

Core HTML5
2D Game Programming

This page intentionally left blank

Core HTML5
2D Game Programming

David Geary

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Geary, David M. (David Mark), 1957- author.
 Core HTML5 2D game programming / David Geary.
 pages cm
 Includes index.
 ISBN 978-0-13-356424-2 (pbk. : alk. paper) — ISBN 0-13-356424-X (pbk. : alk. paper)
1. HTML (Document markup language) 2. Computer games—Programming. 3.
Computer animation. I. Title.
QA76.76.H94G43 2015
006.7'4—dc23

 2014014836

Copyright 2015 Clarity Training

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-356424-2
ISBN-10: 0-13-356424-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2014

mailto:corpsales@pearsoned.com
mailto:corpsales@pearsontechgroup.com
http://InformIT.com

Contents

xvPreface ..

xxiAcknowledgments ..

xxiiiAbout the Author ...

1Chapter 1: Introduction ..

3Snail Bait ..1.1
7Sprites: The Cast of Characters ..1.1.1

10HTML5 Game Development Best Practices ...1.2
10Pause the Game When the Window Loses Focus1.2.1
12Implement a Countdown When the Window Regains Focus .1.2.2
12Use CSS for UI Effects ...1.2.3
14Detect and React to Slowly Running Games1.2.4
14Incorporate Social Features ..1.2.5
15Put All the Game’s Images in a Single Sprite Sheet1.2.6

16
Store High Scores and Send Realtime, In-game Metrics to
the Server ..

1.2.7

16Special Features ..1.3
18Snail Bait’s HTML and CSS ..1.4
25Snail Bait’s Humble Beginning ..1.5
28The Use of JavaScript in This Book ..1.6
31Conclusion ..1.7
31Exercises ..1.8

33Chapter 2: Raw Materials and Development Environment

35Use Developer Tools ..2.1
35The Console ..2.1.1
40Chrome Canary’s Frame Rate Counter2.1.2
42Debugging ..2.1.3
44Timelines ...2.1.4
49Profiling ..2.1.5
50Obtain Assets ..2.2

v

50Graphics ..2.2.1
51Image Manipulation ...2.2.2
52Sound and Music ...2.2.3
53Animations ...2.2.4
54Use CSS Backgrounds ...2.3
56Generate Favicons ..2.4
58Shorten the Coding Cycle ...2.5
59Conclusion ..2.6
60Exercises ..2.7

61Chapter 3: Graphics and Animation ..

64Draw Graphics and Images with the HTML5 canvas Element3.1
66Draw the Background ...3.1.1
67Draw the Runner ...3.1.2
67Draw Platforms ...3.1.3
70Implement Smooth HTML5 Animations ...3.2
71The requestAnimationFrame() Method3.2.1
72A requestAnimationFrame() Polyfill ...3.2.2
75Implement a Game Loop ..3.3
77Calculate Frame Rates ...3.4
78Scroll the Background ...3.5
79Translate the Coordinate System ...3.5.1
81Scroll Snail Bait’s Background ...3.5.2
85Create Time-Based Motion ...3.6
86Reverse Scroll Direction ..3.7
86Draw Animation Frames ..3.8
87Use Parallax to Create the Illusion of Depth ..3.9
90Conclusion ..3.10
90Exercises ..3.11

93Chapter 4: Infrastructure ..

95Encapsulate Game Functions in a JavaScript Object4.1
95Snail Bait’s Constructor ..4.1.1
97Snail Bait’s Prototype ..4.1.2

100Understand JavaScript’s Persnickety this Reference4.2
103Handle Keyboard Input ..4.3
105Pause or Resume the Game When the Player Presses the p Key4.4

Contentsvi

107Freeze the Game to Ensure It Resumes Exactly Where It Left Off4.5
108Pause the Game When the Window Loses Focus4.6
110Resume a Paused Game with an Animated Countdown4.7
111Display Toasts (Brief Messages) to Players4.7.1
112Snail Bait’s Countdown ..4.7.2
115Conclusion ..4.8
116Exercises ..4.9

117Chapter 5: Loading Screens ..

120Define Snail Bait’s Chrome ...5.1
122Accessing Chrome Elements in JavaScript5.1.1
123Fade Elements In and Out with CSS Transitions5.2
125Fade Elements Into View ..5.2.1
127Fade Elements Out of View ..5.2.2
128The snailbait-toast Element’s CSS5.2.3
129Revealing and Hiding Toasts ...5.2.4

132
Fade Any Element In or Out That Has a CSS Transition Associated
with Its Opacity ..

5.3

135Implement the Loading Screen ..5.4
140Reveal the Game ..5.5
144Conclusion ..5.6
144Exercises ..5.7

147Chapter 6: Sprites ...

149Sprite Objects ..6.1
152Sprite Properties ..6.1.1
153The Sprite Constructor ..6.1.2
154Sprite Methods ...6.1.3
156Incorporate Sprites into a Game Loop ..6.2
160Implement Sprite Artists ..6.3
160Stroke and Fill Artists ...6.3.1
161Image Artists ..6.3.2
162Sprite Sheet Artists ..6.3.3
164Define Sprite Sheet Cells ..6.3.4
167Create and Initialize a Game’s Sprites ..6.4
171Define Sprites with Metadata ...6.5
174Scroll Sprites ...6.6

viiContents

176Conclusion ..6.7
177Exercises ..6.8

179Chapter 7: Sprite Behaviors ...

182Behavior Fundamentals ..7.1
184Runner Behaviors ..7.2
187The Runner’s Run Behavior ...7.3
190Flyweight Behaviors ..7.4
193Game-Independent Behaviors ...7.5
193The Cycle Behavior ..7.5.1
195Sparkling Rubies and Sapphires7.5.1.1
197Flapping Wings and Throbbing Coins7.5.1.2
199Combine Behaviors ...7.6
205Conclusion ..7.7
206Exercises ..7.8

207Chapter 8: Time, Part I: Finite Behaviors and Linear Motion

209Implement an Initial Jump Algorithm ..8.1
210Shift Responsibility for Jumping to the Runner8.2
213Implement the Jump Behavior ...8.3
214Time Animations with Stopwatches ...8.4
217Refine the Jump Behavior ...8.5
220Implement Linear Motion ..8.6
221Ascending ...8.6.1
223Descending ...8.6.2
225Pause Behaviors ...8.7
227Conclusion ..8.8
227Exercises ..8.9

229Chapter 9: Time, Part II: Nonlinear Motion ..

230Understand Time and Its Derivatives ...9.1

231
Use Animation Timers and Easing Functions to Implement
Nonlinear Jumping ..

9.2

233Implement Animation Timers ..9.3
235Implement Easing Functions ...9.4
239Fine-tune Easing Functions ..9.5
241Implement a Realistic Bounce Behavior ...9.6
245Randomize Behaviors ...9.7

Contentsviii

247
Implement Nonlinear Color Changes with Animation Timers and
Easing Functions ..

9.8

249The Pulse Behavior ..9.8.1
251Conclusion ..9.9
251Exercises ..9.10

253Chapter 10: Time, Part III: Time Systems ...

255Snail Bait’s Time System ...10.1
257Create and Start the Time System ..10.2
258Incorporate the Time System into Snail Bait ..10.3
258Use the Time System to Drive the Game’s Animation10.3.1

259
Implement a Game Method that Uses the Time System to
Modify the Flow of Time ..

10.3.2

260Factor the Time Rate into the Frame Rate Calculation10.3.3
261Pause and Resume the Game by Using the Time System10.3.4

264
Redefine the Current Time for Stopwatches and Animation
Timers ..

10.4

268Implement the Time System ..10.5
270Conclusion ..10.6
270Exercises ..10.7

273Chapter 11: Collision Detection ...

275The Collision Detection Process ...11.1
275Collision Detection Techniques ...11.2
277Snail Bait’s Collision Detection ..11.3
278Sprite Collision Rectangles ...11.3.1
279The Runner’s Collide Behavior ...11.3.2
281Select Candidates for Collision Detection ..11.4
282Detect Collisions Between the Runner and Another Sprite11.5
284Process Collisions ..11.6
286Optimize Collision Detection ...11.7
286Refine Bounding Boxes ...11.7.1
288Use Spatial Partitioning ..11.7.2
289Monitor Collision Detection Performance ...11.8
291Implement Collision Detection Edge Cases ...11.9
295Conclusion ..11.10
296Exercises ..11.11

ixContents

297Chapter 12: Gravity ...

298Equip the Runner for Falling ..12.1
300Incorporate Gravity ...12.2
302The Runner’s Fall Behavior ..12.2.1
306Calculate Initial Falling Velocities ...12.2.2
308Pause When the Runner Is Falling ..12.2.3
308Collision Detection, Redux ...12.3
310Conclusion ..12.4
311Exercises ..12.5

313Chapter 13: Sprite Animations and Special Effects

314Implement Sprite Animations ..13.1
320Create Special Effects ..13.2
321Shake the Game ...13.2.1
323Transition Between Lives ...13.2.2
329Choreograph Effects ..13.3
332Explode Bees ..13.3.1
333Detonate Buttons ...13.3.2
335Conclusion ..13.4
336Exercises ..13.5

337Chapter 14: Sound and Music ..

