

iOS Programming: The Big Nerd Ranch Guide
by Christian Keur and Aaron Hillegass

Copyright © 2016 Big Nerd Ranch, LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC
200 Arizona Ave NE
Atlanta, GA 30307
(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

App Store, Apple, Cocoa, Cocoa Touch, Finder, Instruments, iCloud, iPad, iPhone, iPod, iPod touch, iTunes,
Keychain, Mac, Mac OS, Multi-Touch, Objective-C, OS X, Quartz, Retina, Safari, and Xcode are trademarks of
Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134687442
ISBN-13 978-0134687445

Sixth edition, second printing, July 2017
Release D.6.1.1

iii

Acknowledgments
While our names appear on the cover, many people helped make this book a reality. We would like to
take this chance to thank them.

• First and foremost we would like to thank Joe Conway for his work on the earlier editions of this
book. He authored the first three editions and contributed greatly to the fourth edition as well.
Many of the words in this book are still his, and for that, we are very grateful.

• Juan Pablo Claude wrote some of the content and contributed his expertise and opinions to make
this book even better. His work is greatly appreciated.

• A couple other people went above and beyond with their help on this book. They are Mikey Ward
and Chris Morris.

• The other instructors who teach the iOS Bootcamp fed us a never-ending stream of suggestions
and corrections. They are Ben Scheirman, Bolot Kerimbaev, Brian Hardy, Chris Morris, JJ
Manton, John Gallagher, Jonathan Blocksom, Joseph Dixon, Juan Pablo Claude, Mark Dalrymple,
Matt Bezark, Matt Mathias, Mike Zornek, Mikey Ward, Pouria Almassi, Robert Edwards, Rod
Strougo, Scott Ritchie, Step Christopher, Thomas Ward, TJ Usiyan, Tom Harrington, and Zachary
Waldowski. These instructors were often aided by their students in finding book errata, so many
thanks are due to all the students who attend the iOS Bootcamp.

• Thanks to all of the employees at Big Nerd Ranch who helped review the book, provided
suggestions, and found errata.

• Our tireless editor, Elizabeth Holaday, took our distracted mumblings and made them into
readable prose.

• Anna Bentley and Simone Payment jumped in to provide copyediting and proofing.

• Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle frame.)

• Chris Loper at IntelligentEnglish.com designed and produced the print and ebook versions of the
book.

• The amazing team at Pearson Technology Group patiently guided us through the business end of
book publishing.

The final and most important thanks goes to our students, whose questions inspired us to write this
book and whose frustrations inspired us to make it clear and comprehensible.

v

Table of Contents
Introduction ... xiii

Prerequisites .. xiii
What Has Changed in the Sixth Edition? .. xiii
Our Teaching Philosophy ... xiv
How to Use This Book ... xv
How This Book Is Organized .. xv
Style Choices .. xvii
Typographical Conventions .. xvii
Necessary Hardware and Software .. xvii

1. A Simple iOS Application .. 1
Creating an Xcode Project .. 2
Model-View-Controller ... 5
Designing Quiz ... 6
Interface Builder ... 7
Building the Interface .. 8

Creating view objects ... 9
Configuring view objects .. 12
Running on the simulator .. 13
A brief introduction to Auto Layout ... 14
Making connections ... 17

Creating the Model Layer ... 22
Implementing action methods .. 23
Loading the first question ... 23

Building the Finished Application .. 24
Application Icons .. 25
Launch Screen .. 28

2. The Swift Language ... 29
Types in Swift .. 30
Using Standard Types ... 31

Inferring types .. 33
Specifying types .. 33
Literals and subscripting ... 35
Initializers .. 36
Properties ... 37
Instance methods ... 37

Optionals .. 38
Subscripting dictionaries ... 40

Loops and String Interpolation ... 40
Enumerations and the Switch Statement .. 42

Enumerations and raw values ... 43
Exploring Apple’s Swift Documentation .. 44

3. Views and the View Hierarchy ... 45
View Basics .. 46
The View Hierarchy ... 46
Creating a New Project ... 48

iOS Programming

vi

Views and Frames ... 49
Customizing the labels ... 57

The Auto Layout System .. 60
The alignment rectangle and layout attributes ... 60
Constraints ... 61
Adding constraints in Interface Builder ... 63
Intrinsic content size .. 64
Misplaced views .. 66
Adding more constraints ... 67

Bronze Challenge: More Auto Layout Practice ... 68
4. Text Input and Delegation ... 69

Text Editing .. 70
Keyboard attributes .. 74
Responding to text field changes .. 74
Dismissing the keyboard ... 78

Implementing the Temperature Conversion ... 79
Number formatters ... 81

Delegation .. 82
Conforming to a protocol .. 82
Using a delegate .. 83
More on protocols ... 85

Bronze Challenge: Disallow Alphabetic Characters .. 85
5. View Controllers .. 89

The View of a View Controller .. 90
Setting the Initial View Controller .. 91
UITabBarController .. 95

Tab bar items .. 98
Loaded and Appearing Views .. 100

Accessing subviews .. 101
Interacting with View Controllers and Their Views .. 101
Silver Challenge: Dark Mode ... 101
For the More Curious: Retina Display ... 102

6. Programmatic Views ... 105
Creating a View Programmatically .. 107
Programmatic Constraints .. 108

Anchors .. 109
Activating constraints ... 110
Layout guides .. 111
Margins .. 112
Explicit constraints ... 113

Programmatic Controls ... 114
Bronze Challenge: Another Tab .. 116
Silver Challenge: User’s Location ... 116
Gold Challenge: Dropping Pins .. 116
For the More Curious: NSAutoresizingMaskLayoutConstraint 117

7. Localization ... 119
Internationalization ... 121

Formatters .. 121

iOS Programming

vii

Base internationalization ... 125
Preparing for localization .. 126

Localization .. 133
NSLocalizedString and strings tables ... 136

Bronze Challenge: Another Localization .. 140
For the More Curious: Bundle’s Role in Internationalization .. 140
For the More Curious: Importing and Exporting as XLIFF .. 141

8. Controlling Animations ... 143
Basic Animations ... 144

Closures ... 145
Another Label ... 147
Animation Completion .. 149
Animating Constraints .. 149
Timing Functions ... 154
Bronze Challenge: Spring Animations ... 156
Silver Challenge: Layout Guides .. 156

9. Debugging .. 157
A Buggy Project .. 157
Debugging Basics .. 159

Interpreting console messages .. 159
Fixing the first bug .. 161
Caveman debugging ... 162

The Xcode Debugger: LLDB ... 164
Setting breakpoints ... 165
Stepping through code .. 166
The LLDB console ... 175

