

 Praise for
Programming the Windows Runtime by Example

 “This is a great from-the-ground-up, very complete book on building Windows
Store Apps. You’ll find it on your desk a year from now all dog-eared and marked
up from use.”

 Dave Campbell , MVP, WindowsDevNews.com

 “ Programming with Windows Runtime by Example is a must-have book for any
professional developer building apps for WinRT/Win8.1, especially in the LOB
space for modern apps on Windows 8.1. For me it is the reference I provide my
team building LOB applications for WinRT. Jeremy and John have done a great
job putting together a great reference and educational book on professional
development for the WinRT platform.”

 David J. Kelley , CTO, Microsoft MVP

 “Jeremy and John are both very much IT masters from the old guard of software
development. With countless years of bending, shaping, and influencing the
world of software development behind them both, they continue to do so as
they push forward into new and emerging technologies.

 “As with everything they do, this book also reflects their ongoing dedication and
passion for their quest to bring the reader not only the information he or she
requires, but far more beyond that, they build knowledge step-by–step, then
deliver it to the reader with cutting-edge, ninja-like precision to deliver exactly
what knowledge is needed, when it’s needed, and where it’s needed.

“ If you want to learn the Windows Runtime, then I can think of no finer book,
and no finer guides to the WinRT landscape. By the end of this book, you’ll have
the knowledge, the power, and a hefty dose of passion to go out into the new
millennium and create some of the best WinRT apps available.”

 Peter “Shawty” Shaw , LinkedIn .NET User Group manager

 “This book is an invaluable resource for budding WinRT developers. It covers the
basics to more advanced topics like MVVM. Readers will find the chapter entitled
‘Connecting to the Cloud’ especially useful in getting up to speed with Azure and
creating cloud connected apps.”

 Daniel Vaughan , President of Outcoder, Microsoft MVP,
Author of Windows Phone 8 Unleashed

 “There are books that provide reference for a development topic, and others that
you will read from cover to end. Programming the Windows Runtime by Example
by Jeremy Likness and John Garland should be your go-to guide for getting up
to speed on WinRT. Jeremy and John wrote this book with the intention of being
easy to follow and hard to forget, and they succeeded in both areas. I recommend
this book for all developers, whether new to WinRT development, or those like
me who just want to fill in the gaps on advanced topics.”

 Chris Woodruff , DeepFriedBytes.com, Microsoft MVP

The Windows Development Series grew out of the award-winning Microsoft .NET Development
Series established in 2002 to provide professional developers with the most comprehensive
and practical coverage of the latest Windows developer technologies. The original series has
been expanded to include not just .NET, but all major Windows platform technologies and tools.
It is supported and developed by the leaders and experts of Microsoft development technologies,
including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources
in this series provide a core resource of information and understanding every developer needs to
write effective applications for Windows and related Microsoft developer technologies.

“ This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert
perspective to reference and how-to. Books in this series are essential reading for those who want to
judiciously expand their knowledge and expertise.”

– JOHN MONTGOMERY, Principal Director of Program Management, Microsoft

“ This series is always where I go f irst for the best way to get up to speed on new technologies. With its
expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting
better and more relevant to the modern Windows developer.”

– CHRIS SELLS, Independent Consultant specializing in Windows, devices, and the cloud

Visit informit.com/mswinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Microsoft Windows Development Series

 Programming
the Windows
Runtime by
Example
A Comprehensive
Guide to WinRT
with Examples in
C# and XAML

 Jeremy Likness
John Garland

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

 Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

 The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

 For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2013954295

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290

 ISBN-13: 978-0-321-92797-2
 ISBN-10: 0-321-92797-4

 Text printed in the United States on recycled paper at Edwards Brothers Malloy, Lillington, North
Carolina

 First printing, June 2014

 For Doreen and all her arrows, Lizzie and all her travels,

and Gordon and all his paint.

—Jeremy Likness

 To Karen, Callie, Winnie, and Dude,

for the new adventure that is soon to begin.

— John Garland

 Contents at a Glance

 1 The New Windows Runtime 1

 2 Windows Store Apps and WinRT Components 29

 3 Layouts and Controls 81

 4 Data and Content 153

 5 Web Services and Syndication 199

 6 Tiles and Toasts 225

 7 Connecting to the Cloud 261

 8 Security 323

 9 Model-View-ViewModel (MVVM) 349

 10 Networking 379

 11 Windows Charms Integration 415

 12 Additional Windows Integration 451

 13 Devices 479

 14 Printers and Scanners 531

 15 Background Tasks 559

 16 Multimedia 589

 17 Accessibility 615

 18 Globalization and Localization 631

 19 Packaging and Deploying 649

 20 Debugging and Performance Optimization 685

 A Under the Covers 719

 B Glossary 733

 Index 749

vii

 Contents

Foreword xix
Preface xxii

1 The New Windows Runtime 1
Windows Runtime Specifics 1
Windows Store Apps 4

Example: Create a Windows Store App 5
.NET and WinRT 9

Fundamental Types 9

Mapped Types 10

Streams and Buffers 14
Desktop Applications 15

Example: Reference WinRT from a Desktop Application 15
Example: Examine Projections in a WinRT Component 20

Asynchronous Functions 24

Summary 27

2 Windows Store Apps and WinRT Components 29
Fundamentals of a Windows Store App 30

Windows Store App Templates 32

Understanding the App Manifest 45

Finding Your Package on Disk 52

Running Your App 54

 viii Contents

Application Lifecycle 61

The Navigation Helper and Suspension Manager 67
Managed WinRT Components 75

Creating a Managed WinRT Component 76

Calling Managed WinRT Components from Any Language 78
Summary 79

3 Layouts and Controls 81
The Visual Tree 83
Data-Binding 85

Dependency Properties 91

Attached Properties 94

Value Precedence 95

Property Change Notification 95
Animations 97

Example: Dynamically Apply Animations to a Control 97
The Visual State Manager 100

Example: Visual State Manager 101

Groups 103

States 105

Transitions 106
The Visual State Manager Workflow 107
Programmatic Access to Visual States 109
Custom Visual State Managers 109
Styles 111
Templates 112

Example: Using Templates 112
Layouts 115

Panel 115
Border 115
Canvas 116
Grid 116
StackPanel 117
VirtualizingPanel and VirtualizingStackPanel 118

ix Contents

WrapGrid 119
VariableSizedWrapGrid 119
ContentControl 120
ItemsControl 121
ScrollViewer 122
ViewBox 122
GridView 123
ListBox 123
ListView 124
FlipView 124
Example: Using the Viewbox and Various Layouts 125

Controls 130
Flyouts 133

Custom Controls 135
Example: Creating a Custom Control 136

Parsing XAML 140
HTML Pages 143

Example: Working with HTML and JavaScript 144
Summary 150

4 Data and Content 153
Example: Data Manipulation with the Skrape App 154
The Clipboard 154
Application Storage 159

Roaming Data 161
Containers 162
Settings 163
Composite Values 165

Storage Folders and Files 166
Storage Folders 168
Storage Files 170
Buffers and Streams 171
Path and File Helper Classes 174
Storage Query Operations 176
Pickers and Cached Files 180
Compression 187

 x Contents

Data Formats 191
Example: Working with Data Formats 192
XSLT Transformations 195

Document Data 196
Summary 198

5 Web Services and Syndication 199
SOAP 200
REST 209
OData Client 217
Syndication 219
Summary 223

6 Tiles and Toasts 225
Tiles 226

Default Tiles 227
Live Tiles 229
Cycling Tile Notifications 234
Secondary Tiles 236

Badges 239
Periodic Notifications 242
Toasts 242

Toasts in Desktop Applications 248
Push Notifications 249

Registering to Receive Push Notifications 251
Sending Push Notifications 253

Summary 259

7 Connecting to the Cloud 261
Windows Azure Mobile Services 262

Example: Managing a Shared Group of Subscribers 267
Connecting an App to a Mobile Services Instance 267
Authentication 269
Data Storage 274
Custom APIs 289
Integrated Push Notification Support 291

xi Contents

Scheduled Tasks 297
Mobile Services Deployment Tiers 298

Live Connect 301
Getting Started 302
The Example App 304
Authentication 304
Working with Profile Information 308
Working with Contacts 310
Working with Calendars and Events 311
Working with OneDrive 315

Summary 321

8 Security 323
Authentication 324

Multistep Authentication (Google) 330
Unlocking the Password Vault 331

Encryption and Signing 333
The Data Protection Provider 333
Symmetrical Encryption 337
Verification 343
Asymmetric Algorithms 345

Summary 347

9 Model-View-ViewModel (MVVM) 349
UI Design Patterns 350

The Model 351
The View 352
Model-View-Controller (MVC) 353
Model-View-Presenter (MVP) 354
Model-View-ViewModel (MVVM) 355

The ViewModel Decomposed 356
Common MVVM Misperceptions 362
Benefits of MVVM 364
Common MVVM Solutions 367

Design-Time Data 367
Accessing the UI Thread 369

 xii Contents

Commands 371
Handling Dialogs 371
Selection Lists 371
Filtered Lists 373
Validation 375

Summary 377

10 Networking 379
Web and HTTP 379
HomeGroup 382
Connectivity and Data Plans 384
Sockets 389

WebSockets 389
UDP and TCP Sockets 392

Proximity (Near Field Communications) 397
NFC-Only Scenarios 397
Tap-to-Connect Scenarios 403

Background Transfers 408

Summary 412

11 Windows Charms Integration 415
Displaying App Settings 417

The Settings Example 418
Adding Settings Entries 418

Sharing 421
The Share Source Example 423
Creating a Share Source App 424
The Share Target Example 433
Creating a Share Target App 434
Debugging Share Target Apps 441

Using Play To 442
The Play To Example 443
Creating a Play To Source App 444
Creating a Play To Target App 446

Summary 448

xiii Contents

12 Additional Windows Integration 451
Integrating with the File and Contact Pickers 452

The Example App 453
File Open Picker 454
File Save Picker 458
Contact Picker 460

Application Activation Integration 462
The Example App 463
File Activation 463
Protocol Activation 467
Account Picture Provider 470
AutoPlay 471

Working with Contacts and Appointments 473
The Example App 474
Contacts 474
Appointments 476

Summary 478

13 Devices 479
Working with Input Devices 480

The Example App 480
Identifying Connected Input Devices 481
Pointer, Manipulation, and Gesture Events 484
Keyboard Input 495

Sensor Input 498
The Example App 498
Geolocation 502
Geofencing 510
Motion and Orientation Sensors 517

Summary 529

14 Printers and Scanners 531
Working with Printers 532

The Example App 532
Getting Started 533

 xiv Contents

Configuring a Print Task 534
Providing Printing Content 542

Working with Scanners 547
The Example App 547
Determining Scanner Availability 548
Working with Scan Sources 549
Previewing 550
Scanning 551
Scanner Settings 552

Summary 556

15 Background Tasks 559
The Thread Pool 560
Uploads and Downloads 562
Audio 563
Lock Screen Tasks 570

Lock Screen Capabilities 570
The Background Task 573
Listing Background Tasks 576
Timer 578
Conditions 578
Debugging Background Tasks 580

Raw Push Notifications 581
Control Channel 585
System Events 587
Summary 588

16 Multimedia 589
Playing Multimedia Content 590

The Example App 590
Getting Started 591
Controlling Playback 592
Appearance 595
Audio Settings 596
Media Information 597
Markers 597

xv Contents

Acquiring Audio and Video 598
The Example App 599
Declaring Application Capabilities 599
Using CameraCaptureUI 600
Using MediaCapture 604

Text-to-Speech Support 610
The Example App 611
Using the SpeechSynthesizer 611

Summary 613

17 Accessibility 615
Requested Theme 616

High Contrast 618
Keyboard Support 620
Automation Properties 622
Testing with Narrator 623
Automation and Lists 624
Live Settings 625
Automation Peers 626
Accessibility Checker 627
Summary 629

