

The Defi nitive Guide to
DAX: Business intelligence
with Microsoft Power
BI, SQL Server Analysis
Services, and Excel

Second Edition

Marco Russo and Alberto Ferrari

Published with the authorization of Microsoft Corporation by:

Pearson Education, Inc.

Copyright © 2020 by Alberto Ferrari and Marco Russo

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/. No patent
liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0697-8

ISBN-10: 1-5093-0697-8

Library of Congress Control Number: 2019930884

ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of companies. All other marks are
property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fi tness is implied. The information provided is on an “as is” basis.
The authors, the publisher, and Microsoft Corporation shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

EDITOR-IN-CHIEF

Brett Bartow

EXECUTIVE EDITOR

Loretta Yates

DEVELOPMENT EDITOR

Mark Renfrow

MANAGING EDITOR

Sandra Schroeder

SENIOR PROJECT EDITOR

Tonya Simpson

COPY EDITOR

Chuck Hutchinson

INDEXER

Ken Johnson

PROOFREADER

Abigail Manheim

TECHNICAL EDITOR

Daniil Maslyuk

EDITORIAL ASSISTANT

Cindy Teeters

COVER DESIGNER

Twist Creative, Seattle

COMPOSITOR

codeMantra

http://www.pearsoned.com/permissions/
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

 iii

Contents at a Glance

Foreword xvii

Introduction to the second edition xx

Introduction to the fi rst edition xxi

CHAPTER 1 What is DAX? 1

CHAPTER 2 Introducing DAX 17

CHAPTER 3 Using basic table functions 57

CHAPTER 4 Understanding evaluation contexts 79

CHAPTER 5 Understanding CALCULATE and CALCULATETABLE 115

CHAPTER 6 Variables 175

CHAPTER 7 Working with iterators and with CALCULATE 187

CHAPTER 8 Time intelligence calculations 217

CHAPTER 9 Calculation groups 279

CHAPTER 10 Working with the fi lter context 313

CHAPTER 11 Handling hierarchies 345

CHAPTER 12 Working with tables 363

CHAPTER 13 Authoring queries 395

CHAPTER 14 Advanced DAX concepts 437

CHAPTER 15 Advanced relationships 471

CHAPTER 16 Advanced calculations in DAX 519

CHAPTER 17 The DAX engines 545

CHAPTER 18 Optimizing VertiPaq 579

CHAPTER 19 Analyzing DAX query plans 609

CHAPTER 20 Optimizing DAX 657

Index 711

 v

Contents

Foreword .xvii

Introduction to the second edition . xx

Introduction to the fi rst edition . xxi

Chapter 1 What is DAX? 1
Understanding the data model . 1

Understanding the direction of a relationship . 3

DAX for Excel users . 5
Cells versus tables . 5
Excel and DAX: Two functional languages . 7
Iterators in DAX . 8
DAX requires theory . 8

DAX for SQL developers . 9
Relationship handling . 9
DAX is a functional language . 10
DAX as a programming and querying language 10
Subqueries and conditions in DAX and SQL . 11

DAX for MDX developers . 12
Multidimensional versus Tabular . 12
DAX as a programming and querying language 12
Hierarchies . 13
Leaf-level calculations . 14

DAX for Power BI users . 14

Chapter 2 Introducing DAX 17
Understanding DAX calculations . 17

DAX data types . 19
DAX operators .23
Table constructors .24
Conditional statements .24

vi Contents

Understanding calculated columns and measures .25
Calculated columns .25
Measures .26

Introducing variables .30

Handling errors in DAX expressions . 31
Conversion errors . 31
Arithmetic operations errors .32
Intercepting errors .35
Generating errors. .38

Formatting DAX code .39

Introducing aggregators and iterators .42

Using common DAX functions .45
Aggregation functions .45
Logical functions .46
Information functions .48
Mathematical functions .49
Trigonometric functions .50
Text functions .50
Conversion functions . 51
Date and time functions .52
Relational functions .53

Conclusions .55

Chapter 3 Using basic table functions 57
Introducing table functions .57

Introducing EVALUATE syntax .59

Understanding FILTER . 61

Introducing ALL and ALLEXCEPT .63

Understanding VALUES, DISTINCT, and the blank row68

Using tables as scalar values .72

Introducing ALLSELECTED .75

Conclusions .77

 Contents vii

Chapter 4 Understanding evaluation contexts 79
Introducing evaluation contexts .80

Understanding fi lter contexts .80
Understanding the row context .85

Testing your understanding of evaluation contexts .88
Using SUM in a calculated column .88
Using columns in a measure .89

Using the row context with iterators .90
Nested row contexts on different tables . 91
Nested row contexts on the same table .92
Using the EARLIER function .97

Understanding FILTER, ALL, and context interactions98

Working with several tables . 101
Row contexts and relationships .102
Filter context and relationships .106

Using DISTINCT and SUMMARIZE in fi lter contexts109

Conclusions . 113

Chapter 5 Understanding CALCULATE and
CALCULATETABLE 115

Introducing CALCULATE and CALCULATETABLE . 115
Creating fi lter contexts . 115
Introducing CALCULATE . 119
Using CALCULATE to compute percentages .124
Introducing KEEPFILTERS .135
Filtering a single column .138
Filtering with complex conditions. .140
Evaluation order in CALCULATE .144

Understanding context transition .148
Row context and fi lter context recap .148
Introducing context transition . 151
Context transition in calculated columns .154
Context transition with measures . 157

viii Contents

Understanding circular dependencies . 161

CALCULATE modifi ers .164
Understanding USERELATIONSHIP .164
Understanding CROSSFILTER .168
Understanding KEEPFILTERS .168
Understanding ALL in CALCULATE .169
Introducing ALL and ALLSELECTED with no parameters 171

CALCULATE rules .172

Chapter 6 Variables 175
Introducing VAR syntax . 175

Understanding that variables are constant . 177

Understanding the scope of variables . 178

Using table variables . 181

Understanding lazy evaluation .182

Common patterns using variables .183

Conclusions .185

Chapter 7 Working with iterators and with CALCULATE 187
Using iterators. .187

Understanding iterator cardinality .188
Leveraging context transition in iterators .190
Using CONCATENATEX .194
Iterators returning tables .196

Solving common scenarios with iterators .199
Computing averages and moving averages .199
Using RANKX . 203
Changing calculation granularity . 211

Conclusions .215

Chapter 8 Time intelligence calculations 217
Introducing time intelligence . 217

Automatic Date/Time in Power BI .218
Automatic date columns in Power Pivot for Excel219
Date table template in Power Pivot for Excel 220

 Contents ix

Building a date table . 220
Using CALENDAR and CALENDARAUTO . 222
Working with multiple dates . 224
Handling multiple relationships to the Date table 224
Handling multiple date tables . 226

Understanding basic time intelligence calculations 228
Using Mark as Date Table . 232

Introducing basic time intelligence functions . 233
Using year-to-date, quarter-to-date, and month-to-date 235
Computing time periods from prior periods .237
Mixing time intelligence functions . 239
Computing a difference over previous periods241
Computing a moving annual total . 243
Using the right call order for nested time intelligence

functions . 245

Understanding semi-additive calculations . 246
Using LASTDATE and LASTNONBLANK . 248
Working with opening and closing balances 254

Understanding advanced time intelligence calculations 258
Understanding periods to date . 259
Understanding DATEADD . 262
Understanding FIRSTDATE, LASTDATE, FIRSTNONBLANK,

and LASTNONBLANK . 269
Using drillthrough with time intelligence .271

Working with custom calendars . 272
Working with weeks . 272
Custom year-to-date, quarter-to-date, and month-to-date276

Conclusions . 277

Chapter 9 Calculation groups 279
Introducing calculation groups . 279

Creating calculation groups .281

Understanding calculation groups . 288
Understanding calculation item application .291
Understanding calculation group precedence 299
Including and excluding measures from calculation items 304

x Contents

Understanding sideways recursion . 306

Using the best practices . 311

Conclusions . 311

Chapter 10 Working with the fi lter context 313
Using HASONEVALUE and SELECTEDVALUE .314

Introducing ISFILTERED and ISCROSSFILTERED .319

Understanding differences between VALUES and FILTERS 322

Understanding the difference between ALLEXCEPT and
ALL/VALUES . 324

Using ALL to avoid context transition . 328

Using ISEMPTY . 330

Introducing data lineage and TREATAS . 332

Understanding arbitrarily shaped fi lters . 336

Conclusions . 343

Chapter 11 Handling hierarchies 345
Computing percentages over hierarchies . 345

Handling parent/child hierarchies . 350

Conclusions . 362

Chapter 12 Working with tables 363
Using CALCULATETABLE . 363

Manipulating tables . 365
Using ADDCOLUMNS . 366
Using SUMMARIZE . 369
Using CROSSJOIN . 372
Using UNION .374
Using INTERSECT . 378
Using EXCEPT . 379

Using tables as fi lters .381
Implementing OR conditions .381
Narrowing sales computation to the fi rst year’s

customers . 384

 Contents xi

Computing new customers . 386
Reusing table expressions with DETAILROWS 388

Creating calculated tables . 390
Using SELECTCOLUMNS . 390
Creating static tables with ROW .391
Creating static tables with DATATABLE . 392
Using GENERATESERIES . 393

Conclusions . 394

Chapter 13 Authoring queries 395
Introducing DAX Studio . 395

Understanding EVALUATE . 396
Introducing the EVALUATE syntax . 396
Using VAR in DEFINE . 397
Using MEASURE in DEFINE . 399

Implementing common DAX query patterns . 400
Using ROW to test measures . 400
Using SUMMARIZE .401
Using SUMMARIZECOLUMNS . 403
Using TOPN . 409
Using GENERATE and GENERATEALL .415
Using ISONORAFTER .418
Using ADDMISSINGITEMS . 420
Using TOPNSKIP .421
Using GROUPBY .421
Using NATURALINNERJOIN and NATURALLEFTOUTERJOIN . . 424
Using SUBSTITUTEWITHINDEX . 426
Using SAMPLE . 428

Understanding the auto-exists behavior in DAX queries 429

Conclusions . 435

Chapter 14 Advanced DAX concepts 437
Introducing expanded tables . 437

Understanding RELATED .441
Using RELATED in calculated columns . 443

xii Contents

Understanding the difference between table fi lters and
column fi lters. 444

Using table fi lters in measures . 447
Understanding active relationships .451
Difference between table expansion and fi ltering 453
Context transition in expanded tables . 455

Understanding ALLSELECTED and shadow fi lter contexts 456
Introducing shadow fi lter contexts . 457
ALLSELECTED returns the iterated rows .461
ALLSELECTED without parameters . 463

The ALL* family of functions . 463
ALL . 465
ALLEXCEPT . 466
ALLNOBLANKROW . 466
ALLSELECTED . 466
ALLCROSSFILTERED . 466

Understanding data lineage. 466

Conclusions . 469

Chapter 15 Advanced relationships 471
Implementing calculated physical relationships .471

Computing multiple-column relationships .471
Implementing relationships based on ranges .474
Understanding circular dependency in calculated

physical relationships .476

Implementing virtual relationships . 480
Transferring fi lters in DAX . 480
Transferring a fi lter using TREATAS . 482
Transferring a fi lter using INTERSECT . 483
Transferring a fi lter using FILTER . 484
Implementing dynamic segmentation using

virtual relationships . 485

Understanding physical relationships in DAX . 488

Using bidirectional cross-fi lters .491

 Contents xiii

Understanding one-to-many relationships . 493

Understanding one-to-one relationships . 493

Understanding many-to-many relationships . 494
Implementing many-to-many using a bridge table 494
Implementing many-to-many using a common dimension 500
Implementing many-to-many using MMR weak

relationships . 504

Choosing the right type of relationships . 506

Managing granularities . 507

Managing ambiguity in relationships .512
Understanding ambiguity in active relationships514
Solving ambiguity in non-active relationships515

Conclusions . 517

Chapter 16 Advanced calculations in DAX 519
Computing the working days between two dates .519

Showing budget and sales together . 527

Computing same-store sales . 530

Numbering sequences of events . 536

Computing previous year sales up to last date of sales 539

Conclusions . 544

Chapter 17 The DAX engines 545
Understanding the architecture of the DAX engines 545

Introducing the formula engine . 547
Introducing the storage engine . 547
Introducing the VertiPaq (in-memory) storage engine 548
Introducing the DirectQuery storage engine 549
Understanding data refresh . 549

Understanding the VertiPaq storage engine . 550
Introducing columnar databases . 550
Understanding VertiPaq compression . 553
Understanding segmentation and partitioning 562
Using Dynamic Management Views . 563

xiv Contents

Understanding the use of relationships in VertiPaq 565

Introducing materialization . 568

Introducing aggregations .571

Choosing hardware for VertiPaq .573
Hardware choice as an option .573
Set hardware priorities .574
CPU model .574
Memory speed .575
Number of cores .576
Memory size .576
Disk I/O and paging .576
Best practices in hardware selection . 577

Conclusions . 577

Chapter 18 Optimizing VertiPaq 579
Gathering information about the data model . 579

Denormalization . 584

Columns cardinality .591

Handling date and time . 592

Calculated columns . 595
Optimizing complex fi lters with Boolean calculated columns 597
Processing of calculated columns . 599

Choosing the right columns to store . 599

Optimizing column storage . 602
Using column split optimization . 602
Optimizing high-cardinality columns . 603
Disabling attribute hierarchies. 604
Optimizing drill-through attributes . 604

Managing VertiPaq Aggregations . 604

Conclusions . 607

 Contents xv

Chapter 19 Analyzing DAX query plans 609
Capturing DAX queries . 609

Introducing DAX query plans. .612
Collecting query plans .613
Introducing logical query plans. .614
Introducing physical query plans .614
Introducing storage engine queries .616

Capturing profi ling information . 617
Using DAX Studio . 617
Using the SQL Server Profi ler . 620

Reading VertiPaq storage engine queries . 624
Introducing xmSQL syntax . 624
Understanding scan time . 632
Understanding DISTINCTCOUNT internals . 634
Understanding parallelism and datacache . 635
Understanding the VertiPaq cache . 637
Understanding CallbackDataID . 640

Reading DirectQuery storage engine queries . 645
Analyzing composite models . 646
Using aggregations in the data model . 647

Reading query plans . 649

Conclusions . 655

Chapter 20 Optimizing DAX 657
Defi ning optimization strategies . 658

Identifying a single DAX expression to optimize 658
Creating a reproduction query .661
Analyzing server timings and query plan information 664
Identifying bottlenecks in the storage engine or

formula engine . 667
Implementing changes and rerunning the test query 668

Optimizing bottlenecks in DAX expressions . 668
Optimizing fi lter conditions . 668
Optimizing context transitions . 672

xvi Contents

Optimizing IF conditions . 678
Reducing the impact of CallbackDataID . 690
Optimizing nested iterators . 693
Avoiding table fi lters for DISTINCTCOUNT . 699
Avoiding multiple evaluations by using variables 704

Conclusions . 709

Index 711

 xvii

Foreword

You may not know our names. We spend our days writing the code for the software
you use in your daily job: We are part of the development team of Power BI, SQL

Server Analysis Services, and…yes, we are among the authors of the DAX language and
the VertiPaq engine.

