


The Essence
of Software

Engineering



This page intentionally left blank 



The Essence
of Software

Engineering
Applying the SEMAT Kernel

Ivar Jacobson
Pan-Wei Ng

Paul E. McMahon
Ian Spence

Svante Lidman

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and the 
publisher was aware of a trademark claim, the designations have been printed with initial 
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no 
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with 
or arising out of the use of the information or programs contained herein.

Figures P-1, P-2, P-3, 2-1, 3-1, 3-2, 3-4 and 22-2 are provided courtesy of the Software 
Engineering Method and Theory (SEMAT) community.

The publisher offers excellent discounts on this book when ordered in quantity for bulk 
purchases or special sales, which may include electronic versions and/or custom covers and 
content particular to your business, training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected 
by copyright, and permission must be obtained from the publisher prior to any prohibited 
reproduction, storage in a retrieval system, or transmission in any form or by any means, 
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use 
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you 
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88595-1
ISBN-10: 0-321-88595-3
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, 
Indiana.
First printing, January 2013



In every block of marble I see a statue as plain 
as though it stood before me, shaped and perfect 

in attitude and action. I have only to hew 
away the rough walls that imprison the lovely 

apparition to reveal it to the other eyes 
as mine see it.

—Michelangelo

Standing on the shoulders of a giant... 
We are liberating the essence from the 

burden of the whole.