18 Globalization and Localization 631
Design Considerations 632
Default Language 633
Configuring Preferred Languages 635
Resource Qualification and Matching 637
Localizing XAML Elements 639
Formatting Dates, Numbers, and Currencies for Locale 642
MVVM and Localization 643
Multilingual Toolkit 644
Summary 648

 xvi Contents

19 Packaging and Deploying 649
Packaging Your App 650

Creating an App Package 650
App Package and App Bundle Contents 654
Package Identifier 655

Deploying Your App 657
Publishing Your App in the Windows Store 657
Other Deployment Options 665

Making Money with Your App in the Windows Store 667
The Example App 668
Pricing Your App in the Windows Store 669
Trial Mode Apps 670
In-App Purchases 675
Including Advertisements 678

Summary 683

20 Debugging and Performance Optimization 685
Understanding the Debugger 686

Native, Managed, and Script Debuggers 686
Just My Code 688
Edit and Continue 690
Just in Time Debugging 691
How to Launch the Debugger 691
Program Databases 692
Debug Windows 693
Managing Exceptions 694

Logging and Tracing 696
Profiling and Performance Analysis 702

Performance Tips 704
CPU Sampling 706
XAML UI Responsiveness 709
Energy Consumption 710

Code Analysis 712
Summary 717

xvii Contents

A Under the Covers 719
Fundamental WinRT Concepts 719
Namespaces 720
Base Types 720
Primitives 720
Classes and Class Methods 721
Structures 722
Generics 722
Null 723
Enumerations 723
Interfaces 723
Properties 723
Delegates 724
Events 724
Arrays 725
WinRT Internals 725

 B Glossary 733

 Index 749

This page intentionally left blank

xix

Foreword

The concept of an app has changed dramatically over time, and more
increasingly so in the past eight years. The approachability for the masses
to have super computers in their pockets has led to the rapid adoption of
mobile apps at the fi ngertips of every user—not just those in cubicles all
day long. You can’t sit in public transit, walk down a street, or even enjoy
a nice meal without looking around and seeing the glow from a screen
of some sort on someone’s face. Everyone is a part of the app ecosystem
now. Whether it is a mobile phone, music device, e-reader, watch, or even
glasses, apps are a part of our lives. People desire them to make their lives
and jobs more productive or just to have fun. As a software developer, it
is hard to ignore this surge in opportunity and the desire to capitalize on
this ecosystem.

Microsoft technologies present a large opportunity to software develop-
ers to reach a vast ecosystem of traditional users who have used Windows
technologies in their personal, educational, and professional lives. These
users seek out new ways to accomplish tasks and have fun on their technol-
ogy devices. Microsoft has computing devices across the various screens
presented in our lives in our hands, on our desks, and in our living rooms.
All these represent opportunities for you, the developer, to extend your
reach and ideas into the world.

As this evolution of mobility, multiple screens, and wearables has
increased, so has technology. Microsoft technologies have evolved as well

 xx Foreword

on the client app areas. Over time Microsoft has delivered various ways
to write client applications through standard C++, MFC, Windows Forms,
Windows Presentation Foundation (WPF), Silverlight, and HTML. Putting
developers on a better path for development, Microsoft introduced the
Windows Runtime (WinRT). This technology and principles enable devel-
opers to have a single platform to target that extends their potential across
the personal, professional, and entertainment endpoints we have in our
lives. WinRT enables developers to choose how they can be most produc-
tive using their skills in C++, C#, Visual Basic, or JavaScript. Alongside
the language of choice, developers have a native UI framework in XAML
they can use for the best client app experience on Windows. XAML is
everywhere now in Windows, from system shell UI to system apps to
key experiences delivered from Microsoft, such as Microsoft Offi ce. When
developing an app in C# and XAML, you’ll be joining other successful
developers in the world and can tap into that ecosystem of knowledge,
experience, and examples.

Software is an art. Just like any art project, approaching software devel-
opment requires thought into the necessary tools, philosophies, and prin-
ciples you will use to create your app. I still remember one of my earliest
“professional” software development jobs, sitting in a meeting listening to
the customer describe all these (what was at the time) high-tech require-
ments of their app, all needing to be done in Internet Explorer 3. I scribbled
notes as fast as I could while my dev lead at the time, all too quickly I
thought, was busy nodding his head in acceptance of the requirements. As
we walked out of the meeting, I expressed my concern about the require-
ments and available technology at the time. He smiled and shrugged like
it was no problem stating, “No worries Tim, we just need the right tools.”

One of the key tools is a good guide and mentor. In my early days, for
me that was books just like this one you have now. To this day I still prefer
books on my shelf when learning new technology concepts. I’ve had the
pleasure of working with Jeremy Likeness over the years in the XAML
ecosystem, and I can attest to his expertise in building real-world apps
using these technologies. In Programming the Windows Runtime by Example,
Jeremy and John provide these key tools for any software developer to
understand the fundamentals of the Windows Runtime and XAML, and be

xxi Foreword

successful quickly. This book doesn’t try to only focus on singular concepts
but also provides an end-to-end perspective on building an app in WinRT.
Jeremy and John know that your scenarios are connected ones and deal
with web services, data, security, and integration. The book will walk you
through understanding how the pieces fi t together in WinRT while still pro-
viding you the knowledge and tools to be productive at the core concepts
of working with C# and XAML in the Windows Runtime. John and Jeremy
describe philosophies and different approaches to using WinRT, empow-
ering you with knowledge to make the best decisions for your app. This
knowledge will enable you to write the best apps for Windows, Windows
Phone, Xbox, and whatever future Microsoft has in store for WinRT areas.

Like any artist, tools are essential. This book is one of those essential
tools for Windows developers and will help you complete your software
goals sooner than without it! To this day, my bookshelf is fi lled with books
just like this one that I refer to often. Even as your experience grows, you’ll
fi nd yourself referring back to this book for knowledge when developing,
just like I did.

—Tim Heuer, Principal Program Manager Lead, XAML Platform,
Microsoft Corporation

 Preface

 In 2011 I heard the fi rst rumors about Windows 8 and knew immediately
what my next book would be about. Unlike Designing Silverlight Business
Applications that captured years of experience writing Line of Business
(LOB) apps in Silverlight, this book would be an introduction to an entirely
new platform. My goal was to take what I knew and loved about Silverlight,
fi nd its similarities in the new platform, and then highlight what I felt were
some amazing developer experiences. It was important to get to market
fast, so through several iterations of the Windows 8 releases (including
changes to terminology) that required substantial rewrites of content and
a rapid release cycle, I managed to release Building Windows 8 Apps with C#
and XAML as Windows 8 was revealed to the world.

 By necessity, this book introduced developers to the new platform but
didn’t dig into best practices (there were none yet) or get very deep (there
simply wasn’t time). I vowed to release another book that would fi ll in
the missing pieces and provide a comprehensive overview of the entire
Windows Runtime. Because anyone can read the documentation and refer-
ence the API, my intent with this book was to make it example-driven and
provide thousands of lines of code for you to integrate and use to kick-start
your own Windows Store apps.

 I was relieved at the thought of not rewriting most of the book three
times, as I had to do with the fi rst one, but Microsoft once again proved too
fast for me. What sounded at fi rst like a relatively minor release (Windows

xxiii Preface

8.1) managed to integrate enough changes to warrant revisiting every one
of the ten chapters I had completed to date. With an eye on //BUILD in
2014, I reached out to Windows Store expert and Wintellect colleague John
Garland to help me fi nish the remaining chapters. John and I have worked
on several projects together (and incidentally two of them won awards for
their groundbreaking use of XAML for touch and mobile), and he helped
write pilot code for several of our customers who were early Windows 8
adopters, so I knew he was the right person to bring a fresh set of exam-
ple projects and content-rich chapters. As a bonus, he is also well-versed
in cloud technology and brought this fi rsthand knowledge to bear in the
chapters that deal with connecting to Azure.

 In Windows 8.1 and the Windows Runtime, Microsoft has successfully
demonstrated their commitment to the development ecosystem by provid-
ing us with a rich, vast array of APIs, SDKs, and tools for building incred-
ible apps that run on a variety of devices. I was absolutely amazed when
I discovered how easy it was to connect to a web cam, open a web socket,
download fi les in the background, or profi le my app to fi nd “hot spots”
that I could target to improve performance using WinRT. I was delighted
to fi nd that Portable Class Libraries (PCL), something I evangelized heavy
as a solution to target multiple platforms in the Silverlight and WPF days,
was evolving to embrace Windows Store apps. The fi rst-class support for
mature design patterns like MVVM makes it easier than ever to write sta-
ble, reusable code that runs on a variety of target devices.

 In Building Windows 8 Apps with C# and XAML, I shared my intent to
guide you through the process of learning the new territory quickly to
begin building amazing new applications using skills you already had
with C# and XAML. In this book, it is our goal to take you beyond that
initial exposure and help you dive deep into all the various APIs WinRT
makes available. Our goal was to hit virtually any scenario possible using
the Windows Runtime—not just provide code snippets, but full projects
you can use to experiment, learn, and use as a starting point for your own
apps. The most rewarding feedback I received from my fi rst book was
hearing from authors sharing with me their excitement having their fi rst
Windows 8 apps approved for the Store. I hope this book not only helps
take those apps to the next level, nor simply inspires your imagination, but

 xxiv Preface

empowers you to implement solutions you only dreamed possible using
this incredible new platform. I know I speak for both John and myself
when I say we look forward to hearing back from you about what you
were able to achieve with Visual Studio, Windows 8.1, and this reference
on your desk.

 What This Book Is About

 The purpose of this book is to explain how to write applications—mainly
Windows Store apps—that are based on the Windows Runtime. The intent
is to explore every available API, exposing you to possibilities across all
areas and diving deep into major areas that are likely common to most
apps that will be built. Instead of a traditional reference guide that shares
API details and code snippets, this book includes more than 80 sample
projects. These projects provide a “by example” approach to learning the
various APIs; and the text either walks through how they were built, or
breaks apart the code step-by-step to make it easy to understand and use
as a template for your own projects.

 This book is not an introduction to Windows 8.1. We assume you
have some experience working with C# and XAML and are familiar with
Windows Store apps. We also assume that you are at least familiar with the
concept of design patterns and the notion of decoupled code. Both of these
ideas have been core to the success of the applications we’ve helped build
and will be used as foundations for the concepts presented in this book.

 Whether you’re a Windows 8.1 developer looking to improve an exist-
ing app, or an experienced client technologies developer transitioning to
the Windows Runtime for the fi rst time, this book will give you the guid-
ance, proven patterns and practices, and example projects you’ll need to
build functional apps that run well across the myriad Windows 8.1 devices.

 This version of the book specifi cally addresses Windows 8.1 using Visual
Studio 2013. At this writing, the Windows 8.1 Update was announced at
//BUILD, but fortunately the changes did not impact development as
much as use of the OS and deployment options. During the course of this
book, several changes have occurred that may not be refl ected throughout:
Visual Studio 2013 Update 2 was released, the name SkyDrive was changed

xxv Preface

to OneDrive, Windows Azure became Microsoft Azure, and Azure Mobile
Services are constantly being revised.

 Where to Access the Source Code

 The source code for this book is open source and will be maintained and
updated as needed to match any future revisions that may come out. You
can download the code samples from the companion website:
 winrtexamples.codeplex.com .

 How to Use This Book

 The aim of this book is to enable you to discover the appropriate APIs to
build your Windows Store apps. Each chapter is designed to help you dis-
cover what features are available in that area of the framework and how
they are applied through example projects. Code examples are provided
that demonstrate the features for programming them using C# and XAML.
Although different chapters may relate to various parts of a comprehen-
sive project, the individual samples are designed to stand on their own.

