

C++11 FOR PROGRAMMERS
SECOND EDITION
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

On file

© 2014 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-sion in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-343985-4
ISBN-10: 0-13-343985-2

Text printed in the United States at RR Donnelley in Crawfordsville, Indiana..
First printing, February 2013

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com

C++11 FOR PROGRAMMERS
SECOND EDITION

DEITEL® DEVELOPER SERIES

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft, Visual Studio and the Windows logo are either registered trademarks or trademarks of Micro-
soft Corporation in the United States and/or other countries.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

To our review team:

Dean Michael Berris
Danny Kalev
Linda M. Krause
James P. McNellis
Robert C. Seacord
José Antonio González Seco

We are grateful for your guidance and expertise.

Paul and Harvey Deitel

This page intentionally left blank

Chapter 24 and Appendices F–K are PDF documents posted online at
www.informit.com/title/9780133439854

Preface xix

1 Introduction 1
1.1 Introduction 2
1.2 C++ 2
1.3 Object Technology 3
1.4 Typical C++ Development Environment 6
1.5 Test-Driving a C++ Application 9
1.6 Operating Systems 15

1.6.1 Windows—A Proprietary Operating System 15
1.6.2 Linux—An Open-Source Operating System 15
1.6.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and

iPod Touch® Devices 16
1.6.4 Google’s Android 16

1.7 C++11 and the Open Source Boost Libraries 17
1.8 Web Resources 18

2 Introduction to C++ Programming,
Input/Output and Operators 19

2.1 Introduction 20
2.2 First Program in C++: Printing a Line of Text 20
2.3 Modifying Our First C++ Program 23
2.4 Another C++ Program: Adding Integers 24
2.5 Arithmetic 28
2.6 Decision Making: Equality and Relational Operators 32
2.7 Wrap-Up 35

3 Introduction to Classes, Objects and Strings 37
3.1 Introduction 38
3.2 Defining a Class with a Member Function 38
3.3 Defining a Member Function with a Parameter 41
3.4 Data Members, set Member Functions and get Member Functions 44
3.5 Initializing Objects with Constructors 50

Contents

http://www.informit.com/title/9780133439854

viii Contents

3.6 Placing a Class in a Separate File for Reusability 54
3.7 Separating Interface from Implementation 58
3.8 Validating Data with set Functions 63
3.9 Wrap-Up 68

4 Control Statements: Part 1;
Assignment, ++ and -- Operators 69

4.1 Introduction 70
4.2 Control Structures 70
4.3 if Selection Statement 73
4.4 if…else Double-Selection Statement 74
4.5 while Repetition Statement 78
4.6 Counter-Controlled Repetition 79
4.7 Sentinel-Controlled Repetition 85
4.8 Nested Control Statements 92
4.9 Assignment Operators 95
4.10 Increment and Decrement Operators 96
4.11 Wrap-Up 99

5 Control Statements: Part 2; Logical Operators 100
5.1 Introduction 101
5.2 Essentials of Counter-Controlled Repetition 101
5.3 for Repetition Statement 102
5.4 Examples Using the for Statement 106
5.5 do…while Repetition Statement 110
5.6 switch Multiple-Selection Statement 112
5.7 break and continue Statements 121
5.8 Logical Operators 122
5.9 Confusing the Equality (==) and Assignment (=) Operators 127
5.10 Wrap-Up 128

6 Functions and an Introduction to Recursion 129
6.1 Introduction 130
6.2 Math Library Functions 130
6.3 Function Definitions with Multiple Parameters 132
6.4 Function Prototypes and Argument Coercion 137
6.5 C++ Standard Library Headers 139
6.6 Case Study: Random Number Generation 141
6.7 Case Study: Game of Chance; Introducing enum 146
6.8 C++11 Random Numbers 151
6.9 Storage Classes and Storage Duration 152
6.10 Scope Rules 155
6.11 Function Call Stack and Activation Records 158

Contents ix

6.12 Functions with Empty Parameter Lists 162
6.13 Inline Functions 163
6.14 References and Reference Parameters 164
6.15 Default Arguments 167
6.16 Unary Scope Resolution Operator 169
6.17 Function Overloading 170
6.18 Function Templates 173
6.19 Recursion 175
6.20 Example Using Recursion: Fibonacci Series 179
6.21 Recursion vs. Iteration 182
6.22 Wrap-Up 184

7 Class Templates array and vector;
Catching Exceptions 185

7.1 Introduction 186
7.2 arrays 186
7.3 Declaring arrays 188
7.4 Examples Using arrays 188

7.4.1 Declaring an array and Using a Loop to Initialize the
array’s Elements 188

7.4.2 Initializing an array in a Declaration with an Initializer List 189
7.4.3 Specifying an array’s Size with a Constant Variable and

Setting array Elements with Calculations 190
7.4.4 Summing the Elements of an array 192
7.4.5 Using Bar Charts to Display array Data Graphically 193
7.4.6 Using the Elements of an array as Counters 195
7.4.7 Using arrays to Summarize Survey Results 196
7.4.8 Static Local arrays and Automatic Local arrays 198

7.5 Range-Based for Statement 200
7.6 Case Study: Class GradeBook Using an array to Store Grades 202
7.7 Sorting and Searching arrays 209
7.8 Multidimensional arrays 211
7.9 Case Study: Class GradeBook Using a Two-Dimensional array 214
7.10 Introduction to C++ Standard Library Class Template vector 221
7.11 Wrap-Up 227

8 Pointers 228
8.1 Introduction 229
8.2 Pointer Variable Declarations and Initialization 229
8.3 Pointer Operators 231
8.4 Pass-by-Reference with Pointers 233
8.5 Built-In Arrays 238
8.6 Using const with Pointers 240

8.6.1 Nonconstant Pointer to Nonconstant Data 241
8.6.2 Nonconstant Pointer to Constant Data 241

x Contents

8.6.3 Constant Pointer to Nonconstant Data 243
8.6.4 Constant Pointer to Constant Data 243

8.7 sizeof Operator 244
8.8 Pointer Expressions and Pointer Arithmetic 247
8.9 Relationship Between Pointers and Built-In Arrays 249
8.10 Pointer-Based Strings 252
8.11 Wrap-Up 255

9 Classes: A Deeper Look; Throwing Exceptions 256
9.1 Introduction 257
9.2 Time Class Case Study 258
9.3 Class Scope and Accessing Class Members 264
9.4 Access Functions and Utility Functions 265
9.5 Time Class Case Study: Constructors with Default Arguments 266
9.6 Destructors 272
9.7 When Constructors and Destructors Are Called 272
9.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a

Pointer to a private Data Member 276
9.9 Default Memberwise Assignment 279
9.10 const Objects and const Member Functions 281
9.11 Composition: Objects as Members of Classes 283
9.12 friend Functions and friend Classes 289
9.13 Using the this Pointer 291
9.14 static Class Members 297
9.15 Wrap-Up 302

10 Operator Overloading; Class string 303
10.1 Introduction 304
10.2 Using the Overloaded Operators of Standard Library Class string 305

10.3 Fundamentals of Operator Overloading 308
10.4 Overloading Binary Operators 309
10.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 310
10.6 Overloading Unary Operators 314
10.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 315
10.8 Case Study: A Date Class 316
10.9 Dynamic Memory Management 321
10.10 Case Study: Array Class 323

10.10.1 Using the Array Class 324
10.10.2 Array Class Definition 328

10.11 Operators as Member vs. Non-Member Functions 336
10.12 Converting Between Types 337
10.13 explicit Constructors and Conversion Operators 338
10.14 Overloading the Function Call Operator () 340
10.15 Wrap-Up 341

Contents xi

11 Object-Oriented Programming: Inheritance 342
11.1 Introduction 343
11.2 Base Classes and Derived Classes 343
11.3 Relationship between Base and Derived Classes 346

11.3.1 Creating and Using a CommissionEmployee Class 346
11.3.2 Creating a BasePlusCommissionEmployee Class Without Using

Inheritance 351
11.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 357
11.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Data 361
11.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Data 364
11.4 Constructors and Destructors in Derived Classes 369
11.5 public, protected and private Inheritance 371
11.6 Software Engineering with Inheritance 372
11.7 Wrap-Up 372

12 Object-Oriented Programming: Polymorphism 374
12.1 Introduction 375
12.2 Introduction to Polymorphism: Polymorphic Video Game 376
12.3 Relationships Among Objects in an Inheritance Hierarchy 376

12.3.1 Invoking Base-Class Functions from Derived-Class Objects 377
12.3.2 Aiming Derived-Class Pointers at Base-Class Objects 380
12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 381
12.3.4 Virtual Functions and Virtual Destructors 383

12.4 Type Fields and switch Statements 390
12.5 Abstract Classes and Pure virtual Functions 390
12.6 Case Study: Payroll System Using Polymorphism 392

12.6.1 Creating Abstract Base Class Employee 393
12.6.2 Creating Concrete Derived Class SalariedEmployee 397
12.6.3 Creating Concrete Derived Class CommissionEmployee 399
12.6.4 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 401
12.6.5 Demonstrating Polymorphic Processing 403

12.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 407

12.8 Case Study: Payroll System Using Polymorphism and Runtime
Type Information with Downcasting, dynamic_cast, typeid and
type_info 410

12.9 Wrap-Up 414

13 Stream Input/Output: A Deeper Look 415
13.1 Introduction 416

xii Contents

13.2 Streams 417
13.2.1 Classic Streams vs. Standard Streams 417
13.2.2 iostream Library Headers 418
13.2.3 Stream Input/Output Classes and Objects 418

13.3 Stream Output 420
13.3.1 Output of char * Variables 421
13.3.2 Character Output Using Member Function put 421

13.4 Stream Input 422
13.4.1 get and getline Member Functions 422
13.4.2 istream Member Functions peek, putback and ignore 425
13.4.3 Type-Safe I/O 425

13.5 Unformatted I/O Using read, write and gcount 425
13.6 Introduction to Stream Manipulators 426

13.6.1 Integral Stream Base: dec, oct, hex and setbase 427
13.6.2 Floating-Point Precision (precision, setprecision) 427
13.6.3 Field Width (width, setw) 429
13.6.4 User-Defined Output Stream Manipulators 430

13.7 Stream Format States and Stream Manipulators 431
13.7.1 Trailing Zeros and Decimal Points (showpoint) 432
13.7.2 Justification (left, right and internal) 433
13.7.3 Padding (fill, setfill) 435
13.7.4 Integral Stream Base (dec, oct, hex, showbase) 436
13.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(scientific, fixed) 437
13.7.6 Uppercase/Lowercase Control (uppercase) 438
13.7.7 Specifying Boolean Format (boolalpha) 438
13.7.8 Setting and Resetting the Format State via Member

Function flags 439
13.8 Stream Error States 440
13.9 Tying an Output Stream to an Input Stream 443
13.10 Wrap-Up 443

14 File Processing 444
14.1 Introduction 445
14.2 Files and Streams 445
14.3 Creating a Sequential File 446
14.4 Reading Data from a Sequential File 450
14.5 Updating Sequential Files 456
14.6 Random-Access Files 456
14.7 Creating a Random-Access File 457
14.8 Writing Data Randomly to a Random-Access File 462
14.9 Reading from a Random-Access File Sequentially 464
14.10 Case Study: A Transaction-Processing Program 466
14.11 Object Serialization 473
14.12 Wrap-Up 473

Contents xiii

15 Standard Library Containers and Iterators 474
15.1 Introduction 475
15.2 Introduction to Containers 476
15.3 Introduction to Iterators 480
15.4 Introduction to Algorithms 485
15.5 Sequence Containers 485

15.5.1 vector Sequence Container 486
15.5.2 list Sequence Container 494
15.5.3 deque Sequence Container 498

15.6 Associative Containers 500
15.6.1 multiset Associative Container 501
15.6.2 set Associative Container 504
15.6.3 multimap Associative Container 505
15.6.4 map Associative Container 507

15.7 Container Adapters 509
15.7.1 stack Adapter 509
15.7.2 queue Adapter 511
15.7.3 priority_queue Adapter 512

15.8 Class bitset 513
15.9 Wrap-Up 515

16 Standard Library Algorithms 517
16.1 Introduction 518
16.2 Minimum Iterator Requirements 518
16.3 Algorithms 520

16.3.1 fill, fill_n, generate and generate_n 520
16.3.2 equal, mismatch and lexicographical_compare 522
16.3.3 remove, remove_if, remove_copy and remove_copy_if 524
16.3.4 replace, replace_if, replace_copy and replace_copy_if 527
16.3.5 Mathematical Algorithms 529
16.3.6 Basic Searching and Sorting Algorithms 533
16.3.7 swap, iter_swap and swap_ranges 537
16.3.8 copy_backward, merge, unique and reverse 538
16.3.9 inplace_merge, unique_copy and reverse_copy 541
16.3.10 Set Operations 543
16.3.11 lower_bound, upper_bound and equal_range 546
16.3.12 Heapsort 548
16.3.13 min, max, minmax and minmax_element 551

16.4 Function Objects 553
16.5 Lambda Expressions 556
16.6 Standard Library Algorithm Summary 557
16.7 Wrap-Up 559

17 Exception Handling: A Deeper Look 560
17.1 Introduction 561

xiv Contents

17.2 Example: Handling an Attempt to Divide by Zero 561
17.3 Rethrowing an Exception 567
17.4 Stack Unwinding 568
17.5 When to Use Exception Handling 570
17.6 Constructors, Destructors and Exception Handling 571
17.7 Exceptions and Inheritance 572
17.8 Processing new Failures 572
17.9 Class unique_ptr and Dynamic Memory Allocation 575
17.10 Standard Library Exception Hierarchy 578
17.11 Wrap-Up 579

18 Introduction to Custom Templates 581
18.1 Introduction 582
18.2 Class Templates 582
18.3 Function Template to Manipulate a Class-Template Specialization Object 587
18.4 Nontype Parameters 589
18.5 Default Arguments for Template Type Parameters 589
18.6 Overloading Function Templates 589
18.7 Wrap-Up 590

19 Class string and String Stream Processing:
A Deeper Look 591

19.1 Introduction 592
19.2 string Assignment and Concatenation 593
19.3 Comparing strings 595
19.4 Substrings 598
19.5 Swapping strings 598
19.6 string Characteristics 599
19.7 Finding Substrings and Characters in a string 601
19.8 Replacing Characters in a string 603
19.9 Inserting Characters into a string 605
19.10 Conversion to Pointer-Based char * Strings 606
19.11 Iterators 607
19.12 String Stream Processing 609
19.13 C++11 Numeric Conversion Functions 612
19.14 Wrap-Up 613

20 Bits, Characters, C Strings and structs 615
20.1 Introduction 616
20.2 Structure Definitions 616
20.3 typedef 618
20.4 Example: Card Shuffling and Dealing Simulation 618
20.5 Bitwise Operators 621

Contents xv

20.6 Bit Fields 630
20.7 Character-Handling Library 633
20.8 C String-Manipulation Functions 639
20.9 C String-Conversion Functions 646
20.10 Search Functions of the C String-Handling Library 651
20.11 Memory Functions of the C String-Handling Library 655
20.12 Wrap-Up 659

21 Other Topics 660
21.1 Introduction 661
21.2 const_cast Operator 661
21.3 mutable Class Members 663
21.4 namespaces 665
21.5 Operator Keywords 668
21.6 Pointers to Class Members (.* and ->*) 670
21.7 Multiple Inheritance 672
21.8 Multiple Inheritance and virtual Base Classes 677
21.9 Wrap-Up 681

22 ATM Case Study, Part 1:
Object-Oriented Design with the UML 682

22.1 Introduction 683
22.2 Introduction to Object-Oriented Analysis and Design 683
22.3 Examining the ATM Requirements Document 684
22.4 Identifying the Classes in the ATM Requirements Document 691
22.5 Identifying Class Attributes 698
22.6 Identifying Objects’ States and Activities 703
22.7 Identifying Class Operations 707
22.8 Indicating Collaboration Among Objects 714
22.9 Wrap-Up 721

23 ATM Case Study, Part 2:
Implementing an Object-Oriented Design 725

23.1 Introduction 726
23.2 Starting to Program the Classes of the ATM System 726
23.3 Incorporating Inheritance into the ATM System 732
23.4 ATM Case Study Implementation 739

23.4.1 Class ATM 740
23.4.2 Class Screen 747
23.4.3 Class Keypad 749
23.4.4 Class CashDispenser 750
23.4.5 Class DepositSlot 752

xvi Contents

23.4.6 Class Account 753
23.4.7 Class BankDatabase 755
23.4.8 Class Transaction 759
23.4.9 Class BalanceInquiry 761
23.4.10 Class Withdrawal 763
23.4.11 Class Deposit 768
23.4.12 Test Program ATMCaseStudy.cpp 771

23.5 Wrap-Up 771

A Operator Precedence and Associativity 774

B ASCII Character Set 777

C Fundamental Types 778

D Number Systems 780
D.1 Introduction 781
D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 784
D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 785
D.4 Converting from Binary, Octal or Hexadecimal to Decimal 785
D.5 Converting from Decimal to Binary, Octal or Hexadecimal 786
D.6 Negative Binary Numbers: Two’s Complement Notation 788

E Preprocessor 790
E.1 Introduction 791
E.2 #include Preprocessing Directive 791
E.3 #define Preprocessing Directive: Symbolic Constants 792
E.4 #define Preprocessing Directive: Macros 792
E.5 Conditional Compilation 794
E.6 #error and #pragma Preprocessing Directives 795
E.7 Operators # and ## 796
E.8 Predefined Symbolic Constants 796
E.9 Assertions 797
E.10 Wrap-Up 797

Index 799

Online Chapters and Appendices
Chapter 24 and Appendices F–K are PDF documents posted online at
www.informit.com/title/9780133439854

24 C++11 Additional Features 24-1

http://www.informit.com/title/9780133439854

Contents xvii

F C Legacy Code Topics F-1

G UML 2: Additional Diagram Types G-1

H Using the Visual Studio Debugger H-1

I Using the GNU C++ Debugger I-1

J Using the Xcode Debugger J-1

K Test Driving a C++ Program on Mac OS X K-1
[Note: The test drives for Windows and Linux are in Chapter 1.]

