Brad Dayley

SamsTeach Yourself

JQuery

and JavaScript

Brad Dayley

SamsTeachYourself

JQuery and
JavaScript

N
|'iOlII‘S

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself jQuery and JavaScript in 24 Hours

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33734-5

ISBN-10: 0-672-33734-7

Library of Congress Control Number: 2013954604

Printed in the United States of America

2 17

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Acquisitions Editor
Mark Taber

Managing Editor
Sandra Schroeder
Senior Project
Editor

Tonya Simpson

Copy Editor
Barbara Hacha

Indexer
Erika Millen

Proofreader
Anne Goebel

Technical Editor
Russell Kloepfer
Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Cover Designer
Mark Shirar

Compositor
Jake McFarland

For D!

—A&F

Contents at a Glance

Introduction 1

Part I: Introduction to jQuery and JavaScript Development

1 Intro to Dynamic Web Programming ... 5
2 Debugging jQuery and JavaScript Web Pages.................................. 35
3 Understanding Dynamic Web Page Anatomy 65
4 Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout.......... 97
5 Jumping into jQuery and JavaScript Syntax....................... 135
6 Understanding and Using JavaScript Objects................................. 161

Part Il: Implementing jQuery and JavaScript in Web Pages

Part llI:

Part IV:

7 Accessing DOM Elements Using JavaScript and jQuery Obijects........ 185
8 Navigating and Manipulating jQuery Objects and DOM Elements

with jQuery 205

9 Applying Events for Richly Interactive Web Pages........................... 223

10 Dynamically Accessing and Manipulating Web Pages.................... 255

11 Accessing Data Outside the Web Page.................................... 285

Building Richly Interactive Web Pages

12 Enhancing User Interaction Through Animation and Other

Special Effects................. 301
13 Interacting with Web Forms......................... 325
14 Creating Advanced Web Page Elements... 365

Advanced Concepts

15 Accessing Server-Side Data via AJAX ... 395

16 Interacting with External Services, Facebook, Google, Twitter,
and Flickr. 425

Part V: jQuery Ul

Part VI:

17 Introducing jQuery Ul ... 459
18 Using jQuery UI Effects..................................... 475
19 Advanced Interactions Using jQuery UI Interaction Widgets............ 493
20 Using jQuery UI Widgets to Add Rich Interactions to Web Pages...... 521

jQuery Mobile

21 Introducing Mobile Website Development..................................... 541
22 Implementing Mobile Web Pages........................... 553
23 Formatting Content in Mobile Pages .. 579
24 Implementing Mobile Form Elements and Controls 599

Table of Contents

Introduction 1
Beyond jQuery and JavaScript............... 1
Code Examples ... 2
Special Elements ... 3
Q&A, Quizzes, and EXercises. ... 3

Part I: Introduction to jQuery and JavaScript Development

HOUR 1: Intro to Dynamic Web Programming 5
Understanding the Web Server/Browser Paradigm.. 5
Preparing to Write jQuery and JavaScript........................ 17
SUIMIMQTY ... 32
Q& A 32
Workshop. ... 33

HOUR 2: Debugging jQuery and JavaScript Web Pages 35
Viewing the JavaScript Console ... 35
Debugging HTML Elements. ... 40
Debugging CSS 46
Debugging jQuery and JavaScript.................. 53
Analyzing the Network Traffic ... 59
SUIMIMQTY ..o 62
Q& A 62
Workshop. ... 63

HOUR 3: Understanding Dynamic Web Page Anatomy 65
Using HTML/HTMLS Elements to Build a Dynamic Web Page..................... 65
Understanding HTML Structure ... 66
Implementing HTML Head Elements ... 68
Adding HTML Body Elements.......................... 72
Adding Some Advanced HTMLS Elements... 87

WOTKSNOPD. ..o
HOUR 4: Adding CSS/CSS3 Styles to Allow Dynamic Design and Layout
Adding CSS Styles to the Web Page.......................
Adding CSS Styles to HTML Elements.........................o
Preparing CSS Styles for Dynamic Design.........................
SUIMIMQAIY ..o
QA
WOTKSNOD. ..o
HOUR 5: Jumping into jQuery and JavaScript Syntax
Adding jQuery and JavaScript toa Web Page........................
Accessing the DOM ...
Understanding JavaScript Syntax ...
SUIMIMQAIY ..o
QA
WOTKSNOPD. ..o
HOUR 6: Understanding and Using JavaScript Objects
Using Object Syntax...................
Understanding Built-In Objects ...
Creating Custom-Defined Objects..............................
SUIMIMQAIY ..o
QA
WOTKSNOPD. ..o

Part II: Implementing jQuery and JavaScript in Web Pages

HOUR 7: Accessing DOM Elements Using JavaScript and jQuery Objects
Understanding DOM Obijects Versus jQuery Objects..................................
Accessing DOM Obijects from JavaScript........................
Using jQuery Selectors ...

viii Sams Teach Yourself jQuery and JavaScript in 24 Hours

HOUR 8: Navigating and Manipulating jQuery Objects and DOM Elements

with jQuery 205
Chaining jQuery Object Operations........................ocooi 205
Filtering the jQuery Object Results................................. 206
Traversing the DOM Using jQuery Objects ... 207
Looking at Some Additional jQuery Object Methods 211
SUIMIMQAIY ..o 220
QA 220
WOTKSNOPD. ..o 221

HOUR 9: Applying Events for Richly Interactive Web Pages 223
Understanding Events...................... 223
Using the Page Load Events for Initialization... 229
Adding and Removing Event Handlers to DOM Elements.......................... 230
Triggering Events Manually ... 241
Creating Custom Events................................. 249
Implementing Callbacks..................... 251
SUIMIMQTY ... 253
Q& A 253
Workshop. ... 253

HOUR 10: Dynamically Accessing and Manipulating Web Pages 255
Accessing Browser and Page Element Values ... 255
Dynamically Manipulating Page Elements.................................... 266
Dynamically Rearranging Elements on the Web Page............................... 277
SUIMIMQTY ... 283
Q& A 283
Workshop. ... 283

HOUR 11: Accessing Data Outside the Web Page 285
Understanding the Screen Object.......................... 285
Using the Window Object ... 286
Using the Browser Location Object.......................... 288
Using the Browser History Object... 289
Controlling External Links ... 290
Adding Pop-up BOXeS ... 294

Setting TIMeIS. ... 296

Contents

Part IlI: Building Richly Interactive Web Pages

HOUR 12: Enhancing User Interaction Through Animation and Other
Special Effects

Understanding jQuery Animation ...
Animating Show and Hide.......................

Animating Visibility................

HOUR 13: Interacting with Web Forms
Accessing Form Elements.......................
Intelligent Form Flow Control.......................................
Dynamically Controlling Form Element Appearance and Behavior............

Validating a Form................

HOUR 14: Creating Advanced Web Page Elements
Adding an Image Gallery ...
Implementing Tables with Sorting and Filters..
Creating a Tree VIeW. ...
Using Overlay Dialogs. ...
Implementing a Graphical Equalizer Display ...

301
301
305
309
312
316
318
323
323
323

325
326
338
346
351
363
363
363

ix

Sams Teach Yourself jQuery and JavaScript in 24 Hours

Part IV: Advanced Concepts

HOUR 15: Accessing Server-Side Data via AJAX
Making AJAX EQSY
Implementing AJAX ...

HOUR 16: Interacting with External Services, Facebook, Google, Twitter,
and Flickr

Using jQuery and JavaScript to Add Facebook Social Elements to
Your Web Pages..................

Adding Google Maps to Your Web Pages........................
Adding a Custom Google Search ...
Adding Twitter Elements to Your Web Pages..

Part V: jQuery Ul

HOUR 17: Introducing jQuery Ul
Getting Started with jQuery Ul
Applying jQuery Ul in Your Scripts..........................

HOUR 18: Using jQuery Ul Effects
Applying jQuery UL Effects ...
Adding Effects to Class Transitions ...
Adding Effects to Element Visibility Transitions..

395
395
399
419
422
422
423

425

425
432
439
443
451
456
456
456

459
459
463
472
472
472

Contents

HOUR 19: Advanced Interactions Using jQuery Ul Interaction Widgets
Introducing jQuery Ul Interactions ...
Using the Drag-and-Drop Widgets......................
Resizing Elements Using the Resizable Widget ...
Applying the Selectable Widget..........................
Sorting Elements with the Sortable Widget ...

HOUR 20: Using jQuery Ul Widgets to Add Rich Interactions to Web Pages
Reviewing Widgets. ...
Adding an Expandable Accordion Element ...
Implementing Autocomplete in Form Elements
Applying jQuery Ul Buttons to Form Controls..
Creating a Calendar Input.........................
Generating Stylized Dialogs with jQuery UI..
Implementing Stylized Menus ...
Creating Progress Bars.........................
Implementing Slider Bars. ...
Adding a Value Spinner Element..........................
Creating Tabbed Panels.............................
Adding Tooltips to Page Elements.........................
Creating Custom Widgets ...

Part VI: jQuery Mobile

HOUR 21: Introducing Mobile Website Development
Jumping into the Mobile World. ...
Getting Started with jQuery Mobile...........................

493
493
495
503
508
512
518
518
519

521
521
522
523
524
525
527
528
529
530
532
533
535
537
538
538
538

Xi

Xii Sams Teach Yourself jQuery and JavaScript in 24 Hours

QA 551
WOTKSNOPD. ..o 552
HOUR 22: Implementing Mobile Web Pages 553
Building Mobile Pages....................... 553
Implementing Mobile Sites with Multiple Pages....................................... 556
Creating a Navbar.................. 567
Implementing Dialogs..................... 571
SUIMIMQTY ... 576
Q& A 576
Workshop. ... 576
HOUR 23: Formatting Content in Mobile Pages 579
Adding Basic HTML. ... 579
Creating a Grid Layout...................... 581
Implementing Listviews. ... 585
Using Collapsible Blocks and Sets........................ 590
Adding Auxiliary Content to Panels ... 592
Working with Pop-ups................ 594
Building Mobile-Friendly Tables 595
SUIMIMQTY ... 597
Q& A 597
Workshop. ... 597
HOUR 24: Implementing Mobile Form Elements and Controls 599
Understanding Mobile Forms ... 599
Using Text Elements...................... 601
Defining Buttons. ... 603
Adding Sliders and Toggle Switches ... 604
Defining Radios and Check Boxeso 608
Implementing Select Menus........................ 610
SUIMIMQAIY ..o 612
QA 612
WOTKSNOPD. ..o 613

Index 615

About the Author

Brad Dayley is a senior software engineer with more than 20 years of experience develop-
ing enterprise applications. He has used HTML/CSS, JavaScript, and jQuery extensively to
develop a wide array of web pages, ranging from enterprise application interfaces to sophis-
ticated, rich Internet applications, to smart interfaces for mobile web services. He is the
author of Python Phrasebook and jQuery and JavaScript Phrasebook.

Acknowledgments

I'd like to take this opportunity to thank all those who made this title possible. First, thanks
to my wonderful wife and boys for giving me the inspiration and support I need. I'd never
make it far without you.