 Each chapter is similarly structured. The chapters begin with an intro-
duction to a topic and an inventory of the capabilities that topic provides.
This is followed by explanations of areas of the framework and runtime
and a walkthrough of the target APIs. The code samples are explained in
detail, either as a walkthrough “lab” or by analyzing the existing sample,
and the topic is summarized to highlight the specifi c information that is
most important for you to consider.

 I suggest you start by reading the book from start to fi nish, regardless
of your existing situation. Inexperienced developers will fi nd their under-
standing grows as they read each chapter and concepts are introduced,
reinforced, and tied together. Experienced developers will gain insights
into areas they might not have considered or had to deal with in the past,
or simply didn’t factor into their software lifecycles. Once you’ve read the
book in its entirety, you will then be able to keep it as a reference guide
and refer to specifi c chapters any time you require clarifi cation about a
particular topic.

Acknowledgments

 Jeremy Likness: Although this is my third book through Pearson and
fourth full book I’ve authored, writing a good book still depends on a solid
team. I continue to be grateful for my superhuman Editor, Joan Murray,
who has been patient and understanding, encouraging, and continuously
provided her support and guidance throughout the process. Once again,
Eleanor Bru braved working with me on this very ambitious project and,
like Joan, was very patient and understanding while keeping me honest
and on target. I can’t thank Lori Lyons and the production team (including
Krista Hansing and Debbie Williams) enough for taking my rambling and
helping turn it into coherent prose.

 The content of this book was amazingly enriched by our thorough and
passionate technical editors. Thank you, Harry Pierson and Christophe
Nasarre, for your incredible attention to detail. If anything was missed, I’ll
take the blame because Harry and Christophe ran every example, pored
over every word, and provided me with volumes of suggestions and feed-
back that helped shape the book to its present form. It is always a pleasure
to work with technical editors who bring strong technical insights to the
table and help keep me honest when I want to take a shortcut and leave a
thread spinning where it shouldn’t.

 Many thanks to my boss and friend, Steve Porter, for letting me devote a
large chunk of my time to a project that made me disappear for a few hours
every day. Thanks to Barbara Keihm for her support and encouragement,

xxvii Acknowledgments

to Todd Fine for always recognizing our hard work and being one of the
fi rst to pre-order copies whenever they are available, and Bethany Vananda
and Sara Faatz for working tirelessly to help spread the word and share
what we’re doing.

 A special note goes to Dave Baskin, Dave Black, Josh Carroll, Aaron
Carta, Phil Denoncourt, Dave Frommer, James Katic, Edward Kim, Wes
McCammon, and Dan Sloan. This team worked with me on a major project
that has lasted longer than the writing of this book and always understood
when I had to turn down dinner or other outings so I could get back to my
hotel and write. OK, who am I kidding—sometimes I managed to break
away.

 My wife and daughter have waited patiently through several books
now, so they know the routine. Doreen is always quick to remind me when
I need to push away from the dinner table and get back to writing, but
Lizzie always noticed when I’d been writing too much and was always
ready to have a movie date so I could unwind.

 Finally, last but certainly not least, thank you! I appreciate my readers—
and of course it is for you this was written—so it is my sincere hope you
receive tremendous value from these pages.

 John Garland: Like Jeremy, I’d very much like to thank Joan Murray,
Eleanor Bru, and Lori Lyons, as well as everyone else at Pearson for their
unwavering help and guidance throughout this project. Many thanks go
to Harry Pierson and Christophe Nasarre for their invaluable help and
insight throughout the technical review process—especially for helping to
me fi nd the right mix of code and prose, which invariably was along the
lines of less prose and more code.

 I’d like to very much thank my friends and colleagues at Wintellect. It
is truly a privilege for me to count myself in your company and your pas-
sion for your craft is absolutely contagious. Many thanks to Steve Porter
and Todd Fine for the continued opportunity, and to Bethany Vananda for
all the help in putting my work in the best possible light. Much gratitude
is owed to Jeff Richter, Jeff Prosise, and John Robbins for their insights into
the writing process and for providing the Wintellect stage that I am fortu-
nate to be able to stand on.

 xxviii Acknowledgments

 Families often have to take a back seat when these projects are in high
gear, and mine was no exception. My wife Karen has been more than under-
standing and forgiving of many late nights, lost weekends, and grumpy
mornings. My daughter Callie continues to be a walking smile that forces
me to keep things in perspective, despite our having had to skip a few of
our priceless Daddy-Callie days. Now that the book is done and the snow
has melted, we can get back to bike rides, games of tag, and swing-pushes
in the backyard.

 I owe many thanks to the folks on and involved with the Zumo (Azure
Mobile Services) team, including Kirill Gavrylyuk, Yavor Georgiev,
Merwan Hade, and Heinrich Nielsen, among several others. Your insights
into the Mobile Services inner workings, and prompt and helpful replies
to my inquiries, have been invaluable both for the content included in this
book as well as in my professional endeavors.

 Finally, I’d like to thank Jeremy for asking me to come along not only on
this ride as his co-author, but also as a technical editor on two of his previ-
ous books. The experiences, insights, and most importantly, the friendship,
have been both personally and professionally invaluable.

xxix

About the Authors

 Jeremy Likness is a multi-year Microsoft MVP for XAML technologies. A
Principal Consultant for Wintellect with 20 years of experience developing
enterprise applications, he has worked with software in multiple verticals
ranging from insurance, health and wellness, supply chain management,
and mobility. His primary focus for the past decade has been building
highly scalable web-based solutions using the Microsoft technology stack
with client stacks ranging from WPF, Silverlight, and Windows 8.1 to
HTML5 and JavaScript. Jeremy has been building enterprise line of busi-
ness applications with Silverlight since version 2.0, and he started writing
Windows 8 apps when the Consumer Preview was released in 2011.

 Prior to Wintellect, Jeremy was Director of Information Technology
and served as development manager and architect for AirWatch, where
he helped the company grow and solidify its position as one of the lead-
ing wireless technology solution providers in the United States prior to
their acquisition by VMware. A fl uent Spanish speaker, Jeremy served as
Director of Information Technology for HolaDoctor (formerly Dr. Tango),
where he architected a multilingual content management system for the
company’s Hispanic-focused online diet program. Jeremy accepted his role
there after serving as Development Manager for Manhattan Associates, an
Atlanta-based software company that provides supply chain management
solutions.

 xxx About the Authors

 John Garland is a Principal Consultant for Wintellect with more than 15
years of experience developing software solutions. Prior to consulting, he
spent much of his career working on high-performance video and statisti-
cal analysis tools for premier sports teams, with an emphasis on the NFL,
the NBA, and Division 1 NCAA football and basketball. His consulting cli-
ents range from small businesses to Fortune-500 companies, and his work
has been featured at Microsoft conference keynotes and sessions.

 John is a Microsoft Client Development MVP, as well as a member
of the Windows Azure Insiders and Windows Azure Mobile Services
Advisory Board. He lives in New Hampshire with his wife and daugh-
ter, where he is an active speaker and participant in the New England
software development community. He is a graduate of the University
of Florida with a Bachelor’s degree in Computer Engineering and holds
Microsoft Certifi cations spanning Windows, Silverlight, Windows Phone,
and Windows Azure. John is the author of the ebook Windows Store Apps
Succinctly (Syncfusion, 2013).

1

1

 1
 The New Windows Runtime

 The Windows Runtime (WinRT) provides developers with an
object-oriented, language-independent application programming

interface (API) for creating applications that run on the Windows 8.1,
Windows RT, and Windows Server 2012 and later operating systems. It
is based on existing technologies such as the .NET Framework and the
decades-old Common Object Model (COM) specifi cation. Microsoft used
the best parts of these existing technologies to create something better.
Instead of using the .NET Framework to execute code, WinRT is an unman-
aged object-oriented runtime that supports multiple development lan-
guages. Managed developers can use WinRT from the .NET Framework,
thanks to an updated version of the Common Language Runtime (CLR)
that interoperates seamlessly with the WinRT APIs.

Windows Runtime Specifi cs

 The Windows Runtime runs on three fundamental architectures: the
Intel-based x86 (32-bit) and x64 (64-bit), and the 32-bit ARM. The Intel-
based architecture is the most common, and the majority of modern
Windows laptops and desktops are based on it. These devices are capable
of running Windows 8.1, the latest version of the Windows operating sys-
tem. Windows 8.1 can run programs from previous versions of Windows
(including Windows 7, Windows Vista, and Windows XP).

 2 CHAPTER 1: The New Windows Runtime

 The ARM-based chip is designed to allow fewer transistors in the
microprocessor, resulting in lower power usage and longer battery life on
smaller devices that generate less heat. This has made it popular for use in
smaller devices such as tablets and smartphones. To address the growing
popularity of this chip, Microsoft created the Windows RT operating sys-
tem. This is a version of Windows 8.1 that targets the ARM architecture but
will not run programs built for previous versions of Windows (although
Microsoft has ported some popular software, including Microsoft Offi ce,
to the platform). It is available only preinstalled on new PCs or tablets.
Although the ARM architecture allows for incredibly thin form factors
that produce little to no heat, Intel has begun manufacturing a low-power
version of its x86 chips, codenamed Atom, that can run Windows 8.1 and
retain backward compatibility.

 TIP

 The Windows Runtime terminology is often a source of confusion.
The Windows Runtime is abbreviated as WinRT and refers to the
underlying runtime that powers Windows Store apps and desktop ap-
plications. Windows RT is the name of the Windows 8.1 operating
system version designed specifi cally for ARM chipsets. Windows
RT is a target platform, whereas Windows Runtime (WinRT) is the
framework this book discusses that runs on all the target platforms.

 Why should you care about WinRT? Unlike the .NET Framework,
which runs on top of an underlying operating system, WinRT is part of
the native operating system itself. It exposes a set of native APIs that not
only provides direct access to components of the operating system, but
also evolves and is built as part of the operating system. This gives you
access to native APIs that developers working on both native and man-
aged platforms can immediately consume.

 WinRT is available only to programs written for Windows 8.1, Windows
RT, and Windows Server 2012. You must have a Windows 8.1 or later
machine to develop applications that use WinRT, and those applications

3 Windows Runtime Specifics

must target Windows 8.1 or Windows RT machines. You can develop two
types of applications that use WinRT: desktop applications and Windows
Store apps. Desktop applications can target only Windows 8.1 machines
and are not supported by Windows RT devices. Windows Store apps are
supported by both Windows 8.1 and Windows RT. Table 1.1 summarizes
these restrictions.

 TABLE 1.1 Windows Runtime Support

Application Type
Windows 8.1
Targets

Windows RT
Targets

 Windows Store app x86 (32-bit), x64
(64-bit)

 ARM (32-bit)

 Desktop application x86 (32-bit), x64
(64-bit)

 None

 A powerful benefi t of developing WinRT applications is that they
can be written in a variety of languages because of the object-oriented and
language-independent nature of WinRT. The same APIs are exposed to
every supported language and are supported as native constructs of those
languages. In addition to C# (the focus of this book), the runtime currently
supports VB.Net, C++ (a special version of C++ that includes component
extensions to simplify writing applications that interact with the WinRT),
and JavaScript. JavaScript relies on HTML markup and a browser host
to render content, but the other language options all rely on Extensible
Application Markup Language (XAML) for the user interface (UI). It is also
possible to use DirectX (including Direct2D and Direct3D) in addition to
XAML. Table 1.2 provides a brief overview of the various language options
and their implementation. You also can create custom WinRT components
to add APIs beyond what the operating system exposes. You cannot cre-
ate custom WinRT components using the JavaScript language option, and
custom components are not available to desktop applications.

 4 CHAPTER 1: The New Windows Runtime

 TABLE 1.2 WinRT Language Options

Language Runtime
Rendering
Engine

WinRT
Components

 C++ N/A (native
code)–requires
specific builds
for x86, x64,
and ARM

 XAML, DirectX Yes

 C# CLR XAML, DirectX Yes

 JavaScript Chakra
(JavaScript
runtime)

 Trident (HTML
browser)

 No

 VB.NET CLR XAML, DirectX Yes

 Custom WinRT components can be used only from Windows Store
apps. Every Windows Store app is actually a WinRT component itself.