This page intentionally left blank

“The chief merit of language is clearness …”
—Galen

Welcome to C++11 for Programmers! This book presents leading-edge computing technol-
ogies for software developers.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—concepts are presented in the context of complete
working programs, rather than in code snippets. Each complete code example is accompa-
nied by live sample executions. All the source code is available at

As you read the book, if you have questions, we’re easy to reach at

We’ll respond promptly. For book updates, visit www.deitel.com/books/cpp11fp. Join our
social media communities on Facebook (www.deitel.com/DeitelFan), Twitter (@deitel),
Google+ (gplus.to/deitel) and LinkedIn (bit.ly/DeitelLinkedIn), and subscribe to the
Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Features
Here are the key features of C++11 for Programmers.

C++11 Standard
The new C++11 standard, published in 2011, motivated us to write C++11 for Program-
mers. Throughout the book, each new C++11 feature we discuss is marked with the “11”
icon you see here in the margin. These are some of the key C++11 features of this new
edition:

• Conforms to the new C++11 standard. Extensive coverage of many of the key new
C++11 features (Fig. 1).

• Code thoroughly tested on three popular industrial-strength C++11 compilers.
We tested the code examples on GNU™ C++ 4.7, Microsoft® Visual C++®

2012 and Apple® LLVM in Xcode® 4.5.

• Smart pointers. Smart pointers help you avoid dynamic memory management er-
rors by providing additional functionality beyond that of built-in pointers. We dis-
cuss unique_ptr in Chapter 17, and shared_ptr and weak_ptr in Chapter 24.

www.deitel.com/books/cpp11fp

deitel@deitel.com

Preface

http://www.deitel.com/books/cpp11fp
http://www.deitel.com/books/cpp11fp
http://www.deitel.com/DeitelFan
http://www.deitel.com/newsletter/subscribe.html

xx Preface

• Earlier coverage of template-based Standard Library containers, iterators and al-
gorithms, enhanced with C++11 capabilities. We moved the treatment of Stan-
dard Library containers, iterators and algorithms from Chapter 20 in the previous
edition to Chapters 15 and 16 and enhanced it with new C++11 features. The
vast majority of your data structure needs can be fulfilled by reusing these Stan-
dard Library capabilities.

• Online Chapter 24, C++11: Additional Topics. In this chapter, we present addi-
tional C++11 topics. The new C++11 standard has been available since 2011, but
not all C++ compilers have fully implemented the features. If all three of our key
compilers already implemented a particular C++11 feature at the time we wrote
this book, we generally integrated a discussion of that feature into the text with a
live-code example. If any of these compilers had not implemented that feature, we
included a bold italic heading followed by a brief discussion of the feature. Many
of those discussions will be expanded in online Chapter 24 as the features are im-
plemented. Placing the chapter online allows us to evolve it dynamically. This

C++11 features in C++11 for Programmers

all_of algorithm
any_of algorithm
array container
auto for type inference
begin/end functions
cbegin/cend container member

functions
Compiler fix for >> in template

types
copy_if algorithm
copy_n algorithm
crbegin/crend container mem-

ber functions
decltype

Default type arguments in func-
tion templates

defaulted member functions
Delegating constructors
deleted member functions
explicit conversion operators
final classes
final member functions
find_if_not algorithm
forward_list container
Immutable keys in associative

containers
In-class initializers

Inheriting base-class constructors
insert container member func-

tions return iterators
is_heap algorithm
is_heap_until algorithm
Keywords new in C++11
Lambda expressions
List initialization of key–value
pairs

List initialization of pair objects
List initialization of return values
List initializing a dynamically

allocated array
List initializing a vector
List initializers in constructor

calls
long long int type
min and max algorithms with
initializer_list parameters

minmax algorithm
minmax_element algorithm
move algorithm
Move assignment operators
move_backward algorithm
Move constructors
noexcept

Non-deterministic random
number generation

none_of algorithm
Numeric conversion

functions
nullptr
override keyword
Range-based for statement
Regular expressions
Rvalue references
Scoped enums
shared_ptr smart pointer
shrink_to_fit vector/deque

member function
Specifying the type of an
enum’s constants

static_assert objects for
file names

string objects for file names
swap non-member function
Trailing return types for

functions
tuple variadic template
unique_ptr smart pointer
Unsigned long long int

weak_ptr smart pointer

Fig. 1 | A sampling of C++11 features in C++11 for Programmers.

Features xxi

chapter includes discussions of regular expressions, the shared_ptr and weak_ptr
smart pointers, move semantics and more. You can access this chapter at:

• Random Number generation, simulation and game playing. To help make pro-
grams more secure (see Secure C++ Programming on the next page), we now dis-
cuss C++11’s new non-deterministic random-number generation capabilities.

Object-Oriented Programming
• Early-objects approach. The book introduces the basic concepts and terminology

of object technology in Chapter 1. You’ll develop your first customized C++
classes and objects in Chapter 3.

• C++ Standard Library string. C++ offers two types of strings—string class ob-
jects (which we begin using in Chapter 3) and C strings (from the C program-
ming language). We’ve replaced most occurrences of C strings with instances of
C++ class string to make programs more robust and eliminate many of the se-
curity problems of C strings. We discuss C strings later in the book to prepare
you for working with the legacy code in industry. In new development, you
should favor string objects.

• C++ Standard Library array. Our primary treatment of arrays now uses the Stan-
dard Library’s array class template instead of built-in, C-style, pointer-based ar-
rays. We also cover built-in arrays because they still have some uses in C++ and so
that you’ll be able to read legacy code. C++ offers three types of arrays—class tem-
plates array and vector (which we start using in Chapter 7) and C-style, pointer-
based arrays which we discuss in Chapter 8. As appropriate, we use class template
array and occasionally, class template vector, instead of C arrays throughout the
book. In new development, you should favor class templates array and vector.

• Crafting valuable classes. A key goal of this book is to prepare you to build valu-
able reusable C++ classes. In the Chapter 10 case study, you’ll build your own
custom Array class. Chapter 10 begins with a test-drive of class template string
so you can see an elegant use of operator overloading before you implement your
own customized class with overloaded operators.

• Case studies in object-oriented programming. We provide case studies that span
multiple sections and chapters and cover the software development lifecycle.
These include the GradeBook class in Chapters 3–7, the Time class in Chapter 9 and
the Employee class in Chapters 11–12. Chapter 12 contains a detailed diagram
and explanation of how C++ can implement polymorphism, virtual functions
and dynamic binding “under the hood.”

• Optional case study: Using the UML to develop an object-oriented design and C++
implementation of an ATM. The UML™ (Unified Modeling Language™) is the
industry-standard graphical language for modeling object-oriented systems. We
introduce the UML in the early chapters. Chapters 22 and 23 include an optional
case study on object-oriented design using the UML. We design and implement the
software for a simple automated teller machine (ATM). We analyze a typical re-
quirements document that specifies the system to be built. We determine the classes

www.informit.com/title/9780133439854

http://www.informit.com/title/9780133439854

xxii Preface

needed to implement that system, the attributes the classes need to have, the behav-
iors the classes need to exhibit and we specify how the classes must interact with one
another to meet the system requirements. From the design we produce a complete
C++ implementation. Readers often report that the case study “ties it all together”
and helps them achieve a deeper understanding of object orientation.

• Exception handling. We integrate basic exception handling early in the book. You
can easily pull more detailed material forward from Chapter 17, Exception Han-
dling: A Deeper Look.

• Key programming paradigms. We discuss object-oriented programming and generic
programming.

Pedagogic Features
• Examples. We include a broad range of example programs selected from comput-

er science, business, simulation, game playing and other topics.

• Illustrations and figures. Abundant tables, line drawings, UML diagrams, pro-
grams and program outputs are included.

Other Features
• Pointers. We provide thorough coverage of the built-in pointer capabilities and

the intimate relationship among built-in pointers, C strings and built-in arrays.

• Debugger appendices. We provide three debugger appendices—Appendix H, Us-
ing the Visual Studio Debugger, Appendix I, Using the GNU C++ Debugger and
Appendix J, Using the Xcode Debugger.

Secure C++ Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses,
worms, and other forms of “malware.” Today, via the Internet, such attacks can be instan-
taneous and global in scope. Building security into software from the beginning of the de-
velopment cycle can greatly reduce vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices that leave systems open to attacks.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard.

We’ve done the same for C++11 for Programmers, adhering to key CERT C++ Secure
Coding Standard guidelines (as appropriate for a book at this level), which you can find at:

www.securecoding.cert.org

http://www.cert.org
http://www.securecoding.cert.org

Training Approach xxiii

We were pleased to discover that we’ve already been recommending many of these coding
practices in our books since the early 1990s. If you’ll be building industrial-strength C++
systems, Secure Coding in C and C++, Second Edition (Robert Seacord, Addison-Wesley
Professional) is a must read.

Training Approach
C++11 for Programmers stresses program clarity and concentrates on building well-engi-
neered software.

Live-Code Approach. The book includes hundreds of “live-code” examples—each new con-
cept is presented in the context of a complete working C++ program that is immediately fol-
lowed by one or more actual executions showing the program’s inputs and outputs.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
shading conventions are:

Code Highlighting. We place light-gray rectangles around each program’s key code seg-
ments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold italic text for easier reference. We emphasize on-screen com-
ponents in the bold Helvetica font (e.g., the File menu) and emphasize C++ program text
in the Lucida font (e.g., int x = 5).

Web Access. All of the source-code examples can be downloaded from:

Objectives. The chapter opening quotations are followed by a list of chapter objectives.

Programming Tips. We include hundreds of programming tips to help you focus on im-
portant aspects of program development. These tips and practices represent the best we’ve
gleaned from a combined eight decades of programming and teaching experience.

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

www.deitel.com/books/cpp11fp

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of C++ that prevent bugs from getting into your programs.

http://www.deitel.com/books/cpp11fp

xxiv Preface

Online Chapter and Appendices
The following chapter and appendices are available online:

• Chapter 24, C++11: Additional Features

• Appendix F, C Legacy Code Topics

• Appendix G, UML 2: Additional Diagram Types

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU C++ Debugger

• Appendix J, Using the Xcode Debugger

• Appendix K, Test Driving a C++ Program on Mac OS X

To access the online chapter and appendices, go to:

You must register for an an InformIT account and then login. After you’ve logged into your
account, you’ll see the Register a Product box. Enter the book’s ISBN (9780133439854) to
access the page with the online chapter and appendices.

Obtaining the Software Used in C++11 for Programmers
We wrote the code examples in C++11 for Programmers using the following C++ develop-
ment tools:

• Microsoft’s free Visual Studio Express 2012 for Windows Desktop, which in-
cludes Visual C++ and other Microsoft development tools. This runs on Win-
dows 7 and 8 and is available for download at

• GNU’s free GNU C++ (gcc.gnu.org/install/binaries.html), which is al-
ready installed on most Linux systems and can also be installed on Mac OS X and
Windows systems.

• Apple’s free Xcode, which OS X users can download from the Mac App Store.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

www.informit.com/register

www.microsoft.com/express

http://www.informit.com/register
http://www.microsoft.com/express

C++11 Fundamentals: Parts I, II, III and IV LiveLessons Video Training Product xxv

C++11 Fundamentals: Parts I, II, III and IV LiveLessons Video Train-
ing Product
Our C++11 Fundamentals: Parts I, II, III and IV LiveLessons video training product shows
you what you need to know to start building robust, powerful software with C++. It in-
cludes 20+ hours of expert training synchronized with C++11 for Programmers. For addi-
tional information about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com. You can also access our LiveLessons videos if you
have a subscription to Safari Books Online (www.safaribooksonline.com). These Live-
Lessons will be available in the Summer of 2013.

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. Abbey co-authored Chapter 1 and this Preface, and she and
Barbara painstakingly researched the new capabilities of C++11.

We’re fortunate to have worked on this project with the dedicated publishing profes-
sionals at Prentice Hall/Pearson. We appreciate the extraordinary efforts and mentorship
of our friend and professional colleague Mark L. Taub, Editor-in-Chief of Pearson Tech-
nology Group. Carole Snyder did a great job recruiting distinguished members of the C++
community to review the manuscript. Chuti Prasertsith designed the cover with creativity
and precision—we gave him our vision for the cover and he made it happen. John Fuller
does a superb job managing the production of all of our Deitel Developer Series books and
LiveLessons video products.

Reviewers
We wish to acknowledge the efforts of the reviewers whose constructive criticisms helped
us shape the recent editions of this content. They scrutinized the text and the programs
and provided countless suggestions for improving the presentation: Dean Michael Berris
(Google, Member ISO C++ Committee), Danny Kalev (C++ expert, certified system an-
alyst and former member of the C++ Standards Committee), Linda M. Krause (Elmhurst
College), James P. McNellis (Microsoft Corporation), Robert C. Seacord (Secure Coding
Manager at SEI/CERT, author of Secure Coding in C and C++); José Antonio González
Seco (Parliament of Andalusia), Virginia Bailey (Jackson State University), Thomas J.
Borrelli (Rochester Institute of Technology), Ed Brey (Kohler Co.), Chris Cox (Adobe
Systems), Gregory Dai (eBay), Peter J. DePasquale (The College of New Jersey), John
Dibling (SpryWare), Susan Gauch (University of Arkansas), Doug Gregor (Apple, Inc.),
Jack Hagemeister (Washington State University), Williams M. Higdon (University of In-
diana), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis Integration Solu-
tions), Ed James-Beckham (Borland), Wing-Ning Li (University of Arkansas), Dean
Mathias (Utah State University), Robert A. McLain (Tidewater Community College),
Robert Myers (Florida State University), Gavin Osborne (Saskatchewan Institute of Ap-
plied Science and Technology), Amar Raheja (California State Polytechnic University,
Pomona), April Reagan (Microsoft), Raymond Stephenson (Microsoft), Dave Topham
(Ohlone College), Anthony Williams (author and C++ Standards Committee member)
and Chad Willwerth (University Washington, Tacoma).

www.deitel.com/livelessons

http://www.deitel.com/livelessons
http://www.safaribooksonline.com

xxvi Preface

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

We’ll respond promptly. We enjoyed writing C++11 for Programmers. We hope you enjoy
reading it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry, government and military
clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the
Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile
Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Pu-
ma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are
the world’s best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has more than 50 years of experience in computing. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. In the 1960s, through Advanced Computer Techniques and Computer Usage
Corporation, he worked on the teams building various IBM operating systems. In the
1970s, he built commercial software systems. He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science Depart-
ment at Boston College before founding Deitel & Associates, Inc., in 1991 with his son,
Paul Deitel. The Deitels’ publications have earned international recognition, with trans-
lations published in Chinese, Korean, Japanese, German, Russian, Spanish, French,
Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds
of programming courses to corporate, academic, government and military clients.