—Ivar Jacobson



This page intentionally left blank 



vii

Contents
Foreword by Robert Martin xvii

Foreword by Bertrand Meyer xxi

Foreword by Richard Soley xxiii

Preface xxvii

Acknowledgments xliii

PART I THE KERNEL IDEA EXPLAINED 1

Chapter 1 A Glimpse of How the Kernel Can Be 
Used 3

1.1  Why Is Developing Good Software So 
Challenging? 4

1.2  Getting to the Essence of Software 
Engineering: The Kernel 5

1.3  Using the Kernel to Address Specific 
Challenges: An Example 6

1.4  Learning How to Address Development 
Challenges with the Kernel 10

Chapter 2 A Little More Detail about the Kernel 13

2.1  How to Use the Kernel to Address a Specific 
Challenge: An Example 13

2.2  Introducing the Alphas  14

2.3  Alphas Have States to Help a Team Achieve 
Progress 18

2.4  There Is More to the Kernel 21



viii CONTENTS

Chapter 3 A 10,000-Foot View of the Full Kernel 23

3.1  Organizing the Kernel 24

3.2  The Essential Things to Progress and Evolve: 
The Alphas 25

3.3  The Essential Things to Do: The 
Activities  32

3.4  Competencies 35

3.5  Finding Out More about the Kernel 36

Chapter 4 The Kernel Alphas Made Tangible with 
Cards 37

4.1  Using Cards As Aids to Address a Specific 
Challenge: An Example 38

4.2  Making the Kernel Come Alive 41

Chapter 5 Providing More Details to the Kernel through 
Practices 43

5.1  Making a Practice Explicit  44

5.2  How Explicit Should Practices Be? 45

5.3  Building Methods from Practices 47

5.4  Learning Methods and Practices  48

Chapter 6 What the Kernel Can Do for You 51

6.1  Developing Great Software 52

6.2  Growing  54

6.3  Learning  55

6.4  Evolving  55

Further Reading 56



CONTENTS ix

PART II USING THE KERNEL TO RUN AN 
ITERATION 59

Chapter 7 Running Iterations with the Kernel: 
Plan-Do-Check-Adapt 61

7.1  Terminology Used 61

7.2  Plan-Do-Check-Adapt 62

7.3  Setting the Scene 64

7.4  The Focus for the Next Few Chapters 66

Chapter 8 Planning an Iteration 69

8.1  Planning Guided by Alpha States 70

8.2  Determining the Current State in Our 
Story 73

8.3  Determining the Next State in Our 
Story 73

8.4  Determining How to Achieve the Next States 
in Our Story 73

8.5  How the Kernel Helps You in Planning 
Iterations 78

Chapter 9 Doing and Checking the Iteration 79

9.1  Doing and Checking the Iteration with the 
Kernel 79

9.2  Doing and Checking the Iteration in Our 
Story 81

9.3  How the Kernel Helps You in Doing and 
Checking the Iteration 84



x CONTENTS

Chapter 10 Adapting the Way of Working 87

10.1  Adapting the Way of Working with the 
Kernel 87

10.2  Adapting the Way of Working in the 
Story 88

10.3  How the Kernel Helps You in Adapting the 
Way of Working 90

Chapter 11 Running an Iteration with Explicit 
Requirement Item States 93

11.1  Working with Explicit Requirement 
Items  93

11.2  Planning an Iteration in Our Story 95

11.3  Doing Another Iteration in Our Story 97

11.4  Adapting the Way of Working in Our 
Story 100

11.5  Discussion 102

Further Reading 103

PART III USING THE KERNEL TO RUN A 
SOFTWARE ENDEAVOR 105

Chapter 12 Running a Software Endeavor: From Idea to 
Production 107

12.1  The People in Our Story and Challenges 
along the Way 107

12.2  Understanding the Organizational 
Context 109



CONTENTS xi

Chapter 13 Building the Business Case 111

13.1  Getting Ready to Start in Our Story 111

13.2  Understanding the Opportunity and the 
Stakeholders 115

13.3  Understanding the Solution 117

13.4  Preparing to Do the Work 119

13.5  Establishing a High-Level Plan 121

13.6  Building the Schedule 125

13.7  How the Kernel Helps You in Getting 
Started 128

Chapter 14 Developing the System 131

14.1  Building the Skinny System—Getting 
Things Working 135

14.2  Engaging the Stakeholders 136

14.3  Starting Development 138

14.4  Establishing an Agreed-on Way of 
Working 139

14.5  Making the Skinny System Usable—Getting 
Things Working Well 143

14.6  Keeping the Stakeholders Involved 144

14.7  Evolving a Usable System 146

14.8  Getting to a Good Way of Working 148

14.9  Evolving a Deployable Solution—
Concluding the Work 149

14.10  Gaining Acceptance 151

14.11  Getting to Delivery 152

14.12  Done! Completing Development 
Work  154



xii CONTENTS

14.13  How the Kernel Helps You Develop Great 
Software 156

Chapter 15 Operating the Software 157

15.1  Setting the Scene 157

15.2  Going Live—Successfully Deploying the 
System 161

15.3  Deploying the System 162

15.4  Handing Over between the Two 
Teams 164

15.5  Supporting the System until 
Retirement 167

15.6  Our Story Ends 170

Further Reading 170

PART IV SCALING DEVELOPMENT WITH THE 
KERNEL 173

Chapter 16 What Does It Mean to Scale? 175

Chapter 17 Zooming In to Provide Details  179

17.1  Making Practices Precise for Inexperienced 
Members 180

17.2  An Example: A Requirements Elicitation 
Practice 182

17.3  An Example: An Acceptance Testing 
Practice 184

17.4  Understanding How Practices Work 
Together 186

17.5  Value of Precise Practices  188



CONTENTS xiii

Chapter 18 Reaching Out to Different Kinds of 
Development 191

18.1  Agreeing on the Practices to Use 192

18.2  Adapting to Your Development Life 
Cycle 193

18.3  Building a Method Incrementally during 
Development  194

18.4  Methods in Large Organizations 197

18.5  Putting Teams in Control of Their 
Methods 198

Chapter 19 Scaling Up to Large and Complex 
Development 201

19.1  An Example of Large Development  202

19.2  Organizing Work Using the Alphas 204

19.3  Visualizing Development with the 
