

Some Praise for the First Edition of Windows® Presentation Foundation Unleashed

“The Nathan book is brilliant—you’ll love it. Publishers, take note: I’d sure be buying a heck of a lot
more technical books if more of them were like this one.”
—Jeff Atwood, codinghorror.com, cofounder of Stack Overflow

“Windows Presentation Foundation Unleashed is a must-have book for anyone interested in learning
and using WPF. Buy it, read it, and keep it close to your computer.”
—Josh Smith, Microsoft MVP

“As we built the feature team that delivered the new WPF presentation layer for Visual Studio 2010,
Windows Presentation Foundation Unleashed quickly became our must-read WPF reference book of
choice, over and above other books on WPF and indeed internal documentation. Highly recommended
for any developer wanting to learn how to make the most of WPF.”
—James Bartlett, senior lead program manager, Microsoft Visual Studio

“I’ve bought nearly all available WPF books, but the only one that’s still on my desk is Windows
Presentation Foundation Unleashed. It not only covers all WPF aspects, but it does it in the right,
concise way so that reading it was a real pleasure.”
—Corrado Cavalli, Codeworks

“Windows Presentation Foundation Unleashed is the most insightful WPF book there is. Don’t be misled
by its size; this book has the best introduction and deepest insights. This is the must-read for anyone
getting started or wanting to get the most out of WPF.”
—Jaime Rodriguez, Microsoft client evangelist for Windows, WPF, Silverlight, and Windows Phone

“I found Windows Presentation Foundation Unleashed to be an excellent and thorough introduction and
guide to programming WPF. It is clearly written, easily understood, and yet still deep enough to get a
good understanding of how WPF works and how to use it. Not a simple feat to accomplish! I heartily
recommend it to all the students who take DevelopMentor’s WPF course! Anyone serious about doing
WPF work should have a copy in their library.”
—Mark Smith, DevelopMentor instructor, author of DevelopMentor’s Essential WPF course

“I have read Windows Presentation Foundation Unleashed from cover to cover and have found it to be
really the most comprehensive material on WPF. I can’t think of even a single instance when I have not
been able to find the solution (or a pointer to one) every time that I have picked up the book to figure
out the intricacies of WPF.”
—Durgesh Nayak, team leader, Axis Technical Group

“Windows Presentation Foundation Unleashed is the book that made WPF make so much sense for me.
Without Adam’s work, WPF would still be a mystery to me and my team. The enthusiasm for WPF is
evident from the offset and it really rubs off on the reader.”
—Peter O’Hanlon, managing director, Lifestyle Computing Ltd

“Adam Nathan’s Windows Presentation Foundation Unleashed must surely be considered one of the
seminal books on WPF. It has everything you need to help you get to grips with the learning cliff that
is WPF. It certainly taught me loads, and even now, after several years of full-time WPF development,
Windows Presentation Foundation Unleashed is never far from my hand.”
—Sacha Barber, Microsoft MVP, CodeProject MVP, author of many WPF articles

“Of all the books published about WPF, there are only three that I recommend. Windows Presentation
Foundation Unleashed is my primary recommendation to developers looking to get up to speed quickly
with WPF.”
—Mike Brown, Microsoft MVP, Client App Development, and president of KharaSoft, Inc.

WPF 4.5
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Adam Nathan

WPF 4.5 Unleashed
Copyright © 2014 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33697-3
ISBN-10: 0-672-33697-9

Library of Congress Control Number: 2013939232

Printed in the United States on America

First Printing July 2013

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Senior Project Editor
Betsy Gratner

Indexer
Erika Millen

Proofreader
Kathy Ruiz

Technical Editors
Dwayne Need
Robert Hogue
Joe Castro
Jordan Parker

Publishing Coordinator
Cindy Teeters

Cover Designer
Mark Shirar

Senior Compositor
Gloria Schurick

Contents at a Glance
Introduction . 1

Part I Background

1 Why WPF? . 7

2 XAML Demystified . 17

3 WPF Fundamentals . 55

Part II Building a WPF Application

4 Sizing, Positioning, and Transforming Elements . 77

5 Layout with Panels . 97

6 Input Events: Keyboard, Mouse, Stylus, and Touch. 141

7 Structuring and Deploying an Application . 177

8 Exploiting Windows Desktop Features . 217

Part III Controls

9 Content Controls . 241

10 Items Controls . 255

11 Images, Text, and Other Controls . 309

Part IV Features for Professional Developers

12 Resources . 341

13 Data Binding . 361

14 Styles, Templates, Skins, and Themes . 415

Part V Rich Media

15 2D Graphics . 473

16 3D Graphics . 535

17 Animation . 605

18 Audio, Video, and Speech . 651

Part VI Advanced Topics

19 Interoperability with Non-WPF Technologies . 671

20 User Controls and Custom Controls . 717

21 Layout with Custom Panels . 747

22 Toast Notifications. 771

A Fun with XAML Readers and Writers . 783

Index . 799

Table of Contents

Introduction 1

Who Should Read This Book? . 2
Software Requirements . 3
Code Examples. 3
How This Book Is Organized. 4
Conventions Used in This Book . 6

Part I Background

1 Why WPF? 7

A Look at the Past. 8
Enter WPF . 9
The Evolution of WPF. 12
Summary . 16

2 XAML Demystified 17

XAML Defined . 19
Elements and Attributes . 20
Namespaces . 22
Property Elements . 25
Type Converters. 26
Markup Extensions. 28
Children of Object Elements . 31
Mixing XAML with Procedural Code . 36
XAML2009 . 44
XAML Keywords . 49
Summary . 52

3 WPF Fundamentals 55

A Tour of the Class Hierarchy. 55
Logical and Visual Trees . 57
Dependency Properties . 62
Summary . 76

Part II Building a WPF Application

4 Sizing, Positioning, and Transforming Elements 77

Controlling Size . 78
Controlling Position . 83
Applying Transforms . 86
Summary . 95

5 Layout with Panels 97

Canvas . 98
StackPanel. 100
WrapPanel . 102
DockPanel. 105
Grid . 108
Primitive Panels . 120
Handling Content Overflow. 122
Putting It All Together: Creating a Visual Studio–Like

Collapsible, Dockable, Resizable Pane . 130
Summary . 140

6 Input Events: Keyboard, Mouse, Stylus, and Touch 141

Routed Events. 141
Keyboard Events. 150
Mouse Events . 152
Stylus Events . 156
Touch Events . 158
Commands . 170
Summary . 176

7 Structuring and Deploying an Application 177

Standard Desktop Applications . 177
Navigation-Based Desktop Applications. 193
Gadget-Style Applications . 205
XAML Browser Applications . 207
Loose XAML Pages. 213
Summary . 215

8 Exploiting Windows Desktop Features 217

Jump Lists . 217
Taskbar Item Customizations. 229
Aero Glass . 233
TaskDialog . 236
Summary . 239

Contents v

Part III Controls

9 Content Controls 241

Buttons. 243
Simple Containers . 248
Containers with Headers . 252
Summary . 254

10 Items Controls 255

Common Functionality . 256
Selectors . 261
Menus . 298
Other Items Controls . 302
Summary . 308

11 Images, Text, and Other Controls 309

The Image Control . 309
Text and Ink Controls . 311
Documents. 318
Range Controls . 334
Calendar Controls . 336
Summary . 340

Part IV Features for Professional Developers

12 Resources 341

Binary Resources . 341
Logical Resources. 349
Summary . 360

13 Data Binding 361

Introducing the Binding Object . 361
Controlling Rendering . 373
Customizing the View of a Collection. 385
Data Providers . 396
Advanced Topics . 403
Putting It All Together: The Pure-XAML Twitter Client. 412
Summary . 414

WPF 4.5 Unleashedvi

14 Styles, Templates, Skins, and Themes 415

Styles . 416
Templates. 430
Skins . 458
Themes. 465
Summary . 470

Part V Rich Media

15 2D Graphics 473

Drawings . 474
Visuals. 491
Shapes . 503
Brushes. 511
Effects . 527
Improving Rendering Performance . 530
Summary . 533

16 3D Graphics 535

Getting Started with 3D Graphics. 536
Cameras and Coordinate Systems. 540
Transform3D . 552
Model3D. 561
Visual3D . 584
Viewport3D. 591
2D and 3D Coordinate System Transformation. 594
Summary . 603

17 Animation 605

Animations in Procedural Code . 606
Animations in XAML . 619
Keyframe Animations. 628
Easing Functions . 635
Animations and the Visual State Manager. 641
Summary . 649

18 Audio, Video, and Speech 651

Audio . 651
Video . 656
Speech. 662
Summary . 669

Contents vii

Part VI Advanced Topics

19 Interoperability with Non-WPF Technologies 671

Embedding Win32 Controls in WPF Applications . 673
Embedding WPF Controls in Win32 Applications . 688
Embedding Windows Forms Controls in WPF Applications 695
Embedding WPF Controls in Windows Forms Applications 700
Mixing DirectX Content with WPF Content . 704
Embedding ActiveX Controls in WPF Applications. 710
Summary . 714

20 User Controls and Custom Controls 717

Creating a User Control. 719
Creating a Custom Control . 728
Summary . 746

21 Layout with Custom Panels 747

Communication Between Parents and Children. 748
Creating a SimpleCanvas . 751
Creating a SimpleStackPanel. 756
Creating an OverlapPanel . 759
Creating a FanCanvas . 764
Summary . 769

22 Toast Notifications 771

Prerequisites . 771
Sending a Toast Notification. 774
Toast Templates. 775
Notification Events . 778
Scheduled Notifications. 779
Summary . 780

A Fun with XAML Readers and Writers 783

Overview . 783
The Node Loop . 786
Reading XAML. 787
Writing to Live Objects. 791
Writing to XML . 793
XamlServices . 794

Index 799

WPF 4.5 Unleashedviii

About the Author

Adam Nathan is a principal software architect for Microsoft in the Startup Business
Group. Adam was previously the founding developer and architect for Popfly, Microsoft's
first product built on Silverlight, named one of the 25 most innovative products of 2007
by PCWorld Magazine. Having started his career on Microsoft’s Common Language
Runtime team, Adam has been at the core of .NET and WPF technologies since the very
beginning.

Adam’s books have been considered required reading by many inside Microsoft and
throughout the industry. He is the author of the best-selling WPF Unleashed (Sams, 2006)
that was nominated for a 2008 Jolt Award, WPF 4 Unleashed (Sams, 2010), Windows 8 Apps
with XAML and C# Unleashed (Sams, 2012), 101 Windows Phone 7 Apps (Sams, 2011),
Silverlight 1.0 Unleashed (Sams, 2008), and .NET and COM: The Complete Interoperability
Guide (Sams, 2002); a coauthor of ASP.NET: Tips, Tutorials, and Code (Sams, 2001); and a
contributor to books including .NET Framework Standard Library Annotated Reference,
Volume 2 (Addison-Wesley, 2005) and Windows Developer Power Tools (O’Reilly, 2006).
Adam is also the creator of PINVOKE.NET and its Visual Studio add-in. You can find him
online at www.adamnathan.net or @adamnathan on Twitter.

http://www.adamnathan.net

Dedication

To Tyler and Ryan.

Acknowledgments

Although most of the process of writing a book is very solitary, this book came together
because of the work of many talented and hard-working people. I’d like to take a moment
to thank some of them by name.

I’d like to sincerely thank Dwayne Need, senior development manager from the WPF
team. His feedback on my drafts was so thorough and insightful, the book is far better
because of him. I’d like to thank Robert Hogue, Joe Castro, and Jordan Parker for their
helpful reviews. David Teitlebaum, 3D expert from the WPF team, deserves many thanks
for agreeing to update the great 3D chapter originally written by Daniel Lehenbauer.
Having Daniel’s and David’s perspectives and advice captured on paper is a huge benefit
for any readers thinking about dabbling in 3D.

I’d also like to thank (in alphabetical order): Chris Brumme, Eileen Chan, Brian Chapman,
Beatriz de Oliveira Costa, Joe Duffy, Ifeanyi Echeruo, Dan Glick, Neil Kronlage, Rico
Mariani, Mike Mueller, Oleg Ovetchkine, Lori Pearce, S. Ramini, Rob Relyea, Tim Rice,
Ben Ronco, Eric Rudder, Adam Smith, Tim Sneath, David Treadwell, and Paramesh
Vaidyanathan.

I’d like to thank the folks at Sams—especially Neil Rowe and Betsy Gratner, who are always
a pleasure to work with. I couldn’t have asked for a better publishing team. Never once was
I told that my content was too long or too short or too different from a typical Unleashed
title. They gave me the complete freedom to write the kind of book I wanted to write.

I’d like to thank my mom, dad, and brother for opening my eyes to the world of
computer programming when I was in elementary school. If you have children, please
expose them to the magic of writing software while they’re still young enough to care
about what you have to say!

Finally, I thank you for picking up a copy of this book and reading at least this far! I hope
you continue reading and find the journey of exploring WPF 4.5 as fascinating as I have!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Thank you for picking up WPF 4.5 Unleashed! Windows Presentation Foundation (WPF) is
Microsoft’s premier technology for creating Windows desktop apps, whether they consist
of plain forms, document-centric windows, animated cartoons, videos, immersive 3D envi-
ronments, or all of the above. WPF is a technology that makes it easier than ever to create
a broad range of applications. It’s also the basis for XAML-based Windows Store apps.

Ever since WPF was publicly announced ten years ago (with the code name “Avalon”), it
has gotten considerable attention for the ways in which it revolutionizes the process of
creating software—especially for Windows programmers used to Windows Forms and
GDI. It’s relatively easy to create fun, useful, and shareable WPF samples that demonstrate
all kinds of techniques that are difficult to accomplish in other technologies. WPF 4.5,
released in August 2012, continues to improve on previous versions of WPF in many
different dimensions.

WPF is quite a departure from previous technologies in terms of its programming model,
underlying concepts, and basic terminology. Even viewing the source code for WPF (by
cracking open its components with a tool such as .NET Reflector) is a confusing experi-
ence because the code you’re looking for often doesn’t reside where you’d expect to find
it. When you combine all this with the fact that there are often several ways to accom-
plish any task in WPF, you arrive at a conclusion shared by many: WPF has a very steep
learning curve.

That’s where this book comes in. As WPF was developed, it was obvious that there would
be no shortage of WPF books in the marketplace. But it wasn’t clear to me that the books
would have the right balance to guide people through the technology and its unique
concepts while showing practical ways to exploit it. Therefore, I wrote the first edition of
this book, Windows Presentation Foundation Unleashed, with the following goals in mind:

. To provide a solid grounding in the underlying concepts, in a practical and
approachable fashion

. To answer the questions most people have when learning the technology and to
show how commonly desired tasks are accomplished

. To be an authoritative source, thanks to input from members of the WPF team who
designed, implemented, and tested the technology

. To be clear about where the technology falls short rather than selling the technol-
ogy as the answer to all problems

. To be an easily navigated reference that you can constantly come back to

The first two editions of this book were far more successful than I ever imagined they
would be. Now, more than six years after the first edition, I believe that this book accom-
plishes all the same goals but with even more depth and in the context of the modern

Windows experience that includes Windows Store apps and a different design aesthetic.
Whether you’re new to WPF or a long-time WPF developer, I hope you find this book to
exhibit all these attributes.

Who Should Read This Book?
This book is for software developers who are interested in creating user interfaces for the
Windows desktop. Regardless of whether you’re creating line-of-business applications,
consumer-facing applications, or reusable controls, this book contains a lot of content
that helps you get the most out of the platform. It’s designed to be understandable even
for folks who are new to the .NET Framework. And if you are already well versed in WPF,
I’m confident that this book still has information for you. At the very least, it should be
an invaluable reference for your bookshelf.

Because the technology and concepts behind WPF are the same ones behind Silverlight
and XAML-based Windows Store apps, reading this book can also make you a better
developer for Windows Phone and the Windows Store.

Although this book’s content is not optimized for graphic designers, reading this book
can be a great way to understand more of the “guts” behind a product like Blend for
Visual Studio.

To summarize, this book does the following:

. Covers everything you need to know about Extensible Application Markup
Language (XAML), the XML-based language for creating declarative user interfaces
that can be easily restyled

. Examines the WPF feature areas in incredible depth: controls, layout, resources, data
binding, styling, graphics, animation, and more

. Delves into topics that aren’t covered by most books: 3D, speech, audio/video, docu-
ments, effects, and more

. Shows how to create popular user interface elements and leverage built-in controls
such as the new Office-style Ribbon

. Demonstrates how to create sophisticated user interface mechanisms, such as Visual
Studio–like collapsible/dockable panes

. Explains how to develop and deploy all types of applications, including navigation-
based applications, applications hosted in a web browser, and applications with
great-looking nonrectangular windows

. Explains how to create first-class custom controls for WPF

. Demonstrates how to create hybrid WPF software that leverages Windows Forms,
DirectX, ActiveX, or other non-WPF technologies

. Explains how to exploit desktop features in WPF applications, such as Jump Lists
and taskbar customizations, and the same toast notifications used by Windows
Store apps

WPF 4.5 Unleashed2

This book doesn’t cover every last bit of WPF. (In particular, XML Paper Specification
[XPS] documents, which never really took off, are given only a small bit of attention.)
WPF’s surface area is so large that I don’t believe any single book can. But I think you’ll
be pleased with the breadth and depth achieved by this book.

Examples in this book appear in XAML and C#, plus C++/CLI for interoperability discus-
sions. XAML is used heavily for a number of reasons: It’s often the most concise way to
express source code, it can often be pasted into lightweight tools to see instant results
without any compilation, WPF-based tools generate XAML rather than procedural code,
and XAML is applicable no matter what .NET language you use, such as Visual Basic
instead of C#. Whenever the mapping between XAML and a language such as C# is not
obvious, examples are shown in both representations.

Software Requirements
This book targets version 4.5 of Windows Presentation Foundation, the corresponding
Windows SDK, and Visual Studio 2012.

The following software is required:

. A version of Windows that supports the .NET Framework 4.5.

. The .NET Framework 4.5, which is installed by default starting with Windows 8. For
earlier versions of Windows, you can download the .NET Framework 4.5 for free
from http://msdn.com.

In addition, the following software is recommended:

. The Windows Software Development Kit (SDK), specifically the .NET tools it
includes. This is also a free download from http://msdn.com.

. Visual Studio 2012 or later, which can be a free Express edition downloaded from
http://msdn.com.

If you want additional tool support for WPF-based graphic design, Blend for Visual Studio
can be extremely helpful.

A few examples are specific to features introduced in Windows Vista, Windows 7, and
Windows 8. Some examples require a touchscreen (or an equivalent touch digitizer). The
rest of the book applies equally to all relevant versions of Windows.

Code Examples
The source code for examples in this book can be downloaded from http://informit.com/
title/9780672336973 or http://adamnathan.net/wpf.