The language you are going to learn using this book is our creation. We spent years
working on this language, optimizing the engine, fi nding ways to improve the optimizer,
and trying to build DAX into a simple, clean, and sound language to make your life as a
data analyst easier and more productive.

But hey, this is intended to be the foreword of a book, so no more about us! Why are
we writing a foreword for a book published by Marco and Alberto, the SQLBI guys? Well,
because when you start learning DAX, it is a matter of a few clicks and searches on the
web before you fi nd articles written by them. You start reading their papers, learning
the language, and hopefully appreciating our hard work. Having met them many years
ago, we have great admiration for their deep knowledge of SQL Server Analysis Services.
When the DAX adventure started, they were among the fi rst to learn and adopt this new
engine and language.

The articles, papers, and blog posts they publish and share on the web have become
the source of learning for thousands of people. We write the code, but we do not spend
much time teaching developers how to use it; Marco and Alberto are the ones who
spread the knowledge about DAX.

Alberto and Marco’s books are among a few bestsellers on this topic, and now with
this new guide to DAX, they have truly created a milestone publication about the lan-
guage we author and love. We write the code, they write the books, and you learn DAX,
providing unprecedented analytical power to your business. This is what we love: work-
ing all together as a team—we, they, and you—to extract better insights from data.

Marius Dumitru, Architect, Power BI CTO’s Offi ce

Cristian Petculescu, Chief Architect of Power BI

Jeffrey Wang, Principal Software Engineer Manager

Christian Wade, Senior Program Manager

xviii

Acknowledgments

Writing this second edition required an entire year’s worth of work, three months
more than the fi rst edition. It has been a long and amazing journey, connecting

people all around the world in any latitude and time zone to be able to produce the
result you are going to read. We have so many people to thank for this book that we
know it is impossible to write a complete list. So, thanks so much to all of you who con-
tributed to this book—even if you had no idea that you were doing so. Blog comments,
forum posts, email discussions, chats with attendees and speakers at technical confer-
ences, analysis of customer scenarios, and so much more have been useful to us, and
many people have contributed signifi cant ideas to this book. Moreover, big thanks to all
the students of our courses: By teaching you, we got better!

That said, there are people we must mention personally, because of their particular
contributions.

We want to start with Edward Melomed: He has inspired us, and we probably would
not have started our journey with the DAX language without a passionate discussion
we had with him several years ago and that ended with the table of contents of our fi rst
book about Power Pivot written on a napkin.

We want to thank Microsoft Press and the people who contributed to the project:
They all greatly helped us along the process of book writing.

The only job longer than writing a book is the studying you must do in preparation
for writing it. A group of people that we (in all friendliness) call “ssas-insiders” helped
us get ready to write this book. A few people from Microsoft deserve a special mention
as well, because they spent a lot of their precious time teaching us important concepts
about Power BI and DAX: They are Marius Dumitru, Jeffrey Wang, Akshai Mirchandani,
Krystian Sakowski, and Cristian Petculescu. Your help has been priceless, guys!

We also want to thank Amir Netz, Christian Wade, Ashvini Sharma, Kasper De Jonge,
and T. K. Anand for their contributions to the many discussions we had about the prod-
uct. We feel they helped us tremendously in strategic choices we made in this book and
in our career.

We wanted to reserve a special mention to a woman who did an incredible job
improving and cleaning up our English. Claire Costa proofread the entire manuscript and
made it so much easier to read. Claire, your help is invaluable—Thanks!

 Acknowledgments xix

The last special mention goes to our technical reviewer: Daniil Maslyuk carefully
tested every single line of code, text, example, and reference we had written. He found
any and all kinds of mistakes we would have missed. He rarely made comments that did
not require a change in the book. The result is amazing for us. If the book contains fewer
errors than our original manuscript, it is only because of Daniil’s efforts. If it still contains
errors, it is our fault, of course.

Thank you so much, folks!

Errata, updates, and book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at https://MicrosoftPressStore.com/Defi nitiveGuideDAX/errata

For additional book support and information, please visit https://MicrosoftPressStore.
com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We are on Twitter: http://twitter.com/MicrosoftPress.

https://MicrosoftPressStore.com/Defi
https://MicrosoftPressStore.com/Support
https://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

xx

Introduction to the second
edition

When we decided it was time to update this book, we thought it would be an easy
job: After all, not many things have changed in the DAX language, and the theo-

retical core of the book was still very good. We believed the focus would mainly be on
updating the screenshots from Excel to Power BI, adding a few touch-ups here and there,
and we would be done. How wrong we were!

As soon as we started updating the fi rst chapter, we quickly discovered that we
wanted to rewrite nearly everything. We felt so not only in the fi rst chapter, but at every
page of the book. Therefore, this is not really a second edition; it is a brand new book.

The reason is not that the language or the tools have changed so drastically. The
reason is that over these last few years we—as authors and teachers—have evolved a lot,
hopefully for the better. We have taught DAX to thousands of users and developers all
around the world; we worked hard with our students, always striving for the best way to
explain complex topics. Eventually, we found different ways of describing the language
we love.

We increased the number of examples for this edition, showing practical uses of the
functionalities after teaching the theoretical foundation of DAX. We tried to use a sim-
pler style, without compromising on precision. We fought with the editor to increase the
page count, as this was needed to cover all the topics we wanted to share. Nevertheless,
we did not change the leitmotif of the book: we assume no previous knowledge of DAX,
even though this is not a book for the casual DAX developer. This is a book for people
who really want to learn the language and gain a deep understanding of the power and
complexity of DAX.

Yes, if you want to leverage the real power of DAX, you need to be prepared for a
long journey with us, reading the book from cover to cover, and then reading it again,
searching for the many details that—at fi rst sight—are not obvious.

 xxi

Introduction to the fi rst edition

We have created considerable amounts of content on DAX: books about Power
Pivot and SSAS Tabular, blog posts, articles, white papers, and fi nally a book dedi-

cated to DAX patterns. So why should we write (and, hopefully, you read) yet another
book about DAX? Is there really so much to learn about this language? Of course, we
think the answer is a defi nite yes.

When you write a book, the fi rst thing that the editor wants to know is the number of
pages. There are very good reasons why this is important: price, management, allocation
of resources, and so on. In the end, nearly everything in a book goes back to the number
of pages. As authors, this is somewhat frustrating. In fact, whenever we write a book, we
have to carefully allocate space to the description of the product (either Power Pivot for
Microsoft Excel or SSAS Tabular) and of to the DAX language. This has always left us with
the bitter feeling of not having enough pages to describe all we wanted to teach about
DAX. After all, you cannot write 1,000 pages about Power Pivot; a book of such size
would be intimidating for anybody.

Thus, for years we wrote about SSAS Tabular and Power Pivot, and we kept the project
of a book completely dedicated to DAX in a drawer. Then we opened the drawer and
decided to avoid choosing what to include in the next book: We wanted to explain
everything about DAX, with no compromises. The result of that decision is this book.

Here you will not fi nd a description of how to create a calculated column, or which
dialog box to use to set a property. This is not a step-by-step book that teaches you how
to use Microsoft Visual Studio, Power BI, or Power Pivot for Excel. Instead, this is a deep
dive into the DAX language, starting from the beginning and then reaching very techni-
cal details about how to optimize your code and model.

We loved each page of this book while we were writing it. We reviewed the content
so many times that we had it memorized. We continued adding content whenever we
thought there was something important to include, thus increasing the page count and
never cutting something because there were no pages left. Doing that, we learned more
about DAX and we enjoyed every moment spent doing so.

But there is one more thing. Why should you read a book about DAX?

Come on, you thought this after the fi rst demo of Power Pivot or Power BI. You are
not alone; we thought the same the fi rst time we tried it. DAX is so easy! It looks so
similar to Excel! Moreover, if you have already learned other programming and/or query

xxii Introduction to the fi rst edition

languages, you are probably used to learning a new language by looking at examples of
the syntax, matching patterns you fi nd to those you already know. We made this mistake,
and we would like you to avoid doing the same.

DAX is a mighty language, used in a growing number of analytical tools. It is very
powerful, but it includes a few concepts that are hard to understand by inductive reason-
ing. The evaluation context, for instance, is a topic that requires a deductive approach:
You start with a theory, and then you see a few examples that demonstrate how the
theory works. Deductive reasoning is the approach of this book. We know that a number
of people do not like learning this way, because they prefer a more practical approach—
learning how to solve specifi c problems, and then with experience and practice, they
understand the underlying theory with an inductive reasoning. If you are looking for that
approach, this book is not for you. We wrote a book about DAX patterns, full of examples
and without any explanation of why a formula works, or why a certain way of coding is
better. That book is a good source for copying and pasting DAX formulas. The goal of
this book here is different: to enable you to master DAX. All the examples demonstrate
a DAX behavior; they do not solve a specifi c problem. If you fi nd formulas that you can
reuse in your models, good for you. However, always remember that this is just a side
effect, not the goal of the example. Finally, always read any note to make sure there are
no possible pitfalls in the code used in the examples. For educational purposes we have
often used code that was not the best practice.

We really hope you will enjoy spending time with us in this beautiful trip to learn DAX,
at least in the same way we enjoyed writing it.

Who this book is for

If you are a casual user of DAX, then this book is probably not the best choice for you.
Many books provide a simple introduction to the tools that implement DAX and to the
DAX language itself, starting from the ground up and reaching a basic level of DAX pro-
gramming. We know this very well, because we wrote some of those books, too!

If, on the other hand, you are serious about DAX and you really want to understand
every detail of this beautiful language, then this is your book. This might be your fi rst
book about DAX; in that case you should not expect to benefi t from the most advanced
topics too early. We suggest you read the book from cover to cover and then read the
most complex parts again, once you have gained some experience; it is very likely that
some concepts will become clearer at that point.

 Introduction to the fi rst edition xxiii

DAX is useful to different people, for different purposes: Power BI users might need
to author DAX formulas in their models, Excel users can leverage DAX to author Power
Pivot data models, business intelligence (BI) professionals might need to implement
DAX code in BI solutions of any size. In this book, we tried to provide information to all
these different kinds of people. Some of the content (specifi cally the optimization part) is
probably more targeted to BI professionals, because the knowledge needed to optimize
a DAX measure is very technical; but we believe that Power BI and Excel users too should
understand the range of possible performance of DAX expressions to achieve the best
results for their models.

Finally, we wanted to write a book to study, not only a book to read. At the beginning,
we try to keep it easy and follow a logical path from zero to DAX. However, when the
concepts to learn start to become more complex, we stop trying to be simple, and we
remain realistic. DAX is simple, but it is not easy. It took years for us to master it and to
understand every detail of the engine. Do not expect to be able to learn all this content
in a few days, by reading casually. This book requires your attention at a very high level.
In exchange for that, we offer an unprecedented depth of coverage of all aspects of DAX,
giving you the option to become a real DAX expert.

Assumptions about you

We expect our reader to have basic knowledge of Power BI and some experience in the
analysis of numbers. If you have already had prior exposure to the DAX language, then
this is good for you—you will read the fi rst part faster—but of course knowing DAX is
not necessary.

There are references throughout the book to MDX and SQL code; however, you do
not really need to know these languages because they just refl ect comparisons between
different ways of writing expressions. If you do not understand those lines of code, it is
fi ne; it means that that specifi c topic is not for you.

In the most advanced parts of the book, we discuss parallelism, memory access, CPU
usage, and other exquisitely geeky topics that not everybody might be familiar with.
Any developer will feel at home there, whereas Power BI and Excel users might be a bit
intimidated. Nevertheless, this information is required in order to discuss DAX optimiza-
tion. Indeed, the most advanced part of the book is aimed more towards BI developers
than towards Power BI and Excel users. However, we think that everybody will benefi t
from reading it.

xxiv Introduction to the fi rst edition

Organization of this book

The book is designed to fl ow from introductory chapters to complex ones, in a logi-
cal way. Each chapter is written with the assumption that the previous content is fully
understood; there is nearly no repetition of concepts explained earlier. For this reason,
we strongly suggest that you read it from cover to cover and avoid jumping to more
advanced chapters too early.

Once you have read it for the fi rst time, it becomes useful as a reference: For example,
if you are in doubt about the behavior of ALLSELECTED, then you can jump straight to that
section and clarify your mind on that. Nevertheless, reading that section without having
digested the previous content might result in some frustration or, worse, in an incom-
plete understanding of the concepts.

With that said, here is the content at a glance:

 ■ Chapter 1 is a brief introduction to DAX, with a few sections dedicated to users
who already have some knowledge of other languages, namely SQL, Excel, or
MDX. We do not introduce any new concept here; we just give several hints about
the differences between DAX and other languages that might be known to the
reader.

 ■ Chapter 2 introduces the DAX language itself. We cover basic concepts such as
calculated columns, measures, and error-handling functions; we also list most of
the basic functions of the language.

 ■ Chapter 3 is dedicated to basic table functions. Many functions in DAX work on
tables and return tables as a result. In this chapter we cover the most basic table
functions, whereas we cover advanced table functions in Chapter 12 and 13.

 ■ Chapter 4 describes evaluation contexts. Evaluation contexts are the foundation
of the DAX language, so this chapter, along with the next one, is probably the
most important in the entire book.

 ■ Chapter 5 only covers two functions: CALCULATE and CALCULATETABLE. These are the
most important functions in DAX, and they strongly rely on a good understand-
ing of evaluation contexts.

 ■ Chapter 6 describes variables. We use variables in all the examples of the book,
but Chapter 6 is where we introduce their syntax and explain how to use vari-
ables. This chapter will be useful as a reference when you see countless examples
using variables in the following chapters.

 Introduction to the fi rst edition xxv

 ■ Chapter 7 covers iterators and CALCULATE: a marriage made in heaven. Learning
how to use iterators, along with the power of context transition, leverages much
of the power of DAX. In this chapter, we show several examples that are useful to
understand how to take advantage of these tools.

 ■ Chapter 8 describes time intelligence calculations at a very in-depth level. Year-
to-date, month-to-date, values of the previous year, week-based periods, and
custom calendars are some of the calculations covered in this chapter.

 ■ Chapter 9 is dedicated to the latest feature introduced in DAX: calculation
groups. Calculation groups are very powerful as a modeling tool. This chapter
describes how to create and use calculation groups, introducing the basic con-
cepts and showing a few examples.

 ■ Chapter 10 covers more advanced uses of the fi lter context, data lineage, inspec-
tion of the fi lter context, and other useful tools to compute advanced formulas.

 ■ Chapter 11 shows you how to perform calculations over hierarchies and how to
handle parent/child structures using DAX.

 ■ Chapters 12 and 13 cover advanced table functions that are useful both to author
queries and/or to compute advanced calculations.

 ■ Chapter 14 advances your knowledge of evaluation context one step further and
discusses complex functions such as ALLSELECTED and KEEPFILTERS, with the aid of
the theory of expanded tables. This is an advanced chapter that uncovers most of
the secrets of complex DAX expressions.

 ■ Chapter 15 is about managing relationships in DAX. Indeed, thanks to DAX any
type of relationship can be set within a data model. This chapter includes the
description of many types of relationships that are common in an analytical
data model.