 Windows Store Apps

 Windows Store apps are unique to Windows 8.1, Windows RT, and
Windows Server 2012. They run in a single full-screen window without
Chrome or in a smaller snapped view side by side with another Windows
Store app. They are specifi cally designed to support different layouts and
views (such as portrait and landscape orientations) out of the box and
provide fi rst-class support for various forms of input, including stylus
and touch. Windows Store apps enable you to engage your users through
unique features such as tiles, contracts, and cloud services.

 Creating a Windows Store app is simple. Visual Studio 2013 provides
several templates for the task. The templates address various forms of
navigation, including hierarchical and fl at navigation, as well as a blank
template to start your app from scratch. The templates also have built-in
features such as commonly used value converters and classes that facilitate
use of the Model-View-ViewModel (MVVM) pattern.

5 Windows Store Apps

 The MVVM pattern appears throughout the examples in this book. It
is a special pattern that takes advantage of the data-binding features of
Windows Store apps. The model refers to the data and functionality of the
app, and the view references the user interface as commonly described by
XAML in Windows Store apps. The viewmodel is a special class that main-
tains state and encapsulates presentation logic. You learn more about the
parts of the MVVM pattern as the book breaks down the sample app.

 Example: Create a Windows Store App
 To supplement this book, you can download dozens of example projects
that illustrate the Windows Runtime. The solution is available online at
 http://winrtexamples.codeplex.com/ , organized by chapter. The fi rst
chapter contains a simple “Hello, World” application (the project is called
 HelloWorldGridApp) that demonstrates one of the default templates for
creating a Windows Store app. Figure 1.1 illustrates the Add New Project
dialog box for a Windows Store app. The template is under the Visual C#
menu when you select Windows Store . This example uses the Grid App
template.

 FIGURE 1.1 The Grid App template for a new Windows Store app

http://winrtexamples.codeplex.com/

 6 CHAPTER 1: The New Windows Runtime

 The resulting application is fully functional and contains groups of data
with subsets of items. The navigation provides the capability to inspect
data at the group level, drill into a specifi c group, and view the details of
a specifi c item. A navigation engine that can persist state is built into the
template, along with a base Model-View-ViewModel (MVVM) implemen-
tation. The rest of this book makes extensive use of this pattern (Chapter
 9 , “Model-View-ViewModel [MVVM],” covers it in more detail). The tem-
plate itself provides several parts you can use to build your own app. You
learn more about how to use these parts in Chapter 2 , “Windows Store
Apps and WinRT Components,” which covers the templates in more detail.
This is a high-level overview of the key components the template provides.

 TIP

 If you are creating your own projects, you might notice that they do
not exactly match the sample code provided with the book. This is
because the sample projects use a technique to share common code
and assets. The Common solution folder contains assembly settings
that all projects share. To use the CommonAssemblyInfo.cs attributes in
one of your projects, the file should be added using Add as Link from
the Add Item dialog box (instead of using the default Add option).
This applies to assets for the Windows Store apps as well. This tech-
nique enables you to change common items in one place without
having to update each individual project, and it is a good practice to
follow for your own applications.

 The main application is launched through the App class with code in the
 App.xaml.cs code-behind fi le. Think of that as your “main program” loop.
The OnLaunched method is called when the app is launched (this can hap-
pen in several ways, ranging from tapping on a tile to invoking search). A
 Frame hosts the navigation of the application. The SuspensionManager class
saves and restores state when the app is paused and resumed. As a default,
the app navigates to the GroupedItemsPage , which shows you a list of both
groups and items that are available.

 rootFrame.Navigate(typeof(GroupedItemsPage))

7 Windows Store Apps

 The pages of the app include the GroupItemsPage (all groups and items),
the GroupDetailPage (all items for a single group), and the ItemDetailPage
(individual item). All are designed to help the user navigate through the
“model” that is exposed through the SampleDataSource class in the DataModel
folder. This class generates several groups that contain items with images
(the default shades of gray provided in the Assets folder).

 Open GroupDetailPage.xaml.cs and look at the code-behind. The control
is based on the Page class, which a Frame can use for navigation. The page
uses the DefaultViewModel viewmodel to synchronize state (notice how it
hosts the current group and the items for the group), handle presenta-
tion logic, and act as an arbiter between the rest of the application and the
XAML view.

 The NavigationHelper class provides a LoadState method. This method
takes either a parameter passed through navigation or a parameter that
was saved when the app was suspended and then uses that to construct the
view. This provides consistent behavior, whether navigating to the page or
returning it when you resume the app. The parameter references the group
passed (or saved) for the page; then the group and its corresponding list
of items are assigned to the viewmodel. You learn more about this helper
in Chapter 2 .

 var group = await SampleDataSource
 .GetGroup((String)navigationParameter);
 this.DefaultViewModel["Group"] = group;
 this.DefaultViewModel["Items"] = group.Items;

 When an individual item is selected, the identifi er is passed to the Frame
to navigate to the detail page.

 var itemId = ((SampleDataItem)e.ClickedItem).UniqueId;
 this.Frame.Navigate(typeof(ItemDetailPage), itemId);

 The bulk of the presentation logic is encapsulated in the underlying
viewmodel. For example, the OnNavigatedTo method of the page is overrid-
den to preserve the navigation request in a “back stack” that can be used
to allow backward and forward navigation in the app (this is referred to
as the journal). It preserves the navigation parameter and then calls the
method on the derived class to LoadState , as shown earlier. It also uses the

 8 CHAPTER 1: The New Windows Runtime

 SuspensionManager to save the state to disk when the user navigates away
from the page. This preserves the history and restores it when the user
returns to the app after it has been suspended.

 The XAML view itself also handles layout changes (such as changing
the orientation of the page or snapping it). Figure 1.2 shows a general over-
view of how the template works and its relation to the MVVM pattern.

 FIGURE 1.2 The sample template and the MVVM pattern

 The built-in templates have many parts that you won’t always use. The
next several chapters provide more details about how the view, viewmodel,
and application model work together to provide you with the tools you
need to build apps using WinRT. Although WinRT provides its own set of
APIs, understanding how WinRT interoperates with the .NET Framework
is important.

9 .NET and WinRT

 .NET and WinRT

 You might have noticed that the sample app uses C# and references .NET
types. When you program Windows Store apps using C#, you interact
with both the Windows Runtime and a special .NET Framework 4.5 pro-
fi le. The profi le enables you to create both Windows Runtime components
with managed code (only Windows Store apps can consume these com-
ponents) and Windows Store apps. This profi le provides a set of reference
assemblies that expose only the relevant types and members allowed to
be consumed by Windows Store apps. It removes features from the .NET
Framework API that exist in the Windows Runtime and provides direct
references to the full set of WinRT APIs available to Windows Store apps.

 The .NET Framework 4.5 for Windows Store apps is selected for you
when you indicate that you want to build a Windows Runtime component
or a Windows Store app using C#. It is important to understand how it is
implemented because it uses a combination of type mapping, language
projection, compiler-specifi c features, and CLR enhancements to create the
interoperability between the .NET Framework and the Windows Runtime.
Although most of the functionality is handled “behind the scenes,” you
should understand some nuances to avoid side effects or unwanted errors
in your applications. For example, although you might reference .NET
types in your code, some magic is happening behind the scenes.

 Fundamental Types
 Fundamental types from the Windows Runtime appear in Visual Studio
and source code as their .NET equivalents. For example, the metadata
information for a 4-byte integer in WinRT is coded as ELEMENT_TYPE_I4 .
When you are developing in the .NET Framework, it appears as the famil-
iar System.Int32 . This is done automatically, and you have no way to refer-
ence an underlying type directly from your source code. When you use an
alias for a common type such as int , Visual Studio automatically maps that
as System.Int32 , and the compiler automatically emits the ELEMENT_TYPE_I4
metadata.

 10 CHAPTER 1: The New Windows Runtime

 Note that no support for null strings exists in the Windows Runtime.
If you attempt to pass a null string to a WinRT component, you receive
an ArgumentNullException . An empty string should be represented using
 String.Empty .

 Mapped Types
 A number of types appear as one type in the Visual Studio but are
generated as another type by the compiler. Table 1.3 lists these types and
their maps.

 TABLE 1.3 Mapped Types Between the .NET Framework and WinRT

.NET Type WinRT Type Notes

 System:
 AttributeUsage

 Windows.Foundation.Metadata:

 AttributeUsage

 System:
 AttributeTargets

 Windows.Foundation.Metadata:
 AttributeTargets

 System:
 DateTimeOffset

 Windows.Foundation:
 DateTime

 1

 System:
 EventHandler<T>

 Windows.Foundation:
 EventHandler<T>

 2

 System.Runtime.
 InteropServices.
 WindowsRuntime:
 EventRegistrationToken

 Windows.Foundation:
 EventRegistrationToken

 2

 System:
 Exception

 Windows.Foundation:
 HResult

 3

 System:
 Nullable<T>

 Windows.Foundation:
 IReference<T>

 4

 System:
 TimeSpan

 Windows.Foundation:
 TimeSpan

 System:
 Uri

 Windows.Foundation:
 Uri

 5

 System:
 IDisposable

 Windows.Foundation:
 IClosable

 6

11 .NET and WinRT

.NET Type WinRT Type Notes

 System.Collections.
 Generic:
 IEnumerable<T>

 Windows.Foundation.Collections:
 IIterable<T>

 System.Collections.
 Generic:
 IList<T>

 Windows.Foundation.Collections:
 IVector<T>

 System.Collections.
 Generic:
 IReadOnlyList<T>

 Windows.Foundation.Collections:
 IVectorView<T>

 System.Collections.
 Generic:
 IDictionary<K,V>

 Windows.Foundation.Collections:
 IMap<K,V>

 System.Collections.
 Generic:
 IReadOnlyDictionary<K,V>

 Windows.Foundation.Collections:
 IMapView<K,V>

 System.Collections.
 Generic:
 KeyValuePair<K,V>

 Windows.Foundation.Collections:
 IKeyValuePair<K,V>

 System.Collections:
 IEnumerable

 Windows.UI.Xaml.Interop:
 IBindableIterable

 System.Collections:
 IList

 Windows.UI.Xaml.Interop:
 IBindableVector

 System.Collections.
 Specialized:
 INotifyCollectionChanged

 Windows.UI.Xaml.Interop:
 INotifyCollectionChanged

 System.Collections.
 Specialized:
 NotifyCollectionChanged
 EventHandler

 Windows.UI.Xaml.Interop:
 NotifyCollectionChangedEvent
 Handler

 System.Collections.
 Specialized:
 NotifyCollectionChanged
 EventArgs

 Windows.UI.Xaml.Interop:
 NotifyCollectionChangedEvent
 Args

 12 CHAPTER 1: The New Windows Runtime

.NET Type WinRT Type Notes

 System.Collections.
 Specialized:
 NotifyCollectionChanged
 Action

 Windows.UI.Xaml.Interop:
 NotifyCollectionChanged
 Action

 System.ComponentModel:
 INotifyPropertyChanged

 Windows.UI.Xaml.Interop:
 INotifyPropertyChanged

 System.ComponentModel:
 PropertyChangedEvent
 Handler

 Windows.UI.Xaml.Interop:
 PropertyChangedEventHandler

 System.ComponentModel:
 PropertyChangedEventArgs

 Windows.UI.Xaml.Interop:
 PropertyChangedEventArgs

 System:
 Type

 Windows.UI.Xaml.Interop:
 TypeName

 7

 The following list summarizes the notes from Table 1.3 :

 1. Dates are always converted to Coordinated Universal Time (UTC).
The time zone is not stored in WinRT, so when the dates are con-
verted back to the .NET Framework equivalent, the local time zone
is assumed. If you are using time zones other than the local time
zone, you need to apply further conversions when the date is passed
back.