Deitel® Dive-Into® Series Corporate Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s clients include many of the world’s largest corpora-
tions, government agencies, branches of the military, and academic institutions. The com-
pany offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including C++, Visual C++®, C, Java™, Visual
C#®, Visual Basic®, XML®, Python®, object technology, Internet and web program-
ming, Android app development, Objective-C and iOS app development and a growing
list of additional programming and software development courses.

deitel@deitel.com

Deitel® Dive-Into® Series Corporate Training xxvii

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

www.deitel.com/training

www.informit.com/store/sales.aspx

http://www.deitel.com/training
http://www.deitel.com
http://www.informit.com/store/sales.aspx

This page intentionally left blank

1
Introduction

O b j e c t i v e s
In this chapter you’ll:

� Review object-technology concepts.

� Learn the elements of a typical C++ program-development
environment.

� Test-drive a C++ application.

2 Chapter 1 Introduction
O

u
tl

in
e

1.1 Introduction
Welcome to C++—a powerful computer programming language that’s appropriate for
technically oriented people with little or no programming experience, and for experienced
programmers to use in building substantial information systems.

You’ll learn object-oriented programming in C++. You’ll create many C++ software
objects that model things in the real-world.

C++ is one of today’s most popular software development languages. This text pro-
vides an introduction to programming in C++11—the latest version standardized through
the International Organization for Standardization (ISO) and the International Electro-
technical Commission (IEC).

1.2 C++
C++ evolved from C, which was developed by Dennis Ritchie at Bell Laboratories. C is
available for most computers and is hardware independent. With careful design, it’s pos-
sible to write C programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes called hardware
platforms) unfortunately led to many variations. A standard version of C was needed. The
American National Standards Institute (ANSI) cooperated with the International Organi-
zation for Standardization (ISO) to standardize C worldwide; the joint standard docu-
ment was published in 1990 and is referred to as ANSI/ISO 9899: 1990.

C11 is the latest ANSI standard for the C programming language. It was developed
to evolve the C language to keep pace with increasingly powerful hardware and ever more
demanding user requirements. C11 also makes C more consistent with C++. For more
information on C and C11, see our book C How to Program, 7/e and our C Resource
Center (located at www.deitel.com/C).

C++, an extension of C, was developed by Bjarne Stroustrup in 1979 at Bell Labora-
tories. Originally called “C with Classes”, it was renamed to C++ in the early 1980s. C++
provides a number of features that “spruce up” the C language, but more importantly, it
provides capabilities for object-oriented programming.

You’ll begin developing customized, reusable classes and objects in Chapter 3, Intro-
duction to Classes, Objects and Strings. The book is object oriented, where appropriate,
from the start and throughout the text.

We also provide an optional automated teller machine (ATM) case study in
Chapters 22–23, which contains a complete C++ implementation. The case study presents

1.1 Introduction
1.2 C++
1.3 Object Technology
1.4 Typical C++ Development Environment
1.5 Test-Driving a C++ Application
1.6 Operating Systems

1.6.1 Windows—A Proprietary Operating
System

1.6.2 Linux—An Open-Source Operating
System

1.6.3 Apple’s OS X; Apple’s iOS for
iPhone®, iPad® and iPod Touch®
Devices

1.6.4 Google’s Android
1.7 C++11 and the Open Source Boost

Libraries
1.8 Web Resources

http://www.deitel.com/C

1.3 Object Technology 3

a carefully paced introduction to object-oriented design using the UML—an industry-
standard graphical modeling language for developing object-oriented systems. We guide
you through a friendly design experience intended for the novice.

C++ Standard Library
C++ programs consist of pieces called classes and functions. You can program each piece
yourself, but most C++ programmers take advantage of the rich collections of classes and
functions in the C++ Standard Library. Thus, there are really two parts to learning the
C++ “world.” The first is learning the C++ language itself; the second is learning how to
use the classes and functions in the C++ Standard Library. We discuss many of these classes
and functions. Most compiler vendors provide online C++ Standard Library reference
documentation. You can also learn about the C++ Standard library at:

In addition to the C++ Standard Library, many special-purpose class libraries are supplied
by independent software vendors and by the open-source community.

The advantage of creating your own functions and classes is that you’ll know exactly
how they work. You’ll be able to examine the C++ code. The disadvantage is the time-con-
suming and complex effort that goes into designing, developing and maintaining new
functions and classes that are correct and that operate efficiently.

1.3 Object Technology
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precise-
ly—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable soft-
ware components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as

www.cppreference.com

’'

Software Engineering Observation 1.1
Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use
existing pieces wherever possible. Called software reuse, this practice is central to object-
oriented programming.

Software Engineering Observation 1.2
When programming in C++, you typically will use the following building blocks: classes
and functions from the C++ Standard Library, classes and functions you and your
colleagues create and classes and functions from various popular third-party libraries.

Performance Tip 1.1
Using C++ Standard Library functions and classes instead of writing your own versions
can improve program performance, because they’re written carefully to perform efficiently.
This technique also shortens program development time.

Portability Tip 1.1
Using C++ Standard Library functions and classes instead of writing your own improves
program portability, because they’re included in every C++ implementation.

http://www.cppreference.com

4 Chapter 1 Introduction

a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers have discovered that using a
modular, object-oriented design-and-implementation approach can make software-devel-
opment groups much more productive than was possible with earlier techniques—object-
oriented programs are often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Member Functions and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a member function. The member function houses
the program statements that actually perform its task. It hides these statements from its
user, just as the accelerator pedal of a car hides from the driver the mechanisms of making
the car go faster. In C++, we create a program unit called a class to house the set of member
functions that perform the class’s tasks. For example, a class that represents a bank account
might contain one member function to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

1.3 Object Technology 5

Messages and Member Function Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a member function call that tells a member function of the object to perform its task.
For example, a program might call a particular bank account object’s deposit member func-
tion to increase the account’s balance.

Attributes and Data Members
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank account object has
a balance attribute that represents the amount of money in the account. Each bank account
object knows the balance in the account it represents, but not the balances of the other
accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object’s
attributes and member functions are intimately related. Objects may communicate with
one another, but they’re normally not allowed to know how other objects are implement-
ed—implementation details are hidden within the objects themselves. This information
hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C++. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of thousands of software developers building the
next U.S. air traffic control system? For projects so large and complex, you should not sim-
ply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,

6 Chapter 1 Introduction

you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C++ are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 3
and 4, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our optional ATM Software Engineering Case Study in Chapters 22–23 we
present a simple subset of the UML’s features as we guide you through an object-oriented
design experience.

1.4 Typical C++ Development Environment
C++ systems generally consist of three parts: a program development environment, the
language and the C++ Standard Library. C++ programs typically go through six phases:
edit, preprocess, compile, link, load and execute. The following discussion explains a typ-
ical C++ program development environment.

Phase 1: Editing a Program
Phase 1 consists of editing a file with an editor program, normally known simply as an editor
(Fig. 1.1). You type a C++ program (typically referred to as source code) using the editor,
make any necessary corrections and save the program on a secondary storage device, such as
your hard drive. C++ source code filenames often end with the .cpp, .cxx, .cc or .C exten-
sions (note that C is in uppercase) which indicate that a file contains C++ source code. See
the documentation for your C++ compiler for more information on file-name extensions.

Two editors widely used on Linux systems are vi and emacs. C++ software packages
for Microsoft Windows such as Microsoft Visual C++ (microsoft.com/express) have
editors integrated into the programming environment. You can also use a simple text
editor, such as Notepad in Windows, to write your C++ code.

For organizations that develop substantial information systems, integrated develop-
ment environments (IDEs) are available from many major software suppliers. IDEs pro-
vide tools that support the software-development process, including editors for writing
and editing programs and debuggers for locating logic errors—errors that cause programs

Fig. 1.1 | Typical C++ development environment—editing phase.

Disk
Editor

Phase 1:
Programmer creates program
in the editor and stores it on
disk

1.4 Typical C++ Development Environment 7

to execute incorrectly. Popular IDEs include Microsoft® Visual Studio 2012 Express Edi-
tion, Dev C++, NetBeans, Eclipse, Apple’s Xcode and CodeLite.

Phase 2: Preprocessing a C++ Program
In Phase 2, you give the command to compile the program (Fig. 1.2). In a C++ system, a
preprocessor program executes automatically before the compiler’s translation phase be-
gins (so we call preprocessing Phase 2 and compiling Phase 3). The C++ preprocessor
obeys commands called preprocessing directives, which indicate that certain manipula-
tions are to be performed on the program before compilation. These manipulations usu-
ally include other text files to be compiled, and perform various text replacements. The
most common preprocessing directives are discussed in the early chapters; a detailed dis-
cussion of preprocessor features appears in Appendix E, Preprocessor.

Phase 3: Compiling a C++ Program
In Phase 3, the compiler translates the C++ program into machine-language code—also
referred to as object code (Fig. 1.3).

Phase 4: Linking
Phase 4 is called linking. C++ programs typically contain references to functions and data
defined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project (Fig. 1.4). The object code produced by the C++
compiler typically contains “holes” due to these missing parts. A linker links the object code
with the code for the missing functions to produce an executable program (with no missing
pieces). If the program compiles and links correctly, an executable image is produced.

Fig. 1.2 | Typical C++ development environment—preprocessor phase.

Fig. 1.3 | Typical C++ development environment—compilation phase.

Fig. 1.4 | Typical C++ development environment—linking phase.

Disk
Preprocessor

Phase 2:
Preprocessor program
processes the code

Disk
Compiler

Phase 3:
Compiler creates
object code and stores
it on disk

Disk
Linker

Phase 4:
Linker links the object
code with the libraries,
creates an executable file and
stores it on disk

8 Chapter 1 Introduction

Phase 5: Loading
Phase 5 is called loading. Before a program can be executed, it must first be placed in
memory (Fig. 1.5). This is done by the loader, which takes the executable image from disk
and transfers it to memory. Additional components from shared libraries that support the
program are also loaded.

Phase 6: Execution
Finally, the computer, under the control of its CPU, executes the program one instruction
at a time (Fig. 1.6). Some modern computer architectures can execute several instructions
in parallel.

Problems That May Occur at Execution Time
Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we’ll discuss throughout this book. For example, an executing program

Fig. 1.5 | Typical C++ development environment—loading phase.

Fig. 1.6 | Typical C++ development environment—execution phase.

Disk

Loader

Phase 5:
Loader puts program
in memory

.
.
.

Primary
Memory

.
.
.

CPU
Phase 6:
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

.
.

Primary
Memory

.
.
.

1.5 Test-Driving a C++ Application 9

might try to divide by zero (an illegal operation for integer arithmetic in C++). This would
cause the C++ program to display an error message. If this occurred, you’d have to return
to the edit phase, make the necessary corrections and proceed through the remaining phas-
es again to determine that the corrections fixed the problem(s). [Note: Most programs in
C++ input or output data. Certain C++ functions take their input from cin (the standard
input stream; pronounced “see-in”), which is normally the keyboard, but cin can be re-
directed to another device. Data is often output to cout (the standard output stream; pro-
nounced “see-out”), which is normally the computer screen, but cout can be redirected to
another device. When we say that a program prints a result, we normally mean that the
result is displayed on a screen. Data may be output to other devices, such as disks and hard-
copy printers. There is also a standard error stream referred to as cerr. The cerr stream
(normally connected to the screen) is used for displaying error messages.

1.5 Test-Driving a C++ Application
In this section, you’ll run and interact with your first C++ application. You’ll begin by run-
ning an entertaining guess-the-number game, which picks a number from 1 to 1000 and
prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,
the application indicates whether your guess is higher or lower than the correct number.
There is no limit on the number of guesses you can make. [Note: Normally this application
randomly selects the correct answer as you execute the program. This test-drive version of
the application uses the same correct answer every time the program executes (though this
may vary by compiler), so you can use the same guesses we use in this section and see the
same results as we walk you through interacting with your first C++ application.]

We’ll demonstrate running a C++ application using the Windows Command Prompt
and a shell on Linux. The application runs similarly on both platforms. Many development
environments are available in which you can compile, build and run C++ applications, such
as GNU™ C++, Microsoft® Visual C++®, Apple® Xcode®, NetBeans®, Eclipse™, etc.

We use fonts to distinguish between features you see on the screen (e.g., the Command
Prompt) and elements that are not directly related to the screen. We emphasize screen fea-
tures like titles and menus (e.g., the File menu) in a semibold sans-serif Helvetica font and
emphasize filenames, text displayed by an application and values you should enter into an
application (e.g., GuessNumber or 500) in a sans-serif Lucida font. As you’ve noticed,
the defining occurrence of each term is set in bold type. For the figures in this section, we
point out significant parts of the application. To make these features more visible, we’ve
modified the background color of the Command Prompt window (for the Windows test
drive only). To modify the Command Prompt colors on your system, open a Command
Prompt by selecting Start > All Programs > Accessories > Command Prompt, then right click
the title bar and select Properties. In the "Command Prompt" Properties dialog box that
appears, click the Colors tab, and select your preferred text and background colors.

Common Programming Error 1.1
Errors such as division by zero occur as a program runs, so they’re called runtime errors
or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

10 Chapter 1 Introduction

Running a C++ Application from the Windows Command Prompt
1. Checking your setup. It’s important to read the Before You Begin section at

www.deitel.com/books/cpp11fp/ to make sure that you’ve copied the book’s
examples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enter (Fig. 1.7). The
command cd is used to change directories.

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber

(Fig. 1.8) and press Enter. [Note: GuessNumber.exe is the actual name of the ap-
plication; however, Windows assumes the .exe extension by default.]

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.8). At the prompt, enter 500 (Fig. 1.9).

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as

Fig. 1.7 | Opening a Command Prompt window and changing the directory.

Fig. 1.8 | Running the GuessNumber application.

Fig. 1.9 | Entering your first guess.

http://www.deitel.com/books/cpp11fp/

1.5 Test-Driving a C++ Application 11

the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.10). The application again displays "Too high. Try
again.", because the value you entered is still greater than the number that the
application chose as the correct guess.

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You

guessed the number!" (Fig. 1.11).

7. Playing the game again or exiting the application. After you guess correctly, the
application asks if you’d like to play another game (Fig. 1.11). At the "Would you
like to play again (y or n)?" prompt, entering the one character y causes the
application to choose a new number and displays the message "Please type your
first guess." followed by a question mark prompt (Fig. 1.12) so you can make
your first guess in the new game. Entering the character n ends the application
and returns you to the application’s directory at the Command Prompt
(Fig. 1.13). Each time you execute this application from the beginning (i.e., Step
3), it will choose the same numbers for you to guess.

Fig. 1.10 | Entering a second guess and receiving feedback.

Fig. 1.11 | Entering additional guesses and guessing the correct number.

