

Android™
Database Best

Practices

About the Android
Deep Dive Series

Zigurd Mednieks, Series Editor

The Android Deep Dive Series is for intermediate and expert developers who use
Android Studio and Java, but do not have comprehensive knowledge of Android system-
level programming or deep knowledge of Android APIs. Readers of this series want to
bolster their knowledge of fundamentally important topics.

Each book in the series stands alone and provides expertise, idioms, frameworks, and
engineering approaches. They provide in-depth information, correct patterns and idioms,
and ways of avoiding bugs and other problems. The books also take advantage of new
Android releases, and avoid deprecated parts of the APIs.

About the Series Editor
Zigurd Mednieks is a consultant to leading OEMs, enterprises, and entrepreneurial
ventures creating Android-based systems and software. Previously he was chief archi-
tect at D2 Technologies, a voice-over-IP (VoIP) technology provider, and a founder of
OpenMobile, an Android-compatibility technology company. At D2 he led engineering
and product definition work for products that blended communication and social media
in purpose-built embedded systems and on the Android platform. He is lead author of
Programming Android and Enterprise Android.

Android™
Database Best

Practices

Adam Stroud

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016941977

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

The following are registered trademarks of Google: Android™, Google Play™.

Google and the Google logo are registered trademarks of Google Inc., used with
permission.

The following are trademarks of HWACI: SQLite, sqlite.org, HWACI.

Gradle is a trademark of Gradle, Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Square is a registered trademark of Square, Inc.

Facebook is a trademark of Facebook, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

MySQL trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The following are registered trademarks of IBM: IBM, IMS, Information Management
System.

PostgreSQL is copyright © 1996-8 by the PostgreSQL Global Development Group, and is
distributed under the terms of the Berkeley license.

Some images in the book originated from the sqlite.org and used with permission.

Twitter is a trademark of Twitter, Inc.

ISBN-13: 978-0-13-443799-6
ISBN-10: 0-13-443799-3

Text printed in the United States on recycled paper at RR Donnelley
in Crawfordsville, Indiana.
First printing, July 2016

Publisher
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Full-Service Production
Manager
Julie B. Nahil

Project Editor
codeMantra

Copy Editor
Barbara Wood

Indexer
Cheryl Lenser

Proofreader
codeMantra

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

http://www.pearsoned.com/permissions/

v

To my wife, Sabrina, and my daughters, Elizabeth and Abigail.
You support, inspire, and motivate me in everything you do.

