HTMLS

2D GAME PROGRAMMING

DAVID GEARY

Core HTMLS
2D Game Programming

This page intentionally left blank

Core HTMLS
2D Game Programming

David Geary

o

Pearson

Upper Saddle River, NJ ¢ Boston e Indianapolis ¢ San Francisco
New York e Toronto ® Montreal * London ® Munich e Paris ¢ Madrid

Capetown ¢ Sydney e Tokyo e Singapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.
Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Geary, David M. (David Mark), 1957- author.

Core HTML5 2D game programming / David Geary.

pages cm

Includes index.

ISBN 978-0-13-356424-2 (pbk. : alk. paper) — ISBN 0-13-356424-X (pbk. : alk. paper)

1. HTML (Document markup language) 2. Computer games—Programming. 3.
Computer animation. I. Title.

QA76.76.H94G43 2015

006.7'4—dc23

2014014836

Copyright 2015 Clarity Training

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-356424-2

ISBN-10: 0-13-356424-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2014

mailto:corpsales@pearsoned.com
mailto:corpsales@pearsontechgroup.com
http://InformIT.com

Contents

PrEIACE ...t xv
ACKNOWIEAGIMENTS ...t XXi
ADOUL The AUNOL ... XXiii
Chapter 1: Introduction ... 1
1.1 Snail Bait ..o 3
1.1.1 Sprites: The Cast of Characterscccccovviviiniiiiniinininine. 7
12 HTML5 Game Development Best Practicescccocvviiiiiiniinninininns 10
1.2.1 Pause the Game When the Window Loses Focus 10
1.2.2 Implement a Countdown When the Window Regains Focus . 12
1.2.3 Use CSS for UL Effectsccoccviivviiiiiiiniiiiiiincccccces 12
124 Detect and React to Slowly Running Gamesc.c.cceovuee.. 14
1.2.5 Incorporate Social Features ..o, 14
1.2.6 Put All the Game’s Images in a Single Sprite Sheet 15

1.2.7 Store High Scores and Send Realtime, In-game Metrics to
the SEIVET ..o 16
1.3 Special Featuresc.ooiimeiiiiiiiicc 16
1.4 Snail Bait's HTML and CSScccccoviiionnicinnecierieeecseeeeeeseenes 18
1.5 Snail Bait’s Humble Beginningcccccccceeeeirciieienneicerececeeene 25
1.6 The Use of JavaScript in This Bookc.cccccevuiiiiiiiiiniiiiii, 28
1.7 CONCIUSION ..ottt 31
1.8 EXEICISES .oooviviiiiiiiiiiiiiiiicnci 31
Chapter 2: Raw Materials and Development Environmentccccuueeee. 33
2.1 Use Developer TOOLS ..ot 35
2.1.1 The CONSOLE ..ottt 35
2.1.2 Chrome Canary’s Frame Rate Counterccccccceocceccccnnes 40
213 Debugging ..ot 42
214 TIMEHNES ..o 44
215 Profiling ... 49

2.2 ODEAIN ASSELS .eeoeeeieieeeeeeee ettt ettt e et e s et e e et e e e eae e s eaeeesaeessaaeeseareens 50

Contents
221 GraphiCs oo s 50
222 Image Manipulation ... 51
223 Sound and MUSICc.coeceeirrrereinnieeiiinieieccseeeeeeeee e 52
224 ANIMAtioNSccoviviiiiiiiiiiic s 53
2.3 Use CSS Backgroundscccocoecueieiiiimieieiicieeecce e 54
24 Generate FaviCons ... 56
2.5 Shorten the Coding Cycleooouiiiiiiiicieiic 58
2.6 CONCIUSION ..oiiiiiiiiiciicc e 59
2.7 EXEICISES ..ooveuiiviniiriiitiietiietctet et 60
Chapter 3: Graphics and Animationcccccccecnriniisscnn e 61
3.1 Draw Graphics and Images with the HTML5 canvas Element 64
3.1.1 Draw the Background ..o 66
3.1.2 Draw the RUNNET ... 67
3.1.3 Draw Platformscccoviiiiiiiniiiiiiccicccens 67
3.2 Implement Smooth HTMLS5 Animationscccceceeeriiviceinrnicnnnenennen. 70
3.2.1 The requestAnimationFrame() Methodcccccoeevievvenrecnrennen. 71
322 A requestAnimationFrame() Polyfill ... 72
3.3 Implement a Game LOOP ... 75
3.4 Calculate Frame Ratesccccocciiiininiiiininiiiiiiccccccce 77
3.5 Scroll the Background ... 78
3.5.1 Translate the Coordinate Systemcccccocvvivviiniiiiiiinnnnnn 79
3.5.2 Scroll Snail Bait’s Background ..o 81
3.6 Create Time-Based MOONc.cccceueuiiiiiiiiiiiiiiiiiiccceccceeeeceieeee 85
3.7 Reverse Scroll Direction ... 86
3.8 Draw Animation Framescccccooiiniiininiinnniiccce 86
3.9 Use Parallax to Create the Illusion of Depthc.ccccccceviniiinnnnns 87
310 CONCIUSION .o 90
301 EXEICISES ..oviuiiiiiiiiiiiiiiicicne s 90
Chapter 4: INfrastruCturecccveeciiiiincn s 93
41 Encapsulate Game Functions in a JavaScript Objectc.cccoceveuneeee. 95
4.1.1 Snail Bait’'s CONSIUCIOLccooeiiiiiecciecce s 95
4.1.2 Snail Bait’s Prototype ..o 97
42 Understand JavaScript’s Persnickety this Reference 100
43 Handle Keyboard INputcccooormiiiiiiiiiii 103
4.4 Pause or Resume the Game When the Player Presses the p Key 105

Contents

45 Freeze the Game to Ensure It Resumes Exactly Where It Left Off 107
4.6 Pause the Game When the Window Loses Focusccccocevenenenencne 108
4.7 Resume a Paused Game with an Animated Countdown 110
471 Display Toasts (Brief Messages) to Playersccccccceveeueuce. 11
4.7.2 Snail Bait’s CountdOWncceceeveririnininineeeeeeeeeee 112
4.8 CONCIUSION ..ovouiieniiiiriiieieeterte ettt ettt es 115
4.9 EXEICISES .eouverueeiinieeienitenieetenie ettt et te et e et sbeesaesate et sseesbesatesbesasesseensens 116
Chapter 5: Loading SCreenscccucimmiismminsmsisssmssssssssssssssssss s sasssssasnas 117
5.1 Define Snail Bait’s Chromec.ccceceirinenininineneseeseeeeeeeee 120
51.1 Accessing Chrome Elements in JavaScriptcccccceveiviinnne. 122
5.2 Fade Elements In and Out with CSS Transitionsccceeeeverveereenene. 123
5.2.1 Fade Elements Into VIEWccceceviririnininieeeeeeeeee 125
5.2.2 Fade Elements Out of VIEWccceoueuiriririeenieineieeeeeeeenenes 127
5.2.3 The snailbait-toast Element’s CSScccccooveminenennnnniecnne 128
52.4 Revealing and Hiding Toastscccccoeviiiiiniinciniincncncnnes 129

5.3 Fade Any Element In or Out That Has a CSS Transition Associated
With Its OPacity ...ccoerueviiiicie 132
54 Implement the Loading Screen ..o, 135
55 Reveal the GAmEcccocoveirieirieirieirieeeeeeee et 140
5.6 CONCIUSION .vtiitiiiiiriiieeteetete ettt sttt 144
5.7 EXEICISES ..veeeuvieiiieiiieiiieeteecite et et este et estesbeestaesebeessaeesteesssaenseeaseesnsannneas 144
Chapter 6: SPIteScccvireciriiiirr s 147
6.1 SPrite ODJECS ...ocvviiiiiiiciiiicc 149
6.1.1 Sprite Properties ..o, 152
6.1.2 The Sprite COoNStruCtOrc.ccceeeveeeeeiiieeieieeeereee e 153
6.1.3 Sprite Methodsccccovviiiiiiiiiiic 154
6.2 Incorporate Sprites into a Game LoOpcccceueueiirieiiiiiccieccie 156
6.3 Implement Sprite ATtiStScccccoeuiiiiiiiiiiiiices 160
6.3.1 Stroke and Fill ATtSES ...cecevveeiveeirieirieieeeeteieeeeeeeee e 160
6.3.2 Image ATtiSts ..o, 161
6.3.3 Sprite Sheet ATtiStSccoevvivevereriirrrccccre e 162
6.3.4 Define Sprite Sheet Cellsccccoooiiiiiiii 164
6.4 Create and Initialize a Game’s SPIitescccccevvvviivvrvviiiirrinne 167
6.5 Define Sprites with Metadatacccococvvviniiiiiiiine, 171
6.6 SCIOll SPIItes ...ovveieieciiiic s 174

m Contents

6.7 CONCIUSION ..vevvenieiieeieiieeieieieeeeeese et et e s esse e eseesaesessesseesassessessensessasses 176
6.8 EXEICISES ...eouiiniieiiiiieiinieeteetee ettt s e 177
Chapter 7: Sprite BEhaviorscccciiiicmmniscmininnnnsssnss s s 179
7.1 Behavior Fundamentalscccoooevereiinienieiiiieececeee e 182
7.2 Runner BERaviorSccccoeiiiieiiiieiececteeeeceeeeete e e 184
7.3 The Runner’s Run Behaviorcccccoevevieieieieicieeeeeceese e 187
74 Flyweight Behaviors ... 190
7.5 Game-Independent Behaviors ... 193
7.5.1 The Cycle BEhaviorccccoviueiiiniiieiieee e 193
7.5.1.1 Sparkling Rubies and Sapphirescccccccooerrnnnne. 195
7.5.1.2 Flapping Wings and Throbbing Coinsccc......... 197
7.6 Combine Behaviorscccooiiiirinieneieieeeee et 199
7.7 CONCIUSION ..ooviieiirieeiietecie ettt ettt ettt ettt v e e re v e ereereereenneeeie 205
7.8 EXEICISES ..veeoeiieuiiiiieniiiiieeieesite sttt s ettt et sttt esbe e st e steesabeensaesaees 206
Chapter 8: Time, Part I: Finite Behaviors and Linear Motion 207
8.1 Implement an Initial Jump Algorithmccocooviiiii 209
8.2 Shift Responsibility for Jumping to the Runnerccccceeviiiininns 210
8.3 Implement the Jump Behavior ... 213
8.4 Time Animations with Stopwatches ..o, 214
8.5 Refine the Jump Behavior ..o, 217
8.6 Implement Linear MOtIONccccoeviuriiiiiiiiiiiiiiciciccceecceeecceeee 220
8.6.1 ASCENAING ...ooovviiiiciiiccie s 221
8.6.2 DesCendingccccceeueuviriiiiiiiiiriiiiiiiie e 223
8.7 Pause Behaviors ...ttt 225
8.8 CONCIUSION ..ouiiiiiiiieiieitettet ettt ettt ettt st nean 227
8.9 EXEICISES ..veeuieeieiieiieieeieete ettt ettt ettt ettt ettt a et sae e 227
Chapter 9: Time, Part Il: Nonlinear Motioncccooommmrminieccccsccsnceccennns 229
9.1 Understand Time and Its Derivativesccccecvevvrieinienenesiesrenreeenns 230
9.2 Use Animation Timers and Easing Functions to Implement
Nonlinear Jumpingccooeeeiiiiciieicceec e 231
9.3 Implement Animation TImMerscccccceeeiiiiiiiiniiiiiiicceccecae 233
9.4 Implement Easing FUNCHONScccccovrmiiviiiiiiiiiiiiic, 235
9.5 Fine-tune Easing FUNCtionsc.ccooiiiii, 239
9.6 Implement a Realistic Bounce Behaviorcccccccceiiiiiiiniiiinnns 241
9.7 Randomize Behaviorscccccoivievierieieieieicieeee e 245