 2. WinRT event handlers generate a unique token when a subscriber
is added. The subscriber uses this token to unsubscribe. In the .NET
Framework, you do not have to use these tokens; you can simply
add or remove delegates in the standard way using the += and -=
operator overloads. The compiler generates the necessary code to
call a helper function to maintain a map between the delegates you
register and their corresponding tokens.

 3. WinRT exceptions are really just a 32-bit integer that, in COM, is
known as an HRESULT. 1 The CLR maps well-known exceptions to

 1 HRESULT, http://bit.ly/W8WBxF

http://bit.ly/W8WBxF

13 .NET and WinRT

the COM equivalent; conversely, an exception returned from WinRT
can be converted to a well-known .NET Exception type. When there
is no well-known mapping, the HRESULT is converted to a generic
 Exception object, with the value of the HRESULT stored in the
 HResult property.

 4. WinRT uses IReference<T> for two scenarios: boxing values and pro-
viding support for Nullable<T> . You can read more about how this is
implemented in the previous section.

 5. The Windows Runtime does not support relative URIs. If you try to
pass a relative URI to a WinRT component, an ArgumentException is
thrown. If you must use a relative URI, the workaround is to pro-
vide a base URI to create an absolute URI and then ignore the base
portion when the URI is returned.

 6. The Windows Runtime requires all I/O operations to be asynchro-
nous. The mapped Close method on the WinRT IClose interface
maps to the Dispose method on the .NET Framework IDisposable
interface. This interface is not marked as asynchronous. Therefore,
you should not perform any I/O in your Dispose method. You must
implement your components so that they fl ush or close streams
before they are disposed.

 7. Types in WinRT are far more simplifi ed than in the .NET implemen-
tation. A WinRT type is simply the fully qualifi ed name for the type,
and the metadata system is used to parse any relevant information
about that type.

 Note that the restrictions for mapping apply only to calls between the
CLR and WinRT. You can still build C# class libraries to use within your
projects without any restrictions. In fact, it is recommended that you use
C# class libraries instead of WinRT components for reusable code in your
applications if you are not planning to consume those components using
any other languages. Create a managed WinRT component only when you
want to access it from nonmanaged language options such as C++ and
JavaScript.

 14 CHAPTER 1: The New Windows Runtime

 Streams and Buff ers
 The Windows Runtime contains several interfaces for streams that exist-
ing classes in the .NET Framework do not directly support. To close this
gap, you can use one of several extension methods provided by the System.
IO.WindowsRuntimeStorageExtensions class and defi ned in System.Runtime.
WindowsRuntime.dll . They effectively convert streams between WinRT and
the CLR by performing quite a bit of work, such as ensuring that each
stream has its own unique adapter and buffer to provide the best perfor-
mance possible and ensuring that the stream behaves as expected within
your .NET code.

 WinRT provides the IStorageFile interface to work with local and roam-
ing storage. You can use the two extension methods OpenStreamForReadAsync
and OpenStreamForWriteAsync to generate, from an IStorageFile instance, a
 Stream object to pass to your .NET components. Several overloads exist to
work with directories and relative paths and specify various options when
creating a new fi le. You learn more about storage in Chapter 4 , “Data and
Content.”

 WinRT stream interfaces include IRandomAccessStream , IInputStream , and
 IOutputStream . The System.Runtime.WindowsRuntime namespace provides sev-
eral extension methods to convert between these stream types and .NET
streams: AsStream , AsStreamForRead , AsStreamForWrite to convert from WinRT
to .NET Framework streams; and AsInputStream and AsOutputStream to pass
.NET Framework streams to WinRT APIs.

 Sometimes you need to pass blocks of data to WinRT APIs. You cannot
pass a byte array or memory stream directly to the Windows Runtime,
so WinRT provides the IBuffer interface. The interface declares only two
properties: the total capacity for the buffer and the number of bytes in use.
You cannot access, read from, or write to the actual underlying buffer. This
makes the interface a safe way to pass buffers among various language
implementations. Internally, WinRT can access the buffer with a COM
interface that can access its actual contents.

15 Desktop Applications

 Several extension methods exist in the System.Runtime.InteropServices.
WindowsRuntime . WindowsRuntimeBufferExtensions 2 class. You can convert a
byte array into an IBuffer instance by using the AsBuffer extension meth-
ods. You can also convert a MemoryStream instance into an IBuffer instance
by using the GetWindowsRuntimeBuffer extension methods.

 Conversely, you can convert an IBuffer instance to either a byte array or
a Stream instance. The same helper class provides the AsStream and ToArray
extension methods to perform this conversion for you. The class contains
other methods to parse, compare, and copy data to and from buffers.

 Desktop Applications

 The Windows Runtime is also available from the desktop-style applica-
tions you are likely familiar with, although this is fairly rare. Most of this
book focuses on Windows Store apps, but it is important to know that vari-
ous APIs in WinRT are available to traditional desktop applications.

 You can write desktop applications that use the Windows Runtime in
C++, C++/CX, 3 or C#. To use C#, you must target the .NET Framework
4.5. The capability to reference WinRT APIs is not provided out of the box.
Instead, you must modify your project to change the references manually.

 Example: Reference WinRT from a Desktop
Application
 The sample project DesktopWinRT in the Chapter 1 solution folder dem-
onstrates a desktop application that calls WinRT APIs. To create a similar
project yourself, choose the option to add a new project from within Visual
Studio 2013. Navigate to Visual C# and Windows , and then choose the
template for a WPF Application as in Figure 1.3 .

 2 WindowsRuntimeBufferExtensions, http://bit.ly/XOBVtL

 3 C++/CX Reference, http://bit.ly/XLP5Yd

http://bit.ly/XOBVtL
http://bit.ly/XLP5Yd

 16 CHAPTER 1: The New Windows Runtime

 FIGURE 1.3 Creating a desktop application

 Make sure that the project targets the .NET Framework 4.5 or later.
Although a number of default assembly references are added, accessing
WinRT APIs is not yet possible. Doing this involves a few steps. The fi rst
step is required because it is not possible to update a project to access
WinRT from the IDE. Instead, you must edit the project fi le directly. First,
right-click the project in the Solution Explorer and choose the option
 Unload Project . This project should show as “unavailable” in the Solution
Explorer (see Figure 1.4).

 FIGURE 1.4 Unloaded project

17 Desktop Applications

 When the project is unloaded, you can edit the XML contained in the
project fi le by right-clicking the project node and selecting Edit . If you
receive a message about inconsistent line endings, feel free to accept the
dialog box to clean the document. To allow you to reference WinRT, the
project must target Windows version 8.1 or later. This is done by adding
the following snippet inside the fi rst PropertyGroup element:

 <TargetPlatformVersion>8.1</TargetPlatformVersion>

 Note that IntelliSense might suggest TargetFrameworkVersion , but that
is not the correct tag to update. After you’ve made the change, save the
fi le, right-click the project node, and select Reload Project . If you receive a
prompt about the project fi le already being open, select the option to close
it. After the project has reloaded, you are ready to add a WinRT reference.

 Right-click the References node in the Solution Explorer and select
 Add Reference . You should notice a new tab with the text Windows
and a child tab named Core . Select this tab and check the box next to the
 Windows assembly, as in Figure 1.5 .

 FIGURE 1.5 Adding the WinRT reference

 After you click OK , you’re ready to reference the interfaces. For the exam-
ple program, the following using statement was added to MainWindow.
xaml.cs :

 using Windows.Management.Deployment;

 18 CHAPTER 1: The New Windows Runtime

 This statement provides access to a set of WinRT APIs for enumerating
packages (installed apps) in the system. The following line inside the event
handler for the main window load event references a WinRT component:

 var packageManager = new PackageManager();

 A query on the Package Manager returns a list of packages for the user
that are added to a list in the WPF control. Listing 1.1 shows the full code
for this.

 LISTING 1.1 Package Manager List

 var list = new List<string>();
 var packageManager = new PackageManager();
 var identity = WindowsIdentity.GetCurrent();
 if (identity == null || identity.User == null)
 {
 MessageBox.Show(
 "Unable to determine the current user's identity.");
 return;
 }
 var query = packageManager.FindPackagesForUser(identity.User.Value);
 foreach (var package in query)
 {
 var name = package.Id.Name;

 try
 {
 list.Add(string.Format("Package {0} at {1}", name,
 package.InstalledLocation.Path));
 }
 catch (FileNotFoundException)
 {
 list.Add(string.Format("Package {0} deleted.", name));
 }
 }

 Packages.ItemsSource = list;

 Unfortunately, adding the references and compiling the program isn’t
enough, and the compiler generates several errors (see Figure 1.6). This is
because additional assemblies are needed for the WPF example.

19 Desktop Applications

 FIGURE 1.6 Compiler errors when attempting to reference WinRT

 The dependent assemblies exist in a special path on the system, and ref-
erences to them are required to successfully call WinRT APIs from the WPF
desktop application. To fi x this, you add another reference to the project
and browse to the following folder:

 C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework \
➥.NETFramework\v4.5\Facades

 Select System.Runtime.dll and click Add to include it within your project
references. You should then be able to compile your program. In the ref-
erence example, you should see a window with a list of packages on the
system, similar to Figure 1.7 .

 FIGURE 1.7 Package listing from a WinRT API called from a WPF application

 20 CHAPTER 1: The New Windows Runtime

 Referencing WinRT from a desktop application is not straightforward,
but it is possible. Remember, three steps are required:

 1. Modify the project fi le to target the platform version 8.1.
 2. Add the Windows Core reference.

 3. Browse and add the System.Runtime.dll reference.

 The MSDN library provides a list of WinRT APIs that you can call from
Windows 8.1 desktop applications. 4 The MSDN documentation for each
WinRT component includes a section that provides information about the
requirements to use a particular API. Figure 1.8 shows an example for the
 PackageManager class.

 FIGURE 1.8 Determining where and how WinRT APIs can be called

 Only a small number of APIs are available for the desktop. Most APIs
are for the Windows Store only, and a few are available to both types of
apps.

 Example: Examine Projections in a WinRT
Component

 Projections make it possible to reference underlying WinRT types as
equivalent .NET types in code, even though the running app will use the

 4 Windows 8.1 API list, http://bit.ly/Slcq53

http://bit.ly/Slcq53

21 Example: Examine Projections in a WinRT Component

unmanaged component. The example solution contains a project named
 ExampleCSharpClass that illustrates the differences between C# class
libraries and WinRT components and demonstrates how projections work.
 Figure 1.9 shows the code map for the simple API this class exposes. A
method takes in a URI and fi res an event that encapsulates the string rep-
resentation of the URI. This shows the specifi c differences between how
events are handled in the Windows Runtime vs. the .NET Framework and
how types are mapped. Keep in mind that you will most likely create sim-
ple C# class libraries unless you specifi cally need to reference your librar-
ies from C++ or JavaScript code.

 FIGURE 1.9 The code map for the example project

 The event arguments simply reference the URI.

 public sealed class UriLoadedArgs
 {
 public string Uri { get; set; }
 }

 The component exposes the signature of the event:

 public delegate void UriLoaded(object sender,
 UriLoadedArgs args);

 22 CHAPTER 1: The New Windows Runtime

 It also defi nes the event itself:

 public event UriLoaded UriLoaded;

 Compile the C# class library and navigate to the output directory using
the Developer Command Prompt link. (If you’re not sure how to fi nd the
output directory, right-click the project name in the Solution Explorer
menu and choose Open Folder in File Explorer to dig into its bin\debug
subfolders.) Use the ildasm.exe tool to inspect the DLL by typing the fol-
lowing on the command line in the folder that contains the DLL:

 ildasm ExampleCSharpClass.dll

 TIP

 If you use the ildasm.exe tool quite often, it can be useful to associate it
with the DLL files you are inspecting. On Windows 8.1 machines, you
can right-click a DLL and choose Open With for a list of options. The
tool will not likely show by default. Instead, choose More Options (if
that is available), followed by Look for Another App on This PC . Be
sure to check the box labeled Use This App for All .dll Files unless
you have another application installed that you prefer to use instead.
Simply browse to the folder C:\Program Files\Microsoft SDKs\Windows\
v8.1A\bin\NETFX 4.5.1 Tools and select ildasm.exe to launch directly
into the tool from File Explorer .