v

This page intentionally left blank

Contents in Brief
Preface xv

Acknowledgments xix

About the Author xxi

	 1	 Relational Databases 1

	 2	 An Introduction to SQL 17

	 3	 An Introduction to SQLite 39

	 4	 SQLite in Android 47

	 5	 Working with Databases in Android 79

	 6	 Content Providers 101

	 7	 Databases and the UI 137

	 8	 Sharing Data with Intents 163

	 9	 Communicating with Web APIs 177

	 10	 Data Binding 231

Index 249

This page intentionally left blank

Contents
Preface xv

Acknowledgments xix

About the Author xxi

	 1	 Relational Databases  1
History of Databases  1

Hierarchical Model  2

Network Model  2

The Introduction of the Relational Model  3

The Relational Model  3

Relation  3

Properties of a Relation  5

Relationships  6

Relational Languages  9

Relational Algebra  9

Relational Calculus  13

Database Languages  14

ALPHA  14

QUEL  14

SEQUEL  14

Summary  15

	 2	 An Introduction to SQL  17
Data Definition Language  17

Tables  18

Indexes  20

Views  23

Triggers  24

Data Manipulation Language  28

INSERT  28

UPDATE  30

DELETE  31

Queries  32

ORDER BY  32

Joins  34

Summary  37

x	 Contents

	 3	 An Introduction to SQLite  39
SQLite Characteristics  39

SQLite Features  39

Foreign Key Support  40

Full Text Search  40

Atomic Transactions  41

Multithread Support  42

What SQLite Does Not Support  42

Limited JOIN Support  42

Read-Only Views  42

Limited ALTER TABLE Support  43

SQLite Data Types  43

Storage Classes  43

Type Affinity  44

Summary  44

	 4	 SQLite in Android  47
Data Persistence in Phones  47

Android Database API  47

SQLiteOpenHelper  47

SQLiteDatabase  57

Strategies for Upgrading Databases  58

Rebuilding the Database  58

Manipulating the Database  59

Copying and Dropping Tables  59

Database Access and the Main Thread  60

Exploring Databases in Android  61

Accessing a Database with adb  61

Using Third-Party Tools to Access Android
Databases  73

Summary  77

	 5	 Working with Databases in Android  79
Manipulating Data in Android  79

Inserting Rows into a Table  80

Updating Rows in a Table  83

Replacing Rows in a Table  85

Deleting Rows from a Table  86

	 Contents	 xi

Transactions  87

Using a Transaction  87

Transactions and Performance  88

Running Queries  89

Query Convenience Methods  89

Raw Query Methods  91

Cursors  91

Reading Cursor Data  91

Managing the Cursor  94

CursorLoader  94

Creating a CursorLoader  94

Starting a CursorLoader  97

Restarting a CursorLoader  98

Summary  99

	 6	 Content Providers  101
REST-Like APIs in Android  101

Content URIs  102

Exposing Data with a Content Provider  102

Implementing a Content Provider  102

Content Resolver  108

Exposing a Remote Content Provider to
External Apps  108

Provider-Level Permission  109

Individual Read/Write Permissions  109

URI Path Permissions  109

Content Provider Permissions  110

Content Provider Contract  112

Allowing Access from an External App  114

Implementing a Content Provider  115

Extending android.content.ContentProvider  115

insert()  119

delete()  120

update()  122

query()  124

getType()  130

xii	 Contents

When Should a Content Provider Be Used?  132

Content Provider Weaknesses  132

Content Provider Strengths  134

Summary  135

	 7	 Databases and the UI  137
Getting Data from the Database to the UI  137

Using a Cursor Loader to Handle Threading  137

Binding Cursor Data to a UI  138

Cursors as Observers  143

registerContentObserver(ContentObserver)  143

registerDataSetObserver(DataSetObserver)  144

unregisterContentObserver
(ContentObserver)  144

unregisterDataSetObserver
(DataSetObserver)  144

setNotificationUri(ContentResolver,
Uri uri)  145

Accessing a Content Provider from an Activity  145

Activity Layout  145

Activity Class Definition  147

Creating the Cursor Loader  148

Handling Returned Data  149

Reacting to Changes in Data  156

Summary  161

	 8	 Sharing Data with Intents  163
Sending Intents  163

Explicit Intents  163

Implicit Intents  164

Starting a Target Activity  164

Receiving Implicit Intents  166

Building an Intent  167

Actions  168

Extras  168

Extra Data Types  169

What Not to Add to an Intent  172

ShareActionProvider  173

Share Action Menu  174

Summary  175

	 Contents	 xiii

	 9	 Communicating with Web APIs  177
REST and Web Services  177

REST Overview  177

REST-like Web API Structure  178

Accessing Remote Web APIs  179

Accessing Web Services with Standard
Android APIs  179

Accessing Web Services with Retrofit  189

Accessing Web Services with Volley  197

Persisting Data to Enhance User Experience  206

Data Transfer and Battery Consumption  206

Data Transfer and User Experience  207

Storing Web Service Response Data  207

Android SyncAdapter Framework  207

AccountAuthenticator  208

SyncAdapter  212

Manually Synchronizing Remote Data  218

A Short Introduction to RxJava  218

Adding RxJava Support to Retrofit  219

Using RxJava to Perform the Sync  222

Summary  229

	 10	 Data Binding  231
Adding Data Binding to an Android Project  231

Data Binding Layouts  232

Binding an Activity to a Layout  234

Using a Binding to Update a View  235

Reacting to Data Changes  238

Using Data Binding to Replace Boilerplate Code  242

Data Binding Expression Language  246

Summary  247

Index 249

This page intentionally left blank

Preface

The explosion in the number of mobile devices in all parts of the word has led to an
increase in both the number and complexity of mobile apps. What was once considered
a platform for only simplistic applications now contains countless apps with considerable
functionality. Because a mobile device is capable of receiving large amounts of data from
multiple data sources, there is an increasing need to store and recall that data efficiently.