12 Chapter 1 Introduction

8. Close the Command Prompt window.

Running a C++ Application Using GNU C++ with Linux
For this test drive, we assume that you know how to copy the examples into your home
directory. Also, for the figures in this section, we use a bold highlight to point out the user
input required by each step. The prompt in the shell on our system uses the tilde (~) char-
acter to represent the home directory, and each prompt ends with the dollar sign ($) char-
acter. The prompt will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.14) by typing

then pressing Enter. The command cd is used to change directories.

2. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing

as in Fig. 1.15. This command compiles the application and produces an execut-
able file called GuessNumber.

Fig. 1.12 | Playing the game again.

Fig. 1.13 | Exiting the game.

cd Examples/ch01/GuessNumber/GNU_Linux

~$ cd examples/ch01/GuessNumber/GNU_Linux
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.14 | Changing to the GuessNumber application’s directory.

g++ GuessNumber.cpp -o GuessNumber

1.5 Test-Driving a C++ Application 13

3. Running the GuessNumber application. To run the executable file GuessNumber,
type ./GuessNumber at the next prompt, then press Enter (Fig. 1.16).

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.16). At the prompt, enter 500 (Fig. 1.17). [Note: This is the same appli-
cation that we modified and test-drove for Windows, but the outputs could vary
based on the compiler being used.]

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.17). At the next prompt, enter 250 (Fig. 1.18). This time
the application displays "Too low. Try again.", because the value you entered is
less than the correct guess.

~/examples/ch01/GuessNumber/GNU_Linux$ g++ GuessNumber.cpp -o GuessNumber
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.15 | Compiling the GuessNumber application using the g++ command.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.16 | Running the GuessNumber application.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
?

Fig. 1.17 | Entering an initial guess.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
? 250
Too low. Try again.
?

Fig. 1.18 | Entering a second guess and receiving feedback.

14 Chapter 1 Introduction

6. Entering additional guesses. Continue to play the game (Fig. 1.19) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number."

7. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the "Would
you like to play again (y or n)?" prompt, entering the one character y causes
the application to choose a new number and displays the message "Please type
your first guess." followed by a question mark prompt (Fig. 1.20) so you can
make your first guess in the new game. Entering the character n ends the appli-
cation and returns you to the application’s directory in the shell (Fig. 1.21). Each
time you execute this application from the beginning (i.e., Step 3), it will choose
the same numbers for you to guess.

Too low. Try again.
? 375
Too low. Try again.
? 437
Too high. Try again.
? 406
Too high. Try again.
? 391
Too high. Try again.
? 383
Too low. Try again.
? 387
Too high. Try again.
? 385
Too high. Try again.
? 384
Excellent! You guessed the number.
Would you like to play again (y or n)?

Fig. 1.19 | Entering additional guesses and guessing the correct number.

Excellent! You guessed the number.
Would you like to play again (y or n)? y

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.20 | Playing the game again.

Excellent! You guessed the number.
Would you like to play again (y or n)? n

~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.21 | Exiting the game.

1.6 Operating Systems 15

1.6 Operating Systems
Popular desktop operating systems include Linux, Windows and OS X (formerly called
Mac OS X)—we used all three in developing this book. Popular mobile operating systems
used in smartphones and tablets include Google’s Android, Apple’s iOS (for iPhone, iPad
and iPod Touch devices), BlackBerry OS and Windows Phone. You can develop applica-
tions in C++ for all of the following key operating systems, including several of the latest
mobile operating systems.

1.6.1 Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system that users interacted with by typing commands. Windows borrowed from
many concepts (such as icons, menus and windows) developed by Xerox PARC and pop-
ularized by early Apple Macintosh operating systems. Windows 8 is Microsoft’s latest op-
erating system—its features include enhancements to the user interface, faster startup
times, further refinement of security features, touch-screen and multitouch support, and
more. Windows is a proprietary operating system—it’s controlled by Microsoft exclusively.
Windows is by far the world’s most widely used desktop operating system.

1.6.2 Linux—An Open-Source Operating System
The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software departs from the proprietary software development style that dom-
inated software’s early years. With open-source development, individuals and companies
contribute their efforts in developing, maintaining and evolving software in exchange for
the right to use that software for their own purposes, typically at no charge. Open-source
code is often scrutinized by a much larger audience than proprietary software, so errors of-
ten get removed faster. Open source also encourages innovation. Enterprise systems com-
panies, such as IBM, Oracle and many others, have made significant investments in Linux
open-source development.

Some key organizations in the open-source community are the Eclipse Foundation
(the Eclipse Integrated Development Environment helps programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides tools for managing open-source
projects—it has hundreds of thousands of them under development). Rapid improve-
ments to computing and communications, decreasing costs and open-source software have
made it much easier and more economical to create a software-based business now than
just a decade ago. A great example is Facebook, which was launched from a college dorm
room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers and is
popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’s Windows and Apple’s OS X, Linux source code (the
program code) is available to the public for examination and modification and is free to
download and install. As a result, Linux users benefit from a community of developers

16 Chapter 1 Introduction

actively debugging and improving the kernel, and the ability to customize the operating
system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. Linux has become extremely popular on servers and in embedded sys-
tems, such as Google’s Android-based smartphones.

1.6.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch®

Devices
Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984.

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. At the time of this writing, Objective-C was comparable
in popularity to C++.1 Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988,
NeXT licensed Objective-C from StepStone and developed an Objective-C compiler and
libraries which were used as the platform for the NeXTSTEP operating system’s user inter-
face and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s OS X operating
system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is
derived from Apple’s OS X and is used in the iPhone, iPad and iPod Touch devices.

1.6.4 Google’s Android
Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Experienced Java programmers can quickly dive into Android de-
velopment. One benefit of developing Android apps is the openness of the platform. The
operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 84 by 2011—was formed to continue developing Android. As of June
2012, more than 900,000 Android devices were being activated each day!2 Android smart-
phones are now outselling iPhones in the United States.3 The Android operating system
is used in numerous smartphones (such as the Motorola Droid, HTC One S, Samsung
Galaxy Nexus and many more), e-reader devices (such as the Kindle Fire and Barnes and
Noble Nook™), tablet computers (such as the Dell Streak and the Samsung Galaxy Tab),
in-store touch-screen kiosks, cars, robots, multimedia players and more.

1. www.tiobe.com/index.php/content/paperinfo/tpci/index.html.
2. mashable.com/2012/06/11/900000-android-devices/.
3. www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html

1.7 C++11 and the Open Source Boost Libraries 17

1.7 C++11 and the Open Source Boost Libraries
C++11 (formerly called C++0x)—the latest C++ programming language standard—was
published by ISO/IEC in 2011. Bjarne Stroustrup, the creator of C++, expressed his vision
for the future of the language—the main goals were to make C++ easier to learn, improve
library building capabilities and increase compatibility with the C programming language.
The new standard extends the C++ Standard Library and includes several features and en-
hancements to improve performance and security. The major C++ compiler vendors have
already implemented many of the new C++11 features (Fig. 1.22). Throughout the book,
we discuss various key features of C++11. For more information, visit the C++ Standards
Committee website at www.open-std.org/jtc1/sc22/wg21/ and isocpp.org. Copies of
the C++11 language specification (ISO/IEC 14882:2011) can be purchased at:

Boost C++ Libraries
The Boost C++ Libraries are free, open-source libraries created by members of the C++
community. They are peer reviewed and portable across many compilers and platforms.
Boost has grown to over 100 libraries, with more being added regularly. Today there are
thousands of programmers in the Boost open source community. Boost provides C++ pro-
grammers with useful libraries that work well with the existing C++ Standard Library. The
Boost libraries can be used by C++ programmers working on a wide variety of platforms
with many different compilers.

Some of the new C++11 Standard Library features were derived from corresponding
Boost libraries. We overview the libraries and provide code examples for the “regular
expression” and “smart pointer” libraries, among others.

Regular expressions are used to match specific character patterns in text. They can be
used to validate data to ensure that it’s in a particular format, to replace parts of one string
with another, or to split a string.

http://bit.ly/CPlusPlus11Standard

C++ Compiler URL of C++11 feature descriptions

C++11 features implemented in
each of the major C++ compil-
ers.

wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport

Microsoft® Visual C++ msdn.microsoft.com/en-us/library/hh567368.aspx

GNU Compiler Collection (g++) gcc.gnu.org/projects/cxx0x.html

Intel® C++ Compiler software.intel.com/en-us/articles/c0x-features-

supported-by-intel-c-compiler/

IBM® XL C/C++ www.ibm.com/developerworks/mydeveloperworks/

blogs/5894415f-be62-4bc0-81c5-3956e82276f3/

entry/xlc_compiler_s_c_11_support50?lang=en

Clang clang.llvm.org/cxx_status.html

EDG ecpp www.edg.com/docs/edg_cpp.pdf

Fig. 1.22 | C++ compilers that have implemented major portions of C++11.

http://www.open-std.org/jtc1/sc22/wg21/
http://bit.ly/CPlusPlus11Standard
http://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=enclang.llvm.org/cxx_status.html
http://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=enclang.llvm.org/cxx_status.html
http://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=enclang.llvm.org/cxx_status.html
http://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=enclang.llvm.org/cxx_status.html
http://www.edg.com/docs/edg_cpp.pdf

18 Chapter 1 Introduction

Many common bugs in C and C++ code are related to pointers, a powerful program-
ming capability that C++ absorbed from C. As you’ll see, smart pointers help you avoid
errors associated with traditional pointers.

1.8 Web Resources
This section provides links to our C++ and related Resource Centers that will be useful to
you as you learn C++. These include blogs, articles, whitepapers, compilers, development
tools, downloads, FAQs, tutorials, webcasts, wikis and links to C++ game programming
resources. For updates on Deitel publications, Resource Centers, training courses, partner
offers and more, follow us on Facebook® at www.facebook.com/deitelfan/, Twitter®

@deitel, Google+ at gplus.to/deitel and LinkedIn at bit.ly/DeitelLinkedIn.

Deitel & Associates Websites
www.deitel.com/books/cpp11fp/

The Deitel & Associates C++11 for Programmers site. Here you’ll find links to the book’s examples
and other resources.
www.deitel.com/cplusplus/
www.deitel.com/visualcplusplus/
www.deitel.com/codesearchengines/
www.deitel.com/programmingprojects/

Check these Resource Centers for compilers, code downloads, tutorials, documentation, books, e-
books, articles, blogs, RSS feeds and more that will help you develop C++ applications.
www.deitel.com

Check this site for updates, corrections and additional resources for all Deitel publications.
www.deitel.com/newsletter/subscribe.html

Subscribe here to the Deitel® Buzz Online e-mail newsletter to follow the Deitel & Associates pub-
lishing program, including updates and errata to C++11 for Programmers.

http://www.facebook.com/deitelfan/
http://www.deitel.com/books/cpp11fp/
http://www.deitel.com/cplusplus/
http://www.deitel.com/visualcplusplus/
http://www.deitel.com/codesearchengines/
http://www.deitel.com/programmingprojects/
http://www.deitel.com
http://www.deitel.com/newsletter/subscribe.html

2
Introduction to C++ Programming,

Input/Output and Operators

O b j e c t i v e s
In this chapter you’ll:

� Write simple C++ programs.

� Write input and output statements.

� Use fundamental types.

� Use arithmetic operators.

� Learn the precedence of arithmetic operators.

� Write decision-making statements.

20 Chapter 2 Introduction to C++ Programming, Input/Output and Operators
O

u
tl

in
e

2.1 Introduction
We now introduce C++ programming. We show how to display messages on the screen
and obtain data from the user at the keyboard for processing. We explain how to perform
arithmetic calculations and save their results for later use. We demonstrate decision-making
by showing you how to compare two numbers, then display messages based on the com-
parison results.

Compiling and Running Programs
At www.deitel.com/books/cpp11fp, we’ve posted videos that demonstrate compiling and
running programs in Microsoft Visual C++, GNU C++ and Xcode.

2.2 First Program in C++: Printing a Line of Text
Consider a simple program that prints a line of text (Fig. 2.1). This program illustrates sev-
eral important features of the C++ language. The line numbers are not part of the source
code.

Comments
Lines 1 and 2

each begin with //, indicating that the remainder of each line is a comment. The comment
Text-printing program describes the purpose of the program. A comment beginning with

2.1 Introduction
2.2 First Program in C++: Printing a Line of

Text
2.3 Modifying Our First C++ Program
2.4 Another C++ Program: Adding Integers

2.5 Arithmetic
2.6 Decision Making: Equality and

Relational Operators
2.7 Wrap-Up

1 // Fig. 2.1: fig02_01.cpp
2 // Text-printing program.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n"; // display message
9

10 return 0; // indicate that program ended successfully
11 } // end function main

Welcome to C++!

Fig. 2.1 | Text-printing program.

// Fig. 2.1: fig02_01.cpp
// Text-printing program.

http://www.deitel.com/books/cpp11fp

2.2 First Program in C++: Printing a Line of Text 21

// is called a single-line comment because it terminates at the end of the current line. [Note:
You also may use comments containing one or more lines enclosed in /* and */.]

#include Preprocessing Directive
Line 3

is a preprocessing directive, which is a message to the C++ preprocessor (introduced in
Section 1.4). Lines that begin with # are processed by the preprocessor before the program
is compiled. This line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream>. This header is a file containing information
used by the compiler when compiling any program that outputs data to the screen or in-
puts data from the keyboard using C++’s stream input/output. The program in Fig. 2.1
outputs data to the screen, as we’ll soon see. We discuss headers in more detail in
Chapter 6 and explain the contents of <iostream> in Chapter 13.

Blank Lines and White Space
Line 4 is simply a blank line. Together, blank lines, space characters and tab characters are
known as whitespace. Whitespace characters are normally ignored by the compiler.

The main Function
Line 5

is another single-line comment indicating that program execution begins at the next line.
Line 6

is a part of every C++ program. The parentheses after main indicate that main is a program
building block called a function. C++ programs typically consist of one or more functions
and classes (as you’ll learn in Chapter 3). Exactly one function in every program must be
named main. Figure 2.1 contains only one function. C++ programs begin executing at
function main, even if main is not the first function defined in the program. The keyword
int to the left of main indicates that main returns an integer value. The complete list of
C++ keywords can be found in Fig. 4.2. We’ll say more about return a value when we
demonstrate how to create your own functions in Section 3.3. For now, simply include
the keyword int to the left of main in each of your programs.

The left brace, {, (line 7) must begin the body of every function. A corresponding
right brace, }, (line 11) must end each function’s body.

An Output Statement
Line 8

#include <iostream> // allows program to output data to the screen

Common Programming Error 2.1
Forgetting to include the <iostream> header in a program that inputs data from the key-
board or outputs data to the screen causes the compiler to issue an error message.

// function main begins program execution

int main()

std::cout << "Welcome to C++!\n"; // display message

22 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

instructs the computer to perform an action—namely, to print the characters contained
between the double quotation marks. Together, the quotation marks and the characters
between them are called a string, a character string or a string literal. In this book, we
refer to characters between double quotation marks simply as strings. Whitespace charac-
ters in strings are not ignored by the compiler.

The entire line 8, including std::cout, the << operator, the string "Welcome to

C++!\n" and the semicolon (;), is called a statement. Most C++ statements end with a
semicolon, also known as the statement terminator (we’ll see some exceptions to this
soon). Preprocessing directives (like #include) do not end with a semicolon. Typically,
output and input in C++ are accomplished with streams of characters. Thus, when the
preceding statement is executed, it sends the stream of characters Welcome to C++!\n to
the standard output stream object—std::cout—which is normally “connected” to the
screen.

The std Namespace
The std:: before cout is required when we use names that we’ve brought into the pro-
gram by the preprocessing directive #include <iostream>. The notation std::cout spec-
ifies that we are using a name, in this case cout, that belongs to namespace std. The names
cin (the standard input stream) and cerr (the standard error stream)—introduced in
Chapter 1—also belong to namespace std. Namespaces are an advanced C++ feature that
we discuss in depth in Chapter 21, Other Topics. For now, you should simply remember
to include std:: before each mention of cout, cin and cerr in a program. This can be
cumbersome—the next example introduces using declarations and the using directive,
which will enable you to omit std:: before each use of a name in the std namespace.