 ■ Chapter 16 contains several examples of complex calculations solved in DAX. This
is the fi nal chapter about the language, useful to discover solutions and new ideas.

 ■ Chapter 17 includes a detailed description of the VertiPaq engine, which is the
most common storage engine used by models running DAX. Understanding it is
essential to learning how to get the best performance in DAX.

 ■ Chapter 18 uses the knowledge from Chapter 17 to show possible optimizations
that you can apply at the data model level. You learn how to reduce the cardinality
of columns, how to choose columns to import, and how to improve performance
by choosing the proper relationship types and by reducing memory usage in DAX.

xxvi Introduction to the fi rst edition

 ■ Chapter 19 teaches you how to read a query plan and how to measure the per-
formance of a DAX query with the aid of tools such as DAX Studio and SQL Server
Profi ler.

 ■ Chapter 20 shows several optimization techniques, based on the content of the
previous chapters about optimization. We show many DAX expressions, measure
their performance, and then display and explain optimized formulas.

Conventions

The following conventions are used in this book:

 ■ Boldface type is used to indicate text that you type.

 ■ Italic type is used to indicate new terms, measures, calculated columns, tables, and
database names.

 ■ The fi rst letters of the names of dialog boxes, dialog box elements, and com-
mands are capitalized. For example, the Save As dialog box.

 ■ The names of ribbon tabs are given in ALL CAPS.

 ■ Keyboard shortcuts are indicated by a plus sign (+) separating the key names. For
example, Ctrl+Alt+Delete means that you press Ctrl, Alt, and Delete keys at the
same time.

About the companion content

We have included companion content to enrich your learning experience. The compan-
ion content for this book can be downloaded from the following page:

MicrosoftPressStore.com/Defi nitiveGuideDAX/downloads

The companion content includes the following:

 ■ A SQL Server backup of the Contoso Retail DW database that you can use to build
the examples yourself. This is a standard demo database provided by Microsoft,
which we have enriched with several views, to make it easier to create a data
model on top of it.

 ■ A separate Power BI Desktop model for each fi gure of the book. Every fi gure has
its own fi le. The data model is almost always the same, but you can use these fi les
to closely follow the steps outlined in the book.

http://MicrosoftPressStore.com/De$$$fi

 1

C H A P T E R 1

What is DAX?

DAX, which stands for Data Analysis eXpressions, is the programming language of Microsoft Power BI,
Microsoft Analysis Services, and Microsoft Power Pivot for Excel. It was created in 2010, with the fi rst
release of PowerPivot for Microsoft Excel 2010. In 2010, PowerPivot was spelled without the space.
The space was introduced in the Power Pivot name in 2013. Since then, DAX has gained popularity, both
within the Excel community, which uses DAX to create Power Pivot data models in Excel, and within
the Business Intelligence (BI) community, which uses DAX to build models with Power BI and Analysis
Services. DAX is present in many different tools, all sharing the same internal engine named Tabular.
For this reason, we often refer to Tabular models, including all these different tools in a single word.

DAX is a simple language. That said, DAX is different from most programming languages, so
becoming acquainted with some of its new concepts might take some time. In our experience, having
taught DAX to thousands of people, learning the basics of DAX is straightforward: you will be able to
start using it in a matter of hours. When it comes to understanding advanced concepts such as evalu-
ation contexts, iterations, and context transitions, everything will likely seem complex. Do not give up!
Be patient. When your brain starts to digest these concepts, you will discover that DAX is, indeed, an
easy language. It just takes some getting used to.

This fi rst chapter begins with a recap of what a data model is in terms of tables and relationships.
We recommend readers of all experience levels read this section to gain familiarity with the terms used
throughout the book when referring to tables, models, and different kinds of relationships.

In the following sections, we offer advice to readers who have experience with programming
languages such as Microsoft Excel, SQL, and MDX. Each section is focused on a certain language, for
readers curious to briefl y compare DAX to it. Focus on languages you know if a comparison is helpful to
you; then read the fi nal section, “DAX for Power BI users,” and move on to the next chapter where our
journey into the DAX language truly begins.

Understanding the data model

DAX is specifi cally designed to compute business formulas over a data model. The readers might
already know what a data model is. If not, we start with a description of data models and relationships
to create a foundation on which to build their DAX knowledge.

A data model is a set of tables, linked by relationships.

2 CHAPTER 1 What is DAX?

We all know what a table is: a set of rows containing data, with each row divided into columns.
Each column has a data type and contains a single piece of information. We usually refer to a row
in a table as a record. Tables are a convenient way to organize data. A table is a data model in itself
although in its simplest form. Thus, when we write names and numbers in an Excel workbook, we are
creating a data model.

If a data model contains many tables, it is likely that they are linked through relationships. A rela-
tionship is a link between two tables. When two tables are tied with a relationship, we say that they are
related. Graphically, a relationship is represented by a line connecting the two tables. Figure 1-1 shows
an example of a data model.

FIGURE 1-1 This data model is made up of six tables.

Following are a few important aspects of relationships:

 ■ Two tables in a relationship do not have the same role. They are called the one-side and the
many-side of the relationship, represented respectively with a 1 and with a *. In Figure 1-1, focus
on the relationship between Product and Product Subcategory. A single subcategory contains
many products, whereas a single product has only one subcategory. Therefore, Product Subcat-
egory is the one-side of the relationship, having one subcategory, while Product is the many-
side having many products.

 ■ Special kinds of relationships are 1:1 and weak relationships. In 1:1 relationships, both tables
are the one-side, whereas in weak relationships, both tables can be the many-side. These
special kinds of relationships are uncommon; we discuss them in detail in Chapter 15, “Advanced
relationships.”

 CHAPTER 1 What is DAX? 3

 ■ The columns used to create the relationship, which usually have the same name in both tables,
are called the keys of the relationship. On the one-side of the relationship, the column needs
to have a unique value for each row, and it cannot contain blanks. On the many-side, the same
value can be repeated in many different rows, and it often is. When a column has a unique value
for each row, it is called a key for the table.

 ■ Relationships can form a chain. Each product has a subcategory, and each subcategory has a
category. Thus, each product has a category. To retrieve the category of a product, one must
traverse a chain of two relationships. Figure 1-1 includes an example of a chain made up of three
relationships, starting with Sales and continuing on to Product Category.

 ■ In each relationship, one or two small arrows can determine the cross fi lter direction. Figure 1-1
shows two arrows in the relationship between Sales and Product, whereas all other relationships
have a single arrow. The arrow indicates the direction of the automatic fi ltering of the relation-
ship (cross fi lter). Because determining the correct direction of fi lters is one of the most impor-
tant skills to learn, we discuss this topic in more detail in later chapters. We usually discourage
the use of bidirectional fi lters, as described in Chapter 15. They are present in this model for
educational purposes only.

Understanding the direction of a relationship
Each relationship can have a unidirectional or bidirectional cross fi lter. Filtering always happens from
the one-side of the relationship to the many-side. If the cross fi lter is bidirectional—that is, if it has two
arrows on it—the fi ltering also happens from the many-side to the one-side.

An example might help in understanding this behavior. If a report is based on the data model shown
in Figure 1-1, with the years on the rows and Quantity and Count of Product Name in the values area, it
produces the result shown in Figure 1-2.

FIGURE 1-2 This report shows the effect of fi ltering across multiple tables.

Calendar Year is a column that belongs to the Date table. Because Date is on the one-side of the
relationship with Sales, the engine fi lters Sales based on the year. This is why the quantity shown is
fi ltered by year.

With Products, the scenario is slightly different. The fi ltering happens because the relationship
between the Sales and Product tables is bidirectional. When we put the count of product names in the
report, we obtain the number of products sold in each year because the fi lter on the year propagates
to Product through Sales. If the relationship between Sales and Product were unidirectional, the result
would be different, as we explain in the following sections.

4 CHAPTER 1 What is DAX?

If we modify the report by putting Color on the rows and adding Count of Date in the values area,
the result is different, as shown in Figure 1-3.

FIGURE 1-3 This report shows that if bidirectional fi ltering is not active, tables are not fi ltered.

The fi lter on the rows is the Color column in the Product table. Because Product is on the one-side of
the relationship with Sales, Quantity is fi ltered correctly. Count of Product Name is fi ltered because it is
computing values from the table that is on the rows, that is Product. The unexpected number is Count
of Date. Indeed, it always shows the same value for all the rows—that is, the total number of rows in the
Date table.

The fi lter coming from the Color column does not propagate to Date because the relationship
between Date and Sales is unidirectional. Thus, although Sales has an active fi lter on it, the fi lter cannot
propagate to Date because the type of relationship prevents it.

If we change the relationship between Date and Sales to enable bidirectional cross-fi ltering, the
result is as shown in Figure 1-4.

The numbers now refl ect the number of days when at least one product of the given color was sold.
At fi rst sight, it might look as if all the relationships should be defi ned as bidirectional, so as to let the
fi lter propagate in any direction and always return results that make sense. As you will learn later in this
book, designing a data model this way is almost never appropriate. In fact, depending on the scenario
you are working with, you will choose the correct propagation of relationships. If you follow our
suggestions, you will avoid bidirectional fi ltering as much as you can.

 CHAPTER 1 What is DAX? 5

FIGURE 1-4 If we enable bidirectional fi ltering, the Date table is fi ltered using the Color column.

DAX for Excel users

Chances are you already know the Excel formula language that DAX somewhat resembles. After all, the
roots of DAX are in Power Pivot for Excel, and the development team tried to keep the two languages
similar. This similarity makes the transition to this new language easier. However, there are some
important differences.

Cells versus tables
Excel performs calculations over cells. A cell is referenced using its coordinates. Thus, we can write
formulas as follows:

= (A1 * 1.25) - B2

In DAX, the concept of a cell and its coordinates does not exist. DAX works on tables and columns,
not cells. As a consequence, DAX expressions refer to tables and columns, and this means writing code
differently. The concepts of tables and columns are not new in Excel. In fact, if we defi ne an Excel range
as a table by using the Format as Table function, we can write formulas in Excel that reference tables
and columns. In Figure 1-5, the SalesAmount column evaluates an expression that references columns
in the same table instead of cells in the workbook.

6 CHAPTER 1 What is DAX?

FIGURE 1-5 Excel can reference column names in tables.

Using Excel, we refer to columns in a table using the [@ColumnName] format. ColumnName is the
name of the column to use, and the @ symbol means “take the value for the current row.” Although the
syntax is not intuitive, normally we do not write these expressions. They appear when we click a cell,
and Excel takes care of inserting the right code for us.

You might think of Excel as having two different ways of performing calculations. We can use stan-
dard cell references, in which case the formula for F4 would be E4*D4, or we can use column references
inside a table. Using column references offers the advantage that we can use the same expression in all
the cells of a column and Excel will compute the formula with a different value for each row.

Unlike Excel, DAX works only on tables. All the formulas must reference columns inside tables.
For example, in DAX we write the previous multiplication this way:

Sales[SalesAmount] = Sales[ProductPrice] * Sales[ProductQuantity]

As you can see, each column is prefi xed with the name of its table. In Excel, we do not provide the
table name because Excel formulas work inside a single table. However, DAX works on a data model
containing many tables. As a consequence, we must specify the table name because two columns in
different tables might have the same name.

Many functions in DAX work the same way as the equivalent Excel function. For example, the IF
function reads the same way in DAX and in Excel:

Excel IF ([@SalesAmount] > 10, 1, 0)
DAX IF (Sales[SalesAmount] > 10, 1, 0)

One important aspect where the syntax of Excel and DAX is different is in the way to reference the
entire column. In fact, in [@ProductQuantity], the @ means “the value in the current row.” In DAX, there
is no need to specify that a value must be from the current row, because this is the default behavior of

 CHAPTER 1 What is DAX? 7

the language. In Excel, we can reference the entire column—that is, all the rows in that column—by
removing the @ symbol. You can see this in Figure 1-6.

FIGURE 1-6 In Excel, you can reference an entire column by omitting the @ symbol before the column name.

The value of the AllSales column is the same in all the rows because it is the grand total of the
SalesAmount column. In other words, there is a syntactical difference between the value of a column in
the current row and the value of the column as a whole.

DAX is different. In DAX, this is how you write the AllSales expression of Figure 1-6:

AllSales := SUM (Sales[SalesAmount])

There is no syntactical difference between retrieving the value of a column for a specifi c row and
using the column as a whole. DAX understands that we want to sum all the values of the column
because we use the column name inside an aggregator (in this case the SUM function), which requires a
column name to be passed as a parameter. Thus, although Excel requires an explicit syntax to differen-
tiate between the two types of data to retrieve, DAX does the disambiguation automatically.
This distinction might be confusing—at least in the beginning.

Excel and DAX: Two functional languages
One aspect where the two languages are similar is that both Excel and DAX are functional languages.
A functional language is made up of expressions that are basically function calls. In Excel and DAX, the
concepts of statements, loops, and jumps do not exist although they are common to many program-
ming languages. In DAX, everything is an expression. This aspect of the language is often a challenge
for programmers coming from different languages, but it should be no surprise at all for Excel users.

8 CHAPTER 1 What is DAX?

Iterators in DAX
A concept that might be new to you is the concept of iterators. When working in Excel, you perform
calculations one step at a time. The previous example showed that to compute the total of sales, we
create one column containing the price multiplied by the quantity. Then as a second step, we sum it to
compute the total sales. This number is then useful as a denominator to compute the percentage of
sales of each product, for example.

Using DAX, you can perform the same operation in a single step by using iterators. An iterator does
exactly what its name suggests: it iterates over a table and performs a calculation on each row of the
table, aggregating the result to produce the single value requested.

Using the previous example, we can now compute the sum of all sales using the SUMX iterator:

AllSales :=
SUMX (
 Sales,
 Sales[ProductQuantity] * Sales[ProductPrice]
)

This approach brings to light both an advantage and a disadvantage. The advantage is that we
can perform many complex calculations in a single step without worrying about adding columns that
would end up being useful only for specifi c formulas. The disadvantage is that programming with DAX
is less visual than programming with Excel. Indeed, you do not see the column computing the price
multiplied by the quantity; it exists only for the lifetime of the calculation.

As we will explain later, we can create a calculated column that computes the multiplication of price
by quantity. Nevertheless, doing so is seldom a good practice because it uses memory and might slow
down the calculations, unless you use DirectQuery and Aggregations, as we explain in Chapter 18,
“Optimizing VertiPaq.”

DAX requires theory
Let us be clear: The fact that DAX requires one to study theory fi rst is not a difference between pro-
gramming languages. This is a difference in mindset. You are probably used to searching the web for
complex formulas and solution patterns for the scenarios you are trying to solve. When you are using
Excel, chances are you will fi nd a formula that almost does what you need. You can copy the formula,
customize it to fi t your needs, and then use it without worrying too much about how it works.

This approach, which works in Excel, does not work with DAX, however. You need to study DAX
theory and thoroughly understand how evaluation contexts work before you can write good DAX
code. If you do not have a proper theoretical foundation, you will fi nd that DAX either computes values
like magic or it computes strange numbers that make no sense. The problem is not DAX but the fact
that you do not yet understood exactly how DAX works.

