

Front-End Web Development: The Big Nerd Ranch Guide
by Chris Aquino and Todd Gandee

Copyright © 2016 Big Nerd Ranch, LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC
200 Arizona Ave NE
Atlanta, GA 30307
(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134432576
ISBN-13 978-0134432571

First edition, first printing, July 2016
Release D.1.1.1

iii

Dedication

To Mom and Dad, for buying us that computer. To Dave and Glenn, for
letting your little brother completely hog it. And to Angela, for giving
me a life away from the screen.

— C.A.

To my mom and dad, thank you for giving me room to find my own
way. To my wife, thank you for loving a nerd.

— T.G.

v

Acknowledgments
As authors, we can take full credit for typing the words and creating the diagrams. (Yay, us!) But
the whole truth is that we would still be staring at a blank page if not for the efforts of an army of
contributors, collaborators, and mentors.

• Aaron Hillegass, for believing that the two of us could produce a work worthy of the Big Nerd
Ranch name. Thank you for your immeasurable faith and support.

• Matt Mathias, for guiding us through the development of this book, especially during the crucial
last mile. You made sure that time that would have been spent watching cat videos or Downton
Abbey reruns was instead dedicated to writing.

• Brandy Porter, for the care and (literal) feeding of the authors on numerous occasions. You
worked your magic behind the curtain, orchestrating a sequence of events that made finishing this
work possible. Thank you.

• Jonathan Martin, our coinstructor and language maven. Thank you for enthusiastically teaching
the in-progress course materials on which this book is based and offering thoughtful criticism
throughout the many revisions.

• Our proofreaders, technical reviewers, and guinea pigs: Mike Zornek, Jeremy Sherman, Josh
Justice, Jason Reece, Garry Smith, Andrew Jones, Stephen Christopher, and Bill Phillips. Thank
you for volunteering as tribute.

• Elizabeth Holaday, our infinitely patient and reassuring editor. Thank you for breaking us out of
the echo chamber, being the voice of reason, and reminding us always of our readers.

• Ellie Volckhausen, who designed our cover.

• Simone Payment, our proofreader, who kept things consistent.

• Chris Loper at IntelligentEnglish.com, who designed and produced the print and ebook versions
of the book. His DocBook toolchain made life much easier, too.

Lastly, thank you to the countless students who have taken the week-long training. Without your
curiosity and your questions, none of this matters. This work is a reflection of the insight and
inspiration you have given us over the span of those many weeks. We hope the otters made the training
a little lighter.

vii

Table of Contents
Introduction .. xv

Learning Front-End Web Development .. xv
Prerequisites ... xv
How This Book Is Organized ... xvi
How to Use This Book ... xvii
Challenges .. xvii
For the More Curious .. xviii

I. Core Browser Programming ... 1
1. Setting Up Your Development Environment ... 3

Installing Google Chrome ... 3
Installing and Configuring Atom .. 4

Atom plug-ins ... 4
Documentation and Reference Sources .. 7
Crash Course in the Command Line ... 8

Finding out what directory you are in ... 10
Creating a directory ... 11
Changing directories .. 11
Listing files in a directory ... 13
Getting administrator privileges .. 13
Quitting a program .. 15

Installing Node.js and browser-sync .. 15
For the More Curious: Alternatives to Atom ... 16

2. Setting Up Your First Project ... 17
Setting Up Ottergram ... 18

Initial HTML .. 20
Linking a stylesheet ... 22
Adding content .. 23
Adding images .. 24

Viewing the Web Page in the Browser ... 26
The Chrome Developer Tools .. 29
For the More Curious: CSS Versions .. 31
For the More Curious: The favicon.ico .. 31
Silver Challenge: Adding a favicon.ico .. 32

3. Styles ... 33
Creating a Styling Baseline ... 34
Preparing the HTML for Styling .. 36
Anatomy of a Style .. 37
Your First Styling Rule ... 38

The box model .. 40
Style Inheritance .. 42
Making Images Fit the Window ... 49
Color ... 51
Adjusting the Space Between Items .. 53

Relationship selectors ... 55
Adding a Font ... 58

Front-End Web Development

viii

Bronze Challenge: Color Change ... 62
For the More Curious: Specificity! When Selectors Collide… 63

4. Responsive Layouts with Flexbox ... 65
Expanding the Interface .. 66

Adding the detail image .. 67
Horizontal layout for thumbnails .. 69

Flexbox .. 71
Creating a flex container ... 72
Changing the flex-direction ... 74
Grouping elements within a flex item .. 75
The flex shorthand property .. 77
Ordering, justifying, and aligning flex items ... 78
Centering the detail image .. 83

Absolute and Relative Positioning .. 86
5. Adaptive Layouts with Media Queries ... 93

Resetting the Viewport ... 94
Adding a Media Query ... 96
Bronze Challenge: Portrait ... 100
For the More Curious: Common Solutions (and Bugs) with Flexbox Layouts 100
Gold Challenge: Holy Grail Layout ... 100

6. Handling Events with JavaScript ... 101
Preparing the Anchor Tags for Duty .. 102
Your First Script .. 105
Overview of the JavaScript for Ottergram ... 106
Declaring String Variables ... 107
Working in the Console .. 108
Accessing DOM Elements ... 110
Writing the setDetails Function .. 115

Accepting arguments by declaring parameters ... 118
Returning Values from Functions .. 120
Adding an Event Listener .. 123
Accessing All the Thumbnails .. 127
Iterating Through the Array of Thumbnails .. 129
Silver Challenge: Link Hijack .. 132
Gold Challenge: Random Otters ... 132
For the More Curious: Strict Mode ... 132
For the More Curious: Closures .. 133
For the More Curious: NodeLists and HTMLCollections 134
For the More Curious: JavaScript Types ... 136

7. Visual Effects with CSS .. 137
Hiding and Showing the Detail Image ... 138

Creating styles to hide the detail image .. 140
Writing the JavaScript to hide the detail image .. 142
Listening for the keypress event ... 143
Showing the detail image again .. 146

State Changes with CSS Transitions .. 147
Working with the transform property ... 148
Adding a CSS transition .. 150

Front-End Web Development

ix

Using a timing function .. 153
Transition on class change ... 154
Triggering transitions with JavaScript .. 155

Custom Timing Functions ... 157
For the More Curious: Rules for Type Coercion .. 159

II. Modules, Objects, and Forms ... 161
8. Modules, Objects, and Methods .. 163

Modules ... 164
The module pattern .. 165
Modifying an object with an IIFE ... 167