Introduction 3

http://msdn.com
http://msdn.com
http://msdn.com
http://informit.com/title/9780672336973
http://informit.com/title/9780672336973
http://adamnathan.net/wpf

How This Book Is Organized
This book is arranged into six main parts, representing the progression of feature areas
that you typically need to understand to use WPF effectively. But if you’re dying to jump
ahead and learn about a topic such as 3D or animation, the book is set up to allow for
nonlinear journeys as well. The following sections provide a summary of each part.

Part I: Background
This part includes the following chapters:

. Chapter 1: Why WPF?

. Chapter 2: XAML Demystified

. Chapter 3: WPF Fundamentals

Chapter 1 introduces WPF by comparing it to alternative technologies and helping you
make decisions about when WPF is appropriate for your needs. Chapter 2 explores XAML
in great depth, giving you the foundation to understand the XAML you’ll encounter in
the rest of the book and in real life. Chapter 3 highlights the most unique pieces of WPF’s
programming model above and beyond what .NET programmers already understand.

Part II: Building a WPF Application
This part includes the following chapters:

. Chapter 4: Sizing, Positioning, and Transforming Elements

. Chapter 5: Layout with Panels

. Chapter 6: Input Events: Keyboard, Mouse, Stylus, and Touch

. Chapter 7: Structuring and Deploying an Application

. Chapter 8: Exploiting Windows Desktop Features

Part II equips you with the knowledge to assemble and deploy a traditional-looking applica-
tion (although some fancier effects, such as transforms and nonrectangular windows, are
also covered). Chapters 4 and 5 discuss arranging controls (and other elements) in a user
interface. Chapter 6 covers input events, including support for engaging touch user inter-
faces. Chapter 7 examines several different ways to package and deploy WPF-based user
interfaces to make complete applications. Chapter 8 ends this part by showing slick ways to
exploit features in the Windows desktop that can help make your application look modern.

Part III: Controls
This part includes the following chapters:

. Chapter 9: Content Controls

. Chapter 10: Items Controls

. Chapter 11: Images, Text, and Other Controls

WPF 4.5 Unleashed4

Part III provides a tour of controls built into WPF. There are many that you’d expect to
have available, plus several that you might not expect. Two categories of controls—
content controls (Chapter 9) and items controls (Chapter 10)—are important and deep
enough topics to merit their own chapters. The rest of the controls are examined in
Chapter 11.

Part IV: Features for Professional Developers
This part includes the following chapters:

. Chapter 12: Resources

. Chapter 13: Data Binding

. Chapter 14: Styles, Templates, Skins, and Themes

The features covered in Part IV are not always necessary to use in WPF applications, but
they can greatly enhance the development process. Therefore, they are indispensable for
professional developers who are serious about creating maintainable and robust applica-
tions or components. These topics are less about the results visible to end users than they
are about the best practices for accomplishing these results.

Part V: Rich Media
This part includes the following chapters:

. Chapter 15: 2D Graphics

. Chapter 16: 3D Graphics

. Chapter 17: Animation

. Chapter 18: Audio, Video, and Speech

This part of the book covers the features in WPF that typically get the most attention. The
support for 2D and 3D graphics, animation, video, and more enable you to create a stun-
ning experience. These features—and the way they are exposed—set WPF apart from
previous systems. WPF lowers the barrier to incorporating such content in your software,
so you might try some of these features that you never would have dared to try in the
past!

Part VI: Advanced Topics
This part includes the following chapters:

. Chapter 19: Interoperability with Non-WPF Technologies

. Chapter 20: User Controls and Custom Controls

. Chapter 21: Layout with Custom Panels

. Chapter 22: Toast Notifications

Introduction 5

The topics covered in Part VI are relevant for advanced application developers, or devel-
opers of WPF-based controls. The fact that existing WPF controls can be radically restyled
greatly reduces the need for creating custom controls. The final chapter is especially inter-
esting because it enables your WPF apps to use a feature designed for Windows Store apps.

Conventions Used in This Book
Various typefaces in this book identify new terms and other special items. These typefaces
include the following:

Typeface Meaning

Italic Italic is used for new terms or phrases when they are initially defined and occa-
sionally for emphasis.

Monospace Monospace is used for screen messages, code listings, and command
samples, as well as filenames. In code listings, italic monospace type is
used for placeholder text.
Code listings are colorized similar to the way they are colorized in Visual Studio.
Blue monospace type is used for XML elements and C#/C++ keywords, brown
monospace type is used for XML element names and C#/C++ strings, green
monospace type is used for comments, red monospace type is used for XML
attributes, and teal monospace type is used for type names in C# and C++.

Throughout this book, you’ll find a number of sidebar elements:

WPF 4.5 Unleashed6

What is a FAQ sidebar?

A FAQ sidebar presents a question
readers might have regarding the subject
matter in a particular spot in the book—and
then provides a concise answer.

?
FA Q

A Digging Deeper sidebar presents advanced or
more detailed information on a subject than is
provided in the surrounding text. Think of Dig-
ging Deeper material as stuff you can look into
if you’re curious but can ignore if you’re not.

D I G G I N G D E E P E R

A tip is a bit of information that can help
you in a real-world situation. Tips often offer
shortcuts or alternative approaches to
produce better results or to make a task
easier or quicker.

T I P

A warning alerts you to an action or a
condition that can lead to an unexpected
or unpredictable result—and then tells you
how to avoid it.

WA R N I N G

CHAPTER 1

Why WPF?

In movies and on TV, the main characters are typically an
exaggeration of the people you encounter in real life.
They’re more attractive, they react more quickly, and they
somehow always know exactly what to do. The same could
be said about the software they use.

This first struck me back in 1994 when watching the movie
Disclosure, starring Michael Douglas, Demi Moore, and an
email program that looks nothing like Microsoft Outlook!
Throughout the movie, we’re treated to various visual
features of the program: a spinning three-dimensional “e,”
messages that unfold when you open them and crumple
when you delete them, hints of inking support, and slick
animations when you print messages. (The email program
isn’t even the most unrealistic software in the movie. I’ll
just say “virtual reality database” and leave it at that.)

Usability issues aside, Hollywood has been telling us
for a long time that software in the real world isn’t as
compelling as it should be. You can probably think of
several examples on your own of TV shows and movies
with comically unrealistic software. In recent years,
Hollywood software and real software are not so different
from each other. A large part of this is due to movies and
TV shows doing a better job of portraying software. But at
the same time, software has gotten a lot more attractive
over the past decade. Just take a moment to reflect on the
experience of using a smartphone, Xbox, or Windows Store
apps. These user interfaces are a lot different than what we
used to see on Windows XP! Users have increasing expecta-
tions for the experience of using software, and companies
are spending a great deal of time and money on user inter-
faces that differentiate themselves from the competition.
This isn’t limited to consumer-facing software; even busi-
ness applications and internal tools can greatly benefit
from a polished user interface.

IN THIS CHAPTER

. A Look at the Past

. Enter WPF

. The Evolution of WPF

With higher demands placed on user interfaces, traditional software development
processes and technologies often fall short. Modern software usually needs to support
rapid iteration and major user interface changes throughout the process—whether such
changes are driven by professional graphic designers, developers with a knack for design-
ing user interfaces, or a boss who wants the product to be more “shiny” and animated.
For this to be successful, you need technology and tools that make it natural to separate
the user interface from the rest of the implementation as much as possible and to decou-
ple visual behavior from the underlying program logic. Developers should be able to
create a fully functional “ugly” application that designers can directly retheme without
requiring developers to translate their artwork. The Win32 style of programming, in
which controls directly contain code to paint and repaint themselves, makes rapid user
interface iteration far too difficult for most projects.

More importantly, the classic style of constructing user interfaces has issues on modern
PCs. I recently got a new convertible laptop/tablet with a beautiful 12.5-inch 1080p
screen. However, the 1920x1080 native resolution on such a small screen results in
incredibly small text and other UI elements. I need to scale up the desktop (in other
words, increase the dots-per-inch, or DPI) to at least 150% to make it comfortable to use.
(From talking to others, I know it’s not just me and my aging eyes!) And scaling the
desktop can easily expose bugs in Windows desktop apps, or just make them pretty ugly.
To be successful on screens such as this, desktop apps need to naturally scale to a wide
variety of situations, just like Windows Store apps.

In 2006, Microsoft released a technology to help people create 21st-century software that
meets these high demands: Windows Presentation Foundation (WPF). With the release of
WPF 4.5 in 2012, the technology is better than ever at delivering amazing results for just
about any kind of software. It is the premier technology for creating Windows desktop
apps and shares a lot of the same concepts as creating XAML-based Windows Store apps.

A Look at the Past
The primary technologies behind many Windows-based user interfaces—the graphics
device interface (GDI) and USER subsystems—were introduced with Windows 1.0 in 1985.
That’s almost prehistoric in the world of technology! In the early 1990s, OpenGL (created
by Silicon Graphics) became a popular graphics library for doing advanced two-
dimensional (2D) and three-dimensional (3D) graphics on both Windows and non-
Windows systems. This was leveraged by people creating computer-aided design (CAD)
programs, scientific visualization programs, and games. DirectX, a Microsoft technology
introduced in 1995, provided a new high-performance alternative for 2D graphics, input,
communication, sound, and eventually 3D (introduced with DirectX 2 in 1996).

Over the years, many enhancements have been made to both GDI and DirectX. GDI+,
introduced in the Windows XP time frame, tried to improve upon GDI by adding support
for features such as alpha blending and gradient brushes. It ended up being slower than
GDI due to its complexity and lack of hardware acceleration. DirectX (which, by the way,
is the technology behind Xbox) continually comes out with new versions that push the

CHAPTER 1 Why WPF?8

limits of what can be done with computer graphics. With the introduction of .NET and
managed code in 2002, developers were treated to a highly productive model for creating
Windows (and web) applications. In this world, Windows Forms (built on top of GDI+)
became the primary way a C#, Visual Basic, and (to a lesser degree) C++ developer started
to create new user interfaces on Windows. Windows Forms has been a successful and
productive technology, but it still has all the fundamental limitations of GDI+ and USER.

So although you could have developed a Windows-based email program with the 3D
effects seen in Disclosure ever since the mid-1990s with non-GDI technologies (actually,
probably mixing DirectX or OpenGL with GDI), such technologies are rarely used in
mainstream Windows applications almost two decades later. There are several reasons for
this: The hardware required to get a decent experience hasn’t been ubiquitous until
recently, it has been at least an order of magnitude harder to use alternative technologies,
and GDI-based experiences have been considered “good enough.”

Graphics hardware continues to get better and cheaper and consumer expectations
continue to rise, but until WPF, the difficulty of creating modern user experiences had not
been addressed. Some developers would take matters into their own hands to get cooler-
looking applications and controls on Windows. A simple example of this is using bitmaps
for buttons instead of using the standard button control. These types of customizations
can not only be expensive to develop, but they also often produce a flakier experience.
Such applications often aren’t as accessible as they should be, don’t handle high dots-per-
inch (DPI) settings very well, and have other visual glitches.

Enter WPF
Microsoft recognized that something brand new was needed that escaped the limitations
of GDI+ and USER yet provided the kind of productivity that people enjoy with frame-
works like Windows Forms. And with the continual rise of cross-platform applications
based on HTML and JavaScript, Windows desperately needed a technology that’s as fun
and easy to use as these, yet with the power to exploit the ever-increasing capabilities of
the local computer. Windows Presentation Foundation (WPF) is the answer for software
developers and graphic designers who want to create modern desktop user experiences
without having to master several difficult technologies. Although “Presentation” sounds
like a lofty term for what I would simply call a user interface, it’s probably more appropri-
ate for describing the higher level of visual polish that’s expected of today’s applications
and the wide range of functionality included in WPF!

The highlights of WPF include the following:

. Broad integration—Prior to WPF, a Windows developer who wanted to use 3D,
video, speech, and rich document viewing in addition to normal 2D graphics and
controls would have to learn several independent technologies with a number of
inconsistencies and attempt to blend them together without much built-in support.
But WPF covers all these areas with a consistent programming model as well as tight
integration when each type of media gets composited and rendered. You can apply
the same kind of effects consistently across different media types, and many of the
techniques you learn in one area apply to all the other areas.

Enter WPF 9
1

. Resolution independence—Imagine a world in which moving to a higher resolu-
tion or DPI setting doesn’t mean that everything gets smaller; instead, graphics and
text simply get crisper! Envision user interfaces that look reasonable on a small
tablet as well as on a 60-inch TV! WPF makes this easy and gives you the power to
shrink or enlarge elements on the screen independently from the screen’s resolu-
tion. A lot of this is possible because of WPF’s emphasis on vector graphics.

. Hardware acceleration—WPF is built on Direct3D, so content in a WPF applica-
tion—whether 2D or 3D, graphics, or text—is converted to 3D triangles, textures,
and other Direct3D objects and then rendered by hardware. This means that WPF
applications get the benefits of hardware acceleration for smoother graphics and all-
around better performance (due to work being offloaded to graphics processing
units [GPUs] instead of central processor units [CPUs]). It also ensures that all WPF
applications (not just high-end games) receive benefits from new hardware and
drivers, whose advances typically focus on 3D capabilities. But WPF doesn’t require
high-end graphics hardware; it has a software rendering pipeline as well. This
enables features not yet supported by hardware, enables high-fidelity printing of
any content on the screen, and is used as a fallback mechanism when encountering
inadequate hardware resources (such as an outdated graphics card or even a high-
end one that has simply run out of GPU resources such as video memory).

. Declarative programming—Declarative programming is not unique to WPF, as
Win16/Win32 programs have used declarative resource scripts to define the layout
of dialog boxes and menus for over 25 years. And .NET programs of all types often
leverage declarative custom attributes plus configuration and resource files based on
Extensible Markup Language (XML). But WPF takes declarative programming to the
next level with Extensible Application Markup Language (XAML; pronounced
“Zammel”). The combination of WPF and XAML is similar to using HTML to define
a user interface—but with an incredible range of expressiveness. This expressiveness
even extends beyond the bounds of user interfaces; WPF uses XAML as a document
format, a representation of 3D models, and more. The result is that graphic design-
ers are empowered to contribute directly to the look and feel of applications, as well
as some behavior for which you’d typically expect to have to write code. The next
chapter examines XAML in depth.

. Rich composition and customization—WPF controls can be composed in ways
never before seen. You can create a ComboBox filled with animated Buttons or a Menu
filled with live video clips! Although these particular customizations might sound
horrible, it’s important that you don’t have to write a bunch of code (or any code!)
to customize controls in ways that the control authors never imagined (unlike
owner-draw in prior technologies). Along the same lines, WPF makes it quite easy to
“skin” applications with radically different looks (covered in Chapter 14, “Styles,
Templates, Skins, and Themes”).

CHAPTER 1 Why WPF?10

In short, WPF aims to combine the best
attributes of systems such as DirectX
(3D and hardware acceleration),
Windows Forms (developer productiv-
ity), Adobe Flash (powerful animation
support), and HTML (declarative
markup). With the help of this book, I
think you’ll find that WPF gives you
more productivity, power, and fun than
any other technology you’ve worked
with in the past!

Enter WPF 11
1

D I G G I N G D E E P E R

GDI and Hardware Acceleration

GDI is actually hardware accelerated on
Windows XP. The video driver model explicitly
supported accelerating common GDI opera-
tions. Windows Vista introduced a new video
driver model that does not hardware acceler-
ate GDI primitives. Instead, it uses a “canon-
ical display device” software implementation
of the legacy video driver for GDI. However,
Windows 7 reintroduced partial hardware
acceleration for GDI primitives.

FA Q

Does WPF enable me to do something that I couldn’t have previously done?

Technically, the answer is “No,” just like C# and the .NET Framework don’t enable you
to do something that you couldn’t do in assembly code. It’s just a question of how much
work you want to do to get the desired results!

If you were to attempt to build a WPF-equivalent application from scratch without WPF, you’d
not only have to worry about the drawing of pixels on the screen and interaction with input
devices, you’d also need to do a ton of additional work to get the accessibility and localiza-
tion support that’s built in to WPF, and so on. WPF also provides the easiest way to take
advantage of compelling desktop features, such as defining Jump List items with a small
chunk of XAML (see Chapter 8, “Exploiting Windows Desktop Features”).

So I think most people would agree that the answer is “Yes” when you factor time and
money into the equation!

?

FA Q

When should I use DirectX instead of WPF?

DirectX is more appropriate than WPF for advanced developers writing hard-core “twitch
games” or applications with complex 3D models where you need maximum performance.
That said, it’s easy to write a naive DirectX application that performs far worse than a similar
WPF application.

DirectX is a low-level interface to the graphics hardware that exposes all the quirks of what-
ever GPU a particular computer has. DirectX can be thought of as assembly language in the
world of graphics: You can do anything the GPU supports, but it’s up to you (the application
author) to support all the hardware variations. This is onerous, but such low-level hardware
access enables skilled developers to make their own tradeoffs between fine-grained quality
and speed. In addition, DirectX exposes cutting-edge features of GPUs as they emerge more
quickly than they appear in WPF.

?

The Evolution of WPF
Oddly enough, WPF 4.5 is the fifth major release of WPF. It’s odd because the first release
had the version number 3.0! The first release in November 2006 was called WPF 3.0
because it shipped as part of the .NET Framework 3.0. The second release—WPF 3.5—
came almost exactly a year later (one day shy, in fact). The third release, once again, came
almost a year later (in August 2008). This release was a part of Service Pack 1 (SP1) for
.NET 3.5, but this was no ordinary service pack as far as WPF was concerned—it
contained many new features and improvements.

In addition to these major releases, Microsoft introduced a “WPF Toolkit” in August 2008
at http://wpf.codeplex.com that, along with miscellaneous tools and samples, gets
updated periodically. The WPF Toolkit has been used as a way to ship features more
quickly and in an experimental form (often with full source code). Features introduced in
the WPF Toolkit often “graduate” to get included in a future release of WPF, based on
customer feedback about their desirability and readiness.

When the first version of WPF was released, tool support was almost nonexistent. The
following months brought primitive WPF extensions for Visual Studio 2005 and the first
public preview release of Expression Blend (now called Blend for Visual Studio). Now,
Visual Studio 2012 not only has first-class support for WPF development but is largely a
WPF application itself! Blend, an application built 100% with WPF, has also gained a lot
of functionality for designing and prototyping great user interfaces. And in the past
several years, numerous WPF-based applications have been released from companies such
as Autodesk, SAP, Disney, Blockbuster, Roxio, AMD, Hewlett Packard, Lenovo, and many
more. Microsoft itself, of course, has a
long list of software built with WPF
(Visual Studio, Blend, Test and Lab
Manager, Deep Zoom Composer,
Songsmith, Surface, Semblio, Robotics
Studio, LifeCam, Amalga, Games for
Windows LIVE Marketplace, Office

CHAPTER 1 Why WPF?12

Continued

In contrast, WPF provides a high-level abstraction that takes a description of a scene and
figures out the best way to render it, given the hardware resources available. (It’s a retained
mode system rather than an immediate mode system.) 2D is the primary focus of WPF; its
3D support is focused on data visualization scenarios and integration with 2D rather than
supporting the full power of DirectX.