Luckily, the theory behind DAX is limited to a couple of important concepts, which we explain in
Chapter 4, “Understanding evaluation contexts.” When you reach that chapter, be prepared for some
intense learning. After you master that content, DAX will have no secrets for you, and learning DAX will

 CHAPTER 1 What is DAX? 9

mainly be a matter of gaining experience. Remember: knowing is half the battle. So do not try to go
further until you are somewhat profi cient with evaluation contexts.

DAX for SQL developers

If you are accustomed to the SQL language, you have already worked with many tables and created
joins between columns to set relationships. From this point of view, you will likely feel at home in the
DAX world. Indeed, computing in DAX is a matter of querying a set of tables joined by relationships
and aggregating values.

Relationship handling
The fi rst difference between SQL and DAX is in the way relationships work in the model. In SQL, we can set
foreign keys between tables to declare relationships, but the engine never uses these foreign keys in que-
ries unless we are explicit about them. For example, if we have a Customers table and a Sales table, where
CustomerKey is a primary key in Customers and a foreign key in Sales, we can write the following query:

SELECT
 Customers.CustomerName,
 SUM (Sales.SalesAmount) AS SumOfSales
FROM
 Sales
 INNER JOIN Customers
 ON Sales.CustomerKey = Customers.CustomerKey
GROUP BY
 Customers.CustomerName

Though we declare the relationship in the model using foreign keys, we still need to be explicit and
state the join condition in the query. Although this approach makes queries more verbose, it is useful
because you can use different join conditions in different queries, giving you a lot of freedom in the
way you express queries.

In DAX, relationships are part of the model, and they are all LEFT OUTER JOINs. When they are
defi ned in the model, you no longer need to specify the join type in the query: DAX uses an automatic
LEFT OUTER JOIN in the query whenever you use columns related to the primary table. Thus, in DAX
you would write the previous SQL query as follows:

EVALUATE
SUMMARIZECOLUMNS (
 Customers[CustomerName],
 "SumOfSales", SUM (Sales[SalesAmount])
)

Because DAX knows the existing relationship between Sales and Customers, it does the join auto-
matically following the model. Finally, the SUMMARIZECOLUMNS function needs to perform a group
by Customers[CustomerName], but we do not have a keyword for that: SUMMARIZECOLUMNS
automatically groups data by selected columns.

10 CHAPTER 1 What is DAX?

DAX is a functional language
SQL is a declarative language. You defi ne what you need by declaring the set of data you want to
retrieve using SELECT statements, without worrying about how the engine actually retrieves the
information.

DAX, on the other hand, is a functional language. In DAX, every expression is a function call.
Function parameters can, in turn, be other function calls. The evaluation of parameters might lead to
complex query plans that DAX executes to compute the result.

For example, if we want to retrieve only customers who live in Europe, we can write this query
in SQL:

SELECT
 Customers.CustomerName,
 SUM (Sales.SalesAmount) AS SumOfSales
FROM
 Sales
 INNER JOIN Customers
 ON Sales.CustomerKey = Customers.CustomerKey
WHERE
 Customers.Continent = 'Europe'
GROUP BY
 Customers.CustomerName

Using DAX, we do not declare the WHERE condition in the query. Instead, we use a specifi c function
(FILTER) to fi lter the result:

EVALUATE
SUMMARIZECOLUMNS (
 Customers[CustomerName],
 FILTER (
 Customers,
 Customers[Continent] = "Europe"
),
 "SumOfSales", SUM (Sales[SalesAmount])
)

You can see that FILTER is a function: it returns only the customers living in Europe, producing
the expected result. The order in which we nest the functions and the kinds of functions we use have
a strong impact on both the result and the performance of the engine. This happens in SQL too,
although in SQL we trust the query optimizer to fi nd the optimal query plan. In DAX, although the
query optimizer does a great job, you, as programmer, bear more responsibility in writing good code.

DAX as a programming and querying language
In SQL, a clear distinction exists between the query language and the programming language—that
is, the set of instructions used to create stored procedures, views, and other pieces of code in the
database. Each SQL dialect has its own statements to let programmers enrich the data model with

 CHAPTER 1 What is DAX? 11

code. However, DAX virtually makes no distinction between querying and programming. A rich set of
 functions manipulates tables and can, in turn, return tables. The FILTER function in the previous query
is a good example of this.

In that respect, it appears that DAX is simpler than SQL. When you learn it as a programming
language—its original use—you will know everything needed to also use it as a query language.

Subqueries and conditions in DAX and SQL
One of the most powerful features of SQL as a query language is the option of using subqueries. DAX
features similar concepts. In the case of DAX subqueries, however, they stem from the functional nature
of the language.

For example, to retrieve customers and total sales specifi cally for the customers who bought more
than US$100 worth, we can write this query in SQL:

SELECT
 CustomerName,
 SumOfSales
FROM (
 SELECT
 Customers.CustomerName,
 SUM (Sales.SalesAmount) AS SumOfSales
 FROM
 Sales
 INNER JOIN Customers
 ON Sales.CustomerKey = Customers.CustomerKey
 GROUP BY
 Customers.CustomerName
) AS SubQuery
WHERE
 SubQuery.SumOfSales > 100

We can obtain the same result in DAX by nesting function calls:

EVALUATE
FILTER (
 SUMMARIZECOLUMNS (
 Customers[CustomerName],
 "SumOfSales", SUM (Sales[SalesAmount])
),
 [SumOfSales] > 100
)

In this code, the subquery that retrieves CustomerName and SumOfSales is later fed into a FILTER
function that retains only the rows where SumOfSales is greater than 100. Right now, this code might
seem unreadable to you. However, as soon as you start learning DAX, you will discover that using
subqueries is much easier than in SQL, and it fl ows naturally because DAX is a functional language.

12 CHAPTER 1 What is DAX?

DAX for MDX developers

Many Business Intelligence professionals start learning DAX because it is the new language of Tabu-
lar. In the past, they used the MDX language to build and query Analysis Services Multidimensional
models. If you are among them, be prepared to learn a completely new language: DAX and MDX do
not share much in common. Worse, some concepts in DAX will remind you of similar existing concepts
in MDX though they are different.

In our experience, we have found that learning DAX after learning MDX is the most challenging
option. To learn DAX, you need to free your mind from MDX. Try to forget everything you know about
multidimensional spaces and be prepared to learn this new language with a clear mind.

Multidimensional versus Tabular
MDX works in the multidimensional space defi ned by a model. The shape of the multidimensional
space is based on the architecture of dimensions and hierarchies defi ned in the model, and this, in turn,
defi nes the set of coordinates of the multidimensional space. Intersections of sets of members in differ-
ent dimensions defi ne points in the multidimensional space. You may have taken some time to realize
that the [All] member of any attribute hierarchy is indeed a point in the multidimensional space.

DAX works in a much simpler way. There are no dimensions, no members, and no points in the
multidimensional space. In other words, there is no multidimensional space at all. There are hierarchies,
which we can defi ne in the model, but they are different from hierarchies in MDX. The DAX space is
built on top of tables, columns, and relationships. Each table in a Tabular model is neither a measure
group nor a dimension: it is just a table, and to compute values, you scan it, fi lter it, or sum values inside
it. Everything is based on the two simple concepts of tables and relationships.

You will soon discover that from the modeling point of view, Tabular offers fewer options than
Multidimensional does. In this case, having fewer options does not mean being less powerful because
you can use DAX as a programming language to enrich the model. The real modeling power of Tabular
is the tremendous speed of DAX. In fact, you probably try to avoid overusing MDX in your model
because optimizing MDX speed is often a challenge. DAX, on the other hand, is amazingly fast. Thus,
most of the complexity of the calculations is not in the model but in the DAX formulas instead.

DAX as a programming and querying language
DAX and MDX are both programming languages and query languages. In MDX, the difference is made
clear by the presence of the MDX script. You use MDX in the MDX script, along with several special
statements that can be used in the script only, such as SCOPE statements. You use MDX in queries when
you write SELECT statements that retrieve data. In DAX, this is somewhat different. You use DAX as a
programming language to defi ne calculated columns, calculated tables, and measures. The concept of
calculated columns and calculated tables is new to DAX and does not exist in MDX; measures are simi-
lar to calculated members in MDX. You can also use DAX as a query language—for example, to retrieve

 CHAPTER 1 What is DAX? 13

data from a Tabular model using Reporting Services. Nevertheless, DAX functions do not have a spe-
cifi c role and can be used in both queries and calculation expressions. Moreover, you can also query a
Tabular model using MDX. Thus, the querying part of MDX works with Tabular models, whereas DAX is
the only option when it comes to programming a Tabular model.

Hierarchies
Using MDX, you rely on hierarchies to perform most of the calculations. If you wanted to compute the
sales in the previous year, you would have to retrieve the PrevMember of the CurrentMember on the
Year hierarchy and use it to override the MDX fi lter. For example, you can write the formula this way to
defi ne a previous year calculation in MDX:

CREATE MEMBER CURRENTCUBE.[Measures].[SamePeriodPreviousYearSales] AS
(
 [Measures].[Sales Amount],
 ParallelPeriod (
 [Date].[Calendar].[Calendar Year],
 1,
 [Date].[Calendar].CurrentMember
)
);

The measure uses the ParallelPeriod function, which returns the cousin of the CurrentMember on
the Calendar hierarchy. Thus, it is based on the hierarchies defi ned in the model. We would write the
same calculation in DAX using fi lter contexts and standard time-intelligence functions:

SamePeriodPreviousYearSales :=
CALCULATE (
 SUM (Sales[Sales Amount]),
 SAMEPERIODLASTYEAR ('Date'[Date])
)

We can write the same calculation in many other ways using FILTER and other DAX functions, but
the idea remains the same: instead of using hierarchies, we fi lter tables. This difference is huge, and you
will probably miss hierarchy calculations until you get used to DAX.

Another important difference is that in MDX you refer to [Measures].[Sales Amount], and the
aggregation function that you need to use is already defi ned in the model. In DAX, there is no pre-
defi ned aggregation. In fact, as you might have noticed, the expression to compute is SUM(Sales[Sales
Amount]). The predefi ned aggregation is no longer in the model. We need to defi ne it whenever we
want to use it. We can always create a measure that computes the sum of sales, but this would be
beyond the scope of this section and is explained later in the book.

One more important difference between DAX and MDX is that MDX makes heavy use of the SCOPE
statement to implement business logic (again, using hierarchies), whereas DAX needs a completely
different approach. Indeed, hierarchy handling is missing in the language altogether.

14 CHAPTER 1 What is DAX?

For example, if we want to clear a measure at the Year level, in MDX we would write this statement:

SCOPE ([Measures].[SamePeriodPreviousYearSales], [Date].[Month].[All])
 THIS = NULL;
END SCOPE;

DAX does not have something like a SCOPE statement. To obtain the same result, we need to check
for the presence of fi lters in the fi lter context, and the scenario is much more complex:

SamePeriodPreviousYearSales :=
IF (
 ISINSCOPE ('Date'[Month]),
 CALCULATE (
 SUM (Sales[Sales Amount]),
 SAMEPERIODLASTYEAR ('Date'[Date])
),
 BLANK ()
)

Intuitively, this formula returns a value only if the user is browsing the calendar hierarchy at the
month level or below. Otherwise, it returns a BLANK. You will later learn what this formula computes in
detail. It is much more error-prone than the equivalent MDX code. To be honest, hierarchy handling is
one of the features that is really missing in DAX.

Leaf-level calculations
Finally, when using MDX, you probably got used to avoiding leaf-level calculations. Performing leaf-
level computation in MDX turns out to be so slow that you should always prefer to precompute values
and leverage aggregations to return results. In DAX, leaf-level calculations work incredibly fast and
aggregations serve a different purpose, being useful only for large datasets. This requires a shift in your
mind when it is time to build the data models. In most cases, a data model that fi ts perfectly in SSAS
Multidimensional is not the right fi t for Tabular and vice versa.

DAX for Power BI users

If you skipped the previous sections and directly came here, welcome! DAX is the native language of
Power BI, and if you do not have experience in Excel, SQL, or MDX, Power BI will be the fi rst place where
you learn DAX. If you do not have previous experience in building models with other tools, you will
learn that Power BI is a powerful analytical and modeling tool, with DAX as the perfect companion.

You might have started using Power BI a while ago and now you want to get to the next level. If this
is the case, be prepared for a wonderful journey with DAX.

Here is our advice to you: do not expect to be able to write complex DAX code in a matter of a
few days. DAX requires your time and dedication, and mastering it requires some practice. Based on
our experience, you will be excited at fi rst when you are rewarded with a few simple calculations.

 CHAPTER 1 What is DAX? 15

The excitement fades away as soon as you start learning about evaluation contexts and CALCULATE,
the most complex topics of the language. At that point, everything looks complex. Do not give up;
most DAX developers had to move past that level. When you are there, you are so close to reaching
a full understanding that it would be a real pity to stop. Read and practice again and again because a
lightbulb will go off much sooner that you would expect. You will be able to fi nish the book quickly,
reaching DAX guru status.

Evaluation contexts are at the core of the language. Mastering them takes time. We do not know
anyone who was able to learn all about DAX in a couple of days. Besides, as with any complex topic, you
will learn to appreciate a lot of the details over time. When you think you have learned everything, give
the book a second read. You will discover many details that looked less important at fi rst sight but, with
a more trained mindset, really make a difference.

Enjoy the rest of this book!

 17

C H A P T E R 2

Introducing DAX

In this chapter, we start talking about the DAX language. Here you learn the syntax of the language, the
difference between a calculated column and a measure (also called calculated fi eld, in certain old Excel
versions), and the most commonly used functions in DAX.

Because this is an introductory chapter, it does not cover many functions in depth. In later chapters,
we explain them in more detail. For now, introducing the functions and starting to look at the DAX lan-
guage in general are enough. When we reference features of the data model in Power BI, Power Pivot,
or Analysis Services, we use the term Tabular even when the feature is not present in all the products.
For example, “DirectQuery in Tabular” refers to the DirectQuery mode feature available in Power BI and
Analysis Services but not in Excel.

Understanding DAX calculations

Before working on more complex formulas, you need to learn the basics of DAX. This includes DAX
syntax, the different data types that DAX can handle, the basic operators, and how to refer to columns
and tables. These concepts are discussed in the next few sections.

We use DAX to compute values over columns in tables. We can aggregate, calculate, and search for
numbers, but in the end, all the calculations involve tables and columns. Thus, the fi rst syntax to learn is
how to reference a column in a table.

The general format is to write the table name enclosed in single quotation marks, followed by the
column name enclosed in square brackets, as follows:

'Sales'[Quantity]

We can omit the single quotation marks if the table name does not start with a number, does not
contain spaces, and is not a reserved word (like Date or Sum).

The table name is also optional in case we are referencing a column or a measure within the table
where we defi ne the formula. Thus, [Quantity] is a valid column reference, if written in a calculated
column or in a measure defi ned in the Sales table. Although this option is available, we strongly
discourage you from omitting the table name. At this point, we do not explain why this is so impor-
tant, but the reason will become clear when you read Chapter 5, “Understanding CALCULATE and
CALCULATETABLE.” Nevertheless, it is of paramount importance to be able to distinguish between

18 CHAPTER 2 Introducing DAX

measures (discussed later) and columns when you read DAX code. The de facto standard is to always
use the table name in column references and always avoid it in measure references. The earlier you
start adopting this standard, the easier your life with DAX will be. Therefore, you should get used to
this way of referencing columns and measures:

Sales[Quantity] * 2 -- This is a column reference
[Sales Amount] * 2 -- This is a measure reference

You will learn the rationale behind this standard after learning about context transition, which
comes in Chapter 5. For now, just trust us and adhere to this standard.