Setting Up CoffeeRun ... 168
Creating the DataStore Module .. 169
Adding Modules to a Namespace ... 170
Constructors .. 172

A constructor’s prototype .. 173
Adding methods to the constructor .. 175

Creating the Truck Module .. 177
Adding orders ... 178
Removing orders .. 180

Debugging .. 183
Locating bugs with the DevTools .. 185
Setting the value of this with bind .. 189

Initializing CoffeeRun on Page Load ... 190
Creating the Truck instance ... 191

Bronze Challenge: Truck ID for Non-Trekkies .. 194
For the More Curious: Private Module Data ... 194
Silver Challenge: Making data Private ... 195
For the More Curious: Setting this in forEach’s Callback 195

9. Introduction to Bootstrap ... 197
Adding Bootstrap ... 198

How Bootstrap works ... 199
Creating the Order Form ... 200

Adding text input fields .. 201
Offering choices with radio buttons ... 205
Adding a dropdown menu ... 206
Adding a range slider ... 207
Adding Submit and Reset buttons ... 208

10. Processing Forms with JavaScript .. 211
Creating the FormHandler Module .. 212

Introduction to jQuery .. 213
Importing jQuery ... 214
Configuring instances of FormHandler with a selector 214

Adding the submit Handler .. 216
Extracting the data ... 217
Accepting and calling a callback .. 219

Using FormHandler .. 220
Registering createOrder as a submit handler ... 221

UI Enhancements ... 222

Front-End Web Development

x

Bronze Challenge: Supersize It ... 224
Silver Challenge: Showing the Value as the Slider Changes 224
Gold Challenge: Adding Achievements .. 224

11. From Data to DOM .. 225
Setting Up the Checklist ... 226
Creating the CheckList Module .. 227
Creating the Row Constructor .. 228

Creating DOM elements with jQuery .. 229
Creating CheckList Rows on Submit ... 234

Manipulating this with call .. 235
Delivering an Order by Clicking a Row ... 237

Creating the CheckList.prototype.removeRow method 238
Removing overwritten entries ... 239
Writing the addClickHandler method ... 240
Calling addClickHandler ... 242

Bronze Challenge: Adding the Strength to the Description 243
Silver Challenge: Color Coding by Flavor Shot ... 243
Gold Challenge: Allowing Order Editing ... 243

12. Validating Forms .. 245
The required Attribute .. 245
Validating with Regular Expressions ... 247
Constraint Validation API .. 247

Listening for the input event .. 249
Associating the validation check with the input event 250
Triggering the validity check .. 252

Styling Valid and Invalid Elements ... 253
Silver Challenge: Custom Validation for Decaf .. 254
For the More Curious: The Webshims Library .. 255

13. Ajax ... 257
XMLHttpRequest Objects .. 258
RESTful Web Services ... 259
The RemoteDataStore Module ... 259
Sending Data to the Server .. 260

Using jQuery’s $.post method .. 261
Adding a callback .. 261
Inspecting the Ajax request and response ... 262

Retrieving Data from the Server ... 266
Inspecting the response data .. 267
Adding a callback argument .. 268

Deleting Data from the Server .. 269
Using jQuery’s $.ajax method .. 270

Replacing DataStore with RemoteDataStore ... 271
Silver Challenge: Validating Against the Remote Server .. 274
For the More Curious: Postman .. 274

14. Deferreds and Promises ... 275
Promises and Deferreds .. 277
Returning Deferred ... 278
Registering Callbacks with then ... 279

Front-End Web Development

xi

Handling Failures with then ... 280
Using Deferreds with Callback-Only APIs ... 282
Giving DataStore a Promise ... 287

Creating and returning Promises ... 288
Resolving a Promise ... 289
Promise-ifying the other DataStore methods ... 289

Silver Challenge: Fallback to DataStore ... 291
III. Real-Time Data .. 293

15. Introduction to Node.js .. 295
Node and npm ... 297

npm init ... 297
npm scripts ... 299

Hello, World ... 299
Adding an npm Script .. 301
Serving from Files ... 302

Reading a file with the fs module ... 303
Working with the request URL ... 304
Using the path module .. 306
Creating a custom module ... 307
Using your custom module .. 308

Error Handling .. 309
For the More Curious: npm Module Registry .. 310
Bronze Challenge: Creating a Custom Error Page .. 311
For the More Curious: MIME Types ... 311
Silver Challenge: Providing a MIME Type Dynamically 312
Gold Challenge: Moving Error Handling to Its Own Module 312

16. Real-Time Communication with WebSockets ... 313
Setting Up WebSockets ... 314
Testing Your WebSockets Server .. 316
Creating the Chat Server Functionality .. 317
First Chat! .. 320
For the More Curious: socket.io WebSockets Library ... 321
For the More Curious: WebSockets as a Service .. 321
Bronze Challenge: Am I Repeating Myself? ... 322
Silver Challenge: Speakeasy .. 322
Gold Challenge: Chat Bot ... 322

17. Using ES6 with Babel ... 323
Tools for Compiling JavaScript .. 325
The Chattrbox Client Application ... 326
First Steps with Babel .. 328

Class syntax .. 328
Using Browserify for Packaging Modules .. 330

Running the build process ... 332
Adding the ChatMessage Class .. 334
Creating the ws-client Module ... 337

Connection handling ... 337
Handling events and sending messages .. 340
Sending and echoing a message .. 342

Front-End Web Development

xii

For the More Curious: Compiling to JavaScript from Other Languages 343
Bronze Challenge: Default Import Name .. 344
Silver Challenge: Closed Connection Alert ... 344
For the More Curious: Hoisting .. 344
For the More Curious: Arrow Functions ... 346

18. ES6, the Adventure Continues .. 347
Installing jQuery as a Node Module .. 348
Creating the ChatForm Class ... 348

Connecting ChatForm to the socket ... 350
Creating the ChatList Class ... 351
Using Gravatars ... 354
Prompting for Username ... 355
User Session Storage .. 357
Formatting and Updating Message Timestamps ... 360
Bronze Challenge: Adding Visual Effects to Messages .. 363
Silver Challenge: Caching Messages ... 363
Gold Challenge: Separate Chat Rooms .. 363

IV. Application Architecture .. 365
19. Introduction to MVC and Ember ... 367

Tracker ... 368
Ember: An MVC Framework ... 370

Installing Ember .. 370
Creating an Ember application ... 372
Starting up the server ... 373

