

800 East 96th Street, Indianapolis, Indiana 46240 USA

Adam Nathan

Universal
Windows®
Apps with
XAML and C#

UNLEASHED

Universal Windows® Apps with XAML and C# Unleashed
Copyright © 2015 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-0-672-33726-0
ISBN-10: 0-672-33726-6

Library of Congress Control Number: 2014919777

Printed in the United States of America

First Printing February 2015

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

EDITOR-IN-CHIEF
Greg Wiegand

ACQUISITIONS EDITOR
Joan Murray

DEVELOPMENT EDITOR
Mark Renfrow

MANAGING EDITOR
Kristy Hart

SENIOR PROJECT
EDITOR
Betsy Gratner

INDEXER
Lisa Stumpf

PROOFREADER
Kathy Ruiz

TECHNICAL EDITOR
Bill Wagner

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Mark Shirar

COMPOSITOR
Nonie Ratcliff

 Introduction . 1

 Part I Getting Started

 1 Hello, Real World! . 7

 2 Mastering XAML . 43

 Part II Building an App

 3 Sizing, Positioning, and Transforming Elements. 63

 4 Layout. 83

 5 Handling Input: Touch, Mouse, Pen, and Keyboard. 117

 Part III Working with the App Model

 6 App Lifecycle . 161

 7 Threading, Windows, and Pages. 181

 8 The Many Ways to Earn Money . 199

 Part IV Understanding Controls

 9 Content Controls . 227

 10 Items Controls . 259

 11 Text . 283

 12 Images . 315

 13 Audio, Video, and Speech . 355

 14 Other Controls . 387

Contents at a Glance

 Part V Leveraging the Richness of XAML

 15 Vector Graphics . 421

 16 Animation . 453

 17 Styles, Templates, and Visual States 499

 18 Data Binding. 529

 Part VI Exploiting Windows

 19 Working with Data . 555

 20 Supporting App Commands . 583

 21 Leveraging Contracts . 613

 22 Reading from Sensors . 647

 23 Controlling Devices . 663

 24 Thinking Outside the App: Live Tiles, Notifications,

and the Lock Screen . 687

 Index . 723

Contents at a Glanceiviviv

Table of Contents

 Introduction 1
Who Should Read This Book? 3

Software Requirements 3

Code Examples 3

How This Book Is Organized 3

Conventions Used in This Book 5

 Part I Getting Started

 1 Hello, Real World! 7
Creating, Deploying, and
Profiling an App 7

Understanding the App
Packages 10

Updating XAML and C# Code 21

Making the App World-Ready 29

Making the App Accessible 35

Submitting to the Windows Store 40

Summary 42

 2 Mastering XAML 43
Elements and Attributes 44

Namespaces 45

Property Elements 47

Type Converters 49

Markup Extensions 49

Children of Object Elements 52

Mixing XAML with C# 56

XAML Keywords 59

Summary 60

 Part II Building an App

 3 Sizing, Positioning, and
Transforming Elements 63
Controlling Size 64

Controlling Position 68

Applying 2D Transforms 72

Applying 3D Transforms 79

Summary 82

 4 Layout 83
Discovering Your Window Size
and Location 84

Panels 88

Handling Content Overflow 103

Summary 115

 5 Handling Input: Touch,
Mouse, Pen, and
Keyboard 117
Touch Input 118

Mouse Input 141

Pen Input 144

Keyboard Input 153

Summary 159

 Part III Working with the
App Model

 6 App Lifecycle 161
Killing 163

Suspending 164

Resuming 166

Terminating 167

Table of Contentsvi

AppBarToggleButton 243

CheckBox 244

RadioButton 245

ToolTip 246

App Bars 249

Summary 257

 10 Items Controls 259
Items in the Control 260

Items Panels 262

ComboBox 265

ListBox 267

ListView 269

GridView 273

FlipView 274

SemanticZoom 276

MenuFlyout 279

Summary 281

 11 Text 283
TextBlock 283

RichTextBlock 296

TextBox 301

RichEditBox 309

PasswordBox 311

Summary 313

 12 Images 315
The Image Element 316

Multiple Files for Multiple
Environments 325

Decoding Images 330

Encoding Images 339

Rendering PDF Content as
an Image 347

Summary 353

Launching 168

Activating 171

Managing Session State with
SuspensionManager 173

Programmatically Launching
Apps 176

Summary 179

 7 Threading, Windows,
and Pages 181
Understanding the Threading
Model for Universal Apps 181

Displaying Multiple Windows 186

Navigating Between Pages 189

Summary 198

 8 The Many Ways to Earn
Money 199
Adding Advertisements to
Your App 200

Supporting a Free Trial 205

Supporting In-App Purchases 210

Validating Windows Store
Receipts 218

Testing Windows Store
Features 220

Summary 225

 Part IV Understanding
Controls

 9 Content Controls 227
Button 230

AppBarButton 234

HyperlinkButton 241

RepeatButton 242

ToggleButton 243

Table of Contents vii

 17 Styles, Templates, and
Visual States 499
Styles 500

Templates 509

Visual States 519

Summary 528

 18 Data Binding 529
Introducing Binding 529

Controlling Rendering 538

Customizing the View of
a Collection 546

High-Performance Rendering
with ListView and
GridView 550

Summary 554

 Part VI Exploiting Windows

 19 Working with Data 555
An Overview of Files and
Folders 555

App Data 557

User Data 563

Networking 572

Summary 582

 20 Supporting App
Commands 583
Search 584

Share 589

Print 596

Play 604

Project 606

Settings 606

Summary 611

 13 Audio, Video, and
Speech 355
Playback 356

Capture 367

Transcoding 378

Speech Synthesis 383

Summary 386

 14 Other Controls 387
Range Controls 387

SearchBox 390

Popup Controls 397

Hub 403

Date and Time Controls 407

ProgressRing 411

ToggleSwitch 412

WebView 413

Summary 419

 Part V Leveraging the
Richness of XAML

 15 Vector Graphics 421
Shapes 421

Geometries 428

Brushes 436

Summary 450

 16 Animation 453
Dependency Properties 454

Theme Transitions 455

Theme Animations 466

Custom Animations 472

Custom Keyframe Animations 485

Easing Functions 490

Manual Animations 495

Summary 497

Table of Contentsviii

 24 Thinking Outside the App:
Live Tiles, Notifications,
and the Lock Screen 687
Live Tiles 687

Badges 701

Secondary Tiles 703

Toast Notifications 705

Setting Up Push Notifications 711

The Lock Screen 719

Summary 721

 Index 723

 21 Leveraging Contracts 613
Account Picture Provider 615

AutoPlay Content and
AutoPlay Device 617

File Type Associations 620

Protocol 623

File Open Picker 624

File Save Picker 627

Contact Picker 628

The Contact Contract 631

The Appointments Provider
Contract 635

Background Tasks 637

Summary 646

 22 Reading from Sensors 647
Accelerometer 647

Gyrometer 651

Inclinometer 651

Compass 651

Light Sensor 651

Orientation 652

Location 652

Proximity 659

Summary 662

 23 Controlling Devices 663
Fingerprint Readers 664

Image Scanners 664

Barcode Scanners 668

Magnetic Stripe Readers 671

Custom Bluetooth Devices 673

Custom Bluetooth Smart
Devices 676

Custom USB Devices 679

Custom HID Devices 682

Custom Wi-Fi Direct Devices 684

Summary 686

About the Author
Adam Nathan is a principal software architect for Microsoft, a best-selling technical
author, and a prolific developer of apps for Windows. He introduced XAML to countless
developers through his books on a variety of Microsoft technologies. Currently a part
of Microsoft’s Windows division, Adam has previously worked on Visual Studio and the
Common Language Runtime. He was the founding developer and architect of Popfly,
Microsoft’s first Silverlight-based product, named by PCWorld as one of its year’s most
innovative products. He is also the founder of PINVOKE.NET, the online resource for
.NET developers who need to access Win32. His apps have been featured on Lifehacker,
Gizmodo, ZDNet, ParentMap, and other enthusiast sites.

Adam’s books are considered required reading by many inside Microsoft and throughout
the industry. Adam is the author of Windows 8.1 Apps with XAML and C# Unleashed (Sams,
2013), 101 Windows Phone 7 Apps (Sams, 2011), WPF 4.5 Unleashed (Sams, 2013), .NET and
COM: The Complete Interoperability Guide (Sams, 2002), and several other books. You can
find Adam online at www.adamnathan.net, or @adamnathan on Twitter.

http:\\www.adamnathan.net

Dedication

To Tyler and Ryan.

Acknowledgments
I’d like to thank Ashish Shetty, Tim Heuer, Mark Rideout, Jonathan Russ, Joe Duffy,
Chris Brumme, Eric Rudder, Neil Rowe, Betsy Gratner, Ginny Munroe, Bill Chiles, Valery
Sarkisov, Joan Murray, Patrick Wong, Jacqueline Ting, and Michelle McCarthy. As always,
I thank my parents for having the foresight to introduce me to Basic programming on our
IBM PCjr when I was in elementary school.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Joan Murray
Acquisitions Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

N

In This Chapter

 Who Should Read
This Book?

 Software Requirements

 Code Examples

 How This Book Is
INTRODUCTIO
If you ask me, it has never been a better time to be a
software developer. Not only are programmers in high
demand—due in part to an astonishingly low number of
computer science graduates each year—but app stores make
it easier than ever to broadly distribute your own software
and even make money from it.

When I was in junior high school, I released a few
shareware games and asked for $5 donations. I earned
$15 total. One of the three donations was from my
grandmother, who didn’t even own a computer! These
days, of course, adults and kids alike can make money
on simple apps and games without relying on kind and
generous individuals going to the trouble of mailing a
check.

With universal Windows apps, it’s finally possible to create
an app that targets both PCs (desktops, laptops, tablets, and
hybrids) and phones simultaneously. Universal apps also
represent a consolidation of XAML-based technologies. First
there was Windows Presentation Foundation (WPF) for
traditional desktop apps, then Silverlight for the Web, then
Silverlight for the phone, then the XAML UI Framework
for Windows Store apps. All of these frameworks are similar
but frustratingly not quite the same. The technology
behind universal apps now has enough momentum that
the need for these older frameworks should fade away.

Organized

 Conventions Used in
This Book

INTRODUCTION2

Universal apps run on the Windows Runtime, or WinRT for short. WinRT is actually
based on Microsoft’s Component Object Model (COM) that has been around since 1993,
but most of the time you can’t tell. And most of the time, it doesn’t matter. This is a
modern, friendlier version of COM that is more amenable to automatic correct usage from
environments such as C#. (Contrast this to over a decade ago, when I wrote a book about
mixing COM with .NET. This topic alone required over 1,600 pages!)

WinRT APIs are automatically projected
into the programming language you use,
so they look natural for that language.
Projections are more than just exposing
the raw APIs, however. Core WinRT data
types such as String, collection types, and
a few others are mapped to appropriate
data types for the target environment. For
C# or other .NET languages, this means
exposing them as System.String, System.
Collections.Generic.IList<T>, and so on.

In the set of APIs exposed by Windows:

 ➔ Everything under the Windows.UI.Xaml namespace is XAML-specific

 ➔ Everything under the Windows.UI.WebUI namespace is for HTML apps

 ➔ Everything under System is .NET-specific

 ➔ Everything else (which is under Windows) is general-purpose WinRT functionality

As you dig into the framework, you notice that the XAML-specific and .NET-specific APIs
are indeed the most natural to use from C# and XAML. General-purpose WinRT APIs
follow slightly different conventions and can sometimes look a little odd to developers
familiar with .NET. For example, they tend to be exception-heavy for situations that
normally don’t warrant an exception (such as the user cancelling an action). Artifacts like
this are caused by the projection mechanism mapping HRESULTs (COM error codes) into
.NET exceptions.

I wrote this book with the following goals in mind:

 ➔ To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

➔ To answer the questions most people have when learning how to write universal
apps and to show how commonly desired tasks are accomplished

➔ To be an authoritative source, thanks to input from members of the team who
designed, implemented, and tested Windows and Visual Studio

➔ To be clear about where the technology falls short rather than blindly singing its
praises

Although WinRT APIs are not
.NET APIs, they have metadata in
the standardized format used by

.NET. Therefore, you can browse them
directly with familiar .NET tools, such as
the IL Disassembler (ILDASM). You can find
these on your computer as .winmd files.
Visual Studio’s “Object Browser” is also a
convenient way to search and browse
WinRT APIs.

How This Book Is Organized 3

➔ To optimize for concise, easy-to-understand code rather than enforcing architectural
patterns that can be impractical or increase the number of concepts to understand

➔ To be an easily navigated reference that you can constantly come back to

To elaborate on the second-to-last point: You won’t find examples of patterns such as
Model-View-ViewModel (MVVM) in this book. I am a fan of applying such patterns to
code, but I don’t want to distract from the core lessons in each chapter.

Whether you’re new to XAML or a long-time XAML developer, I hope you find this book
to exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating apps for the Windows
Store, whether they are for tablets, laptops, desktops, or phones. It does not teach you
how to program, nor does it teach the basics of the C# language. However, it is designed
to be understandable even for folks who are new to .NET, and does not require previous
experience with XAML.

If you are already well versed in XAML, I’m confident that this book still has a lot of
helpful information for you. At the very least, this book should be an invaluable reference
for your bookshelf.

Software Requirements
This book targets Windows 8.1, Windows Phone 8.1, and the corresponding developer
tools. The tools are a free download at the Windows Dev Center: http://dev.windows.
com. The download includes the Windows SDK, a version of Visual Studio Express for
Windows, and miscellaneous tools.

Although it’s not required, I recommend PAINT.NET, a free download at http://getpaint.
net, for creating and editing graphics, such as the set of icons needed by apps.

Code Examples
Source code for examples in this book can be downloaded from www.informit.com/
title/9780672337260.

How This Book Is Organized
This book is arranged into six parts, representing the progression of feature areas that you
typically need to understand. But if you want to jump ahead and learn about a topic such
as animation or live tiles, the book is set up to allow for nonlinear journeys as well. The
following sections provide a summary of each part.

http://dev.windows
http://getpaint.net
http://getpaint.
net
http://www.informit.com/title/9780672337260
http://www.informit.com/title/9780672337260

INTRODUCTION4

Part I: Getting Started
This part includes the following chapters:

➔ Chapter 1: Hello, Real World!