10. UITableView and UITableViewController .. 177
Beginning the Homepwner Application .. 177
UITableViewController ... 179

Subclassing UITableViewController .. 180
Creating the Item Class ... 181

Custom initializers ... 181
UITableView’s Data Source ... 183

Giving the controller access to the store ... 184
Implementing data source methods ... 186

UITableViewCells .. 187
Creating and retrieving UITableViewCells .. 189
Reusing UITableViewCells .. 190

Content Insets ... 193
Bronze Challenge: Sections ... 194
Silver Challenge: Constant Rows .. 194
Gold Challenge: Customizing the Table ... 194

11. Editing UITableView ... 195
Editing Mode .. 195
Adding Rows .. 200
Deleting Rows ... 202
Moving Rows .. 203
Displaying User Alerts .. 205

iOS Programming

viii

Design Patterns .. 209
Bronze Challenge: Renaming the Delete Button .. 209
Silver Challenge: Preventing Reordering .. 209
Gold Challenge: Really Preventing Reordering .. 209

12. Subclassing UITableViewCell ... 211
Creating ItemCell ... 212
Exposing the Properties of ItemCell .. 214
Using ItemCell .. 215
Dynamic Cell Heights .. 216
Dynamic Type ... 217

Responding to user changes ... 220
Bronze Challenge: Cell Colors ... 220

13. Stack Views ... 221
Using UIStackView .. 223

Implicit constraints ... 224
Stack view distribution .. 227
Nested stack views ... 228
Stack view spacing ... 228

Segues ... 230
Hooking Up the Content ... 231
Passing Data Around .. 236
Bronze Challenge: More Stack Views .. 238

14. UINavigationController .. 239
UINavigationController ... 241
Navigating with UINavigationController .. 245
Appearing and Disappearing Views ... 246
Dismissing the Keyboard ... 247

Event handling basics ... 248
Dismissing by pressing the Return key .. 249
Dismissing by tapping elsewhere .. 250

UINavigationBar .. 252
Adding buttons to the navigation bar ... 254

Bronze Challenge: Displaying a Number Pad .. 257
Silver Challenge: A Custom UITextField ... 257
Gold Challenge: Pushing More View Controllers ... 257

15. Camera ... 259
Displaying Images and UIImageView .. 260

Adding a camera button .. 262
Taking Pictures and UIImagePickerController ... 265

Setting the image picker’s sourceType ... 265
Setting the image picker’s delegate ... 267
Presenting the image picker modally ... 267
Permissions ... 268
Saving the image ... 271

Creating ImageStore ... 272
Giving View Controllers Access to the Image Store ... 273
Creating and Using Keys ... 274
Wrapping Up ImageStore .. 277

iOS Programming

ix

Bronze Challenge: Editing an Image ... 278
Silver Challenge: Removing an Image ... 278
Gold Challenge: Camera Overlay ... 278
For the More Curious: Navigating Implementation Files ... 279

// MARK: ... 281
16. Saving, Loading, and Application States ... 283

Archiving ... 284
Application Sandbox .. 287

Constructing a file URL .. 288
NSKeyedArchiver and NSKeyedUnarchiver .. 289

Loading files ... 292
Application States and Transitions .. 293
Writing to the Filesystem with Data .. 295
Error Handling .. 298
Bronze Challenge: PNG .. 300
For the More Curious: Application State Transitions .. 301
For the More Curious: Reading and Writing to the Filesystem 302
For the More Curious: The Application Bundle ... 304

17. Size Classes ... 307
Modifying Traits for a Specific Size Class ... 308
Bronze Challenge: Stacked Text Field and Labels .. 313

18. Touch Events and UIResponder .. 315
Touch Events .. 316
Creating the TouchTracker Application .. 317
Creating the Line Struct .. 318

Structs .. 319
Value types vs reference types ... 319

Creating DrawView .. 320
Drawing with DrawView ... 321
Turning Touches into Lines ... 322

Handling multiple touches ... 323
@IBInspectable ... 328
Silver Challenge: Colors ... 330
Gold Challenge: Circles .. 330
For the More Curious: The Responder Chain .. 331
For the More Curious: UIControl ... 332

19. UIGestureRecognizer and UIMenuController ... 333
UIGestureRecognizer Subclasses .. 334
Detecting Taps with UITapGestureRecognizer ... 334
Multiple Gesture Recognizers .. 336
UIMenuController .. 339
More Gesture Recognizers ... 341

UILongPressGestureRecognizer .. 341
UIPanGestureRecognizer and simultaneous recognizers .. 342

More on UIGestureRecognizer ... 346
Silver Challenge: Mysterious Lines ... 347
Gold Challenge: Speed and Size ... 347
Platinum Challenge: Colors ... 347

iOS Programming

x

For the More Curious: UIMenuController and UIResponderStandardEditActions 348
20. Web Services ... 349

Starting the Photorama Application ... 350
Building the URL .. 352

Formatting URLs and requests ... 352
URLComponents ... 353

Sending the Request ... 357
URLSession .. 357

Modeling the Photo .. 360
JSON Data ... 361

JSONSerialization .. 362
Enumerations and associated values .. 363
Parsing JSON data ... 364

Downloading and Displaying the Image Data ... 371
The Main Thread ... 374
Bronze Challenge: Printing the Response Information .. 375
Silver Challenge: Fetch Recent Photos from Flickr .. 375
For the More Curious: HTTP ... 376

21. Collection Views .. 379
Displaying the Grid .. 380
Collection View Data Source ... 382
Customizing the Layout .. 385
Creating a Custom UICollectionViewCell .. 388
Downloading the Image Data ... 392

Extensions .. 395
Image caching ... 397

Navigating to a Photo ... 398
Silver Challenge: Updated Item Sizes .. 401
Gold Challenge: Creating a Custom Layout .. 401

22. Core Data .. 403
Object Graphs ... 403
Entities ... 403

Modeling entities ... 404
Transformable attributes .. 406
NSManagedObject and subclasses .. 406

NSPersistentContainer ... 408
Updating Items .. 408

Inserting into the context ... 409
Saving changes .. 411

Updating the Data Source ... 412
Fetch requests and predicates ... 412

Bronze Challenge: Photo View Count .. 416
For the More Curious: The Core Data Stack ... 416

NSManagedObjectModel ... 416
NSPersistentStoreCoordinator ... 416
NSManagedObjectContext ... 416

23. Core Data Relationships .. 417
Relationships ... 418

iOS Programming

xi

Adding Tags to the Interface .. 421
Background Tasks .. 432
Silver Challenge: Favorites .. 436

24. Accessibility .. 437
VoiceOver ... 437

Testing VoiceOver .. 439
Accessibility in Photorama .. 441

25. Afterword .. 445
What to Do Next ... 445
Shameless Plugs .. 445

Index ... 449

xiii

Introduction
As an aspiring iOS developer, you face three major tasks:

• You must learn the Swift language. Swift is the recommended development language for iOS. The
first two chapters of this book are designed to give you a working knowledge of Swift.