External Libraries and Addons ... 374
Configuration .. 376
For the More Curious: npm and Bower Install ... 381
Bronze Challenge: Limiting Imports .. 381
Silver Challenge: Adding Font Awesome ... 381
Gold Challenge: Customizing the NavBar .. 381

20. Routing, Routes, and Models .. 383
ember generate .. 384
Nesting Routes .. 389
Ember Inspector .. 392
Assigning Models .. 392
beforeModel .. 395
For the More Curious: setupController and afterModel ... 396

21. Models and Data Binding .. 397
Model Definitions .. 397
createRecord ... 400
get and set .. 401
Computed Properties .. 403
For the More Curious: Retrieving Data .. 406
For the More Curious: Saving and Destroying Data .. 407
Bronze Challenge: Changing the Computed Property ... 407
Silver Challenge: Flagging New Sightings .. 407
Gold Challenge: Adding Titles ... 407

22. Data – Adapters, Serializers, and Transforms ... 409

Front-End Web Development

xiii

Adapters ... 411
Content Security Policy .. 416
Serializers ... 416
Transforms .. 418
For the More Curious: Ember CLI Mirage ... 419
Silver Challenge: Content Security .. 419
Gold Challenge: Mirage .. 419

23. Views and Templates ... 421
Handlebars .. 422
Models ... 422
Helpers ... 422

Conditionals .. 423
Loops with {{#each}} .. 424
Binding element attributes ... 426
Links ... 429

Custom Helpers ... 432
Bronze Challenge: Adding Link Rollovers .. 434
Silver Challenge: Changing the Date Format .. 434
Gold Challenge: Creating a Custom Thumbnail Helper ... 434

24. Controllers ... 435
New Sightings ... 436
Editing a Sighting .. 443
Deleting a Sighting .. 446
Route Actions ... 448
Bronze Challenge: Sighting Detail Page ... 450
Silver Challenge: Sighting Date .. 450
Gold Challenge: Adding and Removing Witnesses ... 450

25. Components ... 451
Iterator Items as Components ... 452
Components for DRY Code ... 456
Data Down, Actions Up .. 457
Class Name Bindings ... 458
Data Down ... 460
Actions Up ... 462
Bronze Challenge: Customizing the Alert Message .. 465
Silver Challenge: Making the NavBar a Component ... 465
Gold Challenge: Array of Alerts ... 465

26. Afterword .. 467
The Final Challenge ... 467
Shameless Plugs .. 467
Thank You .. 468

Index ... 469

xv

Introduction
Learning Front-End Web Development
Doing front-end web development may require a shift in perspective, as it is a very different animal
from development for other platforms. Here are a few things to keep in mind as you are learning.

The browser is a platform.

Perhaps you have done native development for iOS or Android; written server-side code in Ruby or
PHP; or built desktop applications for OS X or Windows. As a front-end developer, your code will
target the browser – a platform available on nearly every phone, tablet, and personal computer in the
world.

Front-end development runs along a spectrum.

At one end of the spectrum is the look and feel of a web page: rounded corners, shadows, colors,
fonts, whitespace, and so on. At the other end of the spectrum is the logic that governs the intricate
behaviors of that web page: swapping images in an interactive photo gallery, validating data entered
into a form, sending messages across a chat network, etc. You will need to become proficient with
the core technologies all along this spectrum, and you will often need to use multiple technologies in
synergy to create a good web application.

Web technologies are open.

There is no one company that controls how browsers should work. That means that front-end
developers do not get a yearly SDK release that contains all the changes they will need to deal with for
the next twelve months. Native platforms are a frozen pond on which you can comfortably skate. The
web is a river; it curves, moves quickly, and is rocky in some places – but that is part of its appeal. The
web is the most rapidly evolving platform available. Adapting to change is a way of life for a front-end
developer.

This book’s purpose is to teach you how to develop for the browser. As you follow this guide, you
will be taken through the process of building a series of projects. Each project will call for a different
mixture of technologies along the front-end spectrum. Because of the sheer number of front-end tools,
libraries, and frameworks available, this book will focus on the most essential and portable patterns and
techniques.

Prerequisites
This book is not an introduction to programming. It assumes you have experience with the
fundamentals of writing code. You are expected to be familiar with basic types, functions, and objects.

That said, it also does not assume you already know JavaScript. It introduces you to JavaScript
concepts in context, as you need them.

Introduction

xvi

How This Book Is Organized
This book walks you through writing four different web applications. Each application has its own
section of the book. Each chapter in a section adds new features to the application you are building.

Doing the work of building these four applications takes you from one extreme of the front-end
spectrum to the other.

Ottergram In your first project, you will create a web-based photo gallery. Building Ottergram
will teach you the fundamentals of programming for the browser using HTML, CSS,
and JavaScript. You will build the user interface manually, learning how the browser
loads and renders content.

CoffeeRun Part coffee order form, part checklist, CoffeeRun takes you through a number of
JavaScript techniques including writing modular code, taking advantage of closures,
and communicating with a remote server using Ajax. Your focus will shift from
manually creating the UI to creating and manipulating it programmatically.

Chattrbox Chattrbox has the shortest section and is the most distinct of the apps. You will use
JavaScript to build a chat system, writing a chat server with Node.js as well as a
browser-based chat client.

Tracker Your final project uses Ember.js, one of the most powerful frameworks for front-end
development. You will create an application that catalogs sightings of rare, exotic,
and mythical creatures. Along the way, you will learn your way around the rich
ecosystem that powers the Ember.js framework.

As you work through these applications, you will be introduced to a number of tools, including:

• the Atom text editor and some useful plug-ins for working with code
• documentation resources like the Mozilla Developer Network
• the command line, using the OS X Terminal app or the Windows command prompt
• browser-sync
• Google Chrome’s Developer Tools
• normalize.css
• Bootstrap
• jQuery and libraries like crypto-js and moment
• Node.js, the Node package manager (npm), and nodemon
• WebSockets and the wscat module
• Babel, Babelify, Browserify, and Watchify
• Ember.js and addons like Ember CLI, Ember Inspector, Ember CLI Mirage, and Handlebars
• Bower
• Homebrew
• Watchman

How to Use This Book

xvii

How to Use This Book
This book is not a reference book. Its goal is to get you over the initial hump to where you can get
the most out of the reference and recipe books available. It is based on our five-day class at Big Nerd
Ranch, and, as such, it is meant to be worked through from the beginning. Chapters build on each
other, and skipping around would be unproductive.