The Stream Insertion Operator and Escape Sequences
In the context of an output statement, the << operator is referred to as the stream insertion
operator. When this program executes, the value to the operator’s right, the right operand,
is inserted in the output stream. Notice that the operator points in the direction of where
the data goes. A string literal’s characters normally print exactly as they appear between the
double quotes. However, the characters \n are not printed on the screen (Fig. 2.1). The
backslash (\) is called an escape character. It indicates that a “special” character is to be
output. When a backslash is encountered in a string of characters, the next character is
combined with the backslash to form an escape sequence. The escape sequence \n means
newline. It causes the screen cursor to move to the beginning of the next line on the screen.
Some common escape sequences are listed in Fig. 2.2.

Good Programming Practice 2.1
Indent the body of each function one level within the braces that delimit the function’s
body. This makes a program’s functional structure stand out and makes the program easier
to read.

Good Programming Practice 2.2
Set a convention for the size of indent you prefer, then apply it uniformly. The tab key
may be used to create indents, but tab stops may vary. We prefer three spaces per level of
indent.

2.3 Modifying Our First C++ Program 23

The return Statement
Line 10

is one of several means we’ll use to exit a function. When the return statement is used at
the end of main, as shown here, the value 0 indicates that the program has terminated suc-
cessfully. The right brace, }, (line 11) indicates the end of function main. According to the
C++ standard, if program execution reaches the end of main without encountering a re-
turn statement, it’s assumed that the program terminated successfully—exactly as when
the last statement in main is a return statement with the value 0. For that reason, we omit
the return statement at the end of main in subsequent programs.

2.3 Modifying Our First C++ Program
We now present two examples that modify the program of Fig. 2.1 to print text on one line
by using multiple statements and to print text on several lines by using a single statement.

Printing a Single Line of Text with Multiple Statements
Welcome to C++! can be printed several ways. For example, Fig. 2.3 performs stream inser-
tion in multiple statements (lines 8–9), yet produces the same output as the program of
Fig. 2.1. [Note: From this point forward, we use a light gray background to highlight the
key features each program introduces.] Each stream insertion resumes printing where the
previous one stopped. The first stream insertion (line 8) prints Welcome followed by a
space, and because this string did not end with \n, the second stream insertion (line 9) be-
gins printing on the same line immediately following the space.

Escape
sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.
\t Horizontal tab. Move the screen cursor to the next tab stop.
\r Carriage return. Position the screen cursor to the beginning of the

current line; do not advance to the next line.
\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\' Single quote. Used to print a single quote character.
\" Double quote. Used to print a double quote character.

Fig. 2.2 | Escape sequences.

return 0; // indicate that program ended successfully

1 // Fig. 2.3: fig02_03.cpp
2 // Printing a line of text with multiple statements.
3 #include <iostream> // allows program to output data to the screen
4

Fig. 2.3 | Printing a line of text with multiple statements. (Part 1 of 2.)

24 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Printing Multiple Lines of Text with a Single Statement
A single statement can print multiple lines by using newline characters, as in line 8 of
Fig. 2.4. Each time the \n (newline) escape sequence is encountered in the output stream,
the screen cursor is positioned to the beginning of the next line. To get a blank line in your
output, place two newline characters back to back, as in line 8.

2.4 Another C++ Program: Adding Integers
Our next program obtains two integers typed by a user at the keyboard, computes the sum
of these values and outputs the result using std::cout. Figure 2.5 shows the program and
sample inputs and outputs. In the sample execution, we highlight the user’s input in bold.
The program begins execution with function main (line 6). The left brace (line 7) begins
main’s body and the corresponding right brace (line 22) ends it.

5 // function main begins program execution
6 int main()
7 {
8
9

10 } // end function main

Welcome to C++!

1 // Fig. 2.4: fig02_04.cpp
2 // Printing multiple lines of text with a single statement.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n";
9 } // end function main

Welcome
to

C++!

Fig. 2.4 | Printing multiple lines of text with a single statement.

1 // Fig. 2.5: fig02_05.cpp
2 // Addition program that displays the sum of two integers.
3 #include <iostream> // allows program to perform input and output

Fig. 2.5 | Addition program that displays the sum of two integers. (Part 1 of 2.)

Fig. 2.3 | Printing a line of text with multiple statements. (Part 2 of 2.)

std::cout << "Welcome ";
std::cout << "to C++!\n";

\n \n\n

2.4 Another C++ Program: Adding Integers 25

Variable Declarations
Lines 9–11

are declarations. The identifiers number1, number2 and sum are the names of variables.
These declarations specify that the variables number1, number2 and sum are data of type
int, meaning that these variables will hold integer values. The declarations also initialize
each of these variables to 0.

All variables must be declared with a name and a data type before they can be used in a
program. Several variables of the same type may be declared in one declaration or in mul-
tiple declarations. We could have declared all three variables in one declaration by using a
comma-separated list as follows:

This makes the program less readable and prevents us from providing comments that de-
scribe each variable’s purpose.

4
5 // function main begins program execution
6 int main()
7 {
8 // variable declarations
9

10
11
12
13 std::cout << "Enter first integer: "; // prompt user for data
14
15
16 std::cout << "Enter second integer: "; // prompt user for data
17
18
19
20
21 std::cout << "Sum is " << sum << ; // display sum; end line
22 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

int number1 = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of number1 and number2 (initialized to 0)

Error-Prevention Tip 2.1
Although it’s not always necessary to initialize every variable explicitly, doing so will help
you avoid many kinds of problems.

int number1 = 0, number2 = 0, sum = 0;

Fig. 2.5 | Addition program that displays the sum of two integers. (Part 2 of 2.)

int number1 = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of number1 and number2 (initialized to 0)

std::cin >> number1; // read first integer from user into number1

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

std::endl

26 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Fundamental Types
We’ll soon discuss the type double for specifying real numbers, and the type char for spec-
ifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and
–11.19. A char variable may hold only a single lowercase letter, a single uppercase letter,
a single digit or a single special character (e.g., $ or *). Types such as int, double and char
are called fundamental types. Fundamental-type names consist of one or more keywords
and therefore must appear in all lowercase letters. Appendix C contains the complete list
of fundamental types.

Identifiers
A variable name (such as number1) is any valid identifier that is not a keyword. An identi-
fier is a series of characters consisting of letters, digits and underscores (_) that does not
begin with a digit. C++ is case sensitive—uppercase and lowercase letters are different, so
a1 and A1 are different identifiers.

Placement of Variable Declarations
Declarations of variables can be placed almost anywhere in a program, but they must ap-
pear before their corresponding variables are used in the program. For example, in the pro-
gram of Fig. 2.5, the declaration in line 9

could have been placed immediately before line 14

Good Programming Practice 2.3
Declare only one variable in each declaration and provide a comment that explains the
variable’s purpose in the program.

Portability Tip 2.1
C++ allows identifiers of any length, but your C++ implementation may restrict identifier
lengths. Use identifiers of 31 characters or fewer to ensure portability.

Good Programming Practice 2.4
Choosing meaningful identifiers makes a program self-documenting—a person can un-
derstand the program simply by reading it rather than having to refer to program com-
ments or documentation.

Good Programming Practice 2.5
Avoid using abbreviations in identifiers. This improves program readability.

Good Programming Practice 2.6
Do not use identifiers that begin with underscores and double underscores, because C++
compilers may use names like that for their own purposes internally. This will prevent the
names you choose from being confused with names the compilers choose.

int number1 = 0; // first integer to add (initialized to 0)

std::cin >> number1; // read first integer from user into number1

2.4 Another C++ Program: Adding Integers 27

Obtaining the First Value from the User
Line 13

displays Enter first integer: followed by a space. This message is called a prompt be-
cause it directs the user to take a specific action. We like to pronounce the preceding state-
ment as “std::cout gets the string "Enter first integer: ".” Line 14

uses the standard input stream object cin (of namespace std) and the stream extraction
operator, >>, to obtain a value from the keyboard. Using the stream extraction operator
with std::cin takes character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “std::cin gives a value to
number1” or simply “std::cin gives number1.”

When the computer executes the preceding statement, it waits for the user to enter a
value for variable number1. The user responds by typing an integer (as characters), then
pressing the Enter key (sometimes called the Return key) to send the characters to the com-
puter. The computer converts the character representation of the number to an integer
and assigns (i.e., copies) this number (or value) to the variable number1. Any subsequent
references to number1 in this program will use this same value.

The std::cout and std::cin stream objects facilitate interaction between the user
and the computer.

Users can, of course, enter invalid data from the keyboard. For example, when your
program is expecting the user to enter an integer, the user could enter alphabetic charac-
ters, special symbols (like # or @) or a number with a decimal point (like 73.5), among
others. In these early programs, we assume that the user enters valid data. As you progress
through the book, you’ll learn various techniques for dealing with the broad range of pos-
sible data-entry problems.

Obtaining the Second Value from the User
Line 16

prints Enter second integer: on the screen, prompting the user to take action. Line 17

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User
The assignment statement in line 19

adds the values of variables number1 and number2 and assigns the result to variable sum us-
ing the assignment operator =. We like to read this statement as, “sum gets the value of
number1 + number2.” Most calculations are performed in assignment statements. The = op-
erator and the + operator are binary operators—each has two operands. In the case of the
+ operator, the two operands are number1 and number2. In the case of the preceding = op-
erator, the two operands are sum and the value of the expression number1 + number2.

std::cout << "Enter first integer: "; // prompt user for data

std::cin >> number1; // read first integer from user into number1

std::cout << "Enter second integer: "; // prompt user for data

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

28 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Displaying the Result
Line 21

displays the character string Sum is followed by the numerical value of variable sum fol-
lowed by std::endl—a stream manipulator. The name endl is an abbreviation for “end
line” and belongs to namespace std. The std::endl stream manipulator outputs a new-
line, then “flushes the output buffer.” This simply means that, on some systems where out-
puts accumulate in the machine until there are enough to “make it worthwhile” to display
them on the screen, std::endl forces any accumulated outputs to be displayed at that mo-
ment. This can be important when the outputs are prompting the user for an action, such
as entering data.

The preceding statement outputs multiple values of different types. The stream inser-
tion operator “knows” how to output each type of data. Using multiple stream insertion
operators (<<) in a single statement is referred to as concatenating, chaining or cascading
stream insertion operations.

Calculations can also be performed in output statements. We could have combined
the statements in lines 19 and 21 into the statement

thus eliminating the need for the variable sum.
A powerful feature of C++ is that you can create your own data types called classes (we

introduce this capability in Chapter 3 and explore it in depth in Chapter 9). You can then
“teach” C++ how to input and output values of these new data types using the >> and <<
operators (this is called operator overloading—a topic we explore in Chapter 10).

2.5 Arithmetic
Most programs perform arithmetic calculations. Figure 2.6 summarizes the C++ arithmetic
operators. The asterisk (*) indicates multiplication and the percent sign (%) is the modulus
operator that will be discussed shortly. The arithmetic operators in Fig. 2.6 are all binary op-
erators, i.e., operators that take two operands. For example, the expression number1 +

number2 contains the binary operator + and the two operands number1 and number2.
Integer division (i.e., where both the numerator and the denominator are integers)

yields an integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expression
17 / 5 evaluates to 3. Any fractional part in integer division is truncated —no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder after integer division.
The modulus operator can be used only with integer operands. The expression x % y yields
the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later chap-
ters, we discuss many interesting applications of the modulus operator, such as determining
whether one number is a multiple of another (a special case of this is determining whether
a number is odd or even).

Good Programming Practice 2.7
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

std::cout << "Sum is " << sum << std::endl; // display sum; end
line

std::cout << "Sum is " << number1 + number2 << std::endl;

2.5 Arithmetic 29

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C++ must be entered into the computer in straight-line form.
Thus, expressions such as “a divided by b” must be written as a / b, so that all constants,
variables and operators appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are at the highest level of precedence. In cases of nested, or embed-
ded, parentheses, such as

the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an ex-
pression contains several multiplication, division and modulus operations, oper-
ators are applied from left to right. Multiplication, division and modulus are on
the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains
several addition and subtraction operations, operators are applied from left to
right. Addition and subtraction also have the same level of precedence.

The rules of operator precedence define the order in which C++ applies operators.
When we say that certain operators are applied from left to right, we are referring to the
associativity of the operators. For example, the addition operators (+) in the expression

C++ operation
C++ arithmetic
operator

Algebraic
expression

C++
expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm or b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Modulus % r mod s r % s

Fig. 2.6 | Arithmetic operators.

x
y--

a
b
--

(a * (b + c))

a + b + c

30 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

associate from left to right, so a + b is calculated first, then c is added to that sum to deter-
mine the whole expression’s value. We’ll see that some operators associate from right to left.
Figure 2.7 summarizes these rules of operator precedence. We expand this table as we in-
troduce additional C++ operators. Appendix A contains the complete precedence chart.

Sample Algebraic and C++ Expressions
Now consider several expressions in light of the rules of operator precedence. Each exam-
ple lists an algebraic expression and its C++ equivalent. The following is an example of an
arithmetic mean (average) of five terms:

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5.

The following is an example of the equation of a straight line:

No parentheses are required. The multiplication is applied first because multiplication has
a higher precedence than addition.

The following example contains modulus (%), multiplication, division, addition, sub-
traction and assignment operations:

The circled numbers indicate the order in which C++ applies the operators. The multiplica-
tion, modulus and division are evaluated first in left-to-right order (i.e., they associate from

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, such as in the expres-
sion a * (b + c / d + e)), the expression in the innermost pair is
evaluated first. [Caution: If you have an expression such as (a + b) *
(c - d) in which two sets of parentheses are not nested, but appear
“on the same level,” the C++ Standard does not specify the order in
which these parenthesized subexpressions will be evaluated.]

*

/

%

Multiplication
Division
Modulus

Evaluated second. If there are several, they’re evaluated left to right.

+

-

Addition
Subtraction

Evaluated last. If there are several, they’re evaluated left to right.

Fig. 2.7 | Precedence of arithmetic operators.

Algebra:

C++: m = (a + b + c + d + e) / 5;

Algebra:

C++: y = m * x + b;

m
a b c d e+ + + +

5
-------------------------------------=

y mx b+=

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:

C++:

2.5 Arithmetic 31

left to right) because they have higher precedence than addition and subtraction. The addition
and subtraction are applied next. These are also applied left to right. The assignment opera-
tor is applied last because its precedence is lower than that of any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of a second-degree polynomial y = ax 2 + bx + c:

The circled numbers indicate the order in which C++ applies the operators. There is no arith-
metic operator for exponentiation in C++, so we’ve represented x2 as x * x. In Chapter 5, we’ll
discuss the standard library function pow (“power”) that performs exponentiation.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.8 illustrates the order in which the
operators are applied and the final value of the expression.

Redundant Parentheses
As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the
expression clearer. These are called redundant parentheses. For example, the preceding as-
signment statement could be parenthesized as follows:

Fig. 2.8 | Order in which a second-degree polynomial is evaluated.

y = (a * x * x) + (b * x) + c;

6 1 2 4 3 5

y = a * x * x + b * x + c;

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

3 * 5 is 15

Step 4. y = 50 + 15 + 7;

50 + 15 is 65

Step 5. y = 65 + 7;

65 + 7 is 72

Step 6. y = 72

32 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

2.6 Decision Making: Equality and Relational Operators
We now introduce a simple version of C++’s if statement that allows a program to take
alternative action based on whether a condition is true or false. If the condition is true, the
statement in the body of the if statement is executed. If the condition is false, the body
statement is not executed. We’ll see an example shortly.

Conditions in if statements can be formed by using the relational operators and
equality operators summarized in Fig. 2.9. The relational operators all have the same level
of precedence and associate left to right. The equality operators both have the same level of
precedence, which is lower than that of the relational operators, and associate left to right.

Using the if Statement
The following example (Fig. 2.10) uses six if statements to compare two numbers input
by the user. If the condition in any of these if statements is satisfied, the output statement
associated with that if statement is executed.