Thanks to Mark Taber for getting this title rolling in the right direction, Russell Kloepfer, for
keeping me honest with his technical review, Barbara Hacha, for turning the technical ram-
blings of my brain into a fine text, and Tonya Simpson, for managing everything on the
production end and making sure the book is the finest quality.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn't
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: feedback@samspublishing.com
Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

With billions of people using the Internet today, there is a rapidly growing trend to replace
traditional websites, where pages link to other pages with a single page, with applications that
have richly interactive elements. The main reason for this is that users have become less patient
with clicking, waiting, and then having to navigate back and forth between web pages. Instead,
they want websites to behave more like the applications they are used to on their computers
and mobile devices.

In fact, in just the next 24 hours, millions of new web pages will be added to the Internet. The
majority of these pages will be written in HTML, with CSS to style elements and with JavaScript
to provide interaction between the user and back-end services.

As you complete the 24 one-hour lessons in this book, you will gain a practical understanding
of how to incorporate JavaScript with the powerful jQuery library to provide rich user interac-
tions in your web pages. You will gain the valuable skills of adding dynamic code that allows
web pages to instantly react to mouse clicks and finger swipes, interact with back-end services to
store and retrieve data from the web server, and create robust Internet applications.

Each hour in the book provides fundamentals that are necessary to create professional web
applications. The book includes some basics on using HTML and CSS to get you started, even if
you've never used them before. You are provided with code examples that you can implement
and expand as your understanding increases. In fact, in just the first lesson in the book, you cre-
ate a dynamic web page using jQuery and JavaScript.

So pull up a chair, sit back, and enjoy the ride of programming rich Internet applications with
jQuery and JavaScript.

Beyond jQuery and JavaScript

This book covers more than jQuery and JavaScript because you need to know more than the
language structure to create truly useful web applications. The goal of this book is to give you
the fundamental skills needed to create fully functional and interactive web applications in just
24 short, easy lessons. This book covers the following key skills and technologies:

Introduction

HTML is the most current recommendation for web page creation. Every example in this
book is validated HTMLS5, the most recent recommended version.

CSS is the standard method for formatting web elements. You not only learn how to
write CSS and CSS3, but also how to dynamically modify it on the fly using jQuery and
JavaScript.

JavaScript is the best method to provide interactions in web pages without the need to
load a new page from the server. This is the standard language on which most decent web
applications are built.

jQuery, jQueryUl, and jQueryMobile are some of the most popular and robust libraries

for JavaScript. jQuery provides very quick access to web page elements and a robust set of
features for web application interaction. jQuery provides additional UI and mobile librar-

ies that provide rich UI components for traditional web applications as well as mobile web
applications.

AJAX is the standard method that web applications use to interact with web servers and
other services. The book includes several examples of using AJAX to interact with web serv-
ers, Google, Facebook, and other popular web services.

Code Examples

Most of the examples in the book provide the following elements:

>

»

HTML code—Code necessary to provide the web page framework in the browser.
CSS code—Code necessary to style the web page elements correctly.

JavaScript code—This includes both the jQuery and JavaScript code that provide interac-
tions among the user, web page elements, and web services.

Figures—Most of the examples include one or more figures that illustrate the behavior of
the code in the browser.

The examples in the book are basic to make it easier for you to learn and implement. Many of

them can be expanded and used in your own web pages. In fact, some of the exercises at the

end of each hour have you expand on the examples.

All the examples in the book have been tested for compatibility with the latest version of the
major web browsers, including Google’s Chrome, Microsoft’s Internet Explorer, and Mozilla’s

Firefox.

Q&A, Quizzes, and Exercises 3

Special Elements

As you complete each lesson, margin notes help you immediately apply what you just learned to
your own web pages.

Whenever a new term is used, it is clearly explained. No flipping back and forth to a glossary!

TIP

Tips and tricks to save you precious time are set aside in Tips so that you can spot them quickly.

NOTE

Notes highlight interesting information you should be sure not to miss.

CAUTION

When there’s something you need to watch out for, you'll be warned about it in a Caution.

Q&A, Quizzes, and Exercises

Every hour ends with a short question-and-answer session that addresses the kind of “dumb
questions” everyone wants to ask. A brief but complete quiz lets you test yourself to be sure you
understand everything presented in the hour. Finally, one or two optional exercises give you a
chance to practice your new skills before you move on.

This page intentionally left blank

HOUR 1

Intro to Dynamic Web
Programming

What You’ll Learn in This Hour:

» Getting ready for creating dynamic web pages

» Creating a jQuery- and a JavaScript-friendly development environment
» Adding JavaScript and jQuery to web pages

» Constructing web pages to support jQuery and JavaScript

» Creating your first dynamic web pages with jQuery and JavaScript

JavaScript and its amped up counterpart jQuery have completely changed the game when it
comes to creating rich interactive web pages and web-based applications. JavaScript has long
been a critical component for creating dynamic web pages. Now, with the advancements in the
jQuery, jQuery Ul, and jQuery Mobile libraries, web development has changed forever.

This hour quickly takes you through the world of jQuery and JavaScript development. The best

place to start is to ensure that you understand the dynamic web development playground that

you will be playing in. To be effective in JavaScript and jQuery, you need a fairly decent under-
standing of web server and web browser interaction, as well as HTML and CSS.

This hour includes several sections that briefly give a high-level overview of web server and
browser interactions and the technologies that are involved. The rest of this hour is dedicated to
setting up and configuring a jQuery and JavaScript friendly development environment. You will
end with writing your very first web pages that include JavaScript and jQuery code.

Understanding the Web Server/Browser
Paradigm

JavaScript and jQuery interact with every major component involved in communication
between the web server and the browser. To help you understand that interaction better, this
section provides a high-level overview of the concepts and technologies involved in web

6 HOUR 1: Intro to Dynamic Web Programming

server/browser communication. This is not intended to be comprehensive by any means; it’s a
high-level overview that enables you to put things into the correct context as they are discussed
later in the book.

Looking at Web Server to Browser Communication Terms

The World Wide Web'’s basic concept should be very familiar to you: An address is typed into
or clicked in a web browser, and information is loaded in a form ready to be used. The browser
sends a request, the server sends a response, and the browser displays it to the user.

Although the concept is simple, several steps must take place. The following sections define the
components involved, their interactions with each other, and how JavaScript and jQuery are
involved.

Web Server

The web server is the most critical component of the web. Without it, no data would be avail-
able at all. The web server responds to requests from browsers with data that the browsers then
display. A lot of things happen on the web server, though. For example, the web server and its
components check the format and validity of requests. They may also check for security to verify
that the request is from an allowed user. Then, to build the response, the server may interact
with several components and even other remote servers to obtain the data necessary.

Browser

The next most important component is the browser. The browser sends requests to the web server
and then displays the results for the user. The browser also has a lot of things happening under
the hood. The browser has to parse the response from the server and then determine how to rep-
resent that to the user.

Although several browsers are available, the three most popular are Firefox, Internet Explorer,
and Chrome. For the most part, each browser behaves the same when displaying web pages;
however, occasionally some differences exist, and you will need to carefully test your JavaScript
and jQuery scripts in each of the browsers that you want to support.

JavaScript and jQuery can be very involved in the interactions that occur between the browser
receiving the response and the final output rendered for the user. These scripts can change the
format, content, look, and behavior of the data returned from the server. The following sections
describe important pieces provided by the browser.

DOM

The browser renders a web page by creating a Document Object Model, or DOM. The DOM is a
tree structure with the HTML document as the root object. The root can have several children,
and those children can have several children. For example, a web page that contains a list

Understanding the Web Server/Browser Paradigm 7

would have a root object, with a child list object that contained several child list element objects.
The following shows an example of a simple DOM tree for a web page containing a single head-
ing and a list of three cities:

document
+ html
+ body
+ hl
+ text = "City List"
+ ul
+ 1i
+ text = "New York, US"
+ 11
+ text = "Paris, FR"
+ 11
+ text = "London, EN"

The browser knows how to display each node in the DOM and renders the web page by read-
ing each node and drawing the appropriate pixels in the browser window. As you learn later,
JavaScript and jQuery enable you to interact directly with the DOM, reading each of the objects,
changing those objects, and even removing and adding objects.

Browser Events

The browser tracks several events that are critical to jQuery and JavaScript programs—for
example, when a page is loaded, when you navigate away from a page, when the keyboard is
pressed, mouse movements, and clicks. These events are available to JavaScript, allowing you to
execute functionality based on which events occur and where they occur.

Browser Window

The browser also provides limited access to the browser window itself. This allows you to use
JavaScript to determine the display size of the browser window and other important information
that you can use to determine what your scripts will do.

URL

The browser is able to access files on the web server using a Uniform Resource Locator, or URL. A
URL is a fully unique address to access data on the web server, which links the URL to a specific
file or resource. The web server knows how to parse the URL to determine which file/resources to
use to build the response for the browser. In some instances, you might need to use JavaScript to
parse and build URLs, especially when dynamically linking to other web pages.

8 HOUR 1: Intro to Dynamic Web Programming

HTML/HTML5

Hypertext Markup Language, or HTML, provides the basic building blocks of a web page. HTML
defines a set of elements representing content that is placed on the web page. Each element is
enclosed in a pair of tags denoted by the following syntax:

<tag>content</tag>

For example:

<p>This is an HTML paragraph.</p>.

The web browser knows how to render the content of each of the tags in the appropriate man-
ner. For example, the tag <p> is used to denote a paragraph. The actual text that is displayed on
the screen is the text between the <p> start tag and the </p> end tag.

The format, look, and feel of a web page is determined by placement and type of tags that are
included in the HTML file. The browser reads the tags and then renders the content to the screen
as defined.

HTMLS is the next generation of the HTML language that incorporates more media elements,
such as audio and video. It also provides a rich selection of vector graphic tags that allow you to
draw sharp, crisp images directly onto the web page using JavaScript.

Listing 1.1 shows an example of the HTML used to build a simple web page with a list of cities.
The HTML is rendered by the browser into the output shown in Figure 1.1.

LISTING 1.1 A Simple HTML Document That lllustrates the HTML Code Necessary
to Render a List in a Browser

01 <!DOCTYPE html>

02 <htmls>

03 <head>

04 <title>Cities</title>

05 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

06 </head>
07 <body>

08

09 New York, US
10 <lisParis, FR

11 Rome, IT

12 <lisLondon, EN</lis>
13

14 </body>
15 </htmls>

Understanding the Web Server/Browser Paradigm 9

& Mewr York, US
* Pama, FR
#® Bome IT

#* Landon, EN

FIGURE 1.1
List of cities rendered in a browser using the code from Listing 1.1.

CSSs

One of the challenges with web pages is getting them to look sharp and professional. The generic
look and feel that browsers provide by default is functional; however, it is a far cry from the sleek
and sexy eye-candy that users of today’s Internet have come to expect.

Cascading Style Sheets, or CSS, provide a way to easily define how the browser renders HTML ele-
ments. CSS can be used to define the layout as well as the look and feel of individual elements
on a web page. To illustrate this, I've added some CSS code to our example from Listing 1.1.
Listing 1.2 uses CSS to modify several attributes in lines 07 to 13. These attributes alter the text
alignment, font style, and change the list bullet from a dot to an airplane image. Notice how the
CSS style changes how the list is rendered in Figure 1.2.