In our classes, students work through these materials, but they also benefit from the right environment
– a dedicated classroom, good food and comfortable board, a group of motivated peers, and an
instructor to answer questions.

As a reader, you want your environment to be similar. That means getting a good night’s rest and
finding a quiet place to work. These things can help, too:

• Start a reading group with your friends or coworkers.

• Arrange to have blocks of focused time to work on chapters.

• Participate in the forum for this book at forums.bignerdranch.com, where you can discuss the
book and find errata and solutions.

• Find someone who knows front-end web development to help you out.

Challenges
Most chapters in this book end with at least one challenge. Challenges are opportunities to review what
you have learned and take your work in the chapter one step further. We recommend that you tackle as
many of them as you can to cement your knowledge and move from learning JavaScript development
from us to doing JavaScript development on your own.

Challenges come in three levels of difficulty:

• Bronze challenges typically ask you to do something very similar to what you did in the chapter.
These challenges reinforce what you learned in the chapter and force you to type in similar code
without having it laid out in front of you. Practice makes perfect.

• Silver challenges require you to do more digging and more thinking. Sometimes you will need
to use functions, events, markup, and styles that you have not seen before, but the tasks are still
similar to what you did in the chapter.

• Gold challenges are difficult and can take hours to complete. They require you to understand the
concepts from the chapter and then do some quality thinking and problem solving on your own.
Tackling these challenges will prepare you for the real-world work of JavaScript development.

You should make a copy of your code before you work on the challenges for any chapter. Otherwise,
the changes that you make may not be compatible with subsequent exercises.

If you get lost, you can always visit forums.bignerdranch.com for some assistance.

http://forums.bignerdranch.com
http://forums.bignerdranch.com

Introduction

xviii

For the More Curious
Many chapters also have “For the More Curious” sections. These sections offer deeper explanations or
additional information about topics presented in the chapter. The information in these sections is not
absolutely essential, but we hope you will find it interesting and useful.

Part I
Core Browser Programming

3

1
Setting Up Your Development

Environment

There are countless tools and resources for front-end development, with more being built all the time.
Choosing the best ones is challenging for developers of all skill levels. Throughout the projects in this
book, we will guide you in the use of some of our favorites.

To get started, you will need three basic tools: a browser, a text editor, and good reference
documentation for the many technologies used in front-end development. Also, there are several extras
that – while not essential – will make your development experience smoother and more enjoyable.

For the purposes of this book we recommend that you use the same software we use to get the most
benefit from our directions and screenshots. This chapter walks you through installing and configuring
the Google Chrome browser, the Atom text editor, Node.js, and a number of plug-ins and extras. You
will also find out about good documentation options and get a crash course in using the command line
on Mac and Windows. In the next chapter, you will put all these resources to use as you begin your first
project.

Installing Google Chrome
Your computer should already have a browser installed by default, but the best one to use for front-end
development is Google Chrome. If you do not already have the latest version of Chrome, you can get it
from www.google.com/chrome/browser/desktop (Figure 1.1).

https://www.google.com/chrome/browser/desktop/

Chapter 1 Setting Up Your Development Environment

4

Figure 1.1 Downloading Google Chrome

Installing and Configuring Atom
Of the many text editor programs out there, one of the best for front-end development is the Atom
editor by GitHub. It is a good choice because it is highly configurable, has many plug-ins to help with
writing code, and is free to download and use.

You can download Atom for Mac or Windows from atom.io (Figure 1.2).

Figure 1.2 Downloading Atom

Follow the installation instructions for your platform. After Atom is installed, there are several plug-ins
you will want to install as well.

Atom plug-ins
The primary things you want out of your text editor are documentation lookup, autocompletion, code
formatting, and code linting (more on that in a bit). Atom gives you some of these features by default,
but installing a few plug-ins will make it even better.

https://atom.io

Atom plug-ins

5

Open Atom and reveal its Settings screen. On a Mac, this is done by choosing Atom → Preferences...
or using the keyboard shortcut Command-, (that is, the Command key plus the comma). On Windows,
you can access it via File → Settings or using the keyboard shortcut Ctrl-,.

On the lefthand side of the Settings screen, click + Install (Figure 1.3).

Figure 1.3 Atom’s Install Packages screen

Here, you can search for plug-in packages by name. Begin by searching for “emmet.”

Writing a lot of HTML can be very tedious and is error-prone. The emmet plug-in (Figure 1.4) lets you
write well-formatted HTML using a convenient shorthand. Click the Install button to get emmet.

Figure 1.4 Installing emmet

Next, search for “atom-beautify.” The atom-beautify plug-in (Figure 1.5) helps with the indentation of
your code, which helps with readability. Again, click Install to get this plug-in.

Figure 1.5 Installing atom-beautify

Chapter 1 Setting Up Your Development Environment

6

Search for and install the autocomplete-paths plug-in (Figure 1.6). Very often, your code will need
to refer to other files and folders in your project. This plug-in helps by offering filenames in an
autocomplete menu as you type.

Figure 1.6 Installing autocomplete-paths

Your next plug-in to install is the api-docs package (Figure 1.7), which lets you look up documentation
based on keyword. It displays the documentation in a separate tab in the editor.

Figure 1.7 Installing api-docs

Next, search for and install the linter package (Figure 1.8). A linter is a program that checks the syntax
and style of your code. Make sure you find and install the package that is just named “linter.” This is a
base linter that works with language-specific plug-ins. You will need it in order to use the other linter
plug-ins below.

Figure 1.8 Installing linter

There are three companions to linter that you will want to install to check your CSS, HTML, and
JavaScript code. Start with linter-csslint (Figure 1.9), which ensures that your CSS is syntactically
correct and also offers suggestions about writing performant CSS.

Figure 1.9 Installing linter-csslint

The next linter companion plug-in to install is linter-htmlhint (Figure 1.10), which confirms that your
HTML is well formed. It will warn you about mismatched HTML tags.

Documentation and Reference Sources

7

Figure 1.10 Installing linter-htmlhint

The last linter companion plug-in to install is linter-eslint (Figure 1.11). This plug-in checks the syntax
of your JavaScript and can be configured to check the style and formatting of your code (for example,
how many spaces lines are indented or how many blank lines come before and after comments).

Figure 1.11 Installing linter-eslint

Chrome and Atom are now ready for front-end development. There are just a few more steps to
completing your coding environment: accessing documentation, learning command-line basics, and
downloading two final tools.

