.

. Move your cursor over the worksheet; the cursor changes to a plus sign.

. Draw a button on the sheet by clicking and holding the left mouse button while draw-

ing a box shape. Release the button when you have finished.

Choose a macro from the Assign Macro dialog box and click OK. The button is created
with generic text such as Button 1.

. Type a new label for the button. Note that while you are typing, the selection border

around the button changes from dots to diagonal lines to indicate that you are in Text
Edit mode. You cannot change the button color while in Text Edit mode. To exit Text
Edit mode, either click the diagonal lines to change them to dots or Ctrl+click the
button again. Note that if you accidentally click away from the button, you should
Ctrl+click the button to select it. Then drag the cursor over the text on the button to
select the text.

Right-click the dots surrounding the button and select Format Control. Excel dis-
plays the Format Control dialog, which has seven tabs across the top. If your Format
Control dialog has only a Font tab, you failed to exit Text Edit mode. If this occurred,
close the dialog, Ctrl+click the button, and repeat this step.

. Use the settings in the Format Control dialog to change the font size, font color, mar-

gins, and similar settings for the control. Click OK to close the Format Control dialog
when you have finished. Click a cell to deselect the button.

Click the new button to run the macro.

Macros can be assigned to any worksheet object, such as clip art, a shape, SmartArt graph-
ics, or a text box. In Figure 1.6, the top button is a traditional button form control. The
other images are clip art, a shape with WordArt, and a SmartArt graphic. To assign a macro
to any object, right-click the object and select Assign Macro.

Understanding the VB Editor = 19

Figure 1.6 QAT Customization
Assigning a macro to a

. - . 5 4] eo ¥
form control or an object [@8 H O ¢ & H LY H =8
is appropriate for macros : HOME ~ INSERT PAGELAYOUT FORMULAS DATA REVIEW W]
. 2 : -
stored in the same work- 3 > g‘ﬂm Catibri b s x ==H % Fibbon Customiati
B : 7|
book as the control. You Format Paste E P mru-|He|B-A-===E ibbon Customization
s Report . Format Painter = .
a@n aSS|gn a macro to any Repart Macras Clipboard) Fant [
of these objects. |
| N19 i £ |
A B c] E F G H
1 {
2 {
3| il Meay Button Form Control
‘ {
5 {
E {
X .
8 | Clipart
9
10|
1| _
Sl Shape with Word Art
14|
15|
L — SmartArt Graphic
17
18|

Understanding the VB Editor

If you want to edit a recorded macro, you do it in the VB Editor. Press Alt+F11 or use the
Visual Basic icon in the Developer tab.

Figure 1.7 shows an example of a typical VB Editor screen. You can see three windows: the
Project Explorer, the Properties window, and the Programming window. Don’t worry if
your window doesn’t look exactly like this because you will see how to display the windows
you need in this review of the editor.

P oy

File Edit View Inset Formst Debug Run Tools

Figure 1.7
The VB Editor window.

Add-Ins Window Help

EE-d i A NSY @ =
picject - VBAPigject
= = (@ B
~ &% veAProject (01-Unleash.xism)
[1-25 Mirasoft Excel Objects. ' Macrol Macro
|) Sheet! (Discussion) A
B} Sheet2 {InvoicesMonday)
] Sheet3 (InvoicesTuesday))
] Sheet4 (Invoicesiiednesday) Selection.FormulaRiCl = "Hello World®
) Sheet’ (InvoicesTuesday (2)) End Sub
) Sheets (Figure 1.8)
) Sheet7 (InvoicesThursday)
| L8] Thisworkboak
[=1-E5 Modules
wi} Module1
wil Module2
-
wi} Moduled
+ B VBAProject (PERSONALXLSE)

Sub Macral()

[Properties - Moduled x|
Module3 Module -
Alphobetic | Categarized |

[Modue |

20 Unleashing the Power of Excel with VBA

VB Editor Settings

Several settings in the VB Editor enable you to customize this editor and assist you in writ-
ing your macros.

Under Tools, Options, Editor, you find several useful settings. All settings except for one
are set correctly by default. The remaining setting requires some consideration on your
part. This setting is Require Variable Declaration. By default, Excel does not require you
to declare variables. I prefer selecting this setting because it can save time when you create
a program. My coauthor prefers to change this setting to require variable declaration. This
change forces the compiler to stop if it finds a variable that it does not recognize, which
reduces misspelled variable names. Whether you turn this setting on or keep it off is a mat-
ter of your personal preference.

The Project Explorer

The Project Explorer lists any open workbooks and add-ins that are loaded. If you click the
+ icon next to the VBA Project, you see that there is a folder containing Microsoft Excel
objects. There can also be folders for forms, class modules, and standard modules. Each
folder includes one or more individual components.

Right-clicking a component and selecting View Code or just double-clicking the compo-
nents brings up any code in the Programming window. The exception is userforms, where
double-clicking displays the userform in Design view.

To display the Project Explorer window, select View, Project Explorer from the menu or
press Ctrl+R or locate the bizarre Project Explorer icon just below the Tools menu, sand-
wiched between Design Mode and Properties Window.

"To insert a module, right-click your project, select Insert, and then choose the type of mod-
ule you want. The available modules are as follows:

B Microsoft Excel objects—By default, a project consists of sheet modules for each
sheet in the workbook and a single ThisWorkbook module. Code specific to a sheet
such as controls or sheet events is placed on the corresponding sheet. Workbook events
are placed in the ThisWorkbook module. You read more about events in Chapter 7,
“Event Programming.”

B Forms—Excel enables you to design your own forms to interact with the user. You’ll
read more about these forms in Chapter 10.

B Modules—When you record a macro, Excel automatically creates a module in which
to place the code. Most of your code resides in these types of modules.

B Class modules—Class modules are Excel’s way of letting you create your own objects.
They also allow pieces of code to be shared among programmers without the pro-
grammer’s needing to understand how it works. You read more about class modules in
Chapter 9, “Creating Classes and Collections.”

Understanding Shortcomings of the Macro Recorder | 21

The Properties Window

The Properties window enables you to edit the properties of various components such as
sheets, workbooks, modules, and form controls. The properties list varies according to what
component is selected. To display this window, select View, Properties Window from the
menu, press F4, or click the Project Properties icon on the toolbar.

