

Praise for The Official Ubuntu Server Book

“Murphy’s Law is never truer than when it comes to administering a Linux
server. You can pretty much count on something happening to your ma -
chine at a time when you need it the most. That’s when a book with some
basic troubleshooting instructions is worth every penny you paid for it.
 Chapter 11 covers the steps you should take when something goes wrong.”

—Paul Ferrill, LinuxPlanet.com reviewer

“College-level collections catering to Linux programmers and developers
will find The Official Ubuntu Server Book, a top addition to the collection,
covering a complete, free server operating system in a guide to getting
going quickly. From making the most of Ubuntu Server’s latest technolo-
gies to automating installs and protecting the server using Ubuntu’s built-
in security tools, The Official Ubuntu Server Book, is packed with keys to
success for any Ubuntu user.”

—Jim Cox, Midwest Book Review

“This book will get you started on the path of the server admin, both
within the context of Ubuntu server and in the larger realm of managing a
server infrastructure. The desktop and server versions of Ubuntu are con-
tinuing to mature. Read this book if you want to keep up.”

—James Pyles, author

This page intentionally left blank

The Official
Ubuntu
Server Book
Third Edition

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Kyle Rankin

Benjamin Mako Hill

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright 2014 Canonical, Ltd.

All rights reserved. This publication is protected by copy-right, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

The Introduction and Chapter 3 of this book are published under the Creative Commons
Attribution-ShareAlike 3.0 license, http://creativecommons.org/licenses/by-sa/3.0/.

ISBN-13: 978-0-13-301753-3
ISBN-10: 0-13-301753-2
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, July 2013

http://creativecommons.org/licenses/by-sa/3.0/
mailto:corpsales@pearsontechgroup.com
mailto:international@pearson.com
http://InformIT.com

I dedicate this book to my wife, Joy. It is not easy to balance a full-time
job and writing a book while still having time for a family. She has
endured many a book-writing process at this point and has always been
my main source of support and motivation.

—Kyle Rankin

This page intentionally left blank

Contents at a Glance

vii

Contents ix

Preface xix

Acknowledgments xxv

About the Authors xxvii

Introduction xxix

Chapter 1: Installation 1

Chapter 2: Essential System Administration 17

Chapter 3: Package Management 51

Chapter 4: Automated Ubuntu Installs 83

Chapter 5: Guide to Common Ubuntu Servers 125

Chapter 6: Security 199

Chapter 7: Backups 239

Chapter 8: Monitoring 267

Chapter 9: Virtualization and Cloud Computing 297

Chapter 10: Fault Tolerance 341

Chapter 11: Troubleshooting 399

Chapter 12: Rescue and Recovery 429

Chapter 13: Help and Resources 449

Chapter 14: Basic Linux Administration 463

Appendix: Cool Tips and Tricks 485

Index 495

This page intentionally left blank

Contents

ix

Preface xix

Acknowledgments xxv

About the Authors xxvii

Introduction xxix

Welcome to Ubuntu Server xxix
Free Software, Open Source, and Linux xxx

Free Software and GNU xxxi
Linux xxxii
Open Source xxxiii

A Brief History of the Ubuntu Project xxxiv
Mark Shuttleworth xxxiv
The Warthogs xxxvi
What Does Ubuntu Mean? xxxvii
Creating Canonical xxxviii
The Ubuntu Community xxxix

Ubuntu Promises and Goals xli
Philosophical Goals xli
Conduct Goals and Code of Conduct xliii
Technical Goals xliv

Canonical and the Ubuntu Foundation xlvi
Canonical, Ltd. xlvi
Canonical’s Service and Support xlvii
The Ubuntu Foundation xlviii

History of Ubuntu Server xlix
Simple, Secure, Supported li

CHAPTER 1 Installation 1

Get Ubuntu 2
Boot Screen 3

x Contents

Disk Partitioning 5
What Is a Partition? 5
Guided—Use Entire Disk 8
Guided with LVM 8
Manual 9

Server Roles 13
Installer Console 15
Reboot the System 16

CHAPTER 2 Essential System Administration 17

Basic Command-Line Administration 18
Move Around the System 18
File Ownership 21
Check Running Processes 21
Edit Files 23
Become Root 24

Ubuntu Boot Process 24
GRUB 25
The Kernel Boot Process 26
/sbin/init 27
Services 34

File System Hierarchy 39
Networking 45

Network Configuration Files 46
Core Networking Programs 48

CHAPTER 3 Package Management 51

Introduction to Package Management 52
Background on Packages 53
What Are Packages? 53
Basic Functions of Package Management 55
Advanced Functions of Package Management Systems 58

Debian Packages 60
Source Packages 60
Binary Packages 63

Package Management in Ubuntu 63
Staying Up-to-Date 64
Searching and Browsing 65
Installation and Removal 67
Manipulating Installed Packages 69
Manipulating Repositories 71

Ubuntu Default Repositories 73
Using Other Repositories 74
Upgrading a Whole System 75
Mirroring a System 76

Making Your Own Packages 77
Rebuilding Packages 77
New Upstream Versions 79
Building Packages from Scratch 80
Hosting Your Own Packages 81

CHAPTER 4 Automated Ubuntu Installs 83

Preseeding 84
Basic Preseed Configuration for CD-ROM 85
Networking Options 89
Partitioning 91
Packages and Mirrors 96
User Settings 98
GRUB 99
Miscellaneous 100
Dynamic Preseeding 100

Kickstart 104
Basic Kickstart Configuration for CD-ROM 104
Changes and Limitations in Ubuntu Kickstart 108
Run Custom Commands during the Install 110

PXE Boot Server Deployment 111
DHCP 112
TFTPD 113
Configure Pxelinux 113
Web 116
Test Your PXE Server 116

Customize Automated Installs 118
Multiple Kickstart Files 118
Boot Cheat Codes 119
DHCP Selection 121
DHCP Selection by Subnet 123

CHAPTER 5 Guide to Common Ubuntu Servers 125

DNS Server 126
Install BIND 127
Ubuntu Conventions 127
Caching Name Server 129

Contents xi

xii Contents

DNS Master 129
DNS Slave 132
Manage BIND with rndc 134

Web Server 135
Install a Web Server 135
Ubuntu Apache Conventions 136
apache2ctl 139
Apache Documentation 141
WordPress, a Sample LAMP Environment 141

Mail Server 144
Install Postfix 144
Postfix Configuration Types 145
Ubuntu Postfix Conventions 146
Administering Postfix 148
Default Postfix Example 150
Secondary Mail Server 153
Greylisting Mail Server 154

POP/IMAP Server 156
Enable Maildirs on Postfix 156
Install Dovecot 157
Ubuntu Dovecot Conventions 158

OpenSSH Server 158
Ubuntu OpenSSH Conventions 159

DHCP Server 160
Install DHCP 160
Ubuntu DHCP Conventions 161
Configure DHCP 161

Database Server 163
MySQL 163
PostgreSQL 168

File Server 174
Samba 174
NFS 177

Edubuntu and LTSP 180
What Is LTSP? 180
Technical Details of the LTSP Boot Process 181
The Benefits of LTSP 182
Other Uses 183
LTSP Availability in Ubuntu 183
Installing an LTSP Server 183

Contents xiii

LTSP Server Configurations 184
The Installation Procedure 186
Initial LTSP Server Setup 188
Initial LTSP Client Setup 189
Installing the LTSP Environment in Ubuntu or

on a Desktop Installation 190
Special LTSP Cases 191
Changing Your IP Address 194
Local Devices over LTSP 195
Sound over LTSP 197

CHAPTER 6 Security 199

General Security Principles 200
Sudo 201

Configure sudo 203
sudo Aliases 205

AppArmor 206
AppArmor Profiles 207
Enforce and Complain Modes 209
Ubuntu AppArmor Conventions 210

SSH Security 210
sshd_config 211
Key-Based Authentication 211
SSH Brute-Force Attacks 213

Firewalls 214
ufw Commands 216
ufw Rule Syntax 217
Extended ufw Rules 218
ufw Examples 220
Ubuntu ufw Conventions 224

Intrusion Detection 226
Update Tripwire Policy 227
Initialize the Tripwire Database 229
Update the Tripwire Database 230
Ubuntu Tripwire Conventions 232

Incident Response 233
Do You Prosecute? 233
Pull the Plug 233
Image the Server 234
Server Redeployment 234
Forensics 235

CHAPTER 7 Backups 239

Backup Principles 240
Drive Imaging 242
Database Backups 244

MySQL 244
PostgreSQL 248

BackupPC 249
BackupPC Storage 250
Default BackupPC Configuration 251
Configure the Client Machine 254
Add the Client to BackupPC 255
Start the First Backup Job 256
rsync Tweaks 258
Restore Files 263
Ubuntu BackupPC Conventions 265

CHAPTER 8 Monitoring 267

Local Monitoring Tools 268
Smartmontools 268
sysstat 269

Ganglia 273
Install ganglia-monitor on All Hosts 274
Configure Ganglia Server 276
Install the Ganglia Web Front End 278

Nagios 280
Install GroundWork 281
GroundWork File Conventions 282
Initial Configuration 283
Configure Nagios 286
Commit Changes to Nagios 289
Configure Contact List 289
Enable Notifications for Nagios 290
Add a Service Check to a Host 291
Add a New Host 291
Advanced Configuration 292
More GroundWork Information 296

CHAPTER 9 Virtualization and Cloud Computing 297

KVM 298
Install KVM 298
Enable Support in BIOS 299

xiv Contents

Install KVM Packages 299
Configure KVM Networking 300
Create a New VM 302
Extra vmbuilder Options 306
Manage VMs with virsh 309
KVM Graphical Console and Management Tools 312

