

Oracle® PL/SQL
by Example
Fifth Edition

This page intentionally left blank

 Oracle ® PL/SQL
by Example
 Fifth Edition

 Benjamin Rosenzweig
 Elena Rakhimov

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi
Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com.

 For questions about sales outside the U.S., please contact intlcs@pearson.com.

 Visit us on the Web: informit.com

 Library of Congress Cataloging-in-Publication Data
 Rosenzweig, Benjamin.
 Oracle PL/SQ ® by example / Benjamin Rosenzweig, Elena Rakhimov.—Fifth edition.
 pages cm
 Includes index.

ISBN 978-0-13-379678-0 (pbk. : alk. paper)—ISBN 0-13-379678-7 (pbk. : alk. paper)
1. PL/SQL (Computer program language) 2. Oracle (Computer fi le) 3. Relational databases.

I. Rakhimov, Elena Silvestrova. II. Title.
QA76.73.P258R68 2015
005.75'6—dc23 2014045792

 Copyright © 2015 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

 ISBN-13: 978-0-13-379678-0
ISBN-10: 0-13-379678-7

2 20

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions/

To my parents, Rosie and Sandy Rosenzweig,
for their love and support
—Benjamin Rosenzweig

To my family, for their excitement and encouragement
—Elena Rakhimov

This page intentionally left blank

 vii

Contents

Preface xvii

Acknowledgments xxi

About the Authors xxiii

Introduction to PL/SQL New Features in Oracle 12c xxv
Invoker’s Rights Functions Can Be Result-Cached xxvi

More PL/SQL-Only Data Types Can Cross the PL/
SQL-to-SQL Interface Clause xxvii

ACCESSIBLE BY Clause xxvii

FETCH FIRST Clause xxviii

Roles Can Be Granted to PL/SQL Packages and
Stand-Alone Subprograms xxix

More Data Types Have the Same Maximum Size in SQL
and PL/SQL xxx

Database Triggers on Pluggable Databases xxx

LIBRARY Can Be Defined as a DIRECTORY Object and
with a CREDENTIAL Clause xxx

Implicit Statement Results xxxi

BEQUEATH CURRENT_USER Views xxxii

viii Contents

INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES
Privileges xxxii

Invisible Columns xxxiii

Objects, Not Types, Are Editioned or Noneditioned xxxiv

PL/SQL Functions That Run Faster in SQL xxxiv

Predefined Inquiry Directives $$PLSQL_UNIT_OWNER
and $$PLSQL_UNIT_TYPE xxxvi

Compilation Parameter PLSQL_DEBUG Is Deprecated xxxvii

Chapter 1 PL/SQL Concepts 1
Lab 1.1: PL/SQL Architecture 2

 PL/SQL Architecture 2

 PL/SQL Block Structure 5

 How PL/SQL Gets Executed 8

Lab 1.2: PL/SQL Development Environment 9

 Getting Started with SQL Developer 10

 Getting Started with SQL*Plus 11

 Executing PL/SQL Scripts 14

Lab 1.3: PL/SQL: The Basics 18

 DBMS_OUTPUT.PUT_LINE Statement 18

 Substitution Variable Feature 19

Summary 25

Chapter 2 PL/SQL Language Fundamentals 27
Lab 2.1: PL/SQL Programming Fundamentals 28

 PL/SQL Language Components 28

 PL/SQL Variables 29

 PL/SQL Reserved Words 32

 Identifiers in PL/SQL 33

 Anchored Data Types 34

 Declare and Initialize Variables 36

 Scope of a Block, Nested Blocks, and Labels 39

Summary 41

Contents ix

Chapter 3 SQL in PL/SQL 43
Lab 3.1: DML Statements in PL/SQL 44

 Initialize Variables with SELECT INTO 44

 Using the SELECT INTO Syntax for Variable
 Initialization 45

 Using DML in a PL/SQL Block 47

 Using a Sequence in a PL/SQL Block 48

Lab 3.2: Transaction Control in PL/SQL 49

 Using COMMIT, ROLLBACK, and SAVEPOINT 49

 Putting Together DML and Transaction Control 53

Summary 55

Chapter 4 Conditional Control: IF Statements 57
Lab 4.1: IF Statements 58

 IF-THEN Statements 58

 IF-THEN-ELSE Statement 60

Lab 4.2: ELSIF Statements 63

Lab 4.3: Nested IF Statements 67

Summary 70

Chapter 5 Conditional Control: CASE Statements 71
Lab 5.1: CASE Statements 71

 CASE Statements 72

 Searched CASE Statements 74

Lab 5.2: CASE Expressions 80

Lab 5.3: NULLIF and COALESCE Functions 84

 NULLIF Function 84

 COALESCE Function 87

Summary 89

Chapter 6 Iterative Control: Part I 91
Lab 6.1: Simple Loops 92

 EXIT Statement 93

 EXIT WHEN Statement 97

x Contents

Lab 6.2: WHILE Loops 98

 Using WHILE Loops 98

 Premature Termination of the WHILE Loop 101

Lab 6.3: Numeric FOR Loops 104

 Using the IN Option in the Loop 105

 Using the REVERSE Option in the Loop 107

 Premature Termination of the Numeric FOR Loop 108

Summary 109

Chapter 7 Iterative Control: Part II 111
Lab 7.1: CONTINUE Statement 111

 Using CONTINUE Statement 112

 CONTINUE WHEN Statement 115

Lab 7.2: Nested Loops 118

 Using Nested Loops 118

 Using Loop Labels 120

Summary 122

Chapter 8 Error Handling and Built-in Exceptions 123
Lab 8.1: Handling Errors 124

Lab 8.2: Built-in Exceptions 126

Summary 132

Chapter 9 Exceptions 133
Lab 9.1: Exception Scope 133

Lab 9.2: User-Defined Exceptions 137

Lab 9.3: Exception Propagation 141

 Re-raising Exceptions 146

Summary 147

Chapter 10 Exceptions: Advanced Concepts 149
Lab 10.1: RAISE_APPLICATION_ERROR 149

Lab 10.2: EXCEPTION_INIT Pragma 153

Lab 10.3: SQLCODE and SQLERRM 155

Summary 158

Contents xi

Chapter 11 Introduction to Cursors 159
Lab 11.1: Types of Cursors 159

 Making Use of an Implicit Cursor 160

 Making Use of an Explicit Cursor 161

Lab 11.2: Cursor Loop 165

 Processing an Explicit Cursor 165

 Making Use of a User-Defined Record 168

 Making Use of Cursor Attributes 170

Lab 11.3: Cursor FOR LOOPs 175

 Making Use of Cursor FOR LOOPs 175

Lab 11.4: Nested Cursors 177

 Processing Nested Cursors 177

Summary 181

Chapter 12 Advanced Cursors 183
Lab 12.1: Parameterized Cursors 183

 Cursors with Parameters 184

Lab 12.2: Complex Nested Cursors 185

Lab 12.3: FOR UPDATE and WHERE CURRENT Cursors 187

 FOR UPDATE Cursor 187

 FOR UPDATE OF in a Cursor 189

 WHERE CURRENT OF in a Cursor 189

Summary 190

Chapter 13 Triggers 191
Lab 13.1: What Triggers Are 191

 Database Trigger 192

 BEFORE Triggers 195

 AFTER Triggers 201

 Autonomous Transaction 203

Lab 13.2: Types of Triggers 205

 Row and Statement Triggers 205

 INSTEAD OF Triggers 206

Summary 211

xii Contents

Chapter 14 Mutating Tables and Compound Triggers 213
Lab 14.1: Mutating Tables 213