339Create Sound and Music Files ...14.1
340Load Music and Sound Effects ..14.2
342Specify Sound and Music Controls ...14.3
343Play Music ..14.4
344Play Music in a Loop ...14.5
347Play Sound Effects ...14.6
350Create Audio Sprites ...14.6.1
351Define Sound Objects ..14.6.2
353Implement Multichannel Sound ...14.6.3
355Create Audio Channels ...14.6.3.1

357
Coordinate with Sprite Sheet Loading to Start the
Game ..

14.6.3.2

358Play Sounds ...14.6.3.3
361Turn Sound On and Off ..14.7

Contentsx

362Conclusion ..14.8
362Exercises ..14.9

363Chapter 15: Mobile Devices ..

366Run Snail Bait on Mobile Devices ..15.1
368Detect Mobile Devices ...15.2
369Scale Games to Fit Mobile Devices ..15.3
371The viewport Meta Tag ...15.3.1

376
Programmatically Resize Games to Fit Mobile Device
Screens ..

15.3.2

381Change Instructions Underneath the Game’s Canvas15.4
383Change the Welcome Screen ..15.5
384Implement the Welcome Toast ...15.5.1
385Modify the Game’s Start Sequence15.5.1.1
386Add HTML for the Mobile Welcome Toast15.5.1.2
387Define CSS for the Mobile Toasts15.5.1.3

388
Implement Event Handlers for the Mobile Welcome
Toast’s Links ..

15.5.1.4

389Draw Mobile Instructions ..15.5.2
394Implement the Mobile Start Toast ...15.5.3
395Implement the Start Link’s Event Handler15.5.3.1
396Reveal the Mobile Start Toast ...15.5.4
396Incorporate Touch Events ...15.6
400Work Around Sound Idiosyncrasies on Mobile Devices15.7

402
Add an Icon to the Home Screen and Run Without Browser
Chrome ..

15.8

403Conclusion ..15.9
404Exercises ..15.10

405Chapter 16: Particle Systems ...

406Smoking Holes ...16.1
411Use Smoking Holes ...16.2
411Define Smoking Hole Data ...16.2.1
412Create Smoking Holes ..16.2.2
413Add Smoking Holes to Snail Bait’s sprites Array16.2.3
413Scroll Smoking Holes Every Animation Frame16.2.4
414Implement Smoking Holes ...16.3

xiContents

415Disguise Smoking Holes as Sprites ..16.3.1
417Incorporate Fire Particles ..16.3.2
418Create Fire Particles ..16.3.2.1

421
Draw and Update Fire Particles Every
Animation Frame ...

16.3.2.2

422Incorporate Smoke Bubbles ...16.3.3
424Create Smoke Bubbles ...16.3.3.1

428
Draw and Update Smoke Bubbles Every Animation
Frame ...

16.3.3.2

430Emit Smoke Bubbles ..16.3.3.3
432Dissipate Smoke Bubbles ..16.3.3.4
434Pause Smoking Holes ..16.4
435Conclusion ..16.5
436Exercises ..16.6

437Chapter 17: User Interface ..

438Keep Score ..17.1
442Add a Lives Indicator ...17.2
448Display Credits ..17.3
455Tweet Player Scores ...17.4
458Warn Players When the Game Runs Slowly ..17.5
464Monitor Frame Rate ..17.5.1
466Implement the Running Slowly Warning Event Handlers17.5.2
467Implement a Winning Animation ...17.6
472Conclusion ..17.7
472Exercises ..17.8

475Chapter 18: Developer Backdoor ...

477Snail Bait’s Developer Backdoor ..18.1
479The Developer Backdoor’s HTML and CSS ...18.2
481Reveal and Hide the Developer Backdoor ...18.3
483Update the Developer Backdoor’s Elements18.4
484Implement the Developer Backdoor’s Checkboxes18.5
487Show and Hide Collision Rectangles18.5.1
489Enable and Disable the Running Slowly Warning18.5.2
490Show and Hide Smoking Holes ..18.5.3
491Update Backdoor Checkboxes ...18.5.4

Contentsxii

492Incorporate the Developer Backdoor Sliders18.6
494Specify the HTML and CSS for the Backdoor’s Sliders18.6.1
496Access Slider Readouts in Snail Bait’s JavaScript18.6.2
497Create and Initialize the Backdoor’s Sliders18.6.3
498Wire the Running Slowly Slider to the Game18.6.4
498Wire the Time Rate Slider to the Game18.6.5
499Wire the Game to the Time Rate Slider18.6.6
500Update Sliders Before Revealing the Backdoor18.6.7
502Implement the Backdoor’s Ruler ...18.7
503Create and Access the Ruler Canvas ...18.7.1
504Fade the Ruler ..18.7.2
505Draw the Ruler ..18.7.3
507Update the Ruler ...18.7.4
507Drag the Canvas ...18.7.5
513Conclusion ..18.8
513Exercises ..18.9

515

Chapter 19: On the Server: In-game Metrics, High Scores, and

Deployment ...

517Node.js and socket.io ...19.1
518Include socket.io JavaScript in Snail Bait ..19.2
520Create a Simple Server ..19.3
520Create a Socket on the Server ...19.4
521Start the Server ...19.5
522Create a Socket on the Client and Connect to the Server19.6
523Record In-game Metrics ..19.7
526Manage High Scores ..19.8
527The High Scores User Interface ...19.8.1
530Retrieve High Scores from the Server19.8.2
533Display High Scores on the Client ..19.8.3
534Monitor Name Input ...19.8.4
536Validate and Set the High Score on the Server19.8.5
538Redisplay High Scores ..19.8.6
539Start a New Game ...19.8.7
540Deploy Snail Bait ..19.9
542Upload Files to a Server ..19.10

xiiiContents

543Conclusion ..19.11
544Exercises ..19.12

545Chapter 20: Epilogue: Bodega’s Revenge ..

547Design the User Interface ...20.1
551Create the Sprite Sheet ..20.2
552Instantiate the Game ..20.3
553Implement Sprites ...20.4
553The Turret ...20.4.1
554Create the Turret Sprite’s Artist20.4.1.1
555Draw the Turret ..20.4.1.2
556Bullets ..20.4.2
560Birds ..20.4.3
563Implement Sprite Behaviors ...20.5
564Turret Behaviors ..20.5.1
564The Turret’s Rotate Behavior20.5.1.1
566The Turret’s Barrel Fire Behavior20.5.1.2
569The Turret’s Shoot Behavior20.5.1.3
571Bullet Behaviors ...20.5.2
574Bird Behaviors ..20.5.3
575The Bird Move Behavior ..20.5.3.1
577The Bird Collide Behavior ...20.5.3.2
579The Bird Explosion Behavior20.5.3.3
580Draw the Bullet Canvas ..20.6
582Implement Touch-Based Controls for Mobile Devices20.7
585Conclusion ..20.8
585Exercises ..20.9

587Glossary ..

595Index ...

Contentsxiv

Preface

This book is for experienced JavaScript developers who want to implement
2D games with HTML5. In this book, I chronicle the development of a sophisti-
cated side-scroller platform video game, named Snail Bait, from scratch. I do not
use any third-party graphics or game frameworks, so that you can learn to imple-
ment everything from smooth animations and exploding sprites to developer
backdoors and in-game metrics, entirely on your own. If you do use a game
framework, this book provides valuable insights into how they work.

Because it’s meant for instructional purposes, Snail Bait has only a single level,
but in all other respects it’s a full-fledged, arcade-style game. Snail Bait simulta-
neously manipulates dozens of animated objects, known as sprites, on top of a
scrolling background and simultaneously plays multiple sound effects layered
over the game’s soundtrack. The sprites run, jump, fly, sparkle, bounce, pace,
explode, collide, shoot, land on platforms, and fall through the bottom of the game.

Snail Bait also implements many other features, such as a time system that can
slow the game’s overall time or speed it up; an animated loading screen; special
effects, such as shaking the game when the main character loses a life; and particle
systems that simulate smoke and fire. Snail Bait pauses the game when the game’s
window loses focus; and when the window regains focus, Snail Bait resumes with
an animated countdown to give the user time to regain the controls.

Although it doesn’t use game or graphics frameworks, Snail Bait uses Node.js
and socket.io to send in-game metrics to a server, and to store and retrieve high
scores, which the game displays with a heads-up display. Snail Bait shows a
warning when the game runs too slowly, and if you type CTRL-d as the game
runs, Snail Bait reveals a developer backdoor that gives you special powers, such
as modifying the flow of time or displaying sprite collision rectangles, among
other things.