Contents

9.8 Implement Nonlinear Color Changes with Animation Timers and
Easing FUNCHIONS ..o 247
9.8.1 The Pulse BEhaviorccccoviiiiiiiiiiicc 249
9.9 CONCIUSION ..ottt 251
9.10 EXEICISES ..oviviviniiviniitiiitiiriinise s 251
Chapter 10: Time, Part lll: Time Systemsccccvvecmmiiiininscmnnnsnnincesnnanen 253
10.1 Snail Bait’s Time Systemcccoeueveiiiicieiiiiccc e 255
10.2 Create and Start the Time Systemcocooiiiiiiiiiic, 257
10.3 Incorporate the Time System into Snail Baitcccccccoeeciiiicncnnen 258
10.3.1 Use the Time System to Drive the Game’s Animation 258
10.3.2 Implement a Game Method that Uses the Time System to
Modify the Flow of TIimecccooviiiiiiniiiiiiiiccccccaes 259
10.3.3 Factor the Time Rate into the Frame Rate Calculation 260
10.3.4 Pause and Resume the Game by Using the Time System 261
10.4 Redefine the Current Time for Stopwatches and Animation
TIMETS vt 264
10.5 Implement the Time System ..o 268
10.6 CONCIUSION ...ttt 270
10.7 EXEICISES ...ooviriiviriiiiiiiiiiiicicncicncctc s 270
Chapter 11: Collision Detectioncccucemrniniicsnmnisnnnss s esssene 273
11.1 The Collision Detection P1ocessccccevueuriiiiiiieieiiiiiiiieccccnnen, 275
11.2 Collision Detection Techniquesccccevoieirieieiiiccieiiiccecc 275
11.3 Snail Bait’s Collision Detection ... 277
11.3.1 Sprite Collision Rectanglesc.ccccoooieiiiiiiciiiniiice, 278
11.3.2 The Runner’s Collide Behaviorcccccoveecinnicicinncrccene. 279
11.4 Select Candidates for Collision Detectionc.ccccccccueccuccccccnenee 281
11.5 Detect Collisions Between the Runner and Another Sprite 282
11.6 Process COILSIONSccovrueveueiriereieininiereiirieeetreeree et 284
11.7 Optimize Collision Detectionc.ccccceecueueieeeeeeeeeeeeeeeenenens 286
11.7.1 Refine Bounding BOXeScccccouoiiuiieiiicinieiiccieece, 286
11.7.2 Use Spatial Partitioningcccocoeeeeccccicccceeeccenenen 288
11.8 Monitor Collision Detection Performancecccccovviiiininnnnnnn. 289
11.9 Implement Collision Detection Edge Casescccccevuivivivvinncncnne. 291
11.10 CONCIUSION .eoveviiiiiiiciiciccicicieteie e 295

T1.1T EX@ICISES ocoeuevvieeiieiieeeeeeeeeiteeeeeeeiitee e e e eeatare e e s eeiaaeeeeseensaeaesseesssareessensrnens 296

Contents

Chapter 12: Gravitycccccccriiiiccsmniinr s s 297
12.1 Equip the Runner for Fallingcccooiiiiiiiiiiiiiiiicne, 298
12.2 Incorporate Gravity ... 300
12.2.1 The Runner’s Fall Behaviorccccoceveininininenineeseee 302
12.2.2 Calculate Initial Falling Velocitiesccooeiiiiiciincnnne. 306
12.2.3 Pause When the Runner Is Fallingc.cccooooiiiinins, 308
12.3 Collision Detection, ReAUXccceeeeveirreecieirieieereeieeeeereeeeere e 308
12,4 CONCIUSION ..ovvviieiirieiieieieietetet ettt sttt sttt ettt e b ae e saenens 310
125 EXEICISES ..eouviruiiiiiiiiiieieniteteette ettt ettt ettt ettt ettt sb e 311
Chapter 13: Sprite Animations and Special Effectsccccceceecmrrrncecennn. 313
13.1 Implement Sprite ANimMationsc.coocoeeueieicceieiicee e 314
13.2 Create Special Effects ... 320
13.2.1 Shake the Gameccccevieieieniiieiee e 321
13.2.2 Transition Between LiVescccccccevievinienenienerieeeeeeeeeene 323
13.3 Choreograph Effects ..o 329
13.3.1 Explode Bees ..o 332
13.3.2 Detonate BUttonsccceeeeieririinieniinieineecneeeceee e 333
134 CONCIUSION ..uiiiieiiiieieiietetet ettt ettt sae st s aene 335
13.5 EXEICISES ..eccveieeieiieeiieeieeeteeteecite et eeateete e s aeeveessaeevaessseebaesssesnseesnsennseens 336
Chapter 14: Sound and MUSICcccccecmmmmmmmrinnisssssssssscsensr e ssssssssssssssmnsens 337
14.1 Create Sound and Music FIlescccccveireirennennenreneeeneene 339
14.2 Load Music and Sound Effectscceceviveinenineninieieeieeeeneerenene 340
14.3 Specify Sound and Music Controls ..o 342
144 Play MUSIC ...oiimiiiiiiiiiicccccccce e 343
14.5 Play Music in @ LOOP «.ceveiierieieiiiciee e 344
14.6 Play Sound Effects ... 347
14.6.1 Create Audio SPIitescccooovvviviieiiiiiiiiiiieas 350
14.6.2 Define Sound Objectsccoooueiiiiiiiioiii 351
14.6.3 Implement Multichannel Soundcccooeiiiiiiiiinnnnne. 353
14.6.3.1 Create Audio Channelsc..cccocvveneneninenenenenene. 355

14.6.3.2 Coordinate with Sprite Sheet Loading to Start the
GAIMNE .ottt ete e eeete e eeebeesaaeebeessaeenreens 357
14.6.3.3 Play SOUNAScccoovvimimiiiiiiiiiiiccce 358
14.7 Turn Sound On and Offcooeiririiiieeeee e 361

Contents

14.8 CONCIUSION ..oviviiiiiiiiiiciccce e 362
14.9 EXEICISES ...ovviiiiiiiiiiiiiiiiiiinii e 362
Chapter 15: Mobile DEVICESccecerrsiumriismsissnsissmsssssms s ssssms s smsssssasess 363
15.1 Run Snail Bait on Mobile Devicescccocoeiniiiiiiininiiiiiiniiccnee 366
15.2 Detect Mobile DeVICESc.ccovuvveueuirinieieiiiirieicirccctreeereeeeeeeeenes 368
15.3 Scale Games to Fit Mobile Devicescccccoeeeieiciicccccccccnnee 369
15.3.1 The viewport Meta Tagccccoooeimiieiiiiciccccec e, 371
15.3.2 Programmatically Resize Games to Fit Mobile Device
SCIEENS ..o 376
15.4 Change Instructions Underneath the Game’s Canvas 381
15.5 Change the Welcome Screenccccocueueiiiviciciiiiiiicininiiicccces 383
15.5.1 Implement the Welcome Toastcccoovvviviiininiiniiiinnas 384
15.5.1.1 Modify the Game’s Start Sequencecccceuue... 385
15.5.1.2 Add HTML for the Mobile Welcome Toast 386
15.5.1.3 Define CSS for the Mobile Toastsccccceurviurnnnnne. 387
15.5.1.4 Implement Event Handlers for the Mobile Welcome
Toast’s LiNKS ..c.oueeirieiciiiieciireccrncceeeeeeene 388
15.5.2 Draw Mobile Instructionscccceeiivniiiiniicinnicincne, 389
15.5.3 Implement the Mobile Start Toastcccccceviiiiiiinnnnnn 394
15.5.3.1 Implement the Start Link’s Event Handler 395
15.5.4 Reveal the Mobile Start Toastcccccceveiiiiiiiiiiiccnen 396
15.6 Incorporate Touch EVents ... 396
15.7 Work Around Sound Idiosyncrasies on Mobile Devices 400
15.8 Add an Icon to the Home Screen and Run Without Browser
CRIOME ... 402
15.9 COoNCIUSION ..cvviiiiiiiiiciiccccccc e 403
15.10 EXEICISES ...ooviviiviiiiiiiiiiiiiiciiiinc e 404
Chapter 16: Particle SyStems ... 405
16.1 Smoking HOIEScocuoviiiiiiiiic s 406
16.2 Use Smoking HOIESccccceuriiiiiiiiiciiiciiiiiciccies 411
16.2.1 Define Smoking Hole Datacccccccoeuiiiiiiiiccicccccenen 411
16.2.2 Create Smoking Holesc.ccoooiiioiiiiiiiicc, 412
16.2.3 Add Smoking Holes to Snail Bait’s sprites Array 413
16.2.4 Scroll Smoking Holes Every Animation Frame 413
16.3 Implement Smoking HOIeScccccceuiiiiiiiiiiiiiiicccccccce, 414

Contents
16.3.1 Disguise Smoking Holes as Spritesccccocovriiiiiincnnne. 415
16.3.2 Incorporate Fire Particles ..o, 417
16.3.2.1 Create Fire Particlesccoceveeennicvccnnccicneccene 418
16.3.2.2 Draw and Update Fire Particles Every
Animation Frame ..o, 421
16.3.3 Incorporate Smoke Bubblesccccooooeiiiiiiii, 422
16.3.3.1 Create Smoke Bubblescccccouvviiiiiiiiinnnnnnn, 424
16.3.3.2 Draw and Update Smoke Bubbles Every Animation
Frame ... 428
16.3.3.3 Emit Smoke Bubblesccccooviiririiiiciiine, 430
16.3.3.4 Dissipate Smoke Bubbles ..o, 432
16.4 Pause Smoking HOIESccccciiiiiiiiiiiiiicccccccces 434
16.5 CONCIUSION ...ouvveiiiiiiici s 435
16.6 EXETCISES ..oovovviniriiietciiietetcee ettt 436
Chapter 17: User INterfaceccocecriicimmniscsnncinsssssssss s s s 437
17.1 KD SCOTEouimiiiiiciiece s 438
17.2 Add a Lives INicatorcccoevvimeeiiiiiiiicccccecc e 442
17.3 Display Credits ..o 448
17.4 Tweet Player SCOTEScccoomueiiiiiicieieiicieieeci s 455
17.5 Warn Players When the Game Runs SIowlyccccccooiiiiiinnnnnne. 458
17.5.1 Monitor Frame Rateccccocoriiiiiii 464
17.5.2 Implement the Running Slowly Warning Event Handlers 466
17.6 Implement a Winning Animationccccccoeeiecccincccccnccenes 467
17.7 CONCIUSION ...vviiiiiiiiiic s 472
17.8 EXEICISES ...ecviiciiiiiiiciieiciiceteeeteeeesee ettt 472
Chapter 18: Developer BackdoOoOrccccccmmiiiiiicsisssnsmcmmensnnnsssssssssssssssmnnnns 475
18.1 Snail Bait’s Developer Backdoor ... 477
18.2 The Developer Backdoor’s HTML and CSS ..o 479
18.3 Reveal and Hide the Developer Backdoorcccooieiiiiiiiniinnnnn 481
18.4 Update the Developer Backdoor’s Elementscccccccoceiiiricnnee 483
18.5 Implement the Developer Backdoor’s Checkboxesccccccoee... 484
18.5.1 Show and Hide Collision Rectanglescccoceiiiirnnnnne. 487
18.5.2 Enable and Disable the Running Slowly Warning 489
18.5.3 Show and Hide Smoking Holesccccooouoiiireiiiiiciiine, 490