Comments in DAX

The preceding code example shows comments in DAX for the fi rst time. DAX supports
single-line comments and multiline comments. Single-line comments start with either --
or //, and the remaining part of the line is considered a comment.

= Sales[Quantity] * Sales[Net Price] -- Single-line comment
= Sales[Quantity] * Sales[Unit Cost] // Another example of single-line comment

A multiline comment starts with /* and ends with */. The DAX parser ignores
everything included between these markers and considers them a comment.

= IF (
 Sales[Quantity] > 1,
 /* First example of a multiline comment
 Anything can be written here and is ignored by DAX
 */
 "Multi",
 /* A common use case of multiline comments is to comment-out a part of
 the existing code
 The next IF statement is ignored because it falls within a multiline comment
 IF (
 Sales[Quantity] = 1,
 "Single",
 "Special note"
)
 */
 "Single"
)

It is better to avoid comments at the end of a DAX expression in a measure, calculated
column, or calculated table defi nition. These comments might be not visible at fi rst, and they
might not be supported by tools such as DAX Formatter, which is discussed later in this
chapter.

 CHAPTER 2 Introducing DAX 19

DAX data types
DAX can perform computations with different numeric types, of which there are seven. Over time,
Microsoft introduced different names for the same data types, creating some sort of confusion.
Table 2-1 provides the different names under which you might fi nd each DAX data type.

TABLE 2-1 Data Types

DAX Data Type
Power BI
Data Type

Power Pivot and
Analysis Services
Data Type

Correspondent
Conventional Data Type
(e.g., SQL Server)

Tabular Object
Model (TOM)
Data Type

Integer Whole Number Whole Number Integer / INT int64

Decimal Decimal Number Decimal Number Floating point / DOUBLE double

Currency Fixed Decimal
Number

Currency Currency / MONEY decimal

DateTime DateTime, Date,
Time

Date Date / DATETIME dateTime

Boolean True/False True/False Boolean / BIT boolean

String Text Text String / NVARCHAR(MAX) string

Variant - - - variant

Binary Binary Binary Blob / VARBINARY(MAX) binary

In this book, we use the names in the fi rst column of Table 2-1 adhering to the de facto standards
in the database and Business Intelligence community. For example, in Power BI, a column containing
either TRUE or FALSE would be called TRUE/FALSE, whereas in SQL Server, it would be called a BIT.
Nevertheless, the historical and most common name for this type of value is Boolean.

DAX comes with a powerful type-handling system so that we do not have to worry about data
types. In a DAX expression, the resulting type is based on the type of the term used in the expression.
You need to be aware of this in case the type returned from a DAX expression is not the expected type;
you would then have to investigate the data type of the terms used in the expression itself.

For example, if one of the terms of a sum is a date, the result also is a date; likewise, if the same
operator is used with integers, the result is an integer. This behavior is known as operator overloading,
and an example is shown in Figure 2-1, where the OrderDatePlusOneWeek column is calculated by
adding 7 to the value of the Order Date column.

Sales[OrderDatePlusOneWeek] = Sales[Order Date] + 7

The result is a date.

20 CHAPTER 2 Introducing DAX

FIGURE 2-1 Adding an integer to a date results in a date increased by the corresponding number of days.

In addition to operator overloading, DAX automatically converts strings into numbers and
numbers into strings whenever required by the operator. For example, if we use the & operator,
which concatenates strings, DAX converts its arguments into strings. The following formula returns
“54” as a string:

= 5 & 4

On the other hand, this formula returns an integer result with the value of 9:

= "5" + "4"

The resulting value depends on the operator and not on the source columns, which are
converted following the requirements of the operator. Although this behavior looks convenient,
later in this chapter you see what kinds of errors might happen during these automatic
conversions. Moreover, not all the operators follow this behavior. For example, comparison
operators cannot compare strings with numbers. Consequently, you can add one number with a
string, but you cannot compare a number with a string. You can fi nd a complete reference here:
https://docs.microsoft.com/en-us/power-bi/desktop-data-types. Because the rules are so
complex, we suggest you avoid automatic conversions altogether. If a conversion needs to
happen, we recommend that you control it and make the conversion explicit. To be more explicit,
the previous example should be written like this:

= VALUE ("5") + VALUE ("4")

People accustomed to working with Excel or other languages might be familiar with DAX data types.
Some details about data types depend on the engine, and they might be different for Power BI, Power

https://docs.microsoft.com/en-us/power-bi/desktop-data-types

 CHAPTER 2 Introducing DAX 21

Pivot, or Analysis Services. You can fi nd more detailed information about Analysis Services DAX data
types at http://msdn.microsoft.com/en-us/library/gg492146.aspx, and Power BI information is available
at https://docs.microsoft.com/en-us/power-bi/desktop-data-types. However, it is useful to share a few
considerations about each of these data types.

Integer
DAX has only one Integer data type that can store a 64-bit value. All the internal calculations between
integer values in DAX also use a 64-bit value.

Decimal
A Decimal number is always stored as a double-precision fl oating-point value. Do not confuse this DAX
data type with the decimal and numeric data type of Transact-SQL. The corresponding data type of a
DAX decimal number in SQL is Float.

Currency
The Currency data type, also known as Fixed Decimal Number in Power BI, stores a fi xed decimal
number. It can represent four decimal points and is internally stored as a 64-bit integer value divided
by 10,000. Summing or subtracting Currency data types always ignores decimals beyond the fourth
decimal point, whereas multiplication and division produce a fl oating-point value, thus increasing the
precision of the result. In general, if we need more accuracy than the four digits provided, we must use
a Decimal data type.

The default format of the Currency data type includes the currency symbol. We can also apply the
currency formatting to Integer and decimal numbers, and we can use a format without the currency
symbol for a Currency data type.

DateTime
DAX stores dates as a DateTime data type. This format uses a fl oating-point number internally, wherein
the integer corresponds to the number of days since December 30, 1899, and the decimal part identi-
fi es the fraction of the day. Hours, minutes, and seconds are converted to decimal fractions of a day.
Thus, the following expression returns the current date plus one day (exactly 24 hours):

= TODAY () + 1

The result is tomorrow’s date at the time of the evaluation. If you need to take only the date part of a
DateTime, always remember to use TRUNC to get rid of the decimal part.

Power BI offers two additional data types: Date and Time. Internally, they are a simple varia-
tion of DateTime. Indeed, Date and Time store only the integer or the decimal part of the DateTime,
respectively.

http://msdn.microsoft.com/en-us/library/gg492146.aspx
https://docs.microsoft.com/en-us/power-bi/desktop-data-types

22 CHAPTER 2 Introducing DAX

The leap year bug

Lotus 1-2-3, a popular spreadsheet released in 1983, presented a bug in the handling of
the DateTime data type. It considered 1900 as a leap year, even though it was not. The
fi nal year in a century is a leap year only if the fi rst two digits can be divided by 4 without
a remainder. At that time, the development team of the fi rst version of Excel deliberately
replicated the bug, to maintain compatibility with Lotus 1-2-3. Since then, each new
version of Excel has maintained the bug for compatibility.

At the time of printing in 2019, the bug is still there in DAX, introduced for backward com-
patibility with Excel. The presence of the bug (should we call it a feature?) might lead to errors
on time periods prior to March 1, 1900. Thus, by design, the fi rst date offi cially supported by
DAX is March 1, 1900. Date calculations executed on time periods prior to that date might lead
to errors and should be considered as inaccurate.

Boolean
The Boolean data type is used to express logical conditions. For example, a calculated column defi ned
by the following expression is of Boolean type:

= Sales[Unit Price] > Sales[Unit Cost]

You will also see Boolean data types as numbers where TRUE equals 1 and FALSE equals 0. This
notation sometimes proves useful for sorting purposes because TRUE > FALSE.

String
Every string in DAX is stored as a Unicode string, where each character is stored in 16 bits. By default,
the comparison between strings is not case sensitive, so the two strings “Power BI” and “POWER BI” are
considered equal.

Variant
The Variant data type is used for expressions that might return different data types, depending on the
conditions. For example, the following statement can return either an integer or a string, so it returns a
variant type:

IF ([measure] > 0, 1, "N/A")

The Variant data type cannot be used as a data type for a column in a regular table. A DAX measure,
and in general, a DAX expression can be Variant.

 CHAPTER 2 Introducing DAX 23

Binary
The Binary data type is used in the data model to store images or other nonstructured types of
information. It is not available in DAX. It was mainly used by Power View, but it might not be available
in other tools such as Power BI.

DAX operators
Now that you have seen the importance of operators in determining the type of an expression, see
Table 2-2, which provides a list of the operators available in DAX.

TABLE 2-2 Operators

Operator Type Symbol Use Example

Parenthesis () Precedence order and grouping
of arguments

(5 + 2) * 3

Arithmetic +
−
*
/

Addition
Subtraction/negation
Multiplication
Division

4 + 2
5 − 3
4 * 2
4 / 2

Comparison =
<>
>
>=
<
<=

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

[CountryRegion] = "USA"
[CountryRegion] <> "USA"
[Quantity] > 0
[Quantity] >= 100
[Quantity] < 0
[Quantity] <= 100

Text concatenation & Concatenation of strings "Value is" & [Amount]

Logical &&

||

IN
NOT

AND condition between two
Boolean expressions
OR condition between two Bool-
ean expressions
Inclusion of an element in a list
Boolean negation

[CountryRegion] = "USA" && [Quantity]>0

[CountryRegion] = "USA" || [Quantity] > 0

[CountryRegion] IN {"USA", "Canada"}
NOT [Quantity] > 0

Moreover, the logical operators are also available as DAX functions, with a syntax similar to Excel’s.
For example, we can write expressions like these:

AND ([CountryRegion] = "USA", [Quantity] > 0)
OR ([CountryRegion] = "USA", [Quantity] > 0)

These examples are equivalent, respectively, to the following:

[CountryRegion] = "USA" && [Quantity] > 0
[CountryRegion] = "USA" || [Quantity] > 0

Using functions instead of operators for Boolean logic becomes helpful when writing complex
conditions. In fact, when it comes to formatting large sections of code, functions are much easier to
format and to read than operators are. However, a major drawback of functions is that we can pass in
only two parameters at a time. Therefore, we must nest functions if we have more than two conditions
to evaluate.

24 CHAPTER 2 Introducing DAX

Table constructors
In DAX we can defi ne anonymous tables directly in the code. If the table has a single column, the syntax
requires only a list of values—one for each row—delimited by curly braces. We can delimit multiple
rows by parentheses, which are optional if the table is made of a single column. The two following
defi nitions, for example, are equivalent:

{ "Red", "Blue", "White" }
{ ("Red"), ("Blue"), ("White") }

If the table has multiple columns, parentheses are mandatory. Every column should have the same
data type throughout all its rows; otherwise, DAX will automatically convert the column to a data type
that can accommodate all the data types provided in different rows for the same column.

{
 ("A", 10, 1.5, DATE (2017, 1, 1), CURRENCY (199.99), TRUE),
 ("B", 20, 2.5, DATE (2017, 1, 2), CURRENCY (249.99), FALSE),
 ("C", 30, 3.5, DATE (2017, 1, 3), CURRENCY (299.99), FALSE)
}

The table constructor is commonly used with the IN operator. For example, the following are
possible, valid syntaxes in a DAX predicate:

'Product'[Color] IN { "Red", "Blue", "White" }

('Date'[Year], 'Date'[MonthNumber]) IN { (2017, 12), (2018, 1) }

This second example shows the syntax required to compare a set of columns (tuple) using the IN
operator. Such syntax cannot be used with a comparison operator. In other words, the following syntax
is not valid:

('Date'[Year], 'Date'[MonthNumber]) = (2007, 12)

However, we can rewrite it using the IN operator with a table constructor that has a single row, as in
the following example:

('Date'[Year], 'Date'[MonthNumber]) IN { (2007, 12) }

Conditional statements
In DAX we can write a conditional expression using the IF function. For example, we can write an
expression returning MULTI or SINGLE depending on the quantity value being greater than one or not,
respectively.

IF (
 Sales[Quantity] > 1,
 "MULTI",
 "SINGLE"
)

 CHAPTER 2 Introducing DAX 25

The IF function has three parameters, but only the fi rst two are mandatory. The third is optional, and
it defaults to BLANK. Consider the following code:

IF (
 Sales[Quantity] > 1,
 Sales[Quantity]
)

It corresponds to the following explicit version:

IF (
 Sales[Quantity] > 1,
 Sales[Quantity],
 BLANK ()
)

Understanding calculated columns and measures

Now that you know the basics of DAX syntax, you need to learn one of the most important concepts in
DAX: the difference between calculated columns and measures. Even though calculated columns and
measures might appear similar at fi rst sight because you can make certain calculations using either,
they are, in reality, different. Understanding the difference is key to unlocking the power of DAX.

Calculated columns
Depending on the tool you are using, you can create a calculated column in different ways. Indeed, the
concept remains the same: a calculated column is a new column added to your model, but instead of
being loaded from a data source, it is created by resorting to a DAX formula.

A calculated column is just like any other column in a table, and we can use it in rows, columns,
fi lters, or values of a matrix or any other report. We can also use a calculated column to defi ne a rela-
tionship, if needed. The DAX expression defi ned for a calculated column operates in the context of the
current row of the table that the calculated column belongs to. Any reference to a column returns the
value of that column for the current row. We cannot directly access the values of other rows.

If you are using the default Import Mode of Tabular and are not using DirectQuery, one important
concept to remember about calculated columns is that these columns are computed during database
processing and then stored in the model. This concept might seem strange if you are accustomed to
SQL-computed columns (not persisted), which are evaluated at query time and do not use memory.
In Tabular, however, all calculated columns occupy space in memory and are computed during table
processing.

This behavior is helpful whenever we create complex calculated columns. The time required to
compute complex calculated columns is always process time and not query time, resulting in a better
user experience. Nevertheless, be mindful that a calculated column uses precious RAM. For example,

26 CHAPTER 2 Introducing DAX

if we have a complex formula for a calculated column, we might be tempted to separate the steps of
computation into different intermediate columns. Although this technique is useful during project
development, it is a bad habit in production because each intermediate calculation is stored in RAM
and wastes valuable space.

If a model is based on DirectQuery instead, the behavior is hugely different. In DirectQuery
mode, calculated columns are computed on the fl y when the Tabular engine queries the data source.
This might result in heavy queries executed by the data source, therefore producing slow models.

Computing the duration of an order

Imagine we have a Sales table containing both the order and the delivery dates. Using these
two columns, we can compute the number of days involved in delivering the order. Because
dates are stored as number of days after 12/30/1899, a simple subtraction computes the
difference in days between two dates:

Sales[DaysToDeliver] = Sales[Delivery Date] - Sales[Order Date]

Nevertheless, because the two columns used for subtraction are dates, the result also
is a date. To produce a numeric result, convert the result to an integer this way:

Sales[DaysToDeliver] = INT (Sales[Delivery Date] - Sales[Order Date])

The result is shown in Figure 2-2.