Snail Bait detects when it runs on a mobile device and reconfigures itself by in-
stalling touch event handlers and resizing the game to fit snugly on the mobile
device’s screen.

In this book I show you how to implement all of Snail Bait’s features step by step,
so that you can implement similar features in your own games.

xv

A Brief History of This Book
In 2010, I downloaded the graphics and sound from a popular open source An-
droid game named Replica Island, and used them to implement a primitive version
of Snail Bait on Android.

At that time, I became interested in HTML5 Canvas and I started working on my
previous book, Core HTML5 Canvas. As I wrote the Canvas book, I continued to
work on Snail Bait, converting it from Android’s Java to the browser’s JavaScript
and the HTML5 canvas element. By the time that book was finished in 2012, I
had a still primitive, but close to feature-complete, version of the game.

Later in 2012, I started writing a 10-article series for IBM developerWorks on
game programming, based on Snail Bait. Over the course of the next ten months,
I continued to work on the game as I wrote the articles. (See “Online Resources”
below for a link to those articles.)

By summer 2013, Snail Bait had matured a great deal, so I put together a presen-
tation covering Snail Bait’s development and traveled to Sebastopol, California
to shoot a 15-hour O’Reilly video titled “HTML5 2D Game Development.” In
some respects that video is the film version of this book. Although the video
wasn’t released until September, it was one of the top 10 bestselling O’Reilly
videos for 2013. (The “Online Resources” below has a link to that video.)

When I returned home from Sebastopol in July 2013, I started writing this book
full time. I started with the ten articles from the IBM developerWorks series,
rewrote them as book chapters, and ultimately added ten more chapters. As I
was writing, I constantly iterated over Snail Bait’s code to make it as readable as
possible.

In December 2013, with Chapters 1–19 written, I decided to add a final chapter
on using the techniques in the book to implement a simpler video game. That
game is Bodega’s Revenge, and it’s the subject of Chapter 20.

How to Use This Book
This book’s premise is simple: It shows you how to implement a sophisticated
video game so that you can implement one of your own.

There are several ways you can use this book. First, I’ve gone to great lengths to
make it as skim-friendly as possible. The book contains lots of screenshots, code
listings, and diagrams.

Prefacexvi

I make liberal use of Notes, Tips, Cautions, and Best Practices. Encapsulating
those topics in callouts streamlines the book’s main discussion, and since each
Note, Tip, Caution, and Best Practice has a title (excluding callouts with a single
line), you can decide at a glance whether those ancillary topics are pertinent to
your situation. In general, the book’s main discussion shows you how things
work, whereas the callouts delve into why things work as they do. If you’re in a
hurry, you can quickly get to the bottom of how things work by sticking to the
main discussion, skimming the callouts to make sure you’re not missing anything
important.

Chapters 1–19 of the book chronicle the development of Snail Bait, starting with
a version of the game that simply displays graphics and ending with a full-featured
HTML5 video game. Chapter 20 is the Epilogue, which uses much of what the
book covered in the previous 19 chapters to implement a second video game.

If you plan to read the book, as opposed to using it solely as reference, you will
most likely want to start reading at either Chapter 1 or Chapter 20. If you start at
the beginning, Chapter 20 will be a recap and review of what you learned previ-
ously, in addition to providing new insights such as using polar coordinates and
rotating coordinate systems.

If you start reading at Chapter 20, perhaps even just skimming the chapter, you
can get an idea for what lies behind in the previous 19 chapters. If you start at
Chapter 20, don’t expect to understand a lot of what you read in that chapter the
first time around.

I assume that many readers will want to use this book as a reference, so I’ve in-
cluded references to section headings at the start of each chapter, in addition to
a short discussion at the beginning of each chapter about what the chapter
entails. That will help you locate topics. I’ve also included many step-by-step in-
structions on how to implement features so that you can follow those steps to
implement similar features of your own.

The Book’s Exercises
Passively reading a book won’t turn anyone into a game programmer. You’ve
got to get down in the trenches and sling some code to really learn how to imple-
ment games. To that end, each chapter in this book concludes with a set of
exercises.

To perform the exercises, download the final version of Snail Bait and modify
that code. In some cases, the exercises will instruct you to modify code for a

xviiPreface

chapter-specific version of the game. See the next section for more information
about chapter-specific versions of Snail Bait.

Source Code and Chapter-specific Versions of Snail Bait
This book comes with the source to two video games. See “Online Resources”
below for URLs to the games and their source code.

You will undoubtedly find it beneficial to refer to Snail Bait’s source code as you
read this book. You will find it more beneficial, however, to refer to the version
of the game that corresponds to the chapter you are reading. For example, in the
first chapter we implement a nascent version of Snail Bait that simply draws the
background and the game’s main character. That version of the game bears little
resemblance to the final version, so referring to the final version of the game is
of little use at that point. Instead, you can access the version of Snail Bait corre-
sponding to the end of Chapter 1 at corehtml5games.com/book/code/ch01.
URLs for each of the book’s chapters follow the format corehtml5games.com/book/
code/ch??, where ?? represents two digits corresponding to chapter numbers
from 01 to 20, excluding Chapter 2.

As mentioned above, exercises at the end of each chapter correspond to the final
version of Snail Bait, unless otherwise stated.

Prerequisites
No one would think of taking a creative writing class in a language they couldn’t
speak or write. Likewise, you must know JavaScript to implement sophisticated
games with HTML5. JavaScript is a nonnegotiable prerequisite for this book.

Nearly all the code listings in this book are JavaScript, but you still need to know
your way around HTML and CSS. You should also be familiar with computer
graphics and have a good grasp of basic mathematics.

Your Game
Finally, let’s talk about why we’re here. I assume you’re reading this book because
you want to implement a game of your own.

The chapters of this book discuss individual aspects of game programming, such
as implementing sprites or detecting collisions. Although they pertain to Snail
Bait, you will be able to easily translate those aspects to your own game.

Prefacexviii

The order of the chapters, however, is also significant because it shows you how
to implement a game from start to finish. In the beginning of the book, we gather
raw materials, set up our development environment, and then start development
by drawing the game’s basic graphics. Subsequent chapters add animation, sprites,
sprite behaviors, and so on. If you’re starting a game from scratch, you may want
to follow that same outline, so you can alternate between reading about features
and implementing them on your own.

Before you get started coding in earnest, you should take the time to set up your
development environment and become as familiar as you can with the browser’s
developer tools. You should also make sure you shorten your development cycle
as discussed at the end of Chapter 2. The time you initially spend preparing will
make you more productive later on.

Finally, thank you for buying this book. I can’t wait to see the games you create!

David Geary
Fort Collins, Colorado
2014

Online Resources
Core HTML5 2D Game Programming’s companion website: corehtml5games.com

Play Snail Bait: corehtml5games.com/snailbait

Play Bodega’s Revenge: corehtml5games.com/bodegas-revenge

Download Snail Bait: corehtml5games.com/book/downloads/snailbait

Download Bodega’s Revenge: corehtml5games.com/book/downloads/
bodegas-revenge

David’s “HTML5 2D Game Development” video from O’Reilly: shop.oreilly.
com/product/0636920030737.do.

David’s “HTML5 2D Game Development” series on IBM developerWorks:
www.ibm.com/developerworks/java/library/j-html5-game1/index.html

A video of David speaking about HTML5 game programming at the Atlanta
HTML5 Users Group in 2013: youtube.com/watch?v=S256vAqGY6c

Core HTML5 Canvas at http://amzn.to/1jfuf0C. Take a deep dive into Canvas
with David’s book.

xixPreface

http://www.ibm.com/developerworks/java/library/j-html5-game1/index.html
http://amzn.to/1jfuf0C

This page intentionally left blank

Acknowledgments

I am fortunate to have a great editor—the only editor I’ve had in nearly twenty
years of writing books—who is always receptive to my ideas for my next book
and who guides my books from conception to completion. This book was no
different. Greg Doench helped shepherd this book through the process from an
idea to a finished book.

I’m also fortunate to have a wonderful copyeditor, Mary Lou Nohr. She has
copyedited every one of my previous books, and she graciously agreed to smooth
out my rough edges once again.

This is the second book that I’ve done with Alina Kirsanova, who’s a wizardess
at taking my PDFs and making them look super. Once again, Julie Nahil oversaw
the production of the book and kept everything on track as we headed to the
printer.

For every book I write, I select reviewers who I think will make the book much
better than I ever could have alone. For this book, I had four excellent reviewers:
Jim O’Hara, Timothy Harrington, Simon Sarris, and Willam Malone. Gintas
Sanders also gave me permission to use his coins in Snail Bait and gave me some
great critiques of the game.

When I shot the “HTML5 2D Game Development” video for O’Reilly, I taught a
class in front of a live audience. One of the audience members asked great ques-
tions and came up with several insights. Jim O’Hara was one of my most consci-
entious reviewers and, as he did in class, provided lots of great questions and
insights.