Alphas 208

19.4  Coordinating the Development Teams 
through Alphas  210

19.5  Empowering Teams to Scale  212

Further Reading 213

PART V HOW THE KERNEL CHANGES THE WAY 
YOU WORK WITH METHODS 215

Chapter 20 Thinking about Methods without Thinking 
about Methods 217

20.1  You Think about Methods All the 
Time 218

20.2  Doing Rather Than Discussing 219



xiv CONTENTS

Chapter 21 Agile Working with Methods 221

21.1  The Full Team Owns Their Method, Rather 
Than a Select Few 222

21.2  Focus on Method Use Rather Than 
Comprehensive Method Description 223

21.3  Evolve Your Team’s Method, Rather Than 
Keeping Your Method Fixed  224

PART VI WHAT’S REALLY NEW HERE? 227

Chapter 22 Refounding Methods 229

22.1  Not a Lack of Methods, but a Lack of a 
Foundation—a Kernel 229

22.2  The Kernel Values Practicality 230

22.3  The Kernel Is Actionable and 
Extensible  232

Chapter 23 Separation of Concerns Applied to 
Methods 235

23.1  Separating the Kernel from Practices  236

23.2  Separating Alphas from Work 
Products 237

23.3  Separating the Essence from the 
Details   238

Chapter 24 The Key Differentiators 241

24.1  Innovations with Methods  241

24.2  Practical Tools for Software Teams and 
Professionals   242



CONTENTS xv

PART VII EPILOGUE 245

Chapter 25 This Is Not the End 247

Chapter 26 . . . But Perhaps It Is the End of the 
Beginning 249

Chapter 27 When the Vision Comes True  253

27.1  The Software Professional 253

27.2  The Industry  254

27.3  The Academic World  255

27.4  An Exciting Future  256

Further Reading 257

APPENDIXES 259

Appendix A Concepts and Notation 261

Appendix B What Does This Book Cover with Respect to 
the Kernel? 263

B.1  Inside the Kernel, and Inside This 
Book 263

B.2  Outside the Kernel, but Inside This 
Book 264

B.3  Inside the Kernel, but Outside This 
Book 265

Appendix C Bibliography  267

C.1 SEMAT Working Documents 267



xvi CONTENTS

C.2 SEMAT: Other Documents and 
References 268

C.3 Other References 270

About the Authors 271

What People Are Saying about This Book 275

Index 287



xvii

Foreword 
by Robert Martin

The pendulum has swung again. This time it has swung toward 
craftsmanship. As one of the leaders of the craftsmanship move-
ment, I think this is a good thing. I think it is important that 
software developers learn the pride of workmanship that is com-
mon in other crafts.

But when the pendulum swings, it often swings away from 
something else. And in this case it seems to be swinging away 
from the notion of engineering. The sentiment seems to be that 
if software is a craft, a kind of artistry, then it cannot be a sci-
ence or an engineering discipline. I disagree with this rather 
strenuously. 

Software is both a craft and a science, both a work of passion 
and a work of principle. Writing good software requires both 
wild flights of imagination and creativity, as well as the hard 
reality of engineering tradeoffs. Software, like any other worth-
while human endeavor, is a hybrid between the left and right 
brain.

This book is an attempt at describing that balance. It proposes 
a software engineering framework or kernel that meets the need 
for engineering discipline, while at the same time leaving the 
development space open for the creativity and emergent behavior 
needed for a craft.  

Most software process descriptions use an assembly line meta-
phor. The project moves from position to position along the line 
until it is complete. The prototypical process of this type is the 



xviii FOREWORD BY ROBERT MARTIN

waterfall, in which the project moves from Analysis to Design to 
Implementation. In RUP the project moves from Inception to 
Elaboration to Construction to Transition.  

The kernel in this book represents a software development 
effort as a continuously operating abstract mechanism composed 
of components and relationships. The project does not move 
from position to position within this mechanism as in the assem-
bly line metaphor. Rather, there is a continuous flow through 
the mechanism as opportunities are transformed into require-
ments, and then into code and tests, and then into deployments.

The state of that mechanism is exposed through a set of criti-
cal indicators, called alphas, which represent how well the under-
lying components are functioning. These alphas progress from 
state to state through a sequence of actions taken by the devel-
opment team in response to the current states.

As the project progresses, the environment will change, the 
needs of the customer will shift, the team will evolve, and the 
mechanism will get out of kilter. The team will have to take 
further actions to tune the mechanism to get it back into proper 
operation.

This metaphor of a continuous mechanism, as opposed to an 
assembly line, is driven by the agile worldview. Agile projects 
do not progress through phases. Rather, they operate in a man-
ner that continuously transforms customer needs into software 
solutions. But agile projects can get out of kilter. They might 
get into a mode where they aren’t refactoring enough, or they 
are pairing too much, or their estimates are unreliable, or their 
customers aren’t engaged. 

The kernel in this book describes the critical indicators and 
actions that allow such malfunctions to be detected and then 
corrected. Teams can use it to tune their behaviors, commu-
nications, workflows, and work products in order to keep the 
machine running smoothly and predictably.  