The downside of choosing DirectX over WPF is a potentially astronomical increase in develop-
ment cost. A large part of this cost is the requirement to test an application on each
driver/GPU combination you intend to support. One of the major benefits of building on top of
the WPF is that Microsoft has already done this testing for you! You can instead focus your
testing on low-end hardware for measuring performance. The fact that WPF applications can
even leverage the client GPU in a partial-trust environment is also a compelling differentiator.

Note that you are able to use both DirectX and WPF in the same application. Chapter 19,
“Interoperability with Non-WPF Technologies,” shows how this can be done.

T I P

To inspect the WPF elements used in
any WPF-based application, you can use
the Snoop tool available from
http://snoopwpf.codeplex.com.

http://wpf.codeplex.com
http://snoopwpf.codeplex.com

Communicator Attendant, Active Directory Administrative Center, Dynamics NAV, Pivot,
PowerShell ISE, and many more).

Let’s take a closer look at how WPF has changed over time.

Enhancements in WPF 3.5 and WPF 3.5 SP1
The following notable changes were made to WPF in versions 3.5 and 3.5 SP1:

. Interactive 3D—The worlds of 2D and 3D were woven together even more seam-
lessly with the UIElement3D base class, which gives 3D elements input, focus, and
events; the odd-sounding Viewport2DVisual3D class, which can place any interac-
tive 2D controls inside a 3D scene; and more. See Chapter 16, “3D Graphics.”

. First-class interoperability with DirectX—Previously, WPF applications could
only interoperate with DirectX via the lowest common denominator of Win32.
Now, WPF has functionality for interacting directly with Direct3D surfaces with the
D3DImage class rather than being forced to interact with its host HWND. One benefit
from this is the ability to place WPF content on top of DirectX content and vice
versa. See Chapter 19.

. Better data binding—WPF gained support for XLINQ binding, better validation
and debugging, and output string formatting in XAML that reduces the need for
custom procedural code. See Chapter 13, “Data Binding.”

. Better special effects—The first version of WPF shipped with a handful of
bitmap effects (blur, drop shadow, outer glow, emboss, and bevel) but with a
warning to not use them because their performance was so poor! This has changed,
with a new set of hardware-accelerated effects and a whole new architecture that
allows you to plug in your own custom hardware-accelerated effects via pixel
shaders. See Chapter 15, “2D Graphics.”

. High-performance custom drawing—WPF didn’t previously have a good
answer for custom drawings that involve thousands of points or shapes, as even the
lowest-level drawing primitives have too much overhead to make such things
perform well. The WriteableBitmap class was enhanced so you can now specify
dirty regions when drawing on it rather than getting a whole new bitmap every
frame! Because WriteableBitmap only lets you set pixels, it is a very primitive form
of “drawing,” however.

. Text improvements—There’s now better performance, better international
support (improved input method editor [IME] support and improved Indic script
support), and enhancements to TextBox and RichTextBox. See Chapter 11, “Images,
Text, and Other Controls.”

. Enhancements to partial-trust applications—More functionality became
available in the partial-trust sandbox for .NET applications, such as the ability
to use Windows Communication Foundation (WCF) for web service calls (via
basicHttpBinding) and the ability to read and write HTTP cookies. Also, support for
XAML Browser Applications (XBAPs)—the primary mechanism for running partial-trust

The Evolution of WPF 13
1

WPF applications—was extended to the Firefox web browser instead of just Internet
Explorer (In WPF, however, the add-on that enables this is no longer installed by
default.)

. Improved deployment for applications and the .NET Framework—This
arrived in many forms: a smaller and faster .NET Framework installation process
thanks to the beginnings of a .NET Framework “client profile” that excludes server-
only .NET pieces such as ASP.NET; a new “bootstrapper” component that handles all
.NET Framework dependencies, installations, and upgrades for you as well as
enabling setups with custom branding; and a variety of new ClickOnce features.

. Improved performance—WPF and the underlying common language runtime
implemented several changes that significantly boosted the performance of WPF
applications without any code changes needed. For example, the load time (espe-
cially first-time load) has been dramatically improved, animations (especially slow
ones) are much smoother, data binding is faster in a number of scenarios, and
layered windows (described in Chapter 8) are now hardware accelerated. Other
performance improvements were made that you must opt into due to compatibility
constraints, such as improved virtualization and deferred scrolling in items controls,
described in Chapter 10, “Items Controls.”

Enhancements in WPF 4
WPF 4 brings the following changes, on top of the changes from previous versions:

. Multi-touch support—When running on computers that support multi-touch
and run Windows 7 or later, WPF elements can get a variety of input events, from
low-level data, to easy-to-consume manipulations (such as rotation and scaling), to
high-level—including custom—gestures. The built-in WPF controls have also been
updated to be multi-touch aware. See Chapter 6, “Input Events: Keyboard, Mouse,
Stylus, and Touch.”

. First-class support for other Windows 7 features—WPF provides the best
way to integrate with taskbar features such as Jump Lists and icon overlays, inte-
grate with the latest common dialogs, and more. See Chapter 8.

. New controls—WPF 4 includes controls such as DataGrid, Calendar, and
DatePicker, which originally debuted in the WPF Toolkit. See Chapter 11.

. Easing animation functions—Eleven new animation classes such as BounceEase,
ElasticEase, and SineEase enable sophisticated animations with custom rates of
acceleration and deceleration to be performed completely declaratively. These
“easing functions” and their infrastructure were first introduced in Silverlight 3
before being adopted by WPF 4.

. Enhanced styling with Visual State Manager—The Visual State Manager,
originally introduced in Silverlight 2, provides a new way to organize visuals and
their interactivity into “visual states” and “state transitions.” This feature makes it
easier for designers to work with controls in tools such as Blend.

CHAPTER 1 Why WPF?14

. Improved layout on pixel boundaries—WPF straddles the line between being
automatically DPI independent (which requires ignoring physical pixel boundaries)
and having visual elements that look crisp (which, especially for small elements,
requires being aligned on pixel boundaries). From the beginning, WPF has
supported a property called SnapsToDevicePixels that forces “pixel snapping” on
elements. But using SnapsToDevicePixels can be complex and doesn’t help in some
scenarios. Silverlight went back to the drawing board and created a property called
UseLayoutRounding that works more naturally. WPF 4 then added this property. Just
set it to true on a root element, and the positions of that element plus all of chil-
dren will be rounded up or down to lie on pixel boundaries. The result is user inter-
faces that can scale and can easily be crisp!

. Non-blurry text—WPF’s emphasis on DPI independence and a scalable user inter-
face has been an issue for small text—the kind of text that occurs a lot in traditional
user interfaces on 96-DPI screens. This has frustrated numerous users and develop-
ers. WPF 4 addressed this with an alternative way to render text that can make it
look as crisp as GDI-based text yet with almost all the benefits that WPF brings.
Visual Studio, for example, uses this rendering mode for its text documents. Because
there are some limitations to the new rendering approach, you must opt into it.
See Chapter 11.

. More deployment improvements—The .NET Framework client profile can run
side-by-side with the full .NET Framework, and it can be used in just about every
scenario relevant for WPF applications.

. More performance improvements—In order to make vector graphics perform
as well as possible, WPF can cache rendered results as bitmaps and reuse them. For
advanced scenarios, you can control this behavior with the CacheMode property. See
Chapter 15. The heavy usage of WPF in Visual Studio drove a lot of miscellaneous
performance improvements into WPF 4 across the board, but all WPF applications
get to enjoy these improvements.

Enhancements in WPF 4.5
WPF 4.5 brings the following changes, on top of the changes from previous versions:

. A new ribbon control—This matches a lot of sophisticated functionality made
popular by Microsoft Office, including a Quick Access Toolbar that can integrate
into the window chrome.

. Many new data-binding features—You can now data bind to static properties
and custom types that implement ICustomTypeProvider, automatically
resort/regroup/refilter changing data, throttle data source updates, support asyn-
chronous validation, and more. See Chapter 13.

. Additional support for events—You can now attach an event in XAML with a
markup extension (useful for third parties only, as WPF doesn’t have any relevant
ones built-in), and there’s now more support for the weak event pattern. See
Chapter 6.

The Evolution of WPF 15
1

Summary
As time passes, more software is delivering high-quality—sometimes cinematic—experi-
ences, and software that doesn’t risks looking old-fashioned. However, the effort involved
in creating such user interfaces—especially ones that exploit Windows—has been far too
difficult in the past.

WPF makes it easier than ever before to create all kinds of user interfaces, whether you
want to create a traditional-looking Windows application or an immersive 3D experience
worthy of a role in a summer blockbuster. Such a rich user interface can be evolved fairly
independently from the rest of an application, allowing graphic designers to participate in
the software development process much more effectively. But don’t just take my word for
it; read on to see for yourself how it’s done!

CHAPTER 1 Why WPF?16

FA Q

Are there any differences with WPF, depending on the version of Windows?

WPF exposes APIs that are relevant only for Windows 7 and later, such as multi-touch
functionality and various features described in Chapter 8. Besides that, WPF has a few
behavioral differences when running on Windows XP (the oldest version of Windows that WPF
supports). For example, 3D objects do not get antialiased.

And, of course, WPF controls have different default themes to match their host operating
system (Aero2 on Windows 8 versus Luna on Windows XP).

Windows XP also has an older driver model that can negatively impact WPF applications. The
driver model in later versions of Windows virtualizes and schedules GPU resources, making a
system perform better when multiple GPU-intensive programs are running. Running multiple
WPF or DirectX applications might bog down a Windows XP system but shouldn’t cause
performance issues on more recent versions of Windows.

?

. More performance improvements—There are not just internal performance
improvements, but also ways for you to write more efficient code. For example, data
collections can now be accessed by background threads.

. A number of miscellaneous new APIs—These are mentioned throughout the
book.

CHAPTER 2

XAML Demystified

Throughout .NET technologies, XML is used to expose
functionality in a transparent and declarative fashion.
XAML, a dialect of XML, has been especially important
since its introduction with the first version of WPF in 2006.
It is often misunderstood to be just a way to specify user
interfaces, much like HTML. Most of the time, XAML is
used to describe user interfaces, but it can describe other
things as well. By the end of this chapter, you will see that
XAML is about much more than arranging controls on a
computer screen.

The point of XAML is to make it easy for programmers to
work together with experts in other fields. XAML becomes
the common language spoken by all parties, most likely via
development tools and field-specific design tools. But
because XAML (and XML in general) is generally human
readable, people can participate in this ecosystem armed
with nothing more than a tool such as Notepad.

In WPF, the “field experts” are graphic designers, who can
use a design tool such as Blend to create a slick user inter-
face while developers independently write code. What
enables the developer/designer cooperation is not just the
common language of XAML but the fact that great care
went into making functionality exposed by the relevant
APIs accessible declaratively. This gives design tools a wide
range of expressiveness (such as specifying complex anima-
tions or state changes) without having to worry about
generating procedural code.

IN THIS CHAPTER

. XAML Defined

. Elements and Attributes

. Namespaces

. Property Elements

. Type Converters

. Markup Extensions

. Children of Object Elements

. Mixing XAML with Procedural
Code

. XAML2009

. XAML Keywords

Even if you have no plans to work with graphic designers, you should still become famil-
iar with XAML for the following reasons:

. XAML can be a very concise way to represent user interfaces or other hierarchies of
objects.

. The use of XAML encourages a separation of front-end appearance and back-end
logic, which is helpful for maintenance even if you’re only a team of one.

. XAML can often be easily pasted into tools such as Visual Studio, Blend, or small
standalone tools to see results without any compilation.

. XAML is the language that almost all WPF-related tools emit.

This chapter jumps right into the mechanics of XAML, examining its syntax in depth and
showing how it relates to procedural code. Unlike the preceding chapter, this is a fairly
deep dive! Having this background knowledge before proceeding with the rest of the book
will not only help you understand the code examples but give you better insight into
why the APIs in each feature area were designed the way they were. This perspective can
be helpful whether you are building WPF applications or controls, designing class libraries
that you want to be XAML friendly, or building tools that consume and/or produce
XAML (such as validation tools, localization tools, file format converters, designers, and
so on).

CHAPTER 2 XAML Demystified18

T I P

There are several ways to run the XAML examples in this chapter, which you can download
in electronic form with the rest of this book’s source code. For example, you can do the
following:

. Save the content in a .xaml file and open it inside Internet Explorer (in Windows Vista
or later, or in Windows XP with the .NET Framework 3.0 or later installed). Firefox can
also work if you install an add-on. Note: By default your web browser will use the
version of WPF installed with the operating system.

. Paste the content into a lightweight tool such as the XAMLPAD2009 sample included
with this chapter’s source code or Kaxaml (from http://kaxaml.com).

. Create a WPF Visual Studio project and replace the content of the main Window or
Page element with the desired content, which might require some code changes.

Using the first two options gives you a couple great ways to get started and do some experi-
mentation. Mixing XAML with other content in a Visual Studio project is covered at the end of
this chapter.

http://kaxaml.com

XAML Defined
XAML is a relatively simple and general-purpose declarative programming language suit-
able for constructing and initializing objects. XAML is just XML, but with a set of rules
about its elements and attributes and their mapping to objects, their properties, and the
values of those properties (among other things).

Because XAML is just a mechanism for using .NET APIs, attempts to compare it to
HTML, Scalable Vector Graphics (SVG), or other domain-specific formats/languages
are misguided. XAML consists of rules for how parsers/compilers must treat XML and
has some keywords, but it doesn’t define any interesting elements by itself. So, talking
about XAML without a framework like WPF is like talking about C# without the .NET
Framework or the Windows Runtime. That said, Microsoft has formalized the notion of
“XAML vocabularies” that define the set of valid elements for a given domain, such as
what it means to be a WPF XAML file versus a Silverlight XAML file versus any other type
of XAML file.

XAML Defined 19
2

FA Q

What happened to XamlPad?

Earlier versions of the Windows SDK shipped with a simple tool called XamlPad that
allows you to type in (or paste) WPF-compatible XAML and see it rendered as a live user
interface. Unfortunately, this tool is no longer being shipped due to lack of resources. (Yes,
contrary to popular belief, Microsoft does not have unlimited resources!) Fortunately, there
are several alternative lightweight tools for quickly experimenting with XAML, including the
following:

. XAMLPAD2009—A sample in this book’s source code. Although it lacks the bells and
whistles of the other tools, it provides full source code. Plus, it’s the only tool that
supports XAML2009 (explained later in this chapter) at the time of writing.

. Kaxaml—A slick tool downloadable from http://kaxaml.com, created by Robby
Ingebretsen, a former WPF team member.

. XamlPadX—A feature-filled tool downloadable from http://blogs.msdn.com/llobo/
archive/2008/08/25/xamlpadx-4-0.aspx, created by Lester Lobo, another former WPF
team member.

. XAML Cruncher—A ClickOnce application available at http://charlespetzold.com/wpf/
XamlCruncher/XamlCruncher.application, created by Charles Petzold, prolific author and
blogger.

?

http://kaxaml.com
http://blogs.msdn.com/llobo/archive/2008/08/25/xamlpadx-4-0.aspx
http://blogs.msdn.com/llobo/archive/2008/08/25/xamlpadx-4-0.aspx
http://charlespetzold.com/wpf/XamlCruncher/XamlCruncher.application
http://charlespetzold.com/wpf/XamlCruncher/XamlCruncher.application

The role XAML plays in relation to WPF is often confused, so it’s important to reem-
phasize that WPF and XAML can be used independently from each other. Although
XAML was originally designed for WPF, it is used by other technologies as well—even
ones that have nothing to do with user interfaces, such as Windows Workflow
Foundation (WF) and Windows Communication Foundation (WCF). Because of its
general-purpose nature, XAML can be applied to just about any object-oriented tech-
nology if you really want it to be. Furthermore, using XAML in WPF projects is
optional. Almost everything done with XAML can be done entirely in your favorite
.NET procedural language instead. (But note that the reverse is not true.) However,
because of the benefits listed at the beginning of the chapter, it’s rare to see WPF used
in the real world without XAML.

CHAPTER 2 XAML Demystified20

D I G G I N G D E E P E R

XAML Functionality Unavailable in Procedural Code

There are a few things that can be done in XAML that can’t be done with procedural code.
These are all fairly obscure and are covered in Chapters 12 and 14:

. Creating the full range of templates. Procedural code can create templates using
FrameworkElementFactory, but the expressiveness of this approach is limited.

. Using x:Shared=”False” to instruct WPF to return a new instance each time an element
is accessed from a resource dictionary.

. Deferred instantiation of items inside of a resource dictionary. This is an important perfor-
mance optimization, and only available via compiled XAML.

Elements and Attributes
The XAML specification defines rules that map .NET namespaces, types, properties, and
events into XML namespaces, elements, and attributes. You can see this by examining the
following simple (but complete) XAML file that declares a WPF Button and comparing it
to the equivalent C# code:

XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”/>

C#:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Content = “OK”;

D I G G I N G D E E P E R

Specifications for XAML and XAML Vocabularies

You can find detailed current and historical specifications for XAML and two XAML vocabular-
ies (WPF and Silverlight) at http://bit.ly/Zuao1X.

http://bit.ly/Zuao1X

Although these two snippets are equivalent, you can instantly view the XAML in Internet
Explorer and see a live button fill the browser window, as pictured in Figure 2.1, whereas
the C# code must be compiled with additional code to be usable.

Elements and Attributes 21
2

FIGURE 2.1 A simple WPF Button declared in a .xaml file.

Declaring an XML element in XAML (known as an object element) is equivalent to instan-
tiating the corresponding .NET object via a default constructor. Setting an attribute on the
object element is equivalent to setting a property of the same name (called a property
attribute) or hooking up an event handler of the same name (called an event attribute). For
example, here’s an update to the Button that not only sets its Content property but also
attaches an event handler to its Click event:

XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK” Click=”button_Click”/>

C#:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Click += new System.Windows.RoutedEventHandler(button_Click);

b.Content = “OK”;

This requires a method called button_Click to be defined somewhere, with the appropri-
ate signature, which means that the XAML file can no longer be rendered standalone, as
in Figure 2.1. The “Mixing XAML with Procedural Code” section at the end of this
chapter explains how to work with XAML that requires additional code. Note that
XAML, like C#, is a case-sensitive language.

