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Foreword

OpenGL® SuperBible has long been an essential reference for 3D graphics
developers, and this new edition is more relevant than ever, particularly
given the increasing importance of multi-platform deployment. In our
line of work, we spend a lot of time at the interface between high-level
rendering algorithms and fast-moving GPU and API targets. Even though,
between us, we have more than thirty-five years of experience with
real-time graphics programming, there is always more to learn. This is
why we are so excited about this new edition of the OpenGL® SuperBible.

Many programmers of our generation used OpenGL back in the nineties
before market forces dictated that we ship Windows games using
Direct3D, which first shipped in 1995. While Direct3D initially followed
in the footsteps of OpenGL, it eventually surpassed OpenGL in its rapid
exposure of advanced GPU functionality, particularly in the transition to
programmable graphics hardware.

During this transition, Microsoft consistently shipped new versions of
Direct3D for a period of eight years, ending in 2002 with DirectX 9. With
DirectX 10, however, Microsoft adopted a release strategy that tied new
versions of DirectX to new versions of Windows, not only in terms of
timing but in terms of legacy support. That is, not only did new versions
of DirectX come out less frequently — only two major versions have come
out in the last 11 years — but they were not supported on certain older
versions of Windows. Naturally, this change in strategy by Microsoft
curtailed the GPU vendors’ ability to expose their innovations on
Windows.

Fortunately, in this same timeframe, the OpenGL Architecture Review
Board accelerated development, putting OpenGL back in a position of
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leadership. In fact, there has been so much progress in the past five years
that OpenGL has reached a tipping point and is again viable for game
development, particularly as more and more developers are adopting a
multiplatform strategy that includes OS X and Linux.

OpenGL even has advantages to developers primarily targeting Windows,
allowing them to access the very latest GPU features on all Windows
versions, not just recent ones that have support for DirectX 10 or DirectX
11. In the growing Asian market, for example, Steam customers have the
same caliber of PC hardware as their Western counterparts, but far more of
them are running Windows XP, where DirectX 10 and DirectX 11 are not
available. An application written using OpenGL, rather than Direct3D,
can use the advanced features of customers’ hardware and not have to
maintain a reduced-quality rendering codepath for customers using
Windows XP.

This edition of OpenGL® SuperBible is an outstanding resource for a wide
variety of software developers, from students who may have some of the
math and programming fundamentals but need a nudge in the right
direction, to seasoned professional developers who need to quickly find
out the nitty-gritty details of a particular API feature. In fact, we suspect
that many professionals may be coming back to OpenGL after a number
of years away, and this book is an excellent resource for doing just that.

Specifically, this edition of OpenGL® SuperBible introduces many of the
new features of OpenGL 4.3, such as compute shaders, texture views,
indirect multi-draw, enhanced API debugging, and more. As readers of
previous editions have come to expect, the SuperBible continues to go well
beyond the information provided in the API documentation and into the
fundamentals of popular application techniques. Just having all of the
essential platform-specific API initialization material for Linux, OS X, and
Windows in one place is worth the price of admission, not to mention the
detailed discussions of modern debugging techniques, shadow mapping,
non-photo-realistic rendering, deferred rendering, and more.

We believe that, for newcomers, OpenGL is the right place to start writing
3D graphics code that will run on a wide array of platforms in order to
reach the largest possible audience. Likewise, for professionals, there has
never been a better time to come back to OpenGL.

Rich Geldreich and Jason Mitchell
Valve
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Preface

About This Book

This book is designed both for people who are learning computer graphics
through OpenGL and for people who may already know about graphics
but want to learn about OpenGL. The intended audience is students of
computer science, computer graphics, or game design; professional
software engineers; or simply just hobbyists and people who are interested
in learning something new. We begin by assuming that the reader knows
nothing about either computer graphics or OpenGL. The reader should be
familiar with computer programming in C++, however.

One of our goals with this book is to ensure that there are as few forward
references as possible and to require little or no assumed knowledge. The
book should be accessible and readable, and if you start from the
beginning and read all the way through, you should come away with a
good comprehension of how OpenGL works and how to use it effectively
in your applications. After reading and understanding the content of this
book, you will be well placed to read and learn from more advanced
computer graphics research articles and be confident that you could take
the principles that they cover and implement them in OpenGL.

It is not a goal of this book to cover every last feature of OpenGL, or to
mention every function in the specification or every value that can be
passed to a command. Rather, the goal is to provide a solid understanding
of OpenGL, introduce its fundamentals, and explore some of its more
advanced features. After reading this book, readers should be comfortable
looking up finer details in the OpenGL specification, experimenting with
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OpenGL on their own machines and using extensions (bonus features that
add capabilities to OpenGL not required by the main specification).

The Architecture of the Book

This book breaks down roughly into three major parts. In the first part, we
explain what OpenGL is, how it connects to the graphics pipeline, and
give minimal working examples that are sufficient to demonstrate each
section of it without requiring much, if any, knowledge of any other part
of the whole system. We lay a foundation in the math behind 3D
computer graphics, and describe how OpenGL manages the large amounts
of data that are required to provide a compelling experience to the users of
your applications. We also describe the programming model for shaders,
which will form a core part of any OpenGL application.

In the second part of the book, we begin to introduce features of OpenGL
that require some knowledge of multiple parts of the graphics pipeline
and may refer to concepts already introduced. This allows us to introduce
more complex topics without glossing over details or telling you to skip
forward in the book to find out how something really works. By taking a
second pass over the OpenGL system, we are able to delve into where data
goes as it leaves each part of OpenGL, as you’ll already have at least been
briefly introduced to its destination.

In the final part of the book, we dive deeper into the graphics pipeline,
cover some more advanced topics, and give a number of examples that use
multiple features of OpenGL. We provide a number of worked examples
that implement various rendering techniques, give a series of suggestions
and advice on OpenGL best practices and performance considerations,
and end up with a practical overview of OpenGL on several popular
platforms, including mobile devices.

In Part I, we start gently and then blast through OpenGL to give you a
taste of what’s to come. Then, we lay the groundwork of knowledge that
will be essential to you as you progress through the rest of the book. In
this part, you will find

• Chapter 1, “Introduction,” which provides a brief introduction to
OpenGL, its origins, history, and current state.

• Chapter 2, “Our First OpenGL Program,” which jumps right into
OpenGL and shows you how to create a simple OpenGL application
using the source code provided with this book.
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• Chapter 3, “Following the Pipeline,” takes a more careful look at
OpenGL and its various components, introducing each in a little
more detail and adding to the simple example presented in the
previous chapter.

• Chapter 4, “Math for 3D Graphics,” introduces the foundations of
math that will be essential for effective use of OpenGL and the
creation of interesting 3D graphics applications.

• Chapter 5, “Data,” provides you with the tools necessary to manage
data that will be consumed and produced by OpenGL.

• Chapter 6, “Shaders and Programs,” takes a deeper look at shaders,
which are fundamental to the operation of modern graphics
applications.

In Part II, we take a more detailed look at several of the topics introduced
in the first chapters. We dig deeper into each of the major parts of
OpenGL, and our example applications will start to become a little more
complex and interesting. In this part, you will find

• Chapter 7, “Vertex Processing and Drawing Commands,” which
covers the inputs to OpenGL and the mechanisms by which
semantics are applied to the raw data you provide.

• Chapter 8, “Primitive Processing,” covers some higher level concepts
in OpenGL, including connectivity information, higher-order
surfaces, and tessellation.

• Chapter 9, “Fragment Processing and the Framebuffer,” looks at how
high-level 3D graphics information is transformed by OpenGL into
2D images, and how your applications can determine the appearance
of objects on the screen.

• Chapter 10, “Compute Shaders,” illustrates how your applications can
harness OpenGL for more than just graphics, and make use of the
incredible computing power locked up in a modern graphics card.