 What Is a Mutating Table? 214

 Resolving Mutating Table Issues 215

Lab 14.2: Compound Triggers 217

 What Is a Compound Trigger? 218

 Resolving Mutating Table Issues with Compound
 Triggers 220

Summary 223

Chapter 15 Collections 225
Lab 15.1: PL/SQL Tables 226

 Associative Arrays 226

 Nested Tables 229

 Collection Methods 232

Lab 15.2: Varrays 235

Lab 15.3: Multilevel Collections 240

Summary 242

Chapter 16 Records 243
Lab 16.1: Record Types 243

 Table-Based and Cursor-Based Records 244

 User-Defined Records 246

 Record Compatibility 248

Lab 16.2: Nested Records 250

Lab 16.3: Collections of Records 253

Summary 257

Chapter 17 Native Dynamic SQL 259
Lab 17.1: EXECUTE IMMEDIATE Statements 260

 Using the EXECUTE IMMEDIATE Statement 261

 How to Avoid Common ORA Errors When
 Using EXECUTE IMMEDIATE 262

Lab 17.2: OPEN-FOR, FETCH, and CLOSE Statements 271

 Opening Cursor 272

Contents xiii

 Fetching from a Cursor 272

 Closing a Cursor 273

Summary 280

Chapter 18 Bulk SQL 281
Lab 18.1: FORALL Statements 282

 Using FORALL Statements 282

 SAVE EXCEPTIONS Option 285

 INDICES OF Option 288

 VALUES OF Option 289

Lab 18.2: The BULK COLLECT Clause 291

Lab 18.3: Binding Collections in SQL Statements 299

 Binding Collections with EXECUTE IMMEDIATE
 Statements 299

 Binding Collections with OPEN-FOR, FETCH, and
 CLOSE Statements 306

Summary 309

Chapter 19 Procedures 311
Benefits of Modular Code 312

 Block Structure 312

 Anonymous Blocks 312

Lab 19.1: Creating Procedures 312

 Putting Procedure Creation Syntax into
 Practice 313

 Querying the Data Dictionary for Information
 on Procedures 314

Lab 19.2: Passing Parameters IN and OUT of Procedures 315

 Using IN and OUT Parameters with Procedures 316

Summary 319

Chapter 20 Functions 321
Lab 20.1: Creating Functions 321

 Creating Stored Functions 322

 Making Use of Functions 325

xiv Contents

Lab 20.2: Using Functions in SQL Statements 327

 Invoking Functions in SQL Statements 327

 Writing Complex Functions 328

Lab 20.3: Optimizing Function Execution in SQL 329

 Defining a Function Using the WITH Clause 329

 Creating a Function with the UDF Pragma 330

Summary 331

Chapter 21 Packages 333
Lab 21.1: Creating Packages 334

 Creating Package Specifications 335

 Creating Package Bodies 337

 Calling Stored Packages 339

 Creating Private Objects 341

Lab 21.2: Cursor Variables 344

Lab 21.3: Extending the Package 353

 Extending the Package with Additional Procedures 353

Lab 21.4: Package Instantiation and Initialization 366

 Creating Package Variables During Initialization 367

Lab 21.5: SERIALLY_REUSABLE Packages 368

 Using the SERIALLY_REUSABLE Pragma 368

Summary 371

Chapter 22 Stored Code 373
Lab 22.1: Gathering Information about Stored Code 373

 Getting Stored Code Information from
 the Data Dictionary 374

 Overloading Modules 378

Summary 382

Chapter 23 Object Types in Oracle 385
Lab 23.1: Object Types 386

 Creating Object Types 386

 Using Object Types with Collections 391

Contents xv

Lab 23.2: Object Type Methods 394

 Constructor Methods 395

 Member Methods 398

 Static Methods 398

 Comparing Objects 399

Summary 404

Chapter 24 Oracle-Supplied Packages 405
Lab 24.1: Extending Functionality with Oracle-Supplied

Packages 406

 Accessing Files within PL/SQL with UTL_FILE 406

 Scheduling Jobs with DBMS_JOB 410

 Generating an Explain Plan with DBMS_XPLAN 414

 Generating Implicit Statement Results with DBMS_SQL 417

Lab 24.2: Error Reporting with Oracle-Supplied Packages 419

 Using the DBMS_UTILITY Package for Error Reporting 419

 Using the UTL_CALL_STACK Package for Error
 Reporting 424

Summary 429

Chapter 25 Optimizing PL/SQL 431
Lab 25.1: PL/SQL Tuning Tools 432

 PL/SQL Profiler API 432

 Trace API 433

 PL/SQL Hierarchical Profiler 436

Lab 25.2: PL/SQL Optimization Levels 438

Lab 25.3: Subprogram Inlining 444

Summary 453

Appendix A PL/SQL Formatting Guide 455
Case 455

White Space 455

Naming Conventions 456

Comments 457

Other Suggestions 457

xvi Contents

Appendix B Student Database Schema 461
 Table and Column Descriptions 461

Index 469

 xvii

Preface

Oracle® PL/SQL by Example, Fifth Edition, presents the Oracle PL/SQL program-
ming language in a unique and highly effective format. It challenges you to learn
Oracle PL/SQL by using it rather than by simply reading about it.

Just as a grammar workbook would teach you about nouns and verbs by first
showing you examples and then asking you to write sentences, Oracle® PL/SQL by
Example teaches you about cursors, loops, procedures, triggers, and so on by first
showing you examples and then asking you to create these objects yourself.

Who This Book Is For

This book is intended for anyone who needs a quick but detailed introduction to pro-
gramming with Oracle’s PL/SQL language. The ideal readers are those with some
relational database experience, with some Oracle experience, specifically with SQL,
SQL*Plus, and SQL Developer, but with little or no experience with PL/SQL or with
most other programming languages.

The content of this book is based primarily on the material that was taught in an
Introduction to PL/SQL class at Columbia University’s Computer Technology and
Applications (CTA) program in New York City. The student body was rather diverse,
in that there were some students who had years of experience with information
technology (IT) and programming, but no experience with Oracle PL/SQL, and then
there were those with absolutely no experience in IT or programming. The content of
the book, like the class, is balanced to meet the needs of both extremes. The

xviii Preface

additional exercises available through the companion website can be used as labs
and homework assignments to accompany the lectures in such a PL/SQL course.

How This Book Is Organized

The intent of this workbook is to teach you about Oracle PL/SQL by explaining a
programming concept or a particular PL/SQL feature and then illustrate it further
by means of examples. Oftentimes, as the topic is discussed more in depth, these
examples would be changed to illustrate newly covered material. In addition, most
of the chapters of this book have Additional Exercises sections available through the
companion website. These exercises allow you to test the depth of your understand-
ing of the new material.

The basic structure of each chapter is as follows:

Objectives

Introduction

Lab

Lab . . .

Summary

The Objectives section lists topics covered in the chapter. Basically a single objec-
tive corresponds to a single Lab.

The Introduction offers a short overview of the concepts and features covered in
the chapter.

Each Lab covers a single objective listed in the Objectives section of the chapter.
In some instances the objective is divided even further into the smaller individual
topics in the Lab. Then each such topic is explained and illustrated with the help of
examples and corresponding outputs. Note that as much as possible, each example
is provided in its entirety so that a complete code sample is readily available.

At the end of each chapter you will find a Summary section, which provides a brief
conclusion of the material discussed in the chapter. In addition, the By the Way
portion will state whether a particular chapter has an Additional Exercises section
available on the companion website.

About the Companion Website

The companion Website is located at informit.com/title/0133796787. Here you will
find three very important things:

 ■ Files required to create and install the STUDENT schema.

 ■ Files that contain example scripts used in the book chapters.

http://informit.com/title/0133796787

Preface xix

 ■ Additional Exercises chapters, which have two parts:

• A Questions and Answers part where you are asked about the material
presented in a particular chapter along with suggested answers to these
questions. Oftentimes, you are asked to modify a script based on some
requirements and explain the difference in the output caused by these
modifications. Note that this part is also organized into Labs similar to its
corresponding chapter in the book.