Amazon EC2 315
Register an Account 315
Setting Up EC2 API Tools 316
Create an ssh Key Pair 319
Pick an Amazon AMI 320
Security Groups 324
SSH into the Instance 326
Start, Stop, and Terminate an Instance 327
Userdata Scripts 328

Juju 330
Install and Configure Juju 330
Juju Bootstrap 333
Deploy Juju Services 333
Fault Tolerance 337
Destroying Instances 338

CHAPTER 10 Fault Tolerance 341

Fault Tolerance Principles 342
RAID 344

RAID Levels 345
Configure RAID during Installation 346
Configure RAID after Installation 348
Software RAID Management 351
Migrate Non-RAID to Software RAID 354
Migrate from RAID 1 to RAID 5 359
Add a Drive to a RAID 5 Array 366

LVM 369
LVM Theory and Jargon 370
Setting Up LVM 371

Ethernet Bonding 372
Ubuntu 10.04 Network Configuration 375
Ubuntu 12.04 and Newer Network Configuration 376
Enable the Bonded Interface 377

Contents xv

Clusters 378
Heartbeat 380
DRBD 388

CHAPTER 11 Troubleshooting 399

General Troubleshooting Philosophy 400
Divide the Problem Space 400
Favor Quick, Simple Tests over Slow, Complex Tests 401
Favor Past Solutions 401
Good Communication Is Critical

When Collaborating 402
Understand How Systems Work 402
Document Your Problems and Solutions 402
Use the Internet, but Carefully 403
Resist Rebooting 403

Localhost Troubleshooting 403
Host Is Sluggish or Unresponsive 404
Out of Disk Space 413

Network Troubleshooting 416
Server A Can’t Talk to Server B 416
Can I Route to the Remote Host? 421
Test the Remote Host Locally 424

Hardware Troubleshooting 425
Network Card Errors 425
Test Hard Drives 426
Test RAM 427

CHAPTER 12 Rescue and Recovery 429

Ubuntu Recovery Mode 430
File Systems Won’t Mount 432
Problem Init Scripts 434
Reset Passwords 435

Ubuntu Server Recovery CD 435
Boot into the Recovery CD 436
Recover GRUB 438
Repair the Root File System 438

Ubuntu Desktop Live CD 439
Boot the Live CD 439
Add the Universe Repository 439
Recover Deleted Files 440

xvi Contents

Restore the Partition Table 443
Rescue Dying Drives 444

CHAPTER 13 Help and Resources 449

Paid Support from Canonical 450
Forums 451
Internet Relay Chat 452
Mailing Lists 455
Online Documentation 456
Localhost Documentation 457
Local Community Teams 458
Other Languages 459
Tech Answers System (Launchpad) 459
Bug Reporting 459
For More Information 461

CHAPTER 14 Basic Linux Administration 463

Shell Globs 464
Regular Expressions 465

Pipes and Redirection 466
Redirection 470

File Permissions and Ownership 472
chmod 474

Linux File Types 474
Symbolic Links 475
Hard Links 476
Device Files 477

At and Cron 478
At 478
Cron 480

APPENDIX Cool Tips and Tricks 485

Avoid That grep Command in grep Output 485
Shortcut to a Command Path 486
Wipe a Drive in One Line 486
Run a Command Over and Over 487
Make a Noise When the Server Comes Back Up 487
Search and Replace Text in a File 487
find and exec Commands 488

Contents xvii

Bash Commands with Too Many Arguments 488
Use Your Bash History 489
Are These Files Identical? 489
Go Back to Your Previous Directory 489
Find Out Who Is Tying Up a File System You

Want to Unmount 490
Send a Test E-mail Using telnet 490
Easy SSH Key Sharing 491
Get the Most Out of Dig 492

Index 495

xviii Contents

Preface

xix

WELCOME to the third edition of The Official Ubuntu Server Book!

When most people talk about Ubuntu these days, they tend to talk about
the Ubuntu Desktop. After all, it’s the easy-to-use, “just works” approach
to the desktop that has made Ubuntu one of the most popular desktop
Linux distributions. What has gotten less attention, although even that is
starting to change, is Ubuntu Server. It turns out that desktop Linux users
aren’t the only ones who want their distribution to “just work”—system
administrators appreciate that on their servers as well. In Ubuntu Server
you will find all of the powerful server infrastructure from the Debian
project plus that extra bit of Ubuntu polish, innovation, and focus on
ease of use.

About This Book
This book is the result of the collaborative effort of not just the principal
authors, but of the Ubuntu Server team itself. As it is the official, author-
ized book on Ubuntu Server, the focus has been on a server guide based on
our collective experience. Beyond that, the goal is to have something to
offer to both the beginner system administrator and the battle-hardened
senior sysadmin. On the surface it might seem a tough balance to achieve,
but in reality both groups ultimately want the same thing: for their servers
to work. Now it’s true that some administrators revel in doing things the
hard way. Some even treat it as a point of pride. The thing is, all of us who
have administered servers for years can do and have done things the hard
way as well, but ultimately you realize that there’s nothing particularly
impressive in doing everything by hand—in the end you just have too
much to do and any time-saving steps are welcome.

As you will see, most of this book takes a pragmatic approach to server
management. Where Ubuntu offers new programs or features to ease
administration and save time, you will find them mentioned here. If you
are a beginner administrator, you will find that administering an Ubuntu
server isn’t nearly as difficult as you might think. Experienced administra-
tors, especially those coming from other platforms, will find numerous
time-saving tips and programs, as well as where Ubuntu has updated how
a service is organized (Apache being a good example); you can treat this
book as a map to point you to all of the right directories.

One great thing about Ubuntu as a server is that there are so many great
server packages available for it. Of course, this creates a dilemma for us as
writers: It’s just not possible to feature every available e-mail and
IMAP/POP3 server, for instance. In these cases we’ve tried to pick out pro-
grams that are easy to install, configure, and use under Ubuntu, as well as
highlight programs that are preferred by the authors and server team.
While doing that, there’s a good chance that your favorite program for X,
Y, and Z was left out. It’s certainly no slight against any of those pro-
grams—we just had to draw the line somewhere.

How the Book Is Organized
Different people read tech books differently. Some people read them cover
to cover, and others skip right ahead to the topic they need immediate help
with. You will find that the way this book is organized lends itself well to
both approaches. The first few chapters lay the foundation so you can
install Ubuntu and navigate the system even if it’s your first time. After
that the chapters focus on particular server topics, from security to moni-
toring to system rescue.

� Chapter 1—Installation. In the first chapter you will learn how to use
the default Ubuntu Server CD to install Ubuntu on a server. This
guide includes a complete walk-through of the installation process
from the initial boot screen to partitioning to your first login prompt.

� Chapter 2—Essential System Administration. If you are new to
Ubuntu system administration, the amount of learning ahead of you
might seem daunting. In this chapter you will find not only a solid
foundation of instructions on how to navigate the Linux command

xx Preface

line, but also an introduction to the Ubuntu boot process and the
standards behind all of the directories on an Ubuntu system. By the
end of the chapter you should have a good basis to continue with the
rest of the book.

� Chapter 3—Package Management. This chapter introduces you to
packages and the packaging system—the way that Ubuntu handles
the installation, removal, and management of software. We provide a
solid foundation in what packages do and how they do it before
drilling down into the details of how an administrator can manage
software the Ubuntu way. In the final pages, we cover the way that
administrators can switch from being consumers to producers and
begin making their own packages.

� Chapter 4—Automated Ubuntu Installs. While you can certainly
install Ubuntu step by step from the install CD, that method doesn’t
work so well when you have tens or hundreds of servers to install. This
chapter covers the preseed method for automating Ubuntu installs
along with Kickseed—Ubuntu’s port of Kickstart. In addition to a
description of how to use both of these technologies independently,
you will find out it’s even better when you use them together.

� Chapter 5—Guide to Common Ubuntu Servers. There is an enormous
number of services you can run on an Ubuntu server. In this chapter
we highlight some of the more popular services, from Web to e-mail to
file services. If you are a new administrator, you will find a simple guide
on how to install and configure these services for the first time. If you
are an experienced administrator coming from another distribution,
you will find this chapter a handy, how-to guide on how Ubuntu orga-
nizes all of the configuration files for your favorite services.

� Chapter 6—Security. Security is an important topic for any adminis-
trator. Ubuntu Server already is pretty secure by default, and in this
chapter we highlight some of these mechanisms, along with steps you
can take to increase your security even further. Some of the security
topics include sudo, firewall configuration, an introduction to foren-
sics, and even Ubuntu’s AppArmor software.

� Chapter 7—Backups. There are two kinds of administrators: those
who back up their servers and those who haven’t lost valuable data
yet. Backup software abounds for Linux as a whole and for Ubuntu

Preface xxi

specifically, and in this chapter you will see a few easy-to-set-up
approaches to keeping your data secure.

� Chapter 8—Monitoring. Monitoring is one of the most valuable sys-
tems an administrator can set up while simultaneously being the
most annoying (why do servers always seem to page you in the
middle of the night?). In this chapter we cover some different
approaches to monitoring systems both for trending purposes and
to alert you to any problems. By the end of the chapter you will no
longer lose sleep wondering if a server is up—you’ll lose sleep only
when it goes down.

� Chapter 9—Virtualization and Cloud Computing. Virtualization and
cloud computing are hot topics in system administration today. With
increasingly powerful hardware out there, virtualization provides you
with a way to squeeze the most efficiency out of your servers and
cloud computing abstracts even further so that servers can be created
and destroyed on a whim. In this chapter we cover one of the most
popular server-based virtualization tools out there: KVM. We also
cover how to use Amazon’s EC2 cloud environment with command-
line tools and also how to automate EC2 server deployment with a
new Canonical tool called Juju.