LISTING 1.2 HTML with Some CSS Code in <STYLE> Element to Alter the
Appearance of the List

01 <!DOCTYPE htmls>

02 <html>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 <style>

06 1i {

07 text-align: center;

08 font-family: "Times New Roman", Times, serif;
09 font-size: 30px;

10 font-style: italic;

11 font-weight: bold;

12 list-style-type: none;

13 list-style-image: url ('images/air.png') ;

14 }

15 </style>

16 </head>
17 <body>

18

19 New York, US
20 <lis>Paris, FR
21 Rome, IT</1lis>

22 London, EN

10 HOUR 1: Intro to Dynamic Web Programming

23
24 </body>
25 </html>

% New York, US
¥ Paris, FR
% Rome, IT

¥ London, EN

FIGURE 1.2
The CSS code dramatically changes the look of the list in the browser.

HTTP/HTTPS Protocols

Hypertext Transfer Protocol (HTTP) defines communication between the browser and the web
server. It defines what types of requests can be made, as well as the format of those requests and
the HTTP response.

Hypertext Transfer Protocol with Secure Sockets Layer (HTTPS) adds an additional security layer,
SSL/TLS, to ensure secure connections. When a web browser connects to a web server via HTTPS,
a certificate is provided to the browser. The user is then able to determine whether to accept the
certificate. Without the certificate, the web server will not respond to the user’s requests, thus
ensuring that the request is coming from a secured source.

The following sections discuss a little bit about HTTP headers and the two most common types of
HTTP requests, GET and PUT.

HTTP Headers

HTTP headers allow the browser to define the behavior and format of requests made to the server
and the response back to the web browser. HTTP headers are sent as part of an HTTP request and
response. You can send HTTP requests to web servers from JavaScript, so you need to know at
least a little bit about the headers required.

The web server reads the request headers and uses them to determine how to build a response
for the browser. As part of the response, the web server includes response headers that tell the
browser how to process the data in the response. The browser reads the headers first and uses the
header values when handling the response and rendering the page.

Following are a few of the more common ones:

» ACCEPT—Defines content types that are acceptable in the response.

Understanding the Web Server/Browser Paradigm 11

» AUTHORIZATION—Specifies authentication credentials used to authenticate the requesting
user.

» COOKIE—Cookie value that was previously set in the browser by a server request. Cookies
are key/value pairs that are stored on the client. They can be set via server requests or
JavaScript code and are sent back to the server as part of HTTP requests from the browser.

» SET-COOKIE—Cookie value from the server that the browser should store if cookies are
enabled.

> CONTENT-TYPE—Type of content contained in the response from the web server. For exam-
ple, this field may be “text/plain” for text or “image/png” for a .png graphic.

> CONTENT-LENGTH—Amount of data that is included in the body of the request or response.

Many more headers are used in HTTP requests and responses, but the preceding list should give
you a good idea of how they are used.

GET Request

The most common type of HTTP request is the GET request. The GET request is generally used to
retrieve information from the web server—for example, to load a web page or retrieve images to
display on a web page. The file to retrieve is specified in the URL that is typed in the browser, for
example:

http://www.dayleycreations.com/tutorials.html

A GET request is composed entirely of headers with no body data. However, data can be passed to
the server in a GET request using a query string. A query string is sent to the web server as part of
the URL. The query string is formatted by specifying a ? character after the URL and then includ-
ing a series of one or more key/value pairs separated by & characters using the following syntax:

URL?key=value&key=value&key=value. ..

For example, the following URL includes a query string that specifies a parameter gallery with
a value of 01 that are sent to the server:

http://www.dayleycreations.com/gallery.html?gallery=01

POST Request

A POST request is different from a GET request in that there is no query string. Instead, any data
that needs to be sent to the web server is encoded into the body of the request. POST requests are
generally used for requests that change the state of data on the web server. For example, a web
form that adds a new user would send the information that was typed into the form to the server
as part of the body of a POST.

12 HOUR 1: Intro to Dynamic Web Programming

Web Server and Client-Side Scripting

Originally, web pages were static, meaning that the file that was rendered by the browser was
the exact file that was stored on the server, as shown in Figure 1.3. The problem is that when
you try to build a modern website with user interactions, rich elements, and large data, the num-
ber of web pages needed to support the different static web pages is increased dramatically.

Same File Is
File on Server Sent to the Browser
01 <!DOCTYPE html> E 01 <!DOCTYPE html>
02 <html> 02 <htmls>
03 <head> 03 <head>
04 <meta http—equ‘iv:"cuntent—tﬁpa" 04 <meta http-equiv="content- %/pe”
Qa5 content="text/html; charsef=utf-8" /> Qa5 content="text/html; charsef=utf-8" />
05 </heads> 06 </head>
07 <hody> 07 <hody>
08 <ulz Q8 <ulz
09 <T1isNew York, US</1i> [ol:] <lixNew York, US</1i»
10 <1i>Paris, FR</11» 10 <li»Paris, FR</1i
11 <1i>rome, IT</ 11> 11 <lixRome, IT</ /11>
1z London, EM</Ti> 12 <lixLondon, EN</Ti>
13 </Ul= 13 < U=
14 </body> 14 </body>
15 </html> 15 </html>
Browser Output

o Mewr York, US

= Pass, FR

- Rl.'ar.r. IT

® London, EM
FIGURE 1.3

With static pages, the same page that is located on the web server is sent to the browser and rendered
directly.

Rather than creating a web server full of static HTML files, it is better to use scripts that use data
from the web server and dynamically build the HTML that is rendered in the browser.

Those scripts can either run on the server or in the client browser. The following sections dis-
cuss each of those methods. Most modern websites use a combination of server- and client-side

scripting.

Server-Side Scripting

Server-side scripting is the process of formatting server data into an HTML response before it is
sent back to the browser. The main advantages of server-side scripting are that data processing is
done completely on the server side and the raw data is never transferred across the Internet; also,
problems and data fix-ups can be done locally within the server processing. The disadvantage

is that it requires more processing on the server side, which can reduce the scalability of some
applications. Listing 1.3 shows a simple server-side PHP script that dynamically adds the list of
cities to an HTML document before sending it to the browser.

Understanding the Web Server/Browser Paradigm

13

Figure 1.4 shows an example of a simple PHP server-side script. Notice that the file located on

the server is different from the one sent to the browser, but the same one sent to the browser is

what is rendered.

LISTING 1.3 A PHP Script That Is Run at the Server Populates the City List Items

01 <!DOCTYPE html>
02 <htmls>
03 <head>
04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 </head>
06 <body>
07
08 <?php
09 Scities = array("New York, US", "Paris, FR", "Rome, IT", "London, EN");
10 foreach ($cities as $city) ({
11 echo "Scity";
12 }
13 ?>
14
15 </body>
16 </html>
File on the Web Server
01 <!DOCTYPE html>
02 <html>
03 <heads>
04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 </head>
0§ <body>
a7
08 <7php
09 $cities = array("New York, us", "paris, FR", "Rome, IT", “London, EN");
10 foreach (§cities as $cityd {
11 echo "<1i>$city</11>";
12 T
13 7> ' —
Iy el 8 Hiqqr - mi
15 </bodhy> 03 <head>
16 </html>| 04 <meta http—equiv:"cuntent—tﬁpe”
05 P content="text/html; charser=utf-8" />
. New HTML Sent b7 Chodgs
Web Server Runs Script to Browser TR
[of:] new York, uUs</1i>
to Create New HTML 10 ST A
11 <liRome, IT</ 11>
0l <!DOCTYPE htmls> 12 London, EM</1i>
02 <html> 13
03 <head> . 14 </bodys
04 <meta http—aqu‘lv:”chtEnt—the” 15 </html>
a5 content="text/html; charser=utf-8" />
06 </head>
o7 <body>
a8
09 <1izNew York, US</1i>
10 <]i>Paris, FR</ 11>
{5 <1i>Rome, IT</1i>
12 London, EN</Ti> Browser Output
13 E/g'\)
14 T 15
u </ﬁ{mg)y> ® Newr York, US
FIGURE 1.4

The PHP script is executed on the web server, and so the HTML document sent to the browser is different
from what is actually contained on the server.

14 HOUR 1: Intro to Dynamic Web Programming

Client-Side Scripting

Client-side scripting is the process of sending code along with the web page. That code gets exe-
cuted either during the loading of the web page or after the web page has been loaded.

There are a couple of great advantages of client-side scripting. One is that data processing is
done on the client side, which makes it easier to scale applications with large numbers of users.
Another is that browser events can often be handled locally without the need to send requests to
the server. This enables you to make interfaces respond much more quickly to user interaction.

JavaScript and jQuery are by far the most common form of client-side scripting. Throughout this
book, you learn why that is the case.

What Is JavaScript?

JavaScript is a programming language much like any other. What separates JavaScript the most
from other programming languages is that the browser has a built-in interpreter that can parse
and execute the language. That means that you can write complex applications that have direct
access to the browser and the DOM.

Access to the DOM means that you can add, modify, or remove elements from a web page with-
out reloading it. Access to the browser gives you access to events such as mouse movements and
clicks. This is what gives JavaScript the capability to provide functionality such as dynamic lists

and drag and drop.

What Is jQuery?

jQuery is a library that is built on JavaScript. The underlying code is JavaScript; however, jQuery
simplifies a lot of the JavaScript code into simple-to-use functionality. The two main advantages
to using jQuery are selectors and built-in functions.

Selectors provide quick access to specific elements on the web page, such as a list or table. They
also provide access to groups of elements, such as all paragraphs or all paragraphs of a certain
class. This allows you to quickly and easily access specific DOM elements.

jQuery also provides a rich set of built in functionality that makes it easy to do a lot more with a
lot less code. For example, tasks such as hiding an element on the screen or animating the resize
of an element take just one line of code.

Client-Side Scripting Example

Listing 1.4 shows an example of a simple JavaScript client-side script. Figure 1.5 diagrams the
flow of data between the web server and the browser. Notice that this time the file located on the
server is the same one sent to the browser, but the JavaScript changes the HTML that is loaded in
the browser.

Understanding the Web Server/Browser Paradigm 15

LISTING 1.4 A Simple JavaScript Client-Side Script That Is Run in the Browser to
Populate the City List Iltems

01 <!DOCTYPE htmls>

02 <html>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

05 <scripts>

06 function loadCities () {

07 var cities = ["New York, US", "Paris, FR", "Rome, IT", "London,
=EN"];

08 var ulElement = document.getElementById("cityList");

09 for (var city in cities) {

10 var listItem = ulElement.appendChild (document.

wcreateElement ("1i")) ;

11 listItem.appendChild (document.createTextNode (cities[city])) ;

12 }

13 }

14 </scripts>

15 </head>
16 <body onload="loadCities () ">

17 <ul id="cityList"s
18
19 </body>
20 </htmls>
Same File Is Sent
File on the Web Server to the Browser
0l <!poCTYPE html» 0l <!poCTYPE html»
02 <homls _) 02 <homls
03 <heads 03 <heads
- metd hEtE-eq m 1i charsetsutf-8" /» - metd hEtE-eq t="text/Meal; charsetsutf-8" />
4 4
o7 “London, ENT]; o7 « PR*, “Romg, IT", “London, ENT];
o8 o8 “cityList
% eateslement ("197)0; % reateslement (" 197)0;
:f AR 1 Cefrtes[eiey))s
#
14 14
1% 1%
18 18
1% 1%
JavaScript Runs in the Browser
and Populates the List of Cities
i
a9 «11aNew vork, us</11>
10 Qirraris, FRe 11>
1l «11>rome, 1T/ 11>
12 <]izLondon. TH< 14
</ul»
L
Browser Output
® New York, US
© Panus, FR
Rome, IT
* Landon, EN
FIGURE 1.5

The JavaScript is executed in the browser, and so the HTML document rendered by the browser is different
from the one that was originally sent.