• Chapter 11, “Controlling and Monitoring the Pipeline,” shows you
how you can get a glimpse of how OpenGL executes the commands
you give it — how long they take to execute, and the amount of data
that they produce.

In Part III, we build on the knowledge that you will have gained in reading
the first two-thirds of the book and use it to construct example
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applications that touch on multiple aspects of OpenGL. We also get into
the practicalities of building larger OpenGL applications and deploying
them across multiple platforms. In this part, you will find

• Chapter 12, “Rendering Techniques,” covers several applications of
OpenGL for graphics rendering, from simulation of light to artistic
methods and even some non-traditional techniques.

• Chapter 13, “Debugging and Performance Optimization,” provides
advice and tips on how to get your applications running without
errors, and how to get them going fast.

• Chapter 14, “Platform Specifics,” covers issues that may be particular
to certain platforms, including Windows, Mac, Linux, and mobile
devices.

Finally, several appendices are provided that describe the tools and file
formats used in this book, and give pointers to more useful OpenGL
resources.

What’s New in This Edition

This edition of the book differs somewhat from previous editions. This is
the sixth edition of the book. The first edition of the book was published
in 1996, more than fifteen years ago. Over time, OpenGL has evolved and
so has the book’s audience. Even since the fifth edition, which was
published in 2010, a lot has changed. In some ways, OpenGL has become
more complex, with more bells and whistles, more features, and more that
you have to do to make something — really anything — show up on the
screen. This has raised the barrier to entry for students, and in the fifth
edition, we tried to lower that barrier again by glossing over a lot of details
or hiding them in utility classes, functions, wrappers, and libraries.

In this edition, we do not hide anything from the reader. What this means
is that it might take a while to draw something really impressive, but the
extra effort will give you a deeper understanding of what OpenGL is and
how it interacts with the underlying graphics hardware. Only the most
basic of application frameworks are provided, and our first few programs
will be thoroughly underwhelming. However, we’re working on the
assumption that you’ll read the whole book and that by the end of it,
you’ll have something to show your friends, colleagues, or potential
employers that you can be proud of.
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In this edition, the printed copy of the OpenGL reference pages, or “man”
pages, is gone. The reference pages are available online at
http://www.opengl.org/sdk/docs/man4/ and as a live document are kept
up to date. A printed copy of those pages is somewhat redundant and
leads to errors — several were found in the reference pages after the fifth
edition went to print with no reasonable means of distributing an errata.
Further, the reference pages consumed hundreds of printed pages of the
book, adding to its cost and size. We’d rather fill a bunch of those pages
with more content and save a few trees with the rest.

We’ve also changed the structure of the book somewhat and make several
passes over OpenGL. Rather than having a whole chapter dedicated to a
single topic, for example, we introduce as much as possible as early as
possible using worked, minimal examples, and then bring in features that
touch multiple aspects of OpenGL. This should greatly reduce the number
of forward or circular references, and reduce the number of times we need
to tell you don’t worry about this, we’ll explain it later.

We hope you enjoy it.

How to Build the Samples

Retrieve the sample code from the book’s Web site,
http://www.openglsuperbible.com, unpack the archive to a directory on
your computer, and follow the instructions in the included
HOWTOBUILD.TXT file for your platform of choice. The book’s source code
has been built and tested on Microsoft Windows (Windows XP or later is
required), Linux (several major distributions), and Mac OS X. It is
recommended that you install any available operating system updates and
obtain the most recent graphics drivers from your graphics card
manufacturer.

You may notice some minor discrepancies between the source code
printed in this book and that in the source files. There are a number of
reasons for this:

• This book is about OpenGL 4.3 — the most recent version at time of
writing. The samples printed in the book are written assuming that
OpenGL 4.3 is available on the target platform. However, we
understand that in practice, operating systems, graphics drivers, and
platforms may not have the latest and greatest available, and so,
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where possible, we’ve made minor modifications to the sample
applications to allow them to run on earlier versions of OpenGL.

• There were several months between when this book’s text was
finalized for printing and when the sample applications
were packaged and posted to the Web. In that time, we discovered
opportunities for improvement, whether that was uncovering
new bugs, platform dependencies, or optimizations. The latest
version of the source code on the Web has those fixes and tweaks
applied and therefore deviates from the necessarily static copy
printed in the book.

• There is not necessarily a one-to-one mapping of listings in the
book’s text and sample applications in the Web package. Some
sample applications demonstrate more than one concept, some
aren’t mentioned in the book at all, and some listings in the book
don’t have an equivalent sample application.

Errata

We made a bunch of mistakes — we’re certain of it. It’s incredibly
frustrating as an author to spot an error that you made and know that it
has been printed, in books that your readers paid for, thousands and
thousands of times. We have to accept that this will happen, though, and
do our best to correct issues as we are able. If you think you see something
that doesn’t quite gel, check the book’s Web site for errata.

http://www.openglsuperbible.com
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Chapter 1

Introduction

WHAT YOU’LL LEARN IN THIS CHAPTER

• What the graphics pipeline is and how OpenGL relates to it

• The origins of OpenGL and how it came to be the way that it is today

• Some of the fundamental concepts that we’ll be building on
throughout the book

This book is about OpenGL. OpenGL is an interface that your application
can use to access and control the graphics subsystem of the device upon
which it runs. This could be anything from a high-end graphics
workstation to a commodity desktop computer, a video game console, or
even a mobile phone. Standardizing the interface to a subsystem increases
portability and allows software developers to concentrate on creating
quality products, on producing interesting content, and on the overall
performance of their applications, rather than worrying about the specifics
of the platforms they want them to run on. These standard interfaces are
called Application Programming Interfaces (or APIs), of which OpenGL is
one. This chapter introduces OpenGL, describes how it relates to the
underlying graphics subsystem, and provides some history on the origin
and evolution of OpenGL.
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OpenGL and the Graphics Pipeline

Generating a product at high efficiency and volume generally requires two
things: scalability and parallelism. In factories, this is achieved by using
production lines. While one worker installs the engine in a car, another
can be installing the doors and yet another can be installing the wheels.
By overlapping the phases of production of the product, with each phase
being executed by a skilled technician that concentrates their energy on
that single task, each phase becomes more efficient and overall
productivity goes up. Also, by making many cars at the same time, a
factory can have multiple workers installing multiple engines or wheels or
doors, and many cars can be on the production line at the same time, each
at different stages of completion.

The same is true in computer graphics. The commands from your program
are taken by OpenGL and sent to the underlying graphics hardware,
which works on them in an efficient manner to produce the desired result
as quickly and efficiently as possible. There could be many commands
lined up to execute on the hardware (a term referred to as in flight), and
some may even be partially completed. This allows their execution to be
overlapped such that a later stage of one command might run
concurrently with an earlier stage of another command. Furthermore,
computer graphics generally consist of many repetitions of very similar
tasks (such as figuring out what color a pixel should be), and these tasks
are usually independent of one another — that is, the result of coloring
one pixel doesn’t depend on any other. Just as a car plant can build
multiple cars simultaneously, so can OpenGL break up the work you give
it and work on its fundamental elements in parallel. Through a
combination of pipelining and parallelism, incredible performance of
modern graphics processors is realized.

The goal of OpenGL is to provide an abstraction layer between your
application and the underlying graphics subsystem, which is often a
hardware accelerator made up of one or more custom, high performance
processors with dedicated memory, display outputs, and so on. This
abstraction layer allows your application to not need to know who made
the graphics processor (or GPU — graphics processing unit), how it works,
or how well it performs. Certainly it is possible to determine this
information, but the point is that applications don’t need to.