 When the component is loaded, you should see three top-level entities
defi ned:

 • MyComponent is the main class defi nition.

 • UriLoaded is the defi nition of a delegate.

 • UriLoadedArgs is the class defi nition for the event arguments.

23 Example: Examine Projections in a WinRT Component

 The signature of the UriToString method of MyComponent is:

 UriToString: void(class [System.Runtime]System.Uri)

 The signature of the event handler methods to subscribe and unsub-
scribe by passing a delegate is:

 add_UriLoaded: void(class ExampleCSharpClass.UriLoaded)
 remove_UriLoaded: void(class ExampleCSharpClass.UriLoaded)

 Notice that the methods for the event handlers are empty and take in a
single parameter that is the delegate for the event. Now compile the WinRT
version of the component by building the ExampleWinRTComponent
project. The code is identical to the class library but resides in a differ-
ent namespace. If you browse to the output location, the fi rst thing you’ll
likely notice is that there is no DLL. Instead, the compiler has produced a
WinRT metadata fi le named ExampleWinRTComponent.winmd .

 Open this fi le using ildasm.exe . The fi rst thing you’ll notice is that the
public classes have been renamed with a <CLR> prefi x and made private.
This is how the .NET Framework and WinRT interoperate together. The
internal classes are marked private so they are not visible to WinRT, and the
projected implementations are made public. In addition, both classes had
an interface automatically generated. The main component class imple-
ments the IMyComponentClass interface. In COM, clients must interoperate
with services through interfaces, but the compiler has made this transpar-
ent for you by generating the interface if you did not provide one yourself.

 Also notice that no “special” class was created for the delegate. The
metadata for the base delegate type in WinRT is marked the same way as
the CLR type, so no conversion is needed. When you look at the interface
 IMyComponentClass , you’ll see that the signature of the UriToString method
is different:

 UriToString: void(class [Windows]Windows.Foundation.Uri)

 The methods to add and remove event handlers have also changed:

 add_UriLoaded: valuetype [Windows]Windows.Foundation.
 EventRegistrationToken(class ExampleWinRTComponent.UriLoaded)
 remove_UriLoaded: void(valuetype [Windows]Windows.Foundation.
 EventRegistrationToken)

 24 CHAPTER 1: The New Windows Runtime

 The URI has been converted to the WinRT type, and the event code has
changed to implement the WinRT method of managing registrations with
a token. If you want to see how the component is projected back to the
CLR, go to the command line and open the fi le again, but this time add the
 /project command line switch:

 ildasm /project ExampleWinRTComponent.winmd

 The same metadata will be parsed, but this time projections are applied
so you can see the types as they appear in managed code. For example, the
 UriToString signature on the interface is now this:

 UriToString: void(class [System.Runtime]System.Uri)

 You can use ildasm.exe to inspect metadata for WinRT types. Using the
 /project switch parses the same metadata but displays the projections and
mappings for consumption by managed code.

 Asynchronous Functions

 In C#, you can expose and consume asynchronous methods using the
 async and await keywords. In the .NET Framework, you typically write
the implementation of an asynchronous interface using the Task Parallel
Library (TPL). 5 The AsynchronousWinRT example provides an example
of this in the AddNumbersInternal method (see Listing 1.2). This is how you
typically wrap and return a long-running task.

 LISTING 1.2 Using Task for Asynchronous Operations in the .NET
Framework

 private static Task<long> AddNumbersInternal(
 ICollection<int> array)
 {
 return Task.Run(
 () =>
 {

 5 Task Parallel Library (TPL), http://bit.ly/UcpUhS

http://bit.ly/UcpUhS

25 Asynchronous Functions

 long result = 0;
 for (var index = 0; index < array.Count;
 index++)
 {
 result += index;
 }

 return result;
 });
 }

 If you try to make the method public, you will receive an error. This
is because WinRT doesn’t contain a Task type. Instead, it supports four
distinct asynchronous operation interfaces. All asynchronous interfaces
inherit the IAsyncInfo interface, which provides a unique identifi er for the
operation, a status of the operation, an error code in case the operation
aborts, and methods to cancel and close the operation:

 • IAsyncAction is an asynchronous operation that does not report prog-
ress and does not return a result.

 • IAsyncActionWithProgress<TProgress> is an asynchronous operation
that reports progress but does not return a result.

 • IAsyncOperation<TResult> is an asynchronous operation that does not
report progress but returns a specifi c result when complete.

 • IAsyncOperationWithProgress<TResult, TProgress> is an asynchronous
operation that reports progress and returns a result when complete.

 The .NET Framework provides extension methods that enable you to
convert Task objects to WinRT equivalents or launch asynchronous tasks
directly. For example, the following code converts the task-based asyn-
chronous operation from Listing 1.2 into a WinRT asynchronous operation:

 public IAsyncOperation<long> AddNumbers(
 [ReadOnlyArray] int[] array)
 {
 return AddNumbersInternal(array).AsAsyncOperation();
 }

 26 CHAPTER 1: The New Windows Runtime

 Notice the use of the ReadOnlyArray attribute to fl ag the array as input-
only. This marks the array so that WinRT understands which of the three
allowed array-passing methods is being used (passed, fi lled, or received).
The extension method that the framework provides converts the Task to
an IAsyncOperation . To return a task that supports progress, you can use
the AsyncInfo static class to launch the instance, as in Listing 1.3 . This list-
ing uses the TPL to create a long-running task but wraps that in a WinRT
asynchronous operation that supports progress reporting.

 LISTING 1.3 Creating a WinRT Asynchronous Operation That Reports
Progress

 public IAsyncOperationWithProgress<long, double>
 AddNumbersWithProgress([ReadOnlyArray] int[] array)
 {
 return AsyncInfo.Run(
 async (
 CancellationToken cancellationToken,
 IProgress<double> progress) =>
 {
 progress.Report(0);
 return await Task.Run(
 () =>
 {
 long result = 0;
 for (var index = 0;
 index < array.Length;
 index++)
 {
 progress.Report(
 (double)index /
 array.Length);
 result += index;
 }

 return result;
 });
 });
 }

 Writing asynchronous operations that the Windows Runtime can con-
sume is easy using the extension methods that the framework provides.

27 Asynchronous Functions

 Summary

 This chapter introduced you to the concept of two types of programs that
can interoperate with the Windows Runtime: desktop applications and
Windows Store apps. You learned how WinRT uses the best parts of COM
and the .NET Framework to allow multiple languages to seamlessly con-
sume components. This projection is coupled with features of the CLR and
the compiler that maps WinRT types and classes to their CLR equivalents.
Various extension methods make it easy to interoperate with WinRT com-
ponents and expose managed code to the Windows Runtime by convert-
ing between types and generating boilerplate code that handles events,
streams, buffers, and asynchronous operations.

 In the next chapter, you learn more about Windows Store apps. The
Windows Runtime provides a host environment with services for sus-
pending and resuming Windows Store apps, as well as creating interfaces
between Windows Store apps, other applications, and the operating sys-
tem itself. You will also create a Windows Runtime component and learn
how to consume it from unmanaged code and JavaScript-based Windows
Store apps.

This page intentionally left blank

29

 2
 Windows Store Apps and
WinRT Components

 Windows store apps is a label with a bit of history behind it.
The story began in 2010 when Microsoft announced the Windows

Phone 7 Series. Microsoft later dropped the Series part of the name, but
new developers to the platform quickly learned that Windows Phone 7
featured the design philosophy referred to as Metro. Earlier Microsoft proj-
ects, including Zune and Windows Media Center, heavily infl uenced it.
Many developers were excited to see the Metro design language appear in
the earliest versions of Windows 8.

 If you created a Windows Store app in early 2011 when the Developer
Preview version of Windows 8 was released, you fi red up a copy of the
Visual Studio 11 Preview and chose your language and the option for the
Windows Metro Style application. By the Consumer Preview, the menu
item changed to Metro App for the Metro style framework. Sometime after
this, potential trademark infringements led Microsoft to drop the term
 Metro altogether. Documentation began referring to either the “Modern
UI” or the “Microsoft design language,” and after Visual Studio 11 was
renamed to Visual Studio 2012, it provided an option to build a Windows
Store app for Windows 8. Eventually, Visual Studio 2013 was released with
the capability to build the same apps to target Windows 8.1.

 30 CHAPTER 2: Windows Store Apps and WinRT Components

 This history might help explain why you can visit the Windows Store to
purchase desktop applications (that are not Windows Store apps) or why
you can install Windows Store apps without ever visiting the Windows
Store. When I refer to a “Windows Store app,” think of it as a Windows 8.1
application that is built and deployed as a WinRT component. That should
help separate these apps from desktop applications in your mind.

 The Windows Runtime provides a special set of services for Windows
Store apps. The runtime hosts Windows Store apps as needed, loads the
CLR for managed apps, and invokes a web host to render HTML and inter-
pret client script for apps written with JavaScript. Windows Store apps
are deployed in special packages that contain unique assets and resources.
They have access to local and temporary storage that is sandboxed from
the rest of the system and can manipulate roaming settings that automati-
cally synchronize across multiple Windows 8.1 devices. Windows Store
apps operate in a special lifecycle designed to maximize battery life and
end-user productivity by suspending and resuming applications as they
are brought in and out of focus.

 In addition to creating special WinRT components that are published as
Windows Store apps, you can create standalone WinRT components in C#
that other apps written in native C++ or interpreted JavaScript can invoke.
Managed components might appear as native WinRT components to their
clients but impose special dependencies. An instance of the CLR must
exist to host managed code for native code to call it. The fact that managed
WinRT components generate Common Intermediate Language (CIL) code
means they can be compiled once and run on x86, x64, and ARM systems.
Native code must be compiled to target each system it will run on.

 Fundamentals of a Windows Store App

 Windows Store apps have a unique look and feel, can target multiple
devices, and are most often distributed through the Windows Store. The
Windows Store is Microsoft’s platform for software distribution and sup-
ports a variety of targets, including Windows 8.1 and Windows RT. Note
that Windows Store apps can be developed only on Windows 8.1 machines;
no SDK is available for Windows 7 or other versions (for example, you can

31 Fundamentals of a Windows Store App

target Windows 8 only on a Windows 8 machine, so it is recommended
that you upgrade your environment to 8.1).

 Windows Store apps are designed to run either in a single window with
no chrome, or arranged horizontally side by side, with other apps taking
up the full vertical space available in the display. The intention is to pro-
vide maximum focus, avoid distractions, and make the best use of avail-
able real estate. A common technique is hiding common commands until
they are needed. Temporary panels appear as either modal dialogs or pan-
els that fl y out to overlay content until they are dismissed (hence the term
 fl yout). The apps are also designed to scale to different form factors, such as
portrait and landscape, high resolution and low resolution, and a narrow
mode when several apps are run side by side.

 Windows Store apps provide fi rst-class support for touch and pen input.
All the built-in controls you will learn about have built-in capabilities to
recognize touch, taps, and gestures. Although touch is important, apps can
also be launched on traditional hardware that uses mouse and keyboard
input. You should design your apps to accommodate these modalities and
all the built-in controls come out of the box with keyboard and mouse sup-
port, in addition to the support for pen and touch.

 Windows 8 introduced contracts and extensions. Contracts were con-
sidered an agreement between apps that enabled rich content sharing and
other features. They allow your app to communicate with other apps you
don’t know about because the interface is a common contract. Extensions
were defi ned as agreements between Windows Store apps and the operat-
ing system that allow apps to participate in fi le picking operations, cam-
era functions, fi le associations, and more. These features have evolved in
Windows 8.1 and are referred to generically as declarations. The capabil-
ity for an app to use these features is declared in the application’s mani-
fest, which you learn more about in this chapter. Chapter 11 , “Windows
Charms Integration,” and Chapter 12 , “Additional Windows Integration,”
cover declarations in more detail.