Algebraic relational
or equality operator

C++ relational or
equality operator

SampleC++
condition Meaning of C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 2.9 | Relational and equality operators.

Common Programming Error 2.2
Reversing the order of the pair of symbols in the operators !=, >= and <= (by writing them
as =!, => and =<, respectively) is normally a syntax error. In some cases, writing != as =!
will not be a syntax error, but almost certainly will be a logic error that has an effect at
execution time. You’ll understand why when you learn about logical operators in
Chapter 5. A fatal logic error causes a program to fail and terminate prematurely. A
nonfatal logic error allows a program to continue executing, but usually produces incor-
rect results.

Common Programming Error 2.3
Confusing the equality operator == with the assignment operator = results in logic errors.
We like to read the equality operator as “is equal to” or “double equals,” and the assign-
ment operator as “gets” or “gets the value of” or “is assigned the value of.” As you’ll see in
Section 5.9, confusing these operators may not necessarily cause an easy-to-recognize syn-
tax error, but may cause subtle logic errors.

2.6 Decision Making: Equality and Relational Operators 33

1 // Fig. 2.13: fig02_13.cpp
2 // Comparing integers using if statements, relational operators
3 // and equality operators.
4 #include <iostream> // allows program to perform input and output
5
6
7
8
9

10 // function main begins program execution
11 int main()
12 {
13 int number1 = 0; // first integer to compare (initialized to 0)
14 int number2 = 0; // second integer to compare (initialized to 0)
15
16 cout << "Enter two integers to compare: "; // prompt user for data
17
18
19
20
21
22 if ()
23 cout << number1 << " != " << number2 << endl;
24
25 if ()
26 cout << number1 << " < " << number2 << endl;
27
28 if ()
29 cout << number1 << " > " << number2 << endl;
30
31 if ()
32 cout << number1 << " <= " << number2 << endl;
33
34 if ()
35 cout << number1 << " >= " << number2 << endl;
36 } // end function main

Enter two integers to compare: 3 7
3 != 7
3 < 7
3 <= 7

Enter two integers to compare: 22 12
22 != 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 == 7
7 <= 7
7 >= 7

Fig. 2.10 | Comparing integers using if statements, relational operators and equality operators.

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

cin >> number1 >> number2; // read two integers from user

if (number1 == number2)
cout << number1 << " == " << number2 << endl;

number1 != number2

number1 < number2

number1 > number2

number1 <= number2

number1 >= number2

34 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

using Declarations
Lines 6–8

are using declarations that eliminate the need to repeat the std:: prefix as we did in ear-
lier programs. We can now write cout instead of std::cout, cin instead of std::cin and
endl instead of std::endl, respectively, in the remainder of the program.

In place of lines 6–8, many programmers prefer to provide the using directive

which enables a program to use all the names in any standard C++ header (such as
<iostream>) that a program might include. From this point forward in the book, we’ll use
the preceding directive in our programs. In Chapter 21, Other Topics, we’ll discuss some
issues with using directives in large-scale systems.

Variable Declarations and Reading the Inputs from the User
Lines 13–14

declare the variables used in the program and initializes them to 0.
The program uses cascaded stream extraction operations (line 17) to input two inte-

gers. Remember that we’re allowed to write cin (instead of std::cin) because of line 7.
First a value is read into variable number1, then a value is read into variable number2.

Comparing Numbers
The if statement in lines 19–20

compares the values of variables number1 and number2 to test for equality. If the values are
equal, the statement in line 20 displays a line of text indicating that the numbers are equal.
If the conditions are true in one or more of the if statements starting in lines 22, 25, 28,
31 and 34, the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 2.10 has a single statement in its body and each body state-
ment is indented. In Chapter 4 we show how to specify if statements with multiple-state-
ment bodies (by enclosing the body statements in a pair of braces, { }, creating what’s
called a compound statement or a block).

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

using namespace std;

int number1 = 0; // first integer to compare (initialized to 0)
int number2 = 0; // second integer to compare (initialized to 0)

if (number1 == number2)
cout << number1 << " == " << number2 << endl;

Common Programming Error 2.4
Placing a semicolon immediately after the right parenthesis after the condition in an if

statement is often a logic error (although not a syntax error). The semicolon causes the body
of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the if state-
ment now becomes a statement in sequence with the if statement and always executes,
often causing the program to produce incorrect results.

2.7 Wrap-Up 35

White Space
Recall that whitespace characters, such as tabs, newlines and spaces, are normally ignored
by the compiler. So, statements may be split over several lines and may be spaced according
to your preferences. It’s a syntax error to split identifiers, strings (such as "hello") and
constants (such as the number 1000) over several lines.

Operator Precedence
Figure 2.11 shows the precedence and associativity of the operators introduced in this
chapter. The operators are shown top to bottom in decreasing order of precedence. All
these operators, with the exception of the assignment operator =, associate from left to
right. Addition is left-associative, so an expression like x + y + z is evaluated as if it had
been written (x + y) + z. The assignment operator = associates from right to left, so an ex-
pression such as x = y = 0 is evaluated as if it had been written x = (y = 0), which, as we’ll
soon see, first assigns 0 to y, then assigns the result of that assignment—0—to x.

2.7 Wrap-Up
You learned many important basic features of C++ in this chapter, including displaying
data on the screen, inputting data from the keyboard and declaring variables of fundamen-

Good Programming Practice 2.8
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose meaningful breaking points, such as after a comma in a comma-sepa-
rated list, or after an operator in a lengthy expression. If a statement is split across two or
more lines, indent all subsequent lines and left-align the group of indented lines.

Operators Associativity Type

() [See caution in Fig. 2.7] grouping parentheses
* / % left to right multiplicative
+ - left to right additive
<< >> left to right stream insertion/extraction
< <= > >= left to right relational
== != left to right equality
= right to left assignment

Fig. 2.11 | Precedence and associativity of the operators discussed so far.

Good Programming Practice 2.9
Refer to the operator precedence and associativity chart (Appendix A) when writing ex-
pressions containing many operators. Confirm that the operators in the expression are per-
formed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to force
the order of evaluation, exactly as you’d do in an algebraic expression. Be sure to observe
that some operators such as assignment (=) associate right to left rather than left to right.

36 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

tal types. In particular, you learned to use the output stream object cout and the input
stream object cin to build simple interactive programs. We explained how variables are
stored in and retrieved from memory. You also learned how to use arithmetic operators to
perform calculations. We discussed the order in which C++ applies operators (i.e., the
rules of operator precedence), as well as the associativity of the operators. You also learned
how C++’s if statement allows a program to make decisions. Finally, we introduced the
equality and relational operators, which you use to form conditions in if statements.

The non-object-oriented applications presented here introduced you to basic pro-
gramming concepts. As you’ll see in Chapter 3, C++ applications typically contain just a
few lines of code in function main—these statements normally create the objects that per-
form the work of the application, then the objects “take over from there.” In Chapter 3,
you’ll learn how to implement your own classes and use objects of those classes in appli-
cations.

3
Introduction to Classes,

Objects and Strings

O b j e c t i v e s
In this chapter you’ll:

� Define a class and use it to create an object.

� Implement a class’s behaviors as member functions.

� Implement a class’s attributes as data members.

� Call a member function of an object to perform a task.

� Learn the differences between data members of a class and
local variables of a function.

� Use a constructor to initialize an object’s data when the
object is created.

� Engineer a class to separate its interface from its
implementation and encourage reuse.

� Use objects of class string.

38 Chapter 3 Introduction to Classes, Objects and Strings
O

u
tl

in
e

3.1 Introduction
In this chapter, you’ll begin writing programs that employ the basic concepts of object-ori-
ented programming that we introduced in Section 1.3. One common feature of every pro-
gram in Chapter 2 was that all the statements that performed tasks were located in
function main. Typically, the programs you develop in this book will consist of function
main and one or more classes, each containing data members and member functions. If you
become part of a development team in industry, you might work on software systems that
contain hundreds, or even thousands, of classes. In this chapter, we develop a simple, well-
engineered framework for organizing object-oriented programs in C++.

We present a carefully paced sequence of complete working programs to demonstrate
creating and using your own classes. These examples begin our integrated case study on
developing a grade-book class that instructors can use to maintain student test scores. We
also introduce the C++ standard library class string.

3.2 Defining a Class with a Member Function
We begin with an example (Fig. 3.1) that consists of class GradeBook (lines 8–16)—which,
when it’s fully developed in Chapter 7, will represent a grade book that an instructor can
use to maintain student test scores—and a main function (lines 19–23) that creates a
GradeBook object. Function main uses this object and its displayMessage member func-
tion (lines 12–15) to display a message on the screen welcoming the instructor to the
grade-book program.

3.1 Introduction
3.2 Defining a Class with a Member

Function
3.3 Defining a Member Function with a

Parameter
3.4 Data Members, set Member

Functions and get Member Functions
3.5 Initializing Objects with

Constructors

3.6 Placing a Class in a Separate File for
Reusability

3.7 Separating Interface from
Implementation

3.8 Validating Data with set Functions
3.9 Wrap-Up

1 // Fig. 3.1: fig03_01.cpp
2 // Define class GradeBook with a member function displayMessage,
3 // create a GradeBook object, and call its displayMessage function.
4 #include <iostream>
5 using namespace std;
6
7
8
9

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 1 of 2.)

// GradeBook class definition
class GradeBook
{

3.2 Defining a Class with a Member Function 39

Class GradeBook
Before function main (lines 19–23) can create a GradeBook object, we must tell the com-
piler what member functions and data members belong to the class. The GradeBook class
definition (lines 8–16) contains a member function called displayMessage (lines 12–15)
that displays a message on the screen (line 14). We need to make an object of class Grade-
Book (line 21) and call its displayMessage member function (line 22) to get line 14 to
execute and display the welcome message. We’ll soon explain lines 21–22 in detail.

The class definition begins in line 8 with the keyword class followed by the class
name GradeBook. By convention, the name of a user-defined class begins with a capital
letter, and for readability, each subsequent word in the class name begins with a capital
letter. This capitalization style is often referred to as Pascal case, because the convention
was widely used in the Pascal programming language. The occasional uppercase letters
resemble a camel’s humps. More generally, camel case capitalization style allows the first
letter to be either lowercase or uppercase (e.g., myGradeBook in line 21).

Every class’s body is enclosed in a pair of left and right braces ({ and }), as in lines 9
and 16. The class definition terminates with a semicolon (line 16).

Recall that the function main is always called automatically when you execute a pro-
gram. Most functions do not get called automatically. As you’ll soon see, you must call
member function displayMessage explicitly to tell it to perform its task.

Line 10 contains the keyword public, which is an access specifier. Lines 12–15 define
member function displayMessage. This member function appears after access specifier
public: to indicate that the function is “available to the public”—that is, it can be called
by other functions in the program (such as main), and by member functions of other
classes (if there are any). Access specifiers are always followed by a colon (:). For the

10
11
12
13
14
15
16
17
18 // function main begins program execution
19 int main()
20 {
21
22
23 } // end main

Welcome to the Grade Book!

Common Programming Error 3.1
Forgetting the semicolon at the end of a class definition is a syntax error.

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

public:
// function that displays a welcome message to the GradeBook user
void displayMessage() const

{
cout << "Welcome to the Grade Book!" << endl;

} // end function displayMessage
}; // end class GradeBook

GradeBook myGradeBook; // create a GradeBook object named myGradeBook
myGradeBook.displayMessage(); // call object's displayMessage function

40 Chapter 3 Introduction to Classes, Objects and Strings

remainder of the text, when we refer to the access specifier public in the text, we’ll omit
the colon as we did in this sentence. Section 3.4 introduces the access specifier private.
Later in the book we’ll study the access specifier protected.

When you define a function, you must specify a return type to indicate the type of
the value returned by the function when it completes its task. In line 12, keyword void to
the left of the function name displayMessage is the function’s return type. Return type
void indicates that displayMessage will not return any data to its calling function (in this
example, line 22 of main, as we’ll see in a moment) when it completes its task. In Fig. 3.5,
you’ll see an example of a function that does return a value.

The name of the member function, displayMessage, follows the return type (line
12). By convention, our function names use the camel case style with a lowercase first letter.
The parentheses after the member function name indicate that this is a function. An empty
set of parentheses, as shown in line 12, indicates that this member function does not
require additional data to perform its task. You’ll see an example of a member function
that does require additional data in Section 3.3.

We declared member function displayMessage const in line 12 because in the pro-
cess of displaying "Welcome to the Grade Book!" the function does not, and should not,
modify the GradeBook object on which it’s called. Declaring displayMessage const tells
the compiler, “this function should not modify the object on which it’s called—if it does,
please issue a compilation error.” This can help you locate errors if you accidentally insert
code in displayMessage that would modify the object. Line 12 is commonly referred to
as a function header.

Every function’s body is delimited by left and right braces ({ and }), as in lines 13 and
15. The function body contains statements that perform the function’s task. In this case,
member function displayMessage contains one statement (line 14) that displays the mes-
sage "Welcome to the Grade Book!". After this statement executes, the function has com-
pleted its task.

Testing Class GradeBook
Next, we’d like to use class GradeBook in a program. As you saw in Chapter 2, the function
main (lines 19–23) begins the execution of every program.

In this program, we’d like to call class GradeBook’s displayMessagemember function
to display the welcome message. Typically, you cannot call a member function of a class
until you create an object of that class. (As you’ll learn in Section 9.14, static member
functions are an exception.) Line 21 creates an object of class GradeBook called myGrade-
Book. The variable’s type is GradeBook—the class we defined in lines 8–16. When we
declare variables of type int, as we did in Chapter 2, the compiler knows what int is—it’s
a fundamental type that’s “built into” C++. In line 21, however, the compiler does not auto-
matically know what type GradeBook is—it’s a user-defined type. We tell the compiler
what GradeBook is by including the class definition (lines 8–16). If we omitted these lines,
the compiler would issue an error message. Each class you create becomes a new type that
can be used to create objects. You can define new class types as needed; this is one reason
why C++ is known as an extensible programming language.

Line 22 calls the member function displayMessage using variable myGradeBook fol-
lowed by the dot operator (.), the function name displayMessage and an empty set of
parentheses. This call causes the displayMessage function to perform its task. At the

3.3 Defining a Member Function with a Parameter 41

beginning of line 22, “myGradeBook.” indicates that main should use the GradeBook object
that was created in line 21. The empty parentheses in line 12 indicate that member function
displayMessage does not require additional data to perform its task, which is why we
called this function with empty parentheses in line 22. (In Section 3.3, you’ll see how to
pass data to a function.) When displayMessage completes its task, the program reaches
the end of main (line 23) and terminates.

UML Class Diagram for Class GradeBook
Recall from Section 1.3 that the UML is a standardized graphical language used by soft-
ware developers to represent their object-oriented systems. In the UML, each class is mod-
eled in a UML class diagram as a rectangle with three compartments. Figure 3.2 presents a
class diagram for class GradeBook (Fig. 3.1). The top compartment contains the class’s name
centered horizontally and in boldface type. The middle compartment contains the class’s
attributes, which correspond to data members in C++. This compartment is currently
empty, because class GradeBook does not yet have any attributes. (Section 3.4 presents a
version of class GradeBook with an attribute.) The bottom compartment contains the class’s
operations, which correspond to member functions in C++. The UML models operations
by listing the operation name followed by a set of parentheses. Class GradeBook has only
one member function, displayMessage, so the bottom compartment of Fig. 3.2 lists one
operation with this name. Member function displayMessage does not require additional
information to perform its tasks, so the parentheses following displayMessage in the class
diagram are empty, just as they are in the member function’s header in line 12 of Fig. 3.1.
The plus sign (+) in front of the operation name indicates that displayMessage is a public
operation in the UML (i.e., a public member function in C++).