FIGURE 2-2 By subtracting two dates and converting the result to an integer, DAX computes the number of
days between the two dates.

Measures
Calculated columns are useful, but you can defi ne calculations in a DAX model in another way.
Whenever you do not want to compute values for each row but rather want to aggregate values
from many rows in a table, you will fi nd these calculations useful; they are called measures.

 CHAPTER 2 Introducing DAX 27

For example, you can defi ne a few calculated columns in the Sales table to compute the gross
margin amount:

Sales[SalesAmount] = Sales[Quantity] * Sales[Net Price]
Sales[TotalCost] = Sales[Quantity] * Sales[Unit Cost]
Sales[GrossMargin] = Sales[SalesAmount] – Sales[TotalCost]

What happens if you want to show the gross margin as a percentage of the sales amount? You could
create a calculated column with the following formula:

Sales[GrossMarginPct] = Sales[GrossMargin] / Sales[SalesAmount]

This formula computes the correct value at the row level—as you can see in Figure 2-3—but at the
grand total level the result is clearly wrong.

FIGURE 2-3 The GrossMarginPct column shows a correct value on each row, but the grand total is incorrect.

The value shown at the grand total level is the sum of the individual percentages computed row by
row within the calculated column. When we compute the aggregate value of a percentage, we cannot
rely on calculated columns. Instead, we need to compute the percentage based on the sum of indi-
vidual columns. We must compute the aggregated value as the sum of gross margin divided by the
sum of sales amount. In this case, we need to compute the ratio on the aggregates; you cannot use an
aggregation of calculated columns. In other words, we compute the ratio of the sums, not the sum of
the ratios.

It would be equally wrong to simply change the aggregation of the GrossMarginPct column to an
average and rely on the result because doing so would provide an incorrect evaluation of the percent-
age, not considering the differences between amounts. The result of this averaged value is visible in
Figure 2-4, and you can easily check that (330.31 / 732.23) is not equal to the value displayed, 45.96%;
it should be 45.11% instead.

28 CHAPTER 2 Introducing DAX

FIGURE 2-4 Changing the aggregation method to AVERAGE does not provide the correct result.

The correct implementation for GrossMarginPct is with a measure:

GrossMarginPct := SUM (Sales[GrossMargin]) / SUM (Sales[SalesAmount])

As we have already stated, the correct result cannot be achieved with a calculated column. If you
need to operate on aggregated values instead of operating on a row-by-row basis, you must create
measures. You might have noticed that we used := to defi ne a measure instead of the equal sign (=).
This is a standard we used throughout the book to make it easier to differentiate between measures
and calculated columns in code.

After you defi ne GrossMarginPct as a measure, the result is correct, as you can see in Figure 2-5.

FIGURE 2-5 GrossMarginPct defi ned as a measure shows the correct grand total.

 CHAPTER 2 Introducing DAX 29

Measures and calculated columns both use DAX expressions; the difference is the context of
evaluation. A measure is evaluated in the context of a visual element or in the context of a DAX query.
However, a calculated column is computed at the row level of the table it belongs to. The context of the
visual element (later in the book, you will learn that this is a fi lter context) depends on user selections
in the report or on the format of the DAX query. Therefore, when using SUM(Sales[SalesAmount]) in a
measure, we mean the sum of all the rows that are aggregated under a visualization. However, when
we use Sales[SalesAmount] in a calculated column, we mean the value of the SalesAmount column in
the current row.

A measure needs to be defi ned in a table. This is one of the requirements of the DAX language.
However, the measure does not really belong to the table. Indeed, we can move a measure from one
table to another table without losing its functionality.

Differences between calculated columns and measures

Although they look similar, there is a big difference between calculated columns and
measures. The value of a calculated column is computed during data refresh, and it uses
the current row as a context. The result does not depend on user activity on the report.
A measure operates on aggregations of data defi ned by the current context. In a matrix
or in a pivot table, for example, source tables are fi ltered according to the coordinates of
cells, and data is aggregated and calculated using these fi lters. In other words, a measure
always operates on aggregations of data under the evaluation context. The evaluation
context is explained further in Chapter 4, “Understanding evaluation contexts.”

Choosing between calculated columns and measures
Now that you have seen the difference between calculated columns and measures, it is useful to
discuss when to use one over the other. Sometimes either is an option, but in most situations, the
computation requirements determine the choice.

As a developer, you must defi ne a calculated column whenever you want to do the following:

 ■ Place the calculated results in a slicer or see results in rows or columns in a matrix or in a pivot
table (as opposed to the Values area), or use the calculated column as a fi lter condition in a DAX
query.

 ■ Defi ne an expression that is strictly bound to the current row. For example, Price * Quantity
cannot work on an average or on a sum of those two columns.

 ■ Categorize text or numbers. For example, a range of values for a measure, a range of ages of
customers, such as 0–18, 18–25, and so on. These categories are often used as fi lters or to slice
and dice values.

30 CHAPTER 2 Introducing DAX

However, it is mandatory to defi ne a measure whenever one wants to display calculation values that
refl ect user selections, and the values need to be presented as aggregates in a report, for example:

 ■ To calculate the profi t percentage of a report selection

 ■ To calculate ratios of a product compared to all products but keep the fi lter both by year and by
region

We can express many calculations both with calculated columns and with measures, although we
need to use different DAX expressions for each. For example, one can defi ne the GrossMargin as a
calculated column:

Sales[GrossMargin] = Sales[SalesAmount] - Sales[TotalProductCost]

However, it can also be defi ned as a measure:

GrossMargin := SUM (Sales[SalesAmount]) - SUM (Sales[TotalProductCost])

We suggest you use a measure in this case because, being evaluated at query time, it does not con-
sume memory and disk space. As a rule, whenever you can express a calculation both ways, measures
are the preferred way to go. You should limit the use of calculated columns to the few cases where
they are strictly needed. Users with Excel experience typically prefer calculated columns over measures
because calculated columns closely resemble the way of performing calculations in Excel. Nevertheless,
the best way to compute a value in DAX is through a measure.

Using measures in calculated columns

It is obvious that a measure can refer to one or more calculated columns. Although less
intuitive, the opposite is also true. A calculated column can refer to a measure. This way, the
calculated column forces the calculation of a measure for the context defi ned by the current
row. This operation transforms and consolidates the result of a measure into a column, which
will not be infl uenced by user actions. Obviously, only certain operations can produce mean-
ingful results because a measure usually makes computations that strongly depend on the
selection made by the user in the visualization. Moreover, whenever you, as the developer,
use measures in a calculated column, you rely on a feature called context transition, which is
an advanced calculation technique in DAX. Before you use a measure in a calculated column,
we strongly suggest you read and understand Chapter 4, which explains in detail evaluation
contexts and context transitions.

Introducing variables

When writing a DAX expression, one can avoid repeating the same expression and greatly enhance the
code readability by using variables. For example, look at the following expression:

VAR TotalSales = SUM (Sales[SalesAmount])
VAR TotalCosts = SUM (Sales[TotalProductCost])

 CHAPTER 2 Introducing DAX 31

VAR GrossMargin = TotalSales - TotalCosts
RETURN
 GrossMargin / TotalSales

Variables are defi ned with the VAR keyword. After you defi ne a variable, you need to provide a
RETURN section that defi nes the result value of the expression. One can defi ne many variables, and the
variables are local to the expression in which they are defi ned.

A variable defi ned in an expression cannot be used outside the expression itself. There is no such
thing as a global variable defi nition. This means that you cannot defi ne variables used through the
whole DAX code of the model.

Variables are computed using lazy evaluation. This means that if one defi nes a variable that, for any
reason, is not used in the code, the variable itself will never be evaluated. If it needs to be computed,
this happens only once. Later uses of the variable will read the value computed previously. Thus, vari-
ables are also useful as an optimization technique when used in a complex expression multiple times.

Variables are an important tool in DAX. As you will learn in Chapter 4, variables are extremely useful
because they use the defi nition evaluation context instead of the context where the variable is used.
In Chapter 6, “Variables,” we will fully cover variables and how to use them. We will also use variables
extensively throughout the book.

Handling errors in DAX expressions

Now that you have seen some of the basics of the syntax, it is time to learn how to handle invalid cal-
culations gracefully. A DAX expression might contain invalid calculations because the data it references
is not valid for the formula. For example, the formula might contain a division by zero or reference a
column value that is not a number while being used in an arithmetic operation such as multiplication.
It is good to learn how these errors are handled by default and how to intercept these conditions for
special handling.

Before discussing how to handle errors, though, we describe the different kinds of errors that might
appear during a DAX formula evaluation. They are

 ■ Conversion errors

 ■ Arithmetic operations errors

 ■ Empty or missing values

Conversion errors
The fi rst kind of error is the conversion error. As we showed previously in this chapter, DAX auto-
matically converts values between strings and numbers whenever the operator requires it. All these
examples are valid DAX expressions:

"10" + 32 = 42
"10" & 32 = "1032"

32 CHAPTER 2 Introducing DAX

10 & 32 = "1032"
DATE (2010,3,25) = 3/25/2010
DATE (2010,3,25) + 14 = 4/8/2010
DATE (2010,3,25) & 14 = "3/25/201014"

These formulas are always correct because they operate with constant values. However, what about
the following formula if VatCode is a string?

Sales[VatCode] + 100

Because the fi rst operand of this sum is a column that is of Text data type, you as a developer must be
confi dent that DAX can convert all the values in that column into numbers. If DAX fails in converting some
of the content to suit the operator needs, a conversion error will occur. Here are some typical situations:

"1 + 1" + 0 = Cannot convert value '1 + 1' of type Text to type Number
DATEVALUE ("25/14/2010") = Type mismatch

If you want to avoid these errors, it is important to add error detection logic in DAX expressions
to intercept error conditions and return a result that makes sense. One can obtain the same result by
intercepting the error after it has happened or by checking the operands for the error situation before-
hand. Nevertheless, checking for the error situation proactively is better than letting the error happen
and then catching it.

Arithmetic operations errors
The second category of errors is arithmetic operations, such as the division by zero or the square root
of a negative number. These are not conversion-related errors: DAX raises them whenever we try to call
a function or use an operator with invalid values.

The division by zero requires special handling because its behavior is not intuitive (except, maybe,
for mathematicians). When one divides a number by zero, DAX returns the special value Infi nity. In
the special cases of 0 divided by 0 or Infi nity divided by Infi nity, DAX returns the special NaN (not a
number) value.

Because this is unusual behavior, it is summarized in Table 2-3.

TABLE 2-3 Special Result Values for Division by Zero

Expression Result

10 / 0 Infi nity

7 / 0 Infi nity

0 / 0 NaN

(10 / 0) / (7 / 0) NaN

It is important to note that Infi nity and NaN are not errors but special values in DAX. In fact, if one
divides a number by Infi nity, the expression does not generate an error. Instead, it returns 0:

9954 / (7 / 0) = 0

 CHAPTER 2 Introducing DAX 33

Apart from this special situation, DAX can return arithmetic errors when calling a function with an
incorrect parameter, such as the square root of a negative number:

SQRT (-1) = An argument of function 'SQRT' has the wrong data type or the result is too
large or too small

If DAX detects errors like this, it blocks any further computation of the expression and raises an
error. One can use the ISERROR function to check if an expression leads to an error. We show this
scenario later in this chapter.

Keep in mind that special values like NaN are displayed in the user interface of several tools such as
Power BI as regular values. They can, however, be treated as errors when shown by other client tools
such as an Excel pivot table. Finally, these special values are detected as errors by the error detection
functions.

Empty or missing values
The third category that we examine is not a specifi c error condition but rather the presence of empty
values. Empty values might result in unexpected results or calculation errors when combined with other
elements in a calculation.

DAX handles missing values, blank values, or empty cells in the same way, using the value BLANK.
BLANK is not a real value but instead is a special way to identify these conditions. We can obtain the
value BLANK in a DAX expression by calling the BLANK function, which is different from an empty
string. For example, the following expression always returns a blank value, which can be displayed as
either an empty string or as “(blank)” in different client tools:

= BLANK ()

On its own, this expression is useless, but the BLANK function itself becomes useful every time there
is the need to return an empty value. For example, one might want to display an empty result instead
of 0. The following expression calculates the total discount for a sale transaction, leaving the blank
value if the discount is 0:

=IF (
 Sales[DiscountPerc] = 0, -- Check if there is a discount
 BLANK (), -- Return a blank if no discount is present
 Sales[DiscountPerc] * Sales[Amount] -- Compute the discount otherwise
)

BLANK, by itself, is not an error; it is just an empty value. Therefore, an expression containing a
BLANK might return a value or a blank, depending on the calculation required. For example, the
following expression returns BLANK whenever Sales[Amount] is BLANK:

= 10 * Sales[Amount]

34 CHAPTER 2 Introducing DAX

In other words, the result of an arithmetic product is BLANK whenever one or both terms are
BLANK. This creates a challenge when it is necessary to check for a blank value. Because of the implicit
conversions, it is impossible to distinguish whether an expression is 0 (or empty string) or BLANK using
an equal operator. Indeed, the following logical conditions are always true:

BLANK () = 0 -- Always returns TRUE
BLANK () = "" -- Always returns TRUE

Therefore, if the columns Sales[DiscountPerc] or Sales[Clerk] are blank, the following conditions
return TRUE even if the test is against 0 and empty string, respectively:

Sales[DiscountPerc] = 0 -- Returns TRUE if DiscountPerc is either BLANK or 0
Sales[Clerk] = "" -- Returns TRUE if Clerk is either BLANK or ""

In such cases, one can use the ISBLANK function to check whether a value is BLANK or not:

ISBLANK (Sales[DiscountPerc]) -- Returns TRUE only if DiscountPerc is BLANK
ISBLANK (Sales[Clerk]) -- Returns TRUE only if Clerk is BLANK

The propagation of BLANK in a DAX expression happens in several other arithmetic and logical
operations, as shown in the following examples:

BLANK () + BLANK () = BLANK ()
10 * BLANK () = BLANK ()
BLANK () / 3 = BLANK ()
BLANK () / BLANK () = BLANK ()

However, the propagation of BLANK in the result of an expression does not happen for all
formulas. Some calculations do not propagate BLANK. Instead, they return a value depending on
the other terms of the formula. Examples of these are addition, subtraction, division by BLANK, and
a logical operation including a BLANK. The following expressions show some of these conditions
along with their results:

BLANK () − 10 = −10
18 + BLANK () = 18
4 / BLANK () = Infinity
0 / BLANK () = NaN
BLANK () || BLANK () = FALSE
BLANK () && BLANK () = FALSE
(BLANK () = BLANK ()) = TRUE
(BLANK () = TRUE) = FALSE
(BLANK () = FALSE) = TRUE
(BLANK () = 0) = TRUE
(BLANK () = "") = TRUE
ISBLANK (BLANK()) = TRUE
FALSE || BLANK () = FALSE
FALSE && BLANK () = FALSE
TRUE || BLANK () = TRUE
TRUE && BLANK () = FALSE

 CHAPTER 2 Introducing DAX 35

Empty values in Excel and SQL

Excel has a different way of handling empty values. In Excel, all empty values are consid-
ered 0 whenever they are used in a sum or in a multiplication, but they might return an
error if they are part of a division or of a logical expression.