� Chapter 10—Fault Tolerance. If a lot is riding on your servers and
your downtime is measured in dollars and not minutes, you realize
very quickly that your servers need fault tolerance. This chapter cov-
ers the Ubuntu software RAID, including steps to migrate from one
type of RAID to another. Then we will cover how to set up redundant
network connections and finish up with a guide to setting up your
own Linux cluster. We also discuss how to get up and running with
logical volume management (LVM).

� Chapter 11—Troubleshooting. No matter how great an administrator
you are, eventually something on your servers will fail. Over the years
you develop a series of troubleshooting steps you go through whenever
you find a problem on your systems. In this chapter we condense years
of troubleshooting experience into a series of step-by-step guides to
walk you through common server and network problems and how to
use standard Ubuntu tools and techniques to diagnose them.

xxii Preface

� Chapter 12—Rescue and Recovery. We’ve often said that we’ve
learned more about Linux from fixing a broken system than in any
other way. In some environments when a system won’t boot, an
administrator might just install a new operating system. Under
Ubuntu, however, you’ll find that most common boot problems also
have a common, easy solution. In this chapter we discuss how to use
different stages of rescue modes both on Ubuntu and the Ubuntu
Server install CD itself to repair your system.

� Chapter 13—Help and Resources. One great thing about Ubuntu is
just how many support avenues there are when you need help.
Whether it’s documentation on the machine itself, guides on the offi-
cial Ubuntu site, forums, or even professional Canonical support,
when you are stuck you aren’t alone. In this chapter we cover all of the
different ways to get support for your Ubuntu server.

� Chapter 14—Basic Linux Administration. This chapter picks up
where Chapter 2, Essential System Administration, left off. Here we
discuss some of the core foundation concepts behind Linux adminis-
tration, including file permissions, different file types, pipes, and
other core Linux information. Beginner administrators will find this
a very useful guide to flesh out any gaps in their command-line
knowledge, and the experienced administrators will find it a good
refresher on core concepts.

� Appendix—Cool Tips and Tricks. Over the years you develop all sorts
of useful tips, one-liners, and other shell commands that make your
life as an administrator easier. Here you will find some of our favorite
time-saving tips and hacks in rapid-fire form.

Media with This Book
This book includes two versions of Ubuntu Server: Ubuntu 12.04.2 for 64-
bit machines and the latest Ubuntu 13.04 release, so you can pick the ver-
sion that best matches your needs.

Although we have included both Ubuntu 12.04.2 and 13.04 releases and
have written the book for both versions, you might decide to try out a

Preface xxiii

newer Ubuntu release. In that case, just go to http://ubuntu.com and
either download the CD image or request a copy to be sent to you. No
matter which Ubuntu Server CD you pick, it’s relatively easy to use the
CDs. Just insert the version you want to install into your computer and
boot from the CD-ROM. When the CD boots, you will see a number of
options on the screen, but to install Ubuntu Server, just select Install
Ubuntu Server. The installer that launches will ask some fairly straightfor-
ward questions common to most install discs, and if you get stuck, just
turn to Chapter 1 for a more in-depth walk-through of the install process.

xxiv Preface

http://ubuntu.com

Acknowledgments

xxv

JORGE, I WOULDN’T HAVE been involved in this book if it weren’t for you. I’m
one in a long list of people using Ubuntu because of Jorge. His enthusiasm
is infectious, and I can’t count how many times he’s introduced me to
some cool new program or tool that I write off at first and then somehow
find myself using eventually.

Debra and Mako, it has been great working with both of you on this
project, and thank you for the opportunity and guidance. Also thanks to
Matthew for his help on the support chapter. Robert, thanks so much for
your great attention to detail and tracking down all the areas where I had
made typos and mistakes. Thanks to Bill “The Cloud” Childers for provid-
ing me with equipment for the UEC section.

Extra thanks to Dustin, Nick, Jamie, Kees, Alan, Mathias, Thierry, and the
rest of the Ubuntu Server team for all of your excellent feedback and help
through this process.

—Kyle Rankin

This page intentionally left blank

About the Authors

xxvii

Kyle Rankin is a senior systems administrator, the author of DevOps
Troubleshooting, Knoppix Hacks, Knoppix Pocket Reference, Linux Multi-
media Hacks, and Ubuntu Hacks, and he has contributed to a number of
other O’Reilly books. Kyle is also an award-winning columnist for Linux
Journal and has had articles featured in PC Magazine, TechTarget, and
other publications.

Benjamin Mako Hill is a Ph.D. candidate at the Sloan School of Manage-
ment and Media Lab at MIT, and, as of Fall 2013, an assistant professor of
communications at the University of Washington. As part of the founding
Ubuntu team, his charge at Canonical was to help grow the Ubuntu devel-
opment and user community during the project’s first year. Mako has con-
tinued his involvement with Ubuntu as a member of the Community
Council governance board and through projects such as this book.

This page intentionally left blank

Introduction

xxix

THIS INTRODUCTION GIVES AN overview of Ubuntu and Ubuntu Server. After
a quick welcome, it includes a brief history of free software, open source,
and GNU/Linux and of the Ubuntu project itself, with a focus on some of
the major players on the Ubuntu scene. This introduction ends where the
rest of this book will continue: with a history of the Ubuntu Server project
and an overview of that project’s goals and accomplishments.

Welcome to Ubuntu Server
In the just over eight years of its life, Ubuntu has become one of the most
popular GNU/Linux-based operating systems. In the process, however,
public perception has been disproportionately focused on Ubuntu’s role
as a desktop-based operating system. While all popularity is certainly wel-
come for those of us involved in the project, this success has, at times,
overshadowed the rock-solid server operating system that Ubuntu has
been constructed to be. For those of us who have helped build out
Ubuntu’s server-specific features and who use it daily, this is both unfortu-
nate and undeserved. Designed and used as a server since day one, Ubuntu
has supported a server team that was one of the first active teams in the
Ubuntu community and has been one of the most successful. Although
perceptions have changed in large part, many prospective users—and even
some current Ubuntu users—often continue to think of Ubuntu as some-
thing for desktops.

Perhaps it is just that people are so surprised at the usability of Ubuntu on
the desktop—especially in the early days when expectations for desktop
GNU/Linux distributions were low—that the public focus naturally has
drifted away from Ubuntu’s server offering. Lots of other GNU/Linux dis-
tributions run great on servers, but a solid desktop experience continues

to be surprising to many users. As a result, when people talk about Ubuntu,
they often tend to talk about desktops. Perhaps, on the other hand, people
just figured that such a well-polished desktop must have come at the cost
of the server-oriented features and support. Of course, no such sacrifices
were made.

To a large extent, times have changed. The Ubuntu Server team has contin-
ued its tireless work both to improve the experience for server users of
Ubuntu and to help promote Ubuntu as a server solution. Documenta-
tion, testimonials, certification of server-based software, support contracts
from a variety of sources, training courses, and more have all contributed
to remaking Ubuntu into a powerful player on the server. Although its
desktop credentials have not been diminished, Ubuntu’s server chops are
increasingly difficult to overlook. Over the past two years, Ubuntu has
begun to become a major player in the GNU/Linux server market.

More than anything else, testimonials have spread and the small group of
early Ubuntu Server users has spread the word. More and more people
choose Ubuntu for their servers every day. In fact, this book is simply the
latest striking example of just how far Ubuntu on servers has come. Not
only do people now know that Ubuntu runs on a server, they know it runs
well. This book is publishable only because there is a market for it. That
market is made up of people who have heard good things about Ubuntu
on the server and who are getting ready to take the plunge themselves.
Welcome. We hope we can help make the process easier. We’ve come a long
way, and we’re still only just beginning.

Free Software, Open Source, and Linux
A history of Ubuntu Server must, in large part, be a history of Ubuntu
itself. A history of Ubuntu must, in large part, be a history of the free soft-
ware movement and of the Linux kernel. While thousands of individuals
have contributed in some form to Ubuntu, the project has succeeded only
through the contributions of many thousands more who have indirectly
laid the technical, social, and economic groundwork for Ubuntu’s success.
While introductions to free software, open source, and GNU/Linux can be
found in many other places, no introduction to Ubuntu is complete with-

xxx Introduction

out a brief discussion of these concepts and the people and history behind
them. It is around these concepts and within these communities that
Ubuntu was motivated and born. Ultimately, it is through these ideas that
it is sustained.

Free Software and GNU

In a series of events that have almost become legend through constant rep-
etition, Richard M. Stallman created the concept of free software in 1983.
Stallman grew up with computers in the 1960s and 1970s, when computer
users purchased very large and extremely expensive mainframe comput-
ers, which were then shared among large numbers of programmers. Soft-
ware was, for the most part, seen as an add-on to the hardware, and every
user had the ability and the right to modify or rewrite the software on his
or her computer and to freely share this software. As computers became
cheaper and more numerous in the late 1970s, producers of software
began to see value in the software itself. Producers of computers began to
argue that their software was copyrightable and a form of intellectual
property much like a music recording, a film, or a book’s text. They began
to distribute their software under licenses and in forms that restricted its
users’ abilities to use, redistribute, or modify the code. By the early 1980s,
restrictive software licenses had become the norm.