Understanding Shortcomings of the Macro Recorder

Figure 1.8 rvoice - Howped
The Invoice.txt file.

Suppose you work in an accounting department. Each day you receive a text file from the com-
pany system showing all the invoices produced the prior day. This text file has commas separat-
ing the fields. The columns in the file are Invoice Date, Invoice Number, Sales Rep Number,
Customer Number, Product Revenue, Service Revenue, and Product Cost (see Figure 1.8).

File Edit Format View Help

InvDate,InvNbr,RepNbr,CustNbr,ProdRevenue,ServRevenue,Prodcost
06/05/2017,123829,521,C8754,538400,0,299897
06/05/2017,123830,545,C4056,588600,0,307563
06/05/2017,123831,554,¢8323,882200,0,521726
06/05/2017,123832,5s21,C6026,830900,0,494831
06/05/2017,123833,545,¢3025,673600,0,374953
06,/05/2017,123834,554,C8663,966300,0,528575
06/05/2017,123835,521,C1508,467100,0,257942
06,/05/2017,123836,545,C7366,658500,10000,308719
06/05/2017,123837,554,C4533,191700,0,109534

Each morning, you manually import this file into Excel. You add a total row to the data,
bold the headings, and then print the report for distribution to a few managers.

This seems like a simple process that would be ideally suited to using the macro recorder.
However, due to some problems with the macro recorder, your first few attempts might not
be successful. The following case study explains how to overcome these problems.

STUDY: PREPARING TO RECORD A MACRO

The task mentioned in the preceding section is perfect for a macro. However, before you record a macro, think about the
steps you will use. In this case, the steps are as follows:

Click the File menu and select Open.

Navigate to the folder where Invoice.txt is stored.

Select All Files (*.*) from the Files of Type drop-down list.

Select Invoice.txt.

Click Open.

In the Text Import Wizard—Step 1 of 3 dialog, select Delimited from the Original Data Type section.

Click Next.

In the Text Import Wizard—Step 2 of 3 dialog, clear the Tab key and select Comma in the Delimiters section.

.

® NS v oA wN o

22

9.
10.

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.

Unleashing the Power of Excel with VBA

(lick Next.

In the Text Import Wizard—Step 3 of 3 dialog, select General in the Column Data Format section and change it
to Date: MDY.

Click Finish to import the file.

Press the Ctrl key and the down arrow key to move to the last row of data.
Press the down arrow one more time to move to the total row.

Type the word Total.

Press the right arrow key four times to move to column E of the total row.

(lick the AutoSum button and press Ctrl+-Enter to add a total to the Product Revenue column while remaining
in that cell.

Click the AutoFill handle and drag it from column E to column G to copy the total formula to columns F and G.
Highlight row 1 and click the Bold icon on the Home tab to set the headings in bold.

Highlight the total row and click the Bold icon on the Home tab to set the totals in bold.

Press Ctrl+* to select the current region.

From the Home tab, select Format, AutoFit Column Width.

After you have rehearsed these steps in your head, you are ready to record your first macro. Open a blank workbook
and save it with a name such as MacroTolmportinvoices.xIsm. Click the Record Macro button on the Developer tab.

In the Record Macro dialog, the default macro name is Macro1. Change this to something descriptive like
Importinvoice. Make sure that the macros will be stored in This Workbook. You might want an easy way to run this
macro later, so enter the letter i in the Shortcut Key field. In the Description field, add a little descriptive text to tell
what the macro is doing (see Figure 1.9). Click OK when you are ready.

Figure 1.9 Record Macro IM
Before recording the
Macro name:
macro, completg the Enpoiwoice
Record Macro dialog box.
Shortcut key:
Ctrl= ||
Store macro jn:
This Workbook |z|
Desaiption:
Imports Invoice txt, Adds total row, Farmat.|
oK Cancel

Understanding Shortcomings of the Macro Recorder | 23

Recording the Macro
The macro recorder is now recording your every move. For this reason, perform your steps
in exact order without extraneous actions. If you accidentally move to column F type a
value, clear the value, and then move back to E to enter the first total, the recorded macro
will blindly make that same mistake day after day after day. Recorded macros move fast, but
there is nothing like watching the macro recorder play out your mistakes repeatedly.

Carefully execute all the actions necessary to produce the report. After you have performed
the final step, click the Stop Recording button in the Developer tab of the ribbon.

Examining Code in the Programming Window
Let’s look at the code you just recorded from the case study. Don’t worry if it doesn’t make
sense yet.
"To open the VB Editor, press Alt+F11. In your VBA project (MacroTolmportInvoices.xlsm),
find the component Modulel, right-click the module, and select View Code. Notice that
some lines start with an apostrophe; these are comments and are ignored by the program.
The macro recorder starts your macros with a few comments, using the description you
entered in the Record Macro dialog. The comment for the keyboard shortcut is there to

remind you of the shortcut.

The comment does not assign the shortcut. If you change the comment to be Ctrl+J, it does not
change the shortcut. You must change the setting in the Macro dialog box in Excel or run this line of

code:

NOTE-

Application.MacroOptions Macro:="ImportInvoice", _
Description:="", ShortcutKey:="j"

Recorded macro code is usually pretty neat (see Figure 1.10). Each noncomment line of
code is indented 4 characters. If a line is longer than 100 characters, the recorder breaks

it into multiple lines and indents the lines an additional 4 characters. To continue a line of
code, type a space and an underscore at the end of the first line and then continue the code
on the next line. Don’t forget the space before the underscore. Using an underscore without

the preceding space causes an error.

The physical limitations of this book do not allow 100 characters on a single line. Therefore, the lines
are broken at 80 characters so that they fit on a page. For this reason, your recorded macro might look
slightly different from the ones that appear in this book.

NOTE

24 (hapter1 Unleashing the Power of Excel with VBA

Figure 1.10

The recorded macro is
neat looking and nicely
indented.

Workbooks.OpenText Filename:="C:%2016VBA\SampleFiles\invaice.cxc”, Ori

gMinusiunbers _

Consider that the following seven lines of recorded code are actually only one line of code
that has been broken into seven lines for readability:

Workbooks.OpenText Filename:="C:\somepath\invoice.txt",
Origin:=437, StartRow:=1, DataType:=xlDelimited,
TextQualifier:=x1DoubleQuote, ConsecutiveDelimiter:=False,
Tab:=True, Semicolon:=False, Comma:=True, Space:=False,
Other:=False, FieldInfo:=Array(Array(l, 3), Array(2, 1),
Array (3, 1), Array(4, 1), Array(5, 1), Array(e6, 1),

Array (7, 1)), TrailingMinusNumbers:=True

Counting this as one line, the macro recorder was able to record the 21-step process in 14

lines of code, which is pretty impressive.