CHAPTER 2 XAML Demystified22

D I G G I N G D E E P E R

Order of Property and Event Processing

At runtime, event handlers are always attached before any properties are set for any object
declared in XAML (excluding the Name property, described later in this chapter, which is set
immediately after object construction). This enables appropriate events to be raised in
response to properties being set without worrying about the order of attributes used in XAML.

The ordering of multiple property sets and multiple event handler attachments is usually
performed in the relative order that property attributes and event attributes are specified on
the object element. Fortunately, this ordering shouldn’t matter in practice because .NET
design guidelines dictate that classes should allow properties to be set in any order, and the
same holds true for attaching event handlers.

Namespaces
The most mysterious part about comparing the previous XAML examples with the equiva-
lent C# examples is how the XML namespace
http://schemas.microsoft.com/winfx/2006/xaml/presentation maps to the .NET name-
space System.Windows.Controls. It turns out that the mapping to this and other WPF
namespaces is hard-coded inside the WPF assemblies with several instances of an
XmlnsDefinitionAttribute custom attribute. (In case you’re wondering, no web page
exists at the schemas.microsoft.com URL—it’s just an arbitrary string like any name-
space.)

The root object element in a XAML file must specify at least one XML namespace that is
used to qualify itself and any child elements. You can declare additional XML namespaces
(on the root or on children), but each one must be given a distinct prefix to be used on
any identifiers from that namespace. For example, WPF XAML files typically use a second
namespace with the prefix x (denoted by using xmlns:x instead of just xmlns):

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

This is the XAML language namespace, which maps to types in the
System.Windows.Markup namespace but also defines some special directives for the XAML
compiler or parser. These directives often appear as attributes to XML elements, so they
look like properties of the host element but actually are not. For a list of XAML keywords,
see the “XAML Keywords” section later in this chapter.

http://schemas.microsoft.com/winfx/2006/xaml/presentation

Namespaces 23
2

D I G G I N G D E E P E R

The Implicit .NET Namespaces

WPF maps all the following .NET namespaces from a handful of WPF assemblies to the WPF
XML namespace (http://schemas.microsoft.com/winfx/2006/xaml/presentation)
used throughout this book:

. System.Windows

. System.Windows.Automation

. System.Windows.Controls

. System.Windows.Controls.Primitives

. System.Windows.Data

. System.Windows.Documents

. System.Windows.Forms.Integration

. System.Windows.Ink

. System.Windows.Input

. System.Windows.Media

. System.Windows.Media.Animation

. System.Windows.Media.Effects

. System.Windows.Media.Imaging

. System.Windows.Media.Media3D

. System.Windows.Media.TextFormatting

. System.Windows.Navigation

. System.Windows.Shapes

. System.Windows.Shell

Because this is a many-to-one mapping, the designers of WPF needed to take care not to
introduce two classes with the same name, despite the fact that the classes are in separate
.NET namespaces.

T I P

Most of the standalone XAML examples in this chapter explicitly specify their namespaces, but in
the remainder of the book, most examples assume that the WPF XML namespace (http://
schemas.microsoft.com/winfx/2006/xaml/presentation) is declared as the primary name-
space, and the XAML language namespace (http://schemas.microsoft.com/winfx/2006/
xaml) is declared as a secondary namespace, with the prefix x. If you want to view such content
in your web browser or copy it into a lightweight viewer such as the XAMLPAD2009 sample, be
sure to add these explicitly.

Using the WPF XML namespace (http://schemas.microsoft.com/winfx/2006/xaml/
presentation) as a default namespace and the XAML language namespace (http://
schemas.microsoft.com/winfx/2006/xaml) as a secondary namespace with the prefix x is
just a convention, just like it’s a convention to begin a C# file with a using System;

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

directive. You could instead write the original XAML file as follows, and it would mean
the same thing:

<WpfNamespace:Button

xmlns:WpfNamespace=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”/>

Of course, for readability it makes sense for your most commonly used namespace (also
known as the primary XML namespace) to be prefix free and to use short prefixes for any
additional namespaces.

CHAPTER 2 XAML Demystified24

D I G G I N G D E E P E R

WPF Has Accumulated Multiple WPF XML Namespaces over Time

It’s practically a given that real-world WPF XAML will choose to use the WPF XML namespace
as the default namespace, but it turns out that more than one XML namespace is mapped to
the main WPF types in the various System.Windows namespaces.

WPF 3.0 shipped with support for http://schemas.microsoft.com/winfx/2006/xaml/
presentation, but WPF 3.5 defined a new XML namespace—http://schemas.microsoft.

com/netfx/2007/xaml/presentation—mapped to the same WPF types. (WinFX was the
original name for a set of technologies introduced in the .NET Framework 3.0, including
WPF, WCF, and WF. That term was abandoned, hence the change in namespace.) WPF
4.0 once again defined a new XML namespace that is mapped to the same WPF types:
http://schemas.microsoft.com/netfx/2009/xaml/presentation. (WPF 4.5 did not add a
new XML namespace.)

Despite all these options, it is best to stick with the original http://schemas.microsoft.
com/winfx/2006/xaml/presentation namespace because it works in all versions of WPF.
(Whether your content works with all versions of WPF is another story, as to do so it must
stick to features present only in WPF 3.0.) Note that Windows Store and Silverlight apps also
support the http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace
to make it easier to use XAML meant for WPF inside other project types, although Silverlight
also defines its own alternative namespace, http://schemas.microsoft.com/client/
2007, which is not supported by WPF.

The XML namespaces are confusing. They are not schemas. They do not represent a closed
set of types that were available when the namespace was introduced. Instead, each version
of WPF retrofits all previous namespaces with any new assembly/namespace pairs intro-
duced in the new version. Therefore, the winfx/2006 namespace effectively means “version
3.0 or later,” the netfx/2007 namespace means “version 3.5 or later,” and so on. However,
WPF 4.0 accidentally excluded some namespace/assembly pairs from the netfx/2009 name-
space, which was not corrected in WPF 4.5, making the use of omitted types (like
TextOptions) pretty challenging!

When loose XAML is loaded into Internet Explorer, it is loaded by PresentationHost.exe,
which decides which version of the .NET Framework to load based on the XML namespaces
on the root element. If the netfx/2009 namespace is present it will load version 4.0 or later,
otherwise it will load whichever 3.x version is present. This not only impacts which features
are available to your XAML, but also the appearance of controls. In Figure 2.1, for example,
the Button looks glossy when rendered with an older version of WPF.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/netfx/2009/xaml/presentation
http://schemas.microsoft.com/netfx/2007/xaml/presentation
http://schemas.microsoft.com/netfx/2007/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/client/2007

Property Elements
The preceding chapter mentioned that rich composition is one of the highlights of WPF.
This can be demonstrated with the simple Button from Figure 2.1, because you can put
arbitrary content inside it; you’re not limited to just text! To demonstrate this, the follow-
ing code embeds a simple square to make a Stop button like what might be found in a
media player:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

System.Windows.Shapes.Rectangle r = new System.Windows.Shapes.Rectangle();

r.Width = 40;

r.Height = 40;

r.Fill = System.Windows.Media.Brushes.Black;

b.Content = r; // Make the square the content of the Button

Button’s Content property is of type System.Object, so it can easily be set to the 40x40
Rectangle object. The result is pictured in Figure 2.2.

Property Elements 25
2

FIGURE 2.2 Updating the WPF Button with complex content.

That’s pretty neat, but how can you do the same thing in XAML with property attribute
syntax? What kind of string could you possibly set Content to that is equivalent to the
preceding Rectangle declared in C#? There is no such string, but XAML fortunately
provides an alternative (and more verbose) syntax for setting complex property values:
property elements. It looks like the following:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

<Rectangle Height=”40” Width=”40” Fill=”Black”/>

</Button.Content>

</Button>

The Content property is now set with an XML element instead of an XML attribute,
making it equivalent to the previous C# code. The period in Button.Content is what
distinguishes property elements from object elements. Property elements always take
the form TypeName.PropertyName, they are always contained inside a TypeName object
element, and they can never have attributes of their own (with one exception—the x:Uid
attribute used for localization).

Property element syntax can be used for simple property values as well. The following
Button that sets two properties with attributes (Content and Background):

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK” Background=”White”/>

is equivalent to this Button, which sets the same two properties with elements:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

OK

</Button.Content>

<Button.Background>

White

</Button.Background>

</Button>

Of course, using attributes when you can is a nice shortcut when hand-typing XAML.

Type Converters
Let’s look at the C# code equivalent to the preceding Button declaration that sets both
Content and Background properties:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Content = “OK”;

b.Background = System.Windows.Media.Brushes.White;

Wait a minute. How can “White” in the previous XAML file be equivalent to the static
System.Windows.Media.Brushes.White field (of type
System.Windows.Media.SolidColorBrush) in the C# code? Indeed, this example exposes a
subtlety with using strings to set properties in XAML that are a different data type than
System.String or System.Object. In such cases, the XAML parser or compiler must look
for a type converter that knows how to convert the string representation to the desired data
type.

WPF provides type converters for many common data types: Brush, Color, FontWeight,
Point, and so on. They are all classes deriving from TypeConverter (BrushConverter,
ColorConverter, and so on). You can also write your own type converters for custom data
types. Unlike the XAML language, type converters generally support case-insensitive
strings.

CHAPTER 2 XAML Demystified26

Without a type converter for Brush, you would have to use property element syntax to set
the Background in XAML, as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”>

<Button.Background>

<SolidColorBrush Color=”White”/>

</Button.Background>

</Button>

And even that is only possible because of a type converter for Color that can make sense
of the “White” string. If there were no Color type converter, you could still write the
following:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”>

<Button.Background>

<SolidColorBrush>

<SolidColorBrush.Color>

<Color A=”255” R=”255” G=”255” B=”255”/>

</SolidColorBrush.Color>

</SolidColorBrush>

</Button.Background>

</Button>

But this is only possible because of a type converter that can convert each “255” string
into a Byte value expected by the A, R, G, and B properties of the Color type. Without this
type converter, you would basically be stuck. Type converters don’t just enhance the read-
ability of XAML, they also enable values to be expressed that couldn’t otherwise be
expressed.

Type Converters 27
2

D I G G I N G D E E P E R

Using Type Converters in Procedural Code

Although the C# code that sets Background to System.Windows.Media.Brushes.White
produces the same result as the XAML declaration that assigns it to the “White” string, it
doesn’t actually use the same type conversion mechanism employed by the XAML parser or
compiler. The following code more accurately represents the runtime retrieval and execution
of the appropriate type converter for Brush:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

b.Content = “OK”;

b.Background = (Brush)System.ComponentModel.TypeDescriptor.GetConverter(

typeof(Brush)).ConvertFromInvariantString(“White”);

Unlike in the previous C# code, in this case, misspelling White would not cause a compila-
tion error but would cause an exception at runtime, as with XAML. (Although Visual Studio
does provide compile-time warnings for mistakes in XAML such as this.)

Markup Extensions
Markup extensions, like type converters, enable you to extend the expressiveness of
XAML. Both can evaluate a string attribute value at runtime (except for a few built-in
markup extensions that are currently evaluated at compile time for performance reasons)
and produce an appropriate object based on the string. As with type converters, WPF
ships with several markup extensions built in.

Unlike type converters, however, markup extensions are invoked from XAML with
explicit and consistent syntax. For this reason, using markup extensions is a preferred
approach for extending XAML. In addition, using markup extensions enables you to over-
come potential limitations in existing type converters that you don’t have the power to
change. For example, if you want to set a control’s background to a fancy gradient brush
with a simple string value, you can write a custom markup extension that supports it
even though the built-in BrushConverter does not.

CHAPTER 2 XAML Demystified28

D I G G I N G D E E P E R

Finding Type Converters

So how does a XAML parser or compiler find an appropriate type converter for a property
value? By looking for a System.ComponentModel.TypeConverterAttribute custom
attribute on the property definition or on the definition of the property’s data type.

For example, the BrushConverter type converter is used when setting Button’s Background
property in XAML because Background is of type System.Windows.Media.Brush, which has
the following custom attribute:

[TypeConverter(typeof(BrushConverter)), …]

public abstract class Brush : …

{

…

}

On the other hand, the FontSizeConverter type converter is used when setting Button’s
FontSize property because the property (defined on the base Control class) has the follow-
ing custom attribute:

[TypeConverter(typeof(FontSizeConverter)), …]

public double FontSize

{

get { … }

set { … }

}

In this case, marking the type converter on the property is necessary because its data type
(double) is too generic to always be associated with FontSizeConverter. In fact, in WPF,
double is often associated with another type converter, LengthConverter.

Whenever an attribute value is enclosed in curly braces ({}), the XAML compiler/parser
treats it as a markup extension value rather than a literal string (or something that needs
to be type-converted). The following Button uses three different markup extension values
with three different properties:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Background=”{x:Null}”

Height=”{x:Static SystemParameters.IconHeight}”

Content=”{Binding Path=Height, RelativeSource={RelativeSource Self}}”/>

The first identifier in each set of curly braces is the name of the markup extension class,
which must derive from a class called MarkupExtension. By convention, such classes end
with an Extension suffix, but you can leave it off when using it in XAML. In this
example, NullExtension (seen as x:Null) and StaticExtension (seen as x:Static)
are classes in the System.Windows.Markup namespace, so the x prefix must be used to
locate them. Binding (which doesn’t happen to have the Extension suffix) is in the
System.Windows.Data namespace, so it can be found in the default XML namespace.

If a markup extension supports them, comma-delimited parameters can be specified.
Positional parameters (such as SystemParameters.IconHeight in the example) are treated
as string arguments for the extension class’s appropriate constructor. Named parameters
(Path and RelativeSource in the example) enable you to set properties with matching
names on the constructed extension object. The values for these properties can be markup
extension values themselves (using nested curly braces, as done with the value for
RelativeSource) or literal values that can undergo the normal type conversion process.
If you’re familiar with .NET custom attributes (the .NET Framework’s popular extensibility
mechanism), you’ve probably noticed that the design and usage of markup extensions
closely mirrors the design and usage of custom attributes. That is intentional.

In the preceding Button declaration, NullExtension enables the Background brush to be
set to null, which isn’t natively supported by BrushConverter (or many other type
converters, for that matter). This is just done for demonstration purposes, as a null
Background is not very useful. StaticExtension enables the use of static properties, fields,
constants, and enumeration values rather than hard-coding literals in XAML. In this case,
the Button’s Height is set to the operating system’s current height setting for icons,
exposed by the static IconHeight property on a System.Windows.SystemParameters class.
Binding, covered in depth in Chapter 13, “Data Binding,” enables Content to be set to the
same value as the Height property.

Markup Extensions 29
2

Markup extension class

Positional parameter

Named parameters

Because markup extensions are just classes with default constructors, they can be used
with property element syntax. The following Button is identical to the preceding one:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Button.Background>

<x:Null/>

</Button.Background>

<Button.Height>

<x:Static Member=”SystemParameters.IconHeight”/>

</Button.Height>

<Button.Content>

<Binding Path=”Height”>

<Binding.RelativeSource>

<RelativeSource Mode=”Self”/>

</Binding.RelativeSource>

</Binding>

</Button.Content>

</Button>

This transformation works because these markup extensions all have properties corre-
sponding to their parameterized constructor arguments (the positional parameters used
with property attribute syntax). For example, StaticExtension has a Member property that

CHAPTER 2 XAML Demystified30

D I G G I N G D E E P E R

Escaping the Curly Braces

If you ever want a property attribute value to be set to a literal string beginning with an open
curly brace ({), you must escape it so it doesn’t get treated as a markup extension. This can
be done by preceding it with an empty pair of curly braces, as in the following example:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”{}{This is not a markup extension!}”/>

You can also use a backslash to escape characters such as an open curly brace, a single
quote, or a double quote.

Alternatively, you could use property element syntax without any escaping because the curly
braces do not have special meaning in this context. The preceding Button could be rewritten
as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

{This is not a markup extension!}

</Button.Content>

</Button>

Data binding (covered in Chapter 13) takes advantage of this escaping with string formatting
properties that use curly braces as part of their normal string syntax.

has the same meaning as the argument that was previously passed to its parameterized
constructor, and RelativeSource has a Mode property that corresponds to its constructor
argument.

Children of Object Elements 31
2

D I G G I N G D E E P E R

Markup Extensions and Procedural Code

The actual work done by a markup extension is specific to each extension. For example, the
following C# code is equivalent to the XAML-based Button that uses NullExtension,
StaticExtension, and Binding:

System.Windows.Controls.Button b = new System.Windows.Controls.Button();

// Set Background:

b.Background = null;

// Set Height:

b.Height = System.Windows.SystemParameters.IconHeight;

// Set Content:

System.Windows.Data.Binding binding = new System.Windows.Data.Binding();

binding.Path = new System.Windows.PropertyPath(“Height”);

binding.RelativeSource = System.Windows.Data.RelativeSource.Self;

b.SetBinding(System.Windows.Controls.Button.ContentProperty, binding);

However, this code doesn’t use the same mechanism as the XAML parser or compiler, which
rely on each markup extension to set the appropriate values at runtime (essentially by invok-
ing each one’s ProvideValue method). The procedural code equivalent of this mechanism is
often complex, sometimes requiring context that only a parser would have (such as how to
resolve an XML namespace prefix that could be used in StaticExtension’s Member).
Fortunately, there is no reason to use markup extensions this way in procedural code!

Children of Object Elements
A XAML file, like all XML files, must have a single root object element. Therefore, it
should come as no surprise that object elements can support child object elements (not
just property elements, which aren’t children, as far as XAML is concerned). An object
element can have three types of children: a value for a content property, collection items,
or a value that can be type-converted to the object element.

The Content Property
Most WPF classes designate a property (via a custom attribute) that should be set to what-
ever content is inside the XML element. This property is called the content property, and it
is really just a convenient shortcut to make the XAML representation more compact. In
some ways, these content properties are like the (often-maligned) default properties in old
versions of Visual Basic.

Button’s Content property is (appropriately) given this special designation, so the follow-
ing Button:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Content=”OK”/>

could be rewritten as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

OK

</Button>

Or, more usefully, this Button with more complex content:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Button.Content>

<Rectangle Height=”40” Width=”40” Fill=”Black”/>

</Button.Content>

</Button>

could be rewritten as follows:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Rectangle Height=”40” Width=”40” Fill=”Black”/>

</Button>

There is no requirement that the content property must actually be called Content; classes
such as ComboBox, ListBox, and TabControl (also in the System.Windows.Controls name-
space) use their Items property as the content property.

Collection Items
XAML enables you to add items to the two main types of collections that support index-
ing: lists and dictionaries.