Stallman, then a programmer at MIT’s Artificial Intelligence Laboratory,
became increasingly concerned with what he saw as a dangerous loss of the
freedoms that software users and developers had up until that point enjoyed.
He was concerned with computer users’ ability to be good neighbors and
members of what he thought was an ethical and efficient computer-user
community. To fight against this negative tide, Stallman articulated a vision
for a community that developed liberated code—in his words, “free soft-
ware.” He defined free software as software that had the following four
characteristics—labeled as freedoms 0 through 3 instead of 1 through 4 as a
computer programmer’s joke:

� The freedom to run the program for any purpose (freedom 0)

� The freedom to study how the program works and adapt it to your
needs (freedom 1)

Introduction xxxi

� The freedom to redistribute copies so you can help your neighbor
(freedom 2)

� The freedom to improve the program and release your improvements
to the public so that the whole community benefits (freedom 3)

Access to source code—the human-readable and modifiable blueprints of
any piece of software that can be distinguished from the computer-read-
able version of the code that most software is distributed as—is a prereq-
uisite to freedoms 1 and 3. In addition to releasing this definition of free
software, Stallman began a project with the goal of creating a completely
free OS to replace the then-popular UNIX. In 1984, Stallman announced
this project and called it GNU—another joke in the form of a recursive
acronym for “GNU’s Not UNIX.”

Linux

By the early 1990s, Stallman and a collection of other programmers work-
ing on GNU had developed a near-complete OS that could be freely shared.
They were, however, missing a final essential piece in the form of a kernel—
a complex system command processor that lies at the center of any OS. In
1991, Linus Torvalds wrote an early version of just such a kernel, released it
under a free license, and called it Linux. Linus’s kernel was paired with the
GNU project’s development tools and OS and with the graphical window-
ing system called X. With this pairing, a completely free OS was born—free
both in terms of price and in Stallman’s terms of freedom.

All systems referred to as Linux today are, in fact, built on the work of this
collaboration. Technically, the term Linux refers only to the kernel. Many
programmers and contributors to GNU, including Stallman, argue emphat-
ically that the full OS should be referred to as GNU/Linux in order to give
credit not only to Linux but also to the GNU project and to highlight
GNU’s goals of spreading software freedom—goals not necessarily shared
by Linus Torvalds. Many others find this name cumbersome and prefer
calling the system simply Linux. Yet others, such as those working on the
Ubuntu project, attempt to avoid the controversy altogether by referring to
GNU/Linux only by using their own project’s name.

xxxii Introduction

Open Source

Disagreements over labeling did not end with discussions about the nam-
ing of the combination of GNU and Linux. In fact, as the list of contribu-
tors to GNU and Linux grew, a vibrant world of new free-software projects
sprouted up, facilitated in part by growing access to the Internet. As this
community grew and diversified, a number of people began to notice an
unintentional side effect of Stallman’s free software. Because free software
was built in an open way, anyone could contribute to software by looking
through the code, finding bugs, and fixing them. Because software ended
up being examined by larger numbers of programmers, free software was
higher in quality, performed better, and offered more features than similar
software developed through proprietary development mechanisms. In
many situations, the development model behind free software led to soft-
ware that was inherently better than proprietary alternatives.

As the computer and information technology industry began to move into
the dot-com boom, one group of free software developers and leaders,
spearheaded by two free software developers and advocates—Eric S. Ray-
mond and Bruce Perens—saw the important business proposition offered
by a model that could harness volunteer labor or interbusiness collabora-
tion and create intrinsically better software. However, they worried that
the term free software was problematic for at least two reasons. First, it was
highly ambiguous—the English word free means both gratis, or at no cost
(e.g., as in “free beer”) and liberated in the sense of freedom (e.g., as in
“free speech”). Second, there was a feeling, articulated most famously by
Raymond, that all this talk of freedom was scaring off the very business
executives and decision makers whom the free software movement needed
to impress in order to succeed.

To tackle both of these problems, this group coined a new phrase—open
source—and created a new organization called the Open Source Initiative.
The group set at its core a definition of open source software that over-
lapped completely and exclusively both with Stallman’s four-part defini-
tion of free software and with other community definitions that were also
based on Stallman’s.

One useful way to understand the split between the free software and open
source movements is to think of it as the opposite of a schism. In religious

Introduction xxxiii

schisms, churches separate and do not work or worship together because
of relatively small differences in belief, interpretation, or motivation. For
example, most contemporary forms of Protestant Christianity agree on
almost everything but have separated over some small but irreconcilable
difference. However, in the case of the free software and open source move-
ments, the two groups have fundamental disagreements about their motiva-
tion and beliefs. One group is focused on freedom, while the other is focused
on pragmatics. Free software is most accurately described as a social move-
ment, whereas open source is a development methodology. However, the
two groups have no trouble working on projects hand in hand.

In terms of the motivations and goals, open source and free software
diverge greatly. Yet in terms of the software, the projects, and the licenses
they use, they are completely synonymous. While people who identify
with either group see the two movements as being at odds, the Ubuntu
project sees no conflict between the two ideologies. People in the Ubuntu
project identify with either group and often with both. In this book, we
may switch back and forth between the terms as different projects and
people in Ubuntu identify more strongly with one term or the other. For
the purposes of this book, though, either term should be read as implying
the other unless it is stated otherwise.

A Brief History of the Ubuntu Project
A history of Ubuntu, born in April 2004, may seem premature. However,
the last six years have been full ones for Ubuntu. With its explosive growth,
it is difficult even for those involved most closely with the project to track
and record some of the high points. Importantly, there are some key fig-
ures whose own history must be given for a full understanding of Ubuntu.
This brief summary outlines the high points of Ubuntu’s history to date
and gives the necessary background knowledge to understand where
Ubuntu comes from.

Mark Shuttleworth

No history of Ubuntu can call itself complete without a history of Mark
Shuttleworth. Shuttleworth is, undeniably, the most visible and important
person in Ubuntu. More important from the point of view of history,

xxxiv Introduction

Shuttleworth is also the originator and initiator of the project—he made
the snowball that would eventually roll on and grow to become the Ubuntu
project.

Shuttleworth was born in 1973 in Welkom, Free State, in South Africa. He
attended Diocesan College and obtained a business science degree in
finance and information systems at the University of Cape Town. During
this period, he was an avid computer hobbyist and became involved with
the free and open source software community. He was at least marginally
involved in both the Apache project and the Debian project and was the
first person to upload the Apache Web server, perhaps the single most
important piece of server software on GNU/Linux platforms, into the
Debian project’s archives.

Seeing an opportunity in the early days of the Web, Shuttleworth founded
a certificate authority and Internet security company called Thawte in his
garage. Over the course of several years, he built Thawte into the second-
largest certificate authority on the Internet, trailing only the security behe-
moth VeriSign. Throughout this period, Thawte’s products and services
were built and served almost entirely from free and open source software.
In December 1999, Shuttleworth sold Thawte to VeriSign for an undis-
closed amount that reached into the hundreds of millions in U.S. dollars.

With his fortune made at a young age, Shuttleworth might have enjoyed a
life of leisure—and probably considered it. Instead, he decided to pursue
his lifelong dream of space travel. After paying approximately $20 million
to the Russian space program and devoting nearly a year to preparation,
including learning Russian and spending seven months training in Star
City, Russia, Shuttleworth realized his dream as a civilian cosmonaut
aboard the Russian Soyuz TM-34 mission. On this mission, Shuttleworth
spent two days on the Soyuz rocket and eight days on the International
Space Station, where he participated in experiments related to AIDS and
genome research. In early May 2002, Shuttleworth returned to Earth.

In addition to space exploration and a less-impressive jaunt to Antarctica,
Shuttleworth played an active role as both a philanthropist and a venture
capitalist. In 2001, he founded the Shuttleworth Foundation (TSF), a non-
profit organization based in South Africa. The foundation was chartered

Introduction xxxv

to fund, develop, and drive social innovation in the field of education. Of
course, the means by which TSF attempts to achieve these goals frequently
involves free software. Through these projects, the organization has been
one of the most visible proponents of free and open source software in
South Africa and even the world. In the venture capital area, Shuttleworth
worked to foster research, development, and entrepreneurship in South
Africa with strategic injections of cash into start-ups through a new ven-
ture capital firm called HBD, an acronym for “Here Be Dragons.” During
this period, Shuttleworth was busy brainstorming his next big project—
the project that would eventually become Ubuntu.

The Warthogs

There has been no lack of projects attempting to wrap GNU, Linux, and
other pieces of free and open source software into a neat, workable, and
user-friendly package. Mark Shuttleworth, like many other people,
believed that the philosophical and pragmatic benefits offered by free
software put it on a course for widespread success. That said, none of the
offerings were particularly impressive. Something was missing from all of
them. Shuttleworth saw this as an opportunity. If someone could build
the great free software distribution that helped push GNU/Linux into the
mainstream, he or she would come to occupy a position of strategic
importance.

Shuttleworth, like many other technically inclined people, was a huge fan of
the Debian project (discussed in depth later). However, many things about
Debian did not fit with Shuttleworth’s vision of an ideal OS. For a period of
time, Shuttleworth considered the possibility of running for Debian project
leader as a means of reforming the Debian project from within. With time,
though, it became clear that the best way to bring GNU/Linux into the
mainstream would not be from within the Debian project—which in many
situations had very good reasons for being the way it was. Instead, Shuttle-
worth would create a new project that worked in symbiosis with Debian to
build a new, better GNU/Linux system.