As a design principle, OpenGL must strike a balance between too high and
too low an abstraction level. On the one hand, it must hide differences
between various manufacturers’ products (or between the various products
of a single manufacturer) and system-specific traits such as screen
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resolution, processor architecture, installed operating system, and so on.
On the other hand, the level of abstraction must be low enough that
programmers can gain access to the underlying hardware and make best
use of it. If OpenGL presented too high of an abstraction level, then it
would be easy to create programs that fit the model, but very hard to use
advanced features of the graphics hardware that weren’t included. This is
the type of model followed by software such as game engines — new
features of the graphics hardware generally require pretty large changes in
the engine in order for games built on top of it to gain access to them. If
the abstraction level is too low, applications need to start worrying about
architectural peculiarities of the system they’re running on. Low levels of
abstraction are common in video game consoles, for example, but don’t fit
well into a graphics library that spans in support from mobile phones
through gaming PCs to high power professional graphics workstations.

As technology advances, more and more research is conducted into
computer graphics, best practices are developed, and bottlenecks and
requirements move, and so OpenGL must move to keep up.

The current state-of-the-art in graphics processing units, which most
OpenGL implementations are based on, are capable of many teraflops of
computing power, have gigabytes of memory that can be accessed at
hundreds of gigabytes per second, and can drive multiple, multi-megapixel
displays at high refresh rates. GPUs are also extremely flexible, and are
able to work on tasks that might not be considered graphics at all such as
physical simulations, artificial intelligence, and even audio processing.

Current GPUs consist of large number of small programmable processors
called shader cores which run mini-programs called shaders. Each core has a
relatively low throughput, processing a single instruction of the shader in
one or more clock cycles and normally lacking advanced features such as
out-of-order execution, branch prediction, super-scalar issue, and so on.
However, each GPU might contain anywhere from a few tens to a few
thousand of these cores, and together they can perform an immense amount
of work. The graphics system is broken into a number stages, each
represented either by a shader or by a fixed-function, possibly configurable
processing block. Figure 1.1 shows a simplified schematic of the graphics
pipeline.

In Figure 1.1, the boxes with rounded corners are considered fixed-function
stages whereas the boxes with square corners are programmable, which
means that they execute shaders that you supply. In practice, some or
all of the fixed-function stages may really be implemented in shader code
too — it’s just that you don’t supply that code, but rather the GPU
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Figure 1.1: Simplified graphics pipeline

manufacturer would generally supply it as part of a driver, firmware, or
other system software.

The Origins and Evolution of OpenGL

OpenGL has its origins at Silicon Graphics, Inc., (SGI) and their IRIS GL.
GL stood for (and still stands for) “Graphics Library” and in much of the
modern OpenGL documentation you will see the term “the GL,” meaning
“the graphics library,” originating from this era. Silicon Graphics was1 a
manufacturer of high-end graphics workstations. These were extremely
expensive, and using a proprietary API for graphics wasn’t helping. Other
manufacturers were producing much more inexpensive solutions running
on competing APIs that were often compatible with each other. In the
early nineties, SGI realized that portability was important and so decided
to clean up IRIS GL, remove system-specific parts of the API and release it
as an open standard that could be implemented, royalty free by anyone.
The very first version of OpenGL was released in June of 1992 and was
marked as OpenGL 1.0.

1. Silicon Graphics, or more accurately SGI, still exists today, but went bankrupt in 2009, with
its assets and brands acquired by Rackable Systems, who assumed the moniker SGI, but do not
operate in the high-end graphics market.
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That year, SGI was also instrumental in establishing the OpenGL
Architectural Review Board (ARB), the original members of which included
companies such as Compaq, DEC, IBM, Intel, and Microsoft. Soon, other
companies such as Hewlett Packard, Sun Microsystems, Evans &
Sutherland, and Intergraph joined the group. The OpenGL ARB is the
standards body that designs, governs, and produces the OpenGL
specification and is now a part of Khronos Group, which is a larger
consortium of companies that oversees the development of many open
standards. Some of these original members either no longer exist (perhaps
having gone out of business or having been acquired by or merged with
other companies) or are no longer members of the ARB, having left the
graphics business or otherwise gone their own ways. However, some still
exist, either under new names or as the entity that was involved in the
development of that very first version of OpenGL more than 20 years ago.

At time of writing, there have been 17 editions of the OpenGL
specification. Their version numbers and dates of publication are shown
in Table 1.1. This book covers version 4.3 of the OpenGL specification.

Table 1.1: OpenGL Versions and Publication Dates

Version Publication Date

OpenGL 1.0 January 1992
OpenGL 1.1 January 1997
OpenGL 1.2 March 1998
OpenGL 1.2.1 October 1998
OpenGL 1.3 August 2001
OpenGL 1.4 July 2002
OpenGL 1.5 July 2003
OpenGL 2.0 September 2004
OpenGL 2.1 July 2006
OpenGL 3.0 August 2008
OpenGL 3.1 March 2009
OpenGL 3.2 August 2009
OpenGL 3.3 March 2010
OpenGL 4.0 March 20102

OpenGL 4.1 July 2010
OpenGL 4.2 August 2011
OpenGL 4.3 August 2012

2. Yes, two versions at the same time!
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Core Profile OpenGL

Twenty years is a long time in the development of cutting edge
technology. In 1992, the top-of-the-line Intel CPU was the 80486, math
co-processors were still optional, and the Pentium had not yet been
invented (or at least released). Apple computers were still using Motorola
68K derived processors, and the PowerPC processors to which they would
later switch would be made available during the second half of 1992.
High-performance graphics acceleration was simply not something that
was common in commodity home computers. If you didn’t have access to
a high-performance graphics workstation, you probably would have no
hope of using OpenGL for anything. Software rendering ruled the world,
and the Future Crew’s Unreal demo won the Assembly ’92 demo party. The
best you could hope for in a home computer was some basic filled
polygons or sprite rendering capabilities. The state of the art in 1992
home computer 3D graphics is shown in Figure 1.2.

Figure 1.2: Future Crew’s 1992 demo Unreal

Over time, the price of graphics hardware came down, performance went
up, and, partly due to low cost acceleration add-in boards for PCs and
partly due to the increased performance of video game consoles, new
features and capabilities showed up in affordable graphics processors and
were added to OpenGL. Most of these features originated in extensions
proposed by members of the OpenGL ARB. Some interacted well with each
other and with existing features in OpenGL, and some did not. Also, as
newer, better ways of squeezing performance out of graphics systems were
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invented, they were simply added to OpenGL, resulting in it having
multiple ways of doing the same thing.

For many years, the ARB held a strong position on backwards
compatibility, as it still does today. However, this backwards compatibility
comes at a significant cost. Best practices have changed — what may
have worked well or was not really a significant bottleneck on mid-1990s
graphics hardware doesn’t fit modern graphics processor architecture well.
Specifying how new features interact with the older legacy features isn’t
easy and, in many cases, can make it almost impossible to cleanly
introduce a new feature to OpenGL. As for implementing OpenGL, this
has become such a difficult task that drivers tend to have more bugs than
they really should, and graphics vendors need to spend considerable
amounts of energy maintaining support for all kinds of legacy features
that don’t contribute to the advancement of or innovation in graphics.

For these reasons, in 2008, the ARB decided it would “fork” the OpenGL
specification into two profiles. The first is the modern, core profile, which
removes a number of legacy features leaving only those that are truly
accelerated by current graphics hardware. This specification is several
hundred pages shorter3 than the other version of the specification, the
compatibility profile. The compatibility profile maintains backwards
compatibility with all revisions of OpenGL back to version 1.0. That
means that software written in 1992 should compile and run on a modern
graphics card with a thousand times higher performance today than
when that program was first produced.

However, the compatibility profile really exists to allow software
developers to maintain legacy applications and to add features to them
without having to tear out years of work in order to shift to a new API.
However, the core profile is strongly recommended by most OpenGL
experts to be the profile that should be used for new application
development. In particular, on some platforms, newer features are only
available if you are using the core profile of OpenGL, and on others, an
application written using the core profile of OpenGL will run faster than
that same application unmodified, except to request the compatibility
profile, even if it only uses features that are available in core profile
OpenGL. Finally, if a feature’s in the compatibility profile but has been
removed from the core profile of OpenGL, there’s probably a good reason
for that, and it’s a reasonable indication that you shouldn’t be using it.