18.5.4 Update Backdoor CheckboXesccccoiiiiiuiiiicciincnenee. 491

Contents

18.6 Incorporate the Developer Backdoor Sliderscccccccocucucucuiucncncnnnne 492
18.6.1 Specify the HTML and CSS for the Backdoor’s Sliders 494
18.6.2 Access Slider Readouts in Snail Bait’s JavaScript 496
18.6.3 Create and Initialize the Backdoor’s Slidersccccceuvunnece. 497
18.6.4 Wire the Running Slowly Slider to the Game 498
18.6.5 Wire the Time Rate Slider to the Gameccccocoviiiiinnnnes 498
18.6.6 Wire the Game to the Time Rate Sliderccccccevviiinnnnn. 499
18.6.7 Update Sliders Before Revealing the Backdoor 500

18.7 Implement the Backdoor’s Ruler ... 502
18.7.1 Create and Access the Ruler Canvascccccceeueuvciinicncnnnnee 503
18.7.2 Fade the RUIET ..o 504
18.7.3 Draw the Rulerccoooiiiiiiiiiiiiiccccccee 505
18.7.4 Update the Ruler ... 507
18.7.5 Drag the Canvasccccooiirieiiiiiiieccc e, 507

18.8 CONCIUSION ..ttt 513

18.9 EXEICISES ..oevuvveveniniitcictcte ettt 513

Chapter 19: On the Server: In-game Metrics, High Scores, and
Deploymentccccciiriiimrrrris s 515

19.1 Node.js and SOCKEt.I0ccoeviviviviviiiiiiiiiiiii e 517

19.2 Include socket.io JavaScript in Snail Baitcoooeiiiiiii 518

19.3 Create a SIMPLE SEIVETcceumimimimiiiiciiiiciccicceeeeeee e 520

19.4 Create a Socket on the Server ..., 520

19.5 Start the SEIVer ... 521

19.6 Create a Socket on the Client and Connect to the Server 522

19.7 Record In-game Metricscccooiurieiiiiiicieiiiiccc e 523

19.8 Manage High Scorescccccoeuiiiiiiiiiiiiiiiiiiccce 526
19.8.1 The High Scores User Interfaceccccccoovvviiviiiniiniinicnnas 527
19.8.2 Retrieve High Scores from the Server ..o, 530
19.8.3 Display High Scores on the Clientccccccceeeiiiiicennne 533
19.8.4 Monitor Name INputoooeiiiiiiiiiiiiiiie 534
19.8.5 Validate and Set the High Score on the Server 536
19.8.6 Redisplay High SCOTes ..o, 538
19.8.7 Start a New Gamecccccoeiiiiiiiiiiiiiiiiiiicccicccccenens 539

19.9 Deploy Snail Baitccccceeuiuiuiiiiiiiiiiiicccccceccceece e 540

19.10 Upload Files to @ SEIVercoooeieieiiiiciiiiiicicee s 542

n Contents

19.11 CONCIUSION vttt ettt et se e ssessessessessessennens 543
19.12 EXEICISES .eevveeeieriieniieeiienieesieesite st esitesbeestesteessseeaeesssesssaesssesnseesssesnseens 544
Chapter 20: Epilogue: Bodega’s ReVENQEcccccrrimmrinsemnsssansissamssssanes 545
20.1 Design the User Interfaceccooouoeirieiiiinieiic 547
20.2 Create the Sprite Sheet ..o 551
20.3 Instantiate the Gamecceveviieieieieieeteeeeeeee s 552
20.4 Implement SPIrites ... 553
20.4.1 The TUITEL .ooeeieiieeieiieeeieeteeee ettt ss b nnens 553
20.4.1.1 Create the Turret Sprite’s Artistccoooeiiiirninnn. 554

20.4.1.2 Draw the TUrretccooeeeeeieeieereeeeeeceeeeee e 555

20.4.2 BUILELS ..vvevvevieeieeieiietieeee ettt ettt ee e et b bbb b esaens 556
20.4.3 BIldS eoooveieiciieieeeteeeee ettt ettt ettt nens 560

20.5 Implement Sprite Behaviors ... 563
20.5.1 Turret BENAVIOISccceviieiieiieiieeeeceee e 564
20.5.1.1 The Turret’s Rotate Behaviorccccccoevevveveireennennen. 564

20.5.1.2 The Turret’s Barrel Fire Behaviorcccccceeveeveiennen. 566

20.5.1.3 The Turret’s Shoot Behaviorccccceevvevveeeiieennenen. 569

20.5.2 Bullet BENAVIOLScccccieviriiiieieieieieieeieteeeeeeeee et ssesesnens 571
20.5.3 Bird BERaVIOrSccoveviiiieiiieeieeeee et 574
20.5.3.1 The Bird Move Behaviorc.ccocevvrvererenesenierienienens 575

20.5.3.2 The Bird Collide BEhaviorccccceeevereevveniesieeienenne 577

20.5.3.3 The Bird Explosion Behaviorc.ccccovvvinnininincnnnes 579

20.6 Draw the Bullet Canvascccoevevievierieieieieieeee e sens 580
20.7 Implement Touch-Based Controls for Mobile Devices 582
20.8 CONCIUSION ..uviviiiirieieetieieetecteee ettt ettt e steesae e evesreebeessenveesseseens 585
20.9 EXEICISES ..uvevuviiriieriienieeitenteeieesitesbeesitesteesseesaseesbtessesssaesssessseesssasssaessees 585
(€[0T T VRS 587

Preface

This book is for experienced JavaScript developers who want to implement
2D games with HTMLS5. In this book, I chronicle the development of a sophisti-
cated side-scroller platform video game, named Snail Bait, from scratch. I do not
use any third-party graphics or game frameworks, so that you can learn to imple-
ment everything from smooth animations and exploding sprites to developer
backdoors and in-game metrics, entirely on your own. If you do use a game
framework, this book provides valuable insights into how they work.

Because it’s meant for instructional purposes, Snail Bait has only a single level,
but in all other respects it’s a full-fledged, arcade-style game. Snail Bait simulta-
neously manipulates dozens of animated objects, known as sprites, on top of a
scrolling background and simultaneously plays multiple sound effects layered
over the game’s soundtrack. The sprites run, jump, fly, sparkle, bounce, pace,
explode, collide, shoot, land on platforms, and fall through the bottom of the game.

Snail Bait also implements many other features, such as a time system that can
slow the game’s overall time or speed it up; an animated loading screen; special
effects, such as shaking the game when the main character loses a life; and particle
systems that simulate smoke and fire. Snail Bait pauses the game when the game’s
window loses focus; and when the window regains focus, Snail Bait resumes with
an animated countdown to give the user time to regain the controls.

Although it doesn’t use game or graphics frameworks, Snail Bait uses Node.js
and socket.io to send in-game metrics to a server, and to store and retrieve high
scores, which the game displays with a heads-up display. Snail Bait shows a
warning when the game runs too slowly, and if you type CTRL-d as the game
runs, Snail Bait reveals a developer backdoor that gives you special powers, such
as modifying the flow of time or displaying sprite collision rectangles, among
other things.

Snail Bait detects when it runs on a mobile device and reconfigures itself by in-
stalling touch event handlers and resizing the game to fit snugly on the mobile
device’s screen.

In this book I show you how to implement all of Snail Bait’s features step by step,
so that you can implement similar features in your own games.

XV

xvi

Preface

A Brief History of This Book

In 2010, I downloaded the graphics and sound from a popular open source An-
droid game named Replica Island, and used them to implement a primitive version
of Snail Bait on Android.

At that time, I became interested in HTML5 Canvas and I started working on my
previous book, Core HTML5 Canvas. As I wrote the Canvas book, I continued to
work on Snail Bait, converting it from Android’s Java to the browser’s JavaScript
and the HTML5 canvas element. By the time that book was finished in 2012, I
had a still primitive, but close to feature-complete, version of the game.

Later in 2012, I started writing a 10-article series for IBM developerWorks on
game programming, based on Snail Bait. Over the course of the next ten months,
I continued to work on the game as I wrote the articles. (See “Online Resources”
below for a link to those articles.)

By summer 2013, Snail Bait had matured a great deal, so I put together a presen-
tation covering Snail Bait’s development and traveled to Sebastopol, California
to shoot a 15-hour O’Reilly video titled “HTML5 2D Game Development.” In
some respects that video is the film version of this book. Although the video
wasn’t released until September, it was one of the top 10 bestselling O'Reilly
videos for 2013. (The “Online Resources” below has a link to that video.)

When I returned home from Sebastopol in July 2013, I started writing this book
full time. I started with the ten articles from the IBM developerWorks series,
rewrote them as book chapters, and ultimately added ten more chapters. As I
was writing, | constantly iterated over Snail Bait’s code to make it as readable as
possible.

In December 2013, with Chapters 1-19 written, I decided to add a final chapter
on using the techniques in the book to implement a simpler video game. That
game is Bodega’s Revenge, and it’s the subject of Chapter 20.

How to Use This Book

This book’s premise is simple: It shows you how to implement a sophisticated
video game so that you can implement one of your own.

There are several ways you can use this book. First, I've gone to great lengths to
make it as skim-friendly as possible. The book contains lots of screenshots, code
listings, and diagrams.

Preface

I make liberal use of Notes, Tips, Cautions, and Best Practices. Encapsulating
those topics in callouts streamlines the book’s main discussion, and since each
Note, Tip, Caution, and Best Practice has a title (excluding callouts with a single
line), you can decide at a glance whether those ancillary topics are pertinent to
your situation. In general, the book’s main discussion shows you how things
work, whereas the callouts delve into why things work as they do. If you're in a
hurry, you can quickly get to the bottom of how things work by sticking to the
main discussion, skimming the callouts to make sure you're not missing anything
important.

Chapters 1-19 of the book chronicle the development of Snail Bait, starting with
a version of the game that simply displays graphics and ending with a full-featured
HTMLS video game. Chapter 20 is the Epilogue, which uses much of what the
book covered in the previous 19 chapters to implement a second video game.

If you plan to read the book, as opposed to using it solely as reference, you will
most likely want to start reading at either Chapter 1 or Chapter 20. If you start at
the beginning, Chapter 20 will be a recap and review of what you learned previ-
ously, in addition to providing new insights such as using polar coordinates and
rotating coordinate systems.

If you start reading at Chapter 20, perhaps even just skimming the chapter, you
can get an idea for what lies behind in the previous 19 chapters. If you start at
Chapter 20, don’t expect to understand a lot of what you read in that chapter the
first time around.