To kick off this project, Shuttleworth invited a dozen or so free and open
source software developers he knew and respected to his flat in London in
April 2004. It was in this meeting (alluded to in the first paragraphs of this

xxxvi Introduction

introduction) that the groundwork for the Ubuntu project was laid. By
that point, many of those involved were excited about the possibility of the
project. During this meeting, the members of the team—which would in
time grow into the core Ubuntu team—brainstormed a large list of the
things that they would want to see in their ideal OS. The list is now a famil-
iar list of features to most Ubuntu users. Many of these traits are covered
in more depth later in this introduction. The group wanted

� Predictable and frequent release cycles

� A strong focus on localization and accessibility

� A strong focus on ease of use and user-friendliness on the desktop

� A strong focus on Python as the single programming language
through which the entire system could be built and expanded

� A community-driven approach that worked with existing free soft-
ware projects and a method by which the groups could give back as
they went along—not just at the time of release

� A new set of tools designed around the process of building distribu-
tions that allowed developers to work within an ecosystem of differ-
ent projects and that allowed users to give back in whatever ways
they could

There was consensus among the group that actions speak louder than
words, so there were no public announcements or press releases. Instead,
the group set a deadline for itself—six short months in the future. Shuttle-
worth agreed to finance the work and pay the developers full-time salaries
to work on the project. After six months, they would both announce their
project and reveal the first product of their work. They made a list of goals
they wanted to achieve by the deadline, and the individuals present took
on tasks. Collectively, they called themselves the Warthogs.

What Does Ubuntu Mean?

At this point, the Warthogs had a great team, a set of goals, and a decent
idea of how to achieve most of them. The team did not, on the other hand,
have a name for the project. Shuttleworth argued strongly that they should
call the project Ubuntu.

Introduction xxxvii

Ubuntu is a concept and a term from several South African languages,
including Zulu and Xhosa. It refers to a South African ideology or ethic
that, while difficult to express in English, might roughly be translated as
“humanity toward others,” or “I am because we are.” Others have described
ubuntu as “the belief in a universal bond of sharing that connects all
humanity.” The famous South African human rights champion Archbishop
Desmond Tutu explained ubuntu in this way:

A person with ubuntu is open and available to others, affirming of others,
does not feel threatened that others are able and good, for he or she has a
proper self-assurance that comes from knowing that he or she belongs in a
greater whole and is diminished when others are humiliated or dimin-
ished, when others are tortured or oppressed.

Ubuntu played an important role as a founding principle in postapartheid
South Africa and remains a concept familiar to most South Africans today.

Shuttleworth liked the term Ubuntu as a name for the new project for sev-
eral reasons. First, it is a South African concept. While the majority of the
people who work on Ubuntu are not from South Africa, the roots of the
project are, and Shuttleworth wanted to choose a name that represented
this. Second, the project emphasizes the definition of individuality in terms
of relationships with others and provides a profound type of community
and sharing—exactly the attitudes of sharing, community, and collabora-
tion that are at the core of free software. The term represented the side of
free software that the team wanted to share with the world. Third, the idea
of personal relationships built on mutual respect and connections
describes the fundamental ground rules for the highly functional commu-
nity that the Ubuntu team wanted to build. Ubuntu was a term that encap-
sulated where the project came from, where the project was going, and how
the project planned to get there. The name was perfect. It stuck.

Creating Canonical

In order to pay developers to work on Ubuntu full-time, Shuttleworth
needed a company to employ them. He wanted to pick some of the best
people for the jobs from within the global free software and open source
communities. These communities, inconveniently for Shuttleworth, know
no national and geographic boundaries. Rather than move everyone to a

xxxviii Introduction

single locale and office, Shuttleworth made the decision to employ these
developers through a virtual company. While this had obvious drawbacks
in the form of high-latency and low-bandwidth connections, different
time zones, and much more, it also introduced some major benefits in the
particular context of the project. On one hand, the distributed nature of
employees meant that the new company could hire individuals without
requiring them to pack up their lives and move to a new country. More
important, it meant that everyone in the company was dependent on IRC,
mailing lists, and online communication mechanisms to do their work.
This unintentionally and automatically solved the water-cooler problem
that plagued many other corporately funded free software projects—
namely, that developers would casually speak about their work in person
and cut the community and anyone else who didn’t work in the office out
of the conversation completely. For the first year, the closest thing that
Canonical had to an office was Shuttleworth’s flat in London. While the
company has grown and now has several offices around the world, it
remains distributed, and a large number of the engineers work from
home. The group remains highly dependent on Internet collaboration.

With time, the company was named Canonical. The name was a nod to the
project’s optimistic goals of becoming the canonical place for services and
support for free and open source software and for Ubuntu in particular.
Canonical, of course, refers to something that is accepted as authoritative.
It is a common word in the computer programmer lexicon. It’s important
to note that being canonical is like being standard; it is not coercive. Unlike
holding a monopoly, becoming the canonical location for something
implies a similar sort of success—but never one that cannot be undone
and never one that is exclusive. Other companies will support Ubuntu and
build operating systems based on it, but as long as Canonical is doing a
good job, its role will remain central.

The Ubuntu Community

By now you may have noticed a theme that permeates the Ubuntu project
on several levels. The history of free software and open source is one of a
profoundly effective community. Similarly, in building a GNU/Linux dis-
tribution, the Ubuntu community has tried to focus on an ecosystem
model—an organization of organizations—in other words, a community.

Introduction xxxix

Even the definition of the term ubuntu is one that revolves around people
interacting in a community.

It comes as no surprise, then, that an “internal” community plays heavily
into the way that the Ubuntu distribution is created. While the Ubuntu
4.10 version (Warty Warthog) was primarily built by a small number of
people, Ubuntu achieved widespread success only through contributions
by a much larger group that included programmers, documentation writ-
ers, volunteer support staff, and users. While Canonical employs a core
group of several dozen active contributors to Ubuntu, the distribution
has, from day one, encouraged and incorporated contributions from any-
one in the community and rewards and recognizes contributions by all.
Rather than taking center stage, paid contributors are not employed by the
Ubuntu project—instead they are employed by Canonical, Ltd. These
employees are treated simply as another set of community members. They
must apply for membership in the Ubuntu community and have their
contributions recognized in the same way as anyone else. All non-busi-
ness-related communication about the Ubuntu project occurs in public
and in the community. Volunteer community members occupy a majority
of the seats on the two most important governing boards of the Ubuntu
project: the Technical Board, which oversees all technical matters, and the
Community Council, which approves new Ubuntu members and resolves
disputes. Seats on both boards are approved by the relevant community
groups, developers for the Technical Board and Ubuntu members for the
Community Council.

In order to harness and encourage the contributions of its community,
Ubuntu has striven to balance the important role that Canonical plays
with the value of empowering individuals in the community. The Ubuntu
project is based on a fundamental belief that great software is built, sup-
ported, and maintained only in a strong relationship with the individuals
who use the software. In this way, by fostering and supporting a vibrant
community, Ubuntu can achieve much more than it could through paid
development alone. The people on the project believe that while the con-
tributions of Canonical and Mark Shuttleworth have provided an impor-
tant catalyst for the processes that have built Ubuntu, it is the community
that has brought the distribution its success to date. The project members
believe that it is only through increasing reliance on the community that

xl Introduction

the project’s success will continue to grow. The Ubuntu community won’t
outspend the proprietary software industry, but it is very much more than
Microsoft and its allies can afford.

Finally, it is worth noting that, while this book is official, neither of the
authors is a Canonical employee. This book, like much of the rest of
Ubuntu, is purely a product of the project’s community.

Ubuntu Promises and Goals
So far, this Introduction has been about the prehistory, history, and con-
text of the Ubuntu project. After this introduction, the book focuses on
the distribution itself. Before proceeding, it’s important to understand the
goals that motivated the project.

Philosophical Goals

The most important goals of the Ubuntu project are philosophical in
nature. The Ubuntu project lays out its philosophy in a series of documents
on its Web site. In the most central of these documents, the team summa-
rizes the charter and the major philosophical goals and underpinnings:

Ubuntu is a community-driven project to create an operating system and
a full set of applications using free and Open Source software. At the core
of the Ubuntu Philosophy of Software Freedom are these core philosoph-
ical ideals:

1. Every computer user should have the freedom to run, copy, distribute,
study, share, change, and improve their software for any purpose with-
out paying licensing fees.

2. Every computer user should be able to use their software in the language
of their choice.

3. Every computer user should be given every opportunity to use software,
even if they work under a disability.

The first item should be familiar by now. It is merely a recapitulation of
Stallman’s free software definition quoted earlier in the section on free
software history. In it, the Ubuntu project makes explicit its goal that every
user of software should have the freedoms required by free software. This

Introduction xli

is important for a number of reasons. First, it offers users all of the practi-
cal benefits of software that runs better, faster, and more flexibly. More
important, it gives every user the capability to transcend his or her role as a
user and a consumer of software. Ubuntu wants software to be empower-
ing and to work in the ways that users want it to work. Ubuntu wants all
users to have the ability to make sure it works for them. To do this, soft-
ware must be free, so Ubuntu makes this a requirement and a philosophi-
cal promise.

Of course, the core goals of Ubuntu do not end with the free software defi-
nition. Instead, the project articulates two new, but equally important,
goals. The first of these, that all computer users should be able to use their
computers in their chosen languages, is a nod to the fact that the majority
of the world’s population does not speak English while the vast majority of
software interacts only in that language. To be useful, source code com-
ments, programming languages, documentation, and the texts and menus
in computer programs must be written in some language. Arguably, the
world’s most international language is a reasonably good choice. However,
there is no language that everyone speaks, and English is not useful to the
majority of the world’s population that does not speak it. A computer can
be a great tool for empowerment and education, but only if the user can
understand the words in the computer’s interface. As a result, Ubuntu
believes that it is the project’s—and community’s—responsibility to
ensure that every user can easily use Ubuntu to read and write in the lan-
guage with which he or she is most comfortable.