3. The core profile specification is still pretty hefty at well over 700 pages long.
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This book covers only the core profile of OpenGL, and this is the last time
we will mention the compatibility profile.

Primitives, Pipelines, and Pixels

As discussed, the model followed by OpenGL is that of a production line,
or pipeline. Data flow within this model is generally one way, with data
formed from commands called by your programs entering the front of
the pipeline and flowing from stage to stage until it reaches the end of the
pipeline. Along the way, shaders or other fixed-function blocks within
the pipeline may pick up more data from buffers or textures, which are
structures designed to store information that will be used during
rendering. Some stages in the pipeline may even save data into these
buffers or textures, allowing the application to read or save the data, or
even for feedback to occur.

The fundamental unit of rendering in OpenGL is known as the primitive.
OpenGL supports many types of primitives, but the three basic renderable
primitive types are points, lines, and triangles. Everything you see
rendered on the screen is a collection of (perhaps cleverly colored) points,
lines, and triangles. Applications will normally break complex surfaces
into a very large number of triangles and send them to OpenGL where
they are rendered using a hardware accelerator called a rasterizer. Triangles
are, relatively speaking, pretty easy to draw. As polygons, triangles are
always convex, and therefore filling rules are easy to devise and follow.
Concave polygons can always be broken down into two or more triangles,
and so hardware natively supports rendering triangles directly and relies
on other subsystems4 to break complex geometry into triangles. The
rasterizer is dedicated hardware that converts the three-dimensional
representation of a triangle into a series of pixels that need to be drawn
onto the screen.

Points, lines, and triangles are formed from collections of one, two,
or three vertices, respectively. A vertex is simply a point within a
coordinate space. In our case, we primarily consider a three-dimensional
coordinate system. The graphics pipeline is broken down into two major
parts. The first part, often known as the front end, processes vertices and
primitives, eventually forming them into the points, lines, and triangles
that will be handed off to the rasterizer. This is known as primitive
assembly. After the rasterizer, the geometry has been converted from what

4. Sometimes, these subsystems are more hardware modules, and sometimes they are func-
tions of drivers implemented in software.
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is essentially a vector representation into a large number of independent
pixels. These are handed off to the back end, which includes depth and
stencil testing, fragment shading, blending, and updating the output
image.

As you progress through this book, you will see how to tell OpenGL to
start working for you. We’ll go over how to create buffers and textures and
hook them up to your programs. We’ll also see how to write shaders to
process your data and how to configure the fixed-function blocks of
OpenGL to do what you want. OpenGL is really a large collection of fairly
simple concepts, built upon each other. Having a good foundation and
big-picture view of the system is essential, and over the next few chapters,
we hope to provide that to you.

Summary

In this chapter you’ve been introduced to OpenGL and have read a little
about its origins, history, status, and direction. You have seen the OpenGL
pipeline and have been told how this book is going to progress. We have
mentioned some of the terminology that we’ll be using throughout the
book. Over the next few chapters, you’ll create our first OpenGL program,
dig a little deeper into the various stages of the OpenGL pipeline, and then
lay some foundations with some of the math that’s useful in the world of
computer graphics.

Summary 11
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Chapter 2

Our First OpenGL
Program

WHAT YOU’LL LEARN IN THIS CHAPTER

• How to create and compile shader code

• How to draw with OpenGL

• How to use the book’s application framework to initialize your
programs and clean up after yourself

In this chapter, we introduce the simple application framework that is
used for almost all of the samples in this book. This shows you how to
create the main window with the book’s application framework and how
to render simple graphics into it. You’ll also see what a very simple GLSL
shader looks like, how to compile it, and how to use it to render simple
points. The chapter concludes with your very first OpenGL triangle.
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Creating a Simple Application

To introduce the application framework that’ll be used in the remainder of
this book, we’ll start with an extremely simple example application. The
application framework is brought into your application by including
sb6.h in your source code. This is a C++ header file that defines a
namespace called sb6 that includes the declaration of an application class,
sb6::application, from which we can derive our examples. The
framework also includes a number of utility functions and a simple math
library called vmath to help you with some of the number crunching
involved in OpenGL.

To create an application, we simply include sb6.h, derive a class v
sb6::application, and (in exactly one of our source files) include an
instance of the DECLARE_MAIN macro. This defines the main entry point of
our application, which creates an instance of our class (the type of which
is passed as a parameter to the macro) and calls its run() method, which
implements the application’s main loop.

In turn, this performs some initialization by calling the startup() method
and then calls the render() method in a loop. In the default
implementation, both methods are virtual functions with empty bodies.
We override the render() method in our derived class and write our
drawing code inside it. The application framework takes care of creating a
window, handling input, and displaying the rendered results to the user.
The complete source code for our first example is given in Listing 2.1, and
its output is shown in Figure 2.1.

// Include the "sb6.h" header file
#include "sb6.h"

// Derive my_application from sb6::application
class my_application : public sb6::application
{
public:

// Our rendering function
void render(double currentTime)
{

// Simply clear the window with red
static const GLfloat red[] = { 1.0f, 0.0f, 0.0f, 1.0f };
glClearBufferfv(GL_COLOR, 0, red);

}
};

// Our one and only instance of DECLARE_MAIN
DECLARE_MAIN(my_application);

Listing 2.1: Our first OpenGL application
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Figure 2.1: The output of our first OpenGL application

The example shown in Listing 2.1 simply clears the whole screen to red.
This introduces our first OpenGL function, glClearBufferfv(). The
prototype of glClearBufferfv() is

void glClearBufferfv(GLenum buffer,
GLint drawBuffer,
const GLfloat * value);

All OpenGL functions start with gl and follow a number of naming
conventions such as encoding some of their parameter types as suffixes on
the end of the function names. This allows a limited form of overloading
even in languages that don’t directly support this. In this case, the suffix
fv means that the function consumes a vector (v) of floating-point (f)
values, where arrays (generally referenced by pointers in languages like C)
and vectors are used interchangeably by OpenGL.

The glClearBufferfv() function tells OpenGL to clear the buffer specified
by the first parameter (in this case GL_COLOR) to the value specified in its
third parameter. The second parameter, drawBuffer, is used when there are
multiple output buffers that could be cleared. Because we’re only using one
here and drawBuffer is a zero-based index, we’ll just set it to zero in this
example. Here, that color is stored in the array red, which contains four
floating-point values — one each for red, green, blue, and alpha, in that
order. The red, green, and blue terms should be self-explanatory. Alpha is a
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fourth component that is associated with a color and is often used to
encode the opacity of a fragment. When used this way, setting alpha to zero
will make the fragment completely transparent, and setting it to one will
make it completely opaque. The alpha value can also be stored in the
output image and used in some parts of OpenGL’s calculations, even
though you can’t see it. You can see that we set both the red and alpha
values to one and the others to zero. This specifies an opaque red color. The
result of running this application is shown in Figure 2.1.

This initial application isn’t particularly interesting1 as all it does is fill the
window with a solid red color. You will notice that our render() function
takes a single parameter — currentTime. This contains the number of
seconds since the application was started, and we can use it to create a
simple animation. In this case, we can use it to change the color that we
use to clear the window. Our modified render() function2 is shown in
Listing 2.2.

// Our rendering function
void render(double currentTime)
{

const GLfloat color[] = { (float)sin(currentTime) * 0.5f + 0.5f,
(float)cos(currentTime) * 0.5f + 0.5f,
0.0f, 1.0f };

glClearBufferfv(GL_COLOR, 0, color);
}

Listing 2.2: Animating color over time

Now our window fades from red through yellow, orange, green, and back
to red again. Still not that exciting, but at least it does something.