➔ Chapter 2: Mastering XAML

Part I provides the foundation for the rest of the book. Chapter 1 helps you understand
all the tools available at your disposal, and even dives into topics such as accessibility and
localization so you can be prepared to get the broadest set of customers possible for
your app.

Part II: Building an App
This part includes the following chapters:

➔ Chapter 3: Sizing, Positioning, and Transforming Elements

➔ Chapter 4: Layout

➔ Chapter 5: Handling Input: Touch, Mouse, Pen, and Keyboard

Part II equips you with the knowledge of how to place things on the screen, how to make
them adjust to the wide variety of screen types, and how to interact with the user.

Part III: Working with the App Model
This part includes the following chapters:

➔ Chapter 6: App Lifecycle

➔ Chapter 7: Threading, Windows, and Pages

➔ Chapter 8: The Many Ways to Earn Money

The app model for universal apps is significantly different from the app model for
traditional desktop applications in a number of ways. It’s important to understand how
the app lifecycle works and how you need to interact with it in order to create a well-
behaved app. But there are other pieces to what is sometimes called the app model: how
one app can launch another, how to work with the Windows Store to enable free trials
and in-app purchases, and how to deal with multiple windows and pages.

Part IV: Understanding Controls
This part includes the following chapters:

➔ Chapter 9: Content Controls

➔ Chapter 10: Items Controls

➔ Chapter 11: Text

Conventions Used in This Book 5

➔ Chapter 12: Images

➔ Chapter 13: Audio, Video, and Speech

➔ Chapter 14: Other Controls

Part IV provides a tour of the controls built into the XAML UI Framework. There are many
controls that you expect to have available, plus several that you might not expect.

Part V: Leveraging the Richness of XAML
This part includes the following chapters:

➔ Chapter 15: Vector Graphics

➔ Chapter 16: Animation

➔ Chapter 17: Styles, Templates, and Visual States

➔ Chapter 18: Data Binding

The features covered in Part V are areas in which XAML really shines. Although previous
parts of the book expose some XAML richness (applying transforms to any elements, the
composability of controls, and so on), these features push the richness to the next level.

Part VI: Exploiting Windows
This part includes the following chapters:

➔ Chapter 19: Working with Data

➔ Chapter 20: Supporting App Commands

➔ Chapter 21: Leveraging Contracts

➔ Chapter 22: Reading from Sensors

➔ Chapter 23: Controlling Devices

➔ Chapter 24: Thinking Outside the App: Live Tiles, Notifications, and the Lock Screen

This part of the book covers unique and powerful Windows features that are not specific
to XAML or C#, but they are things that all app developers should know.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

INTRODUCTION6

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and
occasionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and filenames. In code
listings, italic monospace type is used for placeholder text.

 Code listings are colorized similarly to the way they are colorized in Visual
Studio. Blue monospace type is used for XML elements and C# keywords,
brown monospace type is used for XML element names and C# strings,
green monospace type is used for comments, red monospace type is used
for XML attributes, and teal monospace type is used for type names in C#.

Bold When appropriate, bold is used for code directly related to the main lesson(s)
in a chapter.

When a line of code is too long to fit on a line in the printed book, a code-continuation
arrow (➥) is used.

Throughout this book, and even in this introduction, you will find a number of sidebar
elements:

What is a FAQ sidebar?

A Frequently Asked Question (FAQ) sidebar presents a question you might have about
the subject matter—and then provides a concise answer.

Digging Deeper

A Digging Deeper sidebar presents advanced or more detailed information on a subject than is
provided in the surrounding text. Think of Digging Deeper material as something you can look
into if you’re curious but can ignore if you’re not.

A tip offers information about design guidelines, shortcuts, or alternative approaches to
produce better results, or something that makes a task easier.

This is a warning!

A warning alerts you to an action or a condition that can lead to an unexpected or
unpredictable result—and then tells you how to avoid it.

HELLO, REAL WORLD!

“Oh no, not another cliché ‘Hello, World’ example,” you
might be thinking as you examine this book. However, the
length of this chapter alone should tell you that it is not
about creating a typical “Hello, World” app.

Sure, we’re going to get started with a simple, contrived
app to demonstrate the anatomy of a universal app and the
tooling available in Visual Studio. But we’ll also see how
to make it really say “hello” to the ent e world; not just
English-speaking people with no disabilities. This means
understanding how to localize an app into other languages
so you can exploit the vast, global scale of the Windows
Store. It also means understanding how to make your app
accessible to users who require assistive technologies such
as screen readers or high contrast themes. No app deserves
to be called “Hello, World” without considering these
features.

Creating, Deploying, and
Profiling an App
In Visual Studio, let’s create a new Visual C# Blank App
project under the Universal Apps category and call it
HelloRealWorld. This actually gives us a solution with the
following three projects:

Creating, Deploying,
and Profiling an App

 Understanding the
App Packages

 Updating XAML and
C# Code

 Making the App
World-Ready

 Making the App
Accessible

 Submitting to the
Windows Store

Chapter 1 In This Chapter

Chapter 1 HELLO, REAL WORLD!8

➔ HelloRealWorld.Windows—A PC-specific project.

➔ HelloRealWorld.WindowsPhone—A phone-specific project.

 ➔ HelloRealWorld.Shared—A project referenced by both of the preceding projects.

The solution is ready to compile and run. Although pressing F5 or clicking the Start
Debugging button in Visual Studio launches the app locally on the PC, you’ve got many
options to choose from via the button’s dropdown menu, shown in Figure 1.1.

FIGURE 1.1 Options for launching your app in Visual Studio

The choices depend on whether you’ve got the PC project selected as the startup project
(as it is by default), or the phone project selected.

For the PC project, the Remote Machine option enables you to deploy and debug to
another PC reachable on your network (although not over the Internet). This is extremely
handy for testing things on a small tablet not suitable for development work. The target
device must have the Remote Tools for Visual Studio installed and running, which you
can download from the Windows Dev Center.

The Simulator option is the next best thing to having a real tablet, as it provides
mechanisms to simulate touch input, device orientations, network conditions, location
services, and more. The simulator is shown in Figure 1.2. In fact, it has one huge
advantage over testing on a physical device: It enables you to experience your app in a
number of different resolutions and virtual screen sizes, including different aspect ratios.
Given the wide variety of shapes and sizes of screens out there, not even counting phone
screens, testing your app in this fashion is
a must.

If you change the active project to be the
phone project, you’ve got two launch
options. The default Device option
deploys your app to a phone that has been
developer-unlocked and connected to the
 PC via USB. (If the phone isn’t unlocked,
Visual Studio gives you instructions for
how to do this.) The other option is the
Emulator, which gives you a virtual phone
on the host PC, much like the simulator.

The simulator is your actual
computer!

Although the simulator simulates
several things, what you see on the virtual
device is your real “host” computer running
with your actual user account, apps, files, and
so on. (Running the simulator is like initiating
a special kind of remote desktop connection
to yourself.) Changes you make inside the
simulator affect your computer just as if you
made them outside the simulator.

Creating, Deploying, and Profiling an App 9

The first time you select this option, you’re prompted to download the emulator, which
requires you to be running on a 64-bit PC that supports Hyper-V.

FIGURE 1.2 Testing your app on the simulator is like testing it on an army of different-sized devices.

How do I run my app outside of Visual Studio on my PC?

Although compiling your app produces an .exe file in the bin subfolder, you can’t
simply double-click it to run it. If you try, you get an error that explains, “This application

can only run in the context of an app container.” (An “app container” refers to the sandbox in
which universal apps run.) Instead, you can launch it from the list of apps on the Start menu.
Visual Studio automatically installs your app the first time you launch it.

When you run the HelloRealWorld project without any changes, you’ll see why the
project type was called “Blank App.” The app doesn’t actually do anything other than fill
the screen with darkness, as seen in the simulator in Figure 1.2. (If you launch the app in
debug mode, you’ll also see four numbers on the top edge of the screen. These are frame
rate counters described in Chapter 16, “Animation.”) It does, however, set up a lot of
infrastructure that would be difficult and tedious to create from scratch.

The PC project contains the following items:

 ➔ A PC-specific package manifest, a temporary certificate used to sign it, and some
images

➔ A PC-specific main page (MainPage.xaml and MainPage.xaml.cs)

➔ An AssemblyInfo.cs file

Chapter 1 HELLO, REAL WORLD!10

The phone project contains the following items:

➔ A phone-specific package manifest, a temporary certificate used to sign it, and some
images

➔ A phone-specific main page (MainPage.xaml and MainPage.xaml.cs)

➔ An AssemblyInfo.cs file

The shared project contains a class called App, implemented in App.xaml and App.xaml.cs.

The next section examines the package manifests and the images used by it. After that,
we’ll look at the XAML and C# files and make some code changes. The important thing
to realize is that your universal app is really two separate apps—one for PC and one
for phone—that can be given the same identity in the Windows Store. You have the
flexibility of sharing no code, or sharing almost all of it.

Visual Studio provides some amazing tools for diagnosing performance problems in your
app. You can access them by clicking Performance and Diagnostics on the Debug menu.
On this page, select a tool to collect data while your app is launched. You perform the
scenario you want to measure, and then stop the data collection. A rich, interactive report
is then presented to you. The four tools on the Performance and Diagnostics page are:

➔ XAML UI Responsiveness—Attributes the time spent to activities such as parsing
XAML and layout of your elements. Shows you the performance cost of each UI
element. You can also investigate times when you’re not achieving the desired 60
frames per second on the UI thread.

➔ CPU Usage and Memory Usage—Traditional profiling, with interactive graphs,
diagrams of hot paths complete with annotated code integration, and much more.

➔ Energy Consumption—Estimates how power-hungry your app is, based on its usage
of the CPU, display, and network.

In addition to the Visual Studio tools, you can download the Windows Performance
Toolkit for additional analysis. This includes a Windows Performance Recorder tool for
capturing a trace, and a Windows Performance Analyzer tool for analyzing the trace.

Understanding the App Packages
The package manifest in the PC and phone projects is a file called Package.appxmanifest.
(“AppX” is a term sometimes used within Microsoft for app packages that stuck around
in the filename.) This manifest describes your app to Windows as well as the Windows
Store—its name, what it looks like, what it’s allowed to do, and more. It’s an XML file,
although you have to tell Visual Studio to “View Source” in order to see the XML. There’s
usually no need to view and edit the XML directly, however. The default view is a tabbed
set of forms to fill out, which is the easiest way to populate all the information. There are
seven tabs:

Understanding the App Packages 11

➔ Application

➔ Visual Assets

➔ Requirements (phone only)

➔ Capabilities

➔ Declarations

➔ Content URIs

➔ Packaging

For our HelloRealWorld app, we don’t need to change anything in the package manifest.
But now is a good time to understand what can be done on each of these tabs. The
manifests for phone and PC are almost identical. This section calls out places where they
differ. When you change a setting, however, you must remember to change it in both
manifest files if you want it to apply to both PCs and phones.

Application
On the Application tab, you can set the app’s name and description, default language, its
minimum width (PC only), whether to prevent installation to SD cards (phone only), and
notification settings (if your app supports them). Notifications are covered in Chapter 24,
“Thinking Outside the App: Live Tiles, Notifications, and the Lock Screen.” You can even
restrict the preferred orientations of your app if you’d rather not have it automatically
rotate to all four of them:

➔ Landscape (horizontal)

➔ Landscape-flipped (horizontal but upside down)

➔ Portrait (vertical, with the bottom of the screen on the left)

➔ Portrait-flipped (vertical, with the bottom of the screen on the right)

Disabling the flipped orientations would be an odd thing to do, but disabling some
orientations can make sense for certain types of games that wish to be landscape only.
Note that this is just a preference, not a guarantee, because not all devices support
rotation. For example, a portrait-only app launched on a typical desktop PC must accept
the one-and-only landscape orientation. However, if a device that does support rotation
is currently locked to a landscape orientation, a portrait-only app actually runs in the
portrait orientation, ignoring the lock setting.

Visual Assets
On the Visual Assets tab, you set the characteristics of your app’s tile and splash screen, as
well as artwork used in a number of other contexts.

Customizing the Splash Screen
To ensure that every app’s splash screen can be displayed practically instantaneously
(before your app even gets loaded), you have little control over it. You specify an image
(although the dimensions are different for phone versus PC) plus two optional larger sizes
to support high DPI screens, and a background color for the splash screen. That’s it. Visual
Studio gives you an appropriately sized placeholder SplashScreen.scale-100.png file in

Chapter 1 HELLO, REAL WORLD!12

an Assets subfolder, intentionally made ugly to practically guarantee you won’t forget to
change it before submitting your app to the Windows Store.

When your splash screen is shown, the image is displayed centered on top of your chosen
background color. Figure 1.3 shows an example SplashScreen.scale-100.png containing
a Pixelwinks logo, and Figure 1.4 shows what this looks like on the PC simulator. The
splash screen is given a yellow background for demonstration purposes. A real app should
make the background color match the background of the image or simply make the
image’s background transparent.

FIGURE 1.3 An example SplashScreen.scale-100.png with a nontransparent background for
demonstration purposes

FIGURE 1.4 A live splash screen shown inside the simulator with a garish yellow background to
clearly show the bounds of the image

Understanding the App Packages 13

When your app is launched, the splash screen automatically animates in and auto-
matically disappears once your app has loaded and has made a call to Window.Current.
Activate. This gives you the flexibility to do arbitrarily complex logic before the splash
screen goes away, although you should avoid doing a lot of work here. (Your app is
given about fifteen seconds to remain on the splash screen before it gets terminated by
Windows.)

Customizing Logo Images
The Tile Images and Logos section on the Visual Assets tab can be confusing and
overwhelming. Besides the Store Logo, which supports up to 3 different sizes, it lists 5
 different logo sizes, with each one actually accepting 4–8 different sizes of image files!
All told, you can assign 27 different image files representing your logo! Let’s start making
some sense out of these images. Figure 1.5 shows what each logo should have been
called to make things less confusing, and the following list explains each one using the
terminology found in the package manifest:

 ➔ Square 70x70 Logo (Square 71x71 Logo in the phone manifest)—This is used for
the small version of your app’s tile. Although assigning an image here is optional,
the small tile size is not. If you don’t provide an image, the medium tile image is
used (and scaled down) when a user changes your tile size to small.

