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Preface

The explosion in the number of mobile devices in all parts of the word has led to an 
increase in both the number and complexity of mobile apps. What was once considered 
a platform for only simplistic applications now contains countless apps with considerable 
functionality. Because a mobile device is capable of receiving large amounts of data from 
multiple data sources, there is an increasing need to store and recall that data efficiently.

In traditional software systems, large sets of data are frequently stored in a database that 
can be optimized to both store the data as well as recall the data on demand. Android 
provides this same functionality and includes a database system, SQLite. SQLite provides 
enough power to support today’s modern apps and also can perform well in the resource-
constrained environment of most mobile devices. This book provides details on how 
to use the embedded Android database system. Additionally, the book contains advice 
inspired by problems encountered when writing “real-world” Android apps.

Who Should Read This Book
This book is written for developers who have at least some experience with writing 
Android apps. Specifically, an understanding of basic Android components (activities, 
fragments, intents, and the application manifest) is assumed, and familiarity with the 
Android threading model is helpful.

At least some knowledge of relational database systems is also helpful but is not 
necessarily a prerequisite for understanding the topics in this book.

How This Book Is Organized
This book begins with a discussion of the theory behind relational databases as well as 
some history of the relational model and how it came into existence. Next, the discussion 
moves to the Structured Query Language (SQL) and how to use SQL to build a database 
as well as manipulate and read a database. The discussion of SQL provides some details on 
Android specifics but generally discusses non-Android-specific SQL.

From there, the book moves on to provide information on SQLite and how it relates 
to Android. The book also covers the Android APIs that can be used to interact with a 
database as well as some best practices for database use.

With the basics of database, SQL, and SQLite covered, the book then moves into 
solving some of the problems app developers often face while using a database in Android. 
Topics such as threading, accessing remote data, and displaying data to the user are covered. 
Additionally, the book presents an example database access layer based on a content provider.



xvi	 Preface

Following is an overview of each of the chapters:

■■ Chapter 1, “Relational Databases,” provides an introduction to the relational 
database model as well as some information on why the relational model is more 
popular than older database models. 

■■ Chapter 2, “An Introduction to SQL,” provides details on SQL as it relates to 
databases in general. This chapter discusses the SQL language features for creating 
database structure as well as the features used to manipulate data in a database.

■■ Chapter 3, “An Introduction to SQLite,” contains details of the SQLite database 
system, including how SQLite differs from other database systems.

■■ Chapter 4, “SQLite in Android,” discusses the Android-specific SQLite details such 
as where a database resides for an app. It also discusses accessing a database from 
outside an app, which can be important for debugging.

■■ Chapter 5, “Working with Databases in Android,” presents the Android API for 
working with databases and explains how to get data from an app to a database and 
back again.

■■ Chapter 6, “Content Providers,” discusses the details around using a content 
provider as a data access mechanism in Android as well as some thoughts on when 
to use one.

■■ Chapter 7, “Databases and the UI,” explains how to get data from the local database 
and display it to the user, taking into account some of the threading concerns that 
exist on Android.

■■ Chapter 8, “Sharing Data with Intents,” discusses ways, other than using content 
providers, that data can be shared between apps, specifically by using intents.

■■ Chapter 9, “Communicating with Web APIs,” discusses some of the methods and 
tools used to achieve two-way communication between an app and a remote 
Web API.

■■ Chapter 10, “Data Binding,” discusses the data binding API and how it can be used 
to display data in the UI. In addition to providing an overview of the API, this 
chapter provides an example of how to view data from a database.

Example Code
This book includes a lot of source code examples, including an example app that is 
discussed in later chapters of the book. Readers are encouraged to download the example 
source code and manipulate it to gain a deeper understanding of the information 
presented in the text.

The example app is a Gradle-based Android project that should build and run. It was 
built with the latest libraries and build tools that were available at the time of this writing.
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The source code for the example can be found on GitHub at https://github.com/
android-database-best-practices/device-database. It is made available under the Apache 2 
open-source license and can be used according to that license.

Conventions Used in This Book
The following typographical conventions are used in this book:

■■ Constant width is used for program listings, as well as within paragraphs to refer 
to program elements such as variable and function names, databases, data types, 
environment variables, statements, and keywords.