3.3 Defining a Member Function with a Parameter
In our car analogy from Section 1.3, we mentioned that pressing a car’s gas pedal sends a
message to the car to perform a task—make the car go faster. But how fast should the car
accelerate? As you know, the farther down you press the pedal, the faster the car acceler-
ates. So the message to the car includes both the task to perform and additional information
that helps the car perform the task. This additional information is known as a parameter—
the value of the parameter helps the car determine how fast to accelerate. Similarly, a mem-
ber function can require one or more parameters that represent additional data it needs to
perform its task. A function call supplies values—called arguments—for each of the func-
tion’s parameters. For example, to make a deposit into a bank account, suppose a deposit
member function of an Account class specifies a parameter that represents the deposit
amount. When the deposit member function is called, an argument value representing

Fig. 3.2 | UML class diagram indicating that class GradeBook has a public displayMessage
operation.

GradeBook

+ displayMessage()

42 Chapter 3 Introduction to Classes, Objects and Strings

the deposit amount is copied to the member function’s parameter. The member function
then adds that amount to the account balance.

Defining and Testing Class GradeBook
Our next example (Fig. 3.3) redefines class GradeBook (lines 9–18) with a display-

Message member function (lines 13–17) that displays the course name as part of the wel-
come message. The new version of displayMessage requires a parameter (courseName in
line 13) that represents the course name to output.

1 // Fig. 3.3: fig03_03.cpp
2 // Define class GradeBook with a member function that takes a parameter,
3 // create a GradeBook object and call its displayMessage function.
4 #include <iostream>
5
6 using namespace std;
7
8 // GradeBook class definition
9 class GradeBook

10 {
11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage() const

14 {
15 cout << "Welcome to the grade book for\n" << << "!"

16 << endl;
17 } // end function displayMessage
18 }; // end class GradeBook
19
20 // function main begins program execution
21 int main()
22 {
23 // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25
26 // prompt for and input course name
27 cout << "Please enter the course name:" << endl;
28
29 cout << endl; // output a blank line
30
31 // call myGradeBook's displayMessage function
32 // and pass nameOfCourse as an argument
33
34 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function.

#include <string> // program uses C++ standard string class

string courseName

courseName

string nameOfCourse;

getline(cin, nameOfCourse); // read a course name with blanks

myGradeBook.displayMessage(nameOfCourse);

3.3 Defining a Member Function with a Parameter 43

Before discussing the new features of class GradeBook, let’s see how the new class is
used in main (lines 21–34). Line 23 creates a variable of type string called nameOfCourse
that will be used to store the course name entered by the user. A variable of type string
represents a string of characters such as “CS101 Introduction to C++ Programming". A
string is actually an object of the C++ Standard Library class string. This class is defined
in header <string>, and the name string, like cout, belongs to namespace std. To
enable lines 13 and 23 to compile, line 5 includes the <string> header. The using direc-
tive in line 6 allows us to simply write string in line 23 rather than std::string. For
now, you can think of string variables like variables of other types such as int. You’ll
learn additional string capabilities in Section 3.8 and in Chapter 19.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts
the user to enter a course name. Line 28 reads the name from the user and assigns it to the
nameOfCourse variable, using the library function getline to perform the input. Before
we explain this line of code, let’s explain why we cannot simply write

to obtain the course name.
In our sample program execution, we use the course name “CS101 Introduction to

C++ Programming,” which contains multiple words separated by blanks. (Recall that we
highlight user-entered data in bold.) When reading a string with the stream extraction
operator, cin reads characters until the first white-space character is reached. Thus, only
“CS101” would be read by the preceding statement. The rest of the course name would
have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter
to submit it to the program, and we’d like to store the entire course name in the string
variable nameOfCourse. The function call getline(cin, nameOfCourse) in line 28 reads
characters (including the space characters that separate the words in the input) from the
standard input stream object cin (i.e., the keyboard) until the newline character is encoun-
tered, places the characters in the string variable nameOfCourse and discards the newline
character. When you press Enter while entering data, a newline is inserted in the input
stream. The <string> header must be included in the program to use function getline,
which belongs to namespace std.

Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse
variable in parentheses is the argument that’s passed to member function displayMessage so
that it can perform its task. The value of variable nameOfCourse in main is copied to member
function displayMessage’s parameter courseName in line 13. When you execute this pro-
gram, member function displayMessage outputs as part of the welcome message the course
name you type (in our sample execution, CS101 Introduction to C++ Programming).

More on Arguments and Parameters
To specify in a function definition that the function requires data to perform its task, you
place additional information in the function’s parameter list, which is located in the pa-
rentheses following the function name. The parameter list may contain any number of pa-
rameters, including none at all (represented by empty parentheses as in Fig. 3.1, line 12)
to indicate that a function does not require any parameters. The displayMessage member
function’s parameter list (Fig. 3.3, line 13) declares that the function requires one param-
eter. Each parameter specifies a type and an identifier. The type string and the identifier

cin >> nameOfCourse;

44 Chapter 3 Introduction to Classes, Objects and Strings

courseName indicate that member function displayMessage requires a string to perform
its task. The member function body uses the parameter courseName to access the value
that’s passed to the function in the function call (line 33 in main). Lines 15–16 display
parameter courseName’s value as part of the welcome message. The parameter variable’s
name (courseName in line 13) can be the same as or different from the argument variable’s
name (nameOfCourse in line 33)—you’ll learn why in Chapter 6.

A function can specify multiple parameters by separating each from the next with a
comma. The number and order of arguments in a function call must match the number
and order of parameters in the parameter list of the called member function’s header. Also,
the argument types in the function call must be consistent with the types of the corre-
sponding parameters in the function header. (As you’ll learn in subsequent chapters, an
argument’s type and its corresponding parameter’s type need not always be identical, but
they must be “consistent.”) In our example, the one string argument in the function call
(i.e., nameOfCourse) exactly matches the one string parameter in the member-function
definition (i.e., courseName).

Updated UML Class Diagram for Class GradeBook
The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class
GradeBook defined in Fig. 3.1, this GradeBook class contains public member function
displayMessage. However, this version of displayMessage has a parameter. The UML
models a parameter by listing the parameter name, followed by a colon and the parameter
type in the parentheses following the operation name. The UML has its own data types
similar to those of C++. The UML is language independent—it’s used with many different
programming languages—so its terminology does not exactly match that of C++. For ex-
ample, the UML type String corresponds to the C++ type string. Member function
displayMessage of class GradeBook (Fig. 3.3, lines 13–17) has a string parameter named
courseName, so Fig. 3.4 lists courseName : String between the parentheses following the
operation name displayMessage. This version of the GradeBook class still does not have
any data members.

3.4 Data Members, set Member Functions and get
Member Functions
In Chapter 2, we declared all of a program’s variables in its main function. Variables de-
clared in a function definition’s body are known as local variables and can be used only
from the line of their declaration in the function to the closing right brace (}) of the block
in which they’re declared. A local variable must be declared before it can be used in a func-
tion. A local variable cannot be accessed outside the function in which it’s declared. When

Fig. 3.4 | UML class diagram indicating that class GradeBook has a public displayMessage
operation with a courseName parameter of UML type String.

GradeBook

+ displayMessage(courseName : String)

3.4 Data Members, set Member Functions and get Member Functions 45

a function terminates, the values of its local variables are lost. (You’ll see an exception to this
in Chapter 6 when we discuss static local variables.)

A class normally consists of one or more member functions that manipulate the attri-
butes that belong to a particular object of the class. Attributes are represented as variables
in a class definition. Such variables are called data members and are declared inside a class
definition but outside the bodies of the class’s member-function definitions. Each object
of a class maintains its own attributes in memory. These attributes exist throughout the
life of the object. The example in this section demonstrates a GradeBook class that contains
a courseName data member to represent a particular GradeBook object’s course name. If
you create more than one GradeBook object, each will have its own courseName data
member, and these can contain different values.

GradeBook Class with a Data Member, and set and get Member Functions
In our next example, class GradeBook (Fig. 3.5) maintains the course name as a data mem-
ber so that it can be used or modified throughout a program’s execution. The class contains
member functions setCourseName, getCourseName and displayMessage. Member func-
tion setCourseName stores a course name in a GradeBook data member. Member function
getCourseName obtains the course name from that data member. Member function dis-

playMessage—which now specifies no parameters—still displays a welcome message that
includes the course name. However, as you’ll see, the function now obtains the course
name by calling another function in the same class—getCourseName.

1 // Fig. 3.5: fig03_05.cpp
2 // Define class GradeBook that contains a courseName data member
3 // and member functions to set and get its value;
4 // Create and manipulate a GradeBook object with these functions.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {
12 public:
13
14
15
16
17
18
19
20
21
22
23
24

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get member
functions. (Part 1 of 2.)

// function that sets the course name
void setCourseName(string name)
{

courseName = name; // store the course name in the object
} // end function setCourseName

// function that gets the course name
string getCourseName() const

{
return courseName; // return the object's courseName

} // end function getCourseName

46 Chapter 3 Introduction to Classes, Objects and Strings

A typical instructor teaches several courses, each with its own course name. Line 34
declares that courseName is a variable of type string. Because the variable is declared in
the class definition (lines 10–35) but outside the bodies of the class’s member-function
definitions (lines 14–17, 20–23 and 26–32), the variable is a data member. Every instance
(i.e., object) of class GradeBook contains each of the class’s data members—if there are two
GradeBook objects, each has its own courseName (one per object), as you’ll see in the
example of Fig. 3.7. A benefit of making courseName a data member is that all the member
functions of the class can manipulate any data members that appear in the class definition
(in this case, courseName).

25 // function that displays a welcome message
26 void displayMessage() const

27 {
28 // this statement calls getCourseName to get the
29 // name of the course this GradeBook represents
30 cout << "Welcome to the grade book for\n" << << "!"

31 << endl;
32 } // end function displayMessage
33
34
35 }; // end class GradeBook
36
37 // function main begins program execution
38 int main()
39 {
40 string nameOfCourse; // string of characters to store the course name
41 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
42
43 // display initial value of courseName
44 cout << "Initial course name is: " <<
45 << endl;
46
47 // prompt for, input and set course name
48 cout << "\nPlease enter the course name:" << endl;
49 getline(cin, nameOfCourse); // read a course name with blanks
50
51
52 cout << endl; // outputs a blank line
53 myGradeBook.displayMessage(); // display message with new course name
54 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get member
functions. (Part 2 of 2.)

getCourseName()

private:
string courseName; // course name for this GradeBook

myGradeBook.getCourseName()

myGradeBook.setCourseName(nameOfCourse); // set the course name

3.4 Data Members, set Member Functions and get Member Functions 47

Access Specifiers public and private

Most data-member declarations appear after the private access specifier. Variables or
functions declared after access specifier private (and before the next access specifier if there
is one) are accessible only to member functions of the class for which they’re declared (or
to “friends” of the class, as you’ll see in Chapter 9). Thus, data member courseName can
be used only in member functions setCourseName, getCourseName and displayMessage

of class GradeBook (or to “friends” of the class, if there are any).

The default access for class members is private so all members after the class header
and before the first access specifier (if there are any) are private. The access specifiers
public and private may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When
a program creates a GradeBook object, data member courseName is encapsulated (hidden)
in the object and can be accessed only by member functions of the object’s class. In class
GradeBook, member functions setCourseName and getCourseName manipulate the data
member courseName directly.

Member Functions setCourseName and getCourseName

Member function setCourseName (lines 14–17) does not return any data when it com-
pletes its task, so its return type is void. The member function receives one parameter—
name—which represents the course name that will be passed to it as an argument (as we’ll
see in line 50 of main). Line 16 assigns name to data member courseName, thus modifying
the object—for this reason, we do not declare setCourseName const. In this example, set-
CourseName does not validate the course name—i.e., the function does not check that the
course name adheres to any particular format or follows any other rules regarding what a
“valid” course name looks like. Suppose, for instance, that a university can print student
transcripts containing course names of only 25 characters or fewer. In this case, we might
want class GradeBook to ensure that its data member courseName never contains more
than 25 characters. We discuss validation in Section 3.8.

Member function getCourseName (lines 20–23) returns a particular GradeBook

object’s courseName, without modifying the object—for this reason, we declare get-

CourseName const. The member function has an empty parameter list, so it does not require
additional data to perform its task. The function specifies that it returns a string. When
a function that specifies a return type other than void is called and completes its task, the
function uses a return statement (as in line 22) to return a result to its calling function.
For example, when you go to an automated teller machine (ATM) and request your
account balance, you expect the ATM to give you a value that represents your balance.
Similarly, when a statement calls member function getCourseName on a GradeBook object,

Error-Prevention Tip 3.1
Making the data members of a class private and the member functions of the class pub-
lic facilitates debugging because problems with data manipulations are localized to ei-
ther the class’s member functions or the friends of the class.

Common Programming Error 3.2
An attempt by a function, which is not a member of a particular class (or a friend of that
class) to access a private member of that class is a compilation error.

48 Chapter 3 Introduction to Classes, Objects and Strings

the statement expects to receive the GradeBook’s course name (in this case, a string, as
specified by the function’s return type).

If you have a function square that returns the square of its argument, the statement

returns 4 from function square and assigns to variable result the value 4. If you have a
function maximum that returns the largest of three integer arguments, the statement

returns 114 from function maximum and assigns this value to variable biggest.
The statements in lines 16 and 22 each use variable courseName (line 34) even though

it was not declared in any of the member functions. We can do this because courseName
is a data member of the class and data members are accessible from a class’s member func-
tions.

Member Function displayMessage

Member function displayMessage (lines 26–32) does not return any data when it com-
pletes its task, so its return type is void. The function does not receive parameters, so its
parameter list is empty. Lines 30–31 output a welcome message that includes the value of
data member courseName. Line 30 calls member function getCourseName to obtain the
value of courseName. Member function displayMessage could also access data member
courseName directly, just as member functions setCourseName and getCourseName do.
We explain shortly why it’s preferable from a software engineering perspective to call
member function getCourseName to obtain the value of courseName.

Testing Class GradeBook
The main function (lines 38–54) creates one object of class GradeBook and uses each of its
member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 44–45
display the initial course name by calling the object’s getCourseNamemember function. The
first line of the output does not show a course name, because the object’s courseName data
member (i.e., a string) is initially empty—by default, the initial value of a string is the
so-called empty string, i.e., a string that does not contain any characters. Nothing appears
on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable nameOfCourse
(declared in line 40) is set to the course name entered by the user, which is obtained by the
call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName
member function and supplies nameOfCourse as the function’s argument. When the func-
tion is called, the argument’s value is copied to parameter name (line 14) of member func-
tion setCourseName. Then the parameter’s value is assigned to data member courseName
(line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage
member function to display the welcome message containing the course name.

Software Engineering with Set and Get Functions
A class’s private data members can be manipulated only by member functions of that class
(and by “friends” of the class as you’ll see in Chapter 9). So a client of an object—that is,
any statement that calls the object’s member functions from outside the object—calls the

result = square(2);

biggest = maximum(27, 114, 51);

3.4 Data Members, set Member Functions and get Member Functions 49

class’s public member functions to request the class’s services for particular objects of the
class. This is why the statements in function main call member functions setCourseName,
getCourseName and displayMessage on a GradeBook object. Classes often provide public
member functions to allow clients of the class to set (i.e., assign values to) or get (i.e., obtain
the values of) private data members. These member function names need not begin with
set or get, but this naming convention is common. In this example, the member function
that sets the courseName data member is called setCourseName, and the member function
that gets the value of the courseName data member is called getCourseName. Set functions
are sometimes called mutators (because they mutate, or change, values), and get functions
are also called accessors (because they access values).