• A Try it Yourself part where you are asked to create scripts based on the
requirements provided. This part is different from the Questions and
Answers part in that there are no scripts supplied with the questions.
Instead, you will need to create scripts in their entirety.

By the Way
You need to visit the companion website, download the student schema, and install
it in your database prior to using this book if you would like the ability to execute the
scripts provided in the chapters and on the site.

What You Will Need

There are software programs as well as knowledge requirements necessary to
complete the Labs in this book. Note that some features covered throughout the
book are applicable to Oracle 12c only. However, you will be able to run a great
majority of the examples and complete Additional Exercises and Try it Yourself sec-
tions by using the following products:

 ■ Oracle 11g or higher

 ■ SQL Developer or SQL*Plus 11g or higher

 ■ Access to the Internet

You can use either Oracle Personal Edition or Oracle Enterprise Edition to exe-
cute the examples in this book. If you use Oracle Enterprise Edition, it can be run-
ning on a remote server or locally on your own machine. It is recommended that you
use Oracle 11g or Oracle 12c in order to perform all or a majority of the examples in
this book. When a feature will only work in the latest version of Oracle database, the
book will state so explicitly. Additionally, you should have access to and be familiar
with SQL Developer or SQL*Plus.

You have a number of options for how to edit and run scripts in SQL Developer
or from SQL*Plus. There are also many third-party programs to edit and debug
PL/SQL code. Both, SQL Developer and SQL*Plus are used throughout this book,
since these are two Oracle-provided tools and come as part of the Oracle
installation.

xx Preface

By the Way
Chapter 1 has a Lab titled PL/SQL Development Environment that describes how to
get started with SQL Developer and SQL*Plus. However, a great majority of the
examples used in the book were executed in SQL Developer.

About the Sample Schema

The STUDENT schema contains tables and other objects meant to keep information
about a registration and enrollment system for a fictitious university. There are ten
tables in the system that store data about students, courses, instructors, and so on.
In addition to storing contact information (addresses and telephone numbers) for
students and instructors, and descriptive information about courses (costs and pre-
requisites), the schema also keeps track of the sections for particular courses, and
the sections in which students have enrolled.

The SECTION table is one of the most important tables in the schema because it
stores data about the individual sections that have been created for each course.
Each section record also stores information about where and when the section will
meet and which instructor will teach the section. The SECTION table is related to
the COURSE and INSTRUCTOR tables.

The ENROLLMENT table is equally important because it keeps track of which
students have enrolled in which sections. Each enrollment record also stores infor-
mation about the student’s grade and enrollment date. The enrollment table is
related to the STUDENT and SECTION tables.

The STUDENT schema also has a number of other tables that manage grading
for each student in each section.

The detailed structure of the STUDENT schema is described in Appendix B, Stu-
dent Database Schema.

 xxi

Acknowledgments

Ben Rosenzweig: I would like to thank my coauthor Elena Rakhimov for being a
wonderful and knowledgeable colleague to work with. I would also like to thank
Douglas Scherer for giving me the opportunity to work on this book as well as for
providing constant support and assistance through the entire writing process. I am
indebted to the team at Prentice Hall, which includes Greg Doench, Michelle Hous-
ley, and especially Songlin Qiu for her detailed edits. Finally, I would like to thank
the many friends and family, especially Edward Clarin and Edward Knopping, for
helping me through the long process of putting the whole book together, which
included many late nights and weekends.

Elena Rakhimov: My contribution to this book reflects the help and advice of
many people. I am particularly indebted to my coauthor Ben Rosenzweig for making
this project a rewarding and enjoyable experience. Many thanks to Greg Doench,
Michelle Housley, and especially Songlin Qiu for her meticulous editing skills, and
many others at Prentice Hall who diligently worked to bring this book to market.
Thanks to Michael Rinomhota for his invaluable expertise in setting up the Oracle
environment and Dan Hotka for his valuable comments and suggestions. Most
importantly, to my family, whose excitement, enthusiasm, inspiration, and support
encouraged me to work hard to the very end, and were exceeded only by their love.

This page intentionally left blank

 xxiii

About the Authors

Benjamin Rosenzweig is a Senior Project Manager at Misys Financial Software,
where he has worked since 2002. Prior to that he was a principal consultant for more
than three years at Oracle Corporation in the Custom Development Department.
His computer experience ranges from creating an electronic Tibetan–English
Dictionary in Kathmandu, Nepal, to supporting presentation centers at Goldman
Sachs and managing a trading system at TIAA-CREF. Benjamin has been an
instructor at the Columbia University Computer Technology and Application
program in New York City since 1998. In 2002 he was awarded the “Outstanding
Teaching Award” from the Chair and Director of the CTA program. He holds a B.A.
from Reed College and a certificate in database development and design from
Columbia University. His previous books with Prentice Hall are Oracle Forms Devel-
oper: The Complete Video Course (2000), and Oracle Web Application Programming
for PL/SQL Developers (2003).

Elena Rakhimov has over 20 years of experience in database architecture and
development in a wide spectrum of enterprise and business environments ranging
from non-profit organizations to Wall Street to her current position with a prominent
software company where she heads up the database team. Her determination to stay
“hands-on” notwithstanding, Elena managed to excel in the academic arena having
taught relational database programming at Columbia University’s highly esteemed
Computer Technology and Applications program. She was educated in database
analysis and design at Columbia University and in applied mathematics at Baku
State University in Azerbaijan. She currently resides in Vancouver, Canada.

This page intentionally left blank

 xxv

Introduction to PL/SQL
New Features in Oracle 12c

Oracle 12c has introduced a number of new features and improvements for PL/SQL.
This introduction briefly describes features not covered in this book and points you
to specific chapters for features that are within the scope of this book. The list of fea-
tures described here is also available in the “Changes in This Release for Oracle
Database PL/SQL Language Reference” section of the PL/SQL Language Reference
manual offered as part of Oracle’s online help.

The new PL/SQL features and enhancements are as follows:

 ■ Invoker’s rights functions can be result-cached

 ■ More PL/SQL-only data types can cross the PL/SQL-to-SQL interface clause

 ■ ACCESSIBLE BY clause

 ■ FETCH FIRST clause

 ■ Roles can be granted to PL/SQL packages and stand-alone subprograms

 ■ More data types have the same maximum size in SQL and PL/SQL

 ■ Database triggers on pluggable databases

 ■ LIBRARY can be defined as DIRECTORY object and with CREDENTIAL clause

 ■ Implicit statement results

 ■ BEQUEATH CURRENT_USER views

 ■ INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges

 ■ Invisible columns

 ■ Objects, not types, are editioned or noneditioned

xxvi Introduction to PL/SQL New Features in Oracle 12c

 ■ PL/SQL functions that run faster in SQL

 ■ Predefined inquiry directives $$PLSQL_UNIT_OWNER and $$PLSQL_UNIT_
TYPE

 ■ Compilation parameter PLSQL_DEBUG is deprecated

Invoker’s Rights Functions Can Be Result-Cached

When a stored subprogram is created in Oracle products, it may be created as either
a definer rights (DR) unit or an invoker rights (IR) unit. A DR unit would execute
with the permissions of its owner, whereas an IR unit would execute with the per-
missions of a user who invoked that particular unit. By default, a stored subprogram
is created as a DR unit unless explicitly specified otherwise. Whether a particular
unit is considered a DR or IR unit is controlled by the AUTHID property, which may
be set to either DEFINER (default) or CURRENT_USER.

Prior to Oracle 12c, functions created with the invoker rights clause (AUTHID
CURRENT_USER) could not be result-cached. To create a function as an IR unit, the
AUTHID clause must be added to the function specification.