Using Shaders

As we mentioned in the introduction to the graphics pipeline in
Chapter 1, “Introduction,” OpenGL works by connecting a number of
mini-programs called shaders together with fixed-function glue. When
you draw, the graphics processor executes your shaders and pipes their

1. This sample is especially uninteresting if you are reading this book in black and white!

2. If you’re copying this code into your own example, you’ll need to include <math.h> in order
to get the declarations of sin() and cos().
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inputs and outputs along the pipeline until pixels3 come out the end. In
order to draw anything at all, you’ll need to write at least a couple of
shaders.

OpenGL shaders are written in a language called the OpenGL Shading
Language, or GLSL. This is a language that has its origins in C, but has
been modified over time to make it better suited to running on graphics
processors. If you are familiar with C, then it shouldn’t be hard to pick up
GLSL. The compiler for this language is built into OpenGL. The source
code for your shader is placed into a shader object and compiled, and then
multiple shader objects can be linked together to form a program object.
Each program object can contain shaders for one or more shader stages.
The shader stages of OpenGL are vertex shaders, tessellation control and
evaluation shaders, geometry shaders, fragment shaders, and compute
shaders. The minimal useful pipeline configuration consists only of a
vertex shader4 (or just a compute shader), but if you wish to see any pixels
on the screen, you will also need a fragment shader.

Our first couple of shaders are extremely simple. Listing 2.3 shows our
first vertex shader. This is about as simple as it gets. In the first line, we
have the #version 430 core declaration, which tells the shader compiler
that we intend to use version 4.3 of the shading language. Notice that we
include the keyword core to indicate that we only intend to use features
from the core profile of OpenGL.

Next, we have the declaration of our main function, which is where the
shader starts executing. This is exactly the same as in a normal C program,
except that the main function of a GLSL shader has no parameters. Inside
our main function, we assign a value to gl_Position, which is part of the
plumbing that connects the shader to the rest of OpenGL. All variables
that start with gl_ are part of OpenGL and connect shaders to each other
or to the various parts of fixed functionality in OpenGL. In the vertex
shader, gl_Position represents the output position of the vertex. The
value we assign (vec4(0.0, 0.0, 0.5, 1.0)) places the vertex right in the
middle of OpenGL’s clip space, which is the coordinate system expected by
the next stage of the OpenGL pipeline.

3. Actually, there are a number of use cases of OpenGL that create no pixels at all. We will
cover those in a while. For now, let’s just draw some pictures.

4. If you try to draw anything when your pipeline does not contain a vertex shader, the results
will be undefined and almost certainly not what you were hoping for.
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#version 430 core

void main(void)
{

gl_Position = vec4(0.0, 0.0, 0.5, 1.0);
}

Listing 2.3: Our first vertex shader

Next, our fragment shader is given in Listing 2.4. Again, this is extremely
simple. It too starts with a #version 430 core declaration. Next, it
declares color as an output variable using the out keyword. In fragment
shaders, the value of output variables will be sent to the window or screen.
In the main function, it assigns a constant to this output. By default, that
value goes directly onto the screen and is a vector of four floating-point
values, one each for red, green, blue, and alpha, just like in the parameter
to glClearBufferfv(). In this shader, the value we’ve used is
vec4(0.0, 0.8, 1.0, 1.0), which is a cyan color.

#version 430 core

out vec4 color;

void main(void)
{

color = vec4(0.0, 0.8, 1.0, 1.0);
}

Listing 2.4: Our first fragment shader

Now that we have both a vertex and a fragment shader, it’s time to
compile them and link them together into a program that can be run by
OpenGL. This is similar to the way that programs written in C++ or other
similar languages are compiled and linked to produce executables. The
code to link our shaders together into a program object is shown in
Listing 2.5.

GLuint compile_shaders(void)
{

GLuint vertex_shader;
GLuint fragment_shader;
GLuint program;

// Source code for vertex shader
static const GLchar * vertex_shader_source[] =
{

"#version 430 core \n"
" \n"
"void main(void) \n"
"{ \n"
" gl_Position = vec4(0.0, 0.0, 0.5, 1.0); \n"
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"} \n"
};

// Source code for fragment shader
static const GLchar * fragment_shader_source[] =
{

"#version 430 core \n"
" \n"
"out vec4 color; \n"
" \n"
"void main(void) \n"
"{ \n"
" color = vec4(0.0, 0.8, 1.0, 1.0); \n"
"} \n"

};

// Create and compile vertex shader
vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, vertex_shader_source, NULL);
glCompileShader(vertex_shader);

// Create and compile fragment shader
fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, fragment_shader_source, NULL);
glCompileShader(fragment_shader);

// Create program, attach shaders to it, and link it
program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);

// Delete the shaders as the program has them now
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);

return program;
}

Listing 2.5: Compiling a simple shader

In Listing 2.5, we introduce a handful of new functions:

• glCreateShader() creates an empty shader object, ready to accept
source code and be compiled.

• glShaderSource() hands shader source code to the shader object so
that it can keep a copy of it.

• glCompileShader() compiles whatever source code is contained in
the shader object.

• glCreateProgram() creates a program object to which you can attach
shader objects.

• glAttachShader() attaches a shader object to a program object.
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• glLinkProgram() links all of the shader objects attached to a program
object together.

• glDeleteShader() deletes a shader object. Once a shader has been
linked into a program object, the program contains the binary code
and the shader is no longer needed.

The shader source code from Listing 2.3 and Listing 2.4 is included in our
program as constant strings that are passed to the glShaderSource()
function, which copies them into the shader objects that we created with
glCreateShader(). The shader object stores a copy of our source code, and
then when we call glCompileShader(), it compiles the GLSL shader source
code into an intermediate binary representation, which is also stored in
the shader object. The program object represents the linked executable
that we will use for rendering. We attach our shaders to the program
object using glAttachShader() and then call glLinkProgram(), which links
the objects together into code that can be run on the graphics processor.
Attaching a shader object to a program object creates a reference to the
shader and so we can delete it, knowing that the program object will hold
onto the shader’s contents as long as it needs it. The compile_shaders
function in Listing 2.5 returns the newly created program object.

When we call this function, we need to keep the returned program object
somewhere so that we can use it to draw things. Also, we really don’t want
to recompile the whole program every time we want to use it. So, we need
a function that is called once when the program starts up. The sb6
application framework provides just such a function:
application::startup(), which we can override in our sample
application and perform any one-time setup work.

One final thing that we need to do before we can draw anything is to
create a vertex array object (VAO), which is an object that represents the
vertex fetch stage of the OpenGL pipeline and is used to supply input to
the vertex shader. As our vertex shader doesn’t have any inputs right now,
we don’t need to do much with the VAO. Nevertheless, we still need to
create the VAO so that OpenGL will let us draw. To create the VAO, we call
the OpenGL function glGenVertexArrays(), and to attach it to our
context, we call glBindVertexArray(). Their prototypes are

void glGenVertexArrays(GLsizei n,
GLuint * arrays);

void glBindVertexArray(GLuint array);
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The vertex array object maintains all of the state related to the input to
the OpenGL pipeline. We will add calls to glGenVertexArrays() and
glBindVertexArray() to our startup() function.