I assume that many readers will want to use this book as a reference, so I've in-
cluded references to section headings at the start of each chapter, in addition to
a short discussion at the beginning of each chapter about what the chapter
entails. That will help you locate topics. I've also included many step-by-step in-
structions on how to implement features so that you can follow those steps to
implement similar features of your own.

The Book’s Exercises

Passively reading a book won’t turn anyone into a game programmer. You've
got to get down in the trenches and sling some code to really learn how to imple-
ment games. To that end, each chapter in this book concludes with a set of
exercises.

To perform the exercises, download the final version of Snail Bait and modify
that code. In some cases, the exercises will instruct you to modify code for a

Preface

chapter-specific version of the game. See the next section for more information
about chapter-specific versions of Snail Bait.

Source Code and Chapter-specific Versions of Snail Bait

This book comes with the source to two video games. See “Online Resources”
below for URLs to the games and their source code.

You will undoubtedly find it beneficial to refer to Snail Bait’s source code as you
read this book. You will find it more beneficial, however, to refer to the version
of the game that corresponds to the chapter you are reading. For example, in the
first chapter we implement a nascent version of Snail Bait that simply draws the
background and the game’s main character. That version of the game bears little
resemblance to the final version, so referring to the final version of the game is
of little use at that point. Instead, you can access the version of Snail Bait corre-
sponding to the end of Chapter 1 at corehtml5games.com/book/code/ch01.
URLS for each of the book’s chapters follow the format corehtml5games . com/book/
code/ch??, where ?? represents two digits corresponding to chapter numbers
from 01 to 20, excluding Chapter 2.

As mentioned above, exercises at the end of each chapter correspond to the final
version of Snail Bait, unless otherwise stated.

Prerequisites

No one would think of taking a creative writing class in a language they couldn’t
speak or write. Likewise, you must know JavaScript to implement sophisticated
games with HTML5. JavaScript is a nonnegotiable prerequisite for this book.

Nearly all the code listings in this book are JavaScript, but you still need to know
your way around HTML and CSS. You should also be familiar with computer
graphics and have a good grasp of basic mathematics.

Your Game

Finally, let’s talk about why we’re here. I assume you're reading this book because
you want to implement a game of your own.

The chapters of this book discuss individual aspects of game programming, such
as implementing sprites or detecting collisions. Although they pertain to Snail
Bait, you will be able to easily translate those aspects to your own game.

Preface

The order of the chapters, however, is also significant because it shows you how
to implement a game from start to finish. In the beginning of the book, we gather
raw materials, set up our development environment, and then start development
by drawing the game’s basic graphics. Subsequent chapters add animation, sprites,
sprite behaviors, and so on. If you're starting a game from scratch, you may want
to follow that same outline, so you can alternate between reading about features
and implementing them on your own.

Before you get started coding in earnest, you should take the time to set up your
development environment and become as familiar as you can with the browser’s
developer tools. You should also make sure you shorten your development cycle
as discussed at the end of Chapter 2. The time you initially spend preparing will
make you more productive later on.

Finally, thank you for buying this book. I can’t wait to see the games you create!

David Geary
Fort Collins, Colorado
2014

Online Resources

Core HTML5 2D Game Programming’s companion website: corehtml5games.com
Play Snail Bait: corehtml5games.com/snailbait

Play Bodega’s Revenge: corehtml5games.com/bodegas-revenge

Download Snail Bait: corehtml5games.com/book/downloads/snailbait

Download Bodega’s Revenge: corehtml5games.com/book/downloads/
bodegas-revenge

David’s “HTML5 2D Game Development” video from O’Reilly: shop.oreilly.
com/product/0636920030737.do.

David’s “HTML5 2D Game Development” series on IBM developerWorks:
www.ibm.com/developerworks/java/library/j-html5-gamel/index.html

A video of David speaking about HTML5 game programming at the Atlanta
HTMLS Users Group in 2013: youtube.com/watch?v=5256vAqGY6c

Core HTML5 Canvas at http://amzn.to/1jfufOC. Take a deep dive into Canvas
with David’s book.

http://www.ibm.com/developerworks/java/library/j-html5-game1/index.html
http://amzn.to/1jfuf0C

This page intentionally left blank

Acknowledgments

I am fortunate to have a great editor—the only editor I've had in nearly twenty
years of writing books—who is always receptive to my ideas for my next book
and who guides my books from conception to completion. This book was no
different. Greg Doench helped shepherd this book through the process from an
idea to a finished book.

I'm also fortunate to have a wonderful copyeditor, Mary Lou Nohr. She has
copyedited every one of my previous books, and she graciously agreed to smooth
out my rough edges once again.

This is the second book that I've done with Alina Kirsanova, who’s a wizardess
at taking my PDFs and making them look super. Once again, Julie Nahil oversaw
the production of the book and kept everything on track as we headed to the
printer.

For every book I write, I select reviewers who I think will make the book much
better than I ever could have alone. For this book, I had four excellent reviewers:
Jim O’Hara, Timothy Harrington, Simon Sarris, and Willam Malone. Gintas
Sanders also gave me permission to use his coins in Snail Bait and gave me some
great critiques of the game.

When I shot the “HTML5 2D Game Development” video for O'Reilly, I taught a
class in front of a live audience. One of the audience members asked great ques-
tions and came up with several insights. Jim O’Hara was one of my most consci-
entious reviewers and, as he did in class, provided lots of great questions and
insights.

My editor, Greg Doench, put me in touch with Tim Harrington, who is a Senior
Academic Applications Analyst at Devry University with a background in game
development. Like Jim, Tim came up with lots of insights that made me rethink
how I presented material.

I wanted to find a graphics expert for this book who knew a lot about game pro-
gramming, and I found one. Simon Sarris, who, much to my delight, is not only
both of those things, but is also an excellent writer. He made this book better in
several different ways.

xxi

Acknowledgments

Finally, I was fortunate to have William Malone review this book. William is a
professional game developer who's implemented games for Sesame Street (see
Cookie Kart Racing at http:/ /bitly /1nISY3N). William made a tremendous dif-
ference in this book by pointing out many subtleties that would've escaped me,
especially concerning mobile devices.

http://bit.ly/1nlSY3N

About the Author -

David is the author of Core HTML5 Canvas and coauthor of Core JavaServer
Faces. David has written several other bestselling books on client- and
server-side Java, including one of the bestselling Java books of all time,
Graphic Java.

xxiii

This page intentionally left blank

CHAPTER

Introduction

Topics in This Chapter

¢ 11 Snail Bait—p.3

e 12 HTML5 Game Development Best Practices — p. 10
¢ 1.3 Special Features — p. 16

¢ 14 Snail Bait's HTML and CSS — p. 18

e 15 Snail Bait's Humble Beginning — p. 25

e 16 The Use of JavaScript in This Book — p. 28

¢ 17 Conclusion — p. 31

e 18 Exercises —p. 31

The great thing about software development is that you can make nearly anything
you can imagine come to life on screen. Unencumbered by physical constraints
that hamper engineers in other disciplines, software developers have long used
graphics APIs and Ul toolkits to implement creative and compelling applications.
Arguably, the most creative genre of software development is game programming;
few endeavors are more rewarding from a creative standpoint than making the
vision you have for a game become a reality.

The great thing about game programming is that it’s never been more accessible.
With the advent of open source graphics, sound, and music, you no longer need
to be an artist and a musician to implement games. And the development envi-
ronments built into modern browsers are not only free, they contain all the
tools you need to create the most sophisticated games. You need only supply

Chapter 1 m Introduction

programming prowess, a good understanding of basic math (mostly trigonometry),
and a little physics.

In this book we implement two full-fledged HTML5 video games so that you
can learn how to create one of your own. Here are some of the things you will
learn to do:

Use the browser’s development tools to implement sophisticated games
Create smooth, flicker-free animations
Scroll backgrounds and use parallax to create a 3D effect

Implement graphical objects, known as sprites, that you can draw and
manipulate in a canvas

Detect collisions between sprites
Animate sprites to make them explode

Implement a time system that controls the rate at which time flows through
your game

Use nonlinear motion to create realistic jumping
Simulate gravity

Pause and freeze your game

Warn players when your game runs slowly

Display scoreboards, controls, and high scores
Create a developer’s backdoor with special features

Implement particle systems to simulate natural phenomenon, such as smoke
and fire

Store high scores and in-game metrics on a server with Node.js and socket.io
Configure games to run on mobile devices

NOTE: HTMLS5 technologies used in Snail Bait

This book discusses the implementation of an HTML5 video game, named Snail
Bait, using the following HTML5 APIs, the most predominant of which is the
Canvas 2D API:

e Canvas 2D API

¢ Timing Control for Script-based Animations
e Audio

e (CSS3 Transitions

1.1 Snail Bait

In this book we develop Snail Bait entirely from scratch, without any third-party
game frameworks, so you can learn how to implement all the common aspects
of a video game from the ground up. That knowledge will be invaluable whether
you implement a game by using a framework or not.

The book’s epilogue discusses the implementation of a second video game—
Bodega’s Revenge—that shows how to combine the concepts discussed in the
book to implement a simpler video game.

NOTE: Play Snail Bait and Bodega’s Revenge online

To get the most out of this book, you should play Snail Bait and Bodega’s
Revenge so you're familiar with the games. You can play Snail Bait online
at corehtml5games.com/snailbait, and you can find Bodega’s Revenge at
corehtml5games.com/bodegas-revenge.

NOTE: Particle systems

A particle system uses many small particles that combine to simulate natural
phenomena that do not have well-defined boundaries and edges. Snail Bait
implements a particle system to simulate smoke, as you can see in Figure 1.1.
We discuss particle systems in detail in Chapter 16.

1.1 Snail Bait

Snail Bait is a classic platform game. The game’s main character, known as the
runner, runs along and jumps between floating platforms that move horizontally.
The runner’s ultimate goal is to land on a gold button that paces back and forth
on top of a pulsating platform at the end of the game. That button is guarded by
two bees and a bomb-shooting snail. The runner, pulsating platform, gold button,

bees, bomb, and snail are all shown in Figure 1.1.

The player controls the game with the keyboard:

® d or < turns the runner to the left and scrolls the background from left to

right.

® k or — turns the runner to the right and scrolls the background from right

to left.
* jmakes the runner jump.

® p pauses the game.

Chapter 1 m Introduction

800 il

mn | =

* C [www.corehtm|Sgames.com /snailbait /# K T . &

Figure 1.1 Snail Bait

When the game begins, the player has three lives. Icons representing the number
of remaining lives are displayed above and to the left of the game’s canvas, as
you can see in Figure 1.1. In the runner’s quest to make it to the end of the level,
she must avoid bad guys—Dbees and bats—while trying to capture valuable items
such as coins, rubies, and sapphires. If the runner collides with bad guys,
she blows up, the player loses a life, and the runner goes back to the beginning
of the level. When she collides with valuable items, the valuable item disappears,
the score increases, and the game plays a pleasant sound effect.

The snail periodically shoots snail bombs (the gray ball shown near the center of
Figure 1.1). The bombs, like bees and bats, blow up the runner when they hit her.

The game ends in one of two ways: the player loses all three lives, or the player
lands on the gold button. If the player lands on the gold button, the player wins
the game and Snail Bait shows the animation depicted in Figure 1.2.

Snail Bait maintains high scores on a server. If the player beats the existing high
score, Snail Bait lets the player enter their name with a heads-up display (HUD),
as shown in Figure 1.3.