In traditional software systems, large sets of data are frequently stored in a database that
can be optimized to both store the data as well as recall the data on demand. Android
provides this same functionality and includes a database system, SQLite. SQLite provides
enough power to support today’s modern apps and also can perform well in the resource-
constrained environment of most mobile devices. This book provides details on how
to use the embedded Android database system. Additionally, the book contains advice
inspired by problems encountered when writing “real-world” Android apps.

Who Should Read This Book
This book is written for developers who have at least some experience with writing
Android apps. Specifically, an understanding of basic Android components (activities,
fragments, intents, and the application manifest) is assumed, and familiarity with the
Android threading model is helpful.

At least some knowledge of relational database systems is also helpful but is not
necessarily a prerequisite for understanding the topics in this book.

How This Book Is Organized
This book begins with a discussion of the theory behind relational databases as well as
some history of the relational model and how it came into existence. Next, the discussion
moves to the Structured Query Language (SQL) and how to use SQL to build a database
as well as manipulate and read a database. The discussion of SQL provides some details on
Android specifics but generally discusses non-Android-specific SQL.

From there, the book moves on to provide information on SQLite and how it relates
to Android. The book also covers the Android APIs that can be used to interact with a
database as well as some best practices for database use.

With the basics of database, SQL, and SQLite covered, the book then moves into
solving some of the problems app developers often face while using a database in Android.
Topics such as threading, accessing remote data, and displaying data to the user are covered.
Additionally, the book presents an example database access layer based on a content provider.

xvi	 Preface

Following is an overview of each of the chapters:

■■ Chapter 1, “Relational Databases,” provides an introduction to the relational
database model as well as some information on why the relational model is more
popular than older database models.

■■ Chapter 2, “An Introduction to SQL,” provides details on SQL as it relates to
databases in general. This chapter discusses the SQL language features for creating
database structure as well as the features used to manipulate data in a database.

■■ Chapter 3, “An Introduction to SQLite,” contains details of the SQLite database
system, including how SQLite differs from other database systems.

■■ Chapter 4, “SQLite in Android,” discusses the Android-specific SQLite details such
as where a database resides for an app. It also discusses accessing a database from
outside an app, which can be important for debugging.

■■ Chapter 5, “Working with Databases in Android,” presents the Android API for
working with databases and explains how to get data from an app to a database and
back again.

■■ Chapter 6, “Content Providers,” discusses the details around using a content
provider as a data access mechanism in Android as well as some thoughts on when
to use one.

■■ Chapter 7, “Databases and the UI,” explains how to get data from the local database
and display it to the user, taking into account some of the threading concerns that
exist on Android.

■■ Chapter 8, “Sharing Data with Intents,” discusses ways, other than using content
providers, that data can be shared between apps, specifically by using intents.

■■ Chapter 9, “Communicating with Web APIs,” discusses some of the methods and
tools used to achieve two-way communication between an app and a remote
Web API.

■■ Chapter 10, “Data Binding,” discusses the data binding API and how it can be used
to display data in the UI. In addition to providing an overview of the API, this
chapter provides an example of how to view data from a database.

Example Code
This book includes a lot of source code examples, including an example app that is
discussed in later chapters of the book. Readers are encouraged to download the example
source code and manipulate it to gain a deeper understanding of the information
presented in the text.

The example app is a Gradle-based Android project that should build and run. It was
built with the latest libraries and build tools that were available at the time of this writing.

	 Conventions Used in This Book	 xvii

The source code for the example can be found on GitHub at https://github.com/
android-database-best-practices/device-database. It is made available under the Apache 2
open-source license and can be used according to that license.

Conventions Used in This Book
The following typographical conventions are used in this book:

■■ Constant width is used for program listings, as well as within paragraphs to refer
to program elements such as variable and function names, databases, data types,
environment variables, statements, and keywords.

■■ Constant width bold is used to highlight sections of code.

Note
A Note signifies a tip, suggestion, or general note.

Register your copy of AndroidTM Database Best Practices at informit.com for convenient
access to downloads, updates, and corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780134437996) and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

https://github.com/android-database-best-practices/device-database
https://github.com/android-database-best-practices/device-database

This page intentionally left blank

Acknowledgments

I have often believed that software development is a team sport. Well, I am now convinced
that authoring is also a team sport. I would not have made it through this experience
without the support, guidance, and at times patience of the team. I would like to thank
executive editor Laura Lewin and editorial assistant Olivia Basegio for their countless
hours and limitless e-mails to help keep the project on schedule.