• You must master the big ideas. These include things like delegation, archiving, and the proper use
of view controllers. The big ideas take a few days to understand. When you reach the halfway
point of this book, you will understand these big ideas.

• You must master the frameworks. The eventual goal is to know how to use every method of every
class in every framework in iOS. This is a project for a lifetime: There are hundreds of classes
and thousands of methods available in iOS, and Apple adds more classes and methods with every
release of iOS. In this book, you will be introduced to each of the subsystems that make up the
iOS SDK, but you will not study each one deeply. Instead, our goal is to get you to the point
where you can search and understand Apple’s reference documentation.

We have used this material many times at our iOS bootcamps at Big Nerd Ranch. It is well tested and
has helped thousands of people become iOS developers. We sincerely hope that it proves useful to you.

Prerequisites
This book assumes that you are already motivated to learn to write iOS apps. We will not spend any
time convincing you that the iPhone, iPad, and iPod touch are compelling pieces of technology.

We also assume that you have some experience programming and know something about object-
oriented programming. If this is not true, you should probably start with Swift Programming: The Big
Nerd Ranch Guide.

What Has Changed in the Sixth Edition?
All of the code in this book has been updated for Swift 3.0, which was a major update to the Swift
language. Throughout the book, you will see how to use Swift’s capabilities and features to write better
iOS applications. We have come to love Swift at Big Nerd Ranch and believe you will, too.

Other additions include new chapters on debugging and accessibility and improved coverage of Core
Data. We have also updated various chapters to use the technologies and APIs introduced in iOS 10.

This edition assumes that the reader is using Xcode 8.1 or later and running applications on an iOS 10
or later device.

Besides these obvious changes, we made thousands of tiny improvements that were inspired by
questions from our readers and our students. Every chapter of this book is just a little better than the
corresponding chapter from the fifth edition.

Introduction

xiv

Our Teaching Philosophy
This book will teach you the essential concepts of iOS programming. At the same time, you will type
in a lot of code and build a bunch of applications. By the end of the book, you will have knowledge
and experience. However, all the knowledge should not (and, in this book, will not) come first. That
is the traditional way of learning we have all come to know and hate. Instead, we take a learn-while-
doing approach. Development concepts and actual coding go together.

Here is what we have learned over the years of teaching iOS programming:

• We have learned what ideas people must grasp to get started programming, and we focus on that
subset.

• We have learned that people learn best when these concepts are introduced as they are needed.

• We have learned that programming knowledge and experience grow best when they grow
together.

• We have learned that “going through the motions” is much more important than it sounds. Many
times we will ask you to start typing in code before you understand it. We realize that you may
feel like a trained monkey typing in a bunch of code that you do not fully grasp. But the best way
to learn coding is to find and fix your typos. Far from being a drag, this basic debugging is where
you really learn the ins and outs of the code. That is why we encourage you to type in the code
yourself. You could just download it, but copying and pasting is not programming. We want better
for you and your skills.

What does this mean for you, the reader? To learn this way takes some trust – and we appreciate yours.
It also takes patience. As we lead you through these chapters, we will try to keep you comfortable
and tell you what is happening. However, there will be times when you will have to take our word
for it. (If you think this will bug you, keep reading – we have some ideas that might help.) Do not get
discouraged if you run across a concept that you do not understand right away. Remember that we are
intentionally not providing all the knowledge you will ever need all at once. If a concept seems unclear,
we will likely discuss it in more detail later when it becomes necessary. And some things that are not
clear at the beginning will suddenly make sense when you implement them the first (or the twelfth)
time.

People learn differently. It is possible that you will love how we hand out concepts on an as-needed
basis. It is also possible that you will find it frustrating. In case of the latter, here are some options:

• Take a deep breath and wait it out. We will get there, and so will you.

• Check the index. We will let it slide if you look ahead and read through a more advanced
discussion that occurs later in the book.

• Check the online Apple documentation. This is an essential developer tool, and you will want
plenty of practice using it. Consult it early and often.

• If Swift or object-oriented programming concepts are giving you a hard time (or if you think they
will), you might consider backing up and reading our Swift Programming: The Big Nerd Ranch
Guide.

How to Use This Book

xv

How to Use This Book
This book is based on the class we teach at Big Nerd Ranch. As such, it was designed to be consumed
in a certain manner.

Set yourself a reasonable goal, like, “I will do one chapter every day.” When you sit down to attack
a chapter, find a quiet place where you will not be interrupted for at least an hour. Shut down your
email, your Twitter client, and your chat program. This is not a time for multitasking; you will need to
concentrate.

Do the actual programming. You can read through a chapter first, if you like. But the real learning
comes when you sit down and code as you go. You will not really understand the idea until you have
written a program that uses it and, perhaps more importantly, debugged that program.

A couple of the exercises require supporting files. For example, in the first chapter you will need an
icon for your Quiz application, and we have one for you. You can download the resources and solutions
to the exercises from www.bignerdranch.com/solutions/iOSProgramming6ed.zip.

There are two types of learning. When you learn about the Peloponnesian War, you are simply adding
details to a scaffolding of ideas that you already understand. This is what we will call “Easy Learning.”
Yes, learning about the Peloponnesian War can take a long time, but you are seldom flummoxed by
it. Learning iOS programming, on the other hand, is “Hard Learning,” and you may find yourself
quite baffled at times, especially in the first few days. In writing this book, we have tried to create an
experience that will ease you over the bumps in the learning curve. Here are two things you can do to
make the journey easier:

• Find someone who already knows how to write iOS applications and will answer your questions.
In particular, getting your application onto a device the first time is usually very frustrating if you
are doing it without the help of an experienced developer.

• Get enough sleep. Sleepy people do not remember what they have learned.

How This Book Is Organized
In this book, each chapter addresses one or more ideas of iOS development through discussion and
hands-on practice. For more coding practice, most chapters include challenge exercises. We encourage
you to take on at least some of these. They are excellent for firming up your grasp of the concepts
introduced in the chapter and for making you a more confident iOS programmer. Finally, most chapters
conclude with one or two For the More Curious sections that explain certain consequences of the
concepts that were introduced earlier.

Chapter 1 introduces you to iOS programming as you build and deploy a tiny application called Quiz.
You will get your feet wet with Xcode and the iOS simulator along with all the steps for creating
projects and files. The chapter includes a discussion of Model-View-Controller and how it relates to
iOS development.