Finally, just as no person should be blocked from using a computer simply
because he or she does not know a particular language, no user should be
blocked from using a computer because of a disability. Ubuntu must be
accessible to users with motor disabilities, vision disabilities, and hearing
disabilities. It should provide input and output in a variety of forms to
account for each of these situations and for others. A significant percent-
age of the world’s most intelligent and creative individuals has disabilities.
Ubuntu’s impact should not be limited to any subset of the world when it
can be fully inclusive. More important, Ubuntu should be able to harness
the ability of these individuals as community members to build a better
and more effective community.

xlii Introduction

Conduct Goals and Code of Conduct

If Ubuntu’s philosophical commitments describe the why of the Ubuntu
project, the Code of Conduct (CoC) describes Ubuntu’s how. Ubuntu’s
CoC is, arguably, the most important document in the day-to-day opera-
tion of the Ubuntu community and sets the ground rules for work and
cooperation within the project. Explicit agreement to the document is the
only criterion for becoming an officially recognized Ubuntu activist—an
Ubuntero—and is an essential step toward membership in the project.

The CoC covers “behavior as a member of the Ubuntu Community, in any
forum, mailing list, wiki, Web site, IRC channel, install-fest, public meet-
ing, or private correspondence.” The CoC goes into some degree of depth
on a series of points that fall under the following headings:

� Be considerate.

� Be respectful.

� Be collaborative.

� When you disagree, consult others.

� When you are unsure, ask for help.

� Step down considerately.

Many of these headings seem like common sense or common courtesy to
many, and that is by design. Nothing in the CoC is controversial or radical,
and it was never designed to be.

More difficult is that nothing is easy to enforce or decide because acting con-
siderately, respectfully, and collaboratively is often very subjective. There is
room for honest disagreements and hurt feelings. These are accepted short-
comings. The CoC was not designed to be a law with explicit prohibitions
on phrases, language, or actions. Instead, it aims to provide a constitution
and a reminder that considerate and respectful discussion is essential to
the health and vitality of the project. In situations where there is a serious
disagreement on whether a community member has violated or is violat-
ing the code, the Community Council is available to arbitrate disputes and
decide what action, if any, is appropriate.

Introduction xliii

Nobody involved in the Ubuntu project, including Mark Shuttleworth and
the other members of the Community Council, is above the CoC. The
CoC is never optional and never waived. In fact, the Ubuntu community
recently created a Leadership Code of Conduct (LCoC), which extends
and expands on the CoC and describes additional requirements and expec-
tations for those in leadership positions in the community. Of course, in no
way was either code designed to eliminate conflict or disagreement. Argu-
ments are at least as common in Ubuntu as they are in other projects and
online communities. However, there is a common understanding within
the project that arguments should happen in an environment of collabora-
tion and mutual respect. This allows for better arguments with better
results—and with less hurt feelings and fewer bruised egos.

While they are sometimes incorrectly used as such, the CoC and LCoC are
not sticks to be wielded against an opponent in an argument. Instead, they
are useful points of reference upon which consensus can be assumed
within the Ubuntu community. Frequently, if a group in the community
feels a member is acting in a way that is out of line with the code, the group
will gently remind the community member, often privately, that the CoC
is in effect. In almost all situations, this is enough to avoid any further
action or conflict. Very few CoC violations are ever brought before the
Community Council.

Technical Goals

While a respectful community and adherence to a set of philosophical
goals provide an important frame in which the Ubuntu project works,
Ubuntu is, at the end of the day, a technical project. As a result, it only
makes sense that in addition to philosophical goals and a project constitu-
tion, Ubuntu also has a set of technical goals.

The first technical goal of the project, and perhaps the most important
one, is the coordination of regular and predictable releases—something
particularly important to server users. In April 2004, at the Warthogs
meeting, the project set a goal for its initial proof-of-concept release six
months out. In part due to the resounding success of that project, and in
larger part due to the GNOME release schedule, the team has stuck to a
regular and predictable six-month release cycle and has only once chosen

xliv Introduction

to extend the release schedule by six weeks and only after obtaining com-
munity consensus on the decision. The team then redoubled its efforts and
made the next release in a mere four and a half months, putting its release
schedule back on track. Frequent releases are important because users can
then use the latest and greatest free software available—something that is
essential in a development environment as vibrant and rapidly changing
and improving as the free software community. Predictable releases are
important, especially to businesses, because predictability means that they
can organize their business plans around Ubuntu. Through consistent
releases, Ubuntu can provide a platform upon which businesses and deriv-
ative distributions can rely to grow and build.

While releasing frequently and reliably is important, the released software
must then be supported. Ubuntu, like all distributions, must deal with the
fact that all software has bugs. Most bugs are minor, but fixing them may
introduce even worse issues. Therefore, fixing bugs after a release must be
done carefully or not at all. The Ubuntu project engages in major changes,
including bug fixes, between releases only when the changes can be exten-
sively tested. However, some bugs risk the loss of users’ information or
pose a serious security vulnerability. These bugs are fixed immediately and
made available as updates for the released distribution. The Ubuntu com-
munity works hard to find and minimize all types of bugs before releases
and is largely successful in squashing the worst. However, because there is
always the possibility that more of these bugs will be found, Ubuntu com-
mits to supporting every release for 18 months after it is released. In the
case of Ubuntu 6.06 LTS (Dapper Drake), released in 2006, the project
went well beyond even this and committed to support the release for three
full years on desktop computers and for five years in a server configuration
(LTS stands for LongTerm Support). This proved so popular with busi-
nesses, institutions, and the users of Ubuntu servers that Ubuntu 8.04
(Hardy Heron) was named as Ubuntu’s second LTS release with similar
three- and five-year desktop and server extended support commitments.
These five-year support commitments are specifically designed for server
users and make Ubuntu a much more attractive option for an important
class of server users.

This bipartite approach to servers and desktops implies the third major
technical commitment of the Ubuntu project and, in a sense, the most

Introduction xlv

important for this book: support for both servers and desktop computers
in separate but equally emphasized modes. While Ubuntu continues to be
more well known, and perhaps more popular, in desktop configurations,
there exist teams of Ubuntu developers focused on both server and desk-
top users. The Ubuntu project believes that both desktops and servers are
essential and provides installation methods on every CD for both types of
systems. Ubuntu provides tested and supported software appropriate to
the most common actions in both environments and documentation for
each. LTS releases in particular mark an important step toward catering to
users on the server.

Finally, the Ubuntu project is committed to making it as easy as possible
for users to transcend their roles as consumers and users of software and
to take advantage of each of the freedoms central to the Ubuntu philoso-
phy. As a result, Ubuntu has tried to focus its development around the use
and promotion of a single programming language, Python. The project
has worked to ensure that Python is widely used throughout the system.
By ensuring that many applications and many of the “guts” of the system
are written in or extensible in Python, Ubuntu is working to ensure that
users need to learn only one language in order to take advantage of, auto-
mate, and tweak many parts of their systems.

Canonical and the Ubuntu Foundation
While Ubuntu is driven by a community, several groups play an important
role in its structure and organization. Foremost among these are Canoni-
cal, Ltd., a for-profit company introduced as part of the Ubuntu history
description, and the Ubuntu Foundation, which is introduced later in this
section.

Canonical, Ltd.

As mentioned earlier, Canonical, Ltd., is a company founded by Mark
Shuttleworth with the primary goal of developing and supporting the
Ubuntu distribution. Many of the core developers on Ubuntu—although
no longer a majority of them—work full-time or part-time under contract
for Canonical, Ltd. This funding by Canonical allows Ubuntu to make the
type of support commitments that it does. Ubuntu can claim that it will

xlvi Introduction

release in six months because releasing, in one form or another, is some-
thing that the paid workers at Canonical can ensure. As an all-volunteer
organization, Debian suffered from an inability to set and meet dead-
lines—volunteers become busy or have other deadlines in their paying
jobs that take precedence. By offering paying jobs to a subset of develop-
ers, Canonical can set support and release deadlines and ensure that they
are met.

In this way, Canonical ensures that Ubuntu’s bottom-line commitments
are kept. Of course, Canonical does not fund all Ubuntu work, nor could
it. Canonical can release a distribution every six months, but that distribu-
tion will be made much better and more usable through contributions
from the community of users. Most features, most new pieces of software,
almost all translations, almost all documentation, and much more are cre-
ated outside of Canonical. Instead, Canonical ensures that deadlines are
met and that the essential work, regardless of whether it’s fun, gets done.

Canonical, Ltd., was incorporated on the Isle of Man—a tiny island nation
between Wales and Ireland that is mostly known as a haven for inter-
national businesses. Since Canonical’s staff is sprinkled across the globe
and no proper office is necessary, the Isle of Man seemed as good a place as
any for the company to hang its sign.

Canonical’s Service and Support

While it is surprising to many users, fewer than half of Canonical’s employ-
ees work on the Ubuntu project. The rest of the employees fall into several
categories: business development, support and administration, and devel-
opment on the Bazaar and Launchpad projects.

Individuals involved in business development help create strategic deals
and certification programs with other companies—primarily around
Ubuntu. In large part, these are things that the community is either ill
suited for or uninterested in as a whole. One example of business develop-
ment work is the process of working with companies to ensure that their
software (usually proprietary) is built and certified to run on Ubuntu. For
example, Canonical worked with IBM to ensure that its popular DB2 data-
base would run on Ubuntu and, when this was achieved, worked to have

Introduction xlvii

Ubuntu certified as a platform that would run DB2. Similarly, Canonical
worked with Dell to ensure that Ubuntu could be installed and supported
on Dell laptops as an option for its customers. A third example is the pro-
duction of this book, which, published by Pearson Education’s Prentice
Hall imprint, was a product of work with Canonical.