➔ Square 150x150 Logo—This is used for the medium version of your app’s tile. The
medium tile size is the one required size, so at least a 100% scale image is required.

➔ Wide 310x150 Logo—This is used for the wide version of your app’s tile, if you
choose to support that tile size. If you assign at least a 100% scale image here, your
app automatically supports the wide tile size. Otherwise, it doesn’t.

➔ Large 310x310 Logo—This is used for the PC-only large version of your app’s tile,
if you choose to support that tile size. If you assign at least a 100% scale image here
and for the wide logo, your app automatically supports the large tile size. (Your app
can only support a large tile if it also supports a wide tile.) Otherwise, it doesn’t.

➔ Square 30x30 Logo (Square 44x44 Logo in the phone manifest)—This is used
throughout Windows. It is used by the apps list, search results, the Share pane, the
file picker, an overlay on live tiles, the Alt+Tab user interface, Task Manager, file
icons for associated file types, and so on. At least the 100% scale image is required.
Although the image is nominally 30x30 or 44x44 pixels and supports 2–3 additional
scaled sizes, this logo supports 4 additional sizes in the PC manifest to be used for
file icons on the desktop (if your app has associated file types): 16x16, 32x32, 48x48,
and 256x256.

➔ Store Logo—A 50x50 image (at 100% scale) used by the Windows Store. At least the
100% scale image is required.

Visual Studio provides placeholder image files for the required logo images only: the
square 150x150 logo, the square 30x30 (PC) and 44x44 (phone) logo, and the store logo.

Chapter 1 HELLO, REAL WORLD!14

Small tile logo

Medium tile logo

Wide tile logo

Large tile logo

Icon logo

FIGURE 1.5 More understandable names for the different logo images you can provide

To make your tile look good on all devices (and to increase the chances of Microsoft
promoting your app in the Windows Store or in advertisements), you should support all
scale sizes for each logo you provide. It’s perfectly okay to omit large tile and wide tile

logos, however. Many of Microsoft’s own apps omit them.
Furthermore, it’s best not to support a large tile and/or wide tile unless you’re going to make
it a live tile (covered in Chapter 24). Otherwise, your pinned app occupies more space without
adding any extra value.

Why does each tile logo support four different image sizes,
and how are they used?

Depending on the pixel density of the screen, Windows automatically scales user
interfaces to prevent items from being too small to touch or too hard to read. This applies to all
universal apps as well as system UI such as the file picker. To prevent your images from looking
unsightly by being scaled upward, you can provide multiple versions of any image: one at its
normal size, one at 140% of its normal size, and one at 180% of its normal size. The Start screen
and Start menu additionally support shrinking its content to an 80% scale.
Windows uses a file naming pattern to manage this, and the package manifest designer in Visual
Studio automatically names your assigned image files accordingly. By default, the medium tile
icon is assigned to Assets\Logo.png. However, at runtime, Windows automatically looks for a
file with the following name instead, depending on the current scale being applied:

 ➔ Assets\Logo.scale-80.png (for 80% scale)
 ➔ Assets\Logo.scale-100.png (for 100% scale)

Understanding the App Packages 15

As with the splash screen, you can specify a background color for your tile. For the best
results, this color (as well as the tile images) should match what you use in your splash
screen. The desired effect of the splash screen is that your tile springs to life and fills
the screen in a larger form. Even if your tile background color is completely covered by
opaque tile images, there are still contexts in which the color is seen, such as the zoomed-
out Start screen view or the Alt+Tab user interface. Therefore, choose your background
color (and determine whether you want your images to use transparency) carefully!

You can choose a “default size,” which is the initial size of your tile if the user decides to
pin it to Start. This can only be set to the medium tile or the wide tile (if you support a
wide tile). If unset, wide is given precedence over medium.

You can also choose a “short name,” which is the text that gets overlaid on the bottom of
your tile. You can even specify which tile sizes should show the text: medium, wide, and/
or large. (Small tiles do not support overlaid text.) Many apps turn off the text because
their images already include a logo with the name.

Finally, you can decide whether you want the overlaid text to be “light” (which means
white) or “dark” (which means a dark gray). Although most apps use white text, you may
need to choose the dark option if you want your tile to have a light background color.

➔ Assets\Logo.scale-140.png (for 140% scale)
 ➔ Assets\Logo.scale-180.png (for 180% scale)

This is why the file in your project is actually named Logo.scale-100.png despite it being
referenced as simply Logo.png. (It could drop the .scale-100 part, however, because 100%
scale is assumed for a file without that specification.) If an exact match doesn’t exist for the
current scale, Windows uses the next best match and scales it accordingly.
The store logo and splash screen images don’t support the 80% scale size. The additional four
sizes of the square 30x30 logo, assigned to Assets\SmallLogo.png by default, use a similar
naming scheme:
 ➔ Assets\SmallLogo.targetsize-16.png (for 16x16 file icons)
 ➔ Assets\SmallLogo.targetsize-32.png (for 32x32 file icons)
 ➔ Assets\SmallLogo.targetsize-48.png (for 48x48 file icons)
 ➔ Assets\SmallLogo.targetsize-256.png (for 256x256 file icons)

You can use a similar technique for providing different files for high contrast mode, different
cultures, and more. This applies not just for the images here, but for images used inside your app
as well. See Chapter 12, “Images,” for more details.

To create a logo that fits in with the built-in apps, it should have a transparent back-
ground and the drawing inside should:

 ➔ Be completely white
 ➔ Be composed of simple geometric shapes
 ➔ Use an understandable real-world metaphor

Chapter 1 HELLO, REAL WORLD!16

Requirements
The phone-only Requirements tab enables you to prevent your app from being
downloaded/installed on devices that don’t meet certain hardware requirements. You
can select any of the following requirements: Gyroscope, Magnetometer, NFC, Front
Camera, and Rear Camera.

Capabilities
On the Capabilities tab, you select each capability required by your app. A capability
is a special permission for actions that users might not want certain apps to perform,
whether for privacy concerns or concerns about data usage charges. In the Windows
Store, prospective users are told what capabilities each app requires before they decide
whether to download it. To users, they are described as permissions, sometimes with more
descriptive names.

For the most part, user approval of all requested permissions is an implicit part of
downloading an app. However, the use of privacy-related capabilities, such as location
services, prompts the user the first time an app invokes a relevant API when it runs on
a PC. Furthermore, some capabilities can be disabled or reenabled at any time by a user.
When the Settings pane is shown while a universal app is running on a PC, it contains
a “Permissions” link that displays an app’s capabilities and toggle switches for any that
can be turned on and off. Figure 1.6
shows what this looks like while running
HelloRealWorld on a PC, both with the
default capability already chosen in our
package manifest—Internet (Client)—and
after selecting every listed capability in the
package manifest.

The drawing used in all logo images should look the same, just scaled to different sizes and with
different margins.
For example, the drawing for the 150x150 image should generally fit in a 66x66 box centered
but nudged a little higher to leave more space for any overlaid text. Typically the drawing has
a 42-pixel margin on the left and right, a 37-pixel margin on top, and a 47-pixel margin on the
bottom. The drawing for the 30x30 image should generally fit in a 24x24 centered box, leaving
just 3 pixels of margin so it’s easier to see at the small size. Similarly, the 50x50 store logo
drawing should occupy a centered 40x40 square (leaving 5 pixels of margin on each side).
Creating white-on-transparent images requires some practice and patience. You’ll want to use
tools such as PAINT.NET, mentioned in this book’s “Introduction” section. A few of the characters
from fonts such as Wingdings, Webdings, and Segoe UI Symbol can even be used to help create
a decent icon!
Of course, games or apps with their own strong branding usually do not follow these guidelines,
as being consistent with their own identity outweighs being consistent with Windows.

You want to restrict the set of
capabilities requested by your app
as much as possible, because it is a

competitive advantage. For example, users
might decide not to buy your fun piano app
if it wants permission to use the Internet!

Understanding the App Packages 17

When the app uses the
Internet (Client) capability

When the app uses
every listed capability

FIGURE 1.6 The “Permissions” section of the Settings pane lists the current app’s capabilities, and
enables turning some of them on or off at runtime.

Excluding the phone-only Appointments and Contacts capabilities, the long list of
available capabilities can be grouped into four different categories:

 ➔ File capabilities

➔ Device capabilities

➔ Network capabilities

➔ Identity capabilities

Most of them can be used freely, although some of them are restricted. Apps that use
restricted capabilities must go through extra processes when uploaded to the Windows
Store and are only granted to business developer accounts with written justification.
Fortunately, the restricted capabilities (called out in the upcoming lists) are for uncommon
scenarios.

File Capabilities
As you’ll read in Chapter 19, “Working with Data,” apps can read and write their own
private files in an isolated spot, and those files can even participate in automatic roaming
between a user’s devices. In addition, users can give apps explicit permission to read/write

Chapter 1 HELLO, REAL WORLD!18

other “normal” files and folders via the Windows file picker. This is all that most apps
need, and does not require any capabilities.

Beyond these two features, however, programmatic reading and writing of files requires
special capabilities. There is one for each of the four built-in libraries (Documents, Music,
Pictures, and Videos) plus another for attached storage devices:

➔ Music Library, Pictures Library, and Videos Library—Enables enumerating and
accessing all music, pictures, and videos, respectively, without going through the
file picker.

➔ Documents Library (PC only)—Enables adding, changing, and deleting files in
the Documents library on the local computer without going through the file picker.
However, this capability is restricted to specific file type associations that must
also be declared in the package manifest (on the Declarations tab). This is listed
separately from the preceding three capabilities because it is a restricted capability
that needs special approval from Microsoft in order to publish the app in the
Windows Store. And unlike the capabilities for the Music, Pictures, and Videos
libraries, this cannot be used to access Documents libraries on other computers in
the same HomeGroup.

 ➔ Removable Storage—Enables adding, changing, and deleting files on devices such as
external hard drives or thumb drives connected to the local computer, again without
going through the file picker. As with the preceding capability, this is restricted to
file type associations that must also be declared in the package manifest.

Device Capabilities
Apps can access simple sensors such as an accelerometer or devices such as a printer
without any capabilities. Accessing other sensors or devices does require specific
capabilities, however. The list of device types grows over time (and can be extended by
third parties), but the Capabilities tab exposes four choices, listed below. For all of them
except proximity, users can disable them at any time, so apps must be prepared to handle
this gracefully.

➔ Location—Reveals the computer’s location, either precise coordinates from a GPS
sensor (if one exists) or an estimation based on network information.

➔ Microphone—Enables recording audio from a microphone.

➔ Webcam—Enables recording video—or capturing still pictures—from a camera. Note
that this doesn’t include sound. If you want to record audio and video, you need
both Webcam and Microphone capabilities.

➔ Proximity—Enables communication with nearby devices, either via Wi-Fi Direct or
near field communication (NFC).

Chapters 13, “Audio, Video and Speech,” and 22, “Reading from Sensors,” explain how
to write apps that take advantage of these capabilities. Additional device capabilities exist

Understanding the App Packages 19

that don’t appear on the Capabilities tab. These must be added manually to the package
manifest XML. See Chapter 23, “Controlling Devices,” for more information.

Network Capabilities
Without any network capabilities, a universal app cannot do any communication over
any kind of network except for the automatic roaming of application data described in
Chapter 19, the seamless opening/saving of network files enabled by the file picker, or
the peer-to-peer connections enabled by the Proximity capability. Four types of network
capabilities exist:

➔ Internet (Client) (PC only)—This is the only network capability that most apps
need. It provides outbound access to the Internet and public networks (going
through the firewall).

➔ Internet (Client & Server)—This is just like the preceding capability except it
provides both inbound and outbound access, which is vital for peer-to-peer apps. It’s
a superset of “Internet (Client)” so if you request this capability in your manifest,
then you don’t need to request the
other one. In the phone manifest,
this is the only Internet option.

➔ Private Networks (Client & Server)
(PC only)—Provides inbound and
outbound access to trusted home and
work networks (going through the
firewall).

➔ Enterprise Authentication—Enables
intranet access using the current
Windows domain credentials. This is
a restricted capability.

Identity Capabilities
This is not really a fourth category of capabilities, but rather a single outlier that
doesn’t fit anywhere else. The Shared User Certificates capability enables access to
digital certificates that validate a user’s identity. The certificate could be installed on the
computer or stored on a smart card. This is mainly for enterprise environments, and it is a
restricted capability.

Declarations
The Declarations tab is the one with the most options. This is where you declare your
app’s support for one or more contracts, if applicable. Contracts enable your app to
cooperate with another app, or Windows itself, to complete a well-defined task. Every
contract has a source that initiates the task and a target that completes it.

Your app can be the source for a contract without doing anything in the package
manifest. (It just makes various API calls.) To be the target, however, your app must

Visual Studio project templates
enable an Internet capability by
default!

By default, the PC manifest has “Internet
(Client)” enabled, and the phone manifest
has “Internet (Client & Server)” enabled.
This is done because the Visual Studio team
feared that it would be too confusing for
developers if simple network-dependent
calls failed in their brand new projects.
Therefore, be sure to remove the capability if
you don’t need it.

Chapter 1 HELLO, REAL WORLD!20

be activated in a special manner. This is what requires the declaration in the package
manifest. Therefore, you can think of the list of available declarations as the list of
available contract targets.

Unlike capabilities, contract target declarations are not listed in the Windows Store as
potentially unwanted features. In fact, you should go out of your way to mention your
supported contract scenarios, because they can be very useful! There’s nothing about
being a contract target that is inherently dangerous for the user. Supporting certain
contracts does require relevant capabilities, but many don’t require any. See Chapter 21,
“Leveraging Contracts,” for specific examples.

Content URIs
This tab only applies if you are hosting HTML content inside your app. It simply houses a
list of HTTPS URLs whose JavaScript is allowed (or disallowed) to raise events that can be
handled by your app. For more information, see the discussion of the WebView control in
Chapter 14, “Other Controls.”