Chapter 2 provides an overview of Swift, including basic syntax, types, optionals, initialization, and
how Swift is able to interact with the existing iOS frameworks. You will also get experience working in
a playground, Xcode’s prototyping tool.

In Chapter 3, you will focus on the iOS user interface as you learn about views and the view hierarchy
and create an application called WorldTrotter.

http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip

Introduction

xvi

Chapter 4 introduces delegation, an important iOS design pattern. You will also add a text field to
WorldTrotter.

In Chapter 5, you will expand WorldTrotter and learn about using view controllers for managing user
interfaces. You will get practice working with views and view controllers as well as navigating between
screens using a tab bar.

In Chapter 6, you will learn how to manage views and view controllers in code. You will add a
segmented control to WorldTrotter that will let you switch between various map types.

Chapter 7 introduces the concepts and techniques of internationalization and localization. You will
learn about Locale, strings tables, and Bundle as you localize parts of WorldTrotter.

In Chapter 8, you will learn about and add different types of animations to the Quiz project that you
created in Chapter 1.

Chapter 9 will walk you through some of the tools at your disposal for debugging – finding and fixing
issues in your application.

Chapter 10 introduces the largest application in the book – Homepwner. (“Homepwner” is not a typo;
you can find the definition of “pwn” at www.wiktionary.org.) This application keeps a record of your
items in case of fire or other catastrophe. Homepwner will take eight chapters to complete.

In Chapter 10 – Chapter 12, you will work with tables. You will learn about table views, their view
controllers, and their data sources. You will learn how to display data in a table, how to allow the user
to edit the table, and how to improve the interface.

Chapter 13 introduces stack views, which will help you create complex interfaces easily. You will use a
stack view to add a new screen to Homepwner that displays an item’s details.

Chapter 14 builds on the navigation experience gained in Chapter 5. You will use
UINavigationController to give Homepwner a drill-down interface and a navigation bar.

Chapter 15 introduces the camera. You will take pictures and display and store images in Homepwner.

In Chapter 16, you will add persistence to Homepwner, using archiving to save and load the application
data.

In Chapter 17, you will learn about size classes, and you will use these to update Homepwner’s
interface to scale well across various screen sizes.

In Chapter 18 and Chapter 19, you will create a drawing application named TouchTracker
to learn about touch events. You will see how to add multitouch capability and how to use
UIGestureRecognizer to respond to particular gestures. You will also get experience with the first
responder and responder chain concepts and more practice using structures and dictionaries.

Chapter 20 introduces web services as you create the Photorama application. This application fetches
and parses JSON data from a server using URLSession and JSONSerialization.

In Chapter 21, you will learn about collection views as you build an interface for Photorama using
UICollectionView and UICollectionViewCell.

In Chapter 22 and Chapter 23, you will add persistence to Photorama using Core Data. You will store
and load images and associated data using an NSManagedObjectContext.

Chapter 24 will walk you through making your applications accessible to more people by adding
VoiceOver information.

Style Choices

xvii

Style Choices
This book contains a lot of code. We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the community, but at times we have
wandered from what you might see in Apple’s sample code or code you might find in other books. In
particular, you should know up front that we nearly always start a project with the simplest template
project: the single view application. When your app works, you will know it is because of your efforts
– not because of behavior built into the template.

Typographical Conventions
To make this book easier to read, certain items appear in certain fonts. Classes, types, methods,
and functions appear in a bold, fixed-width font. Classes and types start with capital letters, and
methods and functions start with lowercase letters. For example, “In the loadView() method of the
RexViewController class, create a constant of type String.”

Variables, constants, and filenames appear in a fixed-width font but are not bold. So you will see, “In
ViewController.swift, add a variable named fido and initialize it to "Rufus".”

Application names, menu choices, and button names appear in a sans serif font. For example, “Open
Xcode and select New Project... from the File menu. Select Single View Application and then click
Next.”

All code blocks are in a fixed-width font. Code that you need to type in is bold; code that you need
to delete is struck through. For example, in the following code, you would delete the line import
Foundation and type in the two lines beginning @IBOutlet. The other lines are already in the code and
are included to let you know where to add the new lines.

import Foundation
import UIKit

class ViewController: UIViewController {

 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var answerLabel: UILabel!

}

Necessary Hardware and Software
To build the applications in this book, you must have Xcode 8.1, which requires a Mac running macOS
El Capitan version 10.11.4 or later. Xcode, Apple’s Integrated Development Environment, is available
on the App Store. Xcode includes the iOS SDK, the iOS simulator, and other development tools.

You should join the Apple Developer Program, which costs $99/year, because:

• Downloading the latest developer tools is free for members.

• You cannot put an app in the store until you are a member.

If you are going to take the time to work through this entire book, membership in the Apple Developer
Program is worth the cost. Go to developer.apple.com/programs/ios/ to join.

http://developer.apple.com/programs/ios/

Introduction

xviii

What about iOS devices? Most of the applications you will develop in the first half of the book are for
iPhone, but you will be able to run them on an iPad. On the iPad screen, iPhone applications appear in
an iPhone-sized window. Not a compelling use of iPad, but that is OK when you are starting with iOS.
In the early chapters, you will be focused on learning the fundamentals of the iOS SDK, and these are
the same across iOS devices. Later in the book, you will see how to make applications run natively on
both iOS device families.

Excited yet? Good. Let’s get started.

1

1
A Simple iOS Application

In this chapter, you are going to write an iOS application named Quiz. This application will show a
question and then reveal the answer when the user taps a button. Tapping another button will show the
user a new question (Figure 1.1).

Figure 1.1 Your first application: Quiz

When you are writing an iOS application, you must answer two basic questions:

• How do I get my objects created and configured properly? (Example: “I want a button here that
says Next Question.”)

• How do I make my app respond to user interaction? (Example: “When the user taps the button, I
want this piece of code to be executed.”)

Most of this book is dedicated to answering these questions.

Chapter 1 A Simple iOS Application

2

As you go through this first chapter, you will probably not understand everything that you are doing,
and you may feel ridiculous just going through the motions. But going through the motions is enough
for now. Mimicry is a powerful form of learning; it is how you learned to speak, and it is how you will
start iOS programming. As you become more capable, you will experiment and challenge yourself to
do creative things on the platform. For now, go ahead and do what we show you. The details will be
explained in later chapters.

Creating an Xcode Project
Open Xcode and, from the File menu, select New → Project.... (If Xcode opens to a welcome screen,
select Create a new Xcode project.)

A new workspace window will appear and a sheet will slide down from its toolbar. At the top, find the
iOS section and then the Application area (Figure 1.2). You are offered several application templates to
choose from. Select Single View Application.