1.1 Snail Bait u

BﬂOI B snail Baie @ ox \U

m ey

[C [www.corehtmiSgames.com/snailbait/ &7 B

Winner!

Figure 1.2 Snail Bait's winning animation

806 /[sinan *

m =

*~ C [www.corehtmlSgames.com/snailbait/# @77 | I

High scorel

x o]
Enter your name: [ENESR 070

Figure 1.3 Snail Bait's high scores

Chapter 1 m Introduction

If the player doesn’t win the game or beat the existing high score, Snail Bait
displays game credits, as shown in Figure 1.4.

ano [snail maie * X

[

&« C [www.corehtmlSgames.com/snailbait/ iy B

Credits

~ Art ™
€553 Patterns Gallery : Background pattern in CS$ by Anna Kassner

Replica 1sland : All graphics except the runner and coins

MJKRZAK PcaF[c's SPritcs: Runner sPr}tcsl'nct (Link no lonyr
available)
LoversHorizon at deviantART: Coins
~ Sound and Music ~
Pete Marquardt: Soundtrack from soundclick.com

Eﬂfﬂkﬂiﬁjﬂ.ﬂdsjcund effects

Tweet my score Piag again

Figure 1.4 Snail Bait's credits

With the exception of the runner, everything in Snail Bait scrolls continuously in
the horizontal direction. That scrolling further categorizes Snail Bait as a side-
scroller platform game. However, that’s not the only motion in the game, which
leads us to sprites and their behaviors.

NOTE: Platform video games
Donkey Kong, Mario Bros., Sonic the Hedgehog, and Braid are all well-known,
best-selling games where players navigate 2D platforms, a genre known as
platformers. At one time, platformers represented up to one-third of all video
game sales. Today, their market share is drastically lower, but there are still many
successful platform games.

1.1 Snail Bait

CAUTION: Snail Bait performance
Hardware acceleration for Canvas makes a huge difference in performance and

has been implemented by most browsers since the middle of 2012. Should you
run Snail Bait in a browser that does not have hardware-accelerated Canvas,
performance will be terrible and the game probably won’t work correctly. When
you play the game, make sure your browser has hardware-accelerated Canvas.
Here is a list of browser versions that have hardware-accelerated Canvas:

Chrome 13

Firefox 4

Internet Explorer 9
Opera 11

Safari 5

WASD?

By convention, computer games often use the w, a, s, and d keys to control play.
That convention evolved primarily because it lets right-handed players use the mouse
and keyboard simultaneously. It also leaves the right hand free to press the spacebar
or modifier keys such as CTRL or ALT. Snail Bait doesn't use WASD because it
doesn't receive input from the mouse or modifier keys. But you can easily modify
the game’s code to use any combination of keys.

1.1.1 Sprites: The Cast of Characters

With the exception of the background, everything in Snail Bait is a sprite. A sprite
is a visual representation of an object in a game that you draw on the game’s
canvas. Sprites are not a part of the HTML5 Canvas AP]I, but they are simple to
implement. Following are the game’s sprites:

Platforms (inanimate objects)

Runner (main character)

Buttons (good)

Coins (good)

Chapter 1 m Introduction

* Rubies and sapphires (good)
¢ Bees and bats (bad)

¢ Snail (bad)

® Snail bombs (bad)

Besides scrolling horizontally, nearly all the game’s sprites move independently
of one another. For example, rubies and sapphires bounce up and down at varying
rates of speed, and the buttons and the snail pace back and forth along the length
of the platform on which they reside.

That independent motion is one of many sprite behaviors. Sprites can have other
behaviors that have nothing to do with motion; for example, besides bouncing
up and down, the rubies and sapphires sparkle.

Each sprite has an array of behaviors. A behavior is just a JavaScript object with
an execute () method. Every animation frame, the game iterates over all its visible
sprites and, for each sprite, iterates over the sprite’s behaviors, invoking each
behavior’s execute() method and passing the method a reference to the sprite
in question. In that method, behaviors manipulate their associated sprite according
to game conditions. For example, when you press j to make the runner jump, the
runner’s jump behavior subsequently moves the runner through the jump
sequence, one animation frame at a time.

Table 1.1 lists the game’s sprites and their respective behaviors.

Table 1.1 Snail Bait sprites

Sprites Behaviors

Platforms Pulsate (only one platform)

Runner Run; jump; fall; collide with other sprites; explode
Bees and bats Explode; flap their wings

Buttons Pace; collapse; make bad guys explode

Coins, rubies, and sapphires Sparkle; bounce up and down

Snail Pace; shoot bombs

Snail bombs Move from right to left; collide with runner

Behaviors are simple JavaScript objects, as illustrated by Example 1.1, which
shows how Snail Bait instantiates the runner sprite.

1.1 Snail Bait

Example 1.1 Creating sprites

runBehavior = { // Just a JavaScript object with an execute method

execute: function (sprite, // Sprite associated with the behavior
now, // The current game time
fps, // The current frame rate
context, // The context for the game's canvas
lastAnimationFrameTime) { // Time of last frame

// Update the sprite's attributes, based on the current time
// (now), frame rate (fps), and the time at which Snail Bait
// drew the last animation frame (lastAnimationFrameTime),
// to make it look Tike the runner is running.

// The canvas context is provided as a convenience for things
// like hit detection, but it should not be used for drawing
// because that's the responsibility of the sprite's artist.

// Method implementation omitted. See Section 7.3 on p. 187
// for a discussion of this behavior.

}
};
var runner = new Sprite('runner', // name
runnerArtist, // artist
[runBehavior, ... 1); // behaviors

Snail Bait defines a runBehavior object, which it passes—in an array with other
behaviors—to the runner sprite’s constructor, along with the sprite’s type (runner)
and its artist (runnerArtist). For every animation frame in which the runner is
visible, the game invokes the runBehavior object’s execute() method. That
execute() method makes it appear as though the runner is running by advancing
through the set of images that depict the runner in various run poses.

NOTE: Replica Island

The idea for sprite behaviors, which are an example of the Strategy design
pattern, comes from Replica Island, a popular open source (Apache 2 license)
Android platform game. Additionally, most of Snail Bait's graphics are from
Replica Island. You can find out more about Replica Island at replicaisland.net,
and you can read about the Strategy design pattern at hitp://en.wikipedia.org/
wiki/Strategy_design_pattern.

http://en.wikipedia.org/wiki/Strategy_design_pattern
http://en.wikipedia.org/wiki/Strategy_design_pattern

Chapter 1 m Introduction

NOTE: Sprite artists

Besides encapsulating behaviors in separate objects—which makes it easy to
add and remove behaviors at runtime—sprites also delegate how they are drawn
to another JavaScript object, known as a sprite artist. That makes it possible to
plug in a different artist at runtime.

NOTE: Freely available resources

Most game developers need help with graphics, sound effects, and music.
Fortunately, an abundance of assets are freely available under various licensing
arrangements. Snail Bait uses the following:

e Graphics and sound effects from Replica Island
e Soundtrack from soundclick.com
¢ Coins from LoversHorizon at deviantART

See Chapter 2 for more information on obtaining game resources and setting
up a development environment.

1.2 HTML5 Game Development Best Practices

We discuss game development best practices throughout this book, starting here
with seven that are specific to HTML5.

Pause the game when the window loses focus.

Implement a countdown when the window regains focus.
Use CSS for user interface (UI) effects.

Detect and react to slowly running games.

Incorporate social features.

Put all the game’s images in a single sprite sheet.

NGk w N e

Store high scores and realtime in-game metrics on a server.

We examine the preceding best practices in detail later in the book; for now, a
quick look at each of them introduces more of Snail Bait’s features.

1.2.1 Pause the Game When the Window Loses Focus

If an HTML5 game is running in a browser and you change focus to another tab
or browser window, most browsers severely clamp the frame rate at which the

1.2 HTML5 Game Development Best Practices

game’s animation runs so as to save resources such as CPU and battery power;
after all, why waste resources on a window or tab that’s not visible?

Frame-rate clamping wreaks havoc with most collision detection algorithms be-
cause those algorithms check for collisions every time the game draws an anima-
tion frame; if it takes too long between animation frames, sprites can move past
one another without detection. To avoid collision detection meltdowns resulting
from frame-rate clamping, you must automatically pause the game when the window
loses focus.

When Snail Bait pauses the game, it displays a toast to let the player know the
game is paused, as shown in Figure 1.5.

Snuail Bait.

L [www.corehtm|Sgames.com /snailbait/# el e

Figure 1.5 Snail Bait paused

NOTE: Pausing is more than stopping the game

When a paused game resumes, everything must be in exactly the same state
as it was when the game was paused; for example, in Figure 1.5, when play
resumes, the runner must continue her jump from exactly where she was when
the game was paused.

In addition to pausing and unpausing the game, therefore, you must also freeze
and thaw the game to ensure a smooth transition when the game resumes. We
discuss pausing and freezing the game in more detail in Chapter 4.

Chapter 1 m Introduction

NOTE: Toasts
A toast—as in raising a glass to one’s health—is information that a game displays
to a player for a short time. A toast can be simple text, as in Figure 1.5, or it can
represent a more traditional dialog box, as in Figure 1.8 on p. 14.

122 Implement a Countdown When the Window Regains Focus

When your window regains focus, you should give the player a few seconds to
prepare for the game to restart. Snail Bait uses a three-second countdown when
the window regains focus, as shown in Figure 1.6.

800 /sl sai

m | =

* C | www.corehtmiSgames.com/snailbait/# & .

Figure 1.6 Snail Bait's countdown after the window regains focus

1.2.3 Use CSS for Ul Effects

Figure 1.7 shows a screenshot taken a short time after the game loads.

Note especially two things about Figure 1.7. First, a toast containing simple
instructions is visible. That toast fades in when the game loads, and after five
seconds, it fades out.

Second, when the game starts, the checkboxes (for sound and music) and instruc-
tions (telling which keystrokes perform which functions) below the game’s canvas

1.2 HTML5 Game Development Best Practices n

B 00 Fsnai fair o

L
(TS

L & [www.carehtm|Sgames_com snallhalt/# [

Collidewith-coins arLd iewe|5.
Avoid bats and bees.

Sound T Muoso & = /d moveleft — /k move right

Figure 1.7 Snail Bait's toasts

are fully opaque, whereas the lives indicators and scoreboard at the top of the
game are partially transparent, as shown in Figure 1.7. As the game’s instructions
toast fades, that transparency reverses; the lives indicator and scoreboard become
fully opaque, while the checkboxes and instructions become nearly transparent,
as they are in Figure 1.6.

Snail Bait dims elements and fades toasts with CSS3 transitions.

NOTE: Focus on what’s currently important
When Snail Bait starts, the instructions below the game’s canvas are fully
opaque, whereas the lives indicator and score above the game’s canvas are
partially transparent. Shortly thereafter, they switch opacities; the elements above
the canvas become fully opaque and the elements below become partially
transparent.

Snail Bait goes to all that trouble to focus attention on what’s currently important.
Initially, players should pay attention to the instructions below the game’s canvas;
once the game is underway, players will be more focused on their score and how
many lives are remaining.