 A variety of Windows Store app templates are available to help you
start a new project. In fact, most of the templates generate fully functional
and interactive reference applications you can modify to create your own
Windows Store apps. Understanding the differences between templates is
important to choose the right starting point for your application.

 32 CHAPTER 2: Windows Store Apps and WinRT Components

 Windows Store App Templates
 The Windows Store app templates are accessible from Visual Studio 2013
via the New Project menu. Eight templates (plus the “bonus” Portable
Class Library template you will learn about) are available for developing
Windows Store apps using C#. Figure 2.1 shows the templates.

 FIGURE 2.1 Available project templates for Windows Store apps

 Blank App

 This template provides the bare minimum you need to get up and running
with a Windows Store app. It provides an application object, a basic set of
styles, and an empty main page. Use this template when your application
doesn’t follow the hierarchical navigation patterns of the grid and split
application templates.

33 Fundamentals of a Windows Store App

 Grid App

 The HelloWorldGridApp project from Chapter 1 , “The New Windows
Runtime,” provides an example for this template. The template is designed
for data that can be logically grouped. Use this template if your applica-
tion provides data in logical groups or categories. Examples include news
applications that group items by topic and cooking applications that group
recipes by meal or major ingredient. The main page shows a summary of
items by group. You can then drill down into the group or category level
and/or the item level. Figure 2.2 shows an example.

 FIGURE 2.2 Grid-style template

 Hub App

 The hub app template, introduced with Windows 8.1, demonstrates how
to use the new Hub control. This control is ideal for apps that present a
view the user can pan through. The user can then pan through different

 34 CHAPTER 2: Windows Store Apps and WinRT Components

sections that present different pieces of information. An example of a hub-
style app is the free Bing news app included with the Windows 8.1 instal-
lation. You can run the included ReferenceHubApp project in the Chapter2
solution folder (available online at http://winrtexamples.codeplex.com/)
to see how the default template works (see Figure 2.3).

 FIGURE 2.3 The hub template

 Split App

 The split app is similar to the grid app, but it does not provide a single-item
view. Instead, it provides a list of groups that enables you to drill down to
individual items. The “split page” is a page that lists the items for the group,
with details for the item in a side pane. The project ReferenceSplitApp
demonstrates this template. Figure 2.4 shows the split view.

http://winrtexamples.codeplex.com/

35 Fundamentals of a Windows Store App

 FIGURE 2.4 The split view

 Class Library (Windows Store Apps)

 The class library template enables you to create a managed library that
other managed Windows Store apps or WinRT components can share. This
assembly is not compiled as a WinRT component, so it is available only to
other managed code projects (you cannot call a C# class library from C++
or JavaScript Windows Store apps).

 Portable Class Library

 The Portable Class Library (PCL) provides support for multiple target plat-
forms, including Windows Store apps, .NET Framework desktop applica-
tions, Silverlight 5 apps, and even Windows Phone 8 applications. If you
don’t develop for those platforms, you can skip this section.

 36 CHAPTER 2: Windows Store Apps and WinRT Components

 The PCL enables you to create a common managed code base that can
be shared across platforms. Multiple languages can share WinRT com-
ponents, but they all must target the same Windows Runtime platform.
Portable libraries can be referenced without recompiling on multiple plat-
forms, including the Windows Runtime.

 Available platforms include the .NET Framework 4.0 and later, .NET For
Windows Store apps (8 and 8.1), Silverlight 5, and Windows Phone 8. The
PCL works by defi ning a list of APIs that are available for each platform.
When you select multiple target platforms, a special profi le is provided
that contains the “lowest common denominator” set of APIs available for
those platforms. You can then write a library that uses only references that
exist on the target platform. The library is fl agged as portable and available
to projects you build that target those platforms.

 Note that when you select more platforms, the list of supported fea-
tures narrows dramatically. The key to developing a Portable Library is to
pick only platforms that you know you will be targeting, to have the larg-
est API surface area available.

 MSDN documentation helps you easily discover which classes and
methods the PCL supports. Figure 2.5 shows the documentation for the
 WebRequest object. The icons in the fi rst column indicate whether the given
method or constructor is available to the PCL or whether it is accessible
from Windows Store apps. You can also scroll to the bottom of the docu-
mentation and view the Versions section to see whether the given class
is available (and for which versions) to the .NET Framework, PCL, and
Windows Store apps.

37 Fundamentals of a Windows Store App

 FIGURE 2.5 Documentation for the WebRequest object

 The PCL helps avoid duplication of code. Instead of copying code for
different platforms or using linked fi les, you can create a single library that
is referenced directly. All changes can be consolidated to a single location,
and you need to write only one suite of tests against the library. The sup-
port for MVVM means you can even include presentation logic in your
shared code.

 The example solution at http://winrtexamples.codeplex.com/ contains
a project called PortableMvvm in the Chapter02 solution folder. To create a
Portable Class Library, you add a new project and choose the template for

http://winrtexamples.codeplex.com/

 38 CHAPTER 2: Windows Store Apps and WinRT Components

 Portable Class Library . After you click OK , the Add Portable Class Library
dialog appears. For this example, you can choose .NET Framework 4.5 and
Higher , Windows Store Apps (Windows 8) and Higher , and Silverlight
5 . Uncheck the other options, as in Figure 2.6 .

 FIGURE 2.6 Selecting target frameworks for a PCL

 The PCL template uses a special Platform SDK 1 to create your proj-
ect. Based on the profi le you choose, a reference is made to a set of DLLs
that are specially created to expose only the set of functionality that exists
across all your target platforms. This enables you to reference components
without accidentally including an API that is not compatible.

 Listing 2.1 shows the fi rst of two classes the library provides. This dem-
onstrates some presentation logic by exposing a command that can be run
only once. It takes in a delegate to perform an action and then sets a fl ag
to indicate that it was run when that action is triggered. It implements
the ICommand interface that is commonly used with implementations of the
MVVM pattern (you learn more about the MVVM pattern in Chapter 3 ,
“Layouts and Controls,” and later in Chapter 9 , “Model-View-ViewModel
[MVVM]”).

 1 How to: Create a Software Development Kit, http://bit.ly/SRpH4m

http://bit.ly/SRpH4m

39 Fundamentals of a Windows Store App

 LISTING 2.1 A Portable Class That Implements ICommand

 public class RunOnceCommand : ICommand
 {
 private readonly Action thingToDo
 = delegate { };

 private bool alreadyRan;

 public RunOnceCommand(Action thingToDo)
 {
 this.thingToDo = thingToDo;
 }

 public event EventHandler CanExecuteChanged;

 public bool CanExecute(object parameter)
 {
 return !this.alreadyRan;
 }

 public void Execute(object parameter)
 {
 this.thingToDo();
 this.alreadyRan = true;

 var handler = this.CanExecuteChanged;
 if (handler != null)
 {
 handler(this, EventArgs.Empty);
 }
 }
 }

 This command is perfectly valid to use in multiple platforms. It is
also testable without having to invoke a user interface. The second class
defi ned in the portable library uses the command to expose a text property
that changes after the command is executed. Listing 2.2 shows that code.

 40 CHAPTER 2: Windows Store Apps and WinRT Components

 LISTING 2.2 A Portable Class That Implements INotifyPropertyChanged

 public class PortableViewModel : INotifyPropertyChanged
 {
 private string tapText;

 public PortableViewModel()
 {
 this.TapCommand = new RunOnceCommand(this.OnTapped);
 this.TapText = "Tap or Click Me.";
 }

 public event PropertyChangedEventHandler PropertyChanged;

 public ICommand TapCommand { get; private set; }

 public string TapText
 {
 get
 {
 return this.tapText;
 }

 set
 {
 if (value == this.tapText)
 {
 return;
 }

 this.tapText = value;
 this.OnPropertyChanged("TapText");
 }
 }

 protected virtual void OnPropertyChanged(string propertyName)
 {
 var handler = this.PropertyChanged;

 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 private void OnTapped()
 {
 this.TapText = "Disabled.";
 }
 }

41 Fundamentals of a Windows Store App

 The viewmodel simply exposes some text with a call to action. The
command is confi gured so that after it executes, the text changes. This uses
data-binding (see Chapter 3) to display the text and invoke the command.

 The project includes three sample applications that reference the PCL:
 PortableSilverlight (a Silverlight 5 application), PortableDesktop (a WPF
application), and PortableStore (a Windows Store app). Each project was
created by choosing the target platform and template, and then referenc-
ing the Portable Library (in the solution it is referenced by project, but you
can also generate the PCL assembly and reference that directly). Listing
 2.3 shows the XAML used to reference the viewmodel from the Silverlight
project. This XAML is almost identical across all three platforms. The only
exceptions are how the references are declared and the styles used for the
main grid.

 LISTING 2.3 Data-Binding Using the Portable viewmodel

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.DataContext>
 <portableMvvm:PortableViewModel/>
 </Grid.DataContext>
 <Button
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Margin="10"
 Content="{Binding TapText}"
 Command="{Binding TapCommand}"/>
 </Grid>

 Even more incredible is that the logic is all contained within the PCL, so
no code-behind exists. I did not have to change a single line of code within
the various applications to build the application; all the work was done in
XAML by referencing the portable viewmodel and binding to it.

 Each program displays a button that asks you to tap or click it. After
you complete the requested action (on a touch screen or touch pad if you’re
tapping, of course), the button is disabled and displays the text Disabled.

 42 CHAPTER 2: Windows Store Apps and WinRT Components

 Windows Runtime Component

 This template enables you to create a managed WinRT component that any
Windows Store app or other custom WinRT component can use. The power
of this option is that applications written in any language the Windows
Runtime supports can then reference your component. The disadvantage
is that you can use your component only in Windows Store apps and can-
not target multiple platforms the same way you can with PCL.

 Unit Test Library

 The unit test library enables you to stand up tests that the Windows
Runtime runs. The applications are created as a special type of WinRT
component that can be called from Visual Studio. Unit tests are written in
the same way you do using Microsoft Test System. Consider an example
unit test for the RunOnceCommand class defi ned in the PortableMvvm project
(the test itself is located in the PortableTests project).

 [TestMethod]
 public void GivenNeverExecutedWhenCanExecuteCalledThenShouldBeTrue()
 {
 var target = new RunOnceCommand(() => { });
 Assert.IsTrue(
 target.CanExecute(null),
 "Test failed: can execute should return true when command
 ➥ has not been executed.");
 }

 If you expand the Test menu and choose Windows , Test Explorer a
dialog opens that lists the available tests (if tests aren’t showing and you
are in a test project, try rebuilding the project). Figure 2.7 shows the results
of running the tests from Visual Studio.

43 Fundamentals of a Windows Store App

 FIGURE 2.7 Running the unit test project

 The example project uses the Portable Class Library, but you can refer-
ence any valid Windows Store or WinRT component to write your tests
against.

 Coded UI Test Project

 Coded UI tests are automated tests based on the concept of recording a
set of actions and playing them back. They are often useful for regression
testing an application because you can save a known path through the app
and run the test after making changes to ensure that the user interaction is
still valid. The MVVM pattern this book advocates enables you to unit-test
your logic without having to interface with the UI, so coded UI tests are
not covered.

 44 CHAPTER 2: Windows Store Apps and WinRT Components

 Template Assets

 You might have noticed that each project template also provides predefi ned
resources, such as classes, styles, certifi cates, and images. Some of the item
templates also automatically pull in various dependencies as needed to
facilitate the functionality required. All Windows Store apps require logos
and splash screens, so those images are pulled in automatically. For the
examples in this book, most of those assets are shared from a common
folder, to avoid duplicating them across projects.