Each action you perform in the Excel user interface might equate to one or more lines of recorded code.
Some actions might generate a dozen lines of code.

—NOTE

Test Each Macro

It is always a good idea to test macros. To test your new macro, return to the regular Excel
interface by pressing Alt+F11. Close Invoice.txt without saving any changes. MacroTolm-
portlnvoices.xls is still open.

Press Ctrl+I to run the recorded macro. It should work beautifully if you completed the
steps correctly. The data is imported, totals are added, bold formatting is applied, and the
columns are made wider. This seems like a perfect solution (see Figure 1.11).

Understanding Shortcomings of the Macro Recorder | 25

Figure 1.11 % ; :

The macro formats the I8 invDate |InvNbr RepNbr CustNbr ProdRevenue ServRevenue ProdCost

data in the sheet. PM 6/5/2017 123829521 8754 | 538400 0 299897
Q] 6/5/2017 123830 545 CA056 588600 0 307563
LB 6/5/2017 123831554 (CB323 | 882200 0 521726
£l 6/5/2017 123832521 C6026 | 830900 0 494831
[6/5/2017 123833545 C3025 673600 0 374953
[l 6/5/2017 123834554 8663 966300 0 528575
Bl 6/5/2017 123835 521 C1508 | 467100 0 257942
£l 6/5/2017 123836545 C7366 | 658500 10000 308719
0] 6/5/2017 123837 S54 €4533 191700 0 109534
384 Total 5797300 10000 3203740

Running the Macro on Another Day Produces Undesired Results

After testing the macro, be sure to save your macro file to use on another day. But suppose
that the next day, after receiving a new Invoice.txt file from the system, you open the macro
and press Ctrl+I to run it, and disaster strikes. The data for June 5 happened to have 9
invoices, but the data for June 6 now has 17 invoices. The recorded macro blindly added the
totals in Row 11 because this was where you put the totals when the macro was recorded

(see Figure 1.12).

For those of you working along using the sample files in this book, follow these steps to try
importing data for another day:

Close Invoice.txt in Excel.

In Windows Explorer, rename Invoice.txt to be Invoicel.txt.

1.

2.

3. In Windows Explorer, rename Invoice2.txt to be Invoice.txt.

4, Return to Excel and the MacroToImportlnvoices.xlsm workbook.
5.

Press Ctrl+] to run the macro with the larger data set.

This problem arises because the macro recorder is recording all your actions in Absolute
mode by default. As an alternative to using the default state of the macro recorder, the next
section discusses relative recording and how it might get you closer to the desired solution.

26 Chapter1 Unleashing the Power of Excel with VBA

Figure 1.12 A A | B | C D | E E | G
The intent of the recorded BW nvDate InvNDr RepNbr CustNbr ProdRevenue ServRevenue ProdCost
macro was to add a total El 6/5/2017 123813 's82 €8754 | 716100 12000 423986
at the end of the data, £l 6/5/2017 123814 4834 224200 0 131243
but the recorder made a L8 6/5/2017 123815543 C7278 | 277000 0 139208
macro that always adds BENl 6/5/2017 123816554 C6425 | 746100 15000 350683
totals at row 11. Rl 6/5/2017 123817543 C6291 | 928300 0 488988
6/5/2017 123818 543 1000 723200 0 383069
Gl 6/5/2017 123819582 CG6025 | 982600 0 544025
Ml 6/5/2017 123820 517 CBO26 | 490100 45000 243808
BUJ 6/5/2017 123821543 Ca2aq | 615800 0 300579
b Total 123822 545 1007 5703400 72000 3005589
pPY 6/5/2017 123823 587 C1878 338100 0 165666
gk} 6/5/2017 123824543 3068 | 567900 0 265775
BLN 6/5/2017 123825543 C7571 | 123456 0 55555
06Y 6/5/2017 123826 S55 C7181 37900 0 19811
0] 6/5/2017 123827543 C7570 | 582700 0 292000
el 6/5/2017 123878 S87 5302 495000 0 241504
pi:] 6/5/2017 123828 587 5302 495000 0 241504

10

Possible Solution: Use Relative References When Recording

By default, the macro recorder records all actions as absolute actions. If you navigate to row
11 when you record the macro, the macro will always go to row 11 when the macro is run.
"This is rarely appropriate when dealing with variable numbers of rows of data. The better
option is to use relative references when recording.

Macros recorded with absolute references note the actual address of the cell pointer, such as
Al1. Macros recorded with relative references note that the cell pointer should move a cer-
tain number of rows and columns from its current position. For example, if the cell pointer
starts in cell Al, the code ActiveCell.offset (16, 1).Select would move the cell pointer
to B17, which is the cell 16 rows down and 1 column to the right.

Although relative recording is appropriate in most situations, there are times when you
need to do something absolute while recording a macro. Here’s a great example: After add-
ing the totals to a data set, you need to return to row 1. If you simply click row 1 while in
Relative mode, Excel records that you want to select the row 10 rows above the current
row. This works with the first invoice file but not with longer or shorter invoice files. Here
are two workarounds:

B Toggle relative recording off, click row 1, and then toggle relative recording back on.

B Keep relative recording turned on. Display the Go To dialog by pressing F5. Type Al
and click OK. The Go To dialog gets recorded as always, going to the absolute address
you typed, even if relative recording is turned on. A variation of this method is used in
the following case study.

In the next case study, let’s try the same task as before, this time using relative references.
The solution will be much closer to working correctly.

Understanding Shortcomings of the Macro Recorder | 27

STUDY: RECORDING A MACRO WITH RELATIVE REFERENCES

Let’s try to record the macro again, this time using relative references.
Note: If you are following along with the sample files, complete these steps:

1. (Close Invoice.txt in Excel.
2. Rename Invoice.txt as Invoice2.txt.
3. Rename Invoice1.txt as Invoice.txt.