Chapter 1 m Introduction

1.2.4 Detect and React to Slowly Running Games

Unlike console games, which run in a tightly controlled environment, HTML5
games run in a highly variable, unpredictable, and chaotic one. Players can do
things directly that significantly affect system performance, for example, running
YouTube videos in another browser tab or window. Other performance killers,
such as system backup software running in the background unbeknown to game
players, can easily make an HTML5 game run so slowly that it becomes
unplayable. And there’s always the possibility that your players will use a browser
that can’t keep up.

As an HTML5 game developer, you must monitor frame rate and react when it
dips below an unplayable threshold. When Snail Bait detects that an average of
the last 10 frame rates falls below 40 frames per second (fps), it displays the
running slowly toast shown in Figure 1.8.

8060 /[gnail s %

o
% C [www.corehtmlSgames.com/snailbait/# w2

Snail Bait is running slowly

Snuil Buit is running at 35 frames/second (fps). but it needs more than 40 fps for the
game to work correctly.

High-performance applications, such es video players or software that backs up
your computer, can slow this game down. For best results, hide all other windows on
your desktop and close CPU- or GPU- intensive apps when you play HIMLS games.

You should also upgrade your browser to the latest version and make sure that it has
hardware accelerated HTMLS Canvas. Any version of Chrome starting with version
18, for ple, has hard I d Canvas. Here is a link where you can

download the |atest version of Chrome.

D o et i

Figure 1.8 Snail Bait’s running slowly toast

1.2.5 Incorporate Social Features

Many modern games incorporate social aspects, such as posting scores on Twitter
or Facebook. When a Snail Bait player clicks on the Tweet my score link that ap-
pears at the end of the game (see Figure 1.4 on p. 6), Snail Bait creates a tweet
announcing the score in a separate browser tab, as shown in Figure 1.9.

1.2 HTML5 Game Development Best Practices n

L= Snail Bait % W Posta Tweet on Twitter

C & Twitter, Inc. [US]] https: [/ twitter.com/Intent/tweet?text=I%20scored%20620%20playin... v & 1 B ﬁ #,

What's happening?

| seored 620 playing this HTMLS Canvas platiormer: hitp:thit lyNDV7E1 #himl5

Figure 1.9 Snail Bait’s Twitter integration

1.2.6 PutAllthe Game’s Images in a Single Sprite Sheet

You can do several things to make your HTML5 game (or any HTMLS5 application)
load more quickly, but the single most effective thing is to decrease the number
of HTTP requests you make to the server. One way to do that is to put all your
game’s images in a single image, known as a sprite sheet. Figure 1.10 shows Snail
Bait’s sprite sheet.

Figure 110 Snail Bait's sprite sheet (the gray background is transparent)

Chapter 1 m Introduction

When Snail Bait draws the game’s sprites, it copies rectangles from the sprite
sheet into the canvas.

NOTE: Sprite sheets on mobile devices
Some mobile devices place limits on the size of image files, so if your sprite
sheet is too large, you may have to split it into multiple files. Your game will load
more slowly as a result, but that’s better than not loading at all.

1.2.7 Store High Scores and Send Realtime, In-game Metrics to the Server

Most games interact with a server for a variety of reasons. Snail Bait stores high
scores on a server in addition to sending game metrics during gameplay. Snail
Bait does not use any third-party graphics frameworks; however, it does use two
JavaScript frameworks—Node.js and socketio—to communicate between the
player’s computer and a server. See Chapter 19 for more details.

1.3 Special Features

Snail Bait has three noteworthy features that add polish to the game and make
playtesting more productive:

¢ Developer backdoor
¢ Time system

¢ Particle systems

Snail Bait reveals the developer backdoor, shown in Figure 1.11, when you press
CTRL-d. With the backdoor visible, you can control the rate at which time flows
through the game, making it easy to run the game in slow motion to see how
game events such as collision detection take place. Conversely, you can run
the game faster than normal to determine the best pace for the game.

You can turn collision rectangles on for a better look at exactly how collisions
occur; if the smoking holes obscure your view, you can turn the smoke off by
deselecting the Smoke checkbox. You can also fine-tune the threshold at which
Snail Bait displays the game’s running slowly warning, shown in Figure 1.8, or
you can turn it off entirely, which lets you playtest slow frame rates without Snail
Bait intervening at all.

When you playtest a particular section of the game, you can avoid playing through
the preceding sections every time you test: In addition to the controls at the top
of the game’s canvas, the developer backdoor displays a ruler at the bottom of
the canvas that shows how far the background has scrolled horizontally in pixels.

1.3 Special Features

© Snail Bait x

- | www.corehtmlSgames.com /snailbait/# & =

1888 Running siowly threshald Time rate ™ Draw collision rectangles

._.I =—~= o wum when runming slowly
40 fps 100% o Smoke

Figure 1.11 Snail Bait’s developer backdoor

You use those values to restart the game at a particular horizontal location,
thereby avoiding the preceding sections of the game. For convenience, when the
developer backdoor is visible you can also simply drag the game, including
the background and all the sprites, horizontally to reposition the runner.

The developer backdoor lets you control the rate at which time flows through the
game by virtue of Snail Bait’s time system. Everything that happens in Snail Bait
depends on the current game time, which is the elapsed time since the game
started; for example, when the runner begins a jump, the game records the current
game time, and thereafter moves the runner through the jump sequence frame
by frame, depending on how much time has elapsed since the runner began
the jump.

By representing the current game time as the real time, which is Snail Bait’s default
mode, the game runs at its intended rate. However, Snail Bait’s time system can
misrepresent the current game time as something other than the real time; for
example, the time system can consistently report that the current game time is
half of the actual time, causing the game to run at half speed.

Besides letting you control the rate at which time flows through the game, Snail
Bait’s time system is also the source of special effects. When the runner collides
with a bad guy and explodes, Snail Bait slows time to a crawl while transitioning

Chapter 1 m Introduction

to the next life. Once the transition is complete, Snail Bait returns time to normal,
indicating that it’s time to resume play.

Finally, Snail Bait uses two particle systems to create the illusion of smoke and
fire in the background. In Chapter 16, we take a close look at those particle systems
so you can create similar effects of your own.

Now that you have a high-level understanding of the game, let’s take a look at
some code.

NOTE: Snail Bait’s code statistics (lines of code)

e JavaScript: 5,230
e (CSS:690
e HTML: 350

NOTE: A closer look at Snail Bait’s code

e snailbait.js: 3,740

e Supporting JavaScript code: 1,500

e |Initializing data for sprites: 500

e Creating sprites: 400

e Sprite behavior implementations: 730
e Event handling: 300

e User interface: 225

e Sound: 130

1.4 Snail Bait's HTML and CSS

Snail Bait is implemented with HTML, CSS, and JavaScript, the majority of which
is JavaScript. In fact, the rest of this book is primarily concerned with JavaScript,
with only occasional forays into HTML and CSS.

Figure 1.12 shows the HTML elements, outlined in white, and their corresponding
CSS for the top half of the game proper.

Everything in Snail Bait takes place in the arena, which is an HTML DIV element.
The arena’s margin attribute is 0, auto, which means the browser centers the
arena and everything inside it horizontally, as shown in Figure 1.13.

1.4 Snail Bait's HTML and CSS

#snailbait-lives {
position: absolute;
margin-top: 20px;
margin-left: Spx;

-webkit-transition: opacity 5s;
-moz-transition: opacity 5s;
-o-transilion: opacity 5s;
transition: opacity 5s;

display: none;
opacity: 0;

#snailbait-score {
font: 46px fantasy;
text-align: center;
color: yellow;
text-shadow: 2px 2px 4px
rgba(0,0,80,1.0);

-webkit-transition: opacity 5s;
-moz-transition: opacity 5s;
-o-transition: opacity 5s;
transition: opacity 5s;

display: none;
opacity: 0;

']

#snailbail-game-canvas {

border: 1px solid blue;
width: 100%;

-webkit-transition: opacity 5s;
-moz-transition: opacity 5s;
-o-transition: opacity 5s;
transition: opacity 5s;

display: none;
opacity: 0;

}

#snailbait-arena {
margin: 0 auto;
width: 802px;
height: 520px;

']

Figure 1.12 Snail Bait's CSS for the top half of the game

8.0 B0 1 s
2 C

wates cestahtemISgamen, cam st

Figure 1.13 Snail Bait stays centered horizontally in the window

Chapter 1 m Introduction

When Snail Bait loads resources, it displays the animation shown in Figure 1.14.
During that animation, none of the game’s elements are visible, which is why all
the elements in Figure 1.12 have their display attribute set to none (with the
exception of snailbait-arena, which has no visible characteristics of its own).

8006 , Bsnail fair

- @ [www.corehtm|Sgames.com snallbait/ ‘-o: oy .

Loading...

v e

Figure 1.14 Snail Bait at startup

After the game loads resources, it fades in the game’s elements by setting their
display attribute to block and subsequently setting their opacity to 1.0 (fully
opaque). Elements that have a transition associated with their opacity property,
like snailbait-Tives, snailbait-score,and snailbait-game-canvas, transition
into view over a specified period of time.

The snailbait-Tives element has an absolute position; otherwise, with its default
position of static, it will expand to fit the width of its enclosing DIV, forcing the
score beneath it.

The game canvas, which is an HTML5 canvas element, is where all the game’s
action takes place; it’s the only element in Figure 1.12 that’s not a DIV.

Figure 1.15 shows the HTML elements in the lower half of the game.

Like the lives and score elements in the upper half of the game, the browser does
not display the elements at the bottom during the game’s loading animation, so
those elements are initially invisible and have an opacity transition of five seconds,

1.4 Snail Bait’s HTML and CSS

#snailbait-sound-and-music {
position: absolute;
margin-left: 5px;
margin-top: 9px;
padding: 5px;
padding-top: 2px;
padding-bottom: 2px;
color: yellow;
font-size: 0.9em;
text-shadow: 1px 1px 1px

rgba(0,0,0,0.5);
background: rgba(0,0,0,0.1);
border-radius: 5px;
border: thin solid
rgba(0,0,0,0.20);

-webkit-transition: opacity 5s;
-moz-transition: opacity 5s;
-o-transition: opacity 5s;
transition: opacity 5s;

.snailbait-explanation {

o]

.snailbait-keys {
color: orange;
text-shadow: 1px 1px 1px
rgba(0,0,0,0.5);
background: rgba(0,0,0,0.1);
border: thin solid
rgba(0,0,0,0.20);
border-radius: 5px;
margin-left: 10px;
padding-right: 5px;
padding-left: 5px;
padding-bottom: 5px;

display: inline;

o
#snailbait-instructions {

#snailbait-copyright {
float: right;
margin-right: 2px;
margin-top: -2.3em;
padding: 2px;
color: blue;
text-shadow: 1px 1px 1px

rgba(255,255,255,0.5);

font-size: 0.85em;

-webkil-transition: opacity 5s;
-moz-transition: opacity 5s;
-o-transition: opacity 5s;
transition: opacity 5s;

display: none;
opacity: 0;

display: none; color: yellow; margin-left: 155px;
opacity: 0; text-shadow: 1px 1px 1px padding-left; 5px;
} rgba(0,0,0,0.5); padding-top: 10px;
margin-top: 5px; height: 2em;
padding-right: 5px;
padding-left: 5px; color: yellow;

padding-bottom: 2px;

display: inline;

font-size: 0.95em;

-webkil-transition: opacity 5s;

-moz-transition: opacity 5s;
-o-fransition: opacity 5s;
transition: opacity 5s;

display: none;
opacity: 0;

}

Figure 115 Snail Bait's CSS for the bottom of the game

which Snail Bait uses to fade them and all their contained elements in along with
the score and lives elements at the beginning of the game.