A result-cached function is a function whose parameter values and result are
stored in the cache. As a consequence, when such a function is invoked with the
same parameter values, its result is retrieved from the cache instead of being com-
puted again. To enable a function for result-caching, the RESULT_CACHE clause must
be added to the function specification. This is demonstrated by the following exam-
ple (the invoker rights clause and result-caching are highlighted in bold).

For Example Result-Caching Functions Created with Invoker’s Rights

CREATE OR REPLACE FUNCTION get_student_rec (p_student_id IN NUMBER)
RETURN STUDENT%ROWTYPE
AUTHID CURRENT_USER
RESULT_CACHE RELIES_ON (student)
IS
 v_student_rec STUDENT%ROWTYPE;
BEGIN
 SELECT *
 INTO v_student_rec
 FROM student
 WHERE student_id = p_student_id;

 RETURN v_student_rec;
EXCEPTION
 WHEN no_data_found
 THEN
 RETURN NULL;
END get_student_rec;
/

-- Execute newly created function
DECLARE
 v_student_rec STUDENT%ROWTYPE;

Introduction to PL/SQL New Features in Oracle 12c xxvii

BEGIN
 v_student_rec := get_student_rec (p_student_id => 230);
END;

Note that if the student record for student ID 230 is in the result cache already,
then the function will return the student record from the result cache. In the oppo-
site case, the student record will be selected from the STUDENT table and added
to the cache for future use. Because the result cache of the function relies on the
STUDENT table, any changes applied and committed on the STUDENT table will
invalidate all cached results for the get_student_rec function.

More PL/SQL-Only Data Types Can Cross the PL/SQL-to-SQL
Interface Clause

In this release, Oracle has extended support of PL/SQL-only data types to dynamic
SQL and client programs (OCI or JDBC). For example, you can bind collections vari-
ables when using the EXECUTE IMMEDIATE statement or the OPEN FOR, FETCH, and
CLOSE statements. This topic is covered in greater detail in Lab 18.3, Binding
Collections in SQL Statements, in Chapter 18.

ACCESSIBLE BY Clause

An optional ACCESSIBLE BY clause enables you to specify a list of PL/SQL units that
may access the PL/SQL unit being created or modified. The ACCESSIBLE BY clause
is typically added to the module header—for example, to the function or procedure
header. Each unit listed in the ACCESSIBLE BY clause is called an accessor, and the
clause itself is also called a white list. This is demonstrated in the following example
(the ACCESSIBLE BY clause is shown in bold).

For Example Procedure Created with the ACCESSIBLE BY Clause

CREATE OR REPLACE PROCEDURE test_proc1
ACCESSIBLE BY (TEST_PROC2)
AS
BEGIN
 DBMS_OUTPUT.PUT_LINE ('TEST_PROC1');
END test_proc1;
/

CREATE OR REPLACE PROCEDURE test_proc2
AS
BEGIN
 DBMS_OUTPUT.PUT_LINE ('TEST_PROC2');
 test_proc1;
END test_proc2;
/

xxviii Introduction to PL/SQL New Features in Oracle 12c

-- Execute TEST_PROC2
BEGIN
 test_proc2;
END;
/

TEST_PROC2
TEST_PROC1

-- Execute TEST_PROC1 directly
BEGIN
 test_proc1;
END;
/

ORA-06550: line 2, column 4:
PLS-00904: insufficient privilege to access object TEST_PROC1
ORA-06550: line 2, column 4:
PL/SQL: Statement ignored

In this example, there are two procedures, test_proc1 and test_proc2, and
test_proc1 is created with the ACCESSIBLE BY clause. As a consequence, test_
proc1 may be accessed by test_proc2 only. This is demonstrated by two
anonymous PL/SQL blocks. The first block executes test_proc2 successfully. The
second block attempts to execute test_proc1 directly and, as a result, causes an
error.

Note that both procedures were created within a single schema (STUDENT), and
that both PL/SQL blocks were executed in the single session by the schema owner
(STUDENT).

FETCH FIRST Clause

The FETCH FIRST clause is a new optional feature that is typically used with the
“Top-N” queries as illustrated by the following example. The ENROLLMENT table used
in this example contains student registration data. Each student is identified by a
unique student ID and may be registered for multiple courses. The FETCH FIRST
clause is shown in bold.

For Example Using FETCH FIRST Clause with “Top-N” Query

-- Sample student IDs from the ENROLLMENT table
SELECT student_id
 FROM enrollment;

STUDENT_ID

 102
 102
 103
 104
 105

Introduction to PL/SQL New Features in Oracle 12c xxix

 106
 106
 107
 108
 109
 109
 110
 110
 …

-- "Top-N" query returns student IDs for the 5 students that registered for the most
-- courses
SELECT student_id, COUNT(*) courses
 FROM enrollment
GROUP BY student_id
ORDER BY courses desc
FETCH FIRST 5 ROWS ONLY;

STUDENT_ID COURSES
---------- -------
 214 4
 124 4
 232 3
 215 3
 184 3

Note that FETCH FIRST clause may also be used in conjunction with the BULK
COLLECT INTO clause as demonstrated here. The FETCH FIRST clause is shown in bold.

For Example Using FETCH FIRST Clause with BULK COLLECT INTO Clause

DECLARE
 TYPE student_name_tab IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;

 student_names student_name_tab;
BEGIN
 -- Fetching first 20 student names only
 SELECT first_name||' '||last_name
 BULK COLLECT INTO student_names
 FROM student
 FETCH FIRST 20 ROWS ONLY;

 DBMS_OUTPUT.PUT_LINE ('There are '||student_names.COUNT||' students');
END;
/
There are 20 students

Roles Can Be Granted to PL/SQL Packages and Stand-Alone
Subprograms

Starting with Oracle 12c, you are able to grant roles to PL/SQL packages and stand-
alone subprograms. Note that granting a role to a PL/SQL package or stand-alone
subprogram does not alter its compilation. Instead, it affects how privileges required
by the SQL statements that are issued by the PL/SQL unit at run time are checked.

xxx Introduction to PL/SQL New Features in Oracle 12c

Consider the following example where the READ role is granted to the function
get_student_name.

For Example Granting READ Role to the get_student_name Function

GRANT READ TO FUNCTION get_student_name;

More Data Types Have the Same Maximum Size in SQL
and PL/SQL

Prior to Oracle 12c, some data types had different maximum sizes in SQL and in PL/
SQL. For example, in SQL the maximum size of NVARCHAR2 was 4000 bytes,
whereas in PL/SQL it was 32,767 bytes. Starting with Oracle 12c, the maximum
sizes of the VARCHAR2, NVARCHAR2, and RAW data types have been extended to
32,767 for both SQL and PL/SQL. To see these maximum sizes in SQL, the initializa-
tion parameter MAX_STRING_SIZE must be set to EXTENDED.

Database Triggers on Pluggable Databases

The pluggable database (PDB) is one of the components of Oracle’s multitenant
architecture. Typically it is a portable collection of schemas and other database
objects. Starting with Oracle 12c, you are able to create event triggers on PDBs.
Detailed information on triggers is provided in Chapters 13 and 14. Note that PDBs
are outside the scope of this book, but detailed information on them may be found in
Oracle’s online Administration Guide.

LIBRARY Can Be Defined as a DIRECTORY Object and with a
CREDENTIAL Clause

A LIBRARY is a schema object associated with a shared library of an operating sys-
tem. It is created with the help of the CREATE OR REPLACE LIBRARY statement.
A DIRECTORY is also an object that maps an alias to an actual directory on the
server file system. The DIRECTORY object is covered very briefly in Chapter 25 as
part of the install processes for the PL/SQL Profiler API and PL/SQL Hierarchical
Profiler. In the Oracle 12c release, a LIBRARY object may be defined as a DIRECTORY
object with an optional CREDENTIAL clause as shown here.