Packaging
The Packaging tab is meant to describe information needed for the app’s listing in the
Windows Store. However, for apps in the store, this information is managed by the
Windows Dev Center dashboard. You therefore don’t normally need to change these
values in your local package manifest:

➔ The package name is a unique identifier. Visual Studio automatically fills it in with
a globally-unique identifier known as a GUID. That said, for easier debugging and
identification of your app’s local data store, it’s best to replace the GUID with a
human-readable name, such as CompanyName.AppName. This name doesn’t impact
real users of your app, as the Windows Store assigns this value in the package that
users download.

 ➔ The package display name is the name of your app in the store, but this also gets
replaced when you follow the procedure to upload an app, so you can leave this
item alone.

 ➔ The version, set to 1.0.0.0 by default, is a four-part value interpreted as Major.Minor.
Build.Revision.

➔ The bottom of this tab contains publisher information based on the certificate used
to authenticate the package. Visual Studio configures this to work with the tempo-
rary certificate it generates, and the store upload process reconfigures it to work with
your developer account.

For testing certain notification or purchase scenarios that depend on an app’s identity in
the Windows Store, you can automatically update your local package manifest’s packaging
values to match the values maintained by the Windows Store. To do this, you can select
Associate App with the Store…, which can be found on the Store menu in Visual Studio
Express or on the Project, Store menu in other editions.

Updating XAML and C# Code 21

Updating XAML and C# Code
With the tour of the package manifests complete, we are ready to fill our blank app with a
little bit of content. Let’s look at the remaining files in our project and update them where
necessary.

In this example, we want to use the exact same main page for both PCs and phones.
Therefore, drag MainPage.xaml from the PC project to the shared project, then delete the
copy of the file from the PC and phone projects. (These actions automatically apply to
MainPage.xaml.cs as well, which is a child node of MainPage.xaml in Solution Explorer.)
Now we are ready to work on a single codebase for both types of devices.

The Main Page User Interface
Every app consists of one or more windows with one or more pages. Our HelloRealWorld
project, created from the Blank App template, is given a single window with a single
page called MainPage. It defines what the user sees once your app has loaded and the
splash screen has gone away. MainPage, like any page that would be used in an app, is
implemented across two files: MainPage.xaml contains the user interface, and MainPage.
xaml.cs contains the logic, often called the code-behind. Listing 1.1 shows the initial
contents of MainPage.xaml.

LISTING 1.1 MainPage.xaml—The Initial Markup for the Main Page

<Page

x:Class="HelloRealWorld.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="using:HelloRealWorld"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

</Grid>

</Page>

At a quick glance, this file tells us:

➔ This is a class called MainPage (in the HelloRealWorld namespace) that derives from
a class called Page (the root element in this file).

 ➔ It contains an empty Grid (an element examined in Chapter 4, “Layout”) whose
background is set to a theme-defined color. From running the app, we know this
color is a very dark gray (#1D1D1D).

 ➔ It contains a bunch of XML namespaces to make adding new elements and attri-
butes that aren’t in the default namespace more convenient. These XML namespaces
are discussed in the next chapter.

Chapter 1 HELLO, REAL WORLD!22

Listing 1.2 updates the blank-screen MainPage.xaml with a few elements to produce the
result in Figure 1.7, shown running on a PC.

LISTING 1.2 MainPage.xaml—Updated Markup for the HelloRealWorld App

<Page

x:Class="HelloRealWorld.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="using:HelloRealWorld"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

<StackPanel Name="stackPanel" Margin="100" Background="Blue">

<TextBlock FontSize="80" TextWrapping="WrapWholeWords" Margin="12,48">

 Hello, English-speaking world!</TextBlock>

<TextBlock FontSize="28" Margin="12">Please enter your name:</TextBlock>

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

<TextBox Name="nameBox" Margin="12"/>

<Button Grid.Column="1" Click="Button_Click">Go</Button>

</Grid>

<TextBlock Name="result" FontSize="28" Margin="12"/>

</StackPanel>

</Grid>

</Page>

This listing adds a bunch of new content inside the topmost Grid. The Grid and
StackPanel elements help to arrange the user-visible elements: TextBlocks (i.e. labels), a
TextBox, and a Button. All of these elements are described in depth in upcoming chapters.

The idea for this app is to display the user’s name in the TextBlock named result once
he or she clicks the Go Button. (Granted, this is not a useful app, but it’s all we need to
demonstrate the concepts throughout the remainder of this chapter.) To act upon the
Button being clicked, this XAML specifies that a method called Button_Click should be
called when its Click event is raised. This method must be defined in the code-behind
file, which we’ll look at next.

Updating XAML and C# Code 23

FIGURE 1.7 The HelloRealWorld user interface asks the user to type his or her name.

The Main Page Logic
Listing 1.3 shows the initial contents of MainPage.xaml.cs, the code-behind file
for MainPage.xaml. Until we add our own logic, it contains only a required call to
InitializeComponent that constructs the page with all the visuals defined in the XAML
file. The class is marked with the partial keyword because its definition is shared with a
hidden C# file that gets generated when the XAML file is compiled.

LISTING 1.3 MainPage.xaml.cs—The Initial Code-Behind for the Main Page

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Runtime.InteropServices.WindowsRuntime;

using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

using Windows.UI.Xaml.Data;

Chapter 1 HELLO, REAL WORLD!24

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at

// http://go.microsoft.com/fwlink/?LinkId=234238

namespace HelloRealWorld

{

 /// <summary>

 /// An empty page that can be used on its own or navigated to within a Frame.

 /// </summary>

public sealed partial class MainPage : Page

 {

public MainPage()

 {

 this.InitializeComponent();

 }

 }

}

Never remove the call to InitializeComponent in the constructor of your
code-behind class!

InitializeComponent is what associates your XAML-defined content with the instance
of the class at run-time.

We need to add an implementation of the Button_Click method referenced by the XAML.
It can look as follows:

void Button_Click(object sender, RoutedEventArgs e)

{

 this.result.Text = this.nameBox.Text;

}

The named elements in the XAML correspond to fields in this class, so this code updates
the result TextBlock with the text from the nameBox TextBox. Figure 1.8 shows what this
looks like, after the user types “Adam” then clicks the Button.

The Application Definition
The application definition is contained in App.xaml and its code-behind file, App.xaml.
cs. App.xaml is a special XAML file that doesn’t define any visuals, but rather defines an
App class that can handle application-level tasks. Usually the only reason to touch this
XAML file is to place new application-wide resources, such as custom styles, inside its

Updating XAML and C# Code 25

Application.Resources collection. Chapter 17, “Styles, Templates, and Visual States,”
contains many examples of this. Listing 1.4 shows the contents of App.xaml in our
HelloRealWorld project.

FIGURE 1.8 The result TextBlock contains the typed text after the user clicks the Button.

LISTING 1.4 App.xaml—The Markup for the App Class

<Application

 x:Class="HelloRealWorld.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:HelloRealWorld">

</Application>

Listing 1.5 contains the auto-generated contents of the code-behind file for App.xaml. It
contains three vital pieces:

 ➔ A constructor, which is effectively the app’s main method. The plumbing that
makes it the app’s entry point is enabled by an “Entry point” setting in the package
manifest (on the Application tab). When you create a project, Visual Studio

Chapter 1 HELLO, REAL WORLD!26

automatically sets it to the namespace-qualified name of the project’s App class
(HelloRealWorld.App in this example).

 ➔ Logic inside an OnLaunched method that enables the frame rate counter overlay
in debug mode, navigates to the app’s first (and in this case only) page, and calls
Window.Current.Activate to dismiss the splash screen. If you want to add a new
page and make it be the starting point of the app, or if you want to customize the
initialization logic, this is where you can do it. See Chapter 6, “App Lifecycle,” for
more information.

 ➔ An OnSuspending method that is attached to the base class’s Suspending event. This
gives you an opportunity to save state before your app is suspended, although the
generated code does nothing here other than provide a TODO comment. Chapter 6
examines app suspension.

LISTING 1.5 App.xaml.cs—The Code-Behind for the App Class

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Runtime.InteropServices.WindowsRuntime;

using Windows.ApplicationModel;

using Windows.ApplicationModel.Activation;

using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

using Windows.UI.Xaml.Data;

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Media.Animation;

using Windows.UI.Xaml.Navigation;

namespace HelloRealWorld

{

 /// <summary>

/// Provides application-specific behavior to supplement the base class.

/// </summary>

sealed partial class App : Application

 {

#if WINDOWS_PHONE_APP

 private TransitionCollection transitions;

#endif

Updating XAML and C# Code 27

/// <summary>

/// Initializes the singleton application object. This is the first line

/// of authored code executed; the logical equivalent of main/WinMain.

/// </summary>

public App()

 {

 this.InitializeComponent();

 this.Suspending += OnSuspending;

 }

 /// <summary>

/// Invoked when the application is launched normally by the end user.

/// Other entry points are used when the application is launched to open

/// a specific file, to display search results, and so forth.

/// </summary>

/// <param name="args">Details about the launch request and process.</param>

protected override void OnLaunched(LaunchActivatedEventArgs args)

 {

#if DEBUG

if (System.Diagnostics.Debugger.IsAttached)

 {

 this.DebugSettings.EnableFrameRateCounter = true;

 }

#endif

Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,

// just ensure that the window is active

if (rootFrame == null)

 {

 // Create a Frame and navigate to the first page

var rootFrame = new Frame();

 // TODO: change this value to a cache size

 // that is appropriate for your application

 rootFrame.CacheSize = 1;

if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)

 {

 //TODO: Load state from previously suspended application

 }

// Place the frame in the current Window

Window.Current.Content = rootFrame;

 }

Chapter 1 HELLO, REAL WORLD!28

if (rootFrame.Content == null)

 {

#if WINDOWS_PHONE_APP

 … Code related to animations

#endif

// When the navigation stack isn't restored, navigate to the first page

if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))

 {

 throw new Exception("Failed to create initial page");

 }

 }

 // Ensure the current Window is active

Window.Current.Activate();

 }

#if WINDOWS_PHONE_APP

 … More code related to animations

#endif

/// <summary>

/// Invoked when application execution is being suspended. Application state

/// is saved without knowing whether the application will be terminated or

/// resumed with the contents of memory still intact.

/// </summary>

/// <param name="sender">The source of the suspend request.</param>

/// <param name="e">Details about the suspend request.</param>

private void OnSuspending(object sender, SuspendingEventArgs e)

 {

 var deferral = e.SuspendingOperation.GetDeferral();

 //TODO: Save application state and stop any background activity

 deferral.Complete();

 }

 }

}

Although the same App.xaml.cs file is compiled for both PC and phone projects, it
demonstrates a way to write phone-specific or PC-specific code within a shared file: using
conditional compilation with the WINDOWS_PHONE_APP symbol.

Making the App World-Ready 29

There’s one more file that appears in the PC and phone projects—AssemblyInfo.cs—but
it’s not worth showing in this book. It contains a bunch of attributes where you can put
a title, description, company name, copyright, and so on that get compiled into your
assembly (the EXE or DLL). But setting these is unnecessary because all of the information
used by the Windows Store is separately managed. Still, the AssemblyVersion and
AssemblyFileVersion attributes, typically set to the same value, can be useful for you to
keep track of distinct versions of your application:

[assembly: AssemblyVersion("1.0.0.0")]

[assembly: AssemblyFileVersion("1.0.0.0")]

By using *-syntax, such as "1.0.*", you can even let the version number auto-increment
every time you rebuild your app.

Making the App World-Ready
At this point, our HelloRealWorld app still only says “hello” to the English-speaking parts
of the world. The Windows Store serves hundreds of markets and over a hundred different
languages, so ignoring them greatly reduces the audience for your app. Making your app
world-ready involves two things: globalization and localization.

Globalization refers to making your app act appropriately for different markets without
any changes or customizations. An example of this is formatting the display of currency
correctly for the current region without writing special-case logic. The Windows.
Globalization namespace contains a lot of functionality for handling dates and times,
geographic regions, number formatting, and more. Plus, built-in XAML controls such as
DatePicker and TimePicker, discussed in Chapter 14, are globalization-ready. For many
apps, these features might not apply.

Localization, which is relevant for practically every app, refers to explicit activity to adapt
an app to each new market. The primary example of this is translating text in your user
interface to different languages and then displaying the translations when appropriate.
Performing this localization activity is the focus of this section.

To make an app ready for localization, you should remove hardcoded English strings that
are user-visible, and instead mark such elements with a special identifier unique within
the app. Listing 1.6 updates our XAML from Listing 1.2 to do just that.

If you want to create a richer splash screen, perhaps with an animated progress
graphic, the way to do this is by mimicking the splash screen with a custom page.
Inside App.OnLaunched, you can navigate to an initial page that looks just like the

real (static) splash screen but with extra UI elements and custom logic. The instance of
LaunchActivatedEventArgs passed to OnLaunched even has a SplashScreen property that
exposes an ImageLocation rectangle that tells you the coordinates of the real splash screen
image. This makes it easy to match the splash screen’s appearance no matter what the current
screen’s resolution is. Such a user interface is often called an “extended splash screen.”

Chapter 1 HELLO, REAL WORLD!30

LISTING 1.6 MainPage.xaml—Markup with User-Visible English Text Removed

<Page

x:Class="HelloRealWorld.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="using:HelloRealWorld"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d">

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

<StackPanel x:Uid="Panel" Name="stackPanel" Margin="100">

<TextBlock x:Uid="Greeting" FontSize="80" TextWrapping="WrapWholeWords"

 Margin="12,48"/>

<TextBlock x:Uid="EnterName" FontSize="28" Margin="12"/>

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition/>

<ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

<TextBox Name="nameBox" Margin="12"/>

<Button x:Uid="GoButton" Grid.Column="1" Click="Button_Click"/>

</Grid>

<TextBlock Name="result" FontSize="28" Margin="12"/>

</StackPanel>

</Grid>

</Page>

The x:Uid marking is completely independent from an element’s Name. The former
is specifically for the localization process, and the latter is for the benefit of code-
behind. Note that Listing 1.6 not only removes the three hardcoded strings from the
two TextBlocks and the Button, but it also removes the explicit "Blue" color from the
StackPanel! This way, we can customize the color for different languages in addition
to the text.