Figure 1.2 Creating a project

This book was created for Xcode 8.1. The names of these templates may change with new Xcode
releases. If you do not see a Single View Application template, use the simplest-sounding template. You
can also visit the Big Nerd Ranch forum for this book at forums.bignerdranch.com for help working
with newer versions of Xcode.

http://forums.bignerdranch.com

Creating an Xcode Project

3

Click Next and, in the next sheet, enter Quiz for the Product Name (Figure 1.3). The organization
name and identifier are required to continue. You can use Big Nerd Ranch or any organization
name you would like. For the organization identifier, you can use com.bignerdranch or
com.yourcompanynamehere.

From the Language pop-up menu, choose Swift, and from the Devices pop-up menu, choose Universal.
Make sure that the Use Core Data checkbox is unchecked.

Figure 1.3 Configuring a new project

Click Next and, in the final sheet, save the project in the directory where you plan to store the exercises
in this book. Click Create to create the Quiz project.

Chapter 1 A Simple iOS Application

4

Your new project opens in the Xcode workspace window (Figure 1.4).

Figure 1.4 Xcode workspace window

The lefthand side of the workspace window is the navigator area. This area displays different
navigators – tools that show you different parts of your project. You can open a navigator by selecting
one of the icons in the navigator selector, which is the bar just above the navigator area.

The navigator currently open is the project navigator. The project navigator shows you the files that
make up a project (Figure 1.5). You can select one of these files to open it in the editor area to the right
of the navigator area.

The files in the project navigator can be grouped into folders to help you organize your project. A few
groups have been created by the template for you. You can rename them, if you want, or add new ones.
The groups are purely for the organization of files and do not correlate to the filesystem in any way.

Figure 1.5 Quiz application’s files in the project navigator

Model-View-Controller

5

Model-View-Controller
Before you begin your application, let’s discuss a key concept in application architecture:
Model-View-Controller, or MVC. MVC is a design pattern used in iOS development. In MVC, every
instance belongs to either the model layer, the view layer, or the controller layer. (Layer here simply
refers to one or more objects that together fulfill a role.)

• The model layer holds data and knows nothing about the user interface, or UI. In Quiz, the model
will consist of two ordered lists of strings: one for questions and another for answers.

Usually, instances in the model layer represent real things in the world of the user. For example,
when you write an app for an insurance company, your model will almost certainly contain a
custom type called InsurancePolicy.

• The view layer contains objects that are visible to the user. Examples of view objects, or views,
are buttons, text fields, and sliders. View objects make up an application’s UI. In Quiz, the labels
showing the question and answer and the buttons beneath them are view objects.

• The controller layer is where the application is managed. Controller objects, or controllers, are
the managers of an application. Controllers configure the views that the user sees and make sure
that the view and model objects stay synchronized.

In general, controllers typically handle “And then?” questions. For example, when the user selects
an item from a list, the controller determines what the user sees next.

Figure 1.6 shows the flow of control in an application in response to user input, such as the user
tapping a button.

Figure 1.6 MVC pattern

Notice that models and views do not talk to each other directly; controllers sit squarely in the middle of
everything, receiving messages and dispatching instructions.

Chapter 1 A Simple iOS Application

6

Designing Quiz
You are going to write the Quiz application using the MVC pattern. Here is a breakdown of the
instances you will be creating and working with:

• The model layer will consist of two instances of [String].

• The view layer will consist of two instances of UILabel and two instances of UIButton.

• The controller layer will consist of an instance of ViewController.

These instances and their relationships are laid out in the diagram for Quiz shown in Figure 1.7.

Figure 1.7 Object diagram for Quiz

Figure 1.7 is the big picture of how the finished Quiz application will work. For example, when the
Next Question button is tapped, it will trigger a method in ViewController. A method is a lot like a
function – a list of instructions to be executed. This method will retrieve a new question from the array
of questions and ask the top label to display that question.

It is OK if this diagram does not make sense yet – it will by the end of the chapter. Refer back to it as
you build the app to see how it is taking shape.

You are going to build Quiz in steps, starting with the visual interface for the application.

Interface Builder

7

Interface Builder
You are using the Single View Application template because it is the simplest template that Xcode
offers. Still, this template has a significant amount of magic in that some critical components have
already been set up for you. For now, you will just use these components, without attempting to gain a
deep understanding of how they work. The rest of the book will be concerned with those details.

In the project navigator, click once on the Main.storyboard file. Xcode will open its graphic-style
editor called Interface Builder.

Interface Builder divides the editor area into two sections: the document outline, on the lefthand side,
and the canvas, on the right.

This is shown in Figure 1.8. If what you see in your editor area does not match the figure, you may
have to click on the Show Document Outline button. (If you have additional areas showing, do not
worry about them.) You may also have to click on the disclosure triangles in the document outline to
reveal content.

Figure 1.8 Interface Builder showing Main.storyboard

Chapter 1 A Simple iOS Application

8

The rectangle that you see in the Interface Builder canvas is called a scene and represents the only
“screen” or view your application has at this time (remember that you used the single view application
template to create this project).

In the next section, you will learn how to create a UI for your application using Interface Builder.
Interface Builder lets you drag objects from a library onto the canvas to create instances and also lets
you establish connections between those objects and your code. These connections can result in code
being called by a user interaction.

A crucial feature of Interface Builder is that it is not a graphical representation of code contained in
other files. Interface Builder is an object editor that can create instances of objects and manipulate their
properties. When you are done editing an interface, it does not generate code that corresponds to the
work you have done. A .storyboard file is an archive of object instances to be loaded into memory
when necessary.

Building the Interface
Let’s get started on your interface. You have selected Main.storyboard to reveal its single scene in the
canvas (Figure 1.9).

Figure 1.9 The scene in Main.storyboard

To start, make sure your scene is sized for iPhone 7. At the bottom of the canvas, find the View as
button. It will likely say something like View as: iPhone 7 (wC hR). (The wC hR will not make sense
right now; we will explain it in Chapter 17.) If it says iPhone 7 already, then you are all set. If not,
click on the View as button and select the fourth device from the left, which corresponds to iPhone 7
(Figure 1.10).

Creating view objects

9

Figure 1.10 Viewing the scene for iPhone 7

It is time to add your view objects to that blank slate.

Creating view objects
Make sure that the utility area within Xcode’s window is visible. You may need to click on the
rightmost button of the control in the top-right corner of the window. The utility area is
to the right of the editor area and has two sections: the inspector and the library. The top section is
the inspector, which displays settings for a file or object that is selected in the editor area. The bottom
section is the library, which lists items that you can add to a file or project.

At the top of each section in the utility area is a selector for different inspectors and libraries
(Figure 1.11).