■■ Constant width bold is used to highlight sections of code.

Note
A Note signifies a tip, suggestion, or general note.

Register your copy of AndroidTM Database Best Practices at informit.com for convenient 
access to downloads, updates, and corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the 
product ISBN (9780134437996) and click Submit. Once the process is complete, you 
will find any available bonus content under “Registered Products.”

https://github.com/android-database-best-practices/device-database
https://github.com/android-database-best-practices/device-database
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1
Relational Databases

The relational database model is one of the more popular models for databases today.  
Android comes with a built-in database called SQLite that is designed around the 
relational database model. This chapter covers some of the basic concepts of a relational 
database. It starts with a brief history of databases, then moves to a discussion of the 
relational model. Finally, it covers the evolution of database languages. This chapter is 
meant for the reader who is largely unfamiliar with the concept of a relational database. 
Readers who feel comfortable with the concepts of a relational database can safely move 
on to chapters that discuss the unique features of the SQLite database system that comes 
bundled with Android.

History of Databases
Like other aspects of the world of computing, modern databases evolved over time. While 
we tend to talk about NoSQL and relational databases nowadays, it is sometimes impor-
tant to know “how we got here” to understand why things work the way they do. This 
section of the chapter presents a little history of how the database evolved into what it is 
today.

 

Note
This section of the chapter presents information that may be of interest to some but seem 
superfluous to others. Feel free to move on to the next section to get into the details of how 
databases work on Android.

The problem of storing, managing, and recalling data is not a new one. Even decades 
before computers, people were storing, managing, and recalling data. It is easy to think 
of a paper-based system where important data was manually written, then organized and 
stored in a filing cabinet until it would need to be recalled. I need only to look in the 
corner of my basement to be reminded of the days when this was a common paradigm for 
data storage.

The paper-based approach has obvious limitations, the main one being its abil-
ity to scale as the amount of data grows. As the amount of data increases, so does the 
amount of time it takes to both manage the data store and recall data from the data store. 
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A paper-based approach also implies a highly manual process for data storage and retrieval, 
making it slow and error prone as well taking up a lot of space.

Early attempts to offload some of this process onto machines followed a very simi-
lar approach. The difference was that instead of using hard copies of the data written 
on paper, data was stored and organized electronically. In a typical electronic-file-based 
system, a single file would contain multiple entries of data that was somehow related to 
other data in the file.

While this approach did offer benefits over older approaches, it still had many problems. 
Typically, these file stores were not centralized. This led to large amounts of redundant 
data, which made processing slow and took large amounts of storage space. Additionally, 
problems with incompatible file formats were also frequent because there was rarely a 
common system in charge of controlling the data. In addition, there were often difficulties 
in changing the structure of the data as the usage of the data evolved over time.

Databases were an attempt to address the problems of decentralized file stores. Database 
technology is relatively new when compared to other technological fields, or even other 
areas of computer science. This is primarily because the computer itself had to evolve to a 
point where databases provided enough utility to justify their expense. It wasn’t until the 
early to mid-1960s that computers became cheap enough to be owned by private entities 
as well as possess enough power and storage capacity to allow the concept of a database to 
be useful.

The first databases used models that are different from the relational model discussed in 
this chapter. In the early days, the two main models in widespread use were the network 
model and the hierarchical model.

Hierarchical Model
In the hierarchical model data is organized into a tree structure. The model maintains a 
one-to-many relationship between child and parent records with each child node hav-
ing no more than one parent. However, each parent node may have multiple children. 
An initial implementation of the hierarchical model was developed jointly by IBM and 
Rockwell in the 1960s for the Apollo space program. This implementation was named 
the IBM Information Management System (IMS). In addition to providing a database, 
IMS could be used to generate reports. The combination of these two features made IMS 
one of the major software applications of its time and helped establish IBM as a major 
player in the computer world. IMS is still a widely used hierarchical database system on 
mainframes.