Documentation and Reference Sources
Front-end development is different from programming for platforms like iOS and Android. Aside from
the obvious differences, front-end technologies have no official developer documentation other than the
technical specifications. This means that you will need to look elsewhere for guidance. We recommend
that you familiarize yourself with the resources below and consult them regularly as you work through
the book and continue on with front-end development.

The Mozilla Developer Network (MDN) is the best reference for anything to do with HTML, CSS, and
JavaScript. One way to access it is devdocs.io, an excellent documentation interface (Figure 1.12). It
pulls documentation from MDN for core front-end technologies – and it can work offline, so you can
check it even when you do not have an internet connection.

Figure 1.12 Accessing documentation via devdocs.io

Note that Safari currently does not support the offline caching mechanism used by devdocs.io. You
will need to use a different browser, such as Chrome, to access it.

http://devdocs.io
http://devdocs.io

Chapter 1 Setting Up Your Development Environment

8

You can also use MDN’s website, developer.mozilla.org/en-US (Figure 1.13), or simply add
“MDN” as a search engine keyword to find the information you need.

Figure 1.13 The Mozilla Developer Network website

Another site to know about is stackoverflow.com (Figure 1.14). Officially, this is not a source of
documentation. It is a place where developers can ask each other about code. The answers vary in
quality, but are often very thorough and quite helpful. So it is a useful resource – as long as you bear in
mind that the answers are not definitive, due to its crowdsourced nature.

Figure 1.14 The Stack Overflow website

Web technologies are always changing. Support for features and APIs will vary from browser to
browser and over time. Two websites that can help you determine which browsers (and which versions
of individual browsers) support what features are html5please.com and caniuse.com. When you
need information about feature support, we suggest starting with html5please.com to know whether a
feature is recommended for use. For more detailed information about which browser versions support a
specific feature, go to caniuse.com.

Crash Course in the Command Line
Throughout this book, you will be instructed to use the command line or terminal. Many of the tools
you will be using run exclusively as command-line programs.

To access the command line on a Mac, open Finder and go to the Applications folder, then the Utilities
folder. Find and open the program named Terminal (Figure 1.15).

https://developer.mozilla.org/en-US/
http://stackoverflow.com
http://html5please.com
http://caniuse.com
http://html5please.com
http://caniuse.com

Crash Course in the Command Line

9

Figure 1.15 Finding the Terminal app on a Mac

You should see a window that looks like Figure 1.16.

Figure 1.16 Mac command line

To access the command line on Windows, go to the Start menu and search for “cmd.” Find and open
the program named Command Prompt (Figure 1.17).

Figure 1.17 Finding the Command Prompt program on Windows

Chapter 1 Setting Up Your Development Environment

10

Click it to run the standard Windows command-line interface, which looks like Figure 1.18.

Figure 1.18 Windows command line

From now on, we will refer to “the terminal” or “the command line” to mean both the Mac Terminal
and the Windows Command Prompt. If you are unfamiliar with using the command line, here is a short
walkthrough of some common tasks. All commands are entered by typing at the prompt and pressing
the Return key.

Finding out what directory you are in
The command line is location based. That means that at any given time it is “in” a particular directory
within the file structure, and any commands you enter will be applied within that directory. The
command-line prompt shows an abbreviated version of the directory it is in. To see the whole path on a
Mac, enter the command pwd (which stands for “print working directory”), as in Figure 1.19.

Figure 1.19 Showing the current path using pwd on a Mac

On Windows, use the command echo %cd% to see the path, as in Figure 1.20.

Creating a directory

11

Figure 1.20 Showing the current path using echo %cd% on Windows

Creating a directory
The directory structure of front-end projects is important. Your projects can grow quickly, and it is
best to keep them organized from the beginning. You will create new directories regularly during your
development. This is done using the mkdir or “make directory” command followed by the name of the
new directory.

To see this command in action, set up a directory for the projects you will build as you work through
this book. Enter this command:

mkdir front-end-dev-book

Next, create a new directory for your first project, Ottergram, which you will begin in the next chapter.
You want this new directory to be a subdirectory of the front-end-dev-book directory you just
created. You can do this from your home directory by prefacing the new directory name with the name
of the projects directory and, on a Mac, a slash:

mkdir front-end-dev-book/ottergram

On Windows, you use the backslash instead:

mkdir front-end-dev-book\ottergram

Changing directories
To move around the file structure, you use the command cd, or “change directory,” followed by the
path of the directory you want to move into.

You do not always need to use the complete directory path in your cd command. For example, to move
down into any subdirectory of the directory you are in, you simply use the name of the subdirectory.
So when you are in the front-end-dev-book directory, the path of the ottergram folder is just
ottergram.

Move into your new project directory:

cd front-end-dev-book

Chapter 1 Setting Up Your Development Environment

12

Now, you can move into the ottergram directory:

cd ottergram

To move up to the parent directory, use the command cd .. (that is, cd followed by a space and two
periods). The pair of periods represents the path of the parent directory.

cd ..

Remember that you can check your current directory by using the pwd command (or echo %cd% on
Windows). Figure 1.21 shows the author creating directories, moving between them, and checking the
current directory.

Figure 1.21 Changing and checking directories

You are not limited to moving up or down one directory at a time. Let’s say that you had a more
complex directory structure, like the one shown in Figure 1.22.

Figure 1.22 An example file structure

Suppose you are in the ottergram directory and you want to go directly to the stylesheets directory
inside of coffeerun. You would do this with cd followed by a path that means “the stylesheets
directory inside the coffeerun directory inside the parent directory of where I am now”:

cd ../coffeerun/stylesheets

Listing files in a directory

13

On Windows, you would use the same command but with backslashes:

cd ..\coffeerun\stylesheets

Listing files in a directory
You may need to see a list of files in your current directory. On a Mac, you use the ls command for
that (Figure 1.23). If you want to list the files in another directory, you can supply a path:

ls
ls ottergram

Figure 1.23 Using ls to list files in a directory

By default, ls will not print anything if a directory is empty.

On Windows, the command is dir (Figure 1.24), which you can optionally give a path:

dir
dir ottergram

Figure 1.24 Using dir to list files in a directory

By default, the dir command will print information about dates, times, and file sizes.

Getting administrator privileges
On some versions of OS X and Windows, you will need superuser or administrator privileges in order
to run some commands, such as commands that install software or make changes to protected files.

Chapter 1 Setting Up Your Development Environment

14

On a Mac, you can give yourself privileges by prefixing a command with sudo. The first time you use
sudo on a Mac, it will give you a stern warning, shown in Figure 1.25.