With the IDs in place and the text and color for English removed, we need to add them
back in a way that identifies them as English-only. To do this, add a new folder to the
shared project called en. This is the language code for all variations of English. If you want
to target the United Kingdom separately, you could add a folder called en-GB. If you want
to target Canada separately, you could add a folder called en-CA. And so forth.

Right-click on the en folder and select Add, New Item, then pick Resources file from the
General tab. The default name of Resources.resw is fine. This file is a table for all your
language-specific strings. Figure 1.9 shows this file populated for English.

Making the App World-Ready 31

Each value must be given a name of the
form UniqueId.PropertyName. UniqueId
must match the x:Uid value for the
relevant element, so the Panel.Background
entry in Figure 1.9 sets Background to
Blue on the StackPanel marked with
x:Uid="Panel" in Listing 1.6. From the
listing, it’s not obvious that GoButton’s
relevant property is called Content, unlike
the TextBlocks’ property called Text, but
as you learn about the different elements
throughout this book, you’ll understand
which properties to set.

FIGURE 1.9 The Resources.resw file in
the en folder is populated with English-specific
values.

Make sure your app’s default language matches the language code for your
default .resw file!

For me, the default language in the package manifests is set to en-US. Because we
added default resources for en rather than specifically for en-US, I must change the default
language in both manifests to en for the rest of the features discussed in this section to work
correctly. Fortunately, building your app with such a mismatch causes a warning to be reported.

After filling out the Resources.resw file, you can run the HelloRealWorld app and the
result is identical to what we saw earlier in Figures 1.7 and 1.8. However, the app is now
ready to be localized for other languages.

We could add additional folders named after language codes and manually populate
translated resources with the help of a knowledgeable friend, a professional translator, or
translation software. Depending on the current user’s language settings, the appropriate
resources are chosen at runtime, with a fallback to the default language if no such
resources exist.

However, a better option exists. To take advantage of it, you must download and install
the Multilingual App Toolkit from the Windows Dev Center. Once you do this, you can
select Enable Multilingual App Toolkit from Visual Studio’s Tools menu. Unfortunately,
you must do this twice: once with the PC project highlighted, and once with the phone
project highlighted. This automatically adds an .xlf file to a new subfolder added to
the selected project called MultilingualResources for a test-only language called Pseudo
Language.

We’ll leverage the Pseudo Language in a moment, but first let’s add support for a second
real language: Traditional Chinese. To do this, right-click on each project in Solution
Explorer and select Add translation languages…. This produces the dialog shown in
Figure 1.10.

Chapter 1 HELLO, REAL WORLD!32

FIGURE 1.10 The Multilingual App Toolkit automates the process for supporting new languages.

In this dialog, Pseudo Language and our default English language is already selected,
but we can scroll down and select Chinese (Traditional) [zh-Hant] from the list. After
pressing OK, the MultilingualResources folder now has two .xlf files: one for Pseudo
Language, and one for Traditional Chinese.

What is Pseudo Language?

Pseudo Language is designed to test how well your app handles being localized to
various (real) languages. When leveraging machine translation to Pseudo Language,

you get an English-looking string whose contents are still recognizable, but designed to catch
problems.
Pseudo Language strings are longer than the corresponding English strings, to help you catch
cases where text might get truncated or cause issues from wrapping when you translate to a real
language whose text tends to be longer than English. Each string also begins with an ID, to help
you track a problematic piece of text to its original resource. For example, a Pseudo Language
translation of Hello, English Speaking World! can look like [07223][!!_Ĥȩłĺ ó,
É N̆g∙ļi̧śh--şpêãḰî Ng∙ ẃòŕłđ!_!!]. Because of the unique appearance of Pseudo Language,
it also helps you catch user-visible text in your user interface that you forgot to extract to a
resource.

What are .xlf files?

These files, which are generated by the Multilingual App Toolkit, are XLIFF files, an
industry-standard XML format for localizable data. In addition to listing source and

target strings (with optional comments), these files enable a workflow in which resources can be
marked as New, Needs Review, Translated, Final, or Signed Off.
The benefit of using XLIFF files to store translations is that you can send them directly to a
professional translation vendor, as they should already have a workflow involving this format.

Making the App World-Ready 33

Now rebuild the HelloRealWorld app. This populates each .xlf file with a “translation”
for each item from the default language .resw file. Initially, each translation is just the
duplicated English text. However, for some languages, such as the two we’ve chosen, you
can generate machine translations based on the Microsoft Translator service! To do this
for the entire file, right-click on each .xlf file and select Generate machine translations.
Voilà! Now we’ve got initial translations for all of our resources, which you can see by
opening each .xlf file and examining the list inside the multilingual editor. This is shown
in Figure 1.11.

Your willingness to trust the results from machine translation is a personal decision, but at
least machine translation is a good starting point. (Notice that the generated translations
are automatically placed in a “Needs Review” state.) That said, we definitely don’t want
the Blue text translated to ! This isn’t a user-visible string, and is not a valid value
for Background. Instead, let’s “translate” it to Red, which will serve as our language-specific
background color. Similarly, we don’t want Blue’s Pseudo Language translation of [D05A0]
[!!_Bļùè_!!], so let’s change that to Green .

We have one more change to make. We don’t want “Hello, English-speaking world!” to
be translated to Chinese, but rather “Hello, Chinese-speaking world!” Both Microsoft
Translator and a colleague tell me that “ !” is a valid translation, so we can
paste that into the appropriate spot of the Chinese .xlf file.

After rebuilding the solution, we are now ready to test the localized versions of
HelloRealWorld. Just as if we had manually added separate .resw files in per-language
folders, the translated resources are used automatically based on the current Windows
language settings.

To change the default language used by Windows on a phone, you can go to the
language section of the Settings app. To change the default language used by Windows
on a PC, you can either use the PC Settings app or the Control Panel. In PC Settings, this
can be found under Time & language; Region & language. In Control Panel, it’s under
Clock, Language, and Region; Language. Add Chinese (Traditional) and make it the
default language to test the Traditional Chinese resources.

To add Pseudo Language (and make it the default language), you have to use a hidden
trick in Control Panel. After clicking Add languages, type qps-ploc in the search box for
the entry called English (qps-ploc) to appear. You must type the whole thing for this to
work! This language is hidden in this way because no normal user should ever enable it.

Or, if you leverage friends to do your translations, you can have them install the Multilingual App
Toolkit and use its Multilingual Editor in a standalone fashion. No Visual Studio installation is
necessary.
Visual Studio includes functionality for packaging and sending XLIFF files, as well as importing
updated files that merge with your local content. These options can be found by right-clicking an
.xlf file in Solution Explorer.

Chapter 1 HELLO, REAL WORLD!34

Pseudo Language

Chinese (Traditional)

FIGURE 1.11 Each .xlf file contains machine-generated initial translations,
courtesy of Microsoft Translator.

Figure 1.12 shows the result of running HelloRealWorld on a PC when Windows is set to
use each of the two non-English languages. These changes are handled completely by the
resource-loading mechanism. Other than the switch to marking elements with x:Uid, no
code changes were needed. This figure also highlights Pseudo Language’s knack for using
really long strings that can highlight potential weaknesses in your app’s layout.

You can add additional languages to your apps that have already been published in
the Windows Store, thanks to resource pack support. As long as you don’t update any
code or your version number, your new resources get downloaded only to users with a

matching language preference.

Making the App Accessible 35

Pseudo LanguageChinese (Traditional)

FIGURE 1.12 HelloRealWorld now acts appropriately for Traditional Chinese and for the
test-only Pseudo Language.

The Microsoft Local Language Portal (www.microsoft.com/language) is a fantastic
resource for getting translations. You can search for terms and get a translation in every
language supported by Windows (over 100). These are not machine translations, but

rather translations Microsoft has used in their own products. As such, they tend to be geared
towards the kind of user-visible labels that are commonly found in software . The portal even
shows you which products have made use of the translated terms. Just be sure you agree with
the license and terms of use, which can be found on the website.

Making the App Accessible
Universal apps have a number of accessibility features built in, designed to help users with
disabilities. You can test this support by enabling various features in the Ease of Access
section in the PC Settings app or the Settings app on a phone. You can configure Narrator,
a screen reader, and witness it convey information about your app with varying degrees of
success. (You can quickly toggle Narrator on and off by pressing Windows+Enter.) You can
choose a high contrast theme and watch controls used by your app automatically change
to match the theme. You can turn off standard animations. And so on.

http://www.microsoft.com/language

Chapter 1 HELLO, REAL WORLD!36

To make your app usable to the broadest set of customers, including people with
disabilities, you should take steps to ensure it works even better with these assistive
technologies. In this section, we look at improving the screen reading experience for our
HelloRealWorld app, and accounting for high contrast themes.

The Windows SDK includes several tools that help you ensure that your app is accessible.
The most important one is UI Accessibility Checker, which reports missing accessibility
information in your app. Others are Inspect, which is a viewer for accessibility data on
your elements, and Accessible Event Watcher, which focuses on the accessiblity events

that should be raised.

Improving Screen Reading
If you turn on Narrator and launch the HelloRealWorld app (with English as the Windows
default language), you hear the following:

“HelloRealWorld window”

“Editing”

The first utterance is triggered by the app’s window getting focus, and the second
utterance is triggered by the TextBox getting focus (which happens automatically).

This experience isn’t good enough, because Narrator doesn’t report the purpose of the
TextBox. To fix this, we need to leverage the UI Automation framework, which is as
simple as setting the following automation property on the TextBox:

<TextBox AutomationProperties.Name="Please enter your name"

 Name="nameBox" Margin="12"/>

If you add this property then rerun HelloRealWorld with Narrator on, you will hear the
following:

“HelloRealWorld window”

“Please enter your name”

“Editing”

Note that when you give the Go Button focus, such as by pressing Tab, Narrator says:

“Go button”

This works automatically, thanks to built-in Button behavior that reports its content to
the UI Automation framework.

When you click the Button, however, Narrator gives no indication that text has been
added to the screen. If a message is worth showing, then it’s worth hearing as well. To fix
this problem, we can add the following automation property to the result TextBlock that
identifies it as a live region:

Making the App Accessible 37

<TextBlock AutomationProperties.LiveSetting="Polite"

 Name="result" FontSize="28" Margin="12"/>

A live region is an area whose content changes. This AutomationProperties.LiveSetting
property can be set to one of the following values:

➔ Off—This is the default value.

 ➔ Polite—Changes should be communicated, but they should not interrupt the screen
reader.

 ➔ Assertive—Changes should be communicated immediately, even if the screen
reader is in the midst of speaking.

Live region changes are not detected automatically, however. You must trigger them in
C#. In our example, we just need to add an extra line of code to the existing Button_Click
event handler:

void Button_Click(object sender, RoutedEventArgs e)

{

 this.result.Text = this.nameBox.Text;

 // Notify a screen reader to report this text

TextBlockAutomationPeer.FromElement(this.result).RaiseAutomationEvent(

 AutomationEvents.LiveRegionChanged);

}

TextBlock, as with other controls, has a peer class in the Windows.UI.Xaml.Automation.
Peers namespace. These classes are named with the pattern ElementNameAutomationPeer,
and have several members that are designed for accessibility as well as automated testing.

After the work we did to localize the HelloRealWorld app, it would be unfortunate to
give screen readers a hardcoded English string, as shown earlier:

<TextBox AutomationProperties.Name="Please enter your name"

 Name="nameBox" Margin="12"/>

Fortunately, automation properties can be localized just like any other property. To do this,
remove the explicit setting and give the element an x:Uid:

<TextBox x:Uid="NameBox" Name="nameBox" Margin="12"/>

In this example, you should then add the entry in the Resources.resw file named NameBox.
AutomationProperties.Name, and its value for English should be "Please enter your
name".

Chapter 1 HELLO, REAL WORLD!38

Handling High Contrast Themes
The built-in controls automatically adjust their appearance when the user enables a high
contrast theme. They adjust their colors to match the theme’s eight user-customizable
colors, and in some cases they change their rendering in other ways. Because of this, your
app can automatically look correct under a high contrast theme without you doing extra
work. However, when you use images or hardcoded colors, which are quite common,
problems arise. Images can be a problem when they convey information but do not use
enough contrast. Hardcoded colors are a problem for the same reason, but also because
they can make things completely unreadable when intermixed with colors that drastically
change under a high contrast theme. In general, mixing hardcoded colors with dynamic
colors can be a recipe for disaster.

HelloRealWorld doesn’t use any images, but Chapter 12 explains how you can provide
separate versions of your images that can be used for high contrast themes only.

For HelloRealWorld, the hardcoded blue (or red or green) background color could be
problematic as the colors of the other elements change. (Although none of the high
contrast themes use blue, red, or green as a text color by default, the user could always
choose it for the color of text.) We can fix this in code-behind by checking whether the
app is running under high contrast and simply removing the StackPanel’s Background in
that case:

public sealed partial class MainPage : Page

{

Brush defaultBackground;

 public MainPage()

 {

 InitializeComponent();

 // Save the default background for later

this.defaultBackground = this.stackPanel.Background;

 AccessibilitySettings settings = new AccessibilitySettings();

 // Update the background whenever the theme changes

 settings.HighContrastChanged += OnHighContrastChanged;

// Set the background appropriately on initialization

 OnHighContrastChanged(settings, null);

 }

 void OnHighContrastChanged(AccessibilitySettings sender, object args)

 {

Making the App Accessible 39

this.stackPanel.Background =

 sender.HighContrast ? null : this.defaultBackground;

 }

 …

}

Because the user could change the theme while our app is running, we need to handle the
HighContrastChanged event to adjust accordingly. The rest of the app’s elements already
adjust automatically. Figure 1.13 shows the result of adding this code then running the
app under two different high contrast themes. Chapter 17 explains how you can define
theme-specific colors without needing to write C# code such as this.

High contrast white themeHigh contrast #1 theme

FIGURE 1.13 Removing the explicit StackPanel background makes the app look appropriate
under any high contrast theme.