16 HOUR 1: Intro to Dynamic Web Programming

AJAX

Asynchronous JavaScript and XML, or AJAX, is the process of using JavaScript to continue to
communicate with the web server after the web page has been loaded. AJAX reduces the need to
reload the web page or load other web pages as the user interacts. This reduces the amount of
data that needs to be sent with the initial web server response and also allows web pages to be
more interactive.

For a simple example of AJAX, I've constructed two scripts—Listing 1.5 and Listing 1.6. Listing
1.5 is an HTML document with JavaScript that runs on the client after the page is loaded. The
JavaScript makes an AJAX request back to the server to retrieve the list of cities via a server-side
PHP script, shown in Listing 1.6. The list of cities returned is then used to populate the HTML list
element with items.

LISTING 1.5 A Simple JavaScript Client-Side Script Executes an AJAX Request to
the Server to Retrieve a List of Cities to Use When Building the HTML List Element

01 <!DOCTYPE html>

02 <htmls>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 <scripts>

06 var xmlhttp = new XMLHttpRequest () ;

07 function loadCities () {

08 xmlhttp.open ("GET", "php/hour01 06.php", false) ;

09 xmlhttp.send () ;

10 var cities = JSON.parse(xmlhttp.responseText) ;

11 var ulElement = document.getElementById("cityList");

12 for (var city in cities) {

13 var listItem = ulElement.appendChild(document.createElement ("1i")) ;
14 listItem.appendChild (document.createTextNode (cities[city]l)) ;

15 }

16 }

17 </scripts>

18 </head>
19 <body onload="loadCities () ">

20 <ul id="cityList">
21 </uls>

22 </body>

23 </htmls>

LISTING 1.6 A Server-Side PHP Script That Returns a Simple JSON String That Can
Be Parsed and Used by the JavaScript in Listing 1.5

1 <?php
2 echo '["New York, US", "Paris, FR", "Rome, IT", "London, EN"]';

3 ?>

Preparing to Write jQuery and JavaScript 17

Figure 1.6 illustrates the flow of communication that happens during the AJAX request/response.
Notice that a second request is made to the server to retrieve the list of cities.

HTML Is Sent
HTML Document on Web Server to Browser
01 <! pOCTYPE html> 0L «!DOCTYPE htmis
02 chemi —> o
o3 hiac o3 <k
04 squive“content-type” contents"text/html; charsetsutf-8" /> 04 u'JI a h tp-equive“content -type” contents"text/heml; charsetsutf-8" /»
0% %
a6 oo SMLHTT pRequest () 06 r mﬂhrrn - am] new SMLHTTpReqUesT ()
a7 o7 function cities(){
o8 T, "pho/hour 01_06. " Falsed; o8 ET", " php/hour 01_06. php” , false);
o9 on o9 4
10 var cities = JSON.parse(amhtTp. respanseTest 1; 10 var cities = M. parsel xmlhttp. respanseTest J;
11 var u1: ement = document.getElementById("cityiist™); 11 var u1: amant = dnrmn getElementByTd("cityaist™);
17 for (uar city fn citfes){ 17 for (uar city in citie
13 var Tstitem = ulElemant, appendehd 1d{document . c createk lement ("1173); 13 var Tstitem = ulElemant, appendehd 1d{document . c createk lement ("1173);
14 Vst 1tem. appendchd 1d¢dacimant . createtaxtuodetcities [city])); 14 Vst 1tem. appendchd 1d¢dacimant . createtaxtuodetcities [city]));
15 15
16 r 16
17 </script> i7 <fscripr»
it :{:!adon'load “leactles0)s 1 oo adctetes()"s
2 < B AJAX Request £ S LBl
22 «/:::}r» fOr PHP SCrlpt 22 «/:::}r»
JavaScript uses the AJAX response
AJAX Response to populate the list of cities.
Server-Side PHP Script of PHP Output g <=2
09 <1isnew vork, use/11s
1 «<7php - 10 <11>Paris, FR 11
2 echo '[“New vork, us", "paris, Fm", "Rome, IT", “London, EN"]'; 11 «1i>Rome, IT< 11>
37 12 <14sLandon, THe/14s
13
14 </b -r,o
15 </html>
Browser Output
& New York, US
® Pam, FR
Fome, IT
® Landon, EN

Using an AJAX request, JavaScript can send an additional request to the server to retrieve additional informa-
tion that can be used to populate the web page.

Preparing to Write jQuery and JavaScript

With the brief introduction to dynamic web programming out of the way, it is time to cut to the
chase and get your development environment ready to write jQuery and JavaScript.

The development environment can make all the difference when you are writing jQuery and
JavaScript projects. The development environment should have these following characteristics:

» Easy to Use IDE—The IDE provides text editors that allow you to modify your code in the
simplest manner possible. Choose an IDE that you feel comfortable with and that is exten-
sible to support HTML, CSS, JavaScript, and jQuery.

» Development Web Server—You should never develop directly on a live web server
(although most of us have done it at one point or another). A web server is required to test
out scripts and interactions.

18 HOUR 1: Intro to Dynamic Web Programming

» Development Web Browser(s)—Again, you should initially develop to the browser that
you are most comfortable with or will be the most commonly used. You will need to enable
debugging tools on the browser to help you find and fix issues with your scripts.

» Well-Structured Project—Structure your project, directories, and filenames for growth. It is
a difficult process to restructure a web project with a large number of files and directories.
Too many files or confusing filenames can make a project cumbersome and difficult to
manage.

Setting Up a Web Development Environment

Setting up a web development environment requires three steps. First, install an IDE that will
provide the tools to create and edit code. Second, add and enable JavaScript debugging tools in
your web browser(s). Third, set up a development web server that you can test your scripts from.
The following sections take you through each of those tasks.

Installing a Web Development IDE

The IDE is the most important aspect when developing with JavaScript. An IDE integrates the
various tasks required to write web applications into a single interface. In reality, you could use
any text editor to write HTML, CSS, JavaScript, and jQuery code. However, you will find it much
more productive and easy to use a good IDE.

Several IDEs are available. Some are open source; others cost a lot. Pick the one that best fits
your needs. You should have an IDE with code completion and error checking, because those two
features save the most time.

Possible IDEs include Dreamweaver, Visual Studio, and several others. However, Eclipse features
numerous plug-ins that provide extensibility. For jQuery and JavaScript, consider using Aptana
Studio because it is simple to set up and get going with, and it is supported on Mac, Windows,
and Linux.

Installing Aptana Studio

For the purposes of this book, you step through the process of installing and configuring Aptana,
although all the editing and debugging concepts apply equally to whatever IDE you are working
with.

NOTE

You will need to have a Java JRE or JDK installed to be able to install Aptana Studio.

You can download Aptana Studio from the following location:
www.aptana.com/products/studio3/download

http://www.aptana.com/products/studio3/download

Preparing to Write jQuery and JavaScript 19

You should select Standalone Version and specify which operating system that you are installing
it on, as shown in Figure 1.7. After the install is downloaded, execute it and follow the prompts;
they are very straightforward.

B aptana gonicrs suprorr wews coumeie

BTUDGE RADRALE DoWKloand

Download Aptana Studio 3.2.2 it Benriass
ApEaShdio 322 k onr code bace avd complee waulonme 1 Tt ncindes exk is e cpEbiies DD Ribyaid Ralk, PHEP, el
R e R et i

shand
RadRats 2

54 Compatible)

elpes PIvg-ln Ve

LooKIng Tor ditfrsnt 08, dosniond form at or anshitecturs? CASTmz: ouT Donikat

Crsrating S;tem
Ma0SX
& uilhooue

L

Pleae proukd: 45041 1ame aidemalladdres 0 iatve oah getabelk [seuse Trwiho 1ezs ovf prodict Uk may vee Bk
Mal1 T 00 DI COMM 1 ProaICTaNd COmpINy hew

Hame Emall Addrann

DOWNLOAD
APTANA STUDIO 3

FIGURE 1.7
Aptana Studio download page.

After Aptana Studio is installed, launch it. When you launch it for the first time, you need to
specify a location for your workspace. The workspace is where your projects and files will be
stored, so pick a location that you can easily manage.

Configuring Aptana Studio
Now that Aptana Studio is installed, there are just a few more steps to configure it. Do the
following:

1. Select Commands, Bundle Development, Install Bundle from the main menu. Then select
jQuery from the bundles list and click the OK button.

2. Select Windows, Preferences from the main menu to load the Preferences dialog shown in
Figure 1.8. From the Preferences dialog select Aptana Studio, Themes, also shown in Figure
1.8, and then select a theme from the drop-down list. The theme will set window, menu,
selection, and code element colors and fonts. Choose a theme that works well for you. You
can also customize the theme for this page.

20 HOUR 1: Intro to Dynamic Web Programming

NOTE

You can also import and export themes from this themes preferences dialog. On the book website is
a file named AptanaTheme.tmTheme, which is the theme used in writing this book. You can import
that theme here.

R E—— o
type filker text Themes v T
General
[Aiptana Studio

- Accounts
. Contert Assist |Erads Theme ﬂ Rename. E|
Editars
- Find Bar Foreground I Selection _l
.~ Formatter
¥ Javascript Debug Background [| Line Highlight -|
Publishing
- Spelling et _I-
i Element | Fe |86 | stvie |«
- Terminal = 3 T
- Themes
+ Troubleshooting -Cemmon - BIIfU
- Walidation -ANSI- B|L|U
HWab Seryers ansi.blue [] B[1]u
E-Help ansi.cyan] RE
(- InstallfUpdate RS s
- PyDev ansi.green] B[[u
- RunjDebug ansi.magenta N g1 |u
- Teiam ansi.red] B[1]u
{ [1 6 [r]u
= felrfu] =
Scope Selector: j
Font: ILunsolas 1@ pt. Select..

v apply to all {non-Studia) views
¥ apply to all (non-Studio) editors
I~ Apply editor Font to views

Restore Defaults Apply
@

FIGURE 1.8
Aptana Studio Preferences dialog.

3. Select and drag the Outline tab in the bottom left and merge it next to the App Explorer
tab. This gives you a better view of the outline in your scripts and allows you to close the
snippets and sample tabs in the bottom that you do not need. The final result should look
something like Figure 1.9.

4. Play around with the preferences and menus to familiarize yourself with the interface.

Aptana Studio is now set up and ready for you to begin creating projects.