Network Model
The network model was another popular early database model. Unlike the hierarchical 
model, the network model formed a graph structure that removed the limitation of the 
one-to-many parent/child node relationship. This structure allowed the model to repre-
sent more complex data structures and relations. In addition, the network model was stan-
dardized by the Conference on Data Systems Language (CODASYL) in the late 1960s.
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The Introduction of the Relational Model
The relational database model was introduced by Edgar Codd in 1970 in his paper 
“A Relational Model of Data for Large Shared Data Banks.” The paper outlined some of 
the problems of the models of the time as well as introduced a new model for efficiently 
storing data. Codd went into details about how a relational model solved some of the 
shortcomings of the current models and discussed some areas where a relational model 
needed to be enhanced.

This was viewed as the introduction to relational databases and caused the idea to 
be improved and evolve into the relational database systems that we use today. While 
very few, if any, modern database systems strictly follow the guidelines that Codd 
outlined in his paper, they do implement most of his ideas and realize many of the 
benefits.

The Relational Model
The relational model makes use of the mathematical concept of a relation to add structure 
to data that is stored in a database. The model has a foundation based in set theory and 
first-order predicate logic. The cornerstone of the relational model is the relation.

Relation
In the relational model, conceptual data (the modeling of real-world data and its 
relationships) is mapped into relations. A relation can be thought of as a table with rows 
and columns. The columns of a relation represent its attributes, and the rows represent 
an entry in the table or a tuple. In addition to having attributes and tuples, the relational 
model mandates that the relation have a formal name. 

Let’s consider an example of a relation that can be used to track Android 
OS versions. In the relation, we want to model a subset of data from the Android dash-
board (https://developer.android.com/about/dashboards/index.html). We will name this 
relation os.

The relation depicted in Table 1.1 has three attributes—version, codename, and api—
representing the properties of the relation. In addition, the relation has four tuples tracking 
Android OS versions 5.1, 5.0, 4.4, and 4.3. Each tuple can be thought of as an entry in the 
relation that has properties defined by the relation attributes.

Table 1.1  The os Relation

version codename api

5.1 Lollipop 22

5.0 Lollipop 21

4.4 KitKat 19

4.3 Jelly Bean 18

https://developer.android.com/about/dashboards/index.html
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Attribute
The attributes of a relation provide the data points for each tuple. In order to add struc-
ture to a relation, each attribute is assigned a domain that defines what data values can 
be represented by the attribute. The domain can place restrictions on the type of data 
that can be represented by an attribute as well as the range of values that an attribute 
can have. In the previous example, the api attribute is limited to the domain of integers 
and is said to be of type integer. Additionally, the domain of the api attribute can be 
further reduced to the set of positive integers (an upper bound can also be defined if the 
need arises).

The concept of a domain for a relation is important to the relational model as it allows 
the relation to establish constraints on attribute data. This becomes useful in maintaining 
data integrity and ensuring that the attributes of a relation are not misused. In the relation 
depicted in Table 1.1, a string api value could make certain operations difficult or allow 
operations to produce unpredictable results. Imagine adding a tuple to the os relation that 
contains a nonnumeric value for the api attribute, then asking the database to return all 
os versions with an api value that is greater than 19. The results would be unintuitive and 
possibly misleading.

The number of attributes in a relation is referred to as its degree. The relation in 
Table 1.1 has a degree of three because it has three attributes. A relation with a degree 
of one is called a unary relation. Similarly, a relation with a degree of two is binary, and 
a relation with a degree of three is called ternary. A relation with a degree higher than 
three is referred to as an n-ary relation.

Tuples
Tuples are represented by rows in the tabular representation of a relation. They represent 
the data of the relation containing values for the relation’s attributes.

The number of tuples in a relation is called its cardinality. The relation in Table 1.1 
has a cardinality of four since it contains four tuples.

An important point regarding a relation’s cardinality and its degree is the level of 
volatility. A relation’s degree helps define its structure and will change infrequently. 
A change in the degree is a change in the relation itself.

In contrast, a relation’s cardinality will change with high frequency. Every time a tuple 
is added or removed from a relation, the relation’s cardinality changes. In a large-scale 
database, the cardinality could change several times per second, but the degree may not 
change for days at a time, or indeed ever.