By defining and using the defaultBackground member, the code that handles the
HighContrastChanged event preserves the language-specific background color
that comes from one of the Resources.resw files. It does so without needing to
programmatically retrieve the current resource value. However, if you need to do so, you

can use code like the following for the Panel.Background value:

ResourceCandidate rc = ResourceManager.Current.MainResourceMap.GetValue(

 "Resources/Panel/Background", ResourceContext.GetForCurrentView());

string backgroundString = rc.ValueAsString;

Chapter 1 HELLO, REAL WORLD!40

Submitting to the Windows Store
Once your app is finished, you can submit it to the Windows Store via items on the Store
menu in Visual Studio Express, or via the Project, Store menu in other editions of Visual
Studio. The Visual Studio integration works in concert with pages on the Windows Dev
Center website to help you complete your submission. Before doing this, however, you
have some tasks to complete:

 ➔ Set up your developer account at http://dev.windows.com, get it verified, and
fill out your payout and tax information. This can take a couple of days for an
individual account, or a couple of weeks for a business account.

➔ Reserve your app name with the Windows Store, as it requires each app’s name to
be unique. You can reserve names at any time, and you have up to a year to submit
the app before losing each reservation. You can also reserve additional names for
other languages.

➔ Download, install, and run the Windows App Certification Kit (WACK) from
the Windows Dev Center. This tests your app for violations that cause it to fail the
Windows Store certification process, so running it in advance can save you a lot of
time.

The Windows Store certification process consists of three parts:

➔ Technical checks. This is simply running the Windows App Certification Kit on
your app. If you pass its tests before submitting your app, you should have nothing
to worry about here.

 ➔ Security checks. This ensures that your software isn’t infected with a virus, which
again should not be a concern for most developers.

➔ Content checks. This is the trickiest part of the process and, unlike the other two, is
performed manually by human reviewers. Reviewers ensure that the app does what
it claims to do and follows all the app certification requirements published in the
Windows Dev Center.

If you do the following:

 ➔ check that the Windows SDK accessibility tools have no high-priority complaints
about your app

 ➔ verify that your app acts appropriately when using Narrator
 ➔ verify that your app acts appropriately when running under high contrast
 ➔ verify that your app can be used when navigating using only the keyboard

then you should take credit for your work and check the “My app meets accessibility guidelines”
checkbox within your app’s listing in your Windows Dev Center dashboard. This fact gets
advertised in the Windows Store, and it makes your app show up for users who search for
accessible apps.

http://dev.windows.com

Submitting to the Windows Store 41

The very first certification requirement is that the app “must offer customers unique,
creative value or utility,” so HelloRealWorld is bound to fail this requirement. This
requirement may be obvious, but there are some requirements that often surprise people
and cause many apps to fail certification:

 ➔ If your app requires a network capability, you must write a privacy statement that
explains what data you collect, how you store or share it, how users can access the
collected data, and so on. Requirement 4.1 in the Windows Dev Center helps you
figure out how to write one. Furthermore, a link to the statement must be reachable
from the Settings pane for your app, and the same link must be included in your
listing in the Windows Store. See Chapter 20, “Supporting App Commands,” for
information about adding content to the Settings pane.

➔ You must select an appropriate age rating, using guidelines from the Windows Dev
Center. For example, most apps that share personal information must be rated at
least 12+. Regardless of your app’s rating, its listing for the Windows Store cannot
contain content that is considered too mature for a 12+ rating.

➔ You must provide descriptions and screenshots for every language you support. If
your app is only partially localized for some languages, you must mention this in
your listing.

If you fail certification, you must address
the issue(s) and resubmit your app. When
you do so, it goes through the entire
process again, at the end of the line.
Fortunately, at the time of this writing,
the average length of certification is only
about 2.5 days.

Don’t forget to remove
capabilities you don’t need!

The certification process doesn’t warn
you about capabilities you don’t actually use,
so it’s up to you to make sure the list is not
larger than it needs to be.

Be sure to fill out the Notes to testers section in your Windows Dev Center dashboard
to help the reviewers understand how to use any features of your app that might not be
obvious. This is also the place to give them test credentials, if your app requires some sort
of sign in.

To increase the chances of Microsoft promoting your app in the Windows Store, put a
lot of effort into your listing. Every screenshot should be compelling, and you should feel
free to enhance screenshots with explanations or other branding that increases the “wow
factor” (as long as it’s clear what is part of the app and what isn’t). To get a feel for what

makes a good description, you should look at the descriptions for apps that are already featured
prominently in the Windows Store. In general, you should think of designing your listing like
designing a box to sell your software in a retail store.
The optional promotional images are not optional at all if you want a chance for your app to be
promoted. Again, they don’t necessarily have to be screenshots, but they should be compelling
and professional. You don’t need to provide all possible sizes, but the 414x180 and 414x468
sizes are very important.

Chapter 1 HELLO, REAL WORLD!42

Summary
You’ve now seen the basic structure of a Visual Studio solution for a universal app and
gotten a taste for making an app that is ready to sell across the world. Personally, I’m
struck by how easy it is to localize your app and make it accessible. Software development
has come a long way over the years, and you’ll see evidence of this throughout the
book, when it comes to handling heterogeneous screen DPI, making money through the
Windows Store, communicating with slick peripherals, and much more.

MASTERING XAML

You might be thinking, “Isn’t Chapter 2 a bit early to
become a master of XAML?” No, because this chapter
focuses on the mechanics of the XAML language, which
is a bit orthogonal to the multitude of XAML elements
and APIs you’ll be using when you build apps. Learning
about the XAML language is kind of like learning the
features of C# before delving into .NET or the Windows
Runtime. Unlike the preceding chapter, this is a fairly deep
dive! However, having this background knowledge before
proceeding with the rest of the book will enable you to
approach the examples with confidence.

XAML is a dialect of XML that Microsoft introduced in
2006 along with the first version of Windows Presentation
Foundation (WPF). XAML is a relatively simple and
general-purpose declarative programming language suitable
for constructing and initializing objects. XAML is just XML,
but with a set of rules about its elements and attributes and
their mapping to objects, their properties, and the values of
those properties (among other things).

You can think of XAML as a clean, modern (albeit more
verbose) reinvention of HTML and CSS. In universal apps,
XAML serves essentially the same purpose as HTML: It
provides a declarative way to represent user interfaces. That
said, XAML is actually a general-purpose language that
can be used in ways that have nothing to do with UI. The

Elements and Attributes

Namespaces

Property Elements

Type Converters

Markup Extensions

Children of Object
Elements

Mixing XAML with C#

XAML Keywords

Chapter 2 In This Chapter

Chapter 2 MASTERING XAML44

preceding chapter contained a simple example of this. App.xaml does not define a user
interface, but rather some characteristics of an app’s entry point class. Note that almost
everything that can be expressed in XAML can be naturally represented in a procedural
language like C# as well.

The motivation for XAML is pretty much the same as any declarative markup language:
Make it easy for programmers to work with others—perhaps graphic designers—and
enable a powerful, robust tooling experience on top of it. XAML encourages a nice
separation between visuals (and visual behavior such as animations) and the rest of the
code, and enables powerful styling capabilities. XAML pages can be opened in Blend as
well as Visual Studio (and Visual Studio has a convenient “Open in Blend…” item on its
View menu), or entire XAML-based projects can be opened in Blend. This can be helpful
for designing sophisticated artwork, animations, and other graphically rich touches. The
idea is that a team’s developers can work in Visual Studio while its designers work in
Blend, and everyone can work on the same codebase. However, because XAML (and XML
in general) is generally human readable, you can accomplish quite a bit with nothing
more than a tool such as Notepad.

Elements and Attributes
The XAML specification defines rules that map object-oriented namespaces, types,
properties, and events into XML namespaces, elements, and attributes. You can see this
by examining the following simple XAML snippet that declares a Button control and
comparing it to the equivalent C# code:

XAML:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 Content="Stop"/>

C#:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Content = "Stop";

Declaring an XML element in XAML (known as an object element) is equivalent to
instantiating the corresponding object via a default constructor. Setting an attribute on
the object element is equivalent to setting a property of the same name (called a property
attribute) or hooking up an event handler of the same name (called an event attribute). For
example, here’s an update to the Button control that not only sets its Content property
but also attaches an event handler to its Click event:

XAML:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Content="Stop" Click="Button_Click"/>

Namespaces 45

C#:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Click += new Windows.UI.Xaml.RoutedEventHandler(Button_Click);

b.Content = "Stop";

This requires an appropriate method called Button_Click to be defined in a code-
behind file, as seen in the preceding chapter. Note that XAML, like C#, is a case-sensitive
language.

Order of Property and Event Processing

At runtime, event handlers are always attached before any properties are set for any object
declared in XAML (excluding the Name property, described later in this chapter, which is set
immediately after object construction). This enables appropriate events to be raised in response
to properties being set without worrying about the order of attributes used in XAML.
The ordering of multiple property sets and multiple event handler attachments is usually
performed in the relative order that property attributes and event attributes are specified on
the object element. Fortunately, this ordering shouldn’t matter in practice because design
guidelines dictate that classes should allow properties to be set in any order, and the same holds
true for attaching event handlers.

Namespaces
The most mysterious part about comparing the previous XAML examples with the
equivalent C# examples is how the XML namespace http://schemas.microsoft.com/
winfx/2006/xaml/presentation maps to the Windows Runtime namespace Windows.
UI.Xaml.Controls. It turns out that the mapping to this and other namespaces is hard-
coded. (In case you’re wondering, no web page exists at the schemas.microsoft.com
URL—it’s just an arbitrary string like any namespace.) Because many Windows Runtime
namespaces are mapped to the same XML namespace, the framework designers took care
not to introduce two classes with the same name, despite the fact that the classes are in
separate Windows Runtime namespaces.

The root object element in a XAML file must specify at least one XML namespace that is
used to qualify itself and any child elements. You can declare additional XML namespaces
(on the root or on children), but each one must be given a distinct prefix to be used on
any identifiers from that namespace. MainPage.xaml in the preceding chapter contains the
XML namespaces listed in Table 2.1.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

Chapter 2 MASTERING XAML46

TABLE 2.1 The XML Namespaces in Chapter 1’s MainPage.xaml

Namespace Typical Prefix Description

http://schemas.microsoft.com/ (none) The standard UI namespace. Contains
winfx/2006/xaml/presentation elements such as Grid, Button, and

TextBlock.

http://schemas.microsoft.com/ x The XAML language namespace. Contains
winfx/2006/xaml keywords such as Class, Name, and Key.

using:HelloRealWorld local This using:XXX syntax is the way to use
any custom Windows Runtime or .NET
namespace in a XAML file. In this case,
HelloRealWorld is the .NET namespace
generated for the project in Chapter 1
because the project itself was named
“HelloRealWorld.”

http://schemas.microsoft.com/ d A namespace for design-time
expression/blend/2008 information that helps tools like Blend and

Visual Studio show a proper preview.

http://schemas.openxmlformats. mc A markup compatibility namespace
org/markup-compatibility/2006 that can be used to mark other namespaces/

elements as ignorable. Normally used
with the design-time namespace, whose
attributes should be ignored at runtime.

The first two namespaces are almost always used in any XAML file. The second one (with
the x prefix) is the XAML language namespace, which defines some special directives for the
XAML parser. These directives often appear as attributes to XML elements, so they look
like properties of the host element but actually are not. For a list of XAML keywords, see
the “XAML Keywords” section later in this chapter.

Using the UI XML namespace (http://
schemas.microsoft.com/winfx/2006/xaml/

presentation) as a default namespace and
the XAML language namespace (http://
schemas.microsoft.com/winfx/2006/

xaml) as a secondary namespace with
the prefix x is just a convention, just like
it’s a convention to begin a C# file with
a using System; directive. You could
declare a Button in XAML as follows, and it
would be equivalent to the Button defined
previously:

Most of the standalone XAML
examples in this chapter explicitly
specify their namespaces, but in

the remainder of the book, most examples
assume that the UI XML namespace
(http://schemas.microsoft.com/
winfx/2006/xaml/presentation) is
declared as the primary namespace, and
the XAML language namespace (http://
schemas.microsoft.com/winfx/2006/
xaml) is declared as a secondary namespace,
with the prefix x.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Property Elements 47

Markup Compatibility

The markup compatibility XML namespace (http://schemas.openxmlformats.org/
markup-compatibility/2006, typically used with an mc prefix) contains an Ignorable
attribute that instructs XAML processors to ignore all elements/attributes in specified
namespaces if they can’t be resolved to their types/members. (The namespace also has a
ProcessContent attribute that overrides Ignorable for specific types inside the ignored
namespaces.)
Blend and Visual Studio take advantage of this feature to do things like add design-time
properties to XAML content that can be ignored at runtime. mc:Ignorable can be given a
space-delimited list of namespaces, and mc:ProcessContent can be given a space-delimited
list of elements.

If you’re frustrated by how long it takes to open XAML files in Visual Studio and you don’t
care about previewing the visuals, you might consider changing your default editor for
XAML files by right-clicking on a XAML file in Solution Explorer then selecting Open
With…, XML (Text) Editor, clicking Set as Default, then clicking OK. This has several

major drawbacks, however, such as losing IntelliSense support and other editor shortcuts. And in
Visual Studio 2013, XAML IntelliSense and editor shortcuts are better than ever!

Property Elements
Rich composition of controls is one of the highlights of XAML. This can be easily
demonstrated with a Button, because you can put arbitrary content inside it; you’re not
limited to just text! To demonstrate this, the following code embeds a simple square to
make a Stop button like what might be found in a media player:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Width = 96;

b.Height = 38;

<UiNamespace:Button

xmlns:UiNamespace="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Content="Stop"/>

Of course, for readability it makes sense for your most commonly used namespace (also
known as the primary XML namespace) to be prefix free and to use short prefixes for any
additional namespaces.

The last two namespaces in Table 2.1, which are injected into pages generated by Visual
Studio and Blend, are usually not needed.

http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 2 MASTERING XAML48

Windows.UI.Xaml.Shapes.Rectangle r = new Windows.UI.Xaml.Shapes.Rectangle();

r.Width = 10;

r.Height = 10;

r.Fill = new Windows.UI.Xaml.Media.SolidColorBrush(Windows.UI.Colors.White);

b.Content = r; // Make the square the content of the Button

Button’s Content property is of type System.
Object, so it can easily be set to the 10x10
Rectangle object. The result (when used
with additional code that adds it to a page) is
pictured in Figure 2.1.