Preparing to Write jQuery and JavaScript 21

Outline Tab

¥ web - Aptana Studio 3

=lofxj
File Edt Mavigate Sparch Project Run Commands Window Help
Jic~ $ 0 B0 P EEAEEO -] e S s B @we
fEas|ise [Eo =0 =
Sl
an|*|
The selected project is closed,
Flease open it ko work with It or
add/import a new project,
Qpen Project
Create Project
Tmpart Projeck

Bl console 52 | HH Term\na\| [Problems
Aptana Scripting Console:

L ' A

21 Teach Youself JQuery & Javascript in 24 Hours J

— Snippets and Samples tabs are now closed to make more room for the outline.

FIGURE 1.9
Aptana Studio with Outline tab moved.

Configuring Browser Development Tools

After you have Aptana Studio set up, you are ready to configure your browsers to debug
JavaScript. In this section, you follow the steps needed to enable JavaScript debugging on each of

the three main browsers. It doesn’t really matter which browser you choose; however, Firefox is
used in the next section and throughout the book.

Firefox seems to have the most consistent experience and has been the most reliable. Firefox also
seems to have the most consistent cross-platform support.

Installing Firebug on Firefox

Use the following steps to enable JavaScript debugging on Firefox:

1. Open Firefox.
2. Select Tools, Add-Ons from the main menu.

Type Firebug into the search box in the top right to search for Firebug, and then click the
Install button to install it.

Type FireQuery into the search box in the top right to search for FireQuery, and then click
the Install button to install it. FireQuery extends Firebug to also support jQuery.

22 HOUR 1: Intro to Dynamic Web Programming

5. When you reload Firefox, click the Firebug button to display the Firebug Console, as shown
in Figure 1.10.

Firebug Button

[E2) b ocaostodahourt fhourt_0t e lﬂ
Y T —————r

! 0L by | [20~ cooo s a B- = -0
* New York, US
® Paris, FR
* Rome, IT
* Loudon, EN

w2 5i¢ 5 [[=] iconsota | s = [os5, oot om ek conties 2 _ | BEE— Firebug Console
& | Edt | body < B Style Compuled Layoul DOM =

accesskey il -

arcesskryt ahel “Ainitni e
contextMenu
dataset namstTInaMan
<1ivHew Yok, UI</LLx IsContenttditablr talna
<lisTaris, PRe/lis Al
4310 Woma, ET 47130 2
<11 london, ER4/iir - REmi. 1 Mnieaes;

ariefa m
wuLr 0,
<fody=

+ iemBel I lengih-g,
</nEml>

neal> 0 [bt | ﬂ_
g s

% Fidi [se ¥ bt o frovous o Hohlght of [Metchensn 1% Reached end of pagn, contund frem top.

FIGURE 1.10

Firefox with Firebug enabled.

Enabling Developer Tools in Internet Explorer
Use the following steps to enable JavaScript debugging on Internet Explorer:

1. Open Internet Explorer.

2. Click the Settings button and select Developer Tools from the drop-down menu, or press

the F12 key.

3. The Developer Console is displayed as shown in Figure 1.11.

Enabling the JavaScript Console in Chrome
Use the following steps to enable JavaScript debugging in Chrome:
1. Open Chrome.
2. Click the Settings button and select Tools, Developer Tools from the drop-down menu. You
can also press Ctrl+Shift+j on PCs or CMD-Shift-j on Macs.

3. The JavaScript Console is displayed as shown in Figure 1.12.

Preparing to Write jQuery and JavaScript

1w Tnbeenet Faploeer

x|

23

L=TET
i 17 .— Settings Button

Print.

New York, US
i,

Reane, IT
Lenden, EN

Filn 13
Zooem [100%} .
Salety »
View downdosds
Manage add-uns. .
e — Developer Tools Option
G o e stes
Enkeroet optiore
At Inkerret Explorer

Qrkd

Fin Fnd Dssbin Vew Tmoges Coche Tnok veldote | Browser Modn: 169 Document Modn: 160 staredds

- = x——Developer Console

Style | Traom Stes

CIBOCTYRE el
<htmls

FIGURE 1.11
Internet Explorer with the Developer Console loaded.

[E] localhost fcode jhourdi fhourt %

Create application shorteuts. .

& - C | [locahost/codehouro/houro1_01.htm i & | e Settings Button
X~ Disabled ~ @ Idertity Safe ~ Mew tab Etrk+T
New window ChriH
o New York, US New incogrita window ClrlShiftH
* Paris, FR Bookmarks 3
* Bome, IT Edit | Cut | Copy | Paste
* London, EN — =
Zoom 3
Save page as...

‘Extensions

Task manager ShiFt+Esc

History Clri4H

Downloads Chrbel

Clear browsing data... Ceri-Shift+Dal

Signin to Chrome. .

= =
| Ek!trm“ \#_| Resources @Nelwurk Sources Report an issue...
&= =) L rep e
y Encoding » About Goagle Chrome
v chtrfl> Ve View b d)
<opject type="{BC55C096-0F 1D -4F28-AAA2-85EF5T AL w backaround pages (2)
"chsymantechfu” style="width: @px; height: @p: Help
- <hpad>.</head> Javascript console Coleshifttd |
W <bpdy> -
IS ey EY Malched CETRUES
enbed id='embed_npwlo" type="application/npulo” height="g"> body { user agent stylesheet
</pody> display: block;
</htfni> margin: b 8px;
T
F Metrics
¥ Properties =
b DOM Breakpoints :I
=2, F &%

— Developer Console

FIGURE 1.12
Chrome with the Developer Console loaded.

24 HOUR 1: Intro to Dynamic Web Programming

Installing a Simple Development Web Server

After you have your browser ready, the final step is to install and configure a simple develop-
ment server. If possible, it is usually best to have a basic web server installed on your develop-
ment machine.

You can choose from several options, but the two most common are Apache or IIS. The best
option for a development server is using a prebuilt Apache stack that includes MySQL and PHP
support. This book uses the XAMPP stack because it is available for Mac, Windows, and Linux.

The XAMPP stack can be downloaded from the following location:
www.apachefriends.org/en/xampp.html

Use the following steps to install and configure XAMPP as your development server:

1. Download the XAMPP installer and install XAMPP. The installation is straightforward.
Remember the location where you choose to install it. You will be using that location later.

2. Load the XAMPP Control Panel shown in Figure 1.13.

Apache Config Button

XAMPP Control Panel ¥3.1.0 3.1.0 [Compiled: September 20th 2012]) -1ol x|
XAMPP Control Panel v3.1.0 3.1.0 -~ Config

~ Modules & Netstat
Service Module PID) Portis) Actions ‘ 4”’) ik

10276 l ol

Apache 8020 80, 443 Stop Admin)
MySQL - #pache (httpd-ssl.conf)
FileZilla Start Adrmin | ¢ PHP(php.ini)
~ phpMyAdmin (config.inc.php)

M
aitiles M ﬂl _C <Browse> [Apache]
Tomeat Start Adrmin I | SRR

<Browse> [phpMyAdmin]

-

eI e E S
[T

Pivt [Apache] Apache WILL NOT start without the configured ports freel |
[Apache] You need to uninstall/disablefreconfigure the blocking application
[Apache] or reconfigure Apache to listen on a different port

Fivt [Apache] Problem detected!

[Apache] Port 443 in use by "unknown program”!

[Apache] Apache WILL NOT start without the configured ports freel
[Apache] You need to uninstall/disablefreconfigure the blocking application
Pivt [Apache] or reconfigure Apache to listen on a diffierent port

[main] Starting Check-Timer

[main] Contral Panel Ready

Fivl [Apache] Attempting to stop Apache (PID: 11248)

[Apache] Status change detected: stopped

Fivl [Apache] Attempting to start Apache app

Fii [Apache] Status change detected: running

oo
==

ooo
===

oo
==

o
=

o e e T N N
DO OODOOoD oo oD oo

PR S R o o o G (o B0 i Gl 06
g R e e e e |

FIGURE 1.13
Selecting the Apache config file http.conf from the XAMPP Control Panel.

3. From the XAMPP Control Panel, click the Apache Config button and select the httpd.conf
file to load the Apache configuration file in the editor.

http://www.apachefriends.org/en/xampp.html

Preparing to Write jQuery and JavaScript 25

4. Add the following directive to the httpd.conf file to enable a code directory for you to
access directly when the server is running:

<Directory "C:/xampp/htdocs/code">
Allows Browser Access to Your jQuery and JavaScript code Directory
Options Indexes FollowSymLinks Includes ExecCGI
AllowOverride All
Allow from All
</Directorys>

CAUTION

The Allow from All option will allow anyone access to the files in that folder while the web server is
running. It is perfect for debugging. If you would like stricter security, check out Apache’s security
guide at http://httpd.apache.org/docs/2.2/configuring.html.

NOTE

In step 4, the directory is a Windows path for the default settings of XAMPP. If you installed XAMPP
to a different location or on Linux and Mac systems, you will need to make adjustments to the path
specified in the Directory directive.

5. Save the file.

6. Create a directory named code in the /xampp/htdocs directory or wherever your Apache
root directory is set to. This is the directory that you will be adding your code to.

7. Stop and then Start the Apache service using the XAMPP Control Panel.

8. Go to the following location in your web browser; an empty directory link similar to the
one in Figure 1.14 should be displayed in the browser:

http://localhost/code

Your web server is now ready to be used for web development.

http://httpd.apache.org/docs/2.2/configuring.html
http://localhost/code

26 HOUR 1: Intro to Dynamic Web Programming

|Index of frode x |ﬁ'up_a_d\= friends - xampp X |T‘
t @ localhostode | e | |2 xampp Ala B- = - N-
Index of /code

Name Last modified Size Description

3 Farent Directos

Apachel/2.4.3 (Win32) OpenSSLri.0 lc PHF/5.4.7 Server ai locathost Port 80

% Find |sep & Next & Previous &7 Highlightall T Matchrase (1% Reached end of page, continu

FIGURE 1.14
Verifying that the web browser has access to the newly created code directory.

Creating a Web Development Project

After you have installed your IDE and web server, you are ready to begin creating projects. In
this section, you learn some concepts and go through the process of creating a project in Aptana
Studio.

Directory Structure

When you first begin a web project, you typically start off small with a few images and only a
couple of files. However, as time goes by and more files are added to the project, poorly orga-
nized projects can quickly become a mess.

To avoid that problem, plan your directory structure ahead of time. The best directory structure
will depend on what your needs are, how many images you will be incorporating, what file
types, and so on.

To give you a quick example, consider a basic directory structure similar to the following:
» root—Contains index.html, sitemaps, webcrawler items, and the like
» root/html—Contains only the HTML files
» root/js—Contains JavaScript files
» root/php—Contains any server-side PHP scripts

> root/images—Contains all graphics

Preparing to Write jQuery and JavaScript 27

» root/images/visual—Contains graphic elements, such as buttons, to build web pages

» root/images/photos—Contains any photos displayed on the website

The purpose of the preceding list is to give you an idea of one way to structure your files so that
they remain organized. The best way is totally up to you. You may want more subdirectories;
just don’t add so many that the URL to reach files in them becomes a mess.