FOREWORD BY ROBERT MARTIN xix

The central theme of the book is excellent. The notion of 
the alphas, states, and actions is compelling, simple, and effec-
tive. It’s just the right kind of idea for a kernel. I think it is an 
idea that could help the whole software community.

If you are deeply interested in software process and engineer-
ing, if you are a manager or team leader who needs to keep the 
development organization running like a well-oiled machine, or 
if you are a CTO in search of some science that can help you 
understand your development organizations, then I think you’ll 
find this book very interesting.

After reading the book, I found myself wanting to get my 
hands on a deck of cards so that I could look through them and 
play with them. 

—Robert Martin
(unclebob)
February 2012



This page intentionally left blank 



xxi

Foreword 
by Bertrand Meyer

Software projects everywhere look for methodology and are not 
finding it. They do, fortunately, find individual practices that 
suit them; but when it comes to identifying a coherent set of 
practices that can guide a project from start to finish, they are 
too often confronted with dogmatic compendiums that are too 
rigid for their needs. A method should be adaptable to every 
project’s special circumstances: it should be backed by strong, 
objective arguments; and it should make it possible to track the 
benefits.

The work of Ivar Jacobson and his colleagues, started as part of 
the SEMAT initiative, has taken a systematic approach to identi-
fying a “kernel” of software engineering principles and practices 
that have stood the test of time and recognition. Building on this 
theoretical effort, they describe project development in terms of 
states and alphas. It is essential for the project leaders and the 
project members to know, at every point in time, what is the cur-
rent state of the project. This global state, however, is a combina-
tion of the states of many diverse components of the system; the 
term alpha covers such individual components. An alpha can be 
a software artifact, like the requirements or the code; a human 
element, like the project team; or a pure abstraction, like the 
opportunity that led to the idea of a project. Every alpha has, at 
a particular time, a state; combining all these alpha states defines 
the state of the project. Proper project management and success 
requires knowing this state at every stage of development.



xxii FOREWORD BY BERTRAND MEYER

The role of the kernel is to identify the key alphas of soft-
ware development and, for each of them, to identify the standard 
states through which it can evolve. For example, an opportunity 
will progress through the states Identified, Solution Needed, 
Value Established, Viable, Addressed, and Benefits Accrued. 
Other alphas have similarly standardized sets of states.

The main value of this book is in the identification of these 
fundamental alphas and their states, enabling an engineering 
approach in which the project has a clear view of where it stands 
through a standardized set of controls.

The approach is open, since it does not prescribe any particu-
lar practice but instead makes it possible to integrate many dif-
ferent practices, which do not even have to come from the same 
methodological source—like some agile variant—but can com-
bine good ideas from different sources. A number of case studies 
illustrate how to apply the ideas in practice.

Software practitioners and teachers of software engineering 
are in dire need of well-grounded methodological work. This 
book provides a solid basis for anyone interested in turning soft-
ware project development into a solid discipline with a sound 
engineering basis.

—Bertrand Meyer
March 2012



xxiii

Foreword 
by Richard Soley

Software runs our world; software-intensive systems, as Grady 
Booch calls them, are the core structure that drives equity and 
derivative trading, communications, logistics, government ser-
vices, management of great national and international military 
organizations, and medical systems—and even allows elementary 
school teacher Mr. Smith to send homework assignments to little 
Susie. Even mechanical systems have given way to  software-driven 
systems (think of fly-by-wire aircraft, for example); the trend is 
not slowing, but accelerating. We depend on software, and often 
we depend on it for our very lives. Amazingly, more often than 
not software development resembles an artist’s craft far more 
than an engineering discipline.

Did you ever wonder how the architects and builders of the 
great, ancient temples of Egypt or Greece knew how to build 
grand structures that would stand the test of time, surviving 
hundreds, or even thousands of years, through earthquakes, 
wars, and weather? The Egyptians had amazing mathematical 
abilities for their time, but triangulation was just about the top 
of their technical acumen. The reality, of course, is that luck has 
more to do with the survival of the great façade of the Celsus 
Library of Ephesus, in present-day Selçuk, Turkey, than any tre-
mendous ability to understand construction for the ages.

This, of course, is no longer the case. Construction is now 
civil engineering, and civil engineering is an engineering dis-
cipline. No one would ever consider going back to the old 



xxiv FOREWORD BY RICHARD SOLEY

hand-designed, hand-built, and far more dangerous structures 
of the distant past. Buildings still fail in the face of powerful 
weather phenomena, but not at anywhere near the rate they did 
500 years ago.