In Listing 2.6, we have overridden the startup() member function of the
sb6::application class and put our own initialization code in it. Again,
as with render(), the startup() function is defined as an empty virtual
function in sb6::application and is called automatically by the run()
function. From startup(), we call compile_shaders and store the
resulting program object in the rendering_program member variable in
our class. When our application is done running, we should also clean up
after ourselves, and so we have also overridden the shutdown() function
and in it, we delete the program object that we created at start-up. Just as
when we were done with our shader objects, we called glDeleteShader(),
so when we are done with our program objects, we call
glDeleteProgram(). In our shutdown() function, we also delete the vertex
array object we created in our startup() function.

class my_application : public sb6::application
{
public:

// <snip>

void startup()
{

rendering_program = compile_shaders();
glGenVertexArrays(1, &vertex_array_object);
glBindVertexArray(vertex_array_object);

}

void shutdown()
{

glDeleteVertexArrays(1, &vertex_array_object);
glDeleteProgram(rendering_program);
glDeleteVertexArrays(1, &vertex_array_object);

}

private:
GLuint rendering_program;
GLuint vertex_array_object;

};

Listing 2.6: Creating the program member variable

Now that we have a program, we need to execute the shaders in it and
actually get to drawing something on the screen. We modify our render()
function to call glUseProgram() to tell OpenGL to use our program object
for rendering and then call our first drawing command, glDrawArrays().
The updated listing is shown in Listing 2.7.
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// Our rendering function
void render(double currentTime)
{

const GLfloat color[] = { (float)sin(currentTime) * 0.5f + 0.5f,
(float)cos(currentTime) * 0.5f + 0.5f,
0.0f, 1.0f };

glClearBufferfv(GL_COLOR, 0, color);

// Use the program object we created earlier for rendering
glUseProgram(rendering_program);

// Draw one point
glDrawArrays(GL_POINTS, 0, 1);

}

Listing 2.7: Rendering a single point

The glDrawArrays() function sends vertices into the OpenGL pipeline. Its
prototype is

void glDrawArrays(GLenum mode,
GLint first,
GLsizei count);

For each vertex, the vertex shader (the one in Listing 2.3) is executed. The
first parameter to glDrawArrays() is the mode parameter and tells OpenGL
what type of graphics primitive we want to render. In this case, we
specified GL_POINTS because we want to draw a single point. The second
parameter (first) is not relevant in this example, and so we’ve set it to
zero. Finally, the last parameter is the number of vertices to render. Each
point is represented by a single vertex, and so we tell OpenGL to render
only one vertex, resulting in just one point being rendered. The result of
running this program is shown in Figure 2.2.

As you can see, there is a tiny point in the middle of the window. For your
viewing pleasure, we’ve zoomed in on the point and shown it in the inset
at the bottom right of the image. Congratulations! You’ve made your very
first OpenGL rendering. Although it’s not terribly impressive yet, it lays
the groundwork for more and more interesting drawing and proves that
our application framework and our first, extremely simple shaders are
working.

In order to make our point a little more visible, we can ask OpenGL to
draw it a little larger than a single pixel. To do this, we’ll call the
glPointSize() function, whose prototype is

void glPointSize(GLfloat size);

This function sets the diameter of the point in pixels to the value you
specify in size. The maximum value that you can use for points is
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Figure 2.2: Rendering our first point

Figure 2.3: Making our first point bigger

implementation defined, but OpenGL guarantees that it’s at least 64
pixels. By adding the following line

glPointSize(40.0f);

to our rendering function in Listing 2.7, we set the diameter of points to
40 pixels, and are presented with the image in Figure 2.3.
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Drawing Our First Triangle

Drawing a single point is not really that impressive (even if it is really
big!) — we already mentioned that OpenGL supports many different
primitive types, and that the most important are points, lines, and
triangles. In our toy example, we draw a single point by passing the token
GL_POINTS to the glDrawArrays() function. What we really want to do is
draw lines or triangles. As you may have guessed, we could also have
passed GL_LINES or GL_TRIANGLES to glDrawArrays(), but there’s one
hitch: The vertex shader we showed you in Listing 2.3 places every vertex
in the same place, right in the middle of clip space. For points, that’s fine
as OpenGL assigns area to points for you, but for lines and triangles,
having two or more vertices in the exact same place produces a degenerate
primitive, which is a line with zero length, or a triangle with zero area. If we
try to draw anything but points with this shader, we won’t get any output
at all because all of the primitives will be degenerate. To fix this, we need
to modify our vertex shader to assign a different position to each vertex.

Fortunately, GLSL includes a special input to the vertex shader called
gl_VertexID, which is the index of the vertex that is being processed at
the time. The gl_VertexID input starts counting from the value given by
the first parameter of glDrawArrays() and counts upwards one vertex at
a time for count vertices (the third parameter of glDrawArrays()). This
input is one of the many built-in variables provided by GLSL that represent
data that is generated by OpenGL or that you should generate in your
shader and give to OpenGL (gl_Position, which we just covered, is
another example of a built-in variable). We can use this index to assign a
different position to each vertex (see Listing 2.8, which does exactly this).

#version 430 core

void main(void)
{

// Declare a hard-coded array of positions
const vec4 vertices[3] = vec4[3](vec4( 0.25, -0.25, 0.5, 1.0),

vec4(-0.25, -0.25, 0.5, 1.0),
vec4( 0.25, 0.25, 0.5, 1.0));

// Index into our array using gl_VertexID
gl_Position = vertices[gl_VertexID];

}

Listing 2.8: Producing multiple vertices in a vertex shader

By using the shader of Listing 2.8, we can assign a different position to
each of the vertices based on their value of gl_VertexID. The points in the
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array vertices form a triangle, and if we modify our rendering function
to pass GL_TRIANGLES to glDrawArrays() instead of GL_POINTS, as shown in
Listing 2.9, then we obtain the image shown in Figure 2.4.

// Our rendering function
void render(double currentTime)
{

const GLfloat color[] = { 0.0f, 0.2f, 0.0f, 1.0f };
glClearBufferfv(GL_COLOR, 0, color);

// Use the program object we created earlier for rendering
glUseProgram(rendering_program);

// Draw one triangle
glDrawArrays(GL_TRIANGLES, 0, 3);

}

Listing 2.9: Rendering a single triangle

Figure 2.4: Our very first OpenGL triangle

Summary

This concludes the construction of our first OpenGL program. Shortly, we
will cover how to get data into your shaders from your application, how to
pass your own inputs to the vertex shader, how to pass data from shader
stage to shader stage, and more.
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In this chapter, you have been briefly introduced to the sb6 application
framework, compiled a shader, cleared the window, and drawn points and
triangles. You have seen how to change the size of points using the
glPointSize() function and have seen your first drawing command —
glDrawArrays().
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Chapter 3

Following the Pipeline

WHAT YOU’LL LEARN IN THIS CHAPTER

• What each of the stages in the OpenGL pipeline does

• How to connect your shaders to the fixed-function pipeline stages

• How to create a program that uses every stage of the graphics
pipeline simultaneously

In this chapter, we will walk all the way along the OpenGL pipeline from
start to finish, providing insight into each of the stages, which include
fixed-function blocks and programmable shader blocks. You have already
read a whirlwind introduction to the vertex and fragment shader stages.
However, the application that you constructed simply drew a single
triangle at a fixed position. If we want to render anything interesting with
OpenGL, we’re going to have to learn a lot more about the pipeline and all
of the things you can do with it. This chapter introduces every part of the
pipeline, hooks them up to each other, and provides an example shader
for each stage.
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Passing Data to the Vertex Shader

The vertex shader is the first programmable stage in the OpenGL pipeline
and has the distinction of being the only mandatory stage in the pipeline.
However, before the vertex shader runs, a fixed-function stage known as
vertex fetching, or sometimes vertex pulling, is run. This automatically
provides inputs to the vertex shader.

Vertex Attributes

In GLSL, the mechanism for getting data in and out of shaders is to declare
global variables with the in and out storage qualifiers. You were briefly
introduced to the out qualifier back in Chapter 2 when Listing 2.4 used it to
output a color from the fragment shader. At the start of the OpenGL pipeline,
we use the in keyword to bring inputs into the vertex shader. Between stages,
in and out can be used to form conduits from shader to shader and pass data
between them. We’ll get to that shortly. For now, consider the input to the
vertex shader and what happens if you declare a variable with an in storage
qualifier. This marks the variable as an input to the vertex shader, which
means that it is automatically filled in by the fixed-function vertex fetch
stage. The variable becomes known as a vertex attribute.