My editor, Greg Doench, put me in touch with Tim Harrington, who is a Senior
Academic Applications Analyst at Devry University with a background in game
development. Like Jim, Tim came up with lots of insights that made me rethink
how I presented material.

I wanted to find a graphics expert for this book who knew a lot about game pro-
gramming, and I found one. Simon Sarris, who, much to my delight, is not only
both of those things, but is also an excellent writer. He made this book better in
several different ways.

xxi

Finally, I was fortunate to have William Malone review this book. William is a
professional game developer who’s implemented games for Sesame Street (see
Cookie Kart Racing at http://bit.ly/1nlSY3N). William made a tremendous dif-
ference in this book by pointing out many subtleties that would’ve escaped me,
especially concerning mobile devices.

Acknowledgmentsxxii

http://bit.ly/1nlSY3N

About the Author

David is the author of Core HTML5 Canvas and coauthor of Core JavaServer
Faces. David has written several other bestselling books on client- and
server-side Java, including one of the bestselling Java books of all time,
Graphic Java.

xxiii

This page intentionally left blank

1CHAPTER

Introduction

Topics in This Chapter

• 1.1 Snail Bait — p. 3

• 1.2 HTML5 Game Development Best Practices — p. 10

• 1.3 Special Features — p. 16

• 1.4 Snail Bait’s HTML and CSS — p. 18

• 1.5 Snail Bait’s Humble Beginning — p. 25

• 1.6 The Use of JavaScript in This Book — p. 28

• 1.7 Conclusion — p. 31

• 1.8 Exercises — p. 31

The great thing about software development is that you can make nearly anything

you can imagine come to life on screen. Unencumbered by physical constraints

that hamper engineers in other disciplines, software developers have long used

graphics APIs and UI toolkits to implement creative and compelling applications.

Arguably, the most creative genre of software development is game programming;

few endeavors are more rewarding from a creative standpoint than making the

vision you have for a game become a reality.

The great thing about game programming is that it’s never been more accessible.

With the advent of open source graphics, sound, and music, you no longer need

to be an artist and a musician to implement games. And the development envi-

ronments built into modern browsers are not only free, they contain all the

tools you need to create the most sophisticated games. You need only supply

1

programming prowess, a good understanding of basic math (mostly trigonometry),
and a little physics.

In this book we implement two full-fledged HTML5 video games so that you
can learn how to create one of your own. Here are some of the things you will
learn to do:

• Use the browser’s development tools to implement sophisticated games
• Create smooth, flicker-free animations
• Scroll backgrounds and use parallax to create a 3D effect
• Implement graphical objects, known as sprites, that you can draw and

manipulate in a canvas
• Detect collisions between sprites
• Animate sprites to make them explode
• Implement a time system that controls the rate at which time flows through

your game
• Use nonlinear motion to create realistic jumping
• Simulate gravity
• Pause and freeze your game
• Warn players when your game runs slowly
• Display scoreboards, controls, and high scores
• Create a developer’s backdoor with special features
• Implement particle systems to simulate natural phenomenon, such as smoke

and fire
• Store high scores and in-game metrics on a server with Node.js and socket.io
• Configure games to run on mobile devices

NOTE: HTML5 technologies used in Snail Bait

This book discusses the implementation of an HTML5 video game, named Snail
Bait, using the following HTML5 APIs, the most predominant of which is the
Canvas 2D API:

• Canvas 2D API

• Timing Control for Script-based Animations

• Audio

• CSS3 Transitions

Chapter 1 Introduction2

In this book we develop Snail Bait entirely from scratch, without any third-party
game frameworks, so you can learn how to implement all the common aspects
of a video game from the ground up. That knowledge will be invaluable whether
you implement a game by using a framework or not.

The book’s epilogue discusses the implementation of a second video game—
Bodega’s Revenge—that shows how to combine the concepts discussed in the
book to implement a simpler video game.

NOTE: Play Snail Bait and Bodega’s Revenge online

To get the most out of this book, you should play Snail Bait and Bodega’s
Revenge so you’re familiar with the games. You can play Snail Bait online
at corehtml5games.com/snailbait, and you can find Bodega’s Revenge at
corehtml5games.com/bodegas-revenge.

NOTE: Particle systems

A particle system uses many small particles that combine to simulate natural
phenomena that do not have well-defined boundaries and edges. Snail Bait
implements a particle system to simulate smoke, as you can see in Figure 1.1.
We discuss particle systems in detail in Chapter 16.

1.1 Snail Bait
Snail Bait is a classic platform game. The game’s main character, known as the
runner, runs along and jumps between floating platforms that move horizontally.
The runner’s ultimate goal is to land on a gold button that paces back and forth
on top of a pulsating platform at the end of the game. That button is guarded by
two bees and a bomb-shooting snail. The runner, pulsating platform, gold button,
bees, bomb, and snail are all shown in Figure 1.1.

The player controls the game with the keyboard:

• d or ← turns the runner to the left and scrolls the background from left to
right.

• k or → turns the runner to the right and scrolls the background from right
to left.

• j makes the runner jump.
• p pauses the game.

31.1 Snail Bait

Figure 1.1 Snail Bait

When the game begins, the player has three lives. Icons representing the number
of remaining lives are displayed above and to the left of the game’s canvas, as
you can see in Figure 1.1. In the runner’s quest to make it to the end of the level,
she must avoid bad guys—bees and bats—while trying to capture valuable items
such as coins, rubies, and sapphires. If the runner collides with bad guys,
she blows up, the player loses a life, and the runner goes back to the beginning
of the level. When she collides with valuable items, the valuable item disappears,
the score increases, and the game plays a pleasant sound effect.

The snail periodically shoots snail bombs (the gray ball shown near the center of
Figure 1.1). The bombs, like bees and bats, blow up the runner when they hit her.

The game ends in one of two ways: the player loses all three lives, or the player
lands on the gold button. If the player lands on the gold button, the player wins
the game and Snail Bait shows the animation depicted in Figure 1.2.

Snail Bait maintains high scores on a server. If the player beats the existing high
score, Snail Bait lets the player enter their name with a heads-up display (HUD),
as shown in Figure 1.3.

Chapter 1 Introduction4

Figure 1.2 Snail Bait’s winning animation

Figure 1.3 Snail Bait’s high scores

51.1 Snail Bait

If the player doesn’t win the game or beat the existing high score, Snail Bait
displays game credits, as shown in Figure 1.4.

Figure 1.4 Snail Bait’s credits

With the exception of the runner, everything in Snail Bait scrolls continuously in
the horizontal direction. That scrolling further categorizes Snail Bait as a side-
scroller platform game. However, that’s not the only motion in the game, which
leads us to sprites and their behaviors.

NOTE: Platform video games

Donkey Kong, Mario Bros., Sonic the Hedgehog, and Braid are all well-known,
best-selling games where players navigate 2D platforms, a genre known as
platformers. At one time, platformers represented up to one-third of all video
game sales.Today, their market share is drastically lower, but there are still many
successful platform games.

Chapter 1 Introduction6

CAUTION: Snail Bait performance

Hardware acceleration for Canvas makes a huge difference in performance and
has been implemented by most browsers since the middle of 2012. Should you
run Snail Bait in a browser that does not have hardware-accelerated Canvas,
performance will be terrible and the game probably won’t work correctly. When
you play the game, make sure your browser has hardware-accelerated Canvas.
Here is a list of browser versions that have hardware-accelerated Canvas:

• Chrome 13

• Firefox 4

• Internet Explorer 9

• Opera 11

• Safari 5

WASD?

By convention, computer games often use the w, a, s, and d keys to control play.
That convention evolved primarily because it lets right-handed players use the mouse
and keyboard simultaneously. It also leaves the right hand free to press the spacebar
or modifier keys such as CTRL or ALT. Snail Bait doesn’t use WASD because it
doesn’t receive input from the mouse or modifier keys. But you can easily modify
the game’s code to use any combination of keys.

1.1.1 Sprites: The Cast of Characters
With the exception of the background, everything in Snail Bait is a sprite. A sprite
is a visual representation of an object in a game that you draw on the game’s
canvas. Sprites are not a part of the HTML5 Canvas API, but they are simple to
implement. Following are the game’s sprites:

• Platforms (inanimate objects)
• Runner (main character)
• Buttons (good)
• Coins (good)

71.1 Snail Bait

• Rubies and sapphires (good)
• Bees and bats (bad)
• Snail (bad)
• Snail bombs (bad)

Besides scrolling horizontally, nearly all the game’s sprites move independently
of one another. For example, rubies and sapphires bounce up and down at varying
rates of speed, and the buttons and the snail pace back and forth along the length
of the platform on which they reside.

That independent motion is one of many sprite behaviors. Sprites can have other
behaviors that have nothing to do with motion; for example, besides bouncing
up and down, the rubies and sapphires sparkle.