What an odd dichotomy, then, that in the design of some 
large, complex systems we depend on a clear engineering meth-
odology, but in the development of certain other large, complex 
systems we are quite content to depend on the ad hoc, hand-
made work of artisans. To be sure, that’s not always the case; 
quite often, stricter processes and analytics are used to build 
software for software-intensive systems that “cannot” fail, where 
more time and money is available for their construction; aircraft 
avionics and other embedded systems design is often far more 
rigorous (and costly) than desktop computing software.

Really, this is more of a measure of the youth of the com-
puting field than anything else, and the youth of our field is 
never more evident than in the lack of a grand unifying the-
ory to underpin the software development process. How can we 
expect the computing field to have consistent software devel-
opment processes, consistently taught at universities worldwide, 
consistently supported by software development organizations, 
and consistently delivered by software development teams, when 
we don’t have a globally shared language that defines the soft-
ware development process?

It is worth noting, however, that there is more than one 
way to build a building and more than one way to construct 
software. So the language or languages we need should define 
quarks and atoms instead of molecules—atomic and subatomic 
parts that we can mix and match to define, carry out, measure, 
and improve the software development process itself. We can 
expect the software development world to fight on about agile 
versus non-agile development, and traditional team-member 



FOREWORD BY RICHARD SOLEY xxv

programming versus pair programming, for years to come; but 
we should demand and expect that the process building blocks 
we choose can be consistently applied, matched, and compared 
as necessary, and measured for efficacy. That core process design 
language is called Essence. Note that, in fact, in this book there 
is a “kernel” of design primitives that are themselves defined in a 
common language; I will leave this complication for the authors 
to explain in detail.

In late 2009, Ivar Jacobson, Bertrand Meyer, and I came 
together to clarify the need for a widely accepted process design 
kernel and language and to build an international team to 
address that need. The three of us came from quite different 
backgrounds in the software world, but all of us have spent time 
in the trenches slinging code, all of us have led software devel-
opment teams, and all of us have tried to address the software 
complexity problem in various ways. Our analogies have differed 
(operatic ones being quite noticeably Prof. Meyer’s), our team 
leadership styles have differed, and our starting points have been 
quite visibly different. These differences, however, led to an out-
standing international cooperation called Software Engineering 
Method and Theory, or SEMAT. The Essence kernel, a major 
Object Management Group (OMG) standards process, and this 
book are outputs of this cooperative project. 

Around us a superb team of great thinkers formed, meeting 
for the first time at ETH in Zürich two years ago, with other 
meetings soon afterward. That team has struggled to bring 
together diverse experiences and worldviews into a core kernel 
composed of atomic parts that can be mixed and matched, con-
nected as needed, drawn on a blueprint, analyzed, and put into 
practice to define, hire, direct, and measure real development 
teams. As I write this, the OMG is considering how to capture 
the work of this team as an international software development 



xxvi FOREWORD BY RICHARD SOLEY

standard. It’s an exciting time to be in the software world, as we 
transition from groups of artisans sometimes working together 
effectively, to engineers using well-defined, measured, and con-
sistent construction practices to build software that works.

The software development industry needs and demands a core 
kernel and language for defining software development prac-
tices—practices that can be mixed and matched, brought on 
board from other organizations, measured, integrated, and com-
pared and contrasted for speed, quality, and price. Soon we’ll 
stop delivering software by hand; soon our great software edi-
fices will stop falling down. SEMAT and Essence may not be 
the end of that journey to developing an engineering culture for 
software, and they certainly don’t represent the first attempt to 
do so; but they stand a strong chance of delivering broad accep-
tance in the software world. This thoughtful book gives a good 
grounding in ways to think about the problem, and a language 
to address the need; every software engineer should read it.

—Richard Mark Soley, Ph.D.
38,000 feet over the Pacific Ocean
March 2012



xxvii

Preface
Everyone who develops software knows that it is a complex and 
risky business, and is always on the lookout for new ideas that 
will help him or her develop better software. Luckily, software 
engineering is still a young and growing profession—one that 
sees new innovations and improvements in best practices every 
year. These new ideas are essential to the growth of our indus-
try—just look at the improvements and benefits that lean and 
agile thinking have brought to software development teams. 