4. Return to the MacroTolmportInvoices.xlsm workbook.
In the Developer tah, choose Use Relative References to toggle on relative recording. This setting persists until you turn it
off or until you close Excel.

In the workbook MacroTolmportinvoices.xIsm, record a new macro by selecting Record Macro from the Developer tab.
Give the new macro the name ImportinvoicesRelative and assign a different shortcut key, such as Ctrl+J.

Repeat steps 1 through 11 in the previous case study to import the file and then follow these steps:

Press Ctrl+down arrow to move to the last row of data.

Press the down arrow key one more time to move to the total row.

Type the word Total.

Press the right arrow key four times to move to column E of the total row.

Hold the Shift key while pressing the right arrow key twice to select E11:G11.

Click the AutoSum button.

Press Shift+spacebar to select the entire row. Type Ctrl+B to apply bold formatting to it.

Press F5 to display the Go To dialog.

© P NS ;s w N

In the Go To dialog, type A1:G1 and click OK. Even though relative recording is turned on, any navigation through
the Go To dialog box is recorded as an absolute reference. Press Ctrl+-Home to move to cell A1.

10. Click the Bold icon to set the headings in bold.

11. Press Ctrl+* to select all data in the current region.

12. From the Home tab, select Format, AutoFit Column Width.
13. Stop recording.

Press Alt+F11 to go to the VB Editor to review your code. The new macro appears in Module1, below the previous macro.

If you close Excel between recording the first and second macros, Excel inserts a new module called Module2 for the
newly recorded macro.

Sub ImportInvoicesRelative ()
' ImportInvoicesRelative Macro
' Import. Total Row. Format.
' Keyboard Shortcut: Ctrl+J

28

Unleashing the Power of Excel with VBA

Workbooks .OpenText Filename:="C:\data\invoice.txt",
Origin:= 437, StartRow:=1, DataType:=xlDelimited, _
TextQualifier:=x1DoubleQuote, ConsecutiveDelimiter:=False,
Tab:=False, Semicolon:=False, Comma:=True, Space:=False,
Other:=False, FieldInfo:=Array(Array(l, 3), Array(2, 1),
Array (3, 1), Array(4, 1), Array(5, 1), Array(e6, 1),

Array (7, 1)), TrailingMinusNumbers:=True

Selection.End (x1Down) .Select

ActiveCell.Offset (1, 0).Range("Al") .Select

ActiveCell.FormulaR1Cl = "Total"
ActiveCell.Offset (0, 4).Range("Al:C1l").Select
Selection.FormulaR1Cl = "=SUM(R[-9]C:R[-1]C)"

ActiveCell.Rows ("1:1") .EntireRow.Select
ActiveCell.Activate
Selection.Font.Bold = True
Application.Goto Reference:="R1C1:R1C7"
Selection.Font.Bold = True
Selection.CurrentRegion.Select
Selection.Columns.AutoFitSelection.Font.Bold = True
End Sub
To test the macro, close Invoice.txt without saving and then run the macro with Ctrl+J. Everything should look good,

and you should get the same results as with the macro you created with the macro recorder.

The next test is to see whether the program works on the next day when you might have more rows. If you are work-
ing along with the sample files, close Invoice.txt in Excel. Rename Invoice.txt to InvoiceT.txt. Rename Invoice2.txt to
Invoice.txt.

Open MacroTolmportlnvoices.xls and run the new macro with Ctrl+ J. This time, every-
thing should look good, with the totals in the correct places. Look at Figure 1.13. Do you
see anything out of the ordinary?

If you aren’t careful, you might print these reports for your manager. If you did, you would
be in trouble. When you look in cell E19, you can see that Excel has inserted a green tri-
angle to tell you to look at the cell. If you happened to try this back in Excel 95 or Excel 97,
before SmartTags, there would not have been an indicator that anything was wrong.

When you move the cell pointer to E19, an alert indicator pops up near the cell. This indica-
tor tells you that the formula fails to include adjacent cells. If you look in the formula bar, you
will see that the macro totaled only from row 10 to row 18. Neither the relative recording nor
the nonrelative recording is smart enough to replicate the logic of the AutoSum button.

Imagine that you had fewer invoice records on this particular day. Excel would have
rewarded you with the illogical formula =suM (E6:E1048574), as shown in Figure 1.14. Since
this formula would be in E7, circular reference warnings appear in the status bar.

Note: To try this yourself, close Invoice.txt in Excel. Rename Invoice.txt to Invoice2.txt.
Rename Invoice4.txt to Invoice.txt.

Understanding Shortcomings of the Macro Recorder | 29

Figure 1.13

The result of running the 8 InvDate linvNbr RepNbr CustNbr ProdRevenue ServRevenue ProdCost

Relative macro. 8 6/5/2017 123813 582 CB754 716100 12000 423986
EN 6/5/2017 123814 c4894 224200 0 131243
£W 6/5/2017 123815 543 c7278 277000 0 139208
B0 6/5/2017 123816 554 C6425 746100 15000 350683
M 6/5/2017 123817 543 C6291 928300 1] 488988
v 6/5/2017 123818 543 €1000 723200 0 383065
W 6/5/2017 123819 582 C6025 982600 0 544025
el 6/5/2017 123820 517 CB026 490100 45000 243808
SOl 6/5/2017 123821 543 4244 615800 (1] 300579
B6Y 6/5/2017 123822 $45 €1007 271300 0 153253
Pl 6/5/2017 123823 587 c1878 338100 0 165666
§E] 6/5/2017 123824 543 C3068 567900 0 265775
$EY 6/5/2017 123825 543 C7571 123456 1] 55555
EY 6/5/2017 123826 S55 c781 37500 0 19811
300 6/5/2017 123827 543 c7570 582700 0 292000
BYll 6/5/2017 123828 S87 C5302 495000 0 241504
b8 6/5/2017 123828 S87 5302 495000 0 241504
CY Total " 327156 0" 1735647
N

Figure 1.14 _
The result of running IrlvDate InvNbr RepNbr CustNbr ProdRevenue ServRevenue ProdCost
the Relative macro with Pl 6/8/2017 123850 C1654 161000 0 90761
fewer invoice records. EJ 6/8/2017 123851 C6460 275500 10000 146341
8 6/8/2017 123852 5143 525400 0 473515
Bl 6/8/2017 123853 C7868 148200 0 75700
RGN 6/8/2017 123854 €3310 890200 0 458333
il Total | o_l 0 0

If you have tried using the macro recorder, most likely you have run into problems simi-
lar to the ones produced in the previous two case studies. Although this is frustrating, you
should be happy to know that the macro recorder actually gets you 95% of the way to a
useful macro.