Each sprite has an array of behaviors. A behavior is just a JavaScript object with
an execute() method. Every animation frame, the game iterates over all its visible
sprites and, for each sprite, iterates over the sprite’s behaviors, invoking each
behavior’s execute() method and passing the method a reference to the sprite
in question. In that method, behaviors manipulate their associated sprite according
to game conditions. For example, when you press j to make the runner jump, the
runner’s jump behavior subsequently moves the runner through the jump
sequence, one animation frame at a time.

Table 1.1 lists the game’s sprites and their respective behaviors.

Table 1.1 Snail Bait sprites

BehaviorsSprites

Pulsate (only one platform)Platforms

Run; jump; fall; collide with other sprites; explodeRunner

Explode; flap their wingsBees and bats

Pace; collapse; make bad guys explodeButtons

Sparkle; bounce up and downCoins, rubies, and sapphires

Pace; shoot bombsSnail

Move from right to left; collide with runnerSnail bombs

Behaviors are simple JavaScript objects, as illustrated by Example 1.1, which
shows how Snail Bait instantiates the runner sprite.

Chapter 1 Introduction8

Example 1.1 Creating sprites

runBehavior = { // Just a JavaScript object with an execute method

 execute: function (sprite, // Sprite associated with the behavior
 now, // The current game time
 fps, // The current frame rate
 context, // The context for the game's canvas
 lastAnimationFrameTime) { // Time of last frame

// Update the sprite's attributes, based on the current time
// (now), frame rate (fps), and the time at which Snail Bait
// drew the last animation frame (lastAnimationFrameTime),
// to make it look like the runner is running.

// The canvas context is provided as a convenience for things
// like hit detection, but it should not be used for drawing
// because that's the responsibility of the sprite's artist.

// Method implementation omitted. See Section 7.3 on p. 187
// for a discussion of this behavior.

}

};

var runner = new Sprite('runner', // name
 runnerArtist, // artist

[runBehavior, ...]); // behaviors

Snail Bait defines a runBehavior object, which it passes—in an array with other
behaviors—to the runner sprite’s constructor, along with the sprite’s type (runner)
and its artist (runnerArtist). For every animation frame in which the runner is
visible, the game invokes the runBehavior object’s execute() method. That
execute() method makes it appear as though the runner is running by advancing
through the set of images that depict the runner in various run poses.

NOTE: Replica Island

The idea for sprite behaviors, which are an example of the Strategy design
pattern, comes from Replica Island, a popular open source (Apache 2 license)
Android platform game. Additionally, most of Snail Bait’s graphics are from
Replica Island. You can find out more about Replica Island at replicaisland.net,
and you can read about the Strategy design pattern at http://en.wikipedia.org/
wiki/Strategy_design_pattern.

91.1 Snail Bait

http://en.wikipedia.org/wiki/Strategy_design_pattern
http://en.wikipedia.org/wiki/Strategy_design_pattern

NOTE: Sprite artists

Besides encapsulating behaviors in separate objects—which makes it easy to
add and remove behaviors at runtime—sprites also delegate how they are drawn
to another JavaScript object, known as a sprite artist. That makes it possible to
plug in a different artist at runtime.

NOTE: Freely available resources

Most game developers need help with graphics, sound effects, and music.
Fortunately, an abundance of assets are freely available under various licensing
arrangements. Snail Bait uses the following:

• Graphics and sound effects from Replica Island

• Soundtrack from soundclick.com

• Coins from LoversHorizon at deviantART

See Chapter 2 for more information on obtaining game resources and setting
up a development environment.

1.2 HTML5 Game Development Best Practices
We discuss game development best practices throughout this book, starting here
with seven that are specific to HTML5.

1. Pause the game when the window loses focus.
2. Implement a countdown when the window regains focus.
3. Use CSS for user interface (UI) effects.
4. Detect and react to slowly running games.
5. Incorporate social features.
6. Put all the game’s images in a single sprite sheet.
7. Store high scores and realtime in-game metrics on a server.

We examine the preceding best practices in detail later in the book; for now, a
quick look at each of them introduces more of Snail Bait’s features.

1.2.1 Pause the Game When the Window Loses Focus
If an HTML5 game is running in a browser and you change focus to another tab
or browser window, most browsers severely clamp the frame rate at which the

Chapter 1 Introduction10

game’s animation runs so as to save resources such as CPU and battery power;
after all, why waste resources on a window or tab that’s not visible?

Frame-rate clamping wreaks havoc with most collision detection algorithms be-
cause those algorithms check for collisions every time the game draws an anima-
tion frame; if it takes too long between animation frames, sprites can move past
one another without detection. To avoid collision detection meltdowns resulting
from frame-rate clamping, you must automatically pause the game when the window
loses focus.

When Snail Bait pauses the game, it displays a toast to let the player know the
game is paused, as shown in Figure 1.5.

Figure 1.5 Snail Bait paused

NOTE: Pausing is more than stopping the game

When a paused game resumes, everything must be in exactly the same state
as it was when the game was paused; for example, in Figure 1.5, when play
resumes, the runner must continue her jump from exactly where she was when
the game was paused.

In addition to pausing and unpausing the game, therefore, you must also freeze
and thaw the game to ensure a smooth transition when the game resumes. We
discuss pausing and freezing the game in more detail in Chapter 4.

111.2 HTML5 Game Development Best Practices

NOTE:Toasts

A toast—as in raising a glass to one’s health—is information that a game displays
to a player for a short time. A toast can be simple text, as in Figure 1.5, or it can
represent a more traditional dialog box, as in Figure 1.8 on p. 14.

1.2.2 Implement a Countdown When the Window Regains Focus
When your window regains focus, you should give the player a few seconds to
prepare for the game to restart. Snail Bait uses a three-second countdown when
the window regains focus, as shown in Figure 1.6.

Figure 1.6 Snail Bait’s countdown after the window regains focus

1.2.3 Use CSS for UI Effects
Figure 1.7 shows a screenshot taken a short time after the game loads.

Note especially two things about Figure 1.7. First, a toast containing simple
instructions is visible. That toast fades in when the game loads, and after five
seconds, it fades out.

Second, when the game starts, the checkboxes (for sound and music) and instruc-
tions (telling which keystrokes perform which functions) below the game’s canvas

Chapter 1 Introduction12

Figure 1.7 Snail Bait’s toasts

are fully opaque, whereas the lives indicators and scoreboard at the top of the
game are partially transparent, as shown in Figure 1.7. As the game’s instructions
toast fades, that transparency reverses; the lives indicator and scoreboard become
fully opaque, while the checkboxes and instructions become nearly transparent,
as they are in Figure 1.6.

Snail Bait dims elements and fades toasts with CSS3 transitions.

NOTE: Focus on what’s currently important

When Snail Bait starts, the instructions below the game’s canvas are fully
opaque, whereas the lives indicator and score above the game’s canvas are
partially transparent. Shortly thereafter, they switch opacities; the elements above
the canvas become fully opaque and the elements below become partially
transparent.

Snail Bait goes to all that trouble to focus attention on what’s currently important.
Initially, players should pay attention to the instructions below the game’s canvas;
once the game is underway, players will be more focused on their score and how
many lives are remaining.

131.2 HTML5 Game Development Best Practices

1.2.4 Detect and React to Slowly Running Games
Unlike console games, which run in a tightly controlled environment, HTML5
games run in a highly variable, unpredictable, and chaotic one. Players can do
things directly that significantly affect system performance, for example, running
YouTube videos in another browser tab or window. Other performance killers,
such as system backup software running in the background unbeknown to game
players, can easily make an HTML5 game run so slowly that it becomes
unplayable. And there’s always the possibility that your players will use a browser
that can’t keep up.

As an HTML5 game developer, you must monitor frame rate and react when it
dips below an unplayable threshold. When Snail Bait detects that an average of
the last 10 frame rates falls below 40 frames per second (fps), it displays the
running slowly toast shown in Figure 1.8.

Figure 1.8 Snail Bait’s running slowly toast

1.2.5 Incorporate Social Features
Many modern games incorporate social aspects, such as posting scores on Twitter
or Facebook. When a Snail Bait player clicks on the Tweet my score link that ap-
pears at the end of the game (see Figure 1.4 on p. 6), Snail Bait creates a tweet
announcing the score in a separate browser tab, as shown in Figure 1.9.

Chapter 1 Introduction14

Figure 1.9 Snail Bait’s Twitter integration

1.2.6 Put All the Game’s Images in a Single Sprite Sheet
You can do several things to make your HTML5 game (or any HTML5 application)
load more quickly, but the single most effective thing is to decrease the number
of HTTP requests you make to the server. One way to do that is to put all your
game’s images in a single image, known as a sprite sheet. Figure 1.10 shows Snail
Bait’s sprite sheet.