File Naming

Another area you need to pay attention to when creating a web project are filenames. Here are a
few things to consider:

» Not too long—Filenames often become part of URLs and are parsed by JavaScript. Making
filenames too long becomes cumbersome in code and in the browser.

» Make them mean something—When you create a script or HTML page, you will have to
use that name when building web pages, and you will also need to find it in the editor. If
the name doesn't reflect the purpose of the file, it can make development difficult.

TRY IT YOURSELF V¥

Creating a Project

In this section, you learn the process of creating a project in Aptana Studio. A project in Aptana
Studio—and most IDEs, for that matter—is a way to organize, control, build, and often deploy
websites and applications that require several files.

This section does not spend a lot of time discussing projects, but as you go along, you will get
the idea of how a basic web project works.

Use the following steps to create a project in Aptana Studio:
1. Select File, New, Web Project to launch the Project Template dialog.
2. Select Default Project and click Next.

3. Type in a project name. Keep it short, but make it mean something. For example,
TYjQueryCode is the project name for this book.

4. Unselect the Use Default Location option.

5. Add the location of the directory that you added to the httpd.conf file previously. In this
case, it was c:\xampp\htdocs\code.

6. Click the Finish button and the project should show up in the workspace tab, as shown in
Figure 1.15.

28 HOUR 1: Intro to Dynamic Web Programming

¥ web - Aptana Studio 3 _ 5 (] |
File Edt Havigate Search Project Run Commands Window Help
[l |& S 3-0- |- Eme - | ol | ern - | B @web
= ""‘EE{)‘EE =0
(=ECY
“# Local Filesystem
B 1= T¥jQueryCode
(= hour1
2] AptanaTheme tmTheme
@ connsctions
Bl console 52 | Bl Terminal | = Problems ehE|ABE-5-20
Aptana Scripting Console.
i ;I_I
w2 0 items selected |

FIGURE 1.15
Creating a new project in Aptana Studio.

7. Right-click the project name and select New, Folder; then name the folder hourO1 to store
code for this hour.

8. Your first project has now been created.

V¥ TRY IT YOURSELF

Creating a Dynamic Web Page with jQuery and JavaScript

Now that you have a project created, you are ready to create your dynamic web pages. In this
section, you follow the steps to create a fairly basic dynamic web page. When you are finished,
you will have a dynamic web page based on HTML, stylized with CSS with interaction through
jQuery and JavaScript.

Adding HTML

The first step is to create a simple web page that has an HTML element that you can stylize and
manipulate. Use the following steps in Aptana to create the HTML document that you will use as
your base:

1. Right-click the hourO1 folder that you created earlier.

2. Select New, File from the pop-up menu.

Preparing to Write jQuery and JavaScript 29

3. Name the file first.ntml and click OK. A blank document should be opened up for you.

4. Type in the following HTML code. Don’t worry if you are not too familiar with HTML; you’ll
learn enough to use it a bit later in the book.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
</head>
<body>
Click Me
</body>
</html>

5. Save the file.

6. Open the following URL in your web browser and you should see the text “Click Me”
appear:

http://localhost/code/hour0l/first.html

That's it. All the basic HTML elements are now in place. In the next section, you stylize the
 element so that Click Me looks more like a button.

Adding CSS

The simple text rendered by the browser is pretty plain, but that problem can quickly be solved
by adding a CSS style. In this section, you use CSS to make the text appear more like a button.

Use the following steps to add the CSS style to the element. For reference, the style
changes you make in these steps are shown in the final script in Listing 1.7:

1. Add the following code inside the <head> tags of the web page to include a CSS <style>
element for all elements:
<style>

span{

}

</style>

2. Add the following property setting to the span style to change the background of the text
to a dark blue color:

background-color: #0066AA;

http://localhost/code/hour01/first.html

30 HOUR 1: Intro to Dynamic Web Programming

3. Add the following property settings to the span style to change the font color to white and
the font to bold:

color: #FFFFFF;
font-weight: bold;

4. Add the following property settings to the span style to add a border around the span text:

border-color: #COCOCO;
border:2px solid;
border-radius:5px;
padding: 3px;

5. Add the following property settings to the span style to set an absolute position for the
span element:

position:absolute;
top:150px%;
left:100px;

6. Save the file.

7. Open the following URL in your web browser, and you should see the stylized text Click Me
appear as shown in Figure 1.16:

http://localhost/code/hour0l/first.html

FIGURE 1.16
<spans> element stylized to look like a button.

Writing a Dynamic Script
Now that the HTML is stylized the way you want it, you can begin adding dynamic interactions.
In this section, you add a link to a hosted jQuery library so that you will be able to use jQuery,

and then you link the browser mouse event mouseover to a JavaScript function that moves the
text.

Follow these steps to add the jQuery and JavaScript interactions to your web page:

1. Change the element to include an ID so that you can reference it, and also add a
handler for the mouseover event, as shown in line 30 of Listing 1.7:

Click Me

http://localhost/code/hour01/first.html

Preparing to Write jQuery and JavaScript 31

2. Add the following line of code to the <head> tag, as shown in line 6 of Listing 1.7. This
loads the jQuery library from a hosted source:

<script src="http://code.jquery.com/jquery- latest.min.js"></scripts>

3. Add the following JavaScript function to the <head> as shown in lines 6-13 of Listing 1.7.
This function creates an array of coordinate values from 10 to 350, then randomly sets the
top and left CSS properties of the span element each time the mouse is moved over it:

function moveIt ()
var coords = new Array(10,50,100,130,175,225,260,300,320,350) ;
var x = coords [Math.floor ((Math.random()*10))];
var y = coords [Math.floor ((Math.random()*10))];
$("#elusiveText") .css({"top": y + "px", "left": x + "px"})

4. Save the file.

5. Open the following URL in your web browser, and you should see the stylized text Click Me
appear, as shown in Figure 1.16:

http://localhost/code/hour0l/first.html

6. Now try to click the Click Me button. The button should move each time the mouse is over
it, making it impossible to click it.

7. Find someone who annoys you, and ask them to click the button.

LISTING 1.7 A Simple Interactive jQuery and JavaScript Web Page

01 <!DOCTYPE htmls>

02 <htmls>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 <script src="http://code.jquery.com/jquery-latest.min.js"></scripts>
06 <scripts>

07 function moveIt () {

08 var coords = new Array(10,50,100,130,175,225,260,300,320,350) ;
09 var x = coords[Math.floor ((Math.random()*10))];

10 var y = coords[Math.floor ((Math.random()*10))1];

11 $("#elusiveText") .css({"top": y + "px", "left": x + "px"})

12 }

13 </scripts>

14 <style>

15 span({

16 background-color: #0066AA;

17 color: #FFFFFF;

18 font-weight: bold;

http://localhost/code/hour01/first.html

32

HOUR 1: Intro to Dynamic Web Programming

19 border-color: #COCOCO;
20 border:2px solid;

21 border-radius:5px;

22 padding: 3px;

23 position:absolute;

24 top:150px%;

25 left:100px;

26 }

27 </style>

28 </head>

29 <body>

30 Click Me
31 </body>

32 </htmls>

Summary

In this hour, you learned the basics of web server and browser communications. You learned dif-

ferences between GET and POST requests, as well as the purposes of server-side and client-side
scripts. You also learned about the DOM and how the browser uses it to render the web page
that is displayed to the user.

You have set up a good web development environment and created your first project. As part

of creating your first project, you created a dynamic web page that incorporates HTML, CSS,
jQuery, and JavaScript.

Q&A

Q.
A.

Which is better—a client-side or a server-side script?

It really depends on what you are trying to accomplish. Some people say that one way or
the other is the only way to go. In reality, it is often a combination of the two that provides
the best option. A good rule to follow is that if the interaction with the data is heavier
based on user interaction such as mouse clicks, use a client-side script. If validation or
error handling of the data requires interaction with the server, use a server-side script.

Why don’t all browsers handle JavaScript the same way?

To render HTML and interact with JavaScript, the browsers use an engine that parses the
data from the server, builds objects, and then feeds them into a graphical rendering engine
that writes them on the screen. Because each browser uses a different engine, each
interprets the scripts slightly differently, especially with fringe elements that have not yet
become standardized. If you want to support all browsers, you need to test your web pages
in each of them to verify that they work correctly.

Workshop 33

Workshop

The workshop consists of a set of questions and answers designed to solidify your understanding
of the material covered in this hour. Try answering the questions before looking at the answers.

Quiz

B

P w N

Would you send a GET or a POST request to a web server to open a web page?
What type of script has access to browser mouse events: server-side, client-side, or both?
True or False: JavaScript consoles are enabled by default on all browsers.

What type of script is the best to use when defining the appearance of DOM elements?

Quiz Answers

1.
2.
3.
4.

GET
Client-side
False. You must manually enable JavaScript debugging on all browsers.

CSS scripts are the simplest to use when defining the appearance of DOM elements.

Exercises

1.

Modify your first.html file to change the background color of your button randomly each time
it is moved. Add the following two lines to randomly select a color:

var colors = new Array ("#0066AA", "#0000FF", "#FF0000", "#O0OFFOO0");
var color = colors[Math.floor ((Math.random()*4))];

Then modify the CSS change in your JavaScript to include background-color, as shown next:

$("#elusiveText") .css({"top": y + "px", "left": x + "px", "background-color":
wcolor})

Add an additional element to your first.html file with the same behavior as the
first. To do this, add the following two lines in the appropriate locations. You should be able
to figure out where they go:

$("#elusiveText2") .css({"top": x + "px", "left": y + "px"})
Click Me

This page intentionally left blank

HOUR 2

Debugging jQuery and
JavaScript Web Pages

What You’ll Learn in This Hour:

» Where to find information that is outputted from jQuery and JavaScript scripts
» How to debug problems with HTML elements

» Ways to more easily find and fix problems with CSS layout

» Methods to view and edit the DOM live in the web browser

» How to quickly find and fix problems in your JavaScript

» What information is available to analyze network traffic between the browser and the web
server

A major challenge when writing JavaScript and jQuery applications is finding and fixing prob-
lems in your scripts. Simple syntax problems or invalid values can cause a lot of frustration
and wasted time. For that reason, some excellent tools have been created to help you quickly
and easily find problems in your scripts. In this hour, you learn some of the basics of debugging
JavaScript via Firebug in Mozilla. Although the developer consoles in other browsers are a bit
different, most of the principles are the same. Also, don’t be alarmed if you don’t recognize the
code element in the examples. They’ll be covered in upcoming hours, but you should be able to
debug before you jump into coding heavily.

Viewing the JavaScript Console

One of the first debugging tools that you will want to become familiar with is the JavaScript
console. The console is your interface to output from JavaScript scripts. Errors and log messages
will be displayed as they occur in the JavaScript console.

For example, when an error in the script results in the browser not being able to parse it, the
error will be displayed in the console. In addition to errors, by using the console.log state-
ment, you can also add your own debug statements to be displayed in the JavaScript console.