Canonical also plays an important support role in the Ubuntu project in
three ways. First, Canonical supports the development of the Ubuntu
project. For example, Canonical system administrators ensure that the
servers that support development and distribution of Ubuntu are running.
Second, Canonical helps Ubuntu users and businesses directly by offering
phone and e-mail support. Additionally, Canonical has helped build a large
commercial Ubuntu support operation by arranging for support contracts
with larger companies and organizations. This support is over and above
the free (i.e., gratis) support offered by the community—this commercial
support is offered at a fee and is either part of a longer-term flat-fee support
contract or is pay-per-instance. By offering commercial support for Ubuntu
in a variety of ways, Canonical aims to make a business for itself and to help
make Ubuntu a more palatable option for the businesses, large and small,
that are looking for an enterprise or enterprise-class GNU/Linux product
with support contracts like those offered by other commercial GNU/
Linux distributions.

Finally, Ubuntu supports other support organizations. Canonical does not
seek or try to enforce a monopoly on Ubuntu support; it proudly lists hun-
dreds of other organizations offering support for Ubuntu on the Ubuntu
Web pages. Instead, Canonical offers what is called second-tier support to
these organizations. Because Canonical employs many of the core Ubuntu
developers, the company is very well suited to taking action on many of
the tougher problems that these support organizations may run into. With
its concentrated expertise, Canonical can offer this type of backup, or sec-
ondary, support to these organizations.

The Ubuntu Foundation

Finally, in addition to Canonical and the full Ubuntu community, the Ubuntu
project is supported by the Ubuntu Foundation, which was announced by
Shuttleworth with an initial funding commitment of $10 million. The foun-

xlviii Introduction

dation, like Canonical, is based on the Isle of Man. The organization is
advised by the Ubuntu Community Council.

Unlike Canonical, the foundation does not play an active role in the day-
to-day life of Ubuntu. At the moment, the foundation is little more than a
pile of money that exists to endow and ensure Ubuntu’s future. Because
Canonical is a young company, many companies and individuals find it
difficult to trust that Canonical will be able to provide support for Ubuntu
in the time frames (e.g., three to five years) that it claims it will be able to.
The Ubuntu Foundation exists to allay those fears.

If something bad were to happen to Shuttleworth or to Canonical that
caused either to be unable to support Ubuntu development and maintain
the distribution, the Ubuntu Foundation exists to carry on many of
Canonical’s core activities well into the future. Through the existence of
the foundation, the Ubuntu project can make the types of long-term com-
mitments and promises it does.

The one activity in which the foundation can and does engage is receiving
donations on behalf of the Ubuntu project. These donations, and only
these donations, are then put to use on behalf of Ubuntu in accordance
with the wishes of the development team and the Technical Board. For
the most part, these contributions are spent on “bounties” given to com-
munity members who have achieved important feature goals for the
Ubuntu project.

History of Ubuntu Server
The first “production” machines to run Ubuntu were Canonical’s own
development machines in its data center in London. In this sense, Ubuntu
has been used on servers since day one, and Ubuntu has always been a
server operating system. Of course, as we hinted in the welcome at the
beginning of this Introduction, this has not always been universally recog-
nized. After the first release, public perception was tilted so far toward the
idea of Ubuntu as a desktop release that when the developers convened
the first of their biannual developer summits after the first full release
cycle, one of the most important items on the agenda was thinking about
Ubuntu on servers and how to support it.

Introduction xlix

The Ubuntu Server project, as a result, was at least as much a marketing
project as it was a technical project. Sure, there were ways that the team
could make Ubuntu better for servers—and they spent plenty of time
working and thinking about that—but the biggest problem they faced was
simply communicating the message that Ubuntu already was great for
servers to all their users and potential users.

Eventually Canonical funded the creation of a graphical installer, but in
the first few releases there was just a single, nongraphical installer based on
Debian’s very descriptively named Debian Installer project. In the initial
Ubuntu release, a user installing Ubuntu was given a choice between two
modes: “Desktop”—which was self-explanatory enough—and “Custom.”
Custom, in the minds of the early developers, was what anyone would
want for a server. Custom installed just the bare minimum set of packages
and then put the users into this base install and prompted them to install
the packages that they wanted on their system. It provided users with the
bare-bones system and encouraged them to customize it. The first action
of the Ubuntu Server project was purely superficial: The “Custom” install
was renamed “Server.” Although no code had changed, Ubuntu Server
almost immediately began getting more recognition. If one had to pick a
single point in time that the Ubuntu Server project was born, it would be
this moment.

Ubuntu Server isn’t actually any different from other flavors of Ubuntu. As
the desktop has moved on to a new graphical installer based on a live CD,
Ubuntu Server has its own installer that gives users access to features like
RAID and LVM that are much more interesting to server users. Certainly,
there are some pieces of software that are likely to end up on servers and
unlikely to end up on desktops—things like Web servers and mail servers.
When we say that the server edition will be supported, we mean these
applications plus the core, so it certainly seems most accurate to refer to
these as being within the purview of Ubuntu Server.

But at the end of the day, the server and desktop packages come out of a
single repository. This fact, plus the integration among the teams of people
working on different parts of the project—most core developers work on
bits and pieces that get used and reused in server, desktop, and other edi-
tions—introduces a fuzziness that makes it hard to pin down just what

l Introduction

Ubuntu Server is. Of course, it also means that Ubuntu Server gets to ben-
efit from the work, bug reporting, and bug fixing in those core parts of the
operating system that every Ubuntu user shares.

Ubuntu Server now can roughly be interpreted to refer to a collection of
resources that are particularly aimed at and used by server users. Most
obviously, it involves the custom install discs that you’ll be using when you
install Ubuntu Server on your machine. It also refers to the collections of
supported software that are installed primarily on servers—most of the
software that the rest of this book will discuss in more detail. It also refers
to a mass of documentation, to which this book represents the latest addi-
tion, that provides answers to questions. In a broader sense, certifications
of software and training programs for administrators occupy another
point in the growing Ubuntu Server constellation.

But most of all, and in the Ubuntu tradition, Ubuntu Server refers to a
community. It’s a community of developers who use Ubuntu on servers,
who care deeply about Ubuntu on servers, and who work tirelessly to
make sure that Ubuntu performs as well as possible on servers everywhere.
Of course, Ubuntu Server also refers to the growing community of people
who are primarily not contributing through code but who are at least as
important. These people spend time in the support of IRC channels, send
e-mail to the mailing lists, and post in the forums. These users help other
users, file bugs, may contribute their own fixes to documentation, and
contribute in myriad ways and in a variety of venues.

When you “graduate” beyond what this book can teach you, Ubuntu rep-
resents those people who will help you take your next steps. They are the
people described in more depth in the server resources chapter (Chap-
ter 13) of this book. This is the group you will join when you participate in
the Ubuntu project. Let us be the first to welcome to you to the Ubuntu
Server community.

Simple, Secure, Supported
Early on, the initial core Ubuntu team—of which one of this book’s
authors was lucky enough to be a part—resisted the idea of the server ver-
sion of Ubuntu. Or rather, they resisted the idea of a server distribution in

Introduction li

the way that other GNU/Linux distributions had produced them and the
way in which they were commonly thought of. The team was more than
happy with running Ubuntu on servers, of course, but they resisted the
idea of “server distributions” because of the way that Red Hat, SuSE, and
the other big distributions built their businesses around “enterprise
Linux” distributions that were big, clunky, and expensive. The result was,
in the eyes of many of the early Ubuntu core developers and Canonical
employees, top-heavy monstrosities. That’s not what Ubuntu is about.

The big server-based GNU/Linux distributions seemed to be competing
over who included more services, more features, and more bells and
whistles. Distribution 1 would have a Web server, an FTP server, a DNS
server, several file servers, and a mail server. Distribution 2 would have all
of those plus a DHCP server! A brand-new install of one of these “server
distributions” would be running dozens of daemons—each taking up
many megabytes of memory, loads of disk space, and (most important)
lots of administrator time when they failed or interfered with something
else. But worst of all, most of these daemons lay completely unused on
most installs.

And if that wasn’t enough, the server installs would then run firewalls to
keep people from accessing all these now-open services and to prevent
users from exposing security vulnerabilities from their newly installed
machines. Of course, there would be regular upgrades, security releases,
and the like, to update all these now-firewalled services that nobody was
using. Debian provided one alternative model that focused on custom
installations of just what people needed. Among an elite group of sysad-
mins in the late 1990s and the early 2000s, Debian had become the server
OS of choice. Because nearly everyone on the early Ubuntu team was a
Debian developer, it was to this model and to Debian technology that the
Ubuntu team first turned.

Of course, the commercial GNU/Linux server market was not all horrible.
For example, the early Ubuntu developers liked the idea of commercial
support for its servers. They liked the idea of regular, predictable releases.
As Debian developers, they all knew someone who wanted to install a
simple, custom version of Debian on a server but who, because of the lack
of commercial support and accountability, had been rejected by a higher-

lii Introduction

up in the company or organization. They liked the idea of a company
using Debian’s technology to offer simple, custom server installs but could
offer a commercial support contract. The Warthogs, and lots of folks like
them, had waited years for this, but nobody had stepped up to the plate.

As we described in the previous section, an Ubuntu server install was sim-
ply a bare-bones installation. We were all administrators—at least of our
own machines—and when we installed servers, we started out with
“naked” machines so that we could choose every application, every dae-
mon, every service that would go onto the machine. As administrators, we
wanted the options of the big enterprise distributions, but we wanted to be
able to choose those options ourselves. Like all administrators, we used
servers to solve problems and to offer services to our users. These prob-
lems and needs are unique and, as a result, the cookie-cutter model of
GNU/Linux servers was always a poor match.