Figure 1.10 Snail Bait’s sprite sheet (the gray background is transparent)

151.2 HTML5 Game Development Best Practices

When Snail Bait draws the game’s sprites, it copies rectangles from the sprite
sheet into the canvas.

NOTE: Sprite sheets on mobile devices

Some mobile devices place limits on the size of image files, so if your sprite
sheet is too large, you may have to split it into multiple files.Your game will load
more slowly as a result, but that’s better than not loading at all.

1.2.7 Store High Scores and Send Realtime, In-game Metrics to the Server
Most games interact with a server for a variety of reasons. Snail Bait stores high
scores on a server in addition to sending game metrics during gameplay. Snail
Bait does not use any third-party graphics frameworks; however, it does use two
JavaScript frameworks—Node.js and socket.io—to communicate between the
player’s computer and a server. See Chapter 19 for more details.

1.3 Special Features
Snail Bait has three noteworthy features that add polish to the game and make
playtesting more productive:

• Developer backdoor
• Time system
• Particle systems

Snail Bait reveals the developer backdoor, shown in Figure 1.11, when you press
CTRL-d. With the backdoor visible, you can control the rate at which time flows
through the game, making it easy to run the game in slow motion to see how
game events such as collision detection take place. Conversely, you can run
the game faster than normal to determine the best pace for the game.

You can turn collision rectangles on for a better look at exactly how collisions
occur; if the smoking holes obscure your view, you can turn the smoke off by
deselecting the Smoke checkbox. You can also fine-tune the threshold at which
Snail Bait displays the game’s running slowly warning, shown in Figure 1.8, or
you can turn it off entirely, which lets you playtest slow frame rates without Snail
Bait intervening at all.

When you playtest a particular section of the game, you can avoid playing through
the preceding sections every time you test: In addition to the controls at the top
of the game’s canvas, the developer backdoor displays a ruler at the bottom of
the canvas that shows how far the background has scrolled horizontally in pixels.

Chapter 1 Introduction16

Figure 1.11 Snail Bait’s developer backdoor

You use those values to restart the game at a particular horizontal location,
thereby avoiding the preceding sections of the game. For convenience, when the
developer backdoor is visible you can also simply drag the game, including
the background and all the sprites, horizontally to reposition the runner.

The developer backdoor lets you control the rate at which time flows through the
game by virtue of Snail Bait’s time system. Everything that happens in Snail Bait
depends on the current game time, which is the elapsed time since the game
started; for example, when the runner begins a jump, the game records the current
game time, and thereafter moves the runner through the jump sequence frame
by frame, depending on how much time has elapsed since the runner began
the jump.

By representing the current game time as the real time, which is Snail Bait’s default
mode, the game runs at its intended rate. However, Snail Bait’s time system can
misrepresent the current game time as something other than the real time; for
example, the time system can consistently report that the current game time is
half of the actual time, causing the game to run at half speed.

Besides letting you control the rate at which time flows through the game, Snail
Bait’s time system is also the source of special effects. When the runner collides
with a bad guy and explodes, Snail Bait slows time to a crawl while transitioning

171.3 Special Features

to the next life. Once the transition is complete, Snail Bait returns time to normal,
indicating that it’s time to resume play.

Finally, Snail Bait uses two particle systems to create the illusion of smoke and
fire in the background. In Chapter 16, we take a close look at those particle systems
so you can create similar effects of your own.

Now that you have a high-level understanding of the game, let’s take a look at
some code.

NOTE: Snail Bait’s code statistics (lines of code)

• JavaScript: 5,230

• CSS: 690

• HTML: 350

NOTE: A closer look at Snail Bait’s code

• snailbait.js: 3,740

• Supporting JavaScript code: 1,500

• Initializing data for sprites: 500

• Creating sprites: 400

• Sprite behavior implementations: 730

• Event handling: 300

• User interface: 225

• Sound: 130

1.4 Snail Bait’s HTML and CSS
Snail Bait is implemented with HTML, CSS, and JavaScript, the majority of which
is JavaScript. In fact, the rest of this book is primarily concerned with JavaScript,
with only occasional forays into HTML and CSS.

Figure 1.12 shows the HTML elements, outlined in white, and their corresponding
CSS for the top half of the game proper.

Everything in Snail Bait takes place in the arena, which is an HTML DIV element.
The arena’s margin attribute is 0, auto, which means the browser centers the
arena and everything inside it horizontally, as shown in Figure 1.13.

Chapter 1 Introduction18

Figure 1.12 Snail Bait’s CSS for the top half of the game

Figure 1.13 Snail Bait stays centered horizontally in the window

191.4 Snail Bait’s HTML and CSS

When Snail Bait loads resources, it displays the animation shown in Figure 1.14.
During that animation, none of the game’s elements are visible, which is why all
the elements in Figure 1.12 have their display attribute set to none (with the
exception of snailbait-arena, which has no visible characteristics of its own).

Figure 1.14 Snail Bait at startup

After the game loads resources, it fades in the game’s elements by setting their
display attribute to block and subsequently setting their opacity to 1.0 (fully
opaque). Elements that have a transition associated with their opacity property,
like snailbait-lives, snailbait-score, and snailbait-game-canvas, transition
into view over a specified period of time.

The snailbait-lives element has an absolute position; otherwise, with its default
position of static, it will expand to fit the width of its enclosing DIV, forcing the
score beneath it.

The game canvas, which is an HTML5 canvas element, is where all the game’s
action takes place; it’s the only element in Figure 1.12 that’s not a DIV.

Figure 1.15 shows the HTML elements in the lower half of the game.

Like the lives and score elements in the upper half of the game, the browser does
not display the elements at the bottom during the game’s loading animation, so
those elements are initially invisible and have an opacity transition of five seconds,

Chapter 1 Introduction20

Figure 1.15 Snail Bait’s CSS for the bottom of the game

which Snail Bait uses to fade them and all their contained elements in along with
the score and lives elements at the beginning of the game.

211.4 Snail Bait’s HTML and CSS

The snailbait-sound-and-music element, like the snailbait-lives element, has
an absolute position to prevent its width from expanding. The snailbait-keys
and snailbait-explanation DIVs have display attributes of inline so they ap-
pear horizontally inline with the other elements in their enclosing DIV, instead
of being stacked vertically.

Example 1.2 lists Snail Bait’s HTML proper, omitting a considerable amount of
HTML for things like the running slowly warning and developer backdoor.

Example 1.2 index.html (excerpt)

<!DOCTYPE html>

<!--
 Basic HTML elements for Snail Bait. Elements for things such
 as sounds, credits, toasts, developer backdoor, etc. are
 omitted for brevity.
 -->

<html>
<!-- Head...-->

<head>
<title>Snail Bait</title>

 ...

<link rel='stylesheet' href='snailbait.css'>
</head>

<!-- Body...-->

<body>
<!-- Arena...-->

<div id='snailbait-arena'>
 ...

<!-- Lives indicator..-->

<div id='snailbait-lives'>
<img id='snailbait-life-icon-left'

src='images/runner-small.png'/>

<img id='snailbait-life-icon-middle'
src='images/runner-small.png'/>

<img id='snailbait-life-icon-right'
src='images/runner-small.png'/>

</div>

Chapter 1 Introduction22

<!-- Score ...-->

<div id='snailbait-score'>0</div>
 ...

<!-- The game canvas..-->

<canvas id='snailbait-game-canvas' width='800' height='400'>
 Your browser does not support HTML5 Canvas.

</canvas>
 ...

<!-- Sound and music..-->

<div id='snailbait-sound-and-music'>
<div id='snailbait-sound-checkbox-div'

class='snailbait-checkbox-div'>

 Sound <input id='snailbait-sound-checkbox'
type='checkbox' checked/>

</div>

<div class='snailbait-checkbox-div'>
 Music <input id='snailbait-music-checkbox'

type='checkbox' checked/>
</div>

</div>

<!-- Instructions...-->

<div id='snailbait-instructions'>
<div class='snailbait-keys'>

← / d
<div class='snailbait-explanation'>move left</div>
→ / k
<div class='snailbait-explanation'>move right</div>

</div>

<div class='snailbait-keys'>
 j <div class='snailbait-explanation'>jump</div>

</div>

<div class='snailbait-keys'>
 p <div class='snailbait-explanation'>pause</div>

</div>
</div>

<div id='snailbait-mobile-instructions'>

(Continues)

231.4 Snail Bait’s HTML and CSS

Example 1.2 (Continued)

<div class='snailbait-keys'>
 Left

<div class='snailbait-explanation'>
 Run left or jump

</div>
</div>

<div class='snailbait-keys'>
 Right

<div class='snailbait-explanation'>
 Run right or jump

</div>
</div>

</div>

<!-- Copyright..-->

<div id='snailbait-copyright'> © 2012 David Geary</div>
</div>

<!-- JavaScript..-->

<!-- Other script tags for the game's other JavaScript files are
 omitted for brevity. The final version of the game puts all
 the game's JavaScript into a single file. See Chapter 19
 for more details about how Snail Bait is deployed. -->

<script src='snailbait.js'></script>
</body>

</html>

The canvas element is where all the action takes place. The canvas comes with a
2D context with a powerful API for implementing 2D games, among other things,
as you will see in Section 3.1, “Draw Graphics and Images with the HTML5 canvas
Element,” on p. 64. The text inside the canvas element is fallback text that the
browser displays only if it does not support HTML5 canvas element.