Chapter 1 m Introduction

The snailbait-sound-and-music element, like the snailbait-1ives element, has
an absolute position to prevent its width from expanding. The snailbait-keys
and snailbait-explanation DIVs have display attributes of in1ine so they ap-
pear horizontally inline with the other elements in their enclosing DIV, instead
of being stacked vertically.

Example 1.2 lists Snail Bait’'s HTML proper, omitting a considerable amount of
HTML for things like the running slowly warning and developer backdoor.

Example 1.2 index.html (excerpt)

html

<!--

Basic HTML elements for Snail Bait. Elements for things such

as sounds, credits, toasts, developer backdoor, etc. are

omitted for brevity.
-—>

<html>

B T /- T -—>
<head>

<title>Snail Bait</title>

<link rel='stylesheet' href='snailbait.css'>

</head>
B T - 1T | -—>
<body>

B R ¥ o o - -—>

<div id='snailbait-arena'>

<l-= Lives TNndTCator. .. .uuu ettt et et e ettt e e eannnnnnnnns -—>

<div id="snailbait-Tives'>
<img id="'snailbait-1ife-icon-Teft'
src="'1images/runner-small.png'/>

<img id="'snailbait-1ife-icon-middle’
src="'1images/runner-small.png'/>

<img id="'snailbait-1ife-icon-right'
src="'1images/runner-small.png'/>
</div>

1.4 Snail Bait’s HTML and CSS m

DY o] o - -—>

<div id='"snailbait-score'>0</div>

<l-— The game CANVAS.uuuueueeneanenensanneneenannnnnn -—>

<canvas id='snailbait-game-canvas' width="'800"' height="400">
Your browser does not support HTML5 Canvas.
</canvas>

<l-=Sound and MUSTC...... .ottt ettt sttt eeennnnnnns -—>
<div id="snailbait-sound-and-music'>
<div id='snailbait-sound-checkbox-div'

class="snailbait-checkbox-div'>

Sound <input id='snailbait-sound-checkbox'
type="'checkbox' checked/>

</div>
<div class="'snailbait-checkbox-div'>

Music <input id='snailbait-music-checkbox'
type="'checkbox' checked/>

</div>
</div>
<o INStrUCETONS . o v vt ettt e et e s s sas st eeaeannns -—>

<div id='snailbait-instructions'>
<div class='snailbait-keys'>

/ d

<div class="snailbait-explanation'>move left</div>
/ k

<div class='snailbait-explanation'>move right</div>

</div>

<div class='snailbait-keys'>
j <div class='snailbait-explanation'>jump</div>
</div>

<div class='snailbait-keys'>
p <div class='snailbait-explanation'>pause</div>
</div>
</div>

<div id='snailbait-mobile-instructions'>

(Continues)

Chapter 1 m Introduction

Example 1.2 (Continued)

<div class="snailbait-keys'>
Left
<div class='snailbait-explanation'>
Run left or jump
</div>
</div>

<div class="'snailbait-keys'>
Right
<div class="snailbait-explanation'>
Run right or jump

</div>
</div>

</div>

<l COPYright. . oo e -—>

<div id="snailbait-copyright'> 2012 David Geary</div>
</div>
ST - V7= 1Y o ol [2 X ol -—>
<!-- Other script tags for the game's other JavaScript files are

omitted for brevity. The final version of the game puts all
the game's JavaScript into a single file. See Chapter 19
for more details about how Snail Bait is deployed. -->

<script src='snailbait.js'></script>
</body>
</html>

The canvas element is where all the action takes place. The canvas comes with a
2D context with a powerful API for implementing 2D games, among other things,
as you will see in Section 3.1, “Draw Graphics and Images with the HTML5 canvas
Element,” on p. 64. The text inside the canvas element is fallback text that the
browser displays only if it does not support HTML5 canvas element.

One final note about the game’s HTML and CSS: Notice that the width and height
of the canvas is set with canvas element attributes in the preceding listing. Those
attributes pertain to both the size of the canvas element and the size of the drawing
surface contained within that element.

On the other hand, using CSS to set the width and height of the canvas element
sets only the size of the element. The drawing surface remains at its default width
and height of 300 x 150 pixels, respectively. That means you will have a mismatch
between the canvas element size and the size of its drawing surface when you

1.5 Snail Bait's Humble Beginning

set the element’s size to something other than the default 300 x 150 pixels, and
in that case the browser scales the drawing surface to fit the element. Most of the time
that effect is unwanted, so it’s a good idea to set the size of the canvas element
with its width and height attributes, and not with CSS.

At this point, you've already seen the end of the Snail Bait story. Now let’s go
back to the beginning.

Draw into a small canvas and let CSS scale it?

Some games purposely draw into a small canvas and use CSS to scale the canvas
to a playable size. That way, the canvas is not manipulating as many pixels, and so
increases performance. You will take a performance hit for scaling the canvas, of
course, but scaling with CSS is typically hardware accelerated, so the cost of the
scaling can be minimal. Today, however, nearly all the latest versions of modern
browsers come equipped with hardware-accelerated Canvas, so it’s just as fast to
draw into a full-sized canvas in the first place.

NOTE: Namespacing HTML elements and CSS classes

To avoid naming collisions with other HTML elements, Snail Bait starts each
HTML element and CSS classname with snaiTbait-.

1.5 Snail Bait's Humble Beginning

Figure 1.16 shows Snail Bait’s initial set of files. Throughout this book we add
many more files, but for now all we need is an HTML file to define the structure
of the game’s HTML elements, a CSS file to define the visual properties for
those elements, a JavaScript file for the game’s logic, and two images, one for the
background and another for the runner.

Name a Size Kind
v [images -- Folder
= background.png 1.2 MB Portable Network Graphics image
£ runner.png 845 bytes Portable Network Graphics image
¢ index.htm! 442 bytes HTML document
= snailbait.css 127 bytes CS§
% snailbait.js 668 bytes lavaScript

Figure 1.16 Snail Bait’s initial files

Chapter 1 m Introduction

Figure 1.17 shows the starting point for the game, which simply draws the back-
ground and the runner. To start, the runner is not a sprite; instead, the game
draws her directly.

500 | Snail Bait x

o
]

- C' 1 corehtmiSgames.com/book/code/chil/ e .

Figure 1.17 Drawing the background and runner

Example 1.3 lists the starting point for the game’s HTML, which is just a distilled
version of the HTML in Example 1.2.

Example 1.3 The starting point for Snail Baits HTML

<!DOCTYPE html>
<html>
<head>
<title>Snail Bait</title>
<Tlink rel='stylesheet' href='snailbait.css'/>
</head>

<body>
<div id='snailbait-arena'>
<canvas id="snailbait-game-canvas' width="800"' height='400"'>
Your browser does not support HTML5 Canvas.
</canvas>
</div>

1.5 Snail Bait's Humble Beginning

RS F- 1V Y o o J ol R -—>

<script src='snailbait.js'></script>
</body>
</html>

Initially, the arena contains only the game’s canvas, which is 800 pixels wide by
400 pixels high and has a thin blue border. Example 1.4 shows the starting point
for Snail Bait’s CSS.

Example 1.4 The starting point for Snail Bait's CSS

body {
background: cornflowerblue;

}

{
margin: 0 auto;
margin-top: 50px;
width: 800px;
height: 400px;

-canvas {
border: 1.5px solid blue;

Example 1.5 shows the starting point for Snail Bait’s JavaScript.

Example 1.5 The starting point for Snail Bait’s JavaScript

var canvas = document.getElementById('snailbait-game-canvas'),
context = canvas.getContext('2d'),

background = new Image(),
runnerImage = new Image();

function initializeImages() {
background.src = 'images/background.png';
runnerImage.src = 'images/runner.png’;

background.onload = function (e) {
startGame();
}

(Continues)

Chapter 1 m Introduction

Example 1.5 (Continued)

function startGame() {

draw();

}

function draw() {
drawBackground();
drawRunner();

}

function drawBackground() {
context.drawImage(background, 0, 0);

}
function drawRunner() {
context.drawImage(runnerImage, s);
}
/7 Launch game. e

initializeImages();

The preceding JavaScript accesses the canvas element and subsequently obtains
a reference to the canvas’s 2D context. The code then draws the background and
runner by using the three-argument variant of drawImage() to draw images at a
particular location in the canvas.

The game starts when the background image loads. For now, starting the game
entails simply drawing the background and the runner.

1.6 The Use of JavaScript in This Book

Proficiency in JavaScript is an absolute prerequisite for this book, as discussed in
the Preface. JavaScript, however, is a flexible and dynamic language, so there are
many ways to use it. The purpose of this section is to show you how this book
uses JavaScript; the intent is not to teach you anything at all about the language.
To get the most out of this book, you must already know everything that you are
about to read, or preferably skim, in this section.

This book defines several JavaScript objects that in more traditional languages
such as C++ or Java would be implemented with classes. Those objects range
from the games themselves (Snail Bait and Bodega’s Revenge) to objects they
contain, such as sprites and sprite behaviors. JavaScript objects are defined with
a constructor function and a prototype, as shown in Example 1.6, a severely
truncated listing of the Snai1Bait object.

1.6 The Use of JavaScript in This Book

Example 1.6 Defining JavaScript objects

var SnailBait = function () {
// Constants and variables are declared here

this.LEFT = 1;
3

SnailBait.prototype =

// Methods are defined here

draw: function(now) { // The draw method takes a single parameter

. e
. .

JavaScript objects are instantiated in this book with JavaScript’s new operator, as

shown in Example 1.7.

Example 1.7 Creating JavaScript objects

SnailBait.prototype =

createSnailSprites: function () {

var snail,

snailArtist = new SpriteSheetArtist(this.spritesheet,

this.snailCells);

for (var i = 0; i < this.snailData.length; ++i) {
snail = new Sprite(’snail’,

snailArtist,

[
this.paceBehavior,
this.snailShootBehavior,

new CycleBehavior(
, // 300ms per image
) // 1.5 seconds interlude
D;

snail.width = this.SNAIL_CELLS_WIDTH;
snail.height = this.SNAIL_CELLS_HEIGHT;

Chapter 1 m Introduction

Example 1.7 (Continued)

snail.velocityX = snailBait.SNAIL_PACE_VELOCITY;
this.snails.push(snail);
1,
.

The createSnailSprites() function, which we refer to as a method because it
resides in an object, creates a sprite sheet artist, a sprite, and an instance of
CycleBehavior. That cycle behavior resides in an array of behaviors that
createSnailSprites() passes to the Sprite constructor.

This book also defines objects using JSON (JavaScript Object Notation), as shown
in Example 1.8.

Example 1.8 Defining JavaScript objects with JSON

var SnailBait = function () {

// A single object with three properties

this.fallingWhistleSound = {

position: , // seconds
duration: , // milliseconds
volume:

1
// An array containing three objects, each of which has two properties

this.audioChannels = [
{ playing: false, audio: null, },
{ playing: false, audio: null, },
{ playing: false, audio: null, }
1
}

Finally, the JavaScript code in this book adheres closely to the subset of JavaScript
discussed in Douglas Crockford’s book JavaScript: The Good Parts. The code in
this book also follows the coding conventions discussed in that book.