Successful software development teams need to strike a bal-
ance between quickly delivering working software systems, sat-
isfying their stakeholders, addressing their risks, and improving 
their way of working. For that, they need an effective think-
ing framework—one that bridges the gap between their current 
way of working and any new ideas they want to take on board. 
This book presents such a thinking framework in the form of an 
actionable kernel—something we believe will benefit any team 
wishing to balance their risks and improve their way of working.

INSPIRATION

This book was inspired by, and is a direct response to, the 
SEMAT Call for Action. It is, in its own way, one small step in 
the process to refound software engineering.

SEMAT (Software Engineering Method and Theory) was 
founded in September 2009 by Ivar Jacobson, Bertrand Meyer, 
and Richard Soley, who felt the time had come to fundamentally 
change the way people work with software development meth-
ods. Together they wrote a call for action, which in a few lines 



xxviii PREFACE

identifies a number of critical problems with current software 
engineering practice, explains why there is a need to act, and 
suggests what needs to be done. Figure P-1 is an excerpt from 
the SEMAT Call for Action.

The call for action received a broad base of support, including 
a growing list of signatories and supporters.1 The call for action’s 
assertion that the software industry is prone to fads and fashions 
has led some people to assume that SEMAT and its support-
ers are resistant to new ideas. This could not be further from 
the truth. As you will see in this book, they are very keen on 
new ideas—in fact, this book is all about some of the new ideas 
coming from SEMAT itself. What SEMAT and its supporters 
are against is the non-lean, non-agile behavior that comes from 

1.  The current list can be found at www.semat.org.

Software engineering is gravely hampered today by immature practices. 
Specific problems include:

• The prevalence of fads more typical of a fashion industry than of an 
engineering discipline

• The lack of a sound, widely accepted theoretical basis

• The huge number of methods and method variants, with differenc-
es little understood and artificially magnified

• The lack of credible experimental evaluation and validation

• The split between industry practice and academic research

We support a process to refound software engineering based on a solid 
theory, proven principles and best practices that:

• Include a kernel of widely-agreed elements, extensible for specific 
uses

• Address both technology and people issues

• Are supported by industry, academia, researchers and users

• Support extension in the face of changing requirements and 
technology

Figure P-1 Excerpt from the SEMAT Call for Action

http://www.semat.org


PREFACE xxix

people adopting inappropriate solutions just because they believe 
these solutions are fashionable, or because of peer pressure or 
political correctness.

In February 2010 the founders developed the call for action 
into a vision statement.2 In accordance with this vision SEMAT 
then focused on two major goals: 

 1. Finding a kernel of widely agreed-on elements 

 2. Defining a solid theoretical basis  

To a large extent these two tasks are independent of each 
other. Finding the kernel and its elements is a pragmatic exercise 
requiring people with long experience in software development 
and knowledge of many of the existing methods. Defining the 
theoretical basis requires academic research and may take many 
years to reach a successful outcome.  

THE POWER OF THE COMMON GROUND

SEMAT’s first step was to identify a common ground for soft-
ware engineering. This common ground is manifested as a kernel 
of essential elements that are universal to all software develop-
ment efforts, and a simple language for describing methods and 
practices. This book provides an introduction to the SEMAT 
kernel, and how to use it when developing software and com-
municating between teams and team members. It is a book for 
software professionals, not methodologists. It will make use of 
the language but will not dwell on it or describe it in detail.

The kernel was first published in the SEMAT OMG Submis-
sion.3 As shown in Figures P-2 and P-3, the kernel contains a 

2. The SEMAT Vision statement can be found at the SEMAT website, 
www.semat.org.

3. “Essence – Kernel and Language for Software Engineering Methods.” 
Available from www.semat.org.