Lists
A list is any collection that implements System.Collections.IList, such as
System.Collections.ArrayList or numerous collection classes defined by WPF. For
example, the following XAML adds two items to a ListBox control whose Items property
is an ItemCollection that implements IList:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<ListBox.Items>

<ListBoxItem Content=”Item 1”/>

<ListBoxItem Content=”Item 2”/>

</ListBox.Items>

</ListBox>

CHAPTER 2 XAML Demystified32

This is equivalent to the following C# code:

System.Windows.Controls.ListBox listbox = new System.Windows.Controls.ListBox();

System.Windows.Controls.ListBoxItem item1 =

new System.Windows.Controls.ListBoxItem();

System.Windows.Controls.ListBoxItem item2 =

new System.Windows.Controls.ListBoxItem();

item1.Content = “Item 1”;

item2.Content = “Item 2”;

listbox.Items.Add(item1);

listbox.Items.Add(item2);

Furthermore, because Items is the content property for ListBox, you can shorten the
XAML even further, as follows:

<ListBox xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<ListBoxItem Content=”Item 1”/>

<ListBoxItem Content=”Item 2”/>

</ListBox>

In all these cases, the code works because ListBox’s Items property is automatically
initialized to any empty collection object. If a collection property is initially null instead
(and is read/write, unlike ListBox’s read-only Items property), you need to wrap the items
in an explicit element that instantiates the collection. WPF’s built-in controls do not act
this way, so an imaginary OtherListBox element demonstrates what this could look like:

<OtherListBox>

<OtherListBox.Items>

<ItemCollection>

<ListBoxItem Content=”Item 1”/>

<ListBoxItem Content=”Item 2”/>

</ItemCollection>

</OtherListBox.Items>

</OtherListBox>

Dictionaries
System.Windows.ResourceDictionary is a commonly used collection type in
WPF that you’ll see more of in Chapter 12, “Resources.” It implements
System.Collections.IDictionary, so it supports adding, removing, and enumerating
key/value pairs in procedural code, as you would do with a typical hash table. In XAML,
you can add key/value pairs to any collection that implements IDictionary. For example,
the following XAML adds two Colors to a ResourceDictionary:

<ResourceDictionary

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Color x:Key=”1” A=”255” R=”255” G=”255” B=”255”/>

<Color x:Key=”2” A=”0” R=”0” G=”0” B=”0”/>

</ResourceDictionary>

Children of Object Elements 33
2

This leverages the XAML Key keyword (defined in the secondary XML namespace), which
is processed specially and enables us to attach a key to each Color value. (The Color type
does not define a Key property.) Therefore, the XAML is equivalent to the following C#
code:

System.Windows.ResourceDictionary d = new System.Windows.ResourceDictionary();

System.Windows.Media.Color color1 = new System.Windows.Media.Color();

System.Windows.Media.Color color2 = new System.Windows.Media.Color();

color1.A = 255; color1.R = 255; color1.G = 255; color1.B = 255;

color2.A = 0; color2.R = 0; color2.G = 0; color2.B = 0;

d.Add(“1”, color1);

d.Add(“2”, color2);

Note that the value specified in XAML
with x:Key is treated as a string unless a
markup extension is used or the
XAML2009 parser is used (see the later
“XAML2009” section); no type conver-
sion is attempted otherwise.

More Type Conversion
Plain text can often be used as the child
of an object element, as in the following
XAML declaration of SolidColorBrush:

<SolidColorBrush>White</SolidColorBrush>

This is equivalent to the following:

<SolidColorBrush Color=”White”/>

even though Color has not been designated as a content property. In this case, the first
XAML snippet works because a type converter exists that can convert strings such as
“White” (or “white” or “#FFFFFF”) into a SolidColorBrush object.

Although type converters play a huge role in making XAML readable, the downside is
that they can make XAML appear a bit “magical,” and it can be difficult to understand
how it maps to instances of .NET objects. Using what you know so far, it would be
reasonable to assume that you can’t declare an abstract class element in XAML because
there’s no way to instantiate it. However, even though System.Windows.Media.Brush is an
abstract base class for SolidColorBrush, GradientBrush, and other concrete brushes, you
can express the preceding XAML snippets as simply:

<Brush>White</Brush>

because the type converter for Brushes understands that this is still SolidColorBrush. This
may seem like an unusual feature, but it’s important for supporting the ability to express
primitive types in XAML, as demonstrated in “The Extensible Part of XAML.”

CHAPTER 2 XAML Demystified34

Lists, Dictionaries, and the XAML2009
Parser

Although the WPF XAML parser has histori-
cally only supported IList and
IDictionary collections, the XAML2009
parser (described in the later “XAML2009”
section) supports more. It first looks for
IList and IDictionary, then for
ICollection<T> and IDictionary<K,V>,
then for the presence of both Add and
GetEnumerator methods.

D I G G I N G D E E P E R

Children of Object Elements 35
2

The Extensible Part of XAML

Because XAML was designed to work with the .NET type system, you can use it with just
about any .NET object (or even COM objects, thanks to COM interoperability), including ones
you define yourself. It doesn’t matter whether these objects have anything to do with a user
interface. However, the objects need to be designed in a “declarative-friendly” way. For
example, if a class doesn’t have a default constructor and doesn’t expose useful instance
properties, it’s not going to be directly usable from XAML (unless you use the XAML2009
parser). A lot of care went into the design of the WPF APIs—above and beyond the usual
.NET design guidelines—to fit XAML’s declarative model.

The WPF assemblies are marked with XmlnsDefinitionAttribute to map their .NET name-
spaces to XML namespaces in a XAML file, but what about assemblies that weren’t
designed with XAML in mind and, therefore, don’t use this attribute? Their types can still be
used; you just need to use a special directive as the XML namespace. For example, here’s
some plain old C# code using .NET Framework APIs contained in mscorlib.dll:

System.Collections.Hashtable h = new System.Collections.Hashtable();

h.Add(“key1”, 7);

h.Add(“key2”, 23);

and here’s how it can be represented in XAML:

<collections:Hashtable

xmlns:collections=”clr-namespace:System.Collections;assembly=mscorlib”

xmlns:sys=”clr-namespace:System;assembly=mscorlib”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<sys:Int32 x:Key=”key1”>7</sys:Int32>

<sys:Int32 x:Key=”key2”>23</sys:Int32>

</collections:Hashtable>

The clr-namespace directive enables you to place a .NET namespace directly inside XAML.
The assembly specification at the end is necessary only if the desired types don’t reside in
the same assembly that the XAML is compiled into. Typically the assembly’s simple name is
used (as with mscorlib), but you can use the canonical representation supported by
System.Reflection.Assembly.Load (although with no spaces allowed), which includes
additional information such as a version and/or public key token.

Two key points about this example really highlight the integration with not only the .NET type
system but specific types in the .NET Framework:

. Child elements can be added to the parent Hashtable with the standard XAML x:Key
syntax because Hashtable and other collection classes in the .NET Framework have
implemented the IDictionary interface since version 1.0.

. System.Int32 can be used in this simple fashion because a type converter already
exists that supports converting strings to integers. This is because the type converters
supported by XAML are simply classes that derive from
System.ComponentModel.TypeConverter, a class that has also been around since
version 1.0 of the .NET Framework. This is the same type conversion mechanism used
by Windows Forms (enabling you to type strings into the Visual Studio property grid, for
example, and have them converted to the appropriate type).

D I G G I N G D E E P E R

Mixing XAML with Procedural Code
WPF applications can be written entirely in procedural code in any .NET language. In
addition, certain types of simple applications can be written entirely in XAML, thanks to
the data-binding features described in Chapter 13, the triggers introduced in the next
chapter, and the fact that loose XAML pages can be rendered in a web browser. However,
most WPF applications are a mix of XAML and procedural code. This section covers the
two ways that XAML and code can be mixed together.

Loading and Parsing XAML at Runtime
WPF has a runtime XAML parser exposed as two classes in the System.Windows.Markup
namespace: XamlReader and XamlWriter. And their APIs couldn’t be much simpler.
XamlReader contains a few overloads of a static Load method, and XamlWriter contains a
few overloads of a static Save method. Therefore, programs written in any .NET language
can leverage XAML at runtime without much effort. Starting with the .NET Framework
4.0, a new, separate set of XAML readers and writers exists, but with a fair number of
caveats. They are not important for this discussion but are covered later in Appendix A,
“Fun with XAML Readers and Writers.”

XamlReader

The set of XamlReader.Load methods parse XAML, create the appropriate .NET objects,
and return an instance of the root element. So, if a XAML file named MyWindow.xaml in
the current directory contains a Window object (explained in depth in Chapter 7,

CHAPTER 2 XAML Demystified36

XAML Processing Rules for Object Element Children

You’ve now seen the three types of children for object elements. To avoid ambiguity, any valid
XAML parser or compiler follows these rules when encountering and interpreting child
elements:

1. If the type implements IList, call IList.Add for each child.

2. Otherwise, if the type implements IDictionary, call IDictionary.Add for each child,
using the x:Key attribute value for the key and the element for the value. (Although
XAML2009 checks IDictionary before IList and supports other collection inter-
faces, as described earlier.)

3. Otherwise, if the parent supports a content property (indicated by
System.Windows.Markup.ContentPropertyAttribute) and the type of the child is
compatible with that property, treat the child as its value.

4. Otherwise, if the child is plain text and a type converter exists to transform the child
into the parent type (and no properties are set on the parent element), treat the child
as the input to the type converter and use the output as the parent object instance.

5. Otherwise, treat it as unknown content and potentially raise an error.

Rules 1 and 2 enable the behavior described in the earlier “Collection Items” section, rule 3
enables the behavior described in the section “The Content Property,” and rule 4 explains
the often-confusing behavior described in the “More Type Conversion” section.

D I G G I N G D E E P E R

“Structuring and Deploying an Application”) as its root node, the following code could be
used to load and retrieve the Window object:

Window window = null;

using (FileStream fs =

new FileStream(“MyWindow.xaml”, FileMode.Open, FileAccess.Read))

{

// Get the root element, which we know is a Window

window = (Window)XamlReader.Load(fs);

}

In this case, Load is called with a FileStream (from the System.IO namespace). After Load
returns, the entire hierarchy of objects in the XAML file is instantiated in memory, so the
XAML file is no longer needed. In the preceding code, the FileStream is instantly closed
by exiting the using block. Because XamlReader can be passed an arbitrary Stream (or
System.Xml.XmlReader, via a different overload), you have a lot of flexibility in retrieving
XAML content.

Mixing XAML with Procedural Code 37
2

XamlReader also defines LoadAsync instance methods that load and parse XAML content
asynchronously. You’ll want to use LoadAsync to keep a responsive user interface during the
loading of large files or files over the network, for example. Accompanying these methods
are a CancelAsync method for halting the processing and a LoadCompleted event for
knowing when the processing is complete.

The behavior of LoadAsync is a bit odd, however. The work is done on the UI thread
via multiple Dispatcher.BeginInvoke calls. (WPF tries to break the work up into
200-millisecond chunks.) Furthermore, this asynchronous processing is only used if
x:SynchronousMode=”Async” is set on the root XAML node. If this attribute is not set,
LoadAsync will silently load the XAML synchronously.

T I P

Now that an instance of the root element exists, you can retrieve child elements by
making use of the appropriate content properties or collection properties. The following
code assumes that the Window has a StackPanel object as its content, whose fifth child is
an OK Button:

Window window = null;

using (FileStream fs =

new FileStream(“MyWindow.xaml”, FileMode.Open, FileAccess.Read))

{

// Get the root element, which we know is a Window

window = (Window)XamlReader.Load(fs);

}

// Grab the OK button by walking the children (with hard-coded knowledge!)

StackPanel panel = (StackPanel)window.Content;

Button okButton = (Button)panel.Children[4];

With a reference to the Button, you can do whatever you want: Set additional properties
(perhaps using logic that is hard or impossible to express in XAML), attach event handlers,
or perform additional actions that you can’t do from XAML, such as calling its methods.

Of course, the code that uses a hard-coded index and other assumptions about the user
interface structure isn’t very satisfying, as simple changes to the XAML can break it.
Instead, you could write code to process the elements more generically and look for a
Button element whose content is an “OK” string, but that would be a lot of work for such
a simple task. In addition, if you want the Button to contain graphical content, how can
you easily identify it in the presence of multiple Buttons?

Fortunately, XAML supports naming of elements so they can be found and used reliably
from procedural code.

Naming XAML Elements
The XAML language namespace has a Name keyword that enables you to give any element
a name. For the simple OK button that we’re imagining is embedded somewhere inside a
Window, the Name keyword can be used as follows:

<Button x:Name=”okButton”>OK</Button>

With this in place, you can update the preceding C# code to use Window’s FindName
method that searches its children (recursively) and returns the desired instance:

Window window = null;

using (FileStream fs =

new FileStream(“MyWindow.xaml”, FileMode.Open, FileAccess.Read))

{

// Get the root element, which we know is a Window

window = (Window)XamlReader.Load(fs);

}

// Grab the OK button, knowing only its name

Button okButton = (Button)window.FindName(“okButton”);

FindName is not unique to Window; it is defined on FrameworkElement and
FrameworkContentElement, which are base classes for many important classes in WPF.

CHAPTER 2 XAML Demystified38

Naming Elements Without x:Name

The x:Name syntax can be used to name elements, but some classes define their own prop-
erty that can be treated as the element’s name (by marking themselves with System.
Windows.Markup.RuntimeNamePropertyAttribute). For example, FrameworkElement
and FrameworkContentElement have a Name property, so they mark themselves with
RuntimeNameProperty(“Name”). This means that on such elements you can simply set the
Name property to a string rather than use the x:Name syntax. You can use either mechanism,
but you can’t use both simultaneously. Having two ways to set a name is a bit confusing, but
it’s handy for these classes to have a Name property for use by procedural code.

D I G G I N G D E E P E R

Compiling XAML
Loading and parsing XAML at runtime is
interesting for dynamic skinning scenar-
ios or for .NET languages that don’t have
the necessary support for XAML compila-
tion. Most WPF projects, however, lever-
age the XAML compilation supported by
MSBuild and Visual Studio. XAML
compilation involves three things:
converting a XAML file into a special binary
format, embedding the converted content as
a binary resource in the assembly being built,
and performing the plumbing that connects XAML with procedural code automatically.
C# and Visual Basic are the two languages with the best support for XAML compilation.

Mixing XAML with Procedural Code 39
2

In all versions of WPF, the Binding markup extension can be used to reference a named
element as a property value:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Label Target=”{Binding ElementName=box}” Content=”Enter _text:”/>

<TextBox Name=”box”/>

</StackPanel>

In this case, assigning the TextBox as the Target of the Label gives it focus when the
Label’s access key, Alt+T, is pressed. However, WPF 4.0 and later support a simpler markup
extension (that finds the element at parse time rather than runtime):
System.Windows.Markup.Reference. It can be used as follows:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Label Target=”{x:Reference box}” Content=”Enter _text:”/>

<TextBox Name=”box”/>

</StackPanel>

Or, when a relevant property is marked with the
System.Windows.Markup.NameReferenceConverter type converter (as in this case), a
simple name string can be implicitly converted into the referenced instance:

<StackPanel xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<Label Target=”box” Content=”Enter _text:”/>

<TextBox Name=”box”/>

</StackPanel>

T I P

Supporting Compiled XAML with Any
.NET Language

If you want to leverage XAML compilation
with an arbitrary .NET language, there are
two basic requirements for enabling this:
having a corresponding CodeDom provider
and having an MSBuild target file. In addi-
tion, language support for partial classes is
helpful but not strictly required.

D I G G I N G D E E P E R

If you don’t care about mixing procedural code with your XAML file, then all you need to
do to compile it is add it to a WPF project in Visual Studio with a Build Action of Page.
(Chapter 7 explains ways to make use of such content in the context of an application.)
But for the typical case of compiling a XAML file and mixing it with procedural code, the
first step is specifying a subclass for the root element in a XAML file. This can be done
with the Class keyword defined in the XAML language namespace, for example:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

x:Class=”MyNamespace.MyWindow”>

…

</Window>

In a separate source file (but in the same project), you can define the subclass and add
whatever members you want:

namespace MyNamespace

{

partial class MyWindow : Window

{

public MyWindow()

{

// Necessary to call in order to load XAML-defined content!

InitializeComponent();

…

}

Any other members can go here…

}

}

This is often referred to as the code-behind file. If you reference any event handlers in
XAML (via event attributes such as Click on Button), this is where they should be
defined.

The partial keyword in the class definition is important, as the class’s implementation is
spread across more than one file. If the .NET language doesn’t support partial classes (for
example, C++/CLI), the XAML file must also use a Subclass keyword in the root element,
as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

x:Class=”MyNamespace.MyWindow” x:Subclass=”MyNamespace.MyWindow2”>

…

</Window>

With this change, the XAML file completely defines the Subclass (MyWindow2 in this case)
but uses the Class in the code-behind file (MyWindow) as its base class. Therefore, this

CHAPTER 2 XAML Demystified40

simulates the ability to split the implementation across two files by relying on inheri-
tance.

When creating a WPF-based C# or Visual Basic project in Visual Studio, or when you use
Add New Item… to add certain WPF items to a project, Visual Studio automatically
creates a XAML file with x:Class on its root, creates the code-behind source file with the
partial class definition, and links the two together so they are built properly.

If you’re an MSBuild user and want to understand the contents of the project file that
enables code-behind, you can open any of the C# project files included with this book’s
source code in a simple text editor such as Notepad. The relevant part of a typical project
is as follows:

<ItemGroup>

<Page Include=”MyWindow.xaml”/>

</ItemGroup>

<ItemGroup>

<Compile Include=”MyWindow.xaml.cs”>

<DependentUpon>MyWindow.xaml</DependentUpon>

<SubType>Code</SubType>

</Compile>

</ItemGroup>

For such a project, the build system
generates several items when processing
MyWindow.xaml, including these:

. A BAML file (MyWindow.baml),
which gets embedded in the
assembly as a binary resource by
default.

. A C# source file (MyWindow.g.cs),
which gets compiled into the
assembly like all other source code.

BAML
BAML, which stands for Binary Application Markup Language, is simply XAML that has
been parsed, tokenized, and converted into binary form. Although almost any chunk of
XAML can be represented by procedural code, the XAML-to-BAML compilation process
does not generate procedural source code. So, BAML is not like Microsoft intermediate
language (MSIL); it is a compressed declarative format that is faster to load and parse (and
smaller in size) than plain XAML. BAML is basically an implementation detail of the
XAML compilation process. Nevertheless, it’s interesting to be aware of its existence. In
fact, WPF contains a public BAML reader class (see Appendix A).

Mixing XAML with Procedural Code 41
2

x:Class can only be used in a XAML file
that gets compiled. But you can sometimes
compile a XAML file with no x:Class just
fine. This simply means that there is no
corresponding code-behind file, so you can’t
use any features that rely on the presence
of procedural code. Therefore, adding a
XAML file to a Visual Studio project without
an x:Class directive can be a handy way to
get the deployment and performance bene-
fits of compiled XAML without having to
create an unnecessary code-behind file.