Introduction to PL/SQL New Features in Oracle 12c xxxi

For Example Creating LIBRARY as DIRECTORY Object

CREATE OR REPLACE LIBRARY my_lib AS 'plsql_code' IN my_dir;

In this example, the LIBRARY object my_lib is created as a DIRECTORY object.
The 'plsql_code' is the name of the dynamic link library (DDL) in the DIRECTORY
object my_dir. Note that for this library to be created successfully, the DIRECTORY
object my_dir must be created beforehand. More information on LIBRARY and
DIRECTORY objects can be found in Oracle’s online Database PL/SQL Language
Reference.

Implicit Statement Results

Prior to Oracle release 12c, result sets of SQL queries were returned explicitly from
the stored PL/SQL subprograms via REF CURSOR out parameters. As a result, the
invoker program had to bind to the REF CURSOR parameters and fetch the result sets
explicitly as well.

Starting with this release, the REF CURSOR out parameters can be replaced by two
procedures of the DBMS_SQL package, RETURN_RESULT and GET_NEXT RESULT.
These procedures enable stored PL/SQL subprograms to return result sets of SQL
queries implicitly, as illustrated in the following example (the reference to the
RETURN_RESULT procedure is highlighted in bold):

For Example Using DBMS_SQL.RETURN_RESULT Procedure

CREATE OR REPLACE PROCEDURE test_return_result
AS
 v_cur SYS_REFCURSOR;
BEGIN
 OPEN v_cur
 FOR
 SELECT first_name, last_name
 FROM instructor
 FETCH FIRST ROW ONLY;

 DBMS_SQL.RETURN_RESULT (v_cur);
END test_return_result;
/

BEGIN
 test_return_result;
END;
/

xxxii Introduction to PL/SQL New Features in Oracle 12c

In this example, the test_return_result procedure returns the instructor’s
first and last names to the client application implicitly. Note that the cursor SELECT
statement employs a FETCH FIRST ROW ONLY clause, which was introduced in Ora-
cle 12c as well. To get the result set from the procedure test_return_result suc-
cessfully, the client application must likewise be upgraded to Oracle 12c. Otherwise,
the following error message is returned:

ORA-29481: Implicit results cannot be returned to client.
ORA-06512: at "SYS.DBMS_SQL", line 2785
ORA-06512: at "SYS.DBMS_SQL", line 2779
ORA-06512: at "STUDENT.TEST_RETURN_RESULT", line 10
ORA-06512: at line 2

BEQUEATH CURRENT_USER Views

Prior to Oracle 12c, a view could be created only as a definer rights unit. Starting
with release 12c, a view may be created as an invoker’s rights unit as well (this is
similar to the AUTHID property of a stored subprogram). For views, however, this
behavior is achieved by specifying a BEQUEATH DEFINER (default) or BEQUEATH
CURRENT_USER clause at the time of its creation as illustrated by the following
example (the BEQUEATH CURRENT_USER clause is shown in bold):

For Example Creating View with BEQUEATH CURRENT_USER Clause

CREATE OR REPLACE VIEW my_view
BEQUEATH CURRENT_USER
AS
 SELECT table_name, status, partitioned
 FROM user_tables;

In this example, my_view is created as an IR unit. Note that adding this property
to the view does not affect its primary usage. Rather, similarly to the AUTHID prop-
erty, it determines which set of permissions will be applied at the time when the
data is selected from this view.

INHERIT PRIVILEGES and INHERIT
ANY PRIVILEGES Privileges

Starting with Oracle 12c, an invoker’s rights unit will execute with the invoker’s
permissions only if the owner of the unit has INHERIT PRIVILEGES or INHERIT
ANY PRIVILEGES privileges. For example, before Oracle 12c, suppose user1 created
a function F1 as an invoker’s rights unit and granted execute privilege on it to user2,
who happened to have more privileges than user1. Then when user2 ran function

Introduction to PL/SQL New Features in Oracle 12c xxxiii

F1, the function would run with the permissions of user2, potentially performing
operations for which user1 might not have had permissions. This is no longer the
case with Oracle 12c. As stated previously, such behavior must be explicitly specified
via INHERIT PRIVILEGES or INHERIT ANY PRIVILEGES privileges.

Invisible Columns

Starting with Oracle 12c, it is possible to define and manipulate invisible columns.
In PL/SQL, records defined as %ROWTYPE are aware of such columns, as illustrated
by the following example (references to the invisible columns are shown in bold):

For Example %ROWTYPE Records and Invisible Columns

-- Make NUMERIC_GRADE column invisible
ALTER TABLE grade MODIFY (numeric_grade INVISIBLE);
/
table GRADE altered

DECLARE
 v_grade_rec grade%ROWTYPE;
BEGIN
 SELECT *
 INTO v_grade_rec
 FROM grade
 FETCH FIRST ROW ONLY;

 DBMS_OUTPUT.PUT_LINE ('student ID: '||v_grade_rec.student_id);
 DBMS_OUTPUT.PUT_LINE ('section ID: '||v_grade_rec.section_id);
 -- Referencing invisible column causes an error
 DBMS_OUTPUT.PUT_LINE ('grade: '||v_grade_rec.numeric_grade);
END;
/
ORA-06550: line 12, column 54:
PLS-00302: component 'NUMERIC_GRADE' must be declared
ORA-06550: line 12, column 4:
PL/SQL: Statement ignored

-- Make NUMERIC_GRADE column visible
ALTER TABLE grade MODIFY (numeric_grade VISIBLE);
/
table GRADE altered

DECLARE
 v_grade_rec grade%ROWTYPE;
BEGIN
 SELECT *
 INTO v_grade_rec
 FROM grade
 FETCH FIRST ROW ONLY;

 DBMS_OUTPUT.PUT_LINE ('student ID: '||v_grade_rec.student_id);
 DBMS_OUTPUT.PUT_LINE ('section ID: '||v_grade_rec.section_id);
 -- This time the script executes successfully
 DBMS_OUTPUT.PUT_LINE ('grade: '||v_grade_rec.numeric_grade);
END;
/

xxxiv Introduction to PL/SQL New Features in Oracle 12c

student ID: 123
section ID: 87
grade: 99

As you can gather from this example, the first run of the anonymous PL/SQL block
did not complete due to the reference to the invisible column. Once the NUMERIC_
GRADE column has been set to visible again, the script is able to complete successfully.

Objects, Not Types, Are Editioned or Noneditioned

An edition is a component of the edition-based redefinition feature that allows you
to make a copy of an object—for example, a PL/SQL package—and make changes to
it without affecting or invalidating other objects that may be dependent on it. With
introduction of this feature, objects created in the database may be defined as edi-
tioned or noneditioned. For an object to be editioned, its object type must be edition-
able and it must have the EDITIONABLE property. Similarly, for an object to be
noneditioned, its object type must be noneditioned or it must have the NONEDI-
TIONABLE property.

Starting with Oracle 12c, you are able to specify whether a schema object is edi-
tionable or noneditionable in the CREATE OR REPLACE and ALTER statements. In
this new release, a user (schema) that has been enabled for editions is able to own a
noneditioned object even if its type is editionable in the database but noneditionable
in the schema itself or if this object has NONEDITIONABLE property.

PL/SQL Functions That Run Faster in SQL

Starting with Oracle 12c, you can create user-defined functions that may run faster
when they are invoked in the SQL statements. This may be accomplished as follows:

 ■ User-defined function declared in the WITH clause of a SELECT statement

 ■ User-defined function created with the UDF pragma

Consider the following example, where the format_name function is created in
the WITH clause of the SELECT statement. This newly created function returns the
formatted student name.