http://www.semat.org
http://www.semat.org


xxx PREFACE

C
us

to
m

er
S

o
lu

ti
o

n
E

nd
ea

vo
r

Opportunity

Requirements

Stakeholder

Software
System 

Team

identifies

fulfills

us
es

 a
nd

co
ns

um
es

helps to address

demandsfo
cu

se
s

su
pp

or
ts

ap
pli

es

guides

performs and plans

pr
od

uc
es

updates and changes 

sc
op

es
 a

nd
 

 c
on

st
ra

in
s

se
t 

up
 t

o 
ad

dr
es

s 

Way of  
Working

Work

Figure P-2 Things to work with

C
us

to
m

er
S

o
lu

ti
o

n
E

nd
ea

vo
r

Explore
Possibilities

Ensure
Stakeholder
Satisfaction

Shape
the System

Implement
the System

Test  
the System

Deploy
the System

Use the
System

Operate
the System

Understand
Stakeholder

Needs

Prepare to Do
the Work

Coordinate
Activity

Support the
Team

Stop the
Work

Track  
Progress

Understand the 
Requirements

Figure P-3 Things to do



PREFACE xxxi

small number of “things we always work with” and “things we 
always do” when developing software systems. There is also work 
that is ongoing, with the goal of defining the “skills we always 
need to have,” but this will have to wait until future versions of 
the kernel and is outside the scope of this book.4

We won’t delve into the details of the kernel here as this is the 
subject of Part I, but it is worth taking a few moments to think 
about why it is so important to establish the common ground 
in this way. More than just a conceptual model, as you will see 
through the practical examples in this book, the kernel provides

• A thinking framework for teams to reason about the prog-
ress they are making and the health of their endeavors

• A framework for teams to assemble and continuously 
improve their way of working

• A common ground for improved communication, stan-
dardized measurement, and the sharing of best practices

• A foundation for accessible, interoperable method and prac-
tice definitions

• And most importantly, a way to help teams understand 
where they are and what they should do next

THE BIG IDEA

What makes the kernel anything more than just a conceptual 
model of software engineering? What is really new here? This 
can be summarized into the three guiding principles shown in 
Figure P-4.

4. A kernel with similar properties as the SEMAT kernel was first developed at 
Ivar Jacobson International in 2006 (www.ivarjacobson.com). This kernel has 
served as an inspiration and an experience base for the work on the SEMAT 
kernel. 

http://www.ivarjacobson.com


xxxii PREFACE

The Kernel Is Actionable

A unique feature of the kernel is how the “things to work with” 
are handled. These are captured as alphas rather than work 
products (such as documents). An alpha is an essential element 
of the software engineering endeavor, one that is relevant to an 
assessment of its progress and health. As shown in Figure P-2, 
SEMAT has identified seven alphas: Opportunity, Stakeholders, 
Requirements, Software System, Work, Way of Working, and 
Team. The alphas are characterized by a simple set of states that 
represent their progress and health. As an example, the Soft-
ware System moves through the states of Architecture Selected, 
Demonstrable, Usable, Ready, Operational, and Retired. Each 
state has a checklist that specifies the criteria needed to reach the 
state. It is these states that make the kernel actionable and enable 
it to guide the behavior of software development teams.

The kernel presents software development not as a linear pro-
cess but as a network of collaborating elements; elements that 
need to be balanced and maintained to allow teams to prog-
ress effectively and efficiently, eliminate waste, and develop great 
software. The alphas in the kernel provide an overall frame-
work for driving and progressing software development efforts, 
regardless of the practices applied or the software development 
philosophy followed. 

Ac
tio

na
bl

e Extensible 
Practical 

Figure P-4 Guiding principles of the kernel



PREFACE xxxiii

As practices are added to the kernel, additional alphas will be 
added to represent the things that either drive the progress of the 
kernel alphas, or inhibit and prevent progress from being made. 
For example, the Requirements will not be addressed as a whole 
but will be progressed requirement item by requirement item. It 
is the progress of the individual requirement items that will drive 
or inhibit the progress and health of the Requirements. The 
requirement items could be of many different types—for exam-
ple, they could be features, user stories, or use-case slices, all of 
which can be represented as alphas and have their state tracked. 
The benefit of relating these smaller items to the coarser-grained 
kernel elements is that it allows the tracking of the health of the 
endeavor as a whole. This provides a necessary balance to the 
lower-level tracking of the individual items, enabling teams to 
understand and optimize their way of working.

The Kernel Is Extensible

Another unique feature of the kernel is the way it can be 
extended to support different kinds of development (e.g., new 
development, legacy enhancements, in-house development, off-
shore, software product lines, etc.). The kernel allows you to add 
practices, such as user stories, use cases, component-based devel-
opment, architecture, pair programming, daily stand-up meet-
ings, self-organizing teams, and so on, to build the methods you 
need. For example, different methods could be assembled for 
in-house and outsourced development, or for the development 
of safety-critical embedded systems and back office reporting 
systems.