T I P

Generated Source Code
Some procedural code does get generated in the XAML compilation process (if you use
x:Class), but it’s just some “glue code” similar to what had to be written to load and
parse a loose XAML file at runtime. Such files are given a suffix such as .g.cs (or .g.vb),
where the g stands for generated.

Each generated source file contains a partial class definition for the class specified with
x:Class on the root object element. This partial class contains a field (internal by default)
for every named element in the XAML file, using the element name as the field name. It
also contains an InitializeComponent method that does the grunt work of loading the
embedded BAML resource, assigning the fields to the appropriate instances originally
declared in XAML, and hooking up any event handlers (if any event handlers were speci-
fied in the XAML file).

Because the glue code tucked away in the generated source file is part of the same class
you’ve defined in the code-behind file
(and because BAML gets embedded as a
resource), you often don’t need to be
aware of the existence of BAML or the
process of loading and parsing it. You
simply write code that references named
elements just like any other class
member, and you let the build system
worry about hooking things together.
The only thing you need to remember is
to call InitializeComponent in your
code-behind class’s constructor.

CHAPTER 2 XAML Demystified42

There Once Was a CAML…

Prerelease versions of WPF had the ability to compile XAML into BAML or MSIL. This MSIL
output was called CAML, which stood for Compiled Application Markup Language. The idea
was to enable the choice of optimizing for size (BAML) or speed (CAML). But the team
decided not to burden the WPF codebase with these two independent implementations that
did essentially the same thing. BAML won out over CAML because it has several advan-
tages: It’s less of a security threat than MSIL, it’s more compact (resulting in smaller down-
load sizes for web scenarios), and it can be localized postcompilation. Furthermore, using
CAML was not appreciably faster than using BAML, as people had theorized it would be. It
generated a lot of code that would only ever run once. This is inefficient, it bloats DLLs, it
doesn’t take advantage of caches, and so on.

D I G G I N G D E E P E R

Don’t forget to call
InitializeComponent in the construc-
tor of your code-behind class!

If you fail to do so, your root element won’t
contain any of the content you defined in
XAML (because the corresponding BAML
doesn’t get loaded), and all the fields
representing named object elements will
be null.

WA R N I N G

Mixing XAML with Procedural Code 43
2

Procedural Code Inside XAML

XAML actually supports an obscure “code-inside” feature in addition to code-behind (some-
what like in ASP.NET). This can be done with the Code keyword in the XAML language name-
space, as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

x:Class=”MyNamespace.MyWindow”>

<Button Click=”button_Click”>OK</Button>

<x:Code><![CDATA[

void button_Click(object sender, RoutedEventArgs e)

{

this.Close();

}

]]></x:Code>

</Window>

When such a XAML file is compiled, the contents inside the x:Code element get plopped
inside the partial class in the .g.cs file. Note that the procedural language is not specified
in the XAML file; it is determined by the project containing this file.

Wrapping the code in <![CDATA[…]]> isn’t required, but it avoids the need to escape less-
than signs as < and ampersands as &. That’s because CDATA sections are ignored
by XML parsers, whereas anything else is processed as XML. (The tradeoff is that you must
avoid using]]> anywhere in the code, because that terminates the CDATA section!)

Of course, there’s no good reason to pollute your XAML files with this “code-inside” feature.
Besides making the division between user interface and logic messier, loose XAML pages
don’t support it, and Visual Studio doesn’t support any of its typical code features, such as
IntelliSense and syntax coloring.

D I G G I N G D E E P E R

Can BAML be decompiled back into XAML?

Sure, because BAML can be converted into a graph of live object instances, and these
instances can be serialized as XAML, regardless of how they were originally declared.

The first step is to retrieve an instance that you want to be the root of the XAML. If you don’t
already have this object, you can call the static
System.Windows.Application.LoadComponent method to load it from BAML, as follows:

System.Uri uri = new System.Uri(“/WpfApplication1;component/MyWindow.xaml”,

System.UriKind.Relative);

Window window = (Window)Application.LoadComponent(uri);

?
FA Q

XAML2009
Although XAML is a general-purpose language whose use is broader than that of WPF,
WPF’s XAML compiler and parsers are architecturally tied to WPF. Therefore, they are not
usable by other technologies without taking a dependency on WPF. The .NET Framework
4.0 fixed this by introducing a System.Xaml assembly that contains a bunch of functional-
ity for processing XAML. WPF (and WCF and WF) take a dependency on System.Xaml—
not the other way around.

At the same time, the .NET Framework 4.0 introduced a handful of new features for
the XAML language. This second generation of the XAML language is referred to as
XAML2009. (To differentiate, the first generation is sometimes referred to as
XAML2006.) The System.Xaml assembly supports XAML2009, unlike the older APIs
(System.Windows.Markup.XamlReader and System.Windows.Markup.XamlWriter
from the previous section), which only support XAML2006.

The XAML2009 features, outlined in this section, are nothing revolutionary but represent
a nice set of incremental improvements to XAML. However, don’t get too excited; for the
most part, these features are not usable in WPF projects because XAML compilation still
uses the XAML2006-based APIs, as do Visual Studio’s WPF designer and editor.

CHAPTER 2 XAML Demystified44

Continued

Yes, that code is loading BAML despite the .xaml suffix. This differs from previous code that
uses FileStream to load a .xaml file because with LoadComponent, the name specified as
the uniform resource identifier (URI) does not have to physically exist as a standalone .xaml
file. LoadComponent can automatically retrieve BAML embedded as a resource when given
the appropriate URI (which, by MSBuild convention, is the name of the original XAML source
file). In fact, Visual Studio’s autogenerated InitializeComponent method calls
Application.LoadComponent to load embedded BAML, although it uses a different over-
load. Chapter 12 provides more details about this mechanism of retrieving embedded
resources with URIs.

After you’ve gotten a hold of the root element instance, you can use the
System.Windows.Markup.XamlWriter class to get a XAML representation of the root
element (and, therefore, all its children). XamlWriter contains five overloads of a static Save
method, the simplest of which accepts an object instance and returns appropriate XAML as
a string:

string xaml = XamlWriter.Save(window);

It might sound a little troubling that BAML can be so easily “cracked open,” but it’s really no
different from any other software running locally or displaying a user interface locally. (For
example, you can easily dig into a website’s HTML, JavaScript, and Cascading Style Sheets
[CSS] files.) The popular .NET Reflector tool has a BamlViewer add-in (see
http://codeplex.com/reflectoraddins) that displays BAML embedded in any assembly as
XAML.

http://codeplex.com/reflectoraddins

It is unclear whether WPF will ever completely switch over to XAML2009. (Note that
Silverlight and Windows Store apps don't support XAML2009 either.) In WPF 4.0 or later,
however, you can take advantage of these features when using loose XAML with a host
that processes the XAML with the XAML2009-based APIs, such as the XAMLPAD2009
sample from this book’s source code or Internet Explorer when the netfx/2009 XML
namespace is used.

Therefore, the XAML2009 features are interesting to know about, even if they are not
terribly useful. Most of them revolve around the idea of making a wider range of types
directly usable from XAML. This is good news for class library authors, as XAML2009
imposes fewer restrictions for making class libraries XAML friendly. On its own, each
feature provides a small improvement in expressiveness, but many of the features work
together to solve real-world problems.

Full Generics Support
In XAML2006, the root element can be an instantiation of a generic class, thanks to the
x:TypeArguments keyword. x:TypeArguments can be set to a type name or a comma-
delimited list of type names. But because x:TypeArguments can only be used on the root
element, generic classes generally have not been XAML friendly.

A common workaround for this limitation is to derive a non-generic class from a generic
one simply so it can be referenced from XAML, as in the following example:

C#:

public class PhotoCollection : ObservableCollection<Photo> {}

XAML:

<custom:PhotoCollection>

<custom:Photo …/>

<custom:Photo …/>

</custom:PhotoCollection>

In XAML2009, however, x:TypeArguments can be used on any element, so a class like
ObservableCollection<Photo> can be instantiated directly from XAML:

<collections:ObservableCollection TypeArguments=”custom:Photo”>

<custom:Photo …/>

<custom:Photo …/>

</collections:ObservableCollection>

In this case, collections is assumed to map to the System.Collections.ObjectModel
namespace that contains ObservableCollection.

XAML2009 45
2

Dictionary Keys of Any Type
In XAML2009, type conversion is now attempted with x:Key values, so you can success-
fully add items to a dictionary with non-string keys without using a markup extension.
Here’s an example:

<collections:Dictionary x:TypeArguments=”x:Int32, x:String”>

<x:String x:Key=”1”>One</x:String>

<x:String x:Key=”2”>Two</x:String>

</collections:Dictionary>

Here, collections is assumed to map to the System.Collections.Generic namespace.

CHAPTER 2 XAML Demystified46

Turning Off the Type Conversion of Non-String Dictionary Keys

For backwards compatibility, the XAML2009 XamlObjectWriter has a setting for turning off
the new automatic type conversion. This is controlled by the XamlObjectWriterSettings.
PreferUnconvertedDictionaryKeys property. When set to true, System.Xaml won’t
convert keys if the dictionary implements the non-generic IDictionary interface, unless:

. System.Xaml has already failed calling IDictionary.Add on this same instance, or

. The dictionary is a well-known type from the .NET Framework that System.Xaml knows
requires conversion.

D I G G I N G D E E P E R

Built-In System Data Types
In XAML2006, using core .NET data types such as String or Int32 is awkward due to the
need to reference the System namespace from the mscorlib assembly, as seen previously
in this chapter:

<sys:Int32 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>7</sys:Int32>

In XAML2009, 13 .NET data types have been added to the XAML language namespace
that most XAML is already referencing. With a namespace prefix of x, these data types are
x:Byte, x:Boolean, x:Int16, x:Int32, x:Int64, x:Single, x:Double, x:Decimal, x:Char,
x:String, x:Object, x:Uri, and x:TimeSpan. Therefore, the previous snippet can be
rewritten as follows:

<x:Int32 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>7</x:Int32>

But it is typically seen as follows in a XAML file already referencing the XAML language
namespace:

<x:Int32>7</x:Int32>

Instantiating Objects with Non-Default Constructors
XAML2009 introduces an x:Arguments keyword that enables you to specify one or more
arguments to pass to a class’s constructor. Consider, for example, the System.Version
class, which has a default constructor and four parameterized constructors. You could not
construct an instance of this class in XAML2006 unless someone provided an appropriate
type converter (or unless you were happy with the behavior of the default constructor,
which produces a version number of 0.0).

In XAML2009, you can instantiate this class with its constructor that accepts a single
string as follows:

<sys:Version x:Arguments=”4.0.30319.1”/>

The constructor argument doesn’t have to be a string; the attribute value undergoes type
conversion as necessary.

Unlike x:TypeArguments, x:Arguments does not allow you to specify multiple arguments
in the attribute value with a comma-delimited string. Instead, you can use the element
form of x:Arguments to specify any number of arguments. For example, calling
System.Version’s constructor that accepts four integers can be done as follows:

<sys:Version>

<x:Arguments>

<x:Int32>4</x:Int32>

<x:Int32>0</x:Int32>

<x:Int32>30319</x:Int32>

<x:Int32>1</x:Int32>

</x:Arguments>

</sys:Version>

Getting Instances via Factory Methods
With the new x:FactoryMethod keyword in XAML2009, you can now get an instance of a
class that doesn’t have any public constructors. x:FactoryMethod enables you to specify
any public static method that returns an instance of the desired type. For example, the
following XAML uses a Guid instance returned by the static Guid.NewGuid method:

<Label xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml

xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

<sys:Guid x:FactoryMethod=”sys:Guid.NewGuid”/>

</Label>

When x:FactoryMethod is used with x:Arguments, the arguments are passed to the static
factory method rather than to a constructor. Therefore, the following XAML calls the
static Marshal.GetExceptionForHR method, which accepts an HRESULT error code as input

XAML2009 47
2

and returns the corresponding .NET exception that would be thrown by the common
language runtime interoperability layer when encountering such an error:

<Label xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml

xmlns:sys=”clr-namespace:System;assembly=mscorlib”

xmlns:interop=

“clr-namespace:System.Runtime.InteropServices;assembly=mscorlib”>

<sys:Exception x:FactoryMethod=”interop:Marshal.GetExceptionForHR”>

<x:Arguments>

<x:Int32>0x80004001</x:Int32>

</x:Arguments>

</sys:Exception>

</Label>

Figure 2.3 shows the result of the previous two Labels stacked in the same XAML content,
as rendered by the XAMLPAD2009 sample.

CHAPTER 2 XAML Demystified48

FIGURE 2.3 Displaying two instances retrieved via static factory methods.

Event Handler Flexibility
Event handlers can’t be assigned in a loose XAML2006 file, but they can be assigned in a
loose XAML2009 file as long as the root instance can be located and it has a method with
a matching name and appropriate signature. In addition, in XAML2009, the value of an
event attribute can be any markup extension that returns an appropriate delegate:

<Button Click=”{custom:DelegateFinder Click}”/>

As with any markup extension, it can accept arbitrary input and perform arbitrary logic
to look up the delegate.

Defining New Properties
XAML is primarily focused on instantiating existing classes and setting values of their
predefined properties. Two new elements in XAML2009—x:Members and the correspond-
ing x:Property—enable the definition of additional properties directly inside XAML. This
functionality doesn’t apply to WPF, however. You can see it used in Windows Workflow
Foundation XAML, as in the following example:

<Activity x:Class=”ActivityLibrary1.Activity1” …>

<x:Members>

<x:Property Name=”argument1” Type=”InArgument(x:Int32)”/>

<x:Property Name=”argument2” Type=”OutArgument(x:String)”/>

</x:Members>

…

</Activity>

XAML Keywords 49
2

XAML Keywords
The XAML language namespace
(http://schemas.microsoft.com/winfx/
2006/xaml) defines a handful of
keywords that must be treated specially
by any XAML compiler or parser. They
mostly control aspects of how elements
get exposed to procedural code, but
several are useful even without any
procedural code. You’ve already seen
some of them (such as Key, Name, Class,
Subclass, and Code), but Table 2.1 lists
them all. They are listed with the
conventional x prefix because that is how they usually appear in XAML and in documen-
tation.

TABLE 2.1 Keywords in the XAML Language Namespace, Assuming the Conventional x
Namespace Prefix

Keyword Valid As Version Meaning

x:AsyncRecords Attribute on root 2006+ Controls the size of asynchronous
element XAML-loading chunks.

x:Arguments Attribute on or 2009 Specifies an argument (or multiple
element inside any arguments in the element syntax) to
element be passed to the element’s construc-

tor. When used with
x:FactoryMethod, specifies argu-
ment(s) for the factory method.

x:Boolean An element 2009 Represents a System.Boolean.
x:Byte An element 2009 Represents a System.Byte.

Special Attributes Defined by the W3C

In addition to keywords in the XAML
language namespace, XAML also supports
two special attributes defined for XML by the
World Wide Web Consortium (W3C):
xml:space for controlling whitespace
parsing and xml:lang for declaring the
document’s language and culture. The xml
prefix is implicitly mapped to the standard
XML namespace: http://www.w3.org/
XML/1998/namespace.

D I G G I N G D E E P E R

http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 XAML Demystified50

TABLE 2.1 Continued

Keyword Valid As Version Meaning

x:Char An element 2009 Represents a System.Char.
x:Class Attribute on root 2006+ Defines a class for the root element

element that derives from the element type,
optionally prefixed with a .NET name-
space.

x:ClassAttributes Attribute on root 2009 Not used by WPF; contains attributes
element and must be relevant for Windows Workflow
used with x:Class Foundation activities.

x:ClassModifier Attribute on root 2006+ Defines the visibility of the class
element and must be specified by x:Class (which is public
used with x:Class by default). The attribute value must

be specified in terms of the proce-
dural language being used (for
example, public or internal for C#).

x:Code Element anywhere in 2006+ Embeds procedural code to be
XAML, but must be inserted into the class specified by
used with x:Class x:Class.

x:ConnectionId Attribute 2006+ Not for public use.
x:Decimal An element 2009 Represents a System.Decimal.
x:Double An element 2009 Represents a System.Double.
x:FactoryMethod Attribute on any 2009 Specifies a static method to be called

element to retrieve the element instance
instead of its constructor.

x:FieldModifier Attribute on any 2006+ Defines the visibility of the field to be
nonroot element but generated for the element (which is
must be used with internal by default). As with
x:Name (or equivalent) x:ClassModifier, the value must be

specified in terms of the procedural
language (for example, public,
private, … for C#).

x:Int16 An element 2009 Represents a System.Int16.
x:Int32 An element 2009 Represents a System.Int32.
x:Int64 An element 2009 Represents a System.Int64.
x:Key Attribute on an 2006+ Specifies the key for the item when

element whose added to the parent dictionary.
parent implements
IDictionary

x:Members Not valid in WPF 2009 Defines additional members for the
XAML root class specified by x:Class.

x:Name Attribute on any 2006+ Chooses a name for the field to be
nonroot element but generated for the element, so it can
must be used with be referenced from procedural code.
x:Class

TABLE 2.1 Continued

Keyword Valid As Version Meaning

x:Object An element 2009 Represents a System.Object.
x:Property Not valid in WPF 2009 Defines a property inside an

XAML x:Members element.
x:Shared Attribute on any 2006+ Can be set to false to avoid sharing

element in a the same resource instance in
ResourceDictionary, multiple places, as explained in
but only works if Chapter 12.
XAML is compiled

x:Single An element 2009 Represents a System.Single.
x:String An element 2009 Represents a System.String.
x:Subclass Attribute on root 2006+ Specifies a subclass of the x:Class

element and must be class that holds the content defined
used with x:Class in XAML, optionally prefixed with a

.NET namespace (used with
languages without support for partial
classes).

x:SynchronousMode Attribute on root 2006+ Specifies whether the XAML content is
element allowed to be loaded asynchronously.

x:TimeSpan An element 2009 Represents a System.TimeSpan.
x:TypeArguments Attribute on any 2006+ Makes the class generic (for example,

element in XAML2009, List<T>) with the specified generic
or attribute on root argument instantiations (for example,
element that must be List<Int32> or List<String>). Can
used with x:Class be set to a comma-delimited list of
in XAML2006 generic arguments, with XML name-

space prefixes for any types not in the
default namespace.

x:Uid Attribute on any 2006+ Marks an element with an identifier
element used for localization, as described in

Chapter 12.
x:Uri An element 2009 Represents a System.Uri.
x:XData Element used as 2006+ An arbitrary XML data island that

the value for any remains opaque to the XAML parser,
property of type as explained in Chapter 13.
IXmlSerializable

Table 2.2 contains additional items in the XAML language namespace that can be
confused as keywords but are actually just markup extensions (real .NET classes in the
System.Windows.Markup namespace). Each class’s Extension suffix is omitted from the
table because the classes are typically used without the suffix.