And so that is what the Warthogs built and it is what Ubuntu Server
remains today. At first, some people were confused. Ubuntu’s server offer-
ing was panned in several reviews for not including a firewall by default.
But Ubuntu installed no open ports by default, so there was nothing to fire-
wall! Of course, Ubuntu provided several firewalls for users to install if
they wanted one, but Ubuntu left the decision to install a firewall, just like
the decision to install services that might require one, up to the server’s
administrator. For all installations but for server installations in particular,
Ubuntu’s goal is to make the default installation simple and secure and to
put the user in the driver’s seat. Ubuntu’s job, as distribution producer, is
to make it as close to drop-dead simple for system administrators to do
their jobs. In an Ubuntu Server install, every machine is exactly as compli-
cated as the administrator has requested but never any more than neces-
sary. No extra services or unnecessary features are included—although
they are waiting in the wings for when they become necessary and are eas-
ily installable in ways that are described in Chapter 3.

One important effect of this simplicity is security. When there is less going
on, there is simply less to go wrong. But, of course, the Ubuntu team has
taken this many steps further and pursued proactive security in a number of
other contexts. Ubuntu’s first release was held up for one day because a
single open port was found in the default release. The goal of a machine with

Introduction liii

no open ports by default was more important than an on-time release.
Ubuntu’s CTO and the chairman of the Ubuntu technical board, Matt Zim-
merman, is a longtime security-focused developer who made nearly all of
Debian’s security updates for more than a year before joining the Warthogs.
As Ubuntu struggles over hard decisions about what to include or to pass up
for inclusion in the distribution, the most important questions continue to
be ones of security and support. “Can we—and we do want to—maintain
security support and provide security releases for this software for the next
18 months?” Every piece of software included by default is subjected to this
question, and many popular pieces of software are kept out because Ubuntu
is reluctant to support them. Inclusion as an officially supported package
means that a server admin can trust the software—both because Canonical
has indicated that it trusts it and because Canonical has promised to clean
up any security messes that occur through fixing important bugs and issu-
ing a fixed package. Canonical’s security guarantee goes beyond security
bugs to other bugs that might result in data loss. While there are no guaran-
tees beyond this, Canonical makes many dozens of new updates per release
that fix other important bugs in the distribution as well. The result is a rock-
solid system with a commitment to continue.

With customizability, security, and support, Ubuntu truly is ready for the
data room. The rest of this book will show you how.

liv Introduction

1

C H A P T E R 1

Installation

I REMEMBER WHEN IT WAS QUITE the ordeal to install Linux. You had to
download a complete set of floppy images and use some strange Linux or
Windows tool to dump those images to floppies. After you had your set of
floppies and started the installation process, you would quickly realize that
the installation program assumed you already knew quite a bit about
Linux and about computers in general. I am actively involved in a Linux
users’ group, and a staple of Linux users’ groups is the install-fest—an
event to which Linux newbies can bring their computers and have an
expert walk them through the installation process.

Well, these days Linux distributions have made great strides to improve
the install process. A desktop Ubuntu install asks very few questions that
might stump a beginning user, and the server install (unlike some other
server installs out there) doesn’t assume you are an experienced Linux sys-
tem administrator either. While the server install is pretty easy to navigate
when you just accept the defaults, you’ll find that it also allows the
advanced administrator a lot of flexibility and control. What’s better, you
can get this control without toggling an “expert mode” that forces you to
answer detailed questions about every aspect of the install. When the
default suits you, you can accept it and move on, and when it doesn’t, you
can easily tweak only those settings you care about.

This chapter walks you through a standard Ubuntu install. Along the way,
it covers each of the major parts of the installation process and also high-
lights areas where the experienced administrator can tweak and tune the
settings for a custom server install.

Get Ubuntu
If you have this book, you should already have the Ubuntu install CD for
Ubuntu 12.04 LTS, but just in case you don’t, or if you need an extra copy,
it’s good to know how to get CDs from scratch. With some distributions
you are required to register and log in to a Web site before you have access
to CD images, but Ubuntu makes it relatively easy. At www.ubuntu.com/
getubuntu/download you can access both desktop and server CDs for each
of the platforms Ubuntu supports. Once you have downloaded the ISO
image, you can burn it to a CD using your preferred CD-burning tool. Each
program is different, so locate your program’s option to burn a CD image.

2

http://www.ubuntu.com/getubuntu/download
http://www.ubuntu.com/getubuntu/download

If you are already running an Ubuntu desktop, you can just double-click
the ISO image after it is downloaded to start the CD/DVD Creator. If you
don’t have the bandwidth to download the ISO image, you can also pur-
chase CDs or request free CDs from the same page.

Boot Screen
Once you have your CD, insert it into your server’s CD-ROM slot and boot
the server. Server BIOSs can be quite different from each other. In some
cases they are already set up to boot from a CD-ROM if one is present. In
other cases you might have to hit a key such as Esc, Del, F12, or others as
the server boots so that it presents you with a list of devices from which
you can boot. On some systems you might even have to go into the BIOS
configuration page to change the boot order.

After you have convinced your BIOS to boot from the CD, you are greeted
with the Ubuntu boot splash screen. The very first part of the screen asks
you for your language and then presents you with some boot options, as
shown in Figure 1-1. If you just hit Enter and select the default option, you
will start the Ubuntu install program. You can also perform some diagnostics

Boot Screen 3

Figure 1-1 Default Ubuntu boot splash screen

from this screen. If you downloaded and burned your own CD from an ISO
file, you might want to select the “Check CD for defects” option. You can also
test your system memory from this screen—quite useful even later on if
your server starts crashing at strange times and you suspect bad RAM might
be the cause. This CD also doubles as a basic rescue disk, which is a broad
enough topic that it has gotten its own chapter: Chapter 12, Rescue and
Recovery. Finally, if you left the CD in the drive by mistake, you can select
“Boot from first hard disk” to bypass the CD altogether.

In an ideal world, you could boot the CD, press Enter, and start the instal-
lation process with no problems. Unfortunately, for some machines you
might have to tweak some of the boot options so the installation works for
your system. The Ubuntu developers know this sort of thing happens and
have prepared a rich set of options for you. Along the bottom of the boot
splash screen are a number of different options you can access with func-
tion keys. For instance, if you hit F1 you will see an interactive help screen
with documentation for the rest of the options. If you accidentally chose
the wrong language at boot time, hit F2 to change it. The boot screen will
automatically choose a keyboard mapping based on your language. If you
want a different mapping (for instance, you speak English but are doing an
install in Germany on a German keyboard), hit F3 to choose from a list of
keyboard mappings. The boot screen also has a lot of great accessibility
options. The F5 key brings up an accessibility menu that allows you to
choose a high-contrast screen, a screen magnifier, a screen reader and
Braille terminal, keyboard modifiers, and even an on-screen keyboard.

The F4 and F6 options allow you to actually control aspects of the install.
The F4 key displays a list of install modes from which you can choose: you
may install an original equipment manufacturer (OEM) install, a minimal
system, and a minimal virtualization guest. The OEM install is available
from manufacturers. The minimal virtualization guest gives you an easy
way to install a virtualized version of Ubuntu. Other Ubuntu CDs allow
you to choose text-only install modes, but that isn’t necessary here because
the Ubuntu server install is already text-only. The real power and control
over the boot process are available once you hit the F6 key. Here you can
see a menu of common arguments that help the CD to boot on difficult
hardware. If you hit the Esc key, you will move from this menu to the boot
prompt and can type any extra kernel boot parameters you might need for

4 Chapter 1 � Installation

your hardware. The F1 help screen lists a number of common boot param-
eters, including some kernel arguments for particular SCSI controllers. If
you still can’t seem to get the Ubuntu CD to boot after trying these argu-
ments, check out some of the support options in Chapter 13, Help and
Resources. Chances are, you aren’t the first person to try to boot Ubuntu
on that hardware, and someone else might have already discovered the
magic list of options you need for it to work.

NOTE For Headless Server Installation

One downside to the pretty boot splash screen Ubuntu uses is that if you install Ubuntu on a
headless server (a server without a monitor connected to it that outputs its display over the
serial port), you’ll notice that you can’t see anything over your serial console. There is a work-
around. After your system boots past the BIOS, the serial console screen will go completely
blank. At that point you will have to type without being able to see the output. First hit Enter to
accept the default language. Then hit F6 so you can tweak the boot prompt, and hit Esc to exit
out of the F6 menu into the boot prompt. Finally, type console=ttyS0,9600n8 and hit Enter.
If your serial console is on a different port or uses different settings, you will want to change
this argument accordingly. Since you can’t see what you are typing, you will probably want to
pay extra attention to each key. Once you hit Enter, the kernel will boot and within a few sec-
onds you should start to see output over the serial port. At that point you will be able to com-
plete the install over the serial console, and the next time you reboot you’ll notice that the
GRUB (Grand Unified Bootloader) prompt and the kernel arguments are already set up for you.

Disk Partitioning
Any Linux installer is essentially a series of questions, and the Ubuntu
server install asks pretty simple questions for the most part. The first phase
of the installation prompts you with questions about what language to use
for the install, what hostname to use, and, if you don’t have Dynamic Host
Configuration protocol (DHCP) on your network, the network settings
for the host. There aren’t any real tricky decisions to be made until you get
to the partitioning section of the installer.

What Is a Partition?

If you are relatively new to Linux, you might be wondering what a parti-
tion is, and why Linux is prompting you to partition in the first place.
Think of a hard drive as a house with an open floor plan—no rooms and
only outside walls. While many people do live in lofts that are organized
this way, most people prefer a house that has rooms. With rooms you can
organize your bed and all of your personal things in a bedroom, all of your

Disk Partitioning 5