The key idea here is that of practice separation. While the term 
practice has been widely used in the industry for many years, the 
kernel has a specific approach to the handling and sharing of 
practices. Practices are presented as distinct, separate, modular 



xxxiv PREFACE

units, which a team can choose to use or not to use. This con-
trasts with traditional approaches that treat software develop-
ment as a soup of indistinguishable practices and lead teams to 
dump the good with the bad when they move from one method 
to another. 

The Kernel Is Practical 

Perhaps the most important feature of the kernel is the way it 
is used in practice. Traditional approaches to software develop-
ment methods tend to focus on supporting process engineers or 
quality engineers. The kernel, in contrast, is a hands-on, tangible 
thinking framework focused on supporting software profession-
als as they carry out their work.

For example, the kernel can be touched and used through the 
use of cards (see Figure P-5). The cards provide concise remind-
ers and cues for team members as they go about their daily 
tasks. By providing practical checklists and prompts, as opposed 
to conceptual discussions, the kernel becomes something the 
team uses on a daily basis. This is a fundamental difference from 

The set of circumstances that makes it

appropriate to develop or change a 

software system

• A good opportunity is identified

addressing the need for a so
ftware-

based solution

• A good opportunity has established

value

• A good opportunity has a so
ftware-

based solution that can be

produced quickly and cheaply

• A good opportunity creates a

tangible benefit

IdentifiedOpportunity

Solution Needed

Value Established

Viable

Addressed

Benefit Accrued

I

po

ol

Val

Bene

The people, groups, or organizations
who affect or are affected by a
software system 

• Healthy stakeholders represent
groups or organizations affected by 
the software system

• Healthy stakeholder 
representatives carry out their 
agreed-on responsibilities

• Healthy stakeholder 
representatives cooperate to reach
agreement

• Healthy stakeholders are satisified
with the use of the software system

Recognized

Stakeholders

Represented

Involved

In Agreement

Satisified for Deployment

Satisified in Use

efit Ac

Re

Stake

Re

I

isifie

Satis

A system made up of software,

hardware, and data that provides its

primary value by the execution of

the software
• Good Software System meets

requirements• Good Software System has

appropriate architecture

• Good Software System is 

maintainable, extensible, and

testable• Good Software System has low

support cost

Architecture Selected

Software System
DemonstrableUsable

Ready
OperationalRetired

ccr

e

ified in U

Archite

Softw

De

R

What the software system must do to

address the opportunity and satisify

the stakeholders
• Good Requirements meet real

needs• Good Requirements have clear

scope• Good Requirements are coherent

and well organized

• Good Requirements help drive

development

Conceived

RequirementsBoundedCoherent
Acceptable

AddressedFulfilled
•

an• Godeve

ed

ents

• T
he n

eed for a
new sys

tem is

cle
ar

• Users are
 identifie

d

• In
itia

l sp
onsors a

re 
identifie

d
Conceived

1/6

Require
ments

s
Goodand well oood Requirem

elopment

tts

• The

cle

• U

• I

Req

• The purpose and extent of the

system are agreed on

• Success criteria are clear

• Mechanisms for handling

requirements are agreed on

• Constraints and assumptions 

are identified

Bounded

2/6

Requirements

I

T

•

R

• The big picture is clear and 
shared by all involved

• Important usage scenarios 
are explained

• Priorities are clear
• Conflicts are addressed
• Impact is understood

Coherent

3/6

Requirements

I

Th
sy

• S

• M

•

Re

•

•

•
•

• Requirements describe a 

solution acceptable to the 

stakeholders• The rate of change to agreed-

 on requirements is low
• Value is clear

Acceptable

4/6

Requirements

The
sha
Im
a •

• Enough requirements are 

implemented for the system to 

be acceptable
• Stakeholders agree the system 

is worth making operational

Addressed

5/6

Requirements

e

Req

• Requirsolutiostakeh
• The r on r

• Valu

A

Req

• Enough requirements are 

implemented for the system to 

be acceptable
• Stakeholders agree the system 

is worth making operational

Addressed

5/6

Requirements

• The system fully satisfies the 

requirements and the need

• There are no outstanding 

requirement items preventing

completion

Fulfilled

6/6

Requirements

Figure P-5 Cards make the kernel tangible.