36 HOUR 2: Debugging jQuery and JavaScript Web Pages

NOTE

In addition to console. log, you can use console.error (), console.assert (), and a variety
of other statements to log information to the JavaScript console. For more information about how to
use the Firebug console log, see

https://getfirebug.com/wiki/index.php/Console_API

Understanding the JavaScript Console

The JavaScript console is a fairly basic and yet powerful tool. The console has two parts: the con-
trols and the list of log entries. Figure 2.1 shows the Firebug JavaScript console.

v Lrebled

o Shew eyt Emans
Staw JavaSeriph Warnings
Shea €55 Ervoes
Show ¥ML Errors.

o Show XML HiEpREqESS
Sheow Cheome Brrrs:
Ehew Chrome Messages
Show Extemal Emors

v Stuw Nebwurk Errors.
Shiow Stack Trace With Livors
St Cockis Everts
Errict Warnings (perfoemance penang
Shoay Command Editer

¥ Show Corpletion Lt Popup.

Break On Errors ...

Sthiow nkernal aery dala
_'!’f-'»l'|€ | |Tll:wuﬂ=' HTML (S5 Gerpt DO Meb Cuakies P =151
g | Csar Pemmt Prois |iT Erors Warmings Info Debugldo Cookies: | fQuerily
Page is Loaded hourddtd. tmi (e 7}
€3 Risferencetion: dekdihiot i not defined

itenInaE ()} anelick fline 2)

sa @
Error Log Message Link to Actual Code

FIGURE 2.1
The JavaScript console in Firebug displays log messages and errors.

Notice the menu displayed when you click the down arrow in the Console tab. From that menu
you can enable the console, as well as select which types of errors and log messages to include in

the message list.

The console also provides a toolbar with several options. The options in the console toolbar are
toggled by clicking them. The following list describes each of the options in the control bar:

» Break On Errors—When this is enabled, JavaScript will stop executing if an error is
encountered in the script. This is very useful if you want to catch errors and see what the
values of things are when they occur.

https://getfirebug.com/wiki/index.php/Console_API

Viewing the JavaScript Console 37

» Clear—Clears the messages in the message list.

» Persist—Retains the messages even if the page is reloaded. If this option is not set, the
message list is emptied when the page is reloaded.

» Profile—Starts and stops the profiler to track time inside code.

» All—Displays all messages. For the most part, you should leave all messages on unless
there are too many and you want to focus on a specific message.

» Error—Display only error messages.

» Warnings—Display only warning messages.

» Debug Info—Display only debug messages.

» Cookies—Display only cookie-related messages.

> jQuerify—Modifies the script that loads the jQuery library to include the latest jQuery
code. This is part of the FireQuery plug-in.

Notice that in the messages portion in Figure 2.1, there are two types of messages. One is a log
statement, and the second is an error. Both show the line number to the right. If you click the
line number, you go directly to the code.

Notice in the error message, the top portion of text refers to the error that occurred and the bot-
tom shows the actual JavaScript line. This is useful when debugging because you can often see
the problem by looking at the error and the single line of code.

TRY IT YOURSELF V¥

Using the JavaScript Console to Find Errors

The simplest way to understand using the console is to debug an actual script. Consider the
HTML code in Listing 2.1, which contains several errors. Use the following steps to add the list-
ing to your project in Aptana:

Right-click the project and select New, Folder from the menu.
Name the folder hourO2 and click Finish.
Right-click the new folder and select New, File from the menu.

Name the file hour0201.html.

@ » D P

Type in the contents of Listing 2.1, or if you have the file from the website, cut and paste
the contents into the new file.

6. Save the file.

38 HOUR 2: Debugging jQuery and JavaScript Web Pages

LISTING 2.1 A Very Simple HTML Document with JavaScript Errors

01 <!DOCTYPE html>

02 <htmls>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 <scripts>

06 fnction loadedFunction () {

07 console.log("Page is Loaded") ;
08 }

09 function clickIt ()

10 console.log("User Clicked");
11 }

12 </scripts>

13 </head>
14 <body onload="loadedFunction() ">

15 Click Me
16 </body>
17 </htmls>

The code in Listing 2.1 is supposed to display the message Page Is Loaded in the console after the
page has been loaded in the browser. Another message, User Clicked, is displayed each time the
user clicks the Click Me text in the browser. The problem is that the script has several bugs.

With the file now in place, use the following steps to debug the errors using the JavaScript
console:

1. Open Firefox and click the Firebug icon.

2. Click the Console tab in Firebug to bring up the JavaScript console shown in Figure 2.2.

Cpaldrs | 2 | SEE

e T et Coalars
o Cockes | fvenfy

o | Qe pessr propke [A Gros wemings

0 SyrtaxErme: missng ; heforn statament

'
i3

tnecion landedPuncsien(] | o 00 bl (e T, col 16
SRR
€ refersrcetior; losdedrunction s not defined

Landaipimetaent) : nnlnad {line 2)

Q@ s> a

FIGURE 2.2
The JavaScript console showing two errors that occurred during the page load.

3. Open the following URL in Firefox to load the newly created web page:

http://localhost/code/hour02/hour0201.html

4. Notice the errors displayed in the console, as shown in Figure 2.2. The first error shows
that missing “;” in the definition for loadedFunction (). The second error shows that

http://localhost/code/hour02/hour0201.html

Viewing the JavaScript Console 39

loadedFunction is not defined. Taking these two errors together indicates that a problem
exists with the definition for 1oadedFunction (). Looking at the failed definition state-
ment, you can see that function is misspelled as fnction.

5. In Aptana, change the word fnction in line 6 to function.

6. Go back to Firefox and refresh the web page. Now in the console you should see Page Is
Loaded, the text that is logged in the loadedFunction () function, but no errors.

7. Click the Click Me text. An error is added to the console, as shown in Figure 2.3. The error
states that c1ickItNot is not defined. When you look at the HTML file and search for
clickItNot, you can see on line 16 that an onclick event is linked to clickItNot (),
but that the JavaScript function is named clickIt ().

oM. Ner Coaldes. - E et
ebuginfe Ceckies | fQuerfy

%€ 0 | oo~ i 55 st
o | Coor Persst profle || A Emos Womngs o
Page 1 fLonded hos B2, drra v 7)
) Referevmarrorn: ekl is mot el
elichIchue (),

onchick fline 2j

@ ==
FIGURE 2.3
The JavaScript console showing one successful log message and one error.
8. In Aptana, change clickItNot in line 15 to clickIt and save the file.

9. Reload the web pages.

10. Click the Click Me Text again. Figure 2.4 shows that both log statements are now dis-
played correctly and there are no errors. The page has been successfully debugged.

¥ %) € | [l vomae < L s s ot ner ot 1 |eEg

lo| cew peem proe [W0 Grow wemngs I Oebugife Cockes | fouerfy

Page 1% Leaded

hour 8284, bl (e T)

User Clicired RouriEE At (ine 18}

Q >

FIGURE 2.4
The JavaScript console showing two successful log messages and no errors.

40 HOUR 2: Debugging jQuery and JavaScript Web Pages

Debugging HTML Elements

Debugging HTML elements can be a big challenge at times. Simple syntax errors can lead to
major problems for the browser when it’s trying to render an HTML document. In addition,
HTML elements have property values that are not rendered to the screen but that will affect the
behavior of the web page.

The HTML Inspector and the DOM editor help you find and fix problems in your HTIML code.
The following sections take you through some simple examples of using those tools.

Inspecting HTML Elements

The HTML Inspector enables you to view each of the HTML elements that have been parsed by
the browser. This gives you a view of the HTML from the browser’s perspective, which in the case
of syntax errors is usually different from the one that was intended, making it more obvious

where syntax errors are.

Figure 2.5 shows an example of the Firebug HTML Inspector. With the HTML Inspector, some
very useful features are available to you as described next:

» DOM Tree—This is a simple view into the DOM tree. You can click the + icons to expand
parts of the tree and click — icons to collapse parts of the tree.

Favorite Movies ——————— Hover Highlight

Lord of the Rings
» Harry Potter
* Narnia
e Hot Lead and Cold Feet

=

s | Edt | body < himl Bread Crumbs

<?DOCTFEE html>]
£ <hemi>

T| Console | HTML + | £S5 Script DOM Nek Cookies

42 oo
*- 5

<head»

S -

</body>

Break On Mutate
Hovering Over Element

FIGURE 2.5
The HTML Inspector page in Firebug.

Debugging HTML Elements 41

» Break on Mutate—When this option is enabled, the browser will break into the JavaScript
debugger whenever the DOM element is changed dynamically. This helps you catch prob-
lems as they are occurring.

» Edit—When this option is enabled, the tree view changes to a text editor view that allows
you to directly edit the HTML code in the browser. The browser changes what is rendered
based on the changes you make here. Although this won’t change the code in your project,
it is much easier to use this feature to try things out until problems are fixed. Then you
can copy the code from the editor and paste it into the actual file in your project.

» Hover—When you hover over the HTML code in the DOM tree, the element is highlighted
in the browser. The hover feature of the HTML Inspector is one of my favorites because it
gives a very visual way to see the relationship between the node in the DOM tree and the
rendered web page. Notice in Figure 2.5 that as the <h1> element hovered, the heading is
highlighted in the web page.

NOTE

When an element is hovered over in the DOM tree, the element is highlighted on the web page. The
hover highlight is color coded, with light blue being the contents, purple being the padding, and yel-
low being the margin for the HTML element.

» Bread Crumbs—The bread crumbs show the hierarchy of nodes from the root <html>
node down to the one that is currently selected in the tree or edit view. This makes it easy
to navigate around, especially in the edit view.

TRY IT YOURSELF V¥

Debugging HTML Using the HTML Inspector

To illustrate how to use the HTML Inspector, consider the code in Listing 2.2. A basic HTML
document with a list of movies and the word “Favorite” in the heading is supposed to be in
italic. However, look at the rendered version in Figure 2.6. There are obviously some problems:
Everything is in italic and there is no bullet point on the first list item. These problems are
caused by just two characters in all the text.

LISTING 2.2 A Very Simple HTML Document with Some HTML Syntax Errors
lllustrated in Figure 2.6

01 <!DOCTYPE html>

02 <html>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

42

HOUR 2: Debugging jQuery and JavaScript Web Pages

05 </head>
06 <body>
07 <hls><i>Favorite<i> Movies</hl>
08
09 <ll>Lord of the Rings
10 Harry Potter</lis
11 Narnia
12 Hot Lead and Cold Feet
13
14 </body>
15 </html>
Favorite Movies
Lord of the Rings

o Harry Potter

o MNarnia

o Hot Lead and Cold Feet
FIGURE 2.6

This web page has two problems: Only the word “Favorite” should be in italic, and there is no bullet point on
the first list item.

Follow along with these steps to find and fix the HTML syntax problems using the HTML

Inspector:

1.

Add the code in Listing 2.2 to a new file hour0202.html in the hour0O2 folder of your proj-
ect and save the document. You should be familiar with this process by now.

Open Firefox and click the Firebug icon to enable Firebug.

Open the following URL in Firefox; the web page should look like Figure 2.6.

http://localhost/code/hour02/hour0202.html

Click the HTML tab in Firebug and expand the <html>, then <body>, and then <i> tags,
as shown in Figure 2.7. Notice that the only element under the <i> tag is a second <i>
tag. That isn’t right, so go back to Aptana and look at the <i> tags on line 7 in the HTML.
Notice that the / is missing from the closing <i> tag.