Recall that declaring data members with access specifier private enforces data hiding.
Providing public set and get functions allows clients of a class to access the hidden data,
but only indirectly. The client knows that it’s attempting to modify or obtain an object’s
data, but the client does not know how the object performs these operations. In some cases,
a class may internally represent a piece of data one way, but expose that data to clients in
a different way. For example, suppose a Clock class represents the time of day as a private
int data member time that stores the number of seconds since midnight. However, when
a client calls a Clock object’s getTime member function, the object could return the time
with hours, minutes and seconds in a string in the format "HH:MM:SS". Similarly, suppose
the Clock class provides a set function named setTime that takes a string parameter in
the "HH:MM:SS" format. Using string capabilities presented in Chapter 19, the setTime
function could convert this string to a number of seconds, which the function stores in
its private data member. The set function could also check that the value it receives rep-
resents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). The set and get func-
tions allow a client to interact with an object, but the object’s private data remains safely
encapsulated (i.e., hidden) in the object itself.

The set and get functions of a class also should be used by other member functions
within the class to manipulate the class’s private data, even though these member func-
tions can access the private data directly. In Fig. 3.5, member functions setCourseName
and getCourseName are public member functions, so they’re accessible to clients of the
class, as well as to the class itself. Member function displayMessage calls member func-
tion getCourseName to obtain the value of data member courseName for display purposes,
even though displayMessage can access courseName directly—accessing a data member
via its get function creates a better, more robust class (i.e., a class that’s easier to maintain
and less likely to malfunction). If we decide to change the data member courseName in
some way, the displayMessage definition will not require modification—only the bodies
of the get and set functions that directly manipulate the data member will need to change.
For example, suppose we want to represent the course name as two separate data mem-
bers—courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Pro-
gramming"). Member function displayMessage can still issue a single call to member
function getCourseName to obtain the full course name to display as part of the welcome
message. In this case, getCourseName would need to build and return a string containing
the courseNumber followed by the courseTitle. Member function displayMessage

could continue to display the complete course title “CS101 Introduction to C++ Program-
ming.” The benefits of calling a set function from another member function of the same
class will become clearer when we discuss validation in Section 3.8.

50 Chapter 3 Introduction to Classes, Objects and Strings

GradeBook’s UML Class Diagram with a Data Member and set and get Functions
Figure 3.6 contains an updated UML class diagram for the version of class GradeBook in
Fig. 3.5. This diagram models GradeBook’s data member courseName as an attribute in the
middle compartment. The UML represents data members as attributes by listing the at-
tribute name, followed by a colon and the attribute type. The UML type of attribute
courseName is String, which corresponds to string in C++. Data member courseName is
private in C++, so the class diagram lists a minus sign (–) in front of the corresponding
attribute’s name. Class GradeBook contains three public member functions, so the class
diagram lists three operations in the third compartment. Operation setCourseName has a
String parameter called name. The UML indicates the return type of an operation by plac-
ing a colon and the return type after the parentheses following the operation name. Mem-
ber function getCourseName of class GradeBook has a string return type in C++, so the
class diagram shows a String return type in the UML. Operations setCourseName and
displayMessage do not return values (i.e., they return void in C++), so the UML class
diagram does not specify a return type after the parentheses of these operations.

3.5 Initializing Objects with Constructors
As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.5) is created, its
data member courseName is initialized to the empty string by default. What if you want
to provide a course name when you create a GradeBook object? Each class you declare can
provide one or more constructors that can be used to initialize an object of the class when
the object is created. A constructor is a special member function that must be defined with
the same name as the class, so that the compiler can distinguish it from the class’s other
member functions. An important difference between constructors and other functions is
that constructors cannot return values, so they cannot specify a return type (not even void).
Normally, constructors are declared public. In the early chapters, our classes will generally
have one constructor—in later chapters, you’ll see how to create classes with more that one

Good Programming Practice 3.1
Always try to localize the effects of changes to a class’s data members by accessing and ma-
nipulating the data members through their corresponding get and set functions.

Software Engineering Observation 3.1
Write programs that are clear and easy to maintain. Change is the rule rather than the
exception. You should anticipate that your code will be modified, and possibly often.

Fig. 3.6 | UML class diagram for class GradeBook with a private courseName attribute and
public operations setCourseName, getCourseName and displayMessage.

GradeBook

– courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

3.5 Initializing Objects with Constructors 51

constructor using the technique of function overloading, which we introduce in
Section 6.17.

C++ automatically calls a constructor for each object that’s created, which helps
ensure that objects are initialized properly before they’re used in a program. The con-
structor call occurs when the object is created. If a class does not explicitly include construc-
tors, the compiler provides a default constructor with no parameters. For example, when
line 41 of Fig. 3.5 creates a GradeBook object, the default constructor is called. The default
constructor provided by the compiler creates a GradeBook object without giving any initial
values to the object’s fundamental type data members. For data members that are objects
of other classes, the default constructor implicitly calls each data member’s default con-
structor to ensure that the data member is initialized properly. This is why the string data
member courseName (in Fig. 3.5) was initialized to the empty string—the default con-
structor for class string sets the string’s value to the empty string.

In the example of Fig. 3.7, we specify a course name for a GradeBook object when the
object is created (e.g., line 47). In this case, the argument "CS101 Introduction to C++
Programming" is passed to the GradeBook object’s constructor (lines 14–18) and used to
initialize the courseName. Figure 3.7 defines a modified GradeBook class containing a con-
structor with a string parameter that receives the initial course name.

1 // Fig. 3.7: fig03_07.cpp
2 // Instantiating multiple objects of the GradeBook class and using
3 // the GradeBook constructor to specify the course name
4 // when each GradeBook object is created.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {
12 public:
13
14
15
16
17
18
19
20 // function to set the course name
21 void setCourseName(string name)
22 {
23 courseName = name; // store the course name in the object
24 } // end function setCourseName
25
26 // function to get the course name
27 string getCourseName() const

28 {

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 1 of 2.)

// constructor initializes courseName with string supplied as argument
explicit GradeBook(string name)

: courseName(name) // member initializer to initialize courseName
{

// empty body
} // end GradeBook constructor

52 Chapter 3 Introduction to Classes, Objects and Strings

Defining a Constructor
Lines 14–18 of Fig. 3.7 define a constructor for class GradeBook. The constructor has the
same name as its class, GradeBook. A constructor specifies in its parameter list the data it
requires to perform its task. When you create a new object, you place this data in the pa-
rentheses that follow the object name (as we did in lines 47–48). Line 14 indicates that
class GradeBook’s constructor has a string parameter called name. We declared this con-
structor explicit, because it takes a single parameter—this is important for subtle reasons
that you’ll learn in Section 10.13. For now, just declare all single-parameter constructors
explicit. Line 14 does not specify a return type, because constructors cannot return values
(or even void). Also, constructors cannot be declared const (because initializing an object
modifies it).

The constructor uses a member-initializer list (line 15) to initialize the courseName
data member with the value of the constructor’s parameter name. Member initializers
appear between a constructor’s parameter list and the left brace that begins the con-
structor’s body. The member initializer list is separated from the parameter list with a colon
(:). A member initializer consists of a data member’s variable name followed by paren-

29 return courseName; // return object's courseName
30 } // end function getCourseName
31
32 // display a welcome message to the GradeBook user
33 void displayMessage() const

34 {
35 // call getCourseName to get the courseName
36 cout << "Welcome to the grade book for\n" <<
37 << "!" << endl;
38 } // end function displayMessage
39 private:
40 string courseName; // course name for this GradeBook
41 }; // end class GradeBook
42
43 // function main begins program execution
44 int main()
45 {
46 // create two GradeBook objects
47
48
49
50 // display initial value of courseName for each GradeBook
51 cout << "gradeBook1 created for course: " <<
52 << "\ngradeBook2 created for course: " <<
53 << endl;
54 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 2 of 2.)

getCourseName()

GradeBook gradeBook1("CS101 Introduction to C++ Programming");
GradeBook gradeBook2("CS102 Data Structures in C++");

gradeBook1.getCourseName()
gradeBook2.getCourseName()

3.5 Initializing Objects with Constructors 53

theses containing the member’s initial value. In this example, courseName is initialized
with the value of the parameter name. If a class contains more than one data member, each
data member’s initializer is separated from the next by a comma. The member initializer
list executes before the body of the constructor executes. You can perform initialization in
the constructor’s body, but you’ll learn later in the book that it’s more efficient to do it
with member initializers, and some types of data members must be initialized this way.

Notice that both the constructor (line 14) and the setCourseName function (line 21)
use a parameter called name. You can use the same parameter names in different functions
because the parameters are local to each function—they do not interfere with one another.

Testing Class GradeBook
Lines 44–54 of Fig. 3.7 define the main function that tests class GradeBook and demon-
strates initializing GradeBook objects using a constructor. Line 47 creates and initializes
GradeBook object gradeBook1. When this line executes, the GradeBook constructor (lines
14–18) is called with the argument "CS101 Introduction to C++ Programming" to initial-
ize gradeBook1’s course name. Line 48 repeats this process for GradeBook object
gradeBook2, this time passing the argument "CS102 Data Structures in C++" to initialize
gradeBook2’s course name. Lines 51–52 use each object’s getCourseName member func-
tion to obtain the course names and show that they were indeed initialized when the ob-
jects were created. The output confirms that each GradeBook object maintains its own data
member courseName.

Ways to Provide a Default Constructor for a Class
Any constructor that takes no arguments is called a default constructor. A class can get a
default constructor in one of several ways:

1. The compiler implicitly creates a default constructor in every class that does not
have any user-defined constructors. The default constructor does not initialize the
class’s data members, but does call the default constructor for each data member
that’s an object of another class. An uninitialized variable contains an undefined
(“garbage”) value.

2. You explicitly define a constructor that takes no arguments. Such a default con-
structor will call the default constructor for each data member that’s an object of
another class and will perform additional initialization specified by you.

3. If you define any constructors with arguments, C++ will not implicitly create a default
constructor for that class. We’ll show later that C++11 allows you to force the com-
piler to create the default constructor even if you’ve defined non-default con-
structors.

For each version of class GradeBook in Fig. 3.1, Fig. 3.3 and Fig. 3.5 the compiler implic-
itly defined a default constructor.

Error-Prevention Tip 3.2
Unless no initialization of your class’s data members is necessary (almost never), provide
constructors to ensure that your class’s data members are initialized with meaningful val-
ues when each new object of your class is created.

54 Chapter 3 Introduction to Classes, Objects and Strings

Adding the Constructor to Class GradeBook’s UML Class Diagram
The UML class diagram of Fig. 3.8 models the GradeBook class of Fig. 3.7, which has a con-
structor with a name parameter of type string (represented by type String in the UML).
Like operations, the UML models constructors in the third compartment of a class in a class
diagram. To distinguish a constructor from a class’s operations, the UML places the word
“constructor” between guillemets (« and ») before the constructor’s name. By convention,
you list the class’s constructor before other operations in the third compartment.

3.6 Placing a Class in a Separate File for Reusability
One of the benefits of creating class definitions is that, when packaged properly, your
classes can be reused by other programmers. For example, you can reuse C++ Standard Li-
brary type string in any C++ program by including the header <string> (and, as you’ll
see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from
Fig. 3.7 in another program. As you learned in Chapter 2, function main begins the exe-
cution of every program, and every program must have exactly one main function. If other
programmers include the code from Fig. 3.7, they get extra “baggage”—our main func-
tion—and their programs will then have two main functions. Attempting to compile a
program with two main functions produces an error. So, placing main in the same file with
a class definition prevents that class from being reused by other programs. In this section, we
demonstrate how to make class GradeBook reusable by separating it into another file from
the main function.

Headers
Each of the previous examples in the chapter consists of a single .cpp file, also known as a
source-code file, that contains a GradeBook class definition and a main function. When
building an object-oriented C++ program, it’s customary to define reusable source code
(such as a class) in a file that by convention has a .h filename extension—known as a head-
er. Programs use #include preprocessing directives to include headers and take advantage

Software Engineering Observation 3.2
Data members can be initialized in a constructor, or their values may be set later after
the object is created. However, it’s a good software engineering practice to ensure that an
object is fully initialized before the client code invokes the object’s member functions. You
should not rely on the client code to ensure that an object gets initialized properly.

Fig. 3.8 | UML class diagram indicating that class GradeBook has a constructor with a name
parameter of UML type String.

GradeBook

– courseName : String

«constructor» + GradeBook(name : String)
+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

3.6 Placing a Class in a Separate File for Reusability 55

of reusable software components, such as type string provided in the C++ Standard Li-
brary and user-defined types like class GradeBook.

Our next example separates the code from Fig. 3.7 into two files—GradeBook.h

(Fig. 3.9) and fig03_10.cpp (Fig. 3.10). As you look at the header in Fig. 3.9, notice that
it contains only the GradeBook class definition (lines 7–38) and the headers on which the
class depends. The main function that uses class GradeBook is defined in the source-code
file fig03_10.cpp (Fig. 3.10) in lines 8–18. To help you prepare for the larger programs
you’ll encounter later in this book and in industry, we often use a separate source-code file
containing function main to test our classes (this is called a driver program). You’ll soon
learn how a source-code file with main can use the class definition found in a header to
create objects of a class.

1 // Fig. 3.9:
2 // GradeBook class definition in a separate file from main.
3 #include <iostream>
4 #include <string> // class GradeBook uses C++ standard string class
5
6 // GradeBook class definition
7 class GradeBook
8 {
9 public:

10 // constructor initializes courseName with string supplied as argument
11 explicit GradeBook(name)
12 : courseName(name) // member initializer to initialize courseName
13 {
14 // empty body
15 } // end GradeBook constructor
16
17 // function to set the course name
18 void setCourseName(name)
19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22
23 // function to get the course name
24 getCourseName() const

25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName
28
29 // display a welcome message to the GradeBook user
30 void displayMessage() const

31 {
32 // call getCourseName to get the courseName
33 << "Welcome to the grade book for\n" << getCourseName()
34 << "!" << ;
35 } // end function displayMessage
36 private:
37 courseName; // course name for this GradeBook
38 }; // end class GradeBook

Fig. 3.9 | GradeBook class definition in a separate file from main.

GradeBook.h

std::string

std::string

std::string

std::cout
std::endl

std::string

56 Chapter 3 Introduction to Classes, Objects and Strings

Use std:: with Standard Library Components in Headers
Throughout the header (Fig. 3.9), we use std:: when referring to string (lines 11, 18,
24 and 37), cout (line 33) and endl (line 34). For subtle reasons that we’ll explain in a
later chapter, headers should never contain using directives or using declarations
(Section 2.6).

Including a Header That Contains a User-Defined Class
A header such as GradeBook.h (Fig. 3.9) cannot be used as a complete program, because
it does not contain a main function. To test class GradeBook (defined in Fig. 3.9), you
must write a separate source-code file containing a main function (such as Fig. 3.10) that
instantiates and uses objects of the class.

The compiler doesn’t know what a GradeBook is because it’s a user-defined type. In fact,
the compiler doesn’t even know the classes in the C++ Standard Library. To help it under-
stand how to use a class, we must explicitly provide the compiler with the class’s definition—
that’s why, for example, to use type string, a program must include the <string> header.
This enables the compiler to determine the amount of memory that it must reserve for each
string object and ensure that a program calls a string’s member functions correctly.

To create GradeBook objects gradeBook1 and gradeBook2 in lines 11–12 of Fig. 3.10,
the compiler must know the size of a GradeBook object. While objects conceptually con-
tain data members and member functions, C++ objects actually contain only data. The
compiler creates only one copy of the class’s member functions and shares that copy among
all the class’s objects. Each object, of course, needs its own data members, because their
contents can vary among objects (such as two different BankAccount objects having two
different balances). The member-function code, however, is not modifiable, so it can be
shared among all objects of the class. Therefore, the size of an object depends on the

1 // Fig. 3.10: fig03_10.cpp
2 // Including class GradeBook from file GradeBook.h for use in main.
3 #include <iostream>
4
5 using namespace std;
6
7 // function main begins program execution
8 int main()
9 {

10 // create two GradeBook objects
11 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
12 GradeBook gradeBook2("CS102 Data Structures in C++");
13
14 // display initial value of courseName for each GradeBook
15 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
16 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
17 << endl;
18 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.10 | Including class GradeBook from file GradeBook.h for use in main.

#include "GradeBook.h" // include definition of class GradeBook