 Visual Studio provides a test certifi cate to sign your app whenever you
create a new Windows Store project. 2 For example, the HelloWorldGridApp
from Chapter 1 contains a fi le named HelloWorldGridApp_TemporaryKey.pfx .
The certifi cate generated is good for one year after the application is gener-
ated. When the time period expires, you must either generate a new key
or sign the project with a different key (such as one you generate or pur-
chase). You learn more about signing your apps in Chapter 19 , “Packaging
and Deploying.” Individual WinRT components that generate the corre-
sponding metadata fi les cannot be strong-named and signed.

 The more advanced templates include classes to support data-binding
and the MVVM pattern. The following list summarizes these classes.

 • NavigationHelper — Class that aids in navigation between pages and
works in conjunction with the SuspensionManager to handle process
lifetime management.

 • ObservableDictionary — Class that enables you to keep track of state
for views by holding a dictionary of observable objects (that is,
objects that implement property and collection change notifi cation).

 • RelayCommand — Implementation of the command pattern that enables
you to specify delegates for execution logic.

 • SuspensionManager — Helper class for saving values. It is especially
useful for restoring state (you learn more about application state
later in this same chapter).

 2 Signing an app package, http://bit.ly/XKaJdF

http://bit.ly/XKaJdF

45 Fundamentals of a Windows Store App

 Regardless of the template you choose, the end result is a fully func-
tional Windows Store app. One fi le included with every Windows Store
app that this book hasn’t yet discussed is the package manifest. The next
section covers the contents of the Package.appxmanifest fi le.

 Understanding the App Manifest
 Listing 2.4 shows the contents of the app manifest for the HelloWorld
GridApp project. As you can see, the manifest is a simple XML document
that helps describe the application. A package is another name for the
content of a Windows Store app. The package contains all the code and
resources necessary for the application to run. The app manifest describes
the content and capabilities of the package.

 LISTING 2.4 Contents of Package.appxmanifest for HelloWorldGridApp

 <?xml version="1.0" encoding="utf-8"?>
 <Package xmlns="http://schemas.microsoft.com/appx/2010/manifest"
 xmlns:m2="http://schemas.microsoft.com/appx/2013/manifest">
 <Identity Name="WinRTByExampleHelloWorldGridApp"
 Publisher="CN=Jeremy" Version="1.0.0.0" />
 <Properties>
 <DisplayName>Hello World Grid App</DisplayName>
 <PublisherDisplayName>Jeremy</PublisherDisplayName>
 <Logo>Assets\StoreLogo.png</Logo>
 </Properties>
 <Prerequisites>
 <OSMinVersion>6.3.0</OSMinVersion>
 <OSMaxVersionTested>6.3.0</OSMaxVersionTested>

 TIP

 The Blank App template provides only the basic main page and does
not include any of the classes that help you implement the MVVM
pattern and manage navigation and state. Sometimes you simply
don’t need the additional pages and code that the more complex Grid
App and Split App templates provide. If you decide to use the Blank
App template and need the supporting classes as well, adding them to
your project is easy. In the project context, go to Add and choose New
Item ; then select the template for Basic Page instead of Blank Page .
A dialog appears, prompting you to add dependent files. Click OK to
add all the supporting files to the project.

 46 CHAPTER 2: Windows Store Apps and WinRT Components

 </Prerequisites>
 <Resources>
 <Resource Language="x-generate" />
 </Resources>
 <Applications>
 <Application Id="App" Executable="$targetnametoken$.exe"
 EntryPoint="HelloWorldGridApp.App">
 <m2:VisualElements DisplayName="Hello World Grid App"
 Square150x150Logo="Assets\Logo.png"
 Square30x30Logo="Assets\SmallLogo.png"
 Description="An example. . ."
 ForegroundText="light"
 BackgroundColor="#464646">
 <m2:DefaultTile>
 <m2:ShowNameOnTiles>
 <m2:ShowOn Tile="square150x150Logo" />
 </m2:ShowNameOnTiles>
 </m2:DefaultTile>
 <m2:SplashScreen Image="Assets\SplashScreen.png" />
 </m2:VisualElements>
 </Application>
 </Applications>
 <Capabilities>
 <Capability Name="internetClient" />
 </Capabilities>
 </Package>

 You don’t have to know the app manifest schema to edit it. Visual Studio
2013 provides a rich user interface for modifying the contents. Double-
click the app manifest fi le in the Solution Explorer to show the Manifest
Designer .

 Application UI

 Figure 2.8 shows the Application tab. This tab contains properties that
identify and describe the application. The display name is how your
app appears in the various dialogs that handle package installation and
deployment. The entry point is the class that is called when the app is
launched. This is provided by the template and is the class defi ned in the
 App.xaml and App.cs fi les. The default language 3 is self-explanatory (you
learn more about languages in Chapter 18 , “Globalization”); it is followed
by a description of the application.

 3 Choosing your languages, http://bit.ly/X29FBg

http://bit.ly/X29FBg

47 Fundamentals of a Windows Store App

 FIGURE 2.8 The Application tab of the manifest

 You can use supported rotations to infl uence the behavior of your app
in different orientations. By default, all orientations are supported, and the
app resizes to fi t the device’s orientation when it is rotated. If your app
makes sense only in portrait orientation, check the Portrait and Portrait-
fl ipped options so that the app will not rotate or resize if the user orients the
device in landscape mode. (Also note that you can test this feature only on
an actual device; the simulator does not support orientation restrictions.)

 You can set up Notifi cations for your app to update the live tile (more
on this in Chapter 6 , “Tiles and Toasts”). You can also specify a URL that
dynamically supplies a template for your tile with localization support. In
Windows 8.1, the URL is called automatically when the app gets installed,
enabling live tiles even before the user starts the app.

 The Visual Assets (the next tab) are important because they describe
how your app appears to Windows 8.1. For example, the Tile section
enables you to enter a Short name that appears on the Start menu and

 48 CHAPTER 2: Windows Store Apps and WinRT Components

determine when the name should appear (you can suppress the name if it
is already part of the logo graphic, for example). You can indicate the back-
ground color and specify whether the font color should be light or dark.

 Windows Store apps require Windows to display a splash screen when
it gets started. A confi gurable fi xed color is used to fi ll up the background,
while a logo 620x300, 868x420, or 1116x540 pixels wide is centered on the
screen. All the assets enable you to provide multiple resolutions to support
scaling. 4 The runtime automatically scales your graphics as needed, but
providing a native format ensures that it can scale to 140% and 180% of
original size without blurring or becoming pixelated. You can also set the
logo for a badge icon that appears in notifi cation fl youts and other sized
logos used for larger or smaller tiles, and in the preview view when you
switch active apps. Windows uses a naming convention to select the appro-
priate asset. SplashScreen.png automatically is scaled, but if you provide a
 SplashScreen.scale-100.png and SplashScreen.scale-140.png , Windows auto-
matically picks the appropriate asset to scale at 100% or 140%, respectively.

 Capabilities

 The Capabilities tab enables you to specifi c the features and sensors your
app will use. Capabilities help inform the Windows Store about what fea-
tures to test, and having many capabilities can increase the level of testing
of your app when submitted. 5 Some capabilities, such as Document Library
access, require a Corporate developer account, and Internet access might
require your app to include a privacy policy. The manifest also informs
users of the capabilities your app needs when listed in the Windows Store.
At execution time, the Windows Runtime checks the capabilities you set
when the corresponding APIs are called. Table 2.1 lists the available capa-
bilities, along with a brief description.

 4 Guidelines for scaling to pixel density, http://bit.ly/111GtSc

 5 App capability declarations, http://bit.ly/Uvcein

http://bit.ly/111GtSc
http://bit.ly/Uvcein

49 Fundamentals of a Windows Store App

 TABLE 2.1 Windows Store App Capabilities

Capability Description

 Enterprise
Authentication

 Connects to intranet resources that require domain
credentials.

 Internet
(Client)

 Turned on by default; enables access to the Internet and
other networks in public places (when the user has desig-
nated the active network as public).

 Internet (Client
& Server)

 Provides both inbound and outbound access to the Internet
and other networks when the active network is designated
as public.

 Location Accesses the current location (aggregated from various
sources, including the network address and GPS sensor,
when available).

 Microphone Accesses the audio feed for the attached microphone
devices.

 Music Library Adds, changes, and deletes files in the Music Library
(applies to both local PC and HomeGroup libraries).

 Pictures
Library

 Adds, changes, and deletes files in the Pictures Library
(applies to both local PC and HomeGroup libraries).

 Private Net-
works (Client
& Server)

 Provides both inbound and outbound access to networks
that have been designated as home or work networks, or
ones that require domain authentication.

 Proximity Allows Near Field Communications (NFC).

 Removable
Storage

 Adds, changes, and deletes files on removable stor-
age devices. As with the Documents Library, access is
restricted by the File Type Associations, and access to
HomeGroup is excluded.

 Shared User
Certificates

 Accesses certificates (smart cards, x.509, and so on) used
to validate the user’s identity.

 Videos Library Adds, changes, and deletes files in the Videos Library
(applies to both local PC and HomeGroup libraries).

 Webcam Accesses the video feed from connected webcams.

 50 CHAPTER 2: Windows Store Apps and WinRT Components

 All capabilities are associated with WinRT APIs and components.
For example, use of the MediaCapture component implies the webcam
capability. You must declare the proximity capability if you will use the
 ProximityDevice class. You learn more about various WinRT APIs in later
chapters.

 Declarations

 Declarations provide extensibility points for your app by allowing it to
either connect with other apps through contracts or enhance the OS
through extensions. 6 You learn more about declarations in Chapters 11 and
 12 . Table 2.2 summarizes the available declarations.

 TABLE 2.2 Windows Store App Declarations

Declaration Description

 Account Picture
Provider

 Enables your app to appear as an option and be
invoked to provide an account picture when the user is
changing settings.

 AutoPlay Content Registers the app to handle events such as the user
inserting a DVD.

 AutoPlay Device Registers the app to handle device change events,
such as the user connecting a webcam.

 Background Tasks Enables the app to specify the name of a class that can
run code in response to triggered events, including
audio, notifications, timer, and more.

 Cached File
Updater

 Enables the app to provide files to other Windows 8
apps and provides the triggers to synchronize the files
based on local or remote updates.

 Camera Settings Indicates that your app can provide a custom user
interface for selecting camera options when the user is
taking a picture or recording video.

 Certificates Used to install certificates with the Windows Store app
to enable secure communications channels, signing of
digital content, and encryption of data.

 6 App contracts and extensions, http://bit.ly/WhFJVa

http://bit.ly/WhFJVa

51 Fundamentals of a Windows Store App

Declaration Description

 Contact Picker Enables your app to provide contact information when
users access their contacts from any other app.

 File Open Picker Makes your app an option when the user invokes the
file picker to browse for files. For example, a cloud
storage app such as OneDrive (formerly SkyDrive) can
provide a UI that enables users to pick content from
their OneDrive account.

 File Save Picker Enables your app to appear as an option when the user
is saving content.

 File Type
Associations

 Indicates file types that your app can manage. The
Documents Library and Removable Storage capabilities
use this declaration.

 Print Task Settings Indicates that your app will supply custom UI for
printer settings.

 Protocol Enables your app to manage an existing communi-
cations protocol (for example, register the mailto
protocol to handle email messages) or define a custom
protocol.

 Search Registers to participate as a search provider, enabling
the user to search your app from the Search Charm
while it is active on the screen. Note that using the
SearchBox in Windows 8.1 instead of implementing
this contract is recommended. If a SearchBox is used in
an app that implements the Search contract, an excep-
tion is thrown.

 Share Target Indicates that your app is capable of receiving share-
able content. Includes the data formats and file types
your app can receive.

 Another way to think about declarations is as alternative entry points
to start your application. For example, when the user invokes the Share
Charm or opens a fi le picker, your app might be activated to handle that
specifi c interaction.