Your job is to recognize where the macro recorder is likely to fail and then be able to dive
into the VBA code to fix the one or two lines that require adjusting to have a perfect macro.
With some added human intelligence, you can produce awesome macros to speed up your
daily work.

If you are like me, you are cursing Microsoft about now. We have wasted a good deal of
time over a couple of days, and neither macro works. What makes it worse is that this sort
of procedure would have been handled perfectly by the old Lotus 1-2-3 macro recorder
introduced in 1983. Mitch Kapor solved this problem 33 years ago, and Microsoft still can’t
get it right.

Did you know that up through Excel 97, Microsoft Excel secretly ran Lotus command-
line macros? I found this out right after Microsoft quit supporting Excel 97. At that time,
a number of companies upgraded to Excel XP, which no longer supported the Lotus

1-2-3 macros. Many of these companies hired us to convert the old Lotus 1-2-3 macros to
Excel VBA. It is interesting that in Excel 5, Excel 95, and Excel 97, Microsoft offered an

30 Unleashing the Power of Excel with VBA

interpreter that could handle the Lotus macros that solved this problem correctly, yet its
own macro recorder couldn’t (and still can’t!) solve the problem.

Never Use AutoSum or Quick Analysis While Recording a Macro

There actually is a macro recorder solution to the current problem with recording an Auto-
Sum. It is important to recognize that the macro recorder will never correctly record the
intent of the AutoSum button.

If you are in cell E99 and click the AutoSum button, Excel starts scanning from cell E98
upward until it locates a text cell, a blank cell, or a formula. It then proposes a formula that
sums everything between the current cell and the found cell.

However, the macro recorder records the particular result of that search on the day that the
macro was recorded. Rather than record something along the lines of “do the normal Auto-
Sum logic,” the macro recorder inserts a single line of code to add up the previous 98 cells.

Excel 2013 added the Quick Analysis feature. Select E2:G99; open Quick Analysis icon that
appears below and to the right of a rectangular selection; choose Totals, Sum at Bottom;
and you get the correct totals in row 100. The macro recorder hard-codes the formulas to
always appear in row 100 and to always total row 2 through row 99.

The somewhat bizarre workaround is to type a suM function that uses a mix of relative and
absolute row references. If you type =sum (E$2:E10) while the macro recorder is running,
Excel correctly adds code that always sums from a fixed row two down to the relative refer-
ence that is just above the current cell.

Here is the resulting code, with a few comments:

Sub FormatInvoice3 ()

Sub FormatInvoice3 ()

' FormatInvoice3 Macro

' Import. Total. Format.

' Keyboard Shortcut: Ctrl+K

Workbooks.OpenText Filename:="C:\Data\invoice.txt", _
Origin:=437, StartRow:=1, DataType:=xlDelimited, _
TextQualifier:=x1DoubleQuote, ConsecutiveDelimiter:=False,
Tab:=False, Semicolon:=False, Comma:=True, Space:=False,
Other:=False, FieldInfo:=Array(Array(l, 3), Array(2, 1),
Array (3, 1), Array(4, 1), Array(5, 1), Array(6, 1),
Array (7, 1)), TrailingMinusNumbers:=True

Selection.End (x1Down) .Select

ActiveCell.Offset (1, 0).Range("Al") .Select

ActiveCell.FormulaR1Cl = "Total"
ActiveCell.Offset (0, 4) .Range("Al") .Select
Selection.FormulaR1Cl = "=SUM(R2C:R[-1]C)™"

Selection.AutoFill Destination:=ActiveCell.Range("Al:C1"),
Type:=x1FillDefault

ActiveCell.Range ("Al1:C1l") .Select

ActiveCell .Rows ("1:1") .EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold = True

Application.Goto Reference:="R1C1:R1C7"

Understanding Shortcomings of the Macro Recorder | 31

Selection.Font.Bold = True
Selection.CurrentRegion.Select
Selection.Columns.AutoFit

End Sub

This third macro consistently works with a data set of any size.

Four Tips for Using the Macro Recorder

You will rarely be able to record 100% of your macros and have them work. However, you
will get much closer by using the four tips listed in the following subsections.

Tip 1: Turn on the Use Relative References Setting

Microsoft should have made this setting the default. Turn the setting on and leave it on
while recording your macros.

Tip 2: Use Special Navigation Keys to Move to the Bottom of a Data Set

If you are at the top of a data set and need to move to the last cell that contains data, you
can press Ctrl+down arrow or press the End key and then the down arrow key.

Similarly, to move to the last column in the current row of the data set, press Ctrl+right
arrow or press End and then press the right arrow key.

By using these navigation keys, you can jump to the end of the data set, no matter how
many rows or columns you have today.

Use Ctrl+* to select the current region around the active cell. Provided that you have no
blank rows or blank columns in your data, this key combination selects the entire data set.

Tip 3: Never Touch the AutoSum Icon While Recording a Macro

The macro recorder does not record the “essence” of the AutoSum button. Instead, it hard-
codes the formula that resulted from pressing the AutoSum button. This formula does not
work any time you have more or fewer records in the data set.

Instead, type a formula with a single dollar sign, such as =suM (E$2:E10). When this is
done, the macro recorder records the first E$2 as a fixed reference and starts the suM range
directly below the row 1 headings. Provided that the active cell is E11, the macro recorder
recognizes E10 as a relative reference pointing directly above the current cell.

Tip 4: Try Recording Different Methods if One Method Does Not Work

There are often many ways to perform tasks in Excel. If you encounter buggy code from
one method, try another method. With 16 different project managers on the Excel team, it
is likely that each method was programmed by a different group. In one of the case studies
in this chapter, one task involved applying AutoFit Column Width to all cells. Some people
might press Ctrl+A to select all cells. Others might press Ctrl+*. Since Excel 2007, the code
generated by Ctrl+A when pressed in Relative mode does not work. The Ctrl+* code is very
old and continues to work in all cases.