Vertex attributes are how vertex data is introduced into the OpenGL
pipeline. To declare a vertex attribute, declare a variable in the vertex
shader using the in storage qualifier. An example of this is shown in
Listing 3.1, where we declare the variable offset as an input attribute.

#version 430 core

// "offset" is an input vertex attribute
layout (location = 0) in vec4 offset;

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4( 0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4( 0.25, 0.25, 0.5, 1.0));

// Add "offset" to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

}

Listing 3.1: Declaration of a vertex attribute

In Listing 3.1, we have added the variable offset as an input to the vertex
shader. As it is an input to the first shader in the pipeline, it will be filled
automatically by the vertex fetch stage. We can tell this stage what to fill
the variable with by using one of the many variants of the vertex attribute
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functions, glVertexAttrib*(). The prototype for glVertexAttrib4fv(),
which we use in this example, is

void glVertexAttrib4fv(GLuint index,
const GLfloat * v);

Here, the parameter index is used to reference the attribute and v is a
pointer to the new data to put into the attribute. You may have noticed
the layout (location = 0) code in the declaration of the offset
attribute. This is a layout qualifier, and we have used it to set the location of
the vertex attribute to zero. This location is the value we’ll pass in index
to refer to the attribute.

Each time we call glVertexAttrib*(), it will update the value of the vertex
attribute that is passed to the vertex shader. We can use this to animate
our one triangle. Listing 3.2 shows an updated version of our rendering
function that updates the value of offset in each frame.

// Our rendering function
virtual void render(double currentTime)
{

const GLfloat color[] = { (float)sin(currentTime) * 0.5f + 0.5f,
(float)cos(currentTime) * 0.5f + 0.5f,
0.0f, 1.0f };

glClearBufferfv(GL_COLOR, 0, color);

// Use the program object we created earlier for rendering
glUseProgram(rendering_program);

GLfloat attrib[] = { (float)sin(currentTime) * 0.5f,
(float)cos(currentTime) * 0.6f,
0.0f, 0.0f };

// Update the value of input attribute 0
glVertexAttrib4fv(0, attrib);

// Draw one triangle
glDrawArrays(GL_TRIANGLES, 0, 3);

}

Listing 3.2: Updating a vertex attribute

When we run the program with the rendering function of Listing 3.2, the
triangle will move in a smooth oval shape around the window.

Passing Data from Stage to Stage

So far, you have seen how to pass data into a vertex shader by creating a
vertex attribute using the in keyword, how to communicate with
fixed-function blocks by reading and writing built-in variables such as
gl_VertexID and gl_Position, and how to output data from the fragment
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shader using the out keyword. However, it’s also possible to send your
own data from shader stage to shader stage using the same in and out
keywords. Just as you used the out keyword in the fragment shader to
create the output variable that it writes its color values to, you can create
an output variable in the vertex shader by using the out keyword as well.
Anything you write to output variables in one shader get sent to similarly
named variables declared with the in keyword in the subsequent stage.
For example, if your vertex shader declares a variable called vs_color
using the out keyword, it would match up with a variable named
vs_color declared with the in keyword in the fragment shader stage
(assuming no other stages were active in between).

If we modify our simple vertex shader as shown in Listing 3.3 to include
vs_color as an output variable, and correspondingly modify our simple
fragment shader to include vs_color as an input variable as shown in
Listing 3.4, we can pass a value from the vertex shader to the fragment
shader. Then, rather than outputting a hard-coded value, the fragment
can simply output the color passed to it from the vertex shader.

#version 430 core

// "offset" and "color" are input vertex attributes
layout (location = 0) in vec4 offset;
layout (location = 1) in vec4 color;

// "vs_color" is an output that will be sent to the next shader stage
out vec4 vs_color;

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4( 0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4( 0.25, 0.25, 0.5, 1.0));

// Add "offset" to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

// Output a fixed value for vs_color
vs_color = color;

}

Listing 3.3: Vertex shader with an output

As you can see in Listing 3.3, we declare a second input to our vertex
shader, color (this time at location 1), and write its value to the vs_output
output. This is picked up by the fragment shader of Listing 3.4 and written
to the framebuffer. This allows us to pass a color all the way from a vertex
attribute that we can set with glVertexAttrib*() through the vertex
shader, into the fragment shader and out to the framebuffer, meaning that
we can draw different colored triangles!
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#version 430 core

// Input from the vertex shader
in vec4 vs_color;

// Output to the framebuffer
out vec4 color;

void main(void)
{

// Simply assign the color we were given by the vertex shader
// to our output
color = vs_color;

}

Listing 3.4: Fragment shader with an input

Interface Blocks

Declaring interface variables one at a time is possibly the simplest way to
communicate data between shader stages. However, in most non-trivial
applications, you may wish to communicate a number of different pieces
of data between stages, and these may include arrays, structures, and other
complex arrangements of variables. To achieve this, we can group together
a number of variables into an interface block. The declaration of an
interface block looks a lot like a structure declaration, except that it is
declared using the in or out keyword depending on whether it is an input
to or output from the shader. An example interface block definition is
shown in Listing 3.5.

#version 430 core

// "offset" is an input vertex attribute
layout (location = 0) in vec4 offset;
layout (location = 1) in vec4 color;

// Declare VS_OUT as an output interface block
out VS_OUT
{

vec4 color; // Send color to the next stage
} vs_out;

void main(void)
{

const vec4 vertices[3] = vec4[3](vec4( 0.25, -0.25, 0.5, 1.0),
vec4(-0.25, -0.25, 0.5, 1.0),
vec4( 0.25, 0.25, 0.5, 1.0));

// Add "offset" to our hard-coded vertex position
gl_Position = vertices[gl_VertexID] + offset;

// Output a fixed value for vs_color
vs_out.color = color;

}

Listing 3.5: Vertex shader with an output interface block
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Note that the interface block in Listing 3.5 has both a block name (VS_OUT,
upper case) and an instance name (vs_out, lower case). Interface blocks are
matched between stages using the block name (VS_OUT in this case), but are
referenced in shaders using the instance name. Thus, modifying our
fragment shader to use an interface block gives the code shown in Listing 3.6.

#version 430 core

// Declare VS_OUT as an input interface block
in VS_OUT
{

vec4 color; // Send color to the next stage
} fs_in;

// Output to the framebuffer
out vec4 color;

void main(void)
{

// Simply assign the color we were given by the vertex shader
// to our output
color = fs_in.color;

}

Listing 3.6: Fragment shader with an input interface block

Matching interface blocks by block name but allowing block instances to
have different names in each shader stage serves two important purposes:
First, it allows the name by which you refer to the block to be different in
each stage, avoiding confusing things such as having to use vs_out in a
fragment shader, and second, it allows interfaces to go from being single
items to arrays when crossing between certain shader stages, such as the
vertex and tessellation or geometry shader stages as we will see in a short
while. Note that interface blocks are only for moving data from shader
stage to shader stage — you can’t use them to group together inputs to the
vertex shader or outputs from the fragment shader.

Tessellation

Tessellation is the process of breaking a high-order primitive (which is
known as a patch in OpenGL) into many smaller, simpler primitives such
as triangles for rendering. OpenGL includes a fixed-function, configurable
tessellation engine that is able to break up quadrilaterals, triangles, and
lines into a potentially large number of smaller points, lines, or triangles
that can be directly consumed by the normal rasterization hardware
further down the pipeline. Logically, the tessellation phase sits directly
after the vertex shading stage in the OpenGL pipeline and is made up of
three parts: the tessellation control shader, the fixed-function tessellation
engine, and the tessellation evaluation shader.
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Tessellation Control Shaders

The first of the three tessellation phases is the tessellation control shader
(sometimes known as simply the control shader, or abbreviated to TCS).
This shader takes its input from the vertex shader and is primarily
responsible for two things: the first being the determination of the level of
tessellation that will be sent to the tessellation engine, and the second
being the generation of data that will be sent to the tessellation evaluation
shader that is run after tessellation has occurred.