Figure 1.25 sudo warning

sudo will prompt you for your password before it runs the command as the superuser. As you type,
your keystrokes will not be echoed back, so type carefully.

On Windows, if you need to give yourself privileges you do so in the process of opening the command-
line interface. Find the command prompt in the Windows Start Menu, right-click it, and choose Run
as Administrator (Figure 1.26). Any commands you run in this command prompt will be run as the
superuser, so be careful.

Figure 1.26 Opening the command prompt as an administrator

Quitting a program

15

Quitting a program
As you proceed through the book, you will run many apps from the command line. Some of them will
do their job and quit automatically, but others will run until you stop them. To quit a command-line
program, press Control-C.

Installing Node.js and browser-sync
There is one final set-up step before you begin your first project.

Node.js (or simply “Node”) lets you use programs written in JavaScript from the command line. Most
front-end development tools are written for use with Node.js. You will learn lots more about Node.js in
Chapter 15, but you will begin using one tool that depends on it, browser-sync, right away.

Install Node by downloading the installer from nodejs.org (Figure 1.27). The version of Node.js used
in this book is 5.11.1, and you will likely see a different version available for download.

Figure 1.27 Downloading Node.js

Double-click the installer and follow the prompts.

When you install Node, it provides two command-line programs: node and npm. The node program
does the work of running programs written in JavaScript. You will not need to use it until Chapter 15.
The other program is the Node package manager, npm, which is needed for installing open-source
development tools from the internet.

browser-sync is one such tool, and it will be invaluable to you throughout the book. It makes your
example code easier to run in the browser and automatically reloads the browser when you save
changes to your code.

Install browser-sync using this command at the command line:

npm install -g browser-sync

(The -g in the command stands for “global.” Installing the package globally means that you will be
able to run browser-sync from any directory.)

It does not matter what directory you are in when you run this command, but you will probably need
superuser privileges. If that is the case, run the command using sudo on a Mac:

sudo npm install -g browser-sync

If you are on Windows, first open a command prompt as the administrator, as shown above.

https://nodejs.org/en/

Chapter 1 Setting Up Your Development Environment

16

When you start browser-sync, as you will in the next chapter, it will run until you press Control-C. It
is a good idea to quit browser-sync when you are done working on a project for a while. That means
that you will need to start browser-sync each time you begin work on the first two projects in this
book (Ottergram and CoffeeRun).

With that, you have the tools you need to get started on your Ottergram project!

For the More Curious: Alternatives to Atom
There are many, many text editors to choose from. If you are not that keen on Atom, when you are
done working through the projects in this book you may want to try out one of the following two
options. Both are available for free for Mac and Windows, and both have a large number of plug-ins
to customize your development experience. Also, like Atom, both are built using HTML, CSS, and
JavaScript, but run as desktop applications.

Visual Studio Code is Microsoft’s open source text editor, made specifically for developing web
applications. It can be downloaded from code.visualstudio.com (Figure 1.28).

Figure 1.28 The Visual Studio Code website

Adobe’s Brackets text editor is particularly good for building user interfaces with HTML and CSS. In
fact, it provides an extension for helping you work with Adobe’s layered PSD image files. Brackets is
available from brackets.io (Figure 1.29).

Figure 1.29 The Adobe Brackets website

https://code.visualstudio.com/
http://brackets.io/

17

2
Setting Up Your First Project

When you visit a website, your browser has a conversation with a server, another computer on the
internet.

Browser: “Hey there! Can I please have the contents of the file named cat-videos.html?”

Server: “Certainly. Let me take a look around … here it is!”

Browser: “Ah, it’s telling me that I need another file named styles.css.”

Server: “Sure thing. Let me take a look around … here it is!”

Browser: “OK, that file says that I need another file named animated-background.gif.”

Server: “No problem. Let me take a look around … here it is!”

That conversation goes on for some time, sometimes lasting thousands of milliseconds (Figure 2.1).

Figure 2.1 The browser sends a request, the server responds

Chapter 2 Setting Up Your First Project

18

It is the browser’s job to send requests to the server; interpret the HTML, CSS, and JavaScript
it receives in the response from the server; and present the result to the user. Each of these three
technologies plays a part in the user’s experience of a website. If your app were a living creature, the
HTML would be its skeleton and organs (the mechanics), the CSS would be its skin (the visible layer),
and the JavaScript would be its personality (how it behaves).

In this chapter, you are going to set up the basic HTML for your first project, Ottergram. In the next
chapter, you will set up your CSS, which you will refine in Chapter 4. In Chapter 6, you will begin
adding JavaScript.

Setting Up Ottergram
In Chapter 1, you created a folder for the projects in this book as well as a folder for Ottergram.
Start your Atom text editor and open the ottergram folder by clicking File → Open (or File → Open
Folder... on Windows). In the dialog box, navigate to the front-end-dev-book folder and choose the
ottergram folder. Click Open to tell Atom to use this folder (Figure 2.2).

Figure 2.2 Opening your project folder in Atom

You will see the ottergram folder in the lefthand panel of Atom. This panel is for navigating among
the files and folders in your project.

You are going to create some files and folders within the ottergram project folder using Atom.
Control-click (right-click) ottergram in the lefthand panel and click New File in the pop-up menu. You
will be prompted for a name for the new file. Enter index.html and press the Return key (Figure 2.3).

Figure 2.3 Creating a new file in Atom

Setting Up Ottergram

19

You can use the same process to create folders using Atom. Control-click (right-click) ottergram in the
lefthand panel again, but this time click New Folder in the pop-up. Enter the name stylesheets in the
prompt that appears (Figure 2.4).

Figure 2.4 Creating a new folder in Atom

Finally, create a file named styles.css in the stylesheets folder: Control-click (right-click)
stylesheets in the lefthand panel and choose New File. The prompt will pre-fill the text
“stylesheets/”. After this, enter styles.css and press the Return key (Figure 2.5).

Figure 2.5 Creating a new CSS file in Atom

When you are finished, your project folder should look like Figure 2.6.

Figure 2.6 Initial files and folders for Ottergram

There are no rules about how to structure your files and folders or what to name them. However,
Ottergram (like the other projects in this book) follows conventions used by many front-end
developers. Your index.html file will hold your HTML code. Naming the main HTML file
index.html dates back to the early days of the web, and the convention continues today.