One final note about the game’s HTML and CSS: Notice that the width and height
of the canvas is set with canvas element attributes in the preceding listing. Those
attributes pertain to both the size of the canvas element and the size of the drawing
surface contained within that element.

On the other hand, using CSS to set the width and height of the canvas element
sets only the size of the element. The drawing surface remains at its default width
and height of 300 × 150 pixels, respectively. That means you will have a mismatch
between the canvas element size and the size of its drawing surface when you

Chapter 1 Introduction24

set the element’s size to something other than the default 300 × 150 pixels, and
in that case the browser scales the drawing surface to fit the element. Most of the time
that effect is unwanted, so it’s a good idea to set the size of the canvas element
with its width and height attributes, and not with CSS.

At this point, you’ve already seen the end of the Snail Bait story. Now let’s go
back to the beginning.

Draw into a small canvas and let CSS scale it?

Some games purposely draw into a small canvas and use CSS to scale the canvas
to a playable size. That way, the canvas is not manipulating as many pixels, and so
increases performance. You will take a performance hit for scaling the canvas, of
course, but scaling with CSS is typically hardware accelerated, so the cost of the
scaling can be minimal. Today, however, nearly all the latest versions of modern
browsers come equipped with hardware-accelerated Canvas, so it’s just as fast to
draw into a full-sized canvas in the first place.

NOTE: Namespacing HTML elements and CSS classes

To avoid naming collisions with other HTML elements, Snail Bait starts each
HTML element and CSS classname with snailbait-.

1.5 Snail Bait’s Humble Beginning
Figure 1.16 shows Snail Bait’s initial set of files. Throughout this book we add
many more files, but for now all we need is an HTML file to define the structure
of the game’s HTML elements, a CSS file to define the visual properties for
those elements, a JavaScript file for the game’s logic, and two images, one for the
background and another for the runner.

Figure 1.16 Snail Bait’s initial files

251.5 Snail Bait’s Humble Beginning

Figure 1.17 shows the starting point for the game, which simply draws the back-
ground and the runner. To start, the runner is not a sprite; instead, the game
draws her directly.

Figure 1.17 Drawing the background and runner

Example 1.3 lists the starting point for the game’s HTML, which is just a distilled
version of the HTML in Example 1.2.

Example 1.3 The starting point for Snail Bait’s HTML

<!DOCTYPE html>
<html>

<head>
<title>Snail Bait</title>
<link rel='stylesheet' href='snailbait.css'/>

</head>

<body>
<div id='snailbait-arena'>

<canvas id='snailbait-game-canvas' width='800' height='400'>
 Your browser does not support HTML5 Canvas.

</canvas>
</div>

Chapter 1 Introduction26

<!-- JavaScript..-->

<script src='snailbait.js'></script>
</body>

</html>

Initially, the arena contains only the game’s canvas, which is 800 pixels wide by
400 pixels high and has a thin blue border. Example 1.4 shows the starting point
for Snail Bait’s CSS.

Example 1.4 The starting point for Snail Bait’s CSS

body {
background: cornflowerblue;

}

#snailbait-arena {
margin: 0 auto;
margin-top: 50px;
width: 800px;
height: 400px;

}

#snailbait-game-canvas {
border: 1.5px solid blue;

}

Example 1.5 shows the starting point for Snail Bait’s JavaScript.

Example 1.5 The starting point for Snail Bait’s JavaScript

var canvas = document.getElementById('snailbait-game-canvas'),
 context = canvas.getContext('2d'),

 background = new Image(),
 runnerImage = new Image();

function initializeImages() {
 background.src = 'images/background.png';
 runnerImage.src = 'images/runner.png';

 background.onload = function (e) {
startGame();

};
}

(Continues)

271.5 Snail Bait’s Humble Beginning

Example 1.5 (Continued)

function startGame() {
draw();

}

function draw() {
drawBackground();
drawRunner();

}

function drawBackground() {
 context.drawImage(background, 0, 0);
}

function drawRunner() {
 context.drawImage(runnerImage, 50, 280);
}

// Launch game...

initializeImages();

The preceding JavaScript accesses the canvas element and subsequently obtains
a reference to the canvas’s 2D context. The code then draws the background and
runner by using the three-argument variant of drawImage() to draw images at a
particular location in the canvas.

The game starts when the background image loads. For now, starting the game
entails simply drawing the background and the runner.

1.6 The Use of JavaScript in This Book
Proficiency in JavaScript is an absolute prerequisite for this book, as discussed in
the Preface. JavaScript, however, is a flexible and dynamic language, so there are
many ways to use it. The purpose of this section is to show you how this book
uses JavaScript; the intent is not to teach you anything at all about the language.
To get the most out of this book, you must already know everything that you are
about to read, or preferably skim, in this section.

This book defines several JavaScript objects that in more traditional languages
such as C++ or Java would be implemented with classes. Those objects range
from the games themselves (Snail Bait and Bodega’s Revenge) to objects they
contain, such as sprites and sprite behaviors. JavaScript objects are defined with
a constructor function and a prototype, as shown in Example 1.6, a severely
truncated listing of the SnailBait object.

Chapter 1 Introduction28

Example 1.6 Defining JavaScript objects

var SnailBait = function () {
// Constants and variables are declared here

this.LEFT = 1;
...

};

SnailBait.prototype = {
// Methods are defined here

 draw: function(now) { // The draw method takes a single parameter
...

},
...

};

JavaScript objects are instantiated in this book with JavaScript’s new operator, as
shown in Example 1.7.

Example 1.7 Creating JavaScript objects

SnailBait.prototype = {
...

 createSnailSprites: function () {
var snail,

 snailArtist = new SpriteSheetArtist(this.spritesheet,
this.snailCells);

for (var i = 0; i < this.snailData.length; ++i) {
 snail = new Sprite(’snail’,
 snailArtist,

[
this.paceBehavior,
this.snailShootBehavior,

new CycleBehavior(
300, // 300ms per image
5000) // 1.5 seconds interlude

]);

 snail.width = this.SNAIL_CELLS_WIDTH;
 snail.height = this.SNAIL_CELLS_HEIGHT;

(Continues)

291.6 The Use of JavaScript in This Book

Example 1.7 (Continued)

 snail.velocityX = snailBait.SNAIL_PACE_VELOCITY;

this.snails.push(snail);
}

},
...

};

The createSnailSprites() function, which we refer to as a method because it
resides in an object, creates a sprite sheet artist, a sprite, and an instance of
CycleBehavior. That cycle behavior resides in an array of behaviors that
createSnailSprites() passes to the Sprite constructor.

This book also defines objects using JSON (JavaScript Object Notation), as shown
in Example 1.8.

Example 1.8 Defining JavaScript objects with JSON

var SnailBait = function () {
...

// A single object with three properties

this.fallingWhistleSound = {
 position: 0.03, // seconds
 duration: 1464, // milliseconds
 volume: 0.1

};

// An array containing three objects, each of which has two properties

this.audioChannels = [
{ playing: false, audio: null, },
{ playing: false, audio: null, },
{ playing: false, audio: null, }

];
...

};

Finally, the JavaScript code in this book adheres closely to the subset of JavaScript
discussed in Douglas Crockford’s book JavaScript: The Good Parts. The code in
this book also follows the coding conventions discussed in that book.

Chapter 1 Introduction30

NOTE:The use of ellipses in this book

Most of the code listings in this book omit irrelevant sections of code. Those
irrelevant sections are identified with ellipses (…) so that you can distinguish
partial from full listings.

1.7 Conclusion
Snail Bait is an HTML5 platform game implemented with the canvas element’s
2D API. As you’ll see throughout the rest of this book, that API provides a
powerful and intuitive set of functions that let you implement nearly any 2D
game you can imagine.

In this chapter, we looked at Snail Bait from a high level to get a feel for its features
and to understand some of the best practices it implements. Although you can
get a good grasp of its gameplay from reading this chapter, you will have a
much better understanding of the game if you play it, which you can do at
corehtml5games.com.

At the end of this chapter, we looked at a starting point for Snail Bait that simply
draws the background and the runner. Before we build on that starting point and
begin coding in earnest, however, we’ll take a brief detour in the next chapter
to become familiar with the browser development environment and to see
how to access freely available graphics, sound, and music. If you’re already up
to speed on HTML5 development in general and you know how to access open
source assets online, feel free to skip ahead to Chapter 3.