For Example Creating a User-Defined Function in the WITH Clause

WITH
 FUNCTION format_name (p_salutation IN VARCHAR2
 ,p_first_name IN VARCHAR2
 ,p_last_name IN VARCHAR2)

Introduction to PL/SQL New Features in Oracle 12c xxxv

 RETURN VARCHAR2
 IS
 BEGIN
 IF p_salutation IS NULL
 THEN
 RETURN p_first_name||' '||p_last_name;
 ELSE
 RETURN p_salutation||' '||p_first_name||' '||p_last_name;
 END IF;
 END;
SELECT format_name (salutation, first_name, last_name) student_name
 FROM student
 FETCH FIRST 10 ROWS ONLY;

STUDENT_NAME

Mr. George Kocka
Ms. Janet Jung
Ms. Kathleen Mulroy
Mr. Joel Brendler
Mr. Michael Carcia
Mr. Gerry Tripp
Mr. Rommel Frost
Mr. Roger Snow
Ms. Z.A. Scrittorale
Mr. Joseph Yourish

Next, consider another example where the format_name function is created with
the UDF pragma.

For Example Creating a User-Defined Function in the UDF Pragma

CREATE OR REPLACE FUNCTION format_name (p_salutation IN VARCHAR2
 ,p_first_name IN VARCHAR2
 ,p_last_name IN VARCHAR2)
RETURN VARCHAR2
AS
 PRAGMA UDF;
BEGIN
 IF p_salutation IS NULL
 THEN
 RETURN p_first_name||' '||p_last_name;
 ELSE
 RETURN p_salutation||' '||p_first_name||' '||p_last_name;
 END IF;
END;
/
SELECT format_name (salutation, first_name, last_name) student_name
 FROM student
 FETCH FIRST 10 ROWS ONLY;

STUDENT_NAME

Mr. George Kocka
Ms. Janet Jung
Ms. Kathleen Mulroy
Mr. Joel Brendler
Mr. Michael Carcia
Mr. Gerry Tripp
Mr. Rommel Frost
Mr. Roger Snow
Ms. Z.A. Scrittorale
Mr. Joseph Yourish

xxxvi Introduction to PL/SQL New Features in Oracle 12c

Predefined Inquiry Directives $$PLSQL_UNIT_OWNER and
$$PLSQL_UNIT_TYPE

In PL/SQL, there are a number of predefined inquiry directives, as described in the
following table ($$PLSQL_UNIT_OWNER and $$PLSQL_UNIT_TYPE are highlighted
in bold):

Name Description

$$PLSQL_LINE The number of the code line where it appears in the PL/SQL
subroutine.

$$PLSQL_UNIT The name of the PL/SQL subroutine. For the anonymous PL/
SQL blocks, it is set to NULL.

$$PLSQL_UNIT_OWNER A new directive added in release 12c. This is the name of the
owner (schema) of the PL/SQL subroutine. For anonymous
PL/SQL blocks, it is set to NULL.

$$PLSQL_UNIT_TYPE A new directive added in release 12c. This is the type of the
PL/SQL subroutine—for example, FUNCTION, PROCEDURE,
or PACKAGE BODY.

$$plsql_compilation_
parameter

A set of PL/SQL compilation parameters, some of which are
PLSQL_CODE_TYPE, which specifies the compilation mode
for PL/SQL subroutines, and others of which are PLSQL_
OPTIMIZE_LEVEL (covered in Chapter 25).

The following example demonstrates how directives may be used.

For Example Using Predefined Inquiry Directives

CREATE OR REPLACE PROCEDURE test_directives
AS
BEGIN
 DBMS_OUTPUT.PUT_LINE ('Procedure test_directives');
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_OWNER: '||$$PLSQL_UNIT_OWNER);
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_TYPE: '||$$PLSQL_UNIT_TYPE);
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT: '||$$PLSQL_UNIT);
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_LINE: '||$$PLSQL_LINE);
END;
/

BEGIN
 -- Execute TEST_DERECTIVES procedure
 test_directives;
 DBMS_OUTPUT.PUT_LINE ('Anonymous PL/SQL block');
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_OWNER: '||$$PLSQL_UNIT_OWNER);
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT_TYPE: '||$$PLSQL_UNIT_TYPE);

Introduction to PL/SQL New Features in Oracle 12c xxxvii

 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_UNIT: '||$$PLSQL_UNIT);
 DBMS_OUTPUT.PUT_LINE ('$$PLSQL_LINE: '||$$PLSQL_LINE);
END;
/

Procedure test_directives
$$PLSQL_UNIT_OWNER: STUDENT
$$PLSQL_UNIT_TYPE: PROCEDURE
$$PLSQL_UNIT: TEST_DIRECTIVES
$$PLSQL_LINE: 8
Anonymous PL/SQL block
$$PLSQL_UNIT_OWNER:
$$PLSQL_UNIT_TYPE: ANONYMOUS BLOCK
$$PLSQL_UNIT:
$$PLSQL_LINE: 8

Compilation Parameter PLSQL_DEBUG Is Deprecated

Starting with Oracle release 12c, the PLSQL_DEBUG parameter is deprecated.
To compile PL/SQL subroutines for debugging, the PLSQL_OPTIMIZE_LEVEL
parameter should be set to 1. Chapter 25 covers the PLSQL_OPTIMIZE_LEVEL
parameter and various optimization levels supported by the PL/SQL performance
optimizer in greater detail.

This page intentionally left blank

 1

PL/SQL stands for “Procedural Language Extension to SQL.” Because of its tight
integration with SQL, PL/SQL supports the great majority of the SQL features, such
as SQL data manipulation, data types, operators, functions, and transaction control
statements. As an extension to SQL, PL/SQL combines SQL with programming
structures and subroutines available in any high-level language.

PL/SQL is used for both server-side and client-side development. For example,
database triggers (code that is attached to tables—discussed in Chapters 13 and 14)
on the server side and the logic behind an Oracle Form on the client side can be writ-
ten using PL/SQL. In addition, PL/SQL can be used to develop web and mobile appli-
cations in both conventional and cloud environments when used in conjunction with
a wide variety of Oracle development tools.

1
PL/SQL Concepts

In this chapter, you will learn about

 ■ PL/SQL Architecture Page 2

 ■ PL/SQL Development Environment Page 9

 ■ PL/SQL: The Basics Page 18

2 Chapter 1 ■ PL/SQL Concepts

Lab 1.1: PL/SQL Architecture

After this lab, you will be able to

 ■ Describe PL/SQL Architecture

 ■ Discuss PL/SQL Block Structure

 ■ Understand How PL/SQL Gets Executed

Many Oracle applications are built using multiple tiers, also known as N-tier archi-
tecture, where each tier represents a separate logical process. For example, a three-
tier architecture would consist of three tiers: a data management tier, an application
processing tier, and a presentation tier. In this architecture, the Oracle database
resides in the data management tier, and the programs that make requests against
this database reside in either the presentation tier or the application processing tier.
Such programs can be written in many programming languages, including PL/SQL.
An example of a three-tier architecture is shown in Figure 1.1.

PL/SQL Architecture

While PL/SQL is just like any other programming language, its main distinction is
that it is not a stand-alone programming language. Rather, PL/SQL is a part of the
Oracle RDBMS as well as various Oracle development tools such as Oracle Applica-
tion Express (APEX) and Oracle Forms and Reports. As a result, PL/SQL may reside
in any layer of the multitier architecture.

No matter which layer PL/SQL resides in, any PL/SQL block or subroutine is pro-
cessed by the PL/SQL engine, which is a special component of various Oracle prod-
ucts. As a result, it is very easy to move PL/SQL modules between various tiers. The
PL/SQL engine processes and executes any PL/SQL statements and sends any SQL
statements to the SQL statement processor. The SQL statement processor is always
located on the Oracle server. Figure 1.2 illustrates the PL/SQL engine residing on
the Oracle server.