XAML Keywords 51
2

CHAPTER 2 XAML Demystified52

TABLE 2.2 Markup Extensions in the XAML Language Namespace, Assuming the
Conventional x Namespace Prefix

Extension Meaning

x:Array Represents a .NET array. An x:Array element’s children are the elements of
the array. It must be used with x:Type to define the type of the array.

x:Null Represents a null reference.
x:Reference A reference to a named element. It has a single positional parameter, which

is the name of the referenced element.
x:Static References any static property, field, constant, or enumeration value defined

in procedural code. This can even be a nonpublic member in the same
assembly, when XAML is compiled. Its Member string must be qualified with
an XML namespace prefix if the type is not in the default namespace.

x:Type Represents an instance of System.Type, just like the typeof operator in C#.
Its TypeName string must be qualified with an XML namespace prefix if the
type is not in the default namespace.

Summary
You have now seen how XAML fits in with WPF and, most importantly, you now have
the information needed to translate most XAML examples into a language such as C# and
vice versa. However, because type converters and markup extensions are “black boxes,” a
straightforward translation is not always going to be obvious. That said, invoking a type
converter directly from procedural code is always an option if you can’t figure out the
conversion that the type converter is doing internally! (Many classes with corresponding
type converters even expose a static Parse method that does the same work, for the sake
of simpler procedural code.)

I love the fact that simple concepts that could have been treated specially by XAML (such
as null or a named reference) are expressed using the same markup extension mechanism
used by third parties. This keeps the XAML language as simple as possible, and it ensures
that the extensibility mechanism works really well.

As you proceed further with WPF, you might find that some WPF APIs can be a little
clunky from procedural code because their design is often optimized for XAML use. For
example, WPF exposes many small building blocks (enabling the rich composition
described in the previous chapter), so a WPF application generally must create many
objects manually. Besides the fact the XAML excels at expressing deep hierarchies of
objects concisely, the WPF team spent more time implementing features to effectively
hide intermediate objects in XAML (such as type converters) rather than features to hide
them from procedural code (such as constructors that create inner objects on your
behalf).

Most people understand the benefit of WPF having the separate declarative model
provided by XAML, but some lament XML as the choice of format. The following sections
are two common complaints and my attempt to debunk them.

Complaint 1: XML Is Too Verbose to Type
This is true: Almost nobody enjoys typing lots of XML, but that’s where tools come in.
Tools such as IntelliSense and visual designers can spare you from typing a single angle
bracket! The transparent and well-specified nature of XML enables you to easily integrate
new tools into the development process (creating a XAML exporter for your favorite tool,
for example) and also enables easy hand-tweaking or troubleshooting.

In some areas of WPF—complicated paths and shapes, 3D models, and so on—typing
XAML by hand isn’t even practical. In fact, the trend from when XAML was first intro-
duced in beta form has been to remove some of the handy human-typable shortcuts in
favor of a more robust and extensible format that can be supported well by tools. But I
still believe that being familiar with XAML and seeing the WPF APIs through both proce-
dural and declarative perspectives is the best way to learn the technology. It’s like under-
standing how HTML works without relying on a visual tool.

Complaint 2: XML-Based Systems Have Poor Performance
XML is about interoperability, not about an efficient representation of data. So, why
should most WPF applications be saddled with a bunch of data that is relatively large and
slow to parse?

The good news is that in a normal WPF scenario, XAML is compiled into BAML, so you
don’t pay the full penalties of size and parsing performance at runtime. BAML is both
smaller in size than the original XAML and optimized for efficient use at runtime.
Performance pitfalls from XML are therefore limited to development time, which is
when the benefits of XML are needed the most.

Summary 53
2

This page intentionally left blank

CHAPTER 3

WPF Fundamentals

To finish Part I, “Background,” and before moving on to
the really fun topics, it’s helpful to examine some of the
main concepts that WPF introduces above and beyond
what .NET programmers are already familiar with. The
topics in this chapter are some of the main culprits respon-
sible for WPF’s notoriously steep learning curve. By famil-
iarizing yourself with these concepts now, you’ll be able to
approach the rest of this book (or any other WPF docu-
mentation) with confidence.

Some of this chapter’s concepts are unique to WPF (such as
logical and visual trees), but others are just extensions of
concepts that should be quite familiar (such as properties).
As you learn about each one, you’ll see how to apply it to a
very simple piece of user interface that most programs
need—an About dialog.

A Tour of the Class Hierarchy
WPF’s classes have a very deep inheritance hierarchy, so it
can be hard to get your head wrapped around the signifi-
cance of various classes and their relationships. A handful
of classes are fundamental to the inner workings of WPF
and deserve a quick explanation before we get any further
in the book. Figure 3.1 shows these important classes and
their relationships.

These 12 classes have the following significance:

. Object—The base class for all .NET classes and the
only class in the figure that isn’t WPF specific.

IN THIS CHAPTER

. A Tour of the Class Hierarchy

. Logical and Visual Trees

. Dependency Properties

FIGURE 3.1 The core classes that form the foundation of WPF.

. DispatcherObject—The base class meant for any object that wishes to be accessed
only on the thread that created it. Most WPF classes derive from DispatcherObject
and are therefore inherently thread-unsafe. The Dispatcher part of the name refers
to WPF’s version of a Win32-like message loop, discussed further in Chapter 7,
“Structuring and Deploying an Application.”

. DependencyObject—The base class for any object that can support dependency
properties, one of the main topics in this chapter.

. Freezable—The base class for objects that can be “frozen” into a read-only state for
performance reasons. Freezables, once frozen, can be safely shared among multiple
threads, unlike all other DispatcherObjects. Frozen objects can never be unfrozen,
but you can clone them to create unfrozen copies. Most Freezables are graphics
primitives such as brushes, pens, and geometries or animation classes.

. Visual—The base class for all objects that have their own 2D visual representation.
Visuals are discussed in depth in Chapter 15, “2D Graphics.”

. UIElement—The base class for all 2D visual objects with support for routed events,
command binding, layout, and focus. These features are discussed in Chapter 5,
“Layout with Panels,” and Chapter 6, “Input Events: Keyboard, Mouse, Stylus, and
Touch.”

. Visual3D—The base class for all objects that have their own 3D visual representa-
tion. Visual3Ds are discussed in depth in Chapter 16, “3D Graphics.”

. UIElement3D—The base class for all 3D visual objects with support for routed events,
command binding, and focus, also discussed in Chapter 16.

. ContentElement—A base class similar to UIElement but for document-related pieces
of content that don’t have rendering behavior on their own. Instead,

CHAPTER 3 WPF Fundamentals56

2D 3D Documents

Object

DispatcherObject

DependencyObject

Freezable Visual Visual3D

UIElement

FrameworkElement

Control

UIElement3D ContentElement

FrameworkContentElement

ContentElements are hosted in a Visual-derived class to be rendered on the screen.
Each ContentElement often requires multiple Visuals to render correctly (spanning
lines, columns, and pages).

. FrameworkElement—The base class that adds support for styles, data binding,
resources, and a few common mechanisms for controls, such as tooltips and context
menus.

. FrameworkContentElement—The analog to FrameworkElement for content. Chapter
11, “Images, Text, and Other Controls,” examines the FrameworkContentElements in
WPF.

. Control—The base class for familiar controls such as Button, ListBox, and
StatusBar. Control adds many properties to its FrameworkElement base class, such
as Foreground, Background, and FontSize, as well as the ability to be completely
restyled. Part III, “Controls,” examines WPF’s controls in depth.

Throughout the book, the simple term element is used to refer to an object that
derives from UIElement or FrameworkElement, and sometimes ContentElement or
FrameworkContentElement. The distinction between UIElement and FrameworkElement or
between ContentElement and FrameworkContentElement is not important because WPF
doesn’t ship any other public subclasses of UIElement and ContentElement.

Logical and Visual Trees
XAML is natural for representing a user interface because of its hierarchical nature. In
WPF, user interfaces are constructed from a tree of objects known as a logical tree.

Listing 3.1 defines the beginnings of a hypothetical About dialog, using a Window as the
root of the logical tree. The Window has a StackPanel child element (described in Chapter
5) containing a few simple controls plus another StackPanel that contains Buttons.

LISTING 3.1 A Simple About Dialog in XAML

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”About WPF 4.5 Unleashed” SizeToContent=”WidthAndHeight”

Background=”OrangeRed”>

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4.5 Unleashed

</Label>

<Label>© 2013 SAMS Publishing</Label>

<Label>Installed Chapters:</Label>

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem>

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox>

Logical and Visual Trees 57
3

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10”>Help</Button>

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel>

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel>

</Window>

Figure 3.2 shows the rendered dialog (which you can
easily produce by pasting the content of Listing 3.1
into a tool such as the XAMLPAD2009 sample from
the previous chapter), and Figure 3.3 illustrates the
logical tree for this dialog.

Note that a logical tree exists even for WPF user inter-
faces that aren’t created in XAML. Listing 3.1 could be
implemented entirely in C#, and the logical tree
would be identical.

The logical tree concept is straightforward, but why
should you care about it? Because just about every
aspect of WPF (properties, events, resources, and so on)
has behavior tied to the logical tree. For example, property values are sometimes propa-
gated down the tree to child elements automatically, and raised events can travel up or
down the tree. This behavior of property values is discussed later in this chapter, and this
behavior of events is discussed in Chapter 6.

CHAPTER 3 WPF Fundamentals58

LISTING 3.1 Continued

FIGURE 3.2 The rendered
dialog from Listing 3.1.

String String

String String

String

Label Label Label

ListBoxItem ListBoxItem

String String

Button Button

ListBox StackPanel StatusBar

String

Window

StackPanel

FIGURE 3.3 The logical tree for Listing 3.1.

The logical tree exposed by WPF is a simplification of what is actually going on when the
elements are rendered. The entire tree of elements actually being rendered is called the

visual tree. You can think of the visual tree as an expansion of a logical tree, in which
nodes are broken down into their core visual components. Rather than leaving each
element as a “black box,” a visual tree exposes the visual implementation details. For
example, although a ListBox is logically a single control, its default visual representation
is composed of more primitive WPF elements: a Border, two ScrollBars, and more.

Not all logical tree nodes appear in the
visual tree; only the elements that derive
from System.Windows.Media.Visual or
System.Windows.Media.Visual3D are
included. Other elements (and simple
string content, as in Listing 3.1) are not
included because they don’t have inher-
ent rendering behavior of their own.

Figure 3.4 illustrates the default visual tree for Listing 3.1. This diagram exposes some inner
components of the user interface that are currently invisible, such as the ListBox’s two
ScrollBars and each Label’s Border. It also reveals that Button, Label, and ListBoxItem are
all composed of the same elements. (These controls have other visual differences as the
result of different default property values. For example, Button has a default Margin of 10
on all sides, whereas Label has a default Margin of 0.)

Because they enable you to peer inside the deep composition of WPF elements, visual trees
can be surprisingly complex. Fortunately, although visual trees are an essential part of the
WPF infrastructure, you often don’t need to worry about them unless you’re radically
restyling controls (covered in Chapter 14, “Styles, Templates, Skins, and Themes”) or
doing low-level drawing (covered in
Chapter 15). Writing code that depends
on a specific visual tree for a Button, for
example, breaks one of WPF’s core
tenets—the separation of look and logic.
When someone restyles a control such as
Button using the techniques described in
Chapter 14, its entire visual tree is
replaced with something that could be
completely different.

However, you can easily traverse both the logical and visual trees using the somewhat
symmetrical System.Windows.LogicalTreeHelper and System.Windows.Media.
VisualTreeHelper classes. Listing 3.2 contains a code-behind file for Listing 3.1 that,
when run under a debugger, outputs a simple depth-first representation of both the logical
and visual trees for the About dialog. (This requires adding x:Class=”AboutDialog” and
the corresponding xmlns:x directive to Listing 3.1 in order to hook it up to this procedural
code.)

Logical and Visual Trees 59
3

Some lightweight XAML viewers, such as the
XamlPadX tool mentioned in the preceding
chapter, have functionality for exploring the
visual tree (and property values) for the
objects that it renders from XAML.

T I P

Avoid writing code that depends on a
specific visual tree!

Whereas a logical tree is static without
programmer intervention (such as dynami-
cally adding/removing elements), a visual
tree can change simply because a user
switches to a different Windows theme!

WA R N I N G

FIGURE 3.4 The visual tree for Listing 3.1, with logical tree nodes emphasized.

LISTING 3.2 Walking and Printing the Logical and Visual Trees

using System;

using System.Diagnostics;

using System.Windows;

using System.Windows.Media;

public partial class AboutDialog : Window

{

public AboutDialog()

{

InitializeComponent();

PrintLogicalTree(0, this);

}

protected override void OnContentRendered(EventArgs e)

{

base.OnContentRendered(e);

PrintVisualTree(0, this);

CHAPTER 3 WPF Fundamentals60

AdornerLayerItemsPresenter

Window

StackPanel

Border

AdornerDecorator

Label

Border

ContentPresenter

TextBlock

Label

Border

ContentPresenter

TextBlock

Button

Border

ContentPresenter

TextBlock

Button

Border

ContentPresenter

TextBlock

Border

ItemsPresenter

DockPanel

StatusBarItem

Border

ContentPresenter

TextBlock

Border

ContentPresenter

TextBlock

Border

ContentPresenter

TextBlock

Label

Border

ContentPresenter

TextBlock

ListBox StackPanel StatusBar

Border

ScrollViewer

Grid

ListBoxItem ListBoxItem

AdornerLayerContentPresenter

ScrollContentPresenter

VirtualizingStackPanel

ScrollBar ScrollBarRectangle

}

void PrintLogicalTree(int depth, object obj)

{

// Print the object with preceding spaces that represent its depth

Debug.WriteLine(new string(‘ ‘, depth) + obj);

// Sometimes leaf nodes aren’t DependencyObjects (e.g. strings)

if (!(obj is DependencyObject)) return;

// Recursive call for each logical child

foreach (object child in LogicalTreeHelper.GetChildren(

obj as DependencyObject))

PrintLogicalTree(depth + 1, child);

}

void PrintVisualTree(int depth, DependencyObject obj)

{

// Print the object with preceding spaces that represent its depth

Debug.WriteLine(new string(‘ ‘, depth) + obj);

// Recursive call for each visual child

for (int i = 0; i < VisualTreeHelper.GetChildrenCount(obj); i++)

PrintVisualTree(depth + 1, VisualTreeHelper.GetChild(obj, i));

}

}

When calling these methods with a depth of 0 and the current Window instance, the result
is a text-based tree with exactly the same nodes shown in Figures 3.2 and 3.3. Although
the logical tree can be traversed within Window’s constructor, the visual tree is empty until
the Window undergoes layout at least once. That is why PrintVisualTree is called within
OnContentRendered, which doesn’t get called until after layout occurs.

Logical and Visual Trees 61

LISTING 3.2 Continued

3

Visual trees like the one represented in Figure 3.4 are often referred to simply as element
trees, because they encompass both elements in the logical tree and elements specific to
the visual tree. The term visual tree is then used to describe any subtree that contains
visual-only (illogical?) elements. For example, most people would say that Window’s
default visual tree consists of a Border, an AdornerDecorator, an AdornerLayer, a
ContentPresenter, and nothing more. In Figure 3.4, the top-most StackPanel is generally
not considered to be the visual child of the ContentPresenter, despite the fact that
VisualTreeHelper presents it as one.

T I P

Navigating either tree can sometimes be done with instance methods on the elements
themselves. For example, the Visual class contains three protected members
(VisualParent, VisualChildrenCount, and GetVisualChild) for examining its visual
parent and children. FrameworkElement, the common base class for controls such as
Button and Label, and its peer FrameworkContentElement both define a public Parent
property representing the logical parent and a protected LogicalChildren property for the
logical children. Subclasses of these two classes often publicly expose their logical chil-
dren in a variety of ways, such as in a public Children collection. Some classes, such as
Button and Label, expose a Content property and enforce that the element can have only
one logical child.

Dependency Properties
WPF introduces a type of property called a dependency property that is used throughout the
platform to enable styling, automatic data binding, animation, and more. You might first
meet this concept with skepticism, as it complicates the picture of .NET types having
simple fields, properties, methods, and events. But when you understand the problems
that dependency properties solve, you will likely accept them as a welcome addition.

CHAPTER 3 WPF Fundamentals62

In the Visual Studio debugger, you can click the little magnifying glass next to an instance of
a Visual-derived variable to invoke WPF Visualizer, as shown in Figure 3.5. This enables you
to navigate and visualize the visual tree.

T I P

FIGURE 3.5 The WPF Visualizer in Visual Studio reveals the visual tree and details about
each element.

A dependency property depends on multiple providers for determining its value at any
point in time. These providers could be an animation continuously changing its value, a
parent element whose property value propagates down to its children, and so on.
Arguably the biggest feature of a dependency property is its built-in ability to provide
change notification.

The motivation for adding such intelligence to properties is to enable rich functionality
directly from declarative markup. The key to WPF’s declarative-friendly design is its heavy
use of properties. Button, for example, has more than 100 public properties (most of
which are inherited from Control and its base classes)! Properties can be easily set in
XAML (directly or by using a design tool) without any procedural code. But without the
extra plumbing in dependency properties, it would be hard for the simple action of
setting properties to get the desired results without the need to write additional code.

In this section, we briefly look at the implementation of a dependency property to make
this discussion more concrete, and then we dig deeper into some of the ways that depen-
dency properties add value on top of plain .NET properties:

. Change notification

. Property value inheritance

. Support for multiple providers

Understanding most of the nuances of dependency properties is usually important only
for custom control authors. However, even casual users of WPF need to be aware of what
dependency properties are and how they work. For example, you can only style and
animate dependency properties. After working with WPF for a while, you might find
yourself wishing that all properties would be dependency properties!

A Dependency Property Implementation
In practice, dependency properties are just normal .NET properties hooked into some
extra WPF infrastructure. This is all accomplished via WPF APIs; no .NET languages (other
than XAML) have an intrinsic understanding of a dependency property.

Listing 3.3 demonstrates how Button effectively implements one of its dependency prop-
erties, called IsDefault.

LISTING 3.3 A Standard Dependency Property Implementation

public class Button : ButtonBase

{

// The dependency property

public static readonly DependencyProperty IsDefaultProperty;

static Button()

{

// Register the property

Dependency Properties 63
3

Button.IsDefaultProperty = DependencyProperty.Register(“IsDefault”,

typeof(bool), typeof(Button),

new FrameworkPropertyMetadata(false,

new PropertyChangedCallback(OnIsDefaultChanged)));

…

}

// A .NET property wrapper (optional)

public bool IsDefault

{

get { return (bool)GetValue(Button.IsDefaultProperty); }

set { SetValue(Button.IsDefaultProperty, value); }

}

// A property changed callback (optional)

private static void OnIsDefaultChanged(

DependencyObject o, DependencyPropertyChangedEventArgs e) { … }

…

}

The static IsDefaultProperty field is the actual dependency property, represented by the
System.Windows.DependencyProperty class. By convention, all DependencyProperty fields
are public, static, and have a Property suffix. Several pieces of infrastructure require that
you follow this convention: localization tools, XAML loading, and more.