Figure 1.11 Xcode utility area

Your application interface requires four view objects: two buttons to accept user input and two text
labels to display information. To add them, first make sure you can see the object library, as shown in
Figure 1.11, by selecting the tab from the library selector.

Chapter 1 A Simple iOS Application

10

The object library contains the objects that you can add to a storyboard file to compose your interface.
Find the Label object by either scrolling down through the list or by using the search bar at the bottom
of the library. Select this object in the library and drag it onto the view object on the canvas. Drag the
label around the canvas and notice the dashed blue lines that appear when the label is near the center of
the canvas (Figure 1.12). These guidelines will help you lay out your interface.

Figure 1.12 Adding a label to the canvas

Using the guidelines, position the label in the horizontal center of the view and near the top, as shown
in Figure 1.12. Eventually, this label will display questions to the user. Drag a second label onto the
view and position it in the horizontal center, closer to the middle. This label will display answers.

Next, find Button in the object library and drag two buttons onto the view. Position one below each
label.

Creating view objects

11

You have now added four view objects to the ViewController’s UI. Notice that they also appear in the
document outline. Your interface should look like Figure 1.13.

Figure 1.13 Building the Quiz interface

Chapter 1 A Simple iOS Application

12

Configuring view objects
Now that you have created the view objects, you can configure their attributes. Some attributes of a
view, like size, position, and text, can be changed directly on the canvas. For example, you can resize
an object by selecting it in the canvas or the document outline and then dragging its corners and edges
in the canvas.

Begin by renaming the labels and buttons. Double-click on each label and replace the text with ???.
Then double-click the upper button and change its name to Next Question. Rename the lower button to
Show Answer. The results are shown in Figure 1.14.

Figure 1.14 Renaming the labels and buttons

You may have noticed that because you have changed the text in the labels and buttons, and therefore
their widths, they are no longer neatly centered in the scene. Click on each of them and drag to center
them again, as shown in Figure 1.15.

Figure 1.15 Centering the labels and buttons

Running on the simulator

13

Running on the simulator
To test your UI, you are going to run Quiz on Xcode’s iOS simulator.

To prepare Quiz to run on the simulator, find the current scheme pop-up menu on the Xcode toolbar
(Figure 1.16).

Figure 1.16 iPhone 7 scheme selected

If it says something generic like iPhone 7, then the project is set to run on the simulator and you are
good to go. If it says something like Christian's iPhone, then click and choose iPhone 7 from the
pop-up menu. The iPhone 7 scheme will be your simulator default throughout this book.

Click the triangular play button in the toolbar. This will build (compile) and then run the application.
You will be doing this often enough that you may want to learn and use the keyboard shortcut
Command-R.

After the simulator launches you will see that the interface has all the views you added, neatly centered
as you configured them in Interface Builder.

Now go back to the current scheme pop-up menu and select iPhone 7 Plus as your simulator of choice.
Run the application again and you will notice that while the views you added are still present, they are
not centered as they were on iPhone 7. This is because the labels and buttons currently have a fixed
position on a screen, and they do not remain centered on the main view. To correct this problem, you
will use a technology called Auto Layout.

Chapter 1 A Simple iOS Application

14

A brief introduction to Auto Layout
As of now, your interface looks nice in the Interface Builder canvas. But iOS devices come in ever
more screen sizes, and applications are expected to support all screen sizes and orientations – and
perhaps more than one device type. You need to guarantee that the layout of view objects will be
correct regardless of the screen size or orientation of the device running the application. The tool for
this task is Auto Layout.

Auto Layout works by specifying position and size constraints for each view object in a scene. These
constraints can be relative to neighboring views or to container views. A container view is just a view
object that, as the name suggests, contains another view. For example, take a look at the document
outline for Main.storyboard (Figure 1.17).

Figure 1.17 Document layout with a container view

You can see in the document outline that the labels and buttons you added are indented with respect
to a View object. This view object is the container of the labels and buttons, and the objects can be
positioned and sized relative to this view.

To begin specifying Auto Layout constraints, select the top label by clicking on it either on the canvas
or in the document outline. At the bottom of the canvas, notice the Auto Layout menus, shown in
Figure 1.18.

Figure 1.18 The Auto Layout menus

A brief introduction to Auto Layout

15

With the top label still selected, click on the icon to reveal the Align menu shown in Figure 1.19.

Figure 1.19 Centering the top label in the container

Within the Align menu, check the Horizontally in Container checkbox to center the label in the
container. Then click the Add 1 Constraint button. This constraint guarantees that on any size screen, in
any orientation, the label will be centered horizontally.

Now you need to add more constraints to center the lower label and the buttons with respect to the
top label and to lock the spacing between them. Select the four views by Command-clicking on them
one after another and then click on the icon to open the Add New Constraints menu shown in
Figure 1.20.

Figure 1.20 Adding constraints to center and fix the spacing between views

Chapter 1 A Simple iOS Application

16

Click on the red vertical dashed segment near the top of the menu. When you click on the segment,
it will become solid red (shown in Figure 1.20), indicating that the distance of each view is pinned to
its nearest top neighbor. Also, check the Align box and then select Horizontal Centers from the pop-up
menu. For Update Frames, make sure that you have Items of New Constraints selected. Finally, click
on the Add 7 Constraints button at the bottom of the menu.

If you made any mistakes while adding constraints, you may see red or orange constraints and frames
on the canvas instead of the correct blue lines. If that is the case, you will want to clear the existing
constraints and go through the steps above again. To clear constraints, first select the background
(container) view. Then click the icon to open the Resolve Auto Layout Issues menu. Select Clear
Constraints under the All Views in View Controller section (Figure 1.21). This will clear away any
constraints that you have added and give you a fresh start on adding the constraints back in.

Figure 1.21 Clearing constraints

Auto Layout can be a difficult tool to master, and that is why you are starting to use it in the first
chapter of this book. By starting early, you will have more chances to use it and get used to its
complexity. Also, dealing with problems before things get too complicated will help you debug layout
issues with confidence.

To confirm that your interface behaves correctly, build and run the application on the iPhone 7 Plus
simulator. After confirming that the interface looks correct, build and run the application on the iPhone
7 simulator. The labels and buttons should be centered on both.

Making connections

17

Making connections
A connection lets one object know where another object is in memory so that the two objects can
communicate. There are two kinds of connections that you can make in Interface Builder: outlets and
actions. An outlet is a reference to an object. An action is a method that gets triggered by a button or
some other view that the user can interact with, like a slider or a picker.

Let’s start by creating outlets that reference the instances of UILabel. Time to leave Interface Builder
and write some code.

Declaring outlets
In the project navigator, find and select the file named ViewController.swift. The editor area will
change from Interface Builder to Xcode’s code editor.