When the PL/SQL engine is located on the server, the whole PL/SQL block is
passed to the PL/SQL engine on the Oracle server. The PL/SQL engine processes the
block according to the scheme depicted in Figure 1.2.

When the PL/SQL engine is located on the client, as it is in Oracle development
tools, the PL/SQL processing is done on the client side. All SQL statements that are
embedded within the PL/SQL block are sent to the Oracle server for further process-
ing. When PL/SQL block contains no SQL statements, the entire block is executed on
the client side.

Lab 1.1: PL/SQL Architecture 3

Using PL/SQL has several advantages. For example, when you issue a SELECT
statement in SQL*Plus or SQL Developer against the STUDENT table, it retrieves a
list of students. The SELECT statement you issued at the client computer is sent to
the database server to be executed. The results of this execution are then returned
to the client. In turn, rows are displayed on your client machine.

Presentation Tier

This is the tier that enables users to interact
with an application. It collects and sends
user requests for further processing to the
application processing tier.

Application Processing Tier

This tier processes requests received from the
user and services results of those requests back
to the presentation tier. In addition, it evaluates
business rules, validates user requests, and
interacts with the data management tier.

Validate User Request:
Verify customer information

Request customer data

Data Management Tier

This tier is essentially the database server. The data
is stored and retrieved from the database server
based on the requests received from the application
processing tier.

Process query received
from the application

processing tier

Purchase Oracle PL/SQL by
Example Book:

Add purchase item to the shopping cart
Proceed to checkout

Query Query
Results

Figure 1.1 Three-Tier Architecture

4 Chapter 1 ■ PL/SQL Concepts

Now, assume that you need to issue multiple SELECT statements. Each SELECT
statement is a request against the database and is sent to the Oracle server. The
results of each SELECT statement are sent back to the client. Each time a SELECT
statement is executed, network traffic is generated. Hence, multiple SELECT state-
ments will result in multiple round-trip transmissions, adding significantly to the
network traffic.

When these SELECT statements are combined into a PL/SQL program, they are
sent to the server as a single unit. The SELECT statements in this PL/SQL program
are executed at the server. The server sends the results of these SELECT statements
back to the client, also as a single unit. Therefore, a PL/SQL program encompassing
multiple SELECT statements can be executed at the server and have all of the
results returned to the client in the same round trip. This is obviously a more effi-
cient process than having each SELECT statement execute independently. This
model is illustrated in Figure 1.3.

Figure 1.3 compares two applications. The first application uses four independent
SQL statements that generate eight trips on the network. The second application
combines SQL statements into a single PL/SQL block, which is then sent to the
PL/SQL engine. The engine sends SQL statements to the SQL statement processor
and checks the syntax of the PL/SQL statements. As you can see, only two trips are
generated on the network with the second application.

PL/SQL Block

Oracle Server

PL/SQL Engine

PL/SQL Statement
Processor

PL/SQL Block

SQL Statement
Processor

PL/SQL and SQL Statements

PL/SQL Statements

SQL Statements

Figure 1.2 The PL/SQL Engine and Oracle Server

Lab 1.1: PL/SQL Architecture 5

In addition, applications written in PL/SQL are portable. They can run in any
environment that Oracle products can run in. Because PL/SQL does not change
from one environment to the next, different tools can use a PL/SQL script.

PL/SQL Block Structure

A block is the most basic unit in PL/SQL. All PL/SQL programs are combined into
blocks. These blocks can also be nested within one another. Usually, PL/SQL blocks
combine statements that represent a single logical task. Therefore, different tasks
within a single program can be separated into blocks. With this structure, it is easier
to understand and maintain the logic of the program.

PL/SQL blocks can be divided into two groups: named and anonymous. Named
PL/SQL blocks are used when creating subroutines. These subroutines, which
include procedures, functions, and packages, can be stored in the database and refer-
enced by their names later. In addition, subroutines such as procedures and func-
tions can be defined within the anonymous PL/SQL block. These subroutines exist
as long as the block is executing and cannot be referenced outside the block. In other
words, subroutines defined in one PL/SQL block cannot be called by another PL/SQL
block or referenced by their names later. Subroutines are discussed in Chapters 19
through 21. Anonymous PL/SQL blocks, as you have probably guessed, do not have
names. As a result, they cannot be stored in the database or referenced later.

Client Side

Application Using SQL

Server Side

PL/SQL Engine

Application Using PL/SQL

SQL Statement Processor

Individual SQL
Statements and

Their Result Sets

Block of SQL
Statements and

Their Result Sets

Figure 1.3 PL/SQL in Client–Server Architecture

6 Chapter 1 ■ PL/SQL Concepts

PL/SQL blocks contain three sections: a declaration section, an executable sec-
tion, and an exception-handling section. The executable section is the only manda-
tory section of the block; both the declaration and exception-handling sections are
optional. As a result, a PL/SQL block has the structure illustrated in Listing 1.1.

Listing 1.1 PL/SQL Block Structure

DECLARE
 Declaration statements
BEGIN
 Executable statements
EXCEPTION
 Exception-handling statements
END;

Declaration Section

The declaration section is the first section of the PL/SQL block. It contains defini-
tions of PL/SQL identifiers such as variables, constants, cursors, and so on. PL/SQL
identifiers are covered in detail throughout this book.

For Example

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);

This example shows the declaration section of an anonymous PL/SQL block. It
begins with the keyword DECLARE and contains two variable declarations. The
names of the variables, v_first_name and v_last_name, are followed by their
data types and sizes. Notice that a semicolon terminates each declaration.

Executable Section

The executable section is the next section of the PL/SQL block. It contains executa-
ble statements that allow you to manipulate the variables that have been declared
in the declaration section.

For Example

BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||v_last_name);
END;

Lab 1.1: PL/SQL Architecture 7

This example shows the executable section of the PL/SQL block. It begins with
the keyword BEGIN and contains a SELECT INTO statement from the STUDENT
table. The first and last names for student ID 123 are selected into two variables:
v_first_name and v_last_name. Chapter 3 contains a detailed explanation of
the SELECT INTO statement. Next, the values of the variables, v_first_name and
v_last_name, are displayed on the screen with the help of the DBMS_OUTPUT.
PUT_LINE statement. This statement will be covered later in this chapter in
greater detail. The end of the executable section of this block is marked by the key-
word END.

By the Way
The executable section of any PL/SQL block always begins with the keyword BEGIN
and ends with the keyword END.

Exception-Handling Section

Two types of errors may occur when a PL/SQL block is executed: compilation or syn-
tax errors and runtime errors. Compilation errors are detected by the PL/SQL com-
piler when there is a misspelled reserved word or a missing semicolon are the end of
the statement.

For Example

BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is a test')
END;

This example contains a syntax error: The DBMS_OUTPUT.PUT_LINE statement is
not terminated by a semicolon.

Runtime errors occur while the program is running and cannot be detected by the
PL/SQL compiler. These types of errors are detected or handled by the exception-
handling section of the PL/SQL block. It contains a series of statements that are exe-
cuted when a runtime error occurs within the block.

Once a runtime error occurs, control is passed to the exception-handling section of
the block. The error is then evaluated, and a specific exception is raised or executed.
This is best illustrated by the following example. All changes are shown in bold.

For Example

BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||v_last_name);

8 Chapter 1 ■ PL/SQL Concepts

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with student id 123');
END;

This example shows the exception-handling section of the PL/SQL block. It begins
with the keyword EXCEPTION. The WHEN clause evaluates which exception must be
raised. In this example, there is only one exception, called NO_DATA_FOUND, and it is
raised when the SELECT statement does not return any rows. If there is no record for
student ID 123 in the STUDENT table, control is passed to the exception-handling
section and the DBMS_OUTPUT.PUT_LINE statement is executed. Chapters 8, 9, and
10 contain detailed explanations of the exception-handling section.