32 (Chapter1 Unleashing the Power of Excel with VBA

Next Steps

Chapter 2, “This Sounds Like BASIC, So Why Doesn’t It Look Familiar?” examines the
three macros you recorded in this chapter to make more sense out of them. When you
know how to decode the VBA code, it will feel natural to either correct the recorded code
or simply write code from scratch. Hang on through one more chapter. You’ll soon learn
that VBA is the solution, and you’ll be writing useful code that works consistently.

This Sounds Like BASIC,
So Why Doesn't It Look
Familiar?

| Can’t Understand This Code

As mentioned in Chapter 1, “Unleashing the Power
of Excel with VBA,” if you have taken a class in a | Can’t Understand This Code ..

procedural language such as BASIC or COBOL, Understanding the Parts of VBA “Speech”
you might be confused when you look at VBA

code. Even though VBA stands for Visual Basic for VBA s Not Really Hard
Applications, it is an object-oriented version of BASIC. Examining Recorded Macro Code:
Here is a bit of VBA code: Using the VB Editor and Help

i:igzt(lzrlllE?déﬁzZZn) -select Using Debugging Tools to Figure Out

ActiveCell.FormulaR1Cl = "Total™" Recorded Code

Range ("E11") .Select

Selection.FormulaR1Cl = _
"=SUM(R[-9]C:R[-1]C)"

Selection.AutoFill _
Destination:=Range ("E11:G11"), _
Type:=x1FillDefault

Object Browser: The Ultimate Reference

Seven Tips for Cleaning Up Recorded Code.....
Next Steps

This code likely makes no sense to anyone who
knows only procedural languages. Unfortunately,
your first introduction to programming in school
(assuming that you are over 40 years old) would
have been a procedural language.

Here is a section of code written in the BASIC

language:
For x = 1 to 10
Print Rpt$ (" ",x);
Print "*n

Next x

34 This Sounds Like BASIC, So Why Doesn't It Look Familiar?

If you run this code, you get a pyramid of asterisks on your screen:

If you have ever been in a procedural programming class, you can probably look at the code
and figure out what is going on because procedural languages are more English-like than
object-oriented languages. The statement Print "Hello World" follows the verb—object
format, which is how you would generally talk. Let’s step away from programming for a sec-
ond and look at a concrete example.

Understanding the Parts of VBA “Speech”

If you were going to write code for instructions to play soccer using BASIC, the instruction

to kick a ball would look something like this:
"Kick the Ball"
Hey, this is how you talk! It makes sense. You have a verb (kick) and then a noun (ba/l). The

BASIC code in the preceding section has a verb (Print) and a noun (the asterisk, *). Life is
good.

Here is the problem: VBA doesn’t work like this. In fact, no object-oriented language works
like this. In an object-oriented language, the objects (nouns) are most important, hence the
name: object-oriented. If you were going to write code for instructions to play soccer with
VBA, the basic structure would be as follows:

Ball.Kick
You have a noun (Ball), which comes first. In VBA, this is an object. Then you have the verb
(kick), which comes next. In VBA, this is a method.
The basic structure of VBA is a bunch of lines of code with this syntax:

Object.Method

Needless to say, this is not English. If you took a romance language in high school, you will
remember that those languages use a “noun—adjective” construct. However, no one uses
“noun-verb” to tell someone to do something:

Water.Drink

Food.Eat

Girl.Kiss
That is why VBA is confusing to someone who previously took a procedural programming
class.

Understanding the Parts of VBA “Speech” | 35

Let’s carry the analogy a bit further. Imagine that you walk onto a grassy field, and there are
five balls in front of you. There are a soccer ball, basketball, baseball, bowling ball, and ten-
nis ball. You want to instruct a kid on your soccer team to “kick the soccer ball.”

If you tell him to kick the ball (or ball.kick), you really aren’t sure which one of the five
balls he will kick. Maybe he will kick the one closest to him, which could be a problem if he
is standing in front of the bowling ball.

For almost any noun, or object in VBA, there is a collection of that object. Think about
Excel. If you can have one row, you can have a bunch of rows. If you can have one cell, you
can have a bunch of cells. If you can have one worksheet, you can have a bunch of work-
sheets. The only difference between an object and a collection is that you add an s to the
name of the object:

Row becomes Rows.

cell becomes cells.

Ball becomes Balls.

When you refer to something that is a collection, you have to tell the programming lan-
guage to which item you are referring. There are a couple of ways to do this. You can refer
to an item by using a number. For example, if the soccer ball is the second ball, you might
say this:

Balls(2) .Kick

This works fine, but it could be a dangerous way to program. For example, it might work
on Tuesday. However, if you get to the field on Wednesday and someone has rearranged the
balls, Balls (2) .Kick might be a painful exercise.

A much safer way to go is to use a name for the object in a collection. You can say the
following:

Balls ("Soccer") .Kick
With this method, you always know that it will be the soccer ball that is being kicked.
So far, so good. You know that a ball will be kicked, and you know that it will be the soccer
ball. For most of the verbs, or methods in Excel VBA, there are parameters that tell how to
do the action. These parameters act as adverbs. You might want the soccer ball to be kicked

to the left and with a hard force. In this case, the method would have a number of param-
eters that tell how the program should perform the method:

Balls ("Soccer") .Kick Direction:=Left, Force:=Hard
When you are looking at VBA code, the colon-equal sign combination (:=) indicates that
you are looking at parameters of how the verb should be performed.
Sometimes, a method will have a list of 10 parameters, some of which are optional. For
example, if the kick method has an Elevation parameter, you would have this line of code:

Balls ("Soccer") .Kick Direction:=Left, Force:=Hard, Elevation:=High

36

This Sounds Like BASIC, So Why Doesn't It Look Familiar?

Here is the confusing part: Every method has a default order for its parameters. If you are
not a conscientious programmer, and you happen to know the order of the parameters, you
can leave off the parameter names. The following code is equivalent to the previous line of
code:

Balls ("Soccer") .Kick Left, Hard, High

This throws a monkey wrench into our understanding. Without : =, it is not obvious that
you have parameters. Unless you know the parameter order, you might not understand what
is being said. It is pretty easy with Left, Hard, and High, but when you have parameters like
the following:

ActiveSheet.Shapes.AddShape type:=1, Left:=10, Top:=20,
Width:=100, Height:=200

it gets confusing if you instead have this:

ActiveSheet.Shapes.AddShape 1, 10, 20, 100, 200
The preceding line is valid code. However, unless you know that the default order of the
parameters for this add method is Type, Left, Top, Width, Height, this code does not make
sense. The default order for any particular method is the order of the parameters as shown
in the Help topic for that method.