The stylesheets folder, as the name suggests, will hold one or more files with styling information for
Ottergram. These will be CSS, or “cascading style sheets,” files. Sometimes developers give their CSS
files names that describe what part of the page or site they pertain to, such as header.css or blog.css.
Ottergram is a simple project and only needs one CSS file, so you have named it styles.css to reflect
its global role.

Chapter 2 Setting Up Your First Project

20

Initial HTML
Time to get coding. Open index.html in Atom and add some basic HTML to get started.

Start by typing html. Atom will offer you an autocomplete option, as shown in Figure 2.7. (If it does
not, make sure you installed the emmet plug-in as directed in Chapter 1.)

Figure 2.7 Atom’s autocomplete menu

Press the Return key, and Atom will provide bare-bones HTML elements to get you started
(Figure 2.8).

Figure 2.8 HTML created using autocomplete

Your cursor is between <title> and </title> – the opening and closing title tags. Type “ottergram”
to give the project a name. Now, click to put your cursor in the blank line between the opening and
closing body tags. There, type “header” and press the Return key. Atom will convert the text “header”
into opening and closing header tags with a blank line between them (Figure 2.9).

Figure 2.9 Header tag created with autocomplete

Initial HTML

21

Next, type “h1” and press Return. Again, your text is converted into tags, this time without a blank
line. Enter the text “ottergram” again. This will be the heading that will appear on your web page.

Your file should look like this:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>ottergram</title>
 </head>
 <body>
 <header>
 <h1>ottergram</h1>
 </header>
 </body>
</html>

Atom and emmet have together saved you some typing and helped you build well-formed initial
HTML.

Let’s examine your code. The first line, <!doctype html>, defines the doctype – it tells the browser
which version of HTML the document is written in. The browser may render, or draw, the page a little
differently based the doctype. Here, the doctype specifies HTML5.

Earlier versions of HTML often had long, convoluted, and hard to remember doctypes, such as:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Often, folks had to look up the doctype each time they created a new document.

With HTML5, the doctype is short and sweet. It is the one that will be used throughout all of the
projects in this book, and you should use it for your apps.

After the doctype is some basic HTML markup consisting of a head and a body.

The head will hold information about the document and how the browser should handle the document.
For example, the title of the document, what CSS or JavaScript files the page uses, and when the
document was last modified are all included in the head.

Here, the head contains a <meta> tag. <meta> tags provide the browser with information about the
document itself, such as the name of the document’s author or keywords for search engines. The
<meta> tag in Ottergram, <meta charset="utf-8">, specifies that the document is encoded using the
UTF-8 character set, which encompasses all Unicode characters. Use this tag in your documents so that
the widest range of browsers can interpret them correctly, especially if you expect international traffic.

The body will hold all of the HTML code that represents the content of your page: all the images, links,
text, buttons, and videos that will appear on the page.

Chapter 2 Setting Up Your First Project

22

Most tags enclose some other content. Take a look at the h1 heading you included; its anatomy is
shown in Figure 2.10.

Figure 2.10 Anatomy of a simple HTML tag

HTML stands for “hypertext markup language.” Tags are used to “mark up” your content, designating
their purpose – such as headings, list items, and links.

The content enclosed by a set of tags can also include other HTML. Notice, for example, that the
<header> tags enclose the <h1> tag shown above (and the <body> tags enclose the <header>!).

There are a lot of tags to choose from – more than 140. To see a list of them, visit MDN’s HTML
element reference, located at developer.mozilla.org/en-US/docs/Web/HTML/Element. This
reference includes a brief description of each element and groups elements by usage (e.g., text content,
content sectioning, or multimedia).

Linking a stylesheet
In Chapter 3, you will write styling rules in your stylesheet, styles.css. But remember the
conversation between the browser and the server at the beginning of this chapter? The browser only
knows to ask for a file from the server if it has been told that the file exists. You have to link to your
stylesheet so that the browser knows to ask for it. Update the head of index.html with a link to your
styles.css file.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>ottergram</title>
 <link rel="stylesheet" href="stylesheets/styles.css">
 </head>
 <body>
...

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Adding content

23

The <link> tag is how you attach an external stylesheet to an HTML document. It has two attributes,
which give the browser more information about the tag’s purpose (Figure 2.11). (The order of HTML
attributes does not matter.)

Figure 2.11 Anatomy of a tag with attributes

You set the rel (or “relationship”) attribute to "stylesheet", which lets the browser know that the
linked document provides styling information. The href attribute tells the browser to send a request to
the server for the styles.css file located in the stylesheets folder. Note that this file path is relative
to the current document.

Save index.html before you move on.

Adding content
A web page without content is like a day without coffee. Add a list after your header to give your
project a reason for living.

You are going to add an unordered list (that is, a bulleted list) using the tag. In the list, you will
include five list items using tags, and in each list item you will include some text surrounded by
 tags.

The updated index.html is shown below. Note that throughout this book we show new code that you
are adding in bold type. Code that you are to delete is shown struck through. Existing code is shown in
plain text to help you position your changes within the file.

We encourage you to make use of Atom’s autocompletion and autoformatting features. With your
cursor in position, type “ul” and press Return. Next, type “li” and press Return twice, then type “span”
and press Return once. Enter the name of an otter, then create four more list items and spans in the
same way.

Chapter 2 Setting Up Your First Project

24

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>ottergram</title>
 <link rel="stylesheet" href="stylesheets/styles.css">
 </head>
 <body>
 <header>
 <h1>ottergram</h1>
 </header>

 Barry

 Robin

 Maurice

 Lesley

 Barbara

 </body>
</html>

The tags nested inside each tag do not have any special meaning. They are generic
containers for other content. You will be using them in Ottergram for styling purposes, and you will see
other examples of container elements as you continue through this book.

Next, you will add images of otters to go with the names you have entered.

Adding images
The resource files for all the projects in this book are at www.bignerdranch.com/downloads/front-
end-dev-resources.zip. They include five Creative Commons-licensed otter images taken by
Michael L. Baird, Joe Robertson, and Agunther that were found on commons.wikimedia.org.

Download and unzip the resources. Inside the ottergram-resources folder, locate the img folder.
Copy the img folder to your ottergram/ project directory. (The .zip contains other resources, but for
now you will only need the img folder.)

You want your list to include clickable thumbnail images in addition to the titles. You will achieve this
by adding anchor and image tags to each item in your ul. We will explain these changes in more detail
after you enter them. (If you use autocompletion, note that you will need to move the tags so that
they follow the spans.)

http://www.bignerdranch.com/downloads/front-end-dev-resources.zip
http://www.bignerdranch.com/downloads/front-end-dev-resources.zip
https://commons.wikimedia.org

Adding images

25

...