You have seen examples of the declaration section, executable section, and exception-
handling section. These examples may be combined into a single PL/SQL block.

For Example ch01_1a.sql

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with student id 123');
END;

How PL/SQL Gets Executed

Every time an anonymous PL/SQL block is executed, the code is sent to the PL/SQL
engine, where it is compiled. A named PL/SQL block is compiled only at the time of
its creation, or if it has been changed. The compilation process includes syntax and
semantic checking, as well as code generation.

Syntax checking involves checking PL/SQL code for syntax or compilation errors. As
stated previously, a syntax error occurs when a statement does not exactly correspond
to the syntax of the programming language. A misspelled keyword, a missing semico-
lon at the end of the statement, and an undeclared variable are all examples of syntax
errors. Once syntax errors are corrected, the compiler can generate a parse tree.

By the Way
A parse tree is a tree-like structure that represents the language rules of a
computer language.

Lab 1.2: PL/SQL Development Environment 9

Semantic checking involves further processing on the parse tree. It determines
whether database objects such as table names and column names referenced in the
SELECT statements are valid and whether you have privileges to access them. At the
same time, the compiler can assign a storage address to program variables that are
used to hold data. This process, which is called binding, allows Oracle software to
reference storage addresses when the program is run.

Code generation creates code for the PL/SQL block in interpreted or native mode.
Code created in interpreted mode is called p-code. P-code is a list of instructions to
the PL/SQL engine that are interpreted at run time. Code created in a native mode
is a processor-dependent system code that is called native code. Because native code
does not need to be interpreted at run time, it usually runs slightly faster.

The mode in which the PL/SQL engine generates code is determined by the
PLSQL_CODE_TYPE database initialization parameter. By default, its value is set to
INTERPRETED. This parameter is typically set by the database administrators.

For named blocks, both p-code and native code are stored in the database, and are
used the next time the program is executed. Once the process of compilation has
completed successfully, the status of a named PL/SQL block is set to VALID, and it is
also stored in the database. If the compilation process was not successful, the status
of the named PL/SQL block is set to INVALID.

Watch Out!
Successful compilation of the named PL/SQL block on one occasion does not guar-
antee successful execution of this block in the future. If, at the time of execution, any
one of the stored objects referenced by the block is not present in the database or
not accessible to the block, execution will fail. At such time, the status of the named
PL/SQL block will be changed to INVALID.

Lab 1.2: PL/SQL Development Environment

After this lab, you will be able to

 ■ Get Started with SQL Developer

 ■ Get Started with SQL*Plus

 ■ Execute PL/SQL Scripts

SQL Developer and SQL*Plus are two Oracle-provided tools that you can use to
develop and run PL/SQL scripts. SQL*Plus is an old-style command-line utility tool
that has been part of the Oracle platform since its infancy. It is included in the Ora-
cle installation on every platform. SQL Developer is a free graphical tool used for
database development and administration. It is a fairly recent addition to the Oracle

10 Chapter 1 ■ PL/SQL Concepts

tool set and is available either as a part of the Oracle installation or via download
from Oracle’s website.

Due to its graphical interface, SQL Developer is a much easier environment to
use than SQL*Plus. It allows you to browse database objects, run SQL statements,
and create, debug, and run PL/SQL statements. In addition, it supports syntax high-
lighting and formatting templates that become very useful when you are developing
and debugging complex PL/SQL modules.

Even though SQL*Plus and SQL Developer are two very different tools, their
underlying functionality and their interactions with the database are very similar.
At run time, the SQL and PL/SQL statements are sent to the database. Once they
are processed, the results are sent back from the database and displayed on the
screen.

The examples used in this chapter are executed in both tools to illustrate some of
the interface differences when appropriate. Note that the primary focus of this book
is learning PL/SQL; thus these tools are covered only to the degree that is required
to run PL/SQL examples provided by this book.

Getting Started with SQL Developer

If SQL Developer has been installed as part of the Oracle installation, you can
launch it by accessing Start, All Programs, Oracle, Application Development, SQL
Developer on Windows 7 and earlier versions. On Windows 8, SQL Developer is
invoked by accessing Start, All Apps, Oracle, SQL Developer. Alternatively, you can
download and install this tool as a separate module.

Once SQL Developer is installed, you need to create connection to the database
server. This can be accomplished by clicking on the Plus icon located in the upper-
left corner of the Connections tab. This activates the New/Select Database Connec-
tion dialog box, as shown in Figure 1.4.

In Figure 1.4, you need to provide a connection name (StudentConnection), user
name (student), and password (learn).

By the Way
Starting with Oracle 11g, the password is case sensitive.

In the same dialog box, you need to provide database connection information such
as the hostname (typically the IP address of the machine or the machine name
where the database server resides), the default port where that database listens for
the connection requests (usually 1521), and the SID (system ID) or service name
that identifies a particular database. Both the SID and service name would depend
on the names you picked up for your installation of Oracle. The default SID is
usually set to orcl.

Lab 1.2: PL/SQL Development Environment 11

Watch Out!
If you have not created the STUDENT schema yet, you will not be able to create this
connection successfully. To create the STUDENT schema, refer to the installation
instructions provided on the companion website.

Once the connection has been successfully created, you can connect to the data-
base by double-clicking on the StudentConnection. By expanding the StudentCon-
nection (clicking on the plus sign located to the left of it), you are able to browse
various database objects available in the STUDENT schema. For example, Figure 1.5
shows list of tables available in the STUDENT schema.

At this point you can start typing SQL or PL/SQL commands in the Worksheet
window, shown in Figure 1.5.

To disconnect from the STUDENT schema, you need to right-click on the Student-
Connection and click on the Disconnect option. This is illustrated in Figure 1.6.

Getting Started with SQL*Plus

On Windows 7 and earlier versions, you can access SQL*Plus by choosing Start, All
Programs, Oracle, Application Development, SQL*Plus under the Start button. On
Windows 8, SQL*Plus is invoked by accessing Start, All Apps, Oracle, SQL*Plus.

Figure 1.4 Creating a Database Connection in SQL Developer

12 Chapter 1 ■ PL/SQL Concepts

Figure 1.5 List of Tables in the STUDENT Schema

Figure 1.6 Disconnecting from a Database in SQL Developer

Lab 1.2: PL/SQL Development Environment 13

When you open SQL*Plus, you are prompted to enter your user name and pass-
word (“student” and “learn,” respectively). In addition, you can invoke SQL*Plus by
typing sqlplus in the command prompt window.

By the Way
In SQL*Plus, the password is not displayed on the screen, even as a masked text.

After successful login, you are able to enter your commands at the SQL> prompt.
This is illustrated in Figure 1.7.

To terminate your connection to the database, type either EXIT or QUIT command
and press Enter.

Did You Know?
Terminating the database connection in either SQL Developer or SQL*Plus termi-
nates only your own client connection. In a multiuser environment, there may be
potentially hundreds of client connections to the database server at any time. As
these connections terminate and new ones are initiated, the database server contin-
ues to run and send various query results back to its clients.

Figure 1.7 Connecting to the Database in SQL*Plus

14 Chapter 1 ■ PL/SQL Concepts

Executing PL/SQL Scripts

As mentioned earlier, at run time SQL and PL/SQL statements are sent from the cli-
ent machine to the database. Once they are processed, the results are sent back from
the database to the client and are displayed on the screen. However, there are some
differences between entering SQL and PL/SQL statements.

Consider the following example of a SQL statement.

For Example

SELECT first_name, last_name
 FROM student
 WHERE student_id = 102;

If this statement is executed in SQL Developer, the semicolon is optional. To
execute this statement, you need to click on the triangle button in the Student-
Connection SQL Worksheet or press the F9 key on your keyboard. The results of this
query are then displayed in the Query Result window, as shown in Figure 1.8.

Figure 1.8 Executing a Query in SQL Developer