In SQL, null values are propagated in an expression differently from what happens with
BLANK in DAX. As you can see in the previous examples, the presence of a BLANK in a DAX
expression does not always result in a BLANK result, whereas the presence of NULL in SQL
often evaluates to NULL for the entire expression. This difference is relevant whenever you use
DirectQuery on top of a relational database because some calculations are executed in SQL
and others are executed in DAX. The different semantics of BLANK in the two engines might
result in unexpected behaviors.

 Understanding the behavior of empty or missing values in a DAX expression and using BLANK to
return an empty cell in a calculation are important skills to control the results of a DAX expression.
One can often use BLANK as a result when detecting incorrect values or other errors, as we demon-
strate in the next section.

Intercepting errors
Now that we have detailed the various kinds of errors that can occur, we still need to show you the
techniques to intercept errors and correct them or, at least, produce an error message containing
meaningful information. The presence of errors in a DAX expression frequently depends on the value
of columns used in the expression itself. Therefore, one might want to control the presence of these
error conditions and return an error message. The standard technique is to check whether an expres-
sion returns an error and, if so, replace the error with a specifi c message or a default value. There are a
few DAX functions for this task.

The fi rst of them is the IFERROR function, which is similar to the IF function, but instead of evalu-
ating a Boolean condition, it checks whether an expression returns an error. Two typical uses of the
 IFERROR function are as follows:

= IFERROR (Sales[Quantity] * Sales[Price], BLANK ())
= IFERROR (SQRT (Test[Omega]), BLANK ())

In the fi rst expression, if either Sales[Quantity] or Sales[Price] is a string that cannot be converted
into a number, the returned expression is an empty value. Otherwise, the product of Quantity and Price
is returned.

In the second expression, the result is an empty cell every time the Test[Omega] column contains a
negative number.

36 CHAPTER 2 Introducing DAX

Using IFERROR this way corresponds to a more general pattern that requires using ISERROR and IF:

= IF (
 ISERROR (Sales[Quantity] * Sales[Price]),
 BLANK (),
 Sales[Quantity] * Sales[Price]
)

= IF (
 ISERROR (SQRT (Test[Omega])),
 BLANK (),
 SQRT (Test[Omega])
)

In these cases, IFERROR is a better option. One can use IFERROR whenever the result is the same
expression tested for an error; there is no need to duplicate the expression in two places, and the code
is safer and more readable. However, a developer should use IF when they want to return the result of a
different expression.

Besides, one can avoid raising the error altogether by testing parameters before using them. For
example, one can detect whether the argument for SQRT is positive, returning BLANK for negative
values:

= IF (
 Test[Omega] >= 0,
 SQRT (Test[Omega]),
 BLANK ()
)

Considering that the third argument of an IF statement defaults to BLANK, one can also write the
same expression more concisely:

= IF (
 Test[Omega] >= 0,
 SQRT (Test[Omega])
)

A frequent scenario is to test against empty values. ISBLANK detects empty values, returning TRUE if
its argument is BLANK. This capability is important especially when a value being unavailable does not
imply that it is 0. The following example calculates the cost of shipping for a sale transaction, using a
default shipping cost for the product if the transaction itself does not specify a weight:

= IF (
 ISBLANK (Sales[Weight]), -- If the weight is missing
 Sales[DefaultShippingCost], -- then return the default cost
 Sales[Weight] * Sales[ShippingPrice] -- otherwise multiply weight by shipping price
)

If we simply multiply product weight by shipping price, we get an empty cost for all the sales trans-
actions without weight data because of the propagation of BLANK in multiplications.

 CHAPTER 2 Introducing DAX 37

When using variables, errors must be checked at the time of variable defi nition rather than where
we use them. In fact, the fi rst formula in the following code returns zero, the second formula always
throws an error, and the last one produces different results depending on the version of the product
using DAX (the latest version throws an error also):

IFERROR (SQRT (-1), 0) -- This returns 0

VAR WrongValue = SQRT (-1) -- Error happens here, so the result is
RETURN -- always an error
 IFERROR (WrongValue, 0) -- This line is never executed

IFERROR (-- Different results depending on versions
 VAR WrongValue = SQRT (-1) -- IFERROR throws an error in 2017 versions
 RETURN -- IFERROR returns 0 in versions until 2016
 WrongValue,
 0
)

The error happens when WrongValue is evaluated. Thus, the engine will never execute the IFERROR
function in the second example, whereas the outcome of the third example depends on product
versions. If you need to check for errors, take some extra precautions when using variables.

Avoid using error-handling functions

Although we will cover optimizations later in the book, you need to be aware that error-
handling functions might create severe performance issues in your code. It is not that
they are slow in and of themselves. The problem is that the DAX engine cannot use
optimized paths in its code when errors happen. In most cases, checking operands for
possible errors is more effi cient than using the error-handling engine. For example,
instead of writing this:

IFERROR (
 SQRT (Test[Omega]),
 BLANK ()
)

It is much better to write this:

IF (
 Test[Omega] >= 0,
 SQRT (Test[Omega]),
 BLANK ()
)

This second expression does not need to detect the error and is faster than the
previous expression. This, of course, is a general rule. For a detailed explanation, see
Chapter 19, “Optimizing DAX.”

38 CHAPTER 2 Introducing DAX

Generating errors
Sometimes, an error is just an error, and the formula should not return a default value in case of an
error. Indeed, returning a default value would end up producing an actual result that would be
incorrect. For example, a confi guration table that contains inconsistent data should produce an
invalid report rather than numbers that are unreliable, and yet it might be considered correct.

Moreover, instead of a generic error, one might want to produce an error message that is more
meaningful to the users. Such a message would help users fi nd where the problem is.

Consider a scenario that requires the computation of the square root of the absolute temperature
measured in Kelvin, to approximately adjust the speed of sound in a complex scientifi c calculation.
Obviously, we do not expect that temperature to be a negative number. If that happens due to a
problem in the measurement, we need to raise an error and stop the calculation.

Another reason to avoid IFERROR is that it cannot intercept errors happening at a deeper
level of execution. For example, the following code intercepts any error happening in the
conversion of the Table[Amount] column considering a blank value in case Amount does
not contain a number. As discussed previously, this execution is expensive because it is
evaluated for every row in Table.

SUMX (
 Table,
 IFERROR (VALUE (Table[Amount]), BLANK ())
)

Be mindful that, due to optimizations in the DAX engine, the following code does not
intercept the same errors intercepted by the preceding example. If Table[Amount] contains
a string that is not a number in just one row, the entire expression generates an error that
is not intercepted by IFERROR.

IFERROR (
 SUMX (
 Table,
 VALUE (Table[Amount])
),
 BLANK ()
)

ISERROR has the same behavior as IFERROR. Be sure to use them carefully and only to
intercept errors raised directly by the expression evaluated within IFERROR/ISERROR and not
in nested calculations.

 CHAPTER 2 Introducing DAX 39

In that case, this code is dangerous because it hides the problem:

= IFERROR (
 SQRT (Test[Temperature]),
 0
)

Instead, to protect the calculations, one should write the formula like this:

= IF (
 Test[Temperature] >= 0,
 SQRT (Test[Temperature]),
 ERROR ("The temperature cannot be a negative number. Calculation aborted.")
)

Formatting DAX code

Before we continue explaining the DAX language, we would like to cover an important aspect of DAX—
that is, formatting the code. DAX is a functional language, meaning that no matter how complex it is, a
DAX expression is like a single function call. The complexity of the code translates into the complexity
of the expressions that one uses as parameters for the outermost function.

For this reason, it is normal to see expressions that span over 10 lines or more. Seeing a 20-line DAX
expression is common, so you will become acquainted with it. Nevertheless, as formulas start to grow
in length and complexity, it is extremely important to format the code to make it human-readable.

There is no “offi cial” standard to format DAX code, yet we believe it is important to describe the
standard that we use in our code. It is likely not the perfect standard, and you might prefer something
different. We have no problem with that: fi nd your optimal standard and use it. The only thing you
need to remember is: format your code and never write everything on a single line; otherwise, you will be
in trouble sooner than you expect.

To understand why formatting is important, look at a formula that computes a time intelligence
calculation. This somewhat complex formula is still not the most complex you will write. Here is how the
expression looks if you do not format it in some way:

IF(CALCULATE(NOT ISEMPTY(Balances), ALLEXCEPT (Balances, BalanceDate)),SUMX (ALL(Balances
[Account]), CALCULATE(SUM (Balances[Balance]),LASTNONBLANK(DATESBETWEEN(BalanceDate[Date],
BLANK(),MAX(BalanceDate[Date])),CALCULATE(COUNTROWS(Balances))))),BLANK())

Trying to understand what this formula computes in its present form is nearly impossible. There is
no clue which is the outermost function and how DAX evaluates the different parameters to create the
complete fl ow of execution. We have seen too many examples of formulas written this way by students
who, at some point, ask for help in understanding why the formula returns incorrect results. Guess
what? The fi rst thing we do is format the expression; only later do we start working on it.

40 CHAPTER 2 Introducing DAX

The same expression, properly formatted, looks like this:

IF (
 CALCULATE (
 NOT ISEMPTY (Balances),
 ALLEXCEPT (
 Balances,
 BalanceDate
)
),
 SUMX (
 ALL (Balances[Account]),
 CALCULATE (
 SUM (Balances[Balance]),
 LASTNONBLANK (
 DATESBETWEEN (
 BalanceDate[Date],
 BLANK (),
 MAX (BalanceDate[Date])
),
 CALCULATE (
 COUNTROWS (Balances)
)
)
)
),
 BLANK ()
)

The code is the same, but this time it is much easier to see the three parameters of IF. Most impor-
tant, it is easier to follow the blocks that arise naturally from indenting lines and how they compose
the complete fl ow of execution. The code is still hard to read, but now the problem is DAX, not poor
formatting. A more verbose syntax using variables can help you read the code, but even in this case,
the formatting is important in providing a correct understanding of the scope of each variable:

IF (
 CALCULATE (
 NOT ISEMPTY (Balances),
 ALLEXCEPT (
 Balances,
 BalanceDate
)
),
 SUMX (
 ALL (Balances[Account]),
 VAR PreviousDates =
 DATESBETWEEN (
 BalanceDate[Date],
 BLANK (),
 MAX (BalanceDate[Date])
)

 CHAPTER 2 Introducing DAX 41

 VAR LastDateWithBalance =
 LASTNONBLANK (
 PreviousDates,
 CALCULATE (
 COUNTROWS (Balances)
)
)
 RETURN
 CALCULATE (
 SUM (Balances[Balance]),
 LastDateWithBalance
)
),
 BLANK ()
)

DAXFormatter.com

We created a website dedicated to formatting DAX code. We created this site for ourselves
because formatting code is a time-consuming operation and we did not want to spend our
time doing it for every formula we write. After the tool was working, we decided to donate
it to the public domain so that users can format their own DAX code (by the way, we have
been able to promote our formatting rules this way).

You can fi nd the website at www.daxformatter.com. The user interface is simple: just copy your DAX
code, click FORMAT, and the page refreshes showing a nicely formatted version of your code, which
you can then copy and paste in the original window.

This is the set of rules that we use to format DAX:

 ■ Always separate function names such as IF, SUMX, and CALCULATE from any other term using a
space and always write them in uppercase.

 ■ Write all column references in the form TableName[ColumnName], with no space between the
table name and the opening square bracket. Always include the table name.

 ■ Write all measure references in the form [MeasureName], without any table name.

 ■ Always use a space following commas and never precede them with a space.

 ■ If the formula fi ts one single line, do not apply any other rule.

 ■ If the formula does not fi t a single line, then

• Place the function name on a line by itself, with the opening parenthesis.

• Keep all parameters on separate lines, indented with four spaces and with the comma at the
end of the expression except for the last parameter.

• Align the closing parenthesis with the function call so that the closing parenthesis stands on
its own line.

http://DAXFormatter.com
http://www.daxformatter.com

42 CHAPTER 2 Introducing DAX

These are the basic rules we use. A more detailed list of these rules is available at
http://sql.bi/daxrules.

If you fi nd a way to express formulas that best fi ts your reading method, use it. The goal of format-
ting is to make the formula easier to read, so use the technique that works best for you. The most
important point to remember when defi ning your personal set of formatting rules is that you always
need to be able to see errors as soon as possible. If, in the unformatted code shown previously, DAX
complained about a missing closing parenthesis, it would be hard to spot where the error is. In the
formatted formula, it is much easier to see how each closing parenthesis matches the opening
function call.

Help on formatting DAX

Formatting DAX is not an easy task because often we write it using a small font in a text
box. Depending on the version, Power BI, Excel, and Visual Studio provide different text
editors for DAX. Nevertheless, a few hints might help in writing DAX code:

 ■ To increase the font size, hold down Ctrl while rotating the wheel button on the
mouse, making it easier to look at the code.

 ■ To add a new line to the formula, press Shift+Enter.

 ■ If editing in the text box is not for you, copy the code into another editor, such as
Notepad or DAX Studio, and then copy and paste the formula back into the text box.

When you look at a DAX expression, at fi rst glance it may be hard to understand
whether it is a calculated column or a measure. Thus, in our books and articles we use an
equal sign (=) whenever we defi ne a calculated column and the assignment operator (:=)
to defi ne measures:

CalcCol = SUM (Sales[SalesAmount]) -- is a calculated column
Store[CalcCol] = SUM (Sales[SalesAmount]) -- is a calculated column in Store table
CalcMsr := SUM (Sales[SalesAmount]) -- is a measure

Finally, when using columns and measures in code, we recommend to always put a table
name before a column and never before a measure, as we do in every example.

Introducing aggregators and iterators

Almost every data model needs to operate on aggregated data. DAX offers a set of functions that
aggregate the values of a column in a table and return a single value. We call this group of functions
aggregation functions. For example, the following measure calculates the sum of all the numbers in the
SalesAmount column of the Sales table:

Sales := SUM (Sales[SalesAmount])

http://sql.bi/daxrules

 CHAPTER 2 Introducing DAX 43

SUM aggregates all the rows of the table if it is used in a calculated column. Whenever it is used in
a measure, it considers only the rows that are being fi ltered by slicers, rows, columns, and fi lter condi-
tions in the report.

There are many aggregation functions (SUM, AVERAGE, MIN, MAX, and STDEV), and their behavior
changes only in the way they aggregate values: SUM adds values, whereas MIN returns the minimum
value. Nearly all these functions operate only on numeric values or on dates. Only MIN and MAX can
operate on text values also. Moreover, DAX never considers empty cells when it performs the aggrega-
tion, and this behavior is different from their counterpart in Excel (more on this later in this chapter).

Note MIN and MAX offer another behavior: if used with two parameters, they return
the minimum or maximum of the two parameters. Thus, MIN (1, 2) returns 1 and MAX (1, 2)
returns 2. This functionality is useful when one needs to compute the minimum or maxi-
mum of complex expressions because it saves having to write the same expression multiple
times in IF statements.