1.8 Exercises

NOTE: The use of ellipses in this book

Most of the code listings in this book omit irrelevant sections of code. Those
irrelevant sections are identified with ellipses (...) so that you can distinguish
partial from full listings.

1.7 Conclusion

Snail Bait is an HTMLS5 platform game implemented with the canvas element’s
2D APIL As you'll see throughout the rest of this book, that API provides a
powerful and intuitive set of functions that let you implement nearly any 2D
game you can imagine.

In this chapter, we looked at Snail Bait from a high level to get a feel for its features
and to understand some of the best practices it implements. Although you can
get a good grasp of its gameplay from reading this chapter, you will have a
much better understanding of the game if you play it, which you can do at
corehtml5games.com.

At the end of this chapter, we looked at a starting point for Snail Bait that simply
draws the background and the runner. Before we build on that starting point and
begin coding in earnest, however, we’ll take a brief detour in the next chapter
to become familiar with the browser development environment and to see
how to access freely available graphics, sound, and music. If you're already up
to speed on HTMLS5 development in general and you know how to access open
source assets online, feel free to skip ahead to Chapter 3.

1.8 Exercises

Use a different image for the background.
Draw the runner at different locations in the canvas.
Draw the background at different locations in the canvas.

In the draw() function, draw the runner first and then the background.

SANE IR .

Remove the width and height attributes from the snailbait-game-canvas
element in index.html and add width and height properties—with the same
values of 800px and 400pXx, respectively—to the snailbait-game-canvas ele-
ment in the CSS file. When you restart the game, does it look the same as
before? Can you explain the result?

This page intentionally left blank

CHAPTER

Raw Materials and
Development Environment

Topics in This Chapter

e 2.1 Use Developer Tools — p. 35

e 2.2 Obtain Assets — p. 50

e 23 Use CSS Backgrounds — p. 54

e 2.4 Generate Favicons — p. 56

e 25 Shorten the Coding Cycle — p. 58
e 26 Conclusion —p.59

e 2.7 Exercises —p.60

In this book we build a game. Like all builders, we must gather raw materials
and become competent with our tools before we begin. For most games, the
following raw materials are standard fare:

¢ Graphics
¢ Sound effects
e Music

The following, which add some polish to your HTML5 game, are optional:

33

Chapter 2 m Raw Materials and Development Environment

¢ Afavicon
* A webpage background
¢ Ananimated GIF

Favicons are small images that browsers display either in the address bar or in a
tab. Webpage backgrounds can be images or, as is the case with Snail Bait, they
can be drawn with CSS. Snail Bait also displays an animated GIF while it loads
its resources.

Fortunately, all the necessary materials, from game graphics to animated
GIFs, are readily available. Not only that, but you can easily find high-quality
graphics, sound effects, and music on the Internet under permissive open source
licenses, such as Creative Commons.

The following developer tools will help us turn the preceding materials into a
compelling video game:

e Text editor

e (Console
¢ Debugger
e Profiler

e Timelines

Additionally, game developers must have:

¢ Animage editor
e Asound editor

Browser development environments, which typically contain all the preceding
development tools and more, are also free. And you can also use high quality,
freely available image and sound editors, such as GIMP and Audacity.

This chapter briefly describes the Chrome developer tools and shows you how
to access freely available graphics, sound effects, and music on the Internet. You
will also see how to edit sounds and images and how to create animated GIFs,
favicons, and CSS backgrounds.

NOTE: Game development wasn’t always this accessible

Before the advent of open source resources and freely available development
environments, game development was much more difficult. Developers had to
pay steep prices for development environments in addition to typically paying
artists and musicians to create graphics, sound, and music for their games.

2.1 Use Developer Tools E

NOTE: Money-making games use open source resources

Nowadays there are many types of open source licenses, and some of them,
like Creative Comments, pretty much let you do anything you want with open
source resources, as long as you attribute works to the original artists. In fact,
quite a few for-sale games are based entirely on open source graphics.

2.1 Use Developer Tools

You will undoubtedly use developer tools as you implement HTML5 games,
and your familiarity with those tools will help determine how quickly and easily
you can implement a game.

As this book was written, all major browser vendors—Chrome, Safari, Firefox,
Opera, and Internet Explorer—provided powerful developer tools for free. Al-
though the specifics of those tools vary, the fundamentals are similar. Developers
log information to the console, debug with a debugger, locate performance
bottlenecks with a profiler, and monitor events with timelines.

A comprehensive discussion of browser developer tools is beyond the scope of
this book; however, this section exemplifies the use of Chrome’s developer tools
to implement games.

0 CAUTION: Chrome is a moving target

Over the course of the development of this book, Chrome’s look-and-feel changed
considerably. Some of the screenshots you see in this book may not correspond
exactly to the current version of Chrome, but the functionality should be the same.

2.1.1 The Console

Video games are predicated upon time. Games tirelessly create one animation
frame after another to create the illusion of motion. When a game draws an ani-
mation frame, it uses the elapsed time since the last animation frame to determine
where to move its graphical objects, known as sprites.

If you set a breakpoint in the debugger at a line of code that’s called for every
animation frame, you will greatly increase the amount of time between frames,
no matter how quickly you click the debugger’s resume button. More importantly,
values that depend on the amount of time between animation frames, such as
the frame rate itself, will be enormously out of whack, as Figure 2.1 depicts
in the top screenshot, which shows a nonsensical frame rate of less than one frame
per second in the debugger.

Chapter 2 m Raw Materials and Development Environment

On the other hand, logging to the console does not cause the game’s code to stop
running, so you can monitor values such as frame rate, as illustrated in the bottom
screenshot in Figure 2.1.

|00 Snall sk

& 5O A 4D fhoaks/corehtmls g ifbait-final html Y

* Elements Resources Network | Sources | Tims

T snailbait js *

11w

1781 animate: function (nowl {

/i Replace the time passed to this
/4 with the time from Snail Bait's t

P =

snailBait, timaSysten, caleulat

if (snailBait.paused) {
setTineout { 0
reques onF rame | snai

anat B e TERY
8, 16781339150064230

i % Elements Resources Metwork |Sources| Timeline Profiles Audits Console
else { il = =
snailBait. oo W enaiUBALL EALEU1A 5] snallbait js x [n

now = snailBait, timeSysten, calculateGaneTine(); ¥ Watch Expressions

if (snailBait.windowHasFocus &5 s
snailBait. showsLowwarning G5

= Q @ {} Line1713, Column 1

this, audinTracks:

¥ Call Stack

console. logl'fps: *| snallBait.fps);

if hnni'l&lik._pqu(ed] { L.
1@ {} Line 1707, Column 21

fps: B6.EEEEEELEEGEEET
fps: 58.E235204117647

6.5
fps: 32.25806451612903

fes: 625
fps: 55.5S5SG55EESESEE
-5 anadlbait,

-
N |

0,5 A & <wopfame>v EI) | Erors Warnings Logs Debug L]

Figure 2.1 Debugger vs. console

In the bottom screenshot in Figure 2.1, Snail Bait uses the console.log() method
to display the game’s frame rate. Chrome’s console comes with several other
methods that, like console.Tog(), log messages to the console: debug(), error(),
info(), and warn(). Those methods are identical to Tog(), but the browser cate-
gorizes them so you can filter out particular types of messages. Example 2.1 shows
how Snail Bait uses the error() and warn() methods.

The JavaScript in Example 2.1 shows two of Snail Bait’s sound methods, which
we discuss in much greater detail in Chapter 14. It’s an error if we cannot move
to a particular position in a sound file (known as seeking) because by the time
seekAudio() is invoked, all sounds are loaded and we should therefore be able
to seek anytime we want.

2.1 Use Developer Tools

On the other hand, if by some chance Snail Bait tries to simultaneously play more
sounds than it can support, no audio channels will be available and Snail Bait
won't be able to play the sound. However, not being able to play a sound when
multiple sounds are already playing is not an error, so Snail Bait emits a warning
to the console instead.

Example 2.1 Using the console to report warnings and errors

SnailBait.prototype = { // An object containing the game's methods

seekAudio: function (sound, audio) {
try {
audio.pause();
audio.currentTime = sound.position;

}
catch (e) {

console.error('Cannot seek audio');
}

}’

playSound: function (sound) {
var channel,
audio;

if (this.soundOn) {
channel = this.getFirstAvailableAudioChannel();

if (!channel) {
if (console) {
console.warn('Al1l audio channels are busy. ' +
'Cannot play sound');

3
}
else {
}

};

Browsers graphically depict errors and warnings with red and yellow icons, re-
spectively, and they also group them under error and warning categories so that
you can view one or the other. The bottom screenshot in Figure 2.1 shows buttons
in the browser’s status bar for filtering log messages by error, warning, log, or
debug.

n Chapter 2 m Raw Materials and Development Environment

Chrome’s console is full featured, as Table 2.1 illustrates.

Table 2.1 The Chrome Console API

Method Description
assert(expression, If expressionis false, the browser appends
errormsg) errormsg to “Assertion failed: ” and shows the
resulting string in the console as an error.
clear(Q Erases all content from the console.
count(label) Appends the number of times count() has been

called (at that location in the code, and with the
same label) to the label and displays the resulting
string; for example, console.count('Drawing')
results in output such as Drawing: X, where X is
the number of times that line of code has executed
with the label Drawing.

debug(object [,
object,...])

The same as Tog() except messages are grouped
under debug messages.

dir(object)

Displays a JavaScript representation of object.

dirxml (object)

Displays an XML JavaScript representation of
object (as it would appear in the Elements panel).

error(object, [,
object,...])

Identical to Tog() except that it emits an error
message with a red icon and stack trace.

group(object, [,
object,...])

Begins a new logging group that persists until the
first call to groupEnd (). The browser visually
groups all console output between those two calls.

groupCollapsed(object, [,
object,...])

The same as group () except that the browser
displays the group initially collapsed, instead of
open (the default).

groupEnd ()

Ends a group. See group () and groupCollapsed().

info(object, [,
object,...])

Identical to Tog().

(Continues)

2.1 Use Developer Tools

Table 2.1 (Continued)

Method

Description

log(object, [,
object,...])

Displays each of the objects it is passed,
concatenated into a space-delimited string. The first
object can be a string with formatting characters,
similar to printf() from the C language. Those
formatting characters are:

® %s (string)

® %d or %i (integer)

¢ %f (floating point)

* %o (expandable DOM element)

* %0 (expandable JavaScript object)

® %c (format with CSS you provide)

profile(label)

Starts a profile and assigns it the specified label.
The profile runs until you call profileEnd().

profileEnd(label)

Ends the profiler with the specified label.

time(label)

Starts a timer with a specified label. The timer runs
until you call timeEnd ().

timeEnd(Tabel)

Stops the timer with the specified label and displays
the elapsed time in the console.

timeline(Tlabel)

Starts a timeline with a specified label. The timeline
runs until you call timelineEnd().

timelineEnd(label) Stops the timeline with a specified label.

timeStamp(label) Adds a timestamp event to a timeline when you
are recording.

trace() Prints a stacktrace.

warn(object, [,
object,...])

The same as Tog() except that it emits a warning,
complete with a yellow icon.

Several methods listed in Table 2.1 take arguments which are depicted in the table
like this: (object, [, object,...]). The first argument is a string that can have