"To make life more confusing, you are allowed to start specifying parameters in their default
order without naming them, and then you can switch to naming parameters when you hit
one that does not match the default order. If you want to kick the ball to the left and high
but do not care about the force (that is, you are willing to accept the default force), the fol-
lowing two statements are equivalent:

Balls ("Soccer") .Kick Direction:=Left, Elevation:=High
Balls ("Soccer") .Kick Left, Elevation:=High

However, keep in mind that as soon as you start naming parameters, they have to be named

for the remainder of that line of code.

Some methods simply act on their own. To simulate pressing the F9 key, you use this code:
Application.Calculate

Other methods perform an action and create something. For example, you can add a work-
sheet by using the following:

Worksheets.Add Before:=Worksheets (1)

However, because Worksheets.Add creates a new object, you can assign the results of this

method to a variable. In this case, you must surround the parameters with parentheses:
Set MyWorksheet = Worksheets.Add (Before:=Worksheets (1))

One final bit of grammar is necessary: adjectives. Just as adjectives describe a noun, proper-

ties describe an object. Because you are an Excel fan, let’s switch from the soccer analogy

to an Excel analogy. There is an object to describe the active cell. Fortunately, it has a very
intuitive name:

ActiveCell

VBA Is Not Really Hard | 37

Suppose you want to change the color of the active cell to red. There is a property called
Interior.Color for a cell that uses a complex series of codes. However, you can turn a cell
to red by using this code:

ActiveCell.Interior.Color = 255
You can see how this can be confusing. Again, there is the noun-dot-something construct, but
this time it is object . Property rather than object .Method. How you tell them apart is
quite subtle: There is no colon before the equal sign. A property is almost always set equal
to something, or perhaps the value of a property is assigned to something else.
"To make this cell color the same as cell Al, you might say this:
ActiveCell.Interior.Color = Range ("Al") .Interior.Color

Interior.Color is a property. By changing the value of a property, you can make things
look different. It is kind of bizarre: Change an adjective, and you are actually doing some-
thing to the cell. Humans would say, “Color the cell red,” whereas VBA says this:

ActiveCell.Interior.Color = 255

Table 2.1 summarizes the VBA “parts of speech.”

Table2.1 Parts of the VBA Programming Language

VBA Component AnalogousTo Notes

Object Noun Examples include cell or sheet.

Collection Plural noun Usually specifies which object: Worksheets (1) .

Method Verb Appears as Object .Method

Parameter Adverb Lists parameters after the method. Separate the parameter name
from its value with: =.

Property Adjective You can set a property (for example, activecell.height=10)

VBA Is Not Really Hard

or store the value of a property (for example, x = activecell.
height).

Knowing whether you are dealing with properties or methods helps you set up the correct
syntax for your code. Don’t worry if it all seems confusing right now. When you are writing
VBA code from scratch, it is tough to know whether the process of changing a cell to yel-

low requires a verb or an adjective. Is it a method or a property?

"This is where the macro recorder is especially helpful. When you don’t know how to code

something, you record a short little macro, look at the recorded code, and figure out what is

going on.

38 Chapter2 This Sounds Like BASIC, So Why Doesn't It Look Familiar?

VBA Help Files: Using F1 to Find Anything

Excel VBA Help is an amazing feature, provided that you are connected to the Internet. If
you are going to write VBA macros, you absolutely must have access to the VBA Help top-
ics installed. Follow these steps to see how easy it is to get help in VBA:

1.

2,

Open Excel and switch to the VB Editor by pressing Alt+F11. From the Insert menu,
select Module.

"Type these three lines of code:
Sub Test ()

MsgBox "Hello World!"
End Sub

Click inside the word MsgBox.

With the cursor in the word MsgBox, press F1. If you can reach the Internet, you see
the Help topic for the MsgBox function.

Using Help Topics
If you request help on a function or method, the Help topic walks you through the vari-

ous available arguments. If you browse to the bottom of a Help topic, you can see a great
resource: code samples under the Example heading (see Figure 2.1).

It is possible to select the code, copy it to the Clipboard by pressing Ctrl+C, and then paste
it into a module by pressing Ctrl+V.

After you record a macro, if there are objects or methods about which you are unsure, you
can get help by inserting the cursor in any keyword and pressing F1.

Figure 2.1

Most Help topics include

code samples.

4 Example

Dim Msg, Style, Title, Help, Ctxt, Response, MyString

Msg = "Do you want to continue ?" ' Define message.
Style = vbYesNo + vbCritical + vbDefaultButton2 ' Define buttons.
Title = "MsgBox Demonstration” ' Define title.
Help = "DEMO.HLP ' Define Help file.
Ctxt = 1868 ' Define topic
" econtext.
" Display message.
Response = MsgBox(Msg, Style, Title, Help, Ctxt)

If Response = vbYes Then ' User chose Yes.
MyString = "Yes" ' Perform some action.
Else ° User chose Na.

MyString = “"Mo" ' Perform some action.
End If

Examining Recorded Macro Code: Using the VB Editor and Help = 39

Examining Recorded Macro Code: Using the VB Editor and Help

Let’s take a look at the code you recorded in Chapter 1 to see whether it makes more sense
now that you know about objects, properties, and methods. You can also see whether it’s
possible to correct the errors created by the macro recorder.

Figure 2.2 shows the first code that Excel recorded in the example from Chapter 1.

Figure 2.2 {Genera) -
Recorded code from the
example in Chapter 1.

lingMinusNunbers 3

Now that you understand the concept of Noun.Verb or Object .Method, consider the first
line of code that Says Workbooks.OpenText. In this case, Workbooks is an object, and
openText is a method. Click your cursor inside the word openText and press F1 for an
explanation of the openText method (see Figure 2.3).

The Help file confirms that openText is a method, or an action word. The default order for
all the arguments that can be used with openText appears in the gray box. Notice that only
one argument is required: Filename. All the other arguments are listed as optional.