Change the second <i> tag to a closing tag </i> and save the document.

Refresh the document in the browser. Notice that the word “Favorite” is now in italic, as it
should be, but the bullet point is still missing, as shown in Figure 2.8.

http://localhost/code/hour02/hour0202.html

Debugging HTML Elements 43

€ 0= || console | nm~ | css scrmt pow net covkies

4,5‘ Edit | <l <ul <i<i<body < html

<!DOCTFPE html>
o <heml>
0 <head>
= <body>
[<hl>
R
.]
<fix
</body>
</html>

FIGURE 2.7
This HTML Inspector shows a second <i> in the DOM.

Favorite Movies

Lord of the Rings
o Harry Potter
o MNarnia
e Hot Lead and Cold Feet

FIGURE 2.8
This web page now has only one problem—no bullet point on the first list item.

7. Go back to the HTML Inspector and expand the <html>, then <body>, then <uls, then
<11>, as shown in Figure 2.9. Instead of a set of four <1i> elements under the ele-
ment, there is an <11> element with the <1i> elements underneath. We haven’t covered
the HTML tags yet, but if you are familiar with HTML lists, you will recognize that 11 is
not a valid HTML tag. It should be <1i>.

R ||;F| Consale | HTML v | €55 Seript DOM Net Cookies
& | Edt [= ul < body < hinl
<!DOCTFPE html>
= <htnl>
<head>
= <body>
<hls>
=l uls
B <11
Lord of the Rings
<lisHarry Potter
Narnia</1li>
Hot Lead and Cold Feet
</11>
<ful>
<fBody>
</html>
FIGURE 2.9

Viewing the DOM reveals that the browser sees an <11> tag under the <uls> tag, not a set of <1i> tags.

44 HOUR 2: Debugging jQuery and JavaScript Web Pages

8. Go back to Aptana and change the <11> tag in line 9 to <1i> and save the page.

9. Reload the web page in the browser. It is now displayed properly, as shown in Figure 2.10.

Favorite Movies

e Lord of the Rings

e Harry Potter

® IMarnia

e Hot Lead and Cold Feet

FIGURE 2.10
The properly formatted web page.

Viewing and Editing the DOM

Another important tool when debugging HTML is the DOM inspector. The DOM inspector is
extremely powerful. It allows you to view the attributes, properties, functions, children, parents,
and everything else about each HTML element in the DOM. The information is displayed in tree
form so that you can expand and collapse groups.

The DOM inspector can be found in two places: either by clicking the DOM tab in Firebug or,
when you are inspecting HTML, you can click the DOM tab in the HTML Inspector.

Figure 2.11 shows the main DOM inspector. From the main DOM inspector, you have access to
a variety of information about the browser environment. For example, in Figure 2.11, the screen
attribute of the window obiject is expanded, revealing the values of the available and actual
dimensions of the browser window.

s || ||.W°'= . MIML Css seript | nom v | et Cookies Ed P
winduw
il performacce t A o - |
e ialior RaiProgs | commtrucho=faBrop, siliioteus §
phes11 mf
& sernen Sereen | . dnpen, . moee. y
availlfeight 768
availleft 1920
avallTap o
availwidth 1024
wulurDepth £
hright £
heft 1320 J
ket ation imndscape-Primary”
anmngnrentationehange maf
plieriDenth 4
top 0
widh 1024
g |
FIGURE 2.11

The main DOM inspector tab in Firebug.

Debugging HTML Elements 45

Typically, it’s preferable to use the DOM inspector from the HTML Inspector, as shown in Figure
2.12. When you use the DOM tab in the HTML Inspector, you see only the DOM for that HTML
element, which reduces the amount of information that is displayed. It also makes it easy to
quickly change attribute values of the HTML element directly in the browser, which makes
debugging and developing much easier.

Favorite Movies

 Lord of the Rings: Trilogy
» Harry Folter

» Marria

Hol Lead and Cald Feet

#0] € o] = [omole [(s et oo net cookier {2 |saa
Rl st comprited, o] oun ~ |
e suiae -l

& puarial el 14

P) Lord of the Tinge: Trilegy
cnntabi — Changed Value
“livHarry Potber </1iw

«lirHov Lend and Cold Feeo </li»

Alrnbes

Lol ot

FIGURE 2.12
Editing HTML elements inside the DOM inspector.

Editing HTML Element Values in the DOM Inspector

As an example, you can play with the previous example of code using the following steps:
1. Open the fixed code in file hour0202.html in Firefox and open Firebug.

Click the HTML tab in Firebug.

Expand the <html>, <body>, and nodes.

Select the first <1i> node.

Click the DOM tab to the right, as shown in Figure 2.12.

o a0 ® D

Scroll down and find the firstChild node in the DOM inspector and expand that node. It
should be a <TextNode> element.

7. Double-click the value to the right of the data attribute and change the text as shown in
Figure 2.12. Notice that the HTML element rendered in the web page also changes. It is as
easy as that to manipulate any editable attribute of your HTML nodes.

46 HOUR 2: Debugging jQuery and JavaScript Web Pages

Debugging CSS

As part of debugging your dynamic web pages, you also need to be aware of how to debug
CSS issues because a lot of the dynamics of web pages deal with modifying CSS layout in the

JavaScript.

If your JavaScript or jQuery scripts modify the CSS layout of DOM elements, looking at the code
in the web browser will not do you any good. You need to be able to see what CSS the browser
has applied to the element. To do this, you need to use a combination of the CSS inspector as
well as the layout inspector and style inspector inside the HTML Inspector.

Using the CSS Inspector

The CSS inspector, shown in Figure 2.13, provides access to all the CSS scripts loaded in the web
page. There are two drop-down menus at the top of the CSS inspector. The menu on the left
allows you to toggle between the following options:

» Source Edit—Displays the CSS that originally loaded with the web page.

» Live Edit—Displays the CSS that is currently applied to the HTML elements.

Disable
i 2 1| R ‘ = H Console HTML | €56 v | Geript DOM Net Cookies
fve Edit = | hour0203.html -
shorcainer {
margin: 30px; -,
: |
a Editing Values
b
#tabs {
padding: 0;
width: 50px;
]
fcontent {
border: lpx solid $000000;
clear: both;
height: 100px;
FIGURE 2.13

Editing CSS properties inside the CSS inspector.

The menu on the left provides a list of all the files containing CSS that have been loaded. This
enables you to select which CSS document you would like to view and edit.

From the CSS inspector, you also have the capability to edit the CSS. Figure 2.13 shows the
editing in process. Notice the disable icon. When you click this icon, that CSS property will be
disabled, and the icon will go from red to gray. You can also directly edit the value of the CSS

property, as shown in Figure 2.13.

Debugging CSS 47

Using the Style Inspector

In addition to editing the entire CSS file, you can view and edit the CSS properties for specific ele-
ments from the HTML Inspector. Figure 2.14 shows the Style tab in the HTML Inspector. From the
Style inspector, you can view and modify the property values for a specific element.

Selected Element :hover Enabled

Dy Tt Appled Ryl
Shiow Lisar Agent £
Fxpurnd Shorthae] Prigetics

». Cnlors &5 Her
Colers As RGD
Colors &5 HEL

o thownr
= iactin
#0% € w7 v condile | HTML - | 0S5 Script. DOM Ml Coukies e I | BEE

e, et (e 32) —

o 8203 bt (line 20§

Overridden Values

SRpANS CORTACT €/ BpARE
«span>Bio </ spans
wpaien

i wdiv id="comuent®> | funt—iaight. beld,
“fdive =l wargan: spe: =l

FIGURE 2.14
Editing CSS properties inside the Style inspector inside the HTML Inspector.

Figure 2.14 also illustrates some important features of the Style inspector. Notice that :hover is
selected in the menu. That shows the CSS style that is applied to that element when it is hovered
over by the mouse. Also notice that the span:hover selector overrides the background-color
setting in the span selector. The entire CSS hierarchy is displayed in the style window so you
can see which property values are coming from what CSS selector and which values have been
overridden.

Using the Layout Inspector

Another extremely powerful tool when debugging CSS is the Layout inspector in the HTML
Inspector. The Layout inspector, shown in Figure 2.15, provides an easy-to-use visual interface to
the CSS layout of the selected HTML element.

From the Layout inspector you can use, view, and modify the following features:

» Margin—The margin is the outermost box shown in Layout inspector. There is a value on
each of the four sides of the margin. You can double-click those values and change the CSS
property directly in the Layout inspector.

» Border—The border is the next box. It also has four values you can change to adjust the
CSS border properties of the HTML element.

48 HOUR 2: Debugging jQuery and JavaScript Web Pages

» Padding—The padding is the next box. It also has four values you can change to adjust
the CSS padding properties of the HTML element.

» Content—The content is the innermost box in the Layout inspector. It has two values, the
length and width, that you change to set the CSS length and width properties of the HTML
element.

» Rulers—The rulers are displayed in the web page to give you a specific size scale to work
from.

» Guidelines—When you select the margin, border, padding, or content box in the Layout
inspector, guidelines appear in the web page. The guidelines run horizontally and verti-
cally to show the specific location of the edges of that CSS property. This can be extremely
useful when trying to line up elements in your layouts.

Rulers Guidelines

I T O BT R I TR IR T T s (8 ERR
Hrad Dayley
Author :
RIS eoOok ; =]
| € 0| = -] consle | HTML = | €65 Scipt 00N Nt Coakies | A =070

©h | ESE | span < dvatebs < dvscontaer < body < homl Style Computed | Layout = | Do

Content Dimensions

AEpARE ComE act O/ spany

pdare

il wdiv id=*concenc®>

e =l

FIGURE 2.15
Viewing the CSS layout properties inside the Layout inspector inside the HTML Inspector.

V¥ TRY IT YOURSELF

Editing the CSS Layout

To help you understand debugging and editing the CSS layout using Firebug, consider the code
in Listing 2.3. The code is designed to display a simple tabbed box to display info. Some prob-
lems exist with the CSS properties that cause it to be displayed poorly, as shown in Figure 2.16.
Notice that the tabs are stacked and there is space between them.

Debugging CSS

LISTING 2.3 A Very Simple HTML Document with Some HTML Syntax Errors
lllustrated in Figure 2.16

49

01 <!DOCTYPE html>

02 <html>

03 <head>

04 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
05 <style>

06 #container

07 margin: 30px;

08 padding:5px;

09 }

10 #tabs{

11 padding: Opx;

12 width:50px;

13 }

14 #content {

15 border: 1lpx solid #000000;
16 height: 100px;

17 width: 300px;

18 clear: both;

19 }

20 span{

21 margin: 5px;

22 width: 70px;

23 background-color: #CO0CO0CO;
24 font-weight: bold;

25 border-color: #COCOCO;

26 border:1px solid, #000000;
27 border-radius: 5px 5px Opx Opx;
28 padding: 3px;

29 float: left;

30 text-align: center;

31 }

32 span:hover{

33 background-color: #3030FF;
34 color: #FFFFFF;

35 cursor: pointer;

36 }

37 p{

38 font-weight: bold;

39 text-align: center;

40 }

41 </style>

42 </head>
43 <body>

44 <div id="container">