That’s pretty neat, but how can you do the same thing in XAML with property attribute
syntax? What kind of string could you possibly set Content to that is equivalent to the
preceding Rectangle declared in C#? There is no such string, but XAML fortunately
provides an alternative (and more verbose) syntax for setting complex property values:
property elements. It looks like the following:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 Width="96" Height="38">

 <Button.Content>

 <Rectangle Width="10" Height="10" Fill="White"/>

 </Button.Content>

</Button>

The Content property is now set with an XML element instead of an XML attribute,
making it equivalent to the previous C# code. The period in Button.Content is what
distinguishes property elements from object elements. Property elements always take the
form TypeName.PropertyName, they are always contained inside a TypeName object element,
and they can never have attributes of their own.

Property element syntax can be used for simple property values as well. The following
Button that sets two properties with attributes (Content and Background):

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Content="Stop" Background="Red"/>

is equivalent to this Button, which sets the same two properties with elements:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 <Button.Content>

 Stop

 </Button.Content>

 <Button.Background>

 Red

 </Button.Background>

</Button>

Of course, using attributes when you can is a nice shortcut when hand-typing XAML.

FIGURE 2.1 Placing complex content inside
a Button

Markup Extensions 49

Type Converters
Let’s look at the C# code equivalent to the preceding Button declaration that sets both
Content and Background properties:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Content = "Stop";

b.Background = new Windows.UI.Xaml.Media.SolidColorBrush(Windows.UI.Color.Red);

Wait a minute. How can "Red" in the previous XAML file be equivalent to the
SolidColorBrush instance used in the C# code? Indeed, this example exposes a subtlety
with using strings to set properties in XAML that are a different data type than System.
String or System.Object. In such cases, the XAML parser must look for a type converter
that knows how to convert the string representation to the desired data type.

You cannot currently create your own type converters for universal apps, but type
converters already exist for many common data types. Unlike the XAML language, these
type converters support case-insensitive strings. Without a type converter for Brush (the
base class of SolidColorBrush), you would have to use property element syntax to set the
Background in XAML as follows:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 Content="Stop">

 <Button.Background>

 <SolidColorBrush Color="Red"/>

 </Button.Background>

</Button>

And even that is only possible because of a type converter for Color that can make sense
of the "Red" string. If there were no Color type converter, you would basically be stuck.
Type converters don’t just enhance the readability of XAML; they also enable values to be
expressed that couldn’t otherwise be expressed.

Unlike in the previous C# code, in this case, misspelling Red would not cause a compila-
tion error but would cause an exception at runtime. However, Visual Studio does provide
compile-time warnings for mistakes in XAML such as this.

Markup Extensions
Markup extensions, like type converters, extend the expressiveness of XAML. Both can
evaluate a string attribute value at runtime and produce an appropriate object based on
the string. As with type converters, you cannot currently create your own for universal
apps, but several markup extensions are built in.

Unlike type converters, markup extensions are invoked from XAML with explicit and
consistent syntax. Whenever an attribute value is enclosed in curly braces ({}), the XAML
parser treats it as a markup extension value rather than a literal string or something that
needs to be type-converted. The following Button uses two different markup extensions as
the values for two different properties:

Chapter 2 MASTERING XAML50

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Height="50"

Background="{x:Null}"

Content="{Binding Height, RelativeSource={RelativeSource Self}}"/>

The first identifier in each set of curly braces is the name of the markup extension. The
Null extension lives in the XAML language namespace, so the x prefix must be used.
Binding (which happens to be a class in the Windows.UI.Xaml.Data namespace), can be
found in the default XML namespace.

If a markup extension supports them, comma-delimited parameters can be specified.
Positional parameters (such as Height in the example) are treated as string arguments for
the extension class’s appropriate constructor. Named parameters (RelativeSource in the
example) enable you to set properties with matching names on the constructed extension
object. The values for these properties can be markup extension values themselves (using
nested curly braces, as done with the value for RelativeSource) or literal values that
can undergo the normal type conversion process. If you’re familiar with .NET custom
attributes (the .NET Framework’s popular extensibility mechanism), you’ve probably
noticed that the design and usage of markup extensions closely mirrors the design and
usage of custom attributes. That is intentional.

In the preceding Button declaration, x:Null enables the Background brush to be set to
null. This is just done for demonstration purposes, because a null Background is not very
useful. Binding, covered in depth in Chapter 18, “Data Binding,” enables Content to be set
to the same value as the Height property.

Markup extension

Positional parameter Named parameter

Escaping the Curly Braces

If you ever want a property attribute value to be set to a literal string beginning with an open
curly brace ({), you must escape it so it doesn’t get treated as a markup extension. This can be
done by preceding it with an empty pair of curly braces, as in the following example:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Content="{}{This is not a markup extension!}"/>

Alternatively, you could use property element syntax without any escaping because the curly
braces do not have special meaning in this context. The preceding Button could be rewritten as
follows:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

<Button.Content>

{This is not a markup extension!}

</Button.Content>

</Button>

Markup Extensions 51

Markup extensions can also be used with property element syntax. The following Button
is identical to the preceding one:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Button.Height>

 50

 </Button.Height>

 <Button.Background>

 <x:Null/>

 </Button.Background>

 <Button.Content>

 <Binding Path="Height">

 <Binding.RelativeSource>

 <RelativeSource Mode="Self"/>

 </Binding.RelativeSource>

 </Binding>

 </Button.Content>

</Button>

This transformation works because these markup extensions all have properties
corresponding to their parameterized constructor arguments (the positional parameters
used with property attribute syntax). For example, Binding has a Path property that
has the same meaning as the argument that was previously passed to its parameterized
constructor, and RelativeSource has a Mode property that corresponds to its constructor
argument.

Markup Extensions and C#

The actual work done by a markup extension is specific to each extension. For example, the
following C# code is equivalent to the XAML-based Button that uses Null and Binding:

Windows.UI.Xaml.Controls.Button b = new Windows.UI.Xaml.Controls.Button();

b.Height = 50;

// Set Background:

b.Background = null;

// Set Content:

Windows.UI.Xaml.Data.Binding binding = new Windows.UI.Xaml.Data.Binding();

binding.Path = new Windows.UI.Xaml.PropertyPath("Height");

binding.RelativeSource = Windows.UI.Xaml.Data.RelativeSource.Self;

b.SetBinding(Windows.UI.Xaml.Controls.Button.ContentProperty, binding);

Chapter 2 MASTERING XAML52

Children of Object Elements
A XAML file, like all XML files, must have a single root object element. Therefore, it
should come as no surprise that object elements can support child object elements (not
just property elements, which aren’t children, as far as XAML is concerned). An object
element can have three types of children: a value for a content property, collection items,
or a value that can be type-converted to the object element.

The Content Property
Many classes designed to be used in XAML designate a property (via a custom attribute)
that should be set to whatever content is inside the XML element. This property is called
the content property, and it is just a convenient shortcut to make the XAML representation
more compact.

Button’s Content property is (appropriately) given this special designation, so the
following Button:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 Content="Stop"/>

could be rewritten as follows:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 Stop

</Button>

Or, more usefully, this Button with more complex content:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

<Button.Content>

 <Rectangle Height="10" Width="10" Fill="White"/>

</Button.Content>

</Button>

could be rewritten as follows:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 <Rectangle Height="10" Width="10" Fill="White"/>

</Button>

There is no requirement that the content property must be called Content; classes such as
ComboBox and ListBox (also in the Windows.UI.Xaml.Controls namespace) use their Items
property as the content property.

Collection Items
XAML enables you to add items to the two main types of collections that support
indexing: lists and dictionaries.

Children of Object Elements 53

Lists
A list is any collection that implements the IList interface or its generic counterpart. For
example, the following XAML adds two items to a ListBox control whose Items property
is an ItemCollection that implements IList<object>:

<ListBox xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

<ListBox.Items>

 <ListBoxItem Content="Item 1"/>

 <ListBoxItem Content="Item 2"/>

</ListBox.Items>

</ListBox>

This is equivalent to the following C# code:

Windows.UI.Xaml.Controls.ListBox listbox =

new Windows.UI.Xaml.Controls.ListBox();

Windows.UI.Xaml.Controls.ListBoxItem item1 =

new Windows.UI.Xaml.Controls.ListBoxItem();

Windows.UI.Xaml.Controls.ListBoxItem item2 =

new Windows.UI.Xaml.Controls.ListBoxItem();

item1.Content = "Item 1";

item2.Content = "Item 2";

listbox.Items.Add(item1);

listbox.Items.Add(item2);

Furthermore, because Items is the content property for ListBox, you can shorten the
XAML even further, as follows:

<ListBox xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 <ListBoxItem Content="Item 1"/>

 <ListBoxItem Content="Item 2"/>

</ListBox>

In all these cases, the code works because ListBox’s Items property is automatically
initialized to any empty collection object. If a collection property is initially null instead
(and is read/write, unlike ListBox’s read-only Items property), you would need to wrap
the items in an explicit element that instantiates the collection. The built-in controls do
not act this way, so an imaginary OtherListBox element demonstrates what this could
look like:

<OtherListBox>

<OtherListBox.Items>

 <ItemCollection>

 <ListBoxItem Content="Item 1"/>

 <ListBoxItem Content="Item 2"/>

 </ItemCollection>

</OtherListBox.Items>

</OtherListBox>

Chapter 2 MASTERING XAML54

Dictionaries
A dictionary is any collection that implements the IDictionary interface or its generic
counterpart. Windows.UI. Xaml.ResourceDictionary is a commonly used collection type
that you’ll see more of in later chapters. It implements IDictionary<object, object>,
so it supports adding, removing, and enumerating key/value pairs in procedural code, as
you would do with a typical hash table. In XAML, you can add key/value pairs to any
dictionary. For example, the following XAML adds two Colors to a ResourceDictionary:

<ResourceDictionary

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Color x:Key="1">White</Color>

 <Color x:Key="2">Black</Color>

</ResourceDictionary>

This leverages the XAML Key keyword (defined in the secondary XML namespace), which
is processed specially and enables us to attach a key to each Color value. (The Color
type does not define a Key property.) Therefore, the XAML is equivalent to the following
C# code:

Windows.UI.Xaml.ResourceDictionary d = new Windows.UI.Xaml.ResourceDictionary();

Windows.UI.Color color1 = Windows.UI.Colors.White;

Windows.UI.Color color2 = Windows.UI.Colors.Black;

d.Add("1", color1);

d.Add("2", color2);

Note that the value specified in XAML with x:Key is treated as a string unless a markup
extension is used; no type conversion is attempted otherwise.

More Type Conversion
Plain text can often be used as the child of an object element, as in the following XAML
declaration of SolidColorBrush:

<SolidColorBrush>White</SolidColorBrush>

As explained earlier, this is equivalent to the following:

<SolidColorBrush Color="White"/>

even though Color has not been designated as a content property. In this case, the first
XAML snippet works because a type converter exists that can convert strings such as
"White" (or "white" or "#FFFFFF") into a SolidColorBrush object.

Although type converters play a huge role in making XAML readable, the downside is
that they can make XAML appear a bit “magical,” and it can be difficult to understand
how it maps to instances of objects. Using what you know so far, it would be reasonable
to assume that you can’t declare an instance of a class in XAML if it has no default
constructor. However, even though the Windows.UI.Xaml.Media.Brush base class for

Children of Object Elements 55

SolidColorBrush, LinearGradientBrush, and other brushes has no constructors at all, you
can express the preceding XAML snippets as follows:

<Brush>White</Brush>

because the type converter for Brushes understands that this is still SolidColorBrush.

The Extensible Part of XAML

Because XAML was designed to work with the .NET type system, you can use it with just about
any object, including ones you define yourself. It doesn’t matter whether these objects have
anything to do with a user interface. However, the objects need to be designed in a “declarative-
friendly” way. For example, if a class doesn’t have a default constructor and doesn’t expose
useful instance properties, it’s not going to be directly usable from XAML. A lot of care went
into the design of the APIs in the Windows.UI.Xaml namespace—above and beyond the usual
design guidelines—to fit XAML’s declarative model.
To use an arbitrary .NET class (with a default constructor) in XAML, simply include the proper
namespace with using syntax. The following XAML does this with an instance of System.Net.
Http.HttpClient and System.Int64:

<ListBox xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">

 <ListBox.Items>

 <sysnet:HttpClient xmlns:sysnet="using:System.Net.Http"/>

 <sys:Int64 xmlns:sys="using:System">100</sys:Int64>

 </ListBox.Items>

</ListBox>

The XAML language namespace defines keywords for a few common primitives so
you don’t need to separately include the System namespace: x:Boolean, x:Int32,
x:Double, and x:String.

XAML Processing Rules for Object Element Children

You’ve now seen the three types of children for object elements. To avoid ambiguity, any valid
XAML parser follows these rules when encountering and interpreting child elements:

 1. If the type implements IList, call IList.Add for each child.
 2. Otherwise, if the type implements IDictionary, call IDictionary.Add for each child,

using the x:Key attribute value for the key and the element for the value.
 3. Otherwise, if the parent supports a content property (indicated by Windows.UI.Xaml.

Markup.ContentPropertyAttribute) and the type of the child is compatible with
that property, treat the child as its value.

Chapter 2 MASTERING XAML56

Mixing XAML with C#
Universal apps are a mix of XAML and procedural code in a language like C#. This section
covers the two ways that XAML and procedural code can be mixed together: dynamically
loading and parsing XAML yourself, or leveraging the built-in support in Visual Studio
projects.