 Barry

 Robin

 Maurice

 Lesley

 Barbara

...

If your lines are not nicely indented, you can take advantage of the atom-beautify plug-in that you
installed. Click Packages → Atom Beautify → Beautify and your code will be aligned and indented for
you.

Let’s look at what you have added.

The <a> tag is the anchor tag. Anchor tags make elements on the page clickable, so that they take
the user to another page. They are commonly referred to as “links,” but beware: They are not like the
<link> tag you used earlier.

Anchor tags have an href attribute, which indicates the resource the anchor points to. Usually the value
is a web address. Sometimes, though, you do not want a link to go anywhere. That is the case for now,
so you assigned the “dummy” value # to the href attributes. This will make the browser scroll to the
top of the page when the image is clicked. Later you will use the anchor tags to open a larger copy of
an image when the thumbnail is clicked.

Inside the anchor tags you added , or image, tags with src attributes indicating filenames in the
img directory you added earlier. You also added a descriptive alt attribute to your image tags. alt
attributes contain text that replaces the image if it is unable to load. alt text is also what screen readers
use to describe an image to a user with a visual impairment.

Chapter 2 Setting Up Your First Project

26

Image tags are different from most other elements in that they do not wrap other elements, but instead
refer to a resource. When the browser encounters an tag, it draws the image to the page. This is
known as a replaced element. Other replaced elements include embedded documents and applets.

Because they do not wrap content or other elements, tags do not have a corresponding closing
tag. This makes them self-closing tags (also known as void tags). You will sometimes see self-closing
tags written with a slash before the right angle-bracket, like . Whether to
include the slash is a matter of preference and does not make a difference to the browser. In this book,
self-closing tags are written without the slash.

Save index.html. In a moment, you will see the results of your coding.

Viewing the Web Page in the Browser
To view your web page, you need to be running the browser-sync tool that you installed in Chapter 1.

Open the terminal and change directory to your ottergram folder. Recall from Chapter 1 that you
change directory using the cd command followed by the path of the folder you are moving into. One
easy way to get the ottergram path is to Control-click (right-click) the ottergram folder in Atom’s
lefthand panel and choose Copy Full Path (Figure 2.12). Then, at the command line, type cd, paste the
path, and press Return.

Figure 2.12 Copying the ottergram folder path from Atom

The path you enter might look something like this:

cd /Users/chrisaquino/Projects/front-end-dev-book/ottergram

Viewing the Web Page in the Browser

27

Once you are in the ottergram directory, run the following command to open Ottergram in Chrome.
(We have broken the command across two lines so that it fits on the page. You should enter it on a
single line.)

browser-sync start --server --browser "Google Chrome"
 --files "stylesheets/*.css, *.html"

If Chrome is your default browser, you can leave out the --browser "Google Chrome" portion of the
command:

browser-sync start --server --files "stylesheets/*.css, *.html"

This command starts browser-sync in server mode, allowing it to send responses when a browser
sends a request to get a file, such as the index.html file you created.

The command you entered also tells browser-sync to automatically reload the browser if any HTML
or CSS files are changed. This makes the development experience much nicer. Before tools like
browser-sync, you had to manually reload the page after every change.

Figure 2.13 shows the result of entering this command on a Mac.

Figure 2.13 Starting browser-sync in the OS X Terminal

Chapter 2 Setting Up Your First Project

28

You should see the same output on Windows (Figure 2.14).

Figure 2.14 Starting browser-sync in the Windows Command Prompt

Once the Ottergram page has loaded in Chrome, you should see your page with the “ottergram”
heading, “ottergram” as the tab label, and a series of otter photos and names (Figure 2.15).

Figure 2.15 Viewing Ottergram in the browser

The Chrome Developer Tools

29

The Chrome Developer Tools
Chrome has built-in Developer Tools (commonly known as “DevTools”) that are among the best
available for testing styles, layouts, and more on the fly. Using the DevTools is much more efficient
than trying things out in code. The DevTools are very powerful and will be your constant companion as
you do front-end development.

You will start using the DevTools in the next chapter. For now, open the window and familiarize
yourself with its major areas.

To open the DevTools, click the icon to the right of the address bar in Chrome. Next, click More
Tools → Developer Tools (Figure 2.16).

Figure 2.16 Opening the Developer Tools

Chapter 2 Setting Up Your First Project

30

Chrome displays the DevTools to the right by default. Your screen will look something like
Figure 2.17.

Figure 2.17 The DevTools showing the elements panel

The DevTools show the relationship between the code and the resulting page elements. They let you
inspect individual elements’ attributes and styles and see immediately how the browser is interpreting
your code. Seeing this relationship is critical for both development and debugging.

In Figure 2.17, you can see the DevTools next to the web page, displaying the elements panel. The
elements panel is divided into two sections. On the left is the DOM tree view. This is a representation
of the HTML, interpreted as DOM elements. (You will learn much more about DOM, which stands for
“document object model,” in upcoming chapters.) On the righthand side of the elements panel is the
styles pane. This shows any visual styles applied to individual elements.

Having the DevTools docked on the right side of the screen while you are working is usually

convenient. If you want to change the location of the DevTools, you can click the button near the
upper-right corner. This will show you a menu of options, including buttons for the Dock side, which
will change the anchor location of the DevTools (Figure 2.18).

For the More Curious: CSS Versions

31

Figure 2.18 Changing the dock side of the DevTools

With your otters and markup in place and the DevTools open, you are ready to begin styling your
project in the next chapter.

For the More Curious: CSS Versions
The version history of CSS includes standard versions 1, 2, and 2.1. After 2.1, it was decided that the
standard needed to be broken up because it was getting too big.

There is no version 3. Instead, CSS3 is a blanket term for a number of modules, each with its own
version number.

Table 2.1 CSS versions, real and imagined
Version Number Release Year Notable Features

1 1996 Basic font properties (font-family, font-style),
foreground and background colors, text alignment, margin,
border, and padding.

2 1998 Absolute, relative, and fixed positioning; new font
properties.

2.1 2011 Removed features that were poorly supported by browsers.

“3” Various A collection of different specifications, such as media
queries, new selectors, semi-transparent colors, @font-face.

For the More Curious: The favicon.ico
Have you ever noticed the little icon that appears at the left end of your browser’s address bar when
you visit most websites? Sometimes they also appear in your browser tab, as in Figure 2.19.

Figure 2.19 The bignerdranch.com favicon.ico