I would also like to thank my development editor, Michael Thurston, and technical
editors, Maija Mednieks, Zigurd Mednieks, and David Whittaker, for helping me
transform my unfinished, random, and meandering thoughts into something directed and
cohesive. The support of the team is what truly made this a rewarding experience, and it
would not have been possible without all of you.

Last, I would like to thank my beautiful wife and wonderful daughters. Your patience
and support have meant more than I can express.

This page intentionally left blank

About the Author

Adam Stroud is an Android developer who has been developing apps for Android since
2010. He has been an early employee at multiple start-ups, including Runkeeper, Mustbin,
and Chef Nightly, and has led the Android development from the ground up. He has
a strong passion for Android and open source and seems to be attracted to all things
Android.

In addition to writing code, he has written other books on Android development and
enjoys giving talks on a wide range of topics, including Android gaining root access on
Android devices. He loves being a part of the Android community and getting together
with other Android enthusiasts to “geek out.”	

Adam is currently the technical cofounder and lead Android developer at a new
start-up where he oversees the development of the Android app.

This page intentionally left blank

1
Relational Databases

The relational database model is one of the more popular models for databases today.
Android comes with a built-in database called SQLite that is designed around the
relational database model. This chapter covers some of the basic concepts of a relational
database. It starts with a brief history of databases, then moves to a discussion of the
relational model. Finally, it covers the evolution of database languages. This chapter is
meant for the reader who is largely unfamiliar with the concept of a relational database.
Readers who feel comfortable with the concepts of a relational database can safely move
on to chapters that discuss the unique features of the SQLite database system that comes
bundled with Android.

History of Databases
Like other aspects of the world of computing, modern databases evolved over time. While
we tend to talk about NoSQL and relational databases nowadays, it is sometimes impor-
tant to know “how we got here” to understand why things work the way they do. This
section of the chapter presents a little history of how the database evolved into what it is
today.

Note
This section of the chapter presents information that may be of interest to some but seem
superfluous to others. Feel free to move on to the next section to get into the details of how
databases work on Android.

The problem of storing, managing, and recalling data is not a new one. Even decades
before computers, people were storing, managing, and recalling data. It is easy to think
of a paper-based system where important data was manually written, then organized and
stored in a filing cabinet until it would need to be recalled. I need only to look in the
corner of my basement to be reminded of the days when this was a common paradigm for
data storage.

The paper-based approach has obvious limitations, the main one being its abil-
ity to scale as the amount of data grows. As the amount of data increases, so does the
amount of time it takes to both manage the data store and recall data from the data store.

2	 Chapter 1 Relational Databases

A paper-based approach also implies a highly manual process for data storage and retrieval,
making it slow and error prone as well taking up a lot of space.

Early attempts to offload some of this process onto machines followed a very simi-
lar approach. The difference was that instead of using hard copies of the data written
on paper, data was stored and organized electronically. In a typical electronic-file-based
system, a single file would contain multiple entries of data that was somehow related to
other data in the file.

While this approach did offer benefits over older approaches, it still had many problems.
Typically, these file stores were not centralized. This led to large amounts of redundant
data, which made processing slow and took large amounts of storage space. Additionally,
problems with incompatible file formats were also frequent because there was rarely a
common system in charge of controlling the data. In addition, there were often difficulties
in changing the structure of the data as the usage of the data evolved over time.

Databases were an attempt to address the problems of decentralized file stores. Database
technology is relatively new when compared to other technological fields, or even other
areas of computer science. This is primarily because the computer itself had to evolve to a
point where databases provided enough utility to justify their expense. It wasn’t until the
early to mid-1960s that computers became cheap enough to be owned by private entities
as well as possess enough power and storage capacity to allow the concept of a database to
be useful.

The first databases used models that are different from the relational model discussed in
this chapter. In the early days, the two main models in widespread use were the network
model and the hierarchical model.

Hierarchical Model
In the hierarchical model data is organized into a tree structure. The model maintains a
one-to-many relationship between child and parent records with each child node hav-
ing no more than one parent. However, each parent node may have multiple children.
An initial implementation of the hierarchical model was developed jointly by IBM and
Rockwell in the 1960s for the Apollo space program. This implementation was named
the IBM Information Management System (IMS). In addition to providing a database,
IMS could be used to generate reports. The combination of these two features made IMS
one of the major software applications of its time and helped establish IBM as a major
player in the computer world. IMS is still a widely used hierarchical database system on
mainframes.