Dependency properties are usually created by calling the static
DependencyProperty.Register method, which requires a name (IsDefault), a property
type (bool), and the type of the class claiming to own the property (Button). Optionally
(via different overloads of Register), you can pass metadata that customizes how the
property is treated by WPF, as well as callbacks for handling property value changes,
coercing values, and validating values. Button calls an overload of Register in its static
constructor to give the dependency property a default value of false and to attach a dele-
gate for change notifications.

Finally, the traditional .NET property called IsDefault implements its accessors by calling
GetValue and SetValue methods inherited from System.Windows.DependencyObject, the
low-level base class from which all classes with dependency properties must derive.
GetValue returns the last value passed to SetValue or, if SetValue has never been called,
the default value registered with the property.
The IsDefault .NET property (some-
times called a property wrapper in this
context) is not strictly necessary;
consumers of Button could directly call
the GetValue/SetValue methods because
they are exposed publicly. But the .NET
property makes programmatic reading

CHAPTER 3 WPF Fundamentals64

Visual Studio has a snippet called propdp
that automatically expands into a definition
of a dependency property, which makes
defining one much faster than doing all the
typing yourself!

T I P

Dependency Properties 65
3

.NET property wrappers are bypassed at runtime when setting dependency prop-
erties in XAML!

Although the XAML compiler depends on the property wrapper at compile time, WPF calls the
underlying GetValue and SetValue methods directly at runtime! Therefore, to maintain parity
between setting a property in XAML and procedural code, it’s crucial that property wrappers
not contain any logic in addition to the GetValue/SetValue calls. If you want to add custom
logic, that’s what the registered callbacks are for. All of WPF’s built-in property wrappers
abide by this rule, so this warning is for anyone writing a custom class with its own depen-
dency properties.

WA R N I N G

and writing of the property much more natural for consumers, and it enables the prop-
erty to be set via XAML. WPF should, but does not, provide generic overloads of GetValue
and SetValue. This is primarily because dependency properties were invented before .NET
generics were widely used.

On the surface, Listing 3.3 looks like an overly verbose way of representing a simple
Boolean property. However, because GetValue and SetValue internally use an efficient
sparse storage system and because IsDefaultProperty is a static field (rather than an
instance field), the dependency property implementation saves per-instance memory
compared to a typical .NET property. If all the properties on WPF controls were wrappers
around instance fields (as most .NET properties are), they would consume a significant
amount of memory because of all the local data attached to each instance. Having more
than 100 fields for each Button, more than 100 fields for each Label, and so forth would
add up quickly! Instead, almost all of Button’s and Label’s properties are dependency
properties.

The benefits of the dependency property implementation extend to more than just
memory usage, however. The implementation centralizes and standardizes a fair amount
of code that property implementers would have to write to check thread access, prompt
the containing element to be re-rendered, and so on. For example, if a property requires
its element to be re-rendered when its value changes (such as Button’s Background prop-
erty), it can simply pass the FrameworkPropertyMetadataOptions.AffectsRender flag to
an overload of DependencyProperty.Register. In addition, this implementation enables
the three features listed earlier that we’ll now examine one-by-one, starting with change
notification.

Change Notification
Whenever the value of a dependency property changes, WPF can automatically trigger
a number of actions, depending on the property’s metadata. These actions can be
re-rendering the appropriate elements, updating the current layout, refreshing data bind-
ings, and much more. One of the interesting features enabled by this built-in change
notification is property triggers, which enable you to perform your own custom actions
when a property value changes, without writing any procedural code.

For example, imagine that you want the text in each Button from the About dialog in
Listing 3.1 to turn blue when the mouse pointer hovers over it. Without property triggers,
you can attach two event handlers to each Button, one for its MouseEnter event and one
for its MouseLeave event:

<Button MouseEnter=”Button_MouseEnter” MouseLeave=”Button_MouseLeave”

MinWidth=”75” Margin=”10”>Help</Button>

<Button MouseEnter=”Button_MouseEnter” MouseLeave=”Button_MouseLeave”

MinWidth=”75” Margin=”10”>OK</Button>

These two handlers could be implemented in a C# code-behind file as follows:

// Change the foreground to blue when the mouse enters the button

void Button_MouseEnter(object sender, MouseEventArgs e)

{

Button b = sender as Button;

if (b != null) b.Foreground = Brushes.Blue;

}

// Restore the foreground to black when the mouse exits the button

void Button_MouseLeave(object sender, MouseEventArgs e)

{

Button b = sender as Button;

if (b != null) b.Foreground = Brushes.Black;

}

With a property trigger, however, you can accomplish this same behavior purely in
XAML. The following concise Trigger object is just about all you need:

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”Foreground” Value=”Blue”/>

</Trigger>

This trigger can act on Button’s IsMouseOver property, which becomes true at the same
time the MouseEnter event is raised and false at the same time the MouseLeave event is
raised. Note that you don’t have to worry about reverting Foreground to black when
IsMouseOver changes to false. This is automatically done by WPF!

The only trick is assigning this Trigger to each Button. Unfortunately, because of a
confusing limitation, you can’t apply property triggers directly to elements such as
Button. You can apply them only inside a Style object, so an in-depth examination of
property triggers is saved for Chapter 14. In the meantime, to experiment with property
triggers, you can apply the preceding Trigger to a Button by wrapping it in a few inter-
mediate XML elements, as follows:

<Button MinWidth=”75” Margin=”10”>

<Button.Style>

<Style TargetType=”{x:Type Button}”>

CHAPTER 3 WPF Fundamentals66

Property Value Inheritance
The term property value inheritance (or property
inheritance for short) doesn’t refer to tradi-
tional object-oriented class-based inheritance
but rather the flowing of property values
down the element tree. A simple example of
this can be seen in Listing 3.4, which updates
the Window from Listing 3.1 by explicitly
setting its FontSize and FontStyle depen-
dency properties. Figure 3.6 shows the result
of this change. (Notice that the Window auto-
matically resizes to fit all the content thanks
to its slick SizeToContent setting!)

Dependency Properties 67
3

Don’t be fooled by an element’s Triggers collection!

FrameworkElement’s Triggers property is a read/write collection of TriggerBase items
(the common base class for all three types of triggers), so it looks like an easy way to attach
property triggers to controls such as Button. Unfortunately, this collection can only contain
event triggers, so its name and type are misleading. Attempting to add a property trigger (or
data trigger) to the collection causes an exception to be thrown at runtime.

WA R N I N G

FIGURE 3.6 The About dialog with
FontSize and FontStyle set on the
root Window.

<Style.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”Foreground” Value=”Blue”/>

</Trigger>

</Style.Triggers>

</Style>

</Button.Style>

OK

</Button>

Property triggers are just one of three types of triggers supported by WPF. A data trigger is a
form of property trigger that works for all .NET properties (not just dependency proper-
ties), also covered in Chapter 14. An event trigger enables you to declaratively specify
actions to take when a routed event (covered in Chapter 6) is raised. Event triggers always
involve working with animations or sounds, so they aren’t covered until Chapter 17,
“Animation.”

LISTING 3.4 The About Dialog with Font Properties Set on the Root Window

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”About WPF 4.5 Unleashed” SizeToContent=”WidthAndHeight”

FontSize=”30” FontStyle=”Italic”

Background=”OrangeRed”>

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4.5 Unleashed

</Label>

<Label>© 2013 SAMS Publishing</Label>

<Label>Installed Chapters:</Label>

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem>

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox>

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10”>Help</Button>

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel>

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel>

</Window>

For the most part, these two settings flow all the way down the tree and are inherited by
children. This affects even the Buttons and ListBoxItems, which are three levels down the
logical tree. The first Label’s FontSize does not change because it is explicitly marked
with a FontSize of 20, overriding the inherited value of 30. The inherited FontStyle
setting of Italic affects all Labels, ListBoxItems, and Buttons, however, because none of
them have this set explicitly.

Notice that the text in the StatusBar is unaffected by either of these values, despite the
fact that it supports these two properties just like the other controls. The behavior of
property value inheritance can be subtle in cases like this for two reasons:

. Not every dependency property participates in property value inheritance.
(Internally, dependency properties can opt in to inheritance by passing
FrameworkPropertyMetadataOptions.Inherits to DependencyProperty.Register.)

. There may be other higher-priority sources setting the property value, as explained
in the next section.

In this case, the latter reason is to blame. A few controls, such as StatusBar, Menu, and
ToolTip, internally set their font properties to match current system settings. This way,
users get the familiar experience of controlling their font via Control Panel. The result can
be confusing, however, because such controls end up “swallowing” any inheritance from

CHAPTER 3 WPF Fundamentals68

Dependency Properties 69
3

Property Value Inheritance in Additional Places

Property value inheritance was originally designed to operate on the element tree, but it has
been extended to work in a few other contexts as well. For example, values can be passed
down to certain elements that look like children in the XML sense (because of XAML’s prop-
erty element syntax) but are not children in terms of the logical or visual trees. These
pseudochildren can be an element’s triggers or the value of any property (not just Content
or Children), as long as it is an object deriving from Freezable. This may sound arbitrary
and isn’t well documented, but the intention is that several XAML-based scenarios “just
work” as you would expect, without requiring you to think about it.

D I G G I N G D E E P E R

Determine
Base Value

Evaluate
(if an Expression)

Apply
Animations Coerce Validate

Support for Multiple Providers
WPF contains many powerful mechanisms that independently attempt to set the value of
dependency properties. Without a well-defined mechanism for handling these disparate
property value providers, the system would be a bit chaotic, and property values could be
unstable. Of course, as their name indicates, dependency properties were designed to
depend on these providers in a consistent and orderly manner.

Figure 3.7 illustrates the five-step process that WPF runs each dependency property
through in order to calculate its final value. This process happens automatically, thanks
to the built-in change notification in dependency properties.

proceeding further down the element tree. For example, if you add a Button as a logical
child of the StatusBar in Listing 3.4, its FontSize and FontStyle would be the default
values of 12 and Normal, respectively, unlike the other Buttons outside of the StatusBar.

FIGURE 3.7 The pipeline for calculating the value of a dependency property.

Step 1: Determine the Base Value
Most of the property value providers factor into the base value calculation. The following
list reveals the ten providers that can set the value of most dependency properties, in
order from highest to lowest precedence:

1. Local value

2. Parent template trigger

3. Parent template

4. Style triggers

5. Template triggers

6. Style setters

7. Theme style triggers

8. Theme style setters

9. Property value inheritance

10. Default value

You’ve already seen some of the property value providers, such as property value inheri-
tance (#9). Local value (#1) technically means any call to DependencyObject.SetValue, but
this is typically seen with a simple property assignment in XAML or procedural code
(because of the way dependency properties are implemented, as shown previously with
Button.IsDefault). Default value (#10) refers to the initial value registered with the
dependency property, which naturally has the lowest precedence. The other providers,
which all involve styles and templates, are explained further in Chapter 14.

This order of precedence explains why StatusBar’s FontSize and FontStyle were not
impacted by property value inheritance in Listing 3.4. The setting of StatusBar’s font
properties to match system settings is done via theme style setters (#8). Although this has
precedence over property value inheritance (#9), you can still override these font settings
using any mechanism with a higher precedence, such as simply setting local values on
StatusBar.

CHAPTER 3 WPF Fundamentals70

If you can’t figure out where a given dependency property is getting its current value,
you can use the static DependencyPropertyHelper.GetValueSource method as a
debugging aid. This returns a ValueSource structure that contains a few pieces of data: a
BaseValueSource enumeration that reveals where the base value came from (step 1 in the
process) and Boolean IsExpression, IsAnimated, and IsCoerced properties that reveal
information about steps 2 through 4.

When calling this method on the StatusBar instance from Listing 3.1 or 3.4 with the
FontSize or FontStyle property, the returned BaseValueSource is DefaultStyle, revealing
that the value comes from a theme style setter. (Theme styles are sometimes referred to as
default styles. The enumeration value for a theme style trigger is DefaultStyleTrigger.)

Do not use this method in production code! Future versions of WPF could break assumptions
you’ve made about the value calculation. In addition, treating a property value differently, depend-
ing on its source, goes against the way things are supposed to work in WPF applications.

T I P

Step 2: Evaluate
If the value from step one is an expression (an object deriving from
System.Windows.Expression), WPF performs a special evaluation step to convert the
expression into a concrete result. Expressions mostly appear in data binding (the topic of
Chapter 13, “Data Binding”).

Step 3: Apply Animations
If one or more animations are running, they have the power to alter the current property
value (using the value after step 2 as input) or completely replace it. Therefore, anima-
tions (the topic of Chapter 17) can trump all other property value providers—even local
values! This is often a stumbling block for people who are new to WPF.

Step 4: Coerce
After all the property value providers have had their say, WPF passes the almost-final
property value to a CoerceValueCallback delegate, if one was registered with the depen-
dency property. The callback is responsible for returning a new value, based on custom
logic. For example, built-in WPF controls such as ProgressBar use this callback to
constrain its Value dependency property to a value between its Minimum and Maximum
values, returning Minimum if the input value is less than Minimum and Maximum if the input
value is greater than Maximum. If you change your coercion logic at runtime, you can call
CoerceValue to make WPF run the new coercion and validation logic again.

Dependency Properties 71
3

Clearing a Local Value

The earlier “Change Notification” section demonstrates the use of procedural code to
change a Button’s Foreground to blue in response to the MouseEnter event and then
changing it back to black in response to the MouseLeave event. The problem with this
approach is that black is set as a local value inside MouseLeave, which is much different
from the Button’s initial state, in which its black Foreground comes from a setter in its
theme style. If the theme is changed and the new theme tries to change the default
Foreground color (or if other providers with higher precedence try to do the same), this
change is trumped by the local setting of black.

What you likely want to do instead is clear the local value and let WPF set the value from the
relevant provider with the next-highest precedence. Fortunately, DependencyObject provides
exactly this kind of mechanism with its ClearValue method. This can be called on a Button
b as follows in C#:

b.ClearValue(Button.ForegroundProperty);

(Button.ForegroundProperty is the static DependencyProperty field.) After calling
ClearValue, the local value is simply removed from the equation when WPF recalculates the
base value.

Note that the trigger on the IsMouseOver property from the “Change Notification” section does
not have the same problem as the implementation with event handlers. A trigger is either
active or inactive, and when it is inactive, it is simply ignored in the property value calculation.

D I G G I N G D E E P E R

Attached Properties
An attached property is a special form of dependency property that can effectively be
attached to arbitrary objects. This may sound strange at first, but this mechanism has
several applications in WPF.

For the About dialog example, imagine that rather than setting FontSize and FontStyle
for the entire Window (as is done in Listing 3.4), you would rather set them on the inner
StackPanel so they are inherited only by the two Buttons. Moving the property attributes
to the inner StackPanel element doesn’t work, however, because StackPanel doesn’t have
any font-related properties of its own! Instead, you must use the FontSize and FontStyle
attached properties that happen to be defined on a class called TextElement. Listing 3.5
demonstrates this, introducing new XAML syntax designed especially for attached proper-
ties. This enables the desired property value inheritance, as shown in Figure 3.8.

LISTING 3.5 The About Dialog with Font Properties Moved to the Inner StackPanel

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

Title=”About WPF 4.5 Unleashed” SizeToContent=”WidthAndHeight”

Background=”OrangeRed”>

<StackPanel>

<Label FontWeight=”Bold” FontSize=”20” Foreground=”White”>

WPF 4.5 Unleashed

</Label>

<Label>© 2013 SAMS Publishing</Label>

<Label>Installed Chapters:</Label>

<ListBox>

<ListBoxItem>Chapter 1</ListBoxItem>

<ListBoxItem>Chapter 2</ListBoxItem>

</ListBox>

CHAPTER 3 WPF Fundamentals72

DependencyObject has a SetCurrentValue method that directly updates the current value
of a property without changing its value source. (The value is still subject to coercion and
validation.) This is meant for controls that set values in response to user interaction. For
example, the RadioButton control modifies the value of the IsChecked property on other
RadioButtons in the same group, based on user interaction.

T I P

Step 5: Validate
Finally, the potentially coerced value is passed to a ValidateValueCallback delegate, if
one was registered with the dependency property. This callback must return true if the
input value is valid and false otherwise. Returning false causes an exception to be
thrown, canceling the entire process.

<StackPanel TextElement.FontSize=”30” TextElement.FontStyle=”Italic”

Orientation=”Horizontal” HorizontalAlignment=”Center”>

<Button MinWidth=”75” Margin=”10”>Help</Button>

<Button MinWidth=”75” Margin=”10”>OK</Button>

</StackPanel>

<StatusBar>You have successfully registered this product.</StatusBar>

</StackPanel>

</Window>

TextElement.FontSize and TextElement.FontStyle
(rather than simply FontSize and FontStyle) must be
used in the StackPanel element because StackPanel
does not have these properties. When a XAML parser
or compiler encounters this syntax, it requires that
TextElement (sometimes called the attached property
provider) have static methods called SetFontSize and
SetFontStyle that can set the value accordingly.
Therefore, the StackPanel declaration in Listing 3.5 is
equivalent to the following C# code:

StackPanel panel = new StackPanel();

TextElement.SetFontSize(panel, 30);

TextElement.SetFontStyle(panel, FontStyles.Italic);

panel.Orientation = Orientation.Horizontal;

panel.HorizontalAlignment =

HorizontalAlignment.Center;

Button helpButton = new Button();

helpButton.MinWidth = 75;

helpButton.Margin = new Thickness(10);

helpButton.Content = “Help”;

Button okButton = new Button();

okButton.MinWidth = 75;

okButton.Margin = new Thickness(10);

okButton.Content = “OK”;

panel.Children.Add(helpButton);

panel.Children.Add(okButton);

Notice that the enumeration values such as FontStyles.Italic, Orientation.Horizontal,
and HorizontalAlignment.Center were previously specified in XAML simply as Italic,
Horizontal, and Center, respectively. This is possible thanks to the EnumConverter type
converter in the .NET Framework, which can convert any case-insensitive string.

Although the XAML in Listing 3.5 nicely represents the logical attachment of FontSize
and FontStyle to StackPanel, the C# code reveals that there’s no real magic here, just a
method call that associates an element with an otherwise-unrelated property. One of the
interesting things about the attached property abstraction is that no .NET property is a
part of it!

Dependency Properties 73
3

FIGURE 3.8 The About dialog
with FontSize and FontStyle
set on both Buttons via inheri-
tance from the inner StackPanel.