Loading and Parsing XAML at Runtime
The Windows.UI.Xaml.Markup namespace contains a simple XamlReader class with a simple
static Load method. Load can parse a string containing XAML, create the appropriate
objects, and return an instance of the root element. So, with a string containing XAML
content somewhat like MainPage.xaml from the preceding chapter, the following code
could be used to load and retrieve the root Page object:

string xamlString = …;

// Get the root element, which we know is a Page

Page p = (Page)XamlReader.Load(xamlString);

After Load returns, the entire hierarchy of objects in the XAML file is instantiated in
memory, so the XAML itself is no longer needed. Now that an instance of the root
element exists, you can retrieve child elements by making use of the appropriate content
properties or collection properties. The following code assumes that the Page has a
StackPanel object as its content, whose fifth child is a Stop button:

string xamlString = …;

// Get the root element, which we know is a Page

Page p = (Page)XamlReader.Load(xamlString);

// Grab the Stop button by walking the children (with hard-coded knowledge!)

StackPanel panel = (StackPanel)p.Content;

Button stopButton = (Button)panel.Children[4];

With a reference to the Button control, you can do whatever you want: set additional
properties (perhaps using logic that is hard or impossible to express in XAML), attach
event handlers, or perform additional actions that you can’t do from XAML, such as
calling its methods.

 4. Otherwise, if the child is plain text and a type converter exists to transform the child
into the parent type (and no properties are set on the parent element), treat the child as
the input to the type converter and use the output as the parent object instance.

 5. Otherwise, treat it as unknown content and raise an error.

Rules 1 and 2 enable the behavior described in the earlier “Collection Items” section, rule 3
enables the behavior described in the section “The Content Property,” and rule 4 explains the
often-confusing behavior described in the “More Type Conversion” section.

Mixing XAML with C# 57

Of course, the code that uses a hard-coded index and other assumptions about the user
interface structure isn’t satisfying, because simple changes to the XAML can break it.
Instead, you could write code to process the elements more generically and look for a
Button element whose content is a "Stop" string, but that would be a lot of work for such
a simple task. In addition, if you want the Button to contain graphical content, how can
you easily identify it in the presence of multiple Buttons?

Fortunately, XAML supports naming of elements so they can be found and used reliably
from C# code.

Naming XAML Elements
The XAML language namespace has a Name keyword that enables you to give any element
a name. For the simple Stop button that we’re imagining is embedded somewhere inside a
Page, the Name keyword can be used as follows:

<Button x:Name="stopButton">Stop</Button>

With this in place, you can update the preceding C# code to use Page’s FindName method
that searches its children (recursively) and returns the desired instance:

string xamlString = …;

// Get the root element, which we know is a Page

Page p = (Page)XamlReader.Load(xamlString);

// Grab the Stop button, knowing only its name

Button stopButton = (Button)p.FindName("stopButton");

FindName is not unique to Page; it is defined on FrameworkElement, a base class for many
important classes in the XAML UI Framework.

Naming Elements Without x:Name

The x:Name syntax can be used to name elements, but FrameworkElement also has a Name
property that accomplishes the same thing. You can use either mechanism on such elements,
but you can’t use both simultaneously. Having two ways to set a name is a bit confusing, but
it’s handy for these classes to have a Name property for use by procedural code. In addition,
sometimes you want to name an element that doesn’t derive from FrameworkElement (and
doesn’t have a Name property), so x:Name is necessary for such cases.

Visual Studio’s Support for XAML and Code-Behind
Loading and parsing XAML at runtime can be interesting for some limited dynamic
scenarios. Universal app projects, however, leverage work done by MSBuild and Visual
Studio to make the combination of XAML and procedural code more seamless. When
you compile a project with XAML files, the XAML is included as a resource in the app
being built and the plumbing that connects XAML with procedural code is generated
automatically.

Chapter 2 MASTERING XAML58

The automatic connection between a XAML file and a code-behind file is enabled by the
Class keyword from the XAML language namespace, as seen in the preceding chapter. For
example, MainPage.xaml had the following:

<Page x:Class="HelloRealWorld.MainPage" …>

 …

</Page>

This causes the XAML content to be treated as a partial class definition for a class called
MainPage (in the HelloRealWorld namespace) derived from Page. The other pieces of
the partial class definition reside in auto-generated files as well as the MainPage.xaml.cs
code-behind file. Visual Studio’s Solution Explorer ties these two files together by making
the code-behind file a subnode of the XAML file, but that is an optional cosmetic effect
enabled by the following XML inside of the .csproj project file:

<Compile Include="MainPage.xaml.cs">

 <DependentUpon>MainPage.xaml</DependentUpon>

</Compile>

You can freely add members to the class in the code-behind file. And if you reference any
event handlers in XAML (via event attributes such as Click on Button), this is where they
should be defined.

Whenever you add a page to a Visual Studio project (via Add New Item…), Visual Studio
automatically creates a XAML file with x:Class on its root, creates the code-behind source
file with the partial class definition, and links the two together so they are built properly.

The additional auto-generated files alluded to earlier contain some “glue code” that you
normally never see and you should never directly edit. For a XAML file named MainPage.
xaml, they are:

 ➔ MainPage.g.cs, which contains code that attaches event handlers to events for each
event attribute assigned in the XAML file.

 ➔ MainPage.g.i.cs, which contains a field definition (private by default) for each
named element in the XAML file, using the element name as the field name. It also
contains an InitializeComponent method that the root class’s constructor must call
in the code-behind file. This file is meant to be helpful to IntelliSense, which is why
it has an “i” in its name.

The “g” in both filenames stands for generated. Both generated source files contain a
partial class definition for the same class partially defined by the XAML file and code-
behind file.

If you peek at the implementation of InitializeComponent inside the auto-generated file,
you’ll see that the hookup between C# and XAML isn’t so magical after all. It looks a lot
like the code shown previously for manually loading XAML content and grabbing named
elements from the tree of instantiated objects. Here’s what the method looks like for the
preceding chapter’s MainPage if a Button named stopButton were added to it:

XAML Keywords 59

public void InitializeComponent()

{

 if (_contentLoaded)

return;

 _contentLoaded = true;

 Application.LoadComponent(this, new System.Uri("ms-appx:///MainPage.xaml"),

 Windows.UI.Xaml.Controls.Primitives.ComponentResourceLocation.Application);

 stopButton = (Windows.UI.Xaml.Controls.Button)this.FindName("stopButton");

}

The LoadComponent method is much like XamlReader’s Load method, except it works with
a reference to an app’s resource file.

To reference a resource file included with your app, simply use a URI with the format
"ms-appx:///relative path to file". XAML files are already treated specially, but
adding a new resource file to your app is as simple as adding a new file to your project
with a Build Action of Content. Chapter 12, “Images,” shows how to use resources such

as image files with the Image element.

XAML Binary Format

By default, your app’s package does not contain your .xaml source files but rather binary .xbf
files known as XAML binary format. These files contain optimized node streams representing the
original XAML content, which is great for startup performance because there is no need to load
and parse XAML at runtime.

XAML Keywords
The XAML language namespace (http://schemas.microsoft.com/winfx/2006/xaml)
defines a handful of keywords that must be treated specially by any XAML parser. They
mostly control aspects of how elements get exposed to procedural code, but several
are useful for other reasons. You’ve already seen some of them (such as Key, Name, and
Class), but Table 2.2 lists all the ones relevant for universal apps. They are listed with
the conventional x prefix because that is how they usually appear in XAML and in
documentation.

Special Attributes Defined by the W3C

In addition to keywords in the XAML language namespace, XAML also supports two special
attributes defined for XML by the World Wide Web Consortium (W3C): xml:space for controlling
whitespace parsing and xml:lang for declaring the document’s language and culture. The xml
prefix is implicitly mapped to the standard XML namespace; see http://www.w3.org/XML/1998/
namespace.

http://schemas.microsoft.com/winfx/2006/xaml
http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace

Chapter 2 MASTERING XAML60

TABLE 2.2 Keywords in the XAML Language Namespace, Assuming the Conventional x
Namespace Prefix

Keyword Valid As Meaning

x:Boolean An element Represents a System.Boolean

x:Class Attribute on root element Defines a namespace-qualified class for the
root element that derives from the element
type

x:Double An element Represents a System.Double

x:FieldModifier Attribute on any nonroot element
but must be used with x:Name
(or equivalent)

Defines the visibility of the field to be
generated for the element (which is private
by default). The value must be specified
in terms of the procedural language
(for example, public, private, and
internal for C#).

x:Int32 An element Represents a System.Int32

x:Key Attribute on an element whose
parent is a dictionary

Specifies the key for the item when added to
the parent dictionary

x:Name Attribute on any nonroot element
but must be used with x:Class
on root

Chooses a name for the field to be generated
for the element, so it can be referenced from
procedural code

x:Null An element or an attribute value
as a markup extension

Represents a null value

x:StaticResource An element or an attribute value
as a markup extension

References a XAML resource

x:String An element Represents a System.String

x:Subclass Attribute on root element and
must be used with x:Class

Specifies a subclass of the x:Class class
that holds the content defined in XAML. This
is only needed for languages without support
for partial classes, so there’s no reason to use
this in a C# XAML project

x:TemplateBinding An element or an attribute value
as a markup extension

Binds to an element’s properties from within
a template, as described in Chapter 17

x:ThemeResource An element or an attribute References a theme-specific XAML resource
value as a markup extension

x:Uid Attribute on any element Marks an element with an identifier used for
localization

Summary
You have now seen how XAML fits in with the rest of an app’s code and, most
importantly, you now have the information needed to translate most XAML examples
into a language such as C# and vice versa. However, because type converters and markup

Summary 61

extensions are “black boxes,” a straightforward translation is not always going to be
obvious.

As you proceed further, you might find that some APIs can be a little clunky to use in
C# because their design is often optimized for XAML use. For example, the XAML UI
Framework exposes many small building blocks to help enable rich composition, so
some scenarios can involve manually creating a lot of objects. Besides the fact the XAML
excels at expressing deep hierarchies of objects concisely, Microsoft spent more time
implementing features to effectively hide intermediate objects in XAML (such as type
converters) rather than features to hide them from procedural code (such as constructors
that create inner objects on your behalf).

In some areas, such as complicated paths and shapes, typing XAML by hand isn’t
practical. In fact, the trend from when XAML was first introduced in beta form has been
to remove some of the handy human-typeable shortcuts in favor of a more robust and
extensible format that can be supported well by tools. But I still believe that being familiar
with XAML and seeing the APIs through both procedural and declarative perspectives is
the best way to learn the technology. It’s like understanding how HTML works without
relying on a visual tool.

Classes in the XAML UI Framework have a deep inheritance hierarchy, so it can be hard
to get your head wrapped around the significance of various classes and their relation-
ships. A handful of fundamental classes are referenced often and deserve a quick expla-
nation before we get any further in the book. The Page class, for example, derives from

a UserControl class which derives from all of the following classes, in order from most to least
derived:

 ➔ Control—The base class for familiar controls such as Button and ListBox. Control
adds many properties to its base class, such as Foreground, Background, and
FontSize, as well as the ability to be given a completely new visual template. Part IV,
“Understanding Controls,” examines the built-in controls in depth.

 ➔ FrameworkElement—The base class that adds support for styles, data binding, XAML
resources, and a few common mechanisms such as tooltips and context menus.

 ➔ UIElement—The base class for all visual objects with support for routed events, layout,
and focus. These features are discussed in Chapter 4, “Layout,” and Chapter 5, “Handling
Input: Touch, Mouse, Pen, and Keyboard.”

 ➔ DependencyObject—The base class for any object that can support dependency prop-
erties, discussed in Chapter 16, “Animation.”

 ➔ Object—The base class for all .NET classes.

Throughout the book, the simple term element is used to refer to an object that derives
from UIElement or FrameworkElement. The distinction between UIElement and
FrameworkElement is not important because the framework doesn’t include any other public
subclasses of UIElement.

This page intentionally left blank

SIZING, POSITIONING, AND
TRANSFORMING ELEMENTS

When building an app, one of the first things you must
do is arrange a bunch of elements in its window. This
sizing and positioning of elements is called layout. XAML
apps are provided a feature-rich layout system that covers
everything from placing elements at exact coordinates
to building experiences that scale and rearrange across a
wide range of screen resolutions and aspect ratios. This is
essential when building a universal app. Even if you decide
to build a separate user interface for phones, flexible layout
is still necessary for handling the diversity of phone and PC
screens, as well as intelligently handling when your app is
resized on a PC.

Layout boils down to interactions between parent elements
and their child elements. Parents and their children work
together to determine their final sizes and positions.
Although parents ultimately tell their children where to
render and how much space they get, they are more like
collaborators than dictators; parents also ask their children
how much space they would like before making their final
decision.

Parent elements that support the arrangement of multiple
children are known as panels, and they derive from a
class called Panel. All the elements involved in the layout
process (both parents and children) derive from UIElement.

 Controlling Size

 Controlling Position

 Applying 2D Transforms

 Applying 3D Transforms

Chapter 3 In This Chapter

Chapter 3 SIZING, POSITIONING, AND TRANSFORMING ELEMENTS64

Because layout is such an important topic, this book dedicates two chapters to it. This
chapter focuses on the children, examining the common ways that you can control
layout on a child-by-child basis. Several properties control these aspects, most of which
are summarized in Figure 3.1 for an arbitrary element inside an arbitrary panel. Size-
related properties are shown in blue, and position-related properties are shown in red. In
addition, elements can have transforms applied to them (shown in green) that can affect
both size and position.

VerticalAlignment

Margin

Height

Width

HorizontalAlignment

FlowDirection
Content

Element

Panel

Padding

RenderTransform
Projection

FIGURE 3.1 The main child layout properties examined in this chapter

The next chapter continues the layout story by examining the variety of built-in parent
panels, each of which arranges its children in unique ways.

Controlling Size
Every time layout occurs, such as when an app’s window is resized or the screen is rotated,
child elements tell their parent panel their desired size. Elements tend to size to their
content, meaning that they try to be large enough to fit their content and no larger. This
size can be influenced on individual instances of children via several straightforward
properties.

Height and Width
All FrameworkElements have simple Height and Width properties (of type double), and they
also have MinHeight, MaxHeight, MinWidth, and MaxWidth properties that can be used to
specify a range of acceptable values. Any or all of these can be easily set on elements in C#
or in XAML.

An element naturally stays as small as possible, so if you use MinHeight or MinWidth, it
is rendered at that height/width unless its content forces it to grow. In addition, that
growth can be limited by using MaxHeight and MaxWidth—as long as these values are
larger than their Min counterparts. When using an explicit Height and Width at the same