In ViewController.swift, start by deleting any code that the template added between class
ViewController: UIViewController { and the final brace, so that the file looks like this:

import UIKit

class ViewController: UIViewController {

}

(For simplicity, we will not show the line import UIKit again for this file.)

Next, add the following code that declares two properties. (Throughout this book, new code for you
to add will be shown in bold. Code for you to delete will be struck through.) Do not worry about
understanding the code or properties right now; just get it in.

class ViewController: UIViewController {
 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var answerLabel: UILabel!
}

This code gives every instance of ViewController an outlet named questionLabel and an outlet
named answerLabel. The view controller can use each outlet to reference a particular UILabel object
(i.e., one of the labels in your view). The @IBOutlet keyword tells Xcode that you will connect these
outlets to label objects using Interface Builder.

Chapter 1 A Simple iOS Application

18

Setting outlets
In the project navigator, select Main.storyboard to reopen Interface Builder.

You want the questionLabel outlet to point to the instance of UILabel at the top of the UI.

In the document outline, find the View Controller Scene section and the View Controller object within
it. In your case, the View Controller stands in for an instance of ViewController, which is the object
responsible for managing the interface defined in Main.storyboard.

Control-drag (or right-click and drag) from the View Controller in the document outline to the top label
in the scene. When the label is highlighted, release the mouse and keyboard; a black panel will appear.
Select questionLabel to set the outlet, as shown in Figure 1.22.

Figure 1.22 Setting questionLabel

(If you do not see questionLabel in the connections panel, double-check your ViewController.swift
file for typos.)

Now, when the storyboard file is loaded, the ViewController’s questionLabel outlet will
automatically reference the instance of UILabel at the top of the screen, which will allow the
ViewController to tell the label what question to display.

Set the answerLabel outlet the same way: Control-drag from the ViewController to the bottom UILabel
and select answerLabel (Figure 1.23).

Making connections

19

Figure 1.23 Setting answerLabel

Notice that you drag from the object with the outlet that you want to set to the object that you want that
outlet to point to.

Your outlets are all set. The next connections you need to make involve the two buttons.

Defining action methods
When a UIButton is tapped, it calls a method on another object. That object is called the target. The
method that is triggered is called the action. This action is the name of the method that contains the
code to be executed in response to the button being tapped.

In your application, the target for both buttons will be the instance of ViewController. Each button
will have its own action. Let’s start by defining the two action methods: showNextQuestion(_:) and
showAnswer(_:).

Reopen ViewController.swift and add the two action methods after the outlets.

class ViewController: UIViewController {
 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var answerLabel: UILabel!

 @IBAction func showNextQuestion(_ sender: UIButton) {

 }

 @IBAction func showAnswer(_ sender: UIButton) {

 }
}

You will flesh out these methods after you make the target and action connections. The @IBAction
keyword tells Xcode that you will be making these connections in Interface Builder.

Chapter 1 A Simple iOS Application

20

Setting targets and actions
Switch back to Main.storyboard. Let’s start with the Next Question button. You want its target to be
ViewController and its action to be showNextQuestion(_:).

To set an object’s target, you Control-drag from the object to its target. When you release the mouse,
the target is set, and a pop-up menu appears that lets you select an action.

Select the Next Question button in the canvas and Control-drag to the View Controller in the
document outline. When the View Controller is highlighted, release the mouse button and choose
showNextQuestion: under Sent Events in the pop-up menu, as shown in Figure 1.24.

Figure 1.24 Setting Next Question target/action

Now for the Show Answer button. Select the button and Control-drag from the button to the View
Controller. Choose showAnswer: from the pop-up menu.

Making connections

21

Summary of connections
There are now five connections between the ViewController and the view objects. You have set the
properties answerLabel and questionLabel to reference the label objects – two connections. The
ViewController is the target for both buttons – two more. The project’s template made one additional
connection: The view property of ViewController is connected to the View object that represents the
background of the application. That makes five.

You can check these connections in the connections inspector. Select the View Controller in the
document outline. Then, in the utilities area, click the tab to reveal the connections inspector
(Figure 1.25).

Figure 1.25 Checking connections in the connections inspector

Your storyboard file is complete. The view objects have been created and configured and all the
necessary connections have been made to the controller object. Let’s move on to creating and
connecting your model objects.

Chapter 1 A Simple iOS Application

22

Creating the Model Layer
View objects make up the UI, so developers typically create, configure, and connect view objects using
Interface Builder. The parts of the model layer, on the other hand, are typically set up in code.

In the project navigator, select ViewController.swift. Add the following code that declares two
arrays of strings and an integer.

class ViewController: UIViewController {
 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var answerLabel: UILabel!

 let questions: [String] = [
 "What is 7+7?",
 "What is the capital of Vermont?",
 "What is cognac made from?"
]
 let answers: [String] = [
 "14",
 "Montpelier",
 "Grapes"
]
 var currentQuestionIndex: Int = 0
 ...
}

The arrays are ordered lists containing questions and answers. The integer will keep track of what
question the user is on.

Notice that the arrays are declared using the let keyword, whereas the integer is declared using the
var keyword. A constant is denoted with the let keyword; its value cannot change. The questions
and answers arrays are constants. The questions and answers in this quiz will not change and, in fact,
cannot be changed from their initial values.

A variable, on the other hand, is denoted by the var keyword; its value is allowed to change. You made
the currentQuestionIndex property a variable because its value must be able to change as the user
cycles through the questions and answers.

Implementing action methods

23

Implementing action methods
Now that you have questions and answers, you can finish implementing the action methods. In
ViewController.swift, update showNextQuestion(_:) and showAnswer(_:).

...
@IBAction func showNextQuestion(_ sender: UIButton) {
 currentQuestionIndex += 1
 if currentQuestionIndex == questions.count {
 currentQuestionIndex = 0
 }

 let question: String = questions[currentQuestionIndex]
 questionLabel.text = question
 answerLabel.text = "???"
}

@IBAction func showAnswer(_ sender: UIButton) {
 let answer: String = answers[currentQuestionIndex]
 answerLabel.text = answer
}
...

Loading the first question
Just after the application is launched, you will want to load the first question from the array and use
it to replace the ??? placeholder in the questionLabel label. A good way to do this is by overriding
the viewDidLoad() method of ViewController. (“Override” means that you are providing a custom
implementation for a method.) Add the method to ViewController.swift.

class ViewController: UIViewController {
 ...
 override func viewDidLoad() {
 super.viewDidLoad()
 questionLabel.text = questions[currentQuestionIndex]
 }
}

All the code for your application is now complete!

Chapter 1 A Simple iOS Application

24

Building the Finished Application
Build and run the application on the iPhone 7 simulator, as you did earlier.