Tessellation in OpenGL works by breaking down high-order surfaces
known as patches into points, lines, or triangles. Each patch is formed
from a number of control points. The number of control points per patch is
configurable and set by calling glPatchParameteri() with pname set to
GL_PATCH_VERTICES and value set to the number of control points that
will be used to construct each patch. The prototype of
glPatchParameteri() is

void glPatchParameteri(GLenum pname,
GLint value);

By default, the number of control points per patch is three, and so if this is
what you want (as in our example application), you don’t need to call it at
all. When tessellation is active, the vertex shader runs once per control
point whilst the tessellation control shader runs in batches on groups of
control points where the size of each batch is the same as the number of
vertices per patch. That is, vertices are used as control points, and the
result of the vertex shader is passed in batches to the tessellation control
shader as its input. The number of control points per patch can be
changed such that the number of control points that is output by the
tessellation control shader can be different from the number of control
points that it consumes. The number of control points produced by the
control shader is set using an output layout qualifier in the control
shader’s source code. Such a layout qualifier looks like:

layout (vertices = N) out;

Here, N is the number of control points per patch. The control shader is
responsible for calculating the values of the output control points and for
setting the tessellation factors for the resulting patch that will be sent to
the fixed-function tessellation engine. The output tessellation factors are
written to the gl_TessLevelInner and gl_TessLevelOuter built-in output
variables, whereas any other data that is passed down the pipeline is
written to user-defined output variables (those declared using the out
keyword, or the special built-in gl_out array) as normal.
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Listing 3.7 shows a simple tessellation control shader. It sets the number
of output control points to three (the same as the default number of input
control points) using the layout (vertices = 3) out; layout qualifier,
copies its input to its output (using the built-in variables gl_in and
gl_out), and sets the inner and outer tessellation level to 5. The built-in
input variable gl_InvocationID is used to index into the gl_in and
gl_out arrays. This variable contains the zero-based index of the control
point within the patch being processed by the current invocation of the
tessellation control shader.

#version 430 core

layout (vertices = 3) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 5.0;
gl_TessLevelOuter[0] = 5.0;
gl_TessLevelOuter[1] = 5.0;
gl_TessLevelOuter[2] = 5.0;

}
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

}

Listing 3.7: Our first tessellation control shader

The Tessellation Engine

The tessellation engine is a fixed-function part of the OpenGL pipeline
that takes high-order surfaces represented as patches and breaks them
down into simpler primitives such as points, lines, or triangles. Before the
tessellation engine receives a patch, the tessellation control shader
processes the incoming control points and sets tessellation factors that are
used to break down the patch. After the tessellation engine produces the
output primitives, the vertices representing them are picked up by the
tessellation evaluation shader. The tessellation engine is responsible for
producing the parameters that are fed to the invocations of the
tessellation evaluation shader, which it then uses to transform the
resulting primitives and get them ready for rasterization.

Tessellation Evaluation Shaders

Once the fixed-function tessellation engine has run, it produces a number
of output vertices representing the primitives it has generated. These are
passed to the tessellation evaluation shader. The tessellation evaluation
shader (evaluation shader, or TES for short) runs an invocation for each
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vertex produced by the tessellator. When the tessellation levels are high,
this means that the tessellation evaluation shader could run an extremely
large number of times, and so you should be careful with complex
evaluation shaders and high tessellation levels.

Listing 3.8 shows a tessellation evaluation shader that accepts input
vertices produced by the tessellator as a result of running the control
shader shown in Listing 3.7. At the start of the shader is a layout qualifier
that sets the tessellation mode. In this case, we selected that the mode
should be triangles. Other qualifiers, equal_spacing and cw, select that
new vertices should be generated equally spaced along the tessellated
polygon edges and that a clockwise vertex winding order should be used
for the generated triangles. We will cover the other possible choices in the
section “Tessellation” in Chapter 8.

In the remainder of the shader, you will see that it assigns a value to
gl_Position just like a vertex shader does. It calculates this using the
contents of two more built-in variables. The first is gl_TessCoord, which is
the barycentric coordinate of the vertex generated by the tessellator. The
second is the gl_Position member of the gl_in[] array of structures. This
matches the gl_out structure written to in the tessellation control shader
earlier in Listing 3.7. This shader essentially implements pass-through
tessellation. That is, the tessellated output patch is the exact same shape as
the original, incoming triangular patch.

#version 430 core

layout (triangles, equal_spacing, cw) in;

void main(void)
{

gl_Position = (gl_TessCoord.x * gl_in[0].gl_Position +
gl_TessCoord.y * gl_in[1].gl_Position +
gl_TessCoord.z * gl_in[2].gl_Position);

}

Listing 3.8: Our first tessellation evaluation shader

In order to see the results of the tessellator, we need to tell OpenGL to
draw only the outlines of the resulting triangles. To do this, we call
glPolygonMode(), whose prototype is

void glPolygonMode(GLenum face,
GLenum mode);

The face parameter specifies what type of polygons we want to affect and
as we want to affect everything, we set it to GL_FRONT_AND_BACK. The other
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modes will be explained shortly. mode says how we want our polygons to
be rendered. As we want to render in wireframe mode (i.e., lines), we set
this to GL_LINE. The result of rendering our one triangle example with
tessellation enabled and the two shaders of Listing 3.7 and Listing 3.8 is
shown in Figure 3.1.

Figure 3.1: Our first tessellated triangle

Geometry Shaders

The geometry shader is logically the last shader stage in the front end,
sitting after vertex and tessellation stages and before the rasterizer. The
geometry shader runs once per primitive and has access to all of the input
vertex data for all of the vertices that make up the primitive being
processed. The geometry shader is also unique amongst the shader stages
in that it is able to increase or reduce the amount of data flowing in
through the pipeline in a programmatic way. Tessellation shaders can also
increase or decrease the amount of work in the pipeline, but only
implicitly by setting the tessellation level for the patch. Geometry shaders,
on the other hand, include two functions — EmitVertex() and
EndPrimitive() — that explicitly produce vertices that are sent to
primitive assembly and rasterization.
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Another unique feature of geometry shaders is that they can change the
primitive mode mid-pipeline. For example, they can take triangles as
input and produce a bunch of points or lines as output, or even create
triangles from independent points. An example geometry shader is shown
in Listing 3.9.

#version 430 core

layout (triangles) in;
layout (points, max_vertices = 3) out;

void main(void)
{

int i;

for (i = 0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}
}

Listing 3.9: Our first geometry shader

The shader shown in Listing 3.9 acts as another simple pass-through
shader that converts triangles into points so that we can see their vertices.
The first layout qualifier indicates that the geometry shader is expecting to
see triangles as its input. The second layout qualifier tells OpenGL that the
geometry shader will produce points and that the maximum number of
points that each shader will produce will be three. In the main function,
we have a loop that runs through all of the members of the gl_in array,
which is determined by calling its .length() function.

We actually know that the length of the array will be three because we are
processing triangles and every triangle has three vertices. The outputs of
the geometry shader are again similar to those of a vertex shader. In
particular, we write to gl_Position to set the position of the resulting
vertex. Next, we call EmitVertex(), which produces a vertex at the output
of the geometry shader. Geometry shaders automatically call
EndPrimitive() for you at the end of your shader, and so calling it
explicitly is not necessary in this example. As a result of running this
shader, three vertices will be produced and they will be rendered as points.

By inserting this geometry shader into our simple one tessellated triangle
example, we obtain the output shown in Figure 3.2. To create this image,
we set the point size to 5.0 by calling glPointSize(). This makes the
points large and highly visible.
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