1.8 Exercises

1. Use a different image for the background.
2. Draw the runner at different locations in the canvas.
3. Draw the background at different locations in the canvas.
4. In the draw() function, draw the runner first and then the background.
5. Remove the width and height attributes from the snailbait-game-canvas

element in index.html and add width and height properties—with the same
values of 800px and 400px, respectively—to the snailbait-game-canvas ele-
ment in the CSS file. When you restart the game, does it look the same as
before? Can you explain the result?

311.8 Exercises

This page intentionally left blank

2CHAPTER

Raw Materials and
Development Environment

Topics in This Chapter

• 2.1 Use Developer Tools — p. 35

• 2.2 Obtain Assets — p. 50

• 2.3 Use CSS Backgrounds — p. 54

• 2.4 Generate Favicons — p. 56

• 2.5 Shorten the Coding Cycle — p. 58

• 2.6 Conclusion — p. 59

• 2.7 Exercises — p. 60

In this book we build a game. Like all builders, we must gather raw materials

and become competent with our tools before we begin. For most games, the

following raw materials are standard fare:

• Graphics

• Sound effects

• Music

The following, which add some polish to your HTML5 game, are optional:

33

• A favicon
• A webpage background
• An animated GIF

Favicons are small images that browsers display either in the address bar or in a
tab. Webpage backgrounds can be images or, as is the case with Snail Bait, they
can be drawn with CSS. Snail Bait also displays an animated GIF while it loads
its resources.

Fortunately, all the necessary materials, from game graphics to animated
GIFs, are readily available. Not only that, but you can easily find high-quality
graphics, sound effects, and music on the Internet under permissive open source
licenses, such as Creative Commons.

The following developer tools will help us turn the preceding materials into a
compelling video game:

• Text editor
• Console
• Debugger
• Profiler
• Timelines

Additionally, game developers must have:

• An image editor
• A sound editor

Browser development environments, which typically contain all the preceding
development tools and more, are also free. And you can also use high quality,
freely available image and sound editors, such as GIMP and Audacity.

This chapter briefly describes the Chrome developer tools and shows you how
to access freely available graphics, sound effects, and music on the Internet. You
will also see how to edit sounds and images and how to create animated GIFs,
favicons, and CSS backgrounds.

NOTE: Game development wasn’t always this accessible

Before the advent of open source resources and freely available development
environments, game development was much more difficult. Developers had to
pay steep prices for development environments in addition to typically paying
artists and musicians to create graphics, sound, and music for their games.

Chapter 2 Raw Materials and Development Environment34

NOTE: Money-making games use open source resources

Nowadays there are many types of open source licenses, and some of them,
like Creative Comments, pretty much let you do anything you want with open
source resources, as long as you attribute works to the original artists. In fact,
quite a few for-sale games are based entirely on open source graphics.

2.1 Use Developer Tools
You will undoubtedly use developer tools as you implement HTML5 games,
and your familiarity with those tools will help determine how quickly and easily
you can implement a game.

As this book was written, all major browser vendors—Chrome, Safari, Firefox,
Opera, and Internet Explorer—provided powerful developer tools for free. Al-
though the specifics of those tools vary, the fundamentals are similar. Developers
log information to the console, debug with a debugger, locate performance
bottlenecks with a profiler, and monitor events with timelines.

A comprehensive discussion of browser developer tools is beyond the scope of
this book; however, this section exemplifies the use of Chrome’s developer tools
to implement games.

CAUTION: Chrome is a moving target

Over the course of the development of this book, Chrome’s look-and-feel changed
considerably. Some of the screenshots you see in this book may not correspond
exactly to the current version of Chrome, but the functionality should be the same.

2.1.1 The Console
Video games are predicated upon time. Games tirelessly create one animation
frame after another to create the illusion of motion. When a game draws an ani-
mation frame, it uses the elapsed time since the last animation frame to determine
where to move its graphical objects, known as sprites.

If you set a breakpoint in the debugger at a line of code that’s called for every
animation frame, you will greatly increase the amount of time between frames,
no matter how quickly you click the debugger’s resume button. More importantly,
values that depend on the amount of time between animation frames, such as
the frame rate itself, will be enormously out of whack, as Figure 2.1 depicts
in the top screenshot, which shows a nonsensical frame rate of less than one frame
per second in the debugger.

352.1 Use Developer Tools

On the other hand, logging to the console does not cause the game’s code to stop
running, so you can monitor values such as frame rate, as illustrated in the bottom
screenshot in Figure 2.1.

Figure 2.1 Debugger vs. console

In the bottom screenshot in Figure 2.1, Snail Bait uses the console.log() method
to display the game’s frame rate. Chrome’s console comes with several other
methods that, like console.log(), log messages to the console: debug(), error(),
info(), and warn(). Those methods are identical to log(), but the browser cate-
gorizes them so you can filter out particular types of messages. Example 2.1 shows
how Snail Bait uses the error() and warn() methods.

The JavaScript in Example 2.1 shows two of Snail Bait’s sound methods, which
we discuss in much greater detail in Chapter 14. It’s an error if we cannot move
to a particular position in a sound file (known as seeking) because by the time
seekAudio() is invoked, all sounds are loaded and we should therefore be able
to seek anytime we want.

Chapter 2 Raw Materials and Development Environment36

On the other hand, if by some chance Snail Bait tries to simultaneously play more
sounds than it can support, no audio channels will be available and Snail Bait
won’t be able to play the sound. However, not being able to play a sound when
multiple sounds are already playing is not an error, so Snail Bait emits a warning
to the console instead.

Example 2.1 Using the console to report warnings and errors

SnailBait.prototype = { // An object containing the game's methods
...

 seekAudio: function (sound, audio) {
try {

 audio.pause();
 audio.currentTime = sound.position;

}
catch (e) {

 console.error('Cannot seek audio');
}

},

 playSound: function (sound) {
var channel,

 audio;

if (this.soundOn) {
 channel = this.getFirstAvailableAudioChannel();

if (!channel) {
if (console) {

 console.warn('All audio channels are busy. ' +
'Cannot play sound');

}
}
else {

...
}

}
},
...

};

Browsers graphically depict errors and warnings with red and yellow icons, re-
spectively, and they also group them under error and warning categories so that
you can view one or the other. The bottom screenshot in Figure 2.1 shows buttons
in the browser’s status bar for filtering log messages by error, warning, log, or
debug.

372.1 Use Developer Tools

Chrome’s console is full featured, as Table 2.1 illustrates.

Table 2.1 The Chrome Console API

DescriptionMethod

If expression is false, the browser appends
errormsg to “Assertion failed: ” and shows the
resulting string in the console as an error.

assert(expression,
 errormsg)

Erases all content from the console.clear()

Appends the number of times count() has been
called (at that location in the code, and with the
same label) to the label and displays the resulting
string; for example, console.count('Drawing')
results in output such as Drawing: X, where X is
the number of times that line of code has executed
with the label Drawing.

count(label)

The same as log() except messages are grouped
under debug messages.

debug(object [,
 object,...])

Displays a JavaScript representation of object.dir(object)

Displays an XML JavaScript representation of
object (as it would appear in the Elements panel).

dirxml(object)

Identical to log() except that it emits an error
message with a red icon and stack trace.

error(object, [,
 object,...])

Begins a new logging group that persists until the
first call to groupEnd(). The browser visually
groups all console output between those two calls.

group(object, [,
 object,...])

The same as group() except that the browser
displays the group initially collapsed, instead of
open (the default).

groupCollapsed(object, [,
 object,...])

Ends a group. See group() and groupCollapsed().groupEnd()

Identical to log().info(object, [,
 object,...])

(Continues)

Chapter 2 Raw Materials and Development Environment38

Table 2.1 (Continued)

DescriptionMethod

Displays each of the objects it is passed,
concatenated into a space-delimited string. The first
object can be a string with formatting characters,
similar to printf() from the C language. Those
formatting characters are:

• %s (string)

• %d or %i (integer)

• %f (floating point)

• %o (expandable DOM element)

• %O (expandable JavaScript object)

• %c (format with CSS you provide)

log(object, [,
 object,...])

Starts a profile and assigns it the specified label.
The profile runs until you call profileEnd().

profile(label)

Ends the profiler with the specified label.profileEnd(label)

Starts a timer with a specified label. The timer runs
until you call timeEnd().

time(label)

Stops the timer with the specified label and displays
the elapsed time in the console.

timeEnd(label)

Starts a timeline with a specified label. The timeline
runs until you call timelineEnd().

timeline(label)

Stops the timeline with a specified label.timelineEnd(label)

Adds a timestamp event to a timeline when you
are recording.

timeStamp(label)

Prints a stacktrace.trace()

The same as log() except that it emits a warning,
complete with a yellow icon.

warn(object, [,
 object,...])

Several methods listed in Table 2.1 take arguments which are depicted in the table
like this: (object, [, object,...]). The first argument is a string that can have

392.1 Use Developer Tools