Network Model
The network model was another popular early database model. Unlike the hierarchical
model, the network model formed a graph structure that removed the limitation of the
one-to-many parent/child node relationship. This structure allowed the model to repre-
sent more complex data structures and relations. In addition, the network model was stan-
dardized by the Conference on Data Systems Language (CODASYL) in the late 1960s.

	 The Relational Model	 3

The Introduction of the Relational Model
The relational database model was introduced by Edgar Codd in 1970 in his paper
“A Relational Model of Data for Large Shared Data Banks.” The paper outlined some of
the problems of the models of the time as well as introduced a new model for efficiently
storing data. Codd went into details about how a relational model solved some of the
shortcomings of the current models and discussed some areas where a relational model
needed to be enhanced.

This was viewed as the introduction to relational databases and caused the idea to
be improved and evolve into the relational database systems that we use today. While
very few, if any, modern database systems strictly follow the guidelines that Codd
outlined in his paper, they do implement most of his ideas and realize many of the
benefits.

The Relational Model
The relational model makes use of the mathematical concept of a relation to add structure
to data that is stored in a database. The model has a foundation based in set theory and
first-order predicate logic. The cornerstone of the relational model is the relation.

Relation
In the relational model, conceptual data (the modeling of real-world data and its
relationships) is mapped into relations. A relation can be thought of as a table with rows
and columns. The columns of a relation represent its attributes, and the rows represent
an entry in the table or a tuple. In addition to having attributes and tuples, the relational
model mandates that the relation have a formal name.

Let’s consider an example of a relation that can be used to track Android
OS versions. In the relation, we want to model a subset of data from the Android dash-
board (https://developer.android.com/about/dashboards/index.html). We will name this
relation os.

The relation depicted in Table 1.1 has three attributes—version, codename, and api—
representing the properties of the relation. In addition, the relation has four tuples tracking
Android OS versions 5.1, 5.0, 4.4, and 4.3. Each tuple can be thought of as an entry in the
relation that has properties defined by the relation attributes.

Table 1.1  The os Relation

version codename api

5.1 Lollipop 22

5.0 Lollipop 21

4.4 KitKat 19

4.3 Jelly Bean 18

https://developer.android.com/about/dashboards/index.html

4	 Chapter 1 Relational Databases

Attribute
The attributes of a relation provide the data points for each tuple. In order to add struc-
ture to a relation, each attribute is assigned a domain that defines what data values can
be represented by the attribute. The domain can place restrictions on the type of data
that can be represented by an attribute as well as the range of values that an attribute
can have. In the previous example, the api attribute is limited to the domain of integers
and is said to be of type integer. Additionally, the domain of the api attribute can be
further reduced to the set of positive integers (an upper bound can also be defined if the
need arises).

The concept of a domain for a relation is important to the relational model as it allows
the relation to establish constraints on attribute data. This becomes useful in maintaining
data integrity and ensuring that the attributes of a relation are not misused. In the relation
depicted in Table 1.1, a string api value could make certain operations difficult or allow
operations to produce unpredictable results. Imagine adding a tuple to the os relation that
contains a nonnumeric value for the api attribute, then asking the database to return all
os versions with an api value that is greater than 19. The results would be unintuitive and
possibly misleading.

The number of attributes in a relation is referred to as its degree. The relation in
Table 1.1 has a degree of three because it has three attributes. A relation with a degree
of one is called a unary relation. Similarly, a relation with a degree of two is binary, and
a relation with a degree of three is called ternary. A relation with a degree higher than
three is referred to as an n-ary relation.

Tuples
Tuples are represented by rows in the tabular representation of a relation. They represent
the data of the relation containing values for the relation’s attributes.

The number of tuples in a relation is called its cardinality. The relation in Table 1.1
has a cardinality of four since it contains four tuples.

An important point regarding a relation’s cardinality and its degree is the level of
volatility. A relation’s degree helps define its structure and will change infrequently.
A change in the degree is a change in the relation itself.