All the aggregation functions we have described so far work on columns. Therefore, they aggregate
values from a single column only. Some aggregation functions can aggregate an expression instead of
a single column. Because of the way they work, they are known as iterators. This set of functions is use-
ful, especially when you need to make calculations using columns of different related tables, or when
you need to reduce the number of calculated columns.

Iterators always accept at least two parameters: the fi rst is a table that they scan; the second is typi-
cally an expression that is evaluated for each row of the table. After they have completed scanning the
table and evaluating the expression row by row, iterators aggregate the partial results according to
their semantics.

For example, if we compute the number of days needed to deliver an order in a calculated column
called DaysToDeliver and build a report on top of that, we obtain the report shown in Figure 2-6. Note
that the grand total shows the sum of all the days, which is not useful for this metric:

Sales[DaysToDeliver] = INT (Sales[Delivery Date] - Sales[Order Date])

FIGURE 2-6 The grand total is shown as a sum, when you might want an average instead.

44 CHAPTER 2 Introducing DAX

A grand total that we can actually use requires a measure called AvgDelivery showing the delivery
time for each order and the average of all the durations at the grand total level:

AvgDelivery := AVERAGE (Sales[DaysToDeliver])

The result of this new measure is visible in the report shown in Figure 2-7.

FIGURE 2-7 The measure aggregating by average shows the average delivery days at the grand total level.

The measure computes the average value by averaging a calculated column. One could remove the
calculated column, thus saving space in the model, by leveraging an iterator. Indeed, although it is true
that AVERAGE cannot average an expression, its counterpart AVERAGEX can iterate the Sales table and
compute the delivery days row by row, averaging the results at the end. This code accomplishes the
same result as the previous defi nition:

AvgDelivery :=
AVERAGEX (
 Sales,
 INT (Sales[Delivery Date] - Sales[Order Date])
)

The biggest advantage of this last expression is that it does not rely on the presence of a calculated
column. Thus, we can build the entire report without creating expensive calculated columns.

Most iterators have the same name as their noniterative counterpart. For example, SUM has a cor-
responding SUMX, and MIN has a corresponding MINX. Nevertheless, keep in mind that some iterators
do not correspond to any aggregator. Later in this book, you will learn about FILTER, ADDCOLUMNS,
GENERATE, and other functions that are iterators even if they do not aggregate their results.

When you fi rst learn DAX, you might think that iterators are inherently slow. The concept of per-
forming calculations row by row looks like a CPU-intensive operation. Actually, iterators are fast, and no
performance penalty is caused by using iterators instead of standard aggregators. Aggregators are just
a syntax-sugared version of iterators.

Indeed, the basic aggregation functions are a shortened version of the corresponding X-suffi xed
function. For example, consider the following expression:

SUM (Sales[Quantity])

 CHAPTER 2 Introducing DAX 45

It is internally translated into this corresponding version of the same code:

SUMX (Sales, Sales[Quantity])

The only advantage in using SUM is a shorter syntax. However, there are no differences in perfor-
mance between SUM and SUMX aggregating a single column. They are in all respects the same function.

We will cover more details about this behavior in Chapter 4. There we introduce the concept of
evaluation contexts to describe properly how iterators work.

Using common DAX functions

Now that you have seen the fundamentals of DAX and how to handle error conditions, what follows is a
brief tour through the most commonly used functions and expressions of DAX.

Aggregation functions
In the previous sections, we described the basic aggregators like SUM, AVERAGE, MIN, and MAX. You
learned that SUM and AVERAGE, for example, work only on numeric columns.

DAX also offers an alternative syntax for aggregation functions inherited from Excel, which adds the
suffi x A to the name of the function, just to get the same name and behavior as Excel. However, these
functions are useful only for columns containing Boolean values because TRUE is evaluated as 1 and
FALSE as 0. Text columns are always considered 0. Therefore, no matter what is in the content of a col-
umn, if one uses MAXA on a text column, the result will always be a 0. Moreover, DAX never considers
empty cells when it performs the aggregation. Although these functions can be used on nonnumeric
columns without retuning an error, their results are not useful because there is no automatic conver-
sion to numbers for text columns. These functions are named AVERAGEA, COUNTA, MINA, and MAXA.
We suggest that you do not use these functions, whose behavior will be kept unchanged in the future
because of compatibility with existing code that might rely on current behavior.

Note Despite the names being identical to statistical functions, they are used differently in
DAX and Excel because in DAX a column has a data type, and its data type determines the
behavior of aggregation functions. Excel handles a different data type for each cell, whereas
DAX handles a single data type for the entire column. DAX deals with data in tabular form
with well-defi ned types for each column, whereas Excel formulas work on heterogeneous
cell values without well-defi ned types. If a column in Power BI has a numeric data type, all
the values can be only numbers or empty cells. If a column is of a text type, it is always 0
for these functions (except for COUNTA), even if the text can be converted into a number,
whereas in Excel the value is considered a number on a cell-by-cell basis. For these reasons,
these functions are not very useful for Text columns. Only MIN and MAX also support text
values in DAX.

46 CHAPTER 2 Introducing DAX

The functions you learned earlier are useful to perform the aggregation of values. Sometimes, you
might not be interested in aggregating values but only in counting them. DAX offers a set of functions
that are useful to count rows or values:

 ■ COUNT operates on any data type, apart from Boolean.

 ■ COUNTA operates on any type of column.

 ■ COUNTBLANK returns the number of empty cells (blanks or empty strings) in a column.

 ■ COUNTROWS returns the number of rows in a table.

 ■ DISTINCTCOUNT returns the number of distinct values of a column, blank value included if
present.

 ■ DISTINCTCOUNTNOBLANK returns the number of distinct values of a column, no blank value
included.

COUNT and COUNTA are nearly identical functions in DAX. They return the number of values of the
column that are not empty, regardless of their data type. They are inherited from Excel, where COUNTA
accepts any data type including strings, whereas COUNT accepts only numeric columns. If we want to
count all the values in a column that contain an empty value, you can use the COUNTBLANK function.
Both blanks and empty values are considered empty values by COUNTBLANK. Finally, if we want to
count the number of rows of a table, you can use the COUNTROWS function. Beware that COUNT-
ROWS requires a table as a parameter, not a column.

The last two functions, DISTINCTCOUNT and DISTINCTCOUNTNOBLANK, are useful because they
do exactly what their names suggest: count the distinct values of a column, which it takes as its only
parameter. DISTINCTCOUNT counts the BLANK value as one of the possible values, whereas DISTINCT-
COUNTNOBLANK ignores the BLANK value.

Note DISTINCTCOUNT is a function introduced in the 2012 version of DAX. The earlier
versions of DAX did not include DISTINCTCOUNT; to compute the number of distinct values
of a column, we had to use COUNTROWS (DISTINCT (table[column])). The two patterns
return the same result although DISTINCTCOUNT is easier to read, requiring only a single
function call. DISTINCTCOUNTNOBLANK is a function introduced in 2019 and it provides
the same semantic of a COUNT DISTINCT operation in SQL without having to write a longer
expression in DAX.

Logical functions
Sometimes we want to build a logical condition in an expression—for example, to implement different
calculations depending on the value of a column or to intercept an error condition. In these cases,
we can use one of the logical functions in DAX. The earlier section titled “Handling errors in DAX
expressions” described the two most important functions of this group: IF and IFERROR. We described
the IF function in the “Conditional statements” section, earlier in this chapter.

 CHAPTER 2 Introducing DAX 47

Logical functions are very simple and do what their names suggest. They are AND, FALSE, IF,
IFERROR, NOT, TRUE, and OR. For example, if we want to compute the amount as quantity multiplied
by price only when the Price column contains a numeric value, we can use the following pattern:

Sales[Amount] = IFERROR (Sales[Quantity] * Sales[Price], BLANK ())

If we did not use IFERROR and if the Price column contained an invalid number, the result for the
calculated column would be an error because if a single row generates a calculation error, the error
propagates to the whole column. The use of IFERROR, however, intercepts the error and replaces it with
a blank value.

Another interesting function in this category is SWITCH, which is useful when we have a column
containing a low number of distinct values, and we want to get different behaviors depending on its
value. For example, the column Size in the Product table contains S, M, L, XL, and we might want to
decode this value in a more explicit column. We can obtain the result by using nested IF calls:

'Product'[SizeDesc] =
IF (
 'Product'[Size] = "S",
 "Small",
 IF (
 'Product'[Size] = "M",
 "Medium",
 IF (
 'Product'[Size] = "L",
 "Large",
 IF (
 'Product'[Size] = "XL",
 "Extra Large",
 "Other"
)
)
)
)

A more convenient way to express the same formula, using SWITCH, is like this:

'Product'[SizeDesc] =
SWITCH (
 'Product'[Size],
 "S", "Small",
 "M", "Medium",
 "L", "Large",
 "XL", "Extra Large",
 "Other"
)

The code in this latter expression is more readable, though not faster, because internally DAX
translates SWITCH statements into a set of nested IF functions.

48 CHAPTER 2 Introducing DAX

Note SWITCH is often used to check the value of a parameter and defi ne the result of a
measure. For example, one might create a parameter table containing YTD, MTD, QTD as
three rows and let the user choose from the three available which aggregation to use in a
measure. This was a common scenario before 2019. Now it is no longer needed thanks to
the introduction of calculation groups, covered in Chapter 9, “Calculation groups.” Calcula-
tion groups are the preferred way of computing values that the user can parameterize.

Tip Here is an interesting way to use the SWITCH function to check for multiple condi-
tions in the same expression. Because SWITCH is converted into a set of nested IF functions,
where the fi rst one that matches wins, you can test multiple conditions using this pattern:

SWITCH (
 TRUE (),
 Product[Size] = "XL" && Product[Color] = "Red", "Red and XL",
 Product[Size] = "XL" && Product[Color] = "Blue", "Blue and XL",
 Product[Size] = "L" && Product[Color] = "Green", "Green and L"
)

Using TRUE as the fi rst parameter means, “Return the fi rst result where the condition
evaluates to TRUE.”

Information functions
Whenever there is the need to analyze the type of an expression, you can use one of the information
functions. All these functions return a Boolean value and can be used in any logical expression. They
are ISBLANK, ISERROR, ISLOGICAL, ISNONTEXT, ISNUMBER, and ISTEXT.

It is important to note that when a column is passed as a parameter instead of an expression, the
functions ISNUMBER, ISTEXT, and ISNONTEXT always return TRUE or FALSE depending on the data
type of the column and on the empty condition of each cell. This makes these functions nearly useless
in DAX; they have been inherited from Excel in the fi rst DAX version.

You might be wondering whether you can use ISNUMBER with a text column just to check whether
a conversion to a number is possible. Unfortunately, this approach is not possible. If you want to test
whether a text value is convertible to a number, you must try the conversion and handle the error if it
fails. For example, to test whether the column Price (which is of type string) contains a valid number,
one must write

Sales[IsPriceCorrect] = NOT ISERROR (VALUE (Sales[Price]))

DAX tries to convert from a string value to a number. If it succeeds, it returns TRUE (because
ISERROR returns FALSE); otherwise, it returns FALSE (because ISERROR returns TRUE). For example,
the conversion fails if some of the rows have an “N/A” string value for price.

 CHAPTER 2 Introducing DAX 49

However, if we try to use ISNUMBER, as in the following expression, we always receive FALSE as a
result:

Sales[IsPriceCorrect] = ISNUMBER (Sales[Price])

In this case, ISNUMBER always returns FALSE because, based on the defi nition in the model, the
Price column is not a number but a string, regardless of the content of each row.

Mathematical functions
The set of mathematical functions available in DAX is similar to the set available in Excel, with the same
syntax and behavior. The mathematical functions of common use are ABS, EXP, FACT, LN, LOG, LOG10,
MOD, PI, POWER, QUOTIENT, SIGN, and SQRT. Random functions are RAND and RANDBETWEEN. By
using EVEN and ODD, you can test numbers. GCD and LCM are useful to compute the greatest com-
mon denominator and least common multiple of two numbers. QUOTIENT returns the integer division
of two numbers.

Finally, several rounding functions deserve an example; in fact, we might use several approaches to
get the same result. Consider these calculated columns, along with their results in Figure 2-8:

FLOOR = FLOOR (Tests[Value], 0.01)
TRUNC = TRUNC (Tests[Value], 2)
ROUNDDOWN = ROUNDDOWN (Tests[Value], 2)
MROUND = MROUND (Tests[Value], 0.01)
ROUND = ROUND (Tests[Value], 2)
CEILING = CEILING (Tests[Value], 0.01)
ISO.CEILING = ISO.CEILING (Tests[Value], 0.01)
ROUNDUP = ROUNDUP (Tests[Value], 2)
INT = INT (Tests[Value])
FIXED = FIXED (Tests[Value], 2, TRUE)

FIGURE 2-8 This summary shows the results of using different rounding functions.

FLOOR, TRUNC, and ROUNDDOWN are similar except in the way we can specify the number of
digits to round. In the opposite direction, CEILING and ROUNDUP are similar in their results. You can
see a few differences in the way the rounding is done between MROUND and ROUND function.

50 CHAPTER 2 Introducing DAX

Trigonometric functions
DAX offers a rich set of trigonometric functions that are useful for certain calculations: COS, COSH,
COT, COTH, SIN, SINH, TAN, and TANH. Prefi xing them with A computes the arc version (arcsine,
arccosine, and so on). We do not go into the details of these functions because their use is
straightforward.

DEGREES and RADIANS perform conversion to degrees and radians, respectively, and SQRTPI
computes the square root of its parameter after multiplying it by pi.

Text functions
Most of the text functions available in DAX are similar to those available in Excel, with only a few
exceptions. The text functions are CONCATENATE, CONCATENATEX, EXACT, FIND, FIXED, FORMAT,
LEFT, LEN, LOWER, MID, REPLACE, REPT, RIGHT, SEARCH, SUBSTITUTE, TRIM, UPPER, and VALUE. These
functions are useful for manipulating text and extracting data from strings that contain multiple values.
For example, Figure 2-9 shows an example of the extraction of fi rst and last names from a string that
contains these values separated by commas, with the title in the middle that we want to remove.

FIGURE 2-9 This example shows fi rst and last names extracted using text functions.

To achieve this result, you start calculating the position of the two commas. Then we use these
numbers to extract the right part of the text. The SimpleConversion column implements a formula that
might return inaccurate values if there are fewer than two commas in the string, and it raises an error
if there are no commas at all. The FirstLastName column implements a more complex expression that
does not fail in case of missing commas:

People[Comma1] = IFERROR (FIND (",", People[Name]), BLANK ())
People[Comma2] = IFERROR (FIND (" ,", People[Name], People[Comma1] + 1), BLANK ())
People[SimpleConversion] =
MID (People[Name], People[Comma2] + 1, LEN (People[Name]))
 & " "
 & LEFT (People[Name], People[Comma1] - 1)
People[FirstLastName] =
TRIM (
 MID (
 People[Name],
 IF (ISNUMBER (People[Comma2]), People[Comma2], People[Comma1]) + 1,
 LEN (People[Name])
)
)
 & IF (