If building turns up any errors, you can view them in the issue navigator by selecting the tab in the
navigator area (Figure 1.26).

Figure 1.26 Issue navigator with example errors and warnings

Click on any error or warning in the issue navigator to be taken to the file and the line of code where
the issue occurred. Find and fix any problems (i.e., code typos!) by comparing your code with the
code in this chapter. Then try running the application again. Repeat this process until your application
compiles.

After your application has compiled, it will launch in the iOS simulator. Play around with the Quiz
application. You should be able to tap the Next Question button and see a new question in the top label;
tapping Show Answer should show the right answer. If your application is not working as expected,
double-check your connections in Main.storyboard.

You have built a working iOS app! Take a moment to bask in the glory.

OK, enough basking. Your app works, but it needs some spit and polish.

Application Icons

25

Application Icons
While running Quiz, select Hardware → Home from the simulator’s menu. You will see that Quiz’s
icon is a boring, default tile. Let’s give Quiz a better icon.

An application icon is a simple image that represents the application on the iOS Home screen.
Different devices require different-sized icons, some of which are shown in Table 1.1.

Table 1.1 Application icon sizes by device
Device Application icon sizes

5.5-inch iPhone 180x180 pixels (@3x)

4.7-inch and 4.0-inch iPhone 120x120 pixels (@2x)

7.9-inch and 9.7-inch iPad 152x152 pixels (@2x)

12.9-inch iPad 167x167 pixels (@2x)

We have prepared an icon image file (size 120x120) for the Quiz application. You can download
this icon (along with resources for other chapters) from www.bignerdranch.com/solutions/
iOSProgramming6ed.zip. Unzip iOSProgramming6ed.zip and find the Quiz-120.png file in the
0-Resources/Project App Icons directory of the unzipped folder.

You are going to add this icon to your application bundle as a resource. In general, there are two kinds
of files in an application: code and resources. Code (like ViewController.swift) is used to create
the application itself. Resources are things like images and sounds that are used by the application at
runtime.

http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip
http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip

Chapter 1 A Simple iOS Application

26

In the project navigator, find Assets.xcassets. Select this file to open it and then select AppIcon from
the resource list on the lefthand side (Figure 1.27).

Figure 1.27 Showing the Asset Catalog

This panel is the Asset Catalog, where you can manage all of the images that your application will
need.

Application Icons

27

Drag the Quiz-120.png file from Finder onto the 2x slot of the iPhone App section (Figure 1.28). This
will copy the file into your project’s directory on the filesystem and add a reference to that file in the
Asset Catalog. (You can Control-click on a file in the Asset Catalog and select the option to Show in
Finder to confirm this.)

Figure 1.28 Adding the app icon to the Asset Catalog

Build and run the application again. Switch to the simulator’s Home screen either by clicking
Hardware → Home, as you did before, or by using the keyboard shortcut Command-Shift-H. You
should see the new icon.

(If you do not see the icon, delete the application and then build and run again to redeploy it. To do
this, the easiest option is to reset the simulator by clicking Simulator → Reset Content and Settings....
This will remove all applications and reset the simulator to its default settings. You should see the app
icon the next time you run the application.)

Chapter 1 A Simple iOS Application

28

Launch Screen
Another item you should set for the project is the launch image, which appears while an application
is loading. The launch image has a specific role in iOS: It conveys to the user that the application
is indeed launching and depicts the UI that the user will interact with once the application loads.
Therefore, a good launch image is a content-less screenshot of the application. For example, the Clock
application’s launch image shows the four tabs along the bottom, all in the unselected state. Once the
application loads, the correct tab is selected and the content becomes visible. (Keep in mind that the
launch image is replaced after the application has launched; it does not become the background image
of the application.)

An easy way to accomplish this is to allow Xcode to generate the possible launch screen images for
you using a launch screen file.

Open the project settings by clicking on the top-level Quiz in the project navigator. Under App Icons
and Launch Images, choose Main.storyboard from the Launch Screen File dropdown (Figure 1.29).
Launch images will now be generated from Main.storyboard.

Figure 1.29 Setting the launch screen file

It is difficult to see the results of this change, because the launch image is typically shown for only a
short time. However, it is a good practice to set the launch image even though its role is so brief.

Congratulations! You have written your first application and even added some details to make it
polished. You will return to Quiz later in the book. The next chapter covers some basics of Swift to
prepare you for more coding.

29

2
The Swift Language

Swift is a new language that Apple introduced in 2014. It replaces Objective-C as the recommended
development language for iOS and Mac. In this chapter, you are going to focus on the basics of Swift.
You will not learn everything, but you will learn enough to get started. Then, as you continue through
the book, you will learn more Swift while you learn iOS development.

Swift maintains the expressiveness of Objective-C while introducing a syntax that is safer, succinct,
and readable. It emphasizes type safety and adds advanced features such as optionals, generics, and
sophisticated structures and enumerations. Most importantly, Swift allows the use of these new features
while relying on the same tested, elegant iOS frameworks that developers have built upon for years.

If you know Objective-C, then the challenge is recasting what you know. It may seem awkward at first,
but we have come to love Swift at Big Nerd Ranch and believe you will, too.

If you do not think you will be comfortable picking up Swift at the same time as iOS development,
you may want to start with Swift Programming: The Big Nerd Ranch Guide or Apple’s Swift tutorials,
which you can find at developer.apple.com/swift. But if you have some programming experience
and are willing to learn “on the job,” you can start your Swift education here and now.

http://developer.apple.com/swift

Chapter 2 The Swift Language

30

Types in Swift
Swift types can be arranged into three basic groups: structures, classes, and enumerations (Figure 2.1).
All three can have:

• properties – values associated with a type

• initializers – code that initializes an instance of a type

• instance methods – functions specific to a type that can be called on an instance of that type

• class or static methods – functions specific to a type that can be called on the type itself

Figure 2.1 Swift building blocks

Swift’s structures (or “structs”) and enumerations (or “enums”) are significantly more powerful than in
most languages. In addition to supporting properties, initializers, and methods, they can also conform
to protocols and can be extended.

Swift’s implementation of typically “primitive” types such as numbers and Boolean values may
surprise you: They are all structures. In fact, all of these Swift types are structures:

Numbers: Int, Float, Double

Boolean: Bool

Text: String, Character

Collections: Array<Element>, Dictionary<Key:Hashable,Value>, Set<Element:Hashable>

This means that standard types have properties, initializers, and methods of their own. They can also
conform to protocols and be extended.

Finally, a key feature of Swift is optionals. An optional allows you to store either a value of a particular
type or no value at all. You will learn more about optionals and their role in Swift later in this chapter.