In contrast, a relation’s cardinality will change with high frequency. Every time a tuple
is added or removed from a relation, the relation’s cardinality changes. In a large-scale
database, the cardinality could change several times per second, but the degree may not
change for days at a time, or indeed ever.

Intension/Extension
A relation’s attributes and the attributes’ domains and any other constraints on attribute
values define a relation’s intension. A relation’s tuples define its extension. Since inten-
sion and extension are related to cardinality and degree respectively, it is easy to see that a
relation’s intension will also remain fairly static whereas it extension is dynamic, changing
as tuples are added, deleted, and modified. A relation’s degree is a property of its intension,
and its cardinality is a property of its extension.

	 The Relational Model	 5

Schema
The structure of a relation is defined by its relational schema. A schema is a list of
attributes along with the specification of the domain for those attributes. While the tabular
form of a relation (Table 1.1) allows us to deduce the schema of a relation, a schema can
also be specified in text. Here is the text representation of the schema from Table 1.1:

os(version, codename, api)

Notice the name of the relation along with the list of the attributes. In addition, the
primary key is sometimes indicated with bold column names. Primary keys are discussed
later in the chapter.

Properties of a Relation
Each relation in the relational model must follow a set of rules. These rules allow the
relation to effectively represent real-world data models as well as address some of the
limitations of older database systems. Relations that adhere to the following set of rules
conform to a property known as the first normal form:

■■ Unique name: Each relation must have a name that uniquely identifies it. This
allows the relation to be identified in the system.

■■ Uniquely named attributes: In addition to a uniquely named relation, each
attribute in a relation must have a unique name. Much like the relation name, the
attribute’s unique name allows it to be identified.

■■ Single-valued attributes: Each attribute in a relation can have at most one value
associated with it per tuple. In the example in Table 1.1, each api level attribute has
only a single integer value. Including a tuple that has multiple values (19 and 20) is
considered bad form.

■■ Domain-limited attribute values: As discussed previously, the value of each
attribute for a tuple must conform to the attribute’s domain. The domain for an
attribute defines the attribute’s “legal” values.

■■ Unique tuples: There should be no duplicate tuples in the relation. While there
may be parts of a tuple that have common values for a subset of the relation’s
attributes, no two tuples should be identical.

■■ Insignificant attribute ordering: The order of the attributes in a relation has no
effect on the representation of the relation of the tuples defined in the relation. This
is because each attribute has a unique name that is used to refer to that attribute.

For example, in Table 1.1, if the column ordering of the codename and api
attributes were switched, the relation would remain the same. This is because the
attributes are referred to by their unique names rather than their column ordering.

■■ Insignificant tuple ordering: The order of the tuples in a relation has no effect
on the relation. While tuples can be added and removed, their ordering has no
significance for the relation.

6	 Chapter 1 Relational Databases

Relationships
Most conceptual data models require a relational model that contains multiple relations.
Fortunately, the relational model allows relationships between multiple relations to be
defined to support this. In order to define relationships between two relations, keys must
be defined for them. A key is a set of attributes that uniquely identify a tuple in a relation.
A key is frequently used to relate one relation to another and allows for complex data
models to be represented as a relational model.

■■ Superkey: A superkey is a set of attributes that uniquely identify a tuple in a
relation. There are no limits placed on the number of attributes used to form a
superkey. This means that the set of all attributes should define a superkey that is
used for all tuples.

■■ Candidate key: A candidate key is the smallest set of attributes that uniquely
identify a tuple in a relation. A candidate key is like a superkey with a constraint
placed on the maximum number of attributes. No subset of attributes from a
candidate key should uniquely identify a tuple. There may be multiple candidate
keys in a relation.

■■ Primary key: The primary key is a candidate key that is chosen to be the primary
key. It holds all the properties of a candidate key but has the added distinction of
being the primary key. While there may be multiple candidate keys in a relation that
all uniquely identify a single row, there can be only one primary key.

■■ Foreign key: A foreign key is a set of attributes in a relation that map to a
candidate key in another relation.

The foreign key is what allows two relations to be related to one another. Such
relationships can be any of three different types:

■■ One-to-one relationship: The one-to-one relationship maps a single row in table
A to a single row in table B. Additionally, the row in table B only maps back to the
single row in table A (see Figure 1.1).

Figure 1.1  One-to-one relationship