Optional Parameters

The Help file can tell you if you happen to skip an optional parameter. For startRow, the
Help file indicates that the default value is 1. If you leave out the startRow parameter, Excel
starts importing at row 1. This is fairly safe.

Now look at the Help file note about origin. If this argument is omitted, you inherit
whatever value was used for origin the last time someone used this feature in Excel on
this computer. That is a recipe for disaster. For example, your code might work 98% of the
time. However, immediately after someone imports an Arabic file, Excel remembers the
setting for Arabic and thereafter assumes that this is what your macro wants if you don’t
explicitly code this parameter.

40 Chapter2 This Sounds Like BASIC, So Why Doesn't It Look Familiar?

Figure 2.3 Parameters
Part of the help topic
for the OpenText N .)
Fil Reguired String the file name of the text file to
method.
Origin Optional Variant t file. Can be one of the
tants: xIMacintosh, xIWindows or
StartRow Optional Variant
DataType Optional Variant Spy one
of ti xIDelimited cr
rosoft
mal n it opens
TextQualifier Optional KiTextQualifier Specifies
Cons. Optional Variant True to have consecutive delimiters considered one delimiter.
The default is False
.
Defined Constants

Look at the Help file entry for pataType in Figure 2.3, which says it can be one of these
constants: x1Delimited or x1Fixedwidth. The Help file says these are the valid
x1TextParsingType constants that are predefined in Excel VBA. In the VB Editor, press
Curl+G to bring up the Immediate window. In the Immediate window, type this line and
press Enter:

Print x1FixedWidth
The answer appears in the Immediate window. x1Fixedwidth is the equivalent of saying
2 (see Figure 2.4). In the Immediate window type Print x1Delimited, which is really the

same as typing 1. Microsoft correctly assumes that it is easier for someone to read code that
uses the somewhat English-like term x1pelimited than to read 1.

Figure 2.4 Immediate

In the Immediate window Print xlFizedWidth
of the VB Editor, query 2

to see the true value Frine xidelimived
of constants such as

x1FixedwWidth.

If you were an evil programmer, you could certainly memorize all these constants and write
code using the numeric equivalents of the constants. However, the programming gods (and
the next person who has to look at your code) will curse you for this.

In most cases, the Help file either specifically calls out the valid values of the constants or
offers a hyperlink that opens the Help topic showing the complete enumeration and the
valid values for the constants (see Figure 2.5).

Examining Recorded Macro Code: Using the VB Editorand Help | 41

One complaint with this excellent Help system is that it does not identify which parameters
are new to a given version. In this particular case, TrailingMinusNumbers was introduced
in Excel 2002. If you attempt to give this program to someone who is still using Excel
2000, the code does not run because Excel does not understand the TrailingMinusNumbers
parameter. Sadly, the only way to learn to handle this frustrating problem is through trial
and error.

If you read the Help topic on openText, you can surmise that it is basically the equivalent of
opening a file using the Text Import Wizard. In step 1 of the wizard, you normally choose
either Delimited or Fixed Width. You also specify the file origin and at which row to start.
"This first step of the wizard is handled by these parameters of the openText method:

Origin:=437

StartRow:=1

DataType:=x1Delimited

Figure 2.5 :
danemeincose | XICOlumnDataType Enumeration

all the possible constant
values. Here, the 10 (EXCeD

possible x1 Column-
DataType constants
are revealed in a new
help topic.

Office 2013 | Other Versions ~
Specifies how a column is to be parsed

4 \fersion Information

Version Added: Excel 2007

MName Value Description
xIDMYFormat 4 DMY date format
*IDYMFormat 7 DYM date format
xlEMDFormat 10 EMD date format.
xlGeneralFormat 1 General
*IMDYFormat 3 MDY date farmat
xIMYDFormat 6 MYD date format
wlSkipColumn 9 Column is not parsed,
x[TextFormat 2 Text.
®YDMFormat 8 YOM date format
xYMDFormat 5 YMD date format

Step 2 of the Text Import Wizard enables you to specify that your fields be delimited

by commas. Because you do not want to treat two commas as a single comma, the Treat
Consecutive Delimiters as One check box should not be selected. Sometimes, a field may
contain a comma, such as “XYZ, Inc.” In this case, the field should have quotes around the
value, as specified in the Text Qualifier box. This second step of the wizard is handled by
the following parameters of the openText method:

TextQualifier:=x1DoubleQuote
ConsecutiveDelimiter:=False

42

This Sounds Like BASIC, So Why Doesn't It Look Familiar?

Tab:=False

Semicolon:=False

Comma : =True

Space:=False

Other:=False
Step 3 of the wizard is where you actually identify the field types. In this case, you leave all
fields as General except for the first field, which is marked as a date in MDY (Month, Day,

Year) format. This is represented in code by the Fieldinfo parameter.

The third step of the Text Import Wizard is fairly complex. The entire FieldInfo param-
eter of the openText method duplicates the choices made on this step of the wizard. If you
happen to click the Advanced button on the third step of the wizard, you have an opportu-
nity to specify something other than the default decimal and thousands separators, as well as
the setting Trailing Minus for Negative Numbers.

2= Note that the macro recorder does not write code for becimalseparator or

[
ThousandsSeparator Unless you change these from the defaults. The macro recorder does,
however, always record the TrailingMinusNumbers parameter.

Remember that every action you perform in Excel while recording a macro gets translated
to VBA code. In the case of many dialog boxes, the settings you do not change are often
recorded along with the items you do change. When you click OK to close the dialog, the
macro recorder often records all the current settings from the dialog in the macro.

Here is another example. The next line of code in the macro is this:
Selection.End (x1Down) .Select

You can click to get help for three topics in this line of code: selection, End, and Select.
Assuming that selection and Select are somewhat self-explanatory, click in the word End
and press F1 for Help. A Context Help dialog box appears, saying that there are two pos-
sible Help topics for End—one in the Excel library and one in the VBA library.

If you are new to VBA, you might not know which Help library to select. Select one and
then click Help. In this case, the End Help topic in the VBA library is talking about the End
statement, which is not what you need.

Close Help, press F1 again, and select the End object in the Excel library. This Help topic
says that End is a property. It returns a Range object that is equivalent to pressing End+up
arrow or End+down arrow in the Excel interface (see Figure 2.6). If you click the blue
hyperlink for x1Direction, you see the valid parameters that can be passed to the End
function.