Intension/Extension
A relation’s attributes and the attributes’ domains and any other constraints on attribute 
values define a relation’s intension. A relation’s tuples define its extension. Since inten-
sion and extension are related to cardinality and degree respectively, it is easy to see that a 
relation’s intension will also remain fairly static whereas it extension is dynamic, changing 
as tuples are added, deleted, and modified. A relation’s degree is a property of its intension, 
and its cardinality is a property of its extension.
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Schema
The structure of a relation is defined by its relational schema. A schema is a list of 
attributes along with the specification of the domain for those attributes. While the tabular 
form of a relation (Table 1.1) allows us to deduce the schema of a relation, a schema can 
also be specified in text. Here is the text representation of the schema from Table 1.1:

os(version, codename, api)

Notice the name of the relation along with the list of the attributes. In addition, the 
primary key is sometimes indicated with bold column names. Primary keys are discussed 
later in the chapter.

Properties of a Relation
Each relation in the relational model must follow a set of rules. These rules allow the 
relation to effectively represent real-world data models as well as address some of the 
limitations of older database systems. Relations that adhere to the following set of rules 
conform to a property known as the first normal form:

■■ Unique name: Each relation must have a name that uniquely identifies it. This 
allows the relation to be identified in the system.

■■ Uniquely named attributes: In addition to a uniquely named relation, each 
attribute in a relation must have a unique name. Much like the relation name, the 
attribute’s unique name allows it to be identified.

■■ Single-valued attributes: Each attribute in a relation can have at most one value 
associated with it per tuple. In the example in Table 1.1, each api level attribute has 
only a single integer value. Including a tuple that has multiple values (19 and 20) is 
considered bad form.

■■ Domain-limited attribute values: As discussed previously, the value of each 
attribute for a tuple must conform to the attribute’s domain. The domain for an 
attribute defines the attribute’s “legal” values.

■■ Unique tuples: There should be no duplicate tuples in the relation. While there 
may be parts of a tuple that have common values for a subset of the relation’s 
attributes, no two tuples should be identical.

■■ Insignificant attribute ordering: The order of the attributes in a relation has no 
effect on the representation of the relation of the tuples defined in the relation. This 
is because each attribute has a unique name that is used to refer to that attribute.

For example, in Table 1.1, if the column ordering of the codename and api 
attributes were switched, the relation would remain the same. This is because the 
attributes are referred to by their unique names rather than their column ordering.

■■ Insignificant tuple ordering: The order of the tuples in a relation has no effect 
on the relation. While tuples can be added and removed, their ordering has no 
significance for the relation.
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Relationships
Most conceptual data models require a relational model that contains multiple relations. 
Fortunately, the relational model allows relationships between multiple relations to be 
defined to support this. In order to define relationships between two relations, keys must 
be defined for them. A key is a set of attributes that uniquely identify a tuple in a relation. 
A key is frequently used to relate one relation to another and allows for complex data 
models to be represented as a relational model.

■■ Superkey: A superkey is a set of attributes that uniquely identify a tuple in a 
relation. There are no limits placed on the number of attributes used to form a 
superkey. This means that the set of all attributes should define a superkey that is 
used for all tuples.

■■ Candidate key: A candidate key is the smallest set of attributes that uniquely 
identify a tuple in a relation. A candidate key is like a superkey with a constraint 
placed on the maximum number of attributes. No subset of attributes from a 
candidate key should uniquely identify a tuple. There may be multiple candidate 
keys in a relation.

■■ Primary key: The primary key is a candidate key that is chosen to be the primary 
key. It holds all the properties of a candidate key but has the added distinction of 
being the primary key. While there may be multiple candidate keys in a relation that 
all uniquely identify a single row, there can be only one primary key.

■■ Foreign key: A foreign key is a set of attributes in a relation that map to a 
candidate key in another relation. 

The foreign key is what allows two relations to be related to one another. Such 
relationships can be any of three different types:

■■ One-to-one relationship: The one-to-one relationship maps a single row in table 
A to a single row in table B. Additionally, the row in table B only maps back to the 
single row in table A (see Figure 1.1).

Figure 1.1  One-to-one relationship